US20200084612A1 - System and Method for Multi-SIM Profiles or Embedded SIM - Google Patents

System and Method for Multi-SIM Profiles or Embedded SIM Download PDF

Info

Publication number
US20200084612A1
US20200084612A1 US16/358,428 US201916358428A US2020084612A1 US 20200084612 A1 US20200084612 A1 US 20200084612A1 US 201916358428 A US201916358428 A US 201916358428A US 2020084612 A1 US2020084612 A1 US 2020084612A1
Authority
US
United States
Prior art keywords
mobile device
sim
sim profile
specific signature
signature element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/358,428
Inventor
Jian Chen
Lei Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FutureWei Technologies Inc
Original Assignee
FutureWei Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FutureWei Technologies Inc filed Critical FutureWei Technologies Inc
Priority to US16/358,428 priority Critical patent/US20200084612A1/en
Publication of US20200084612A1 publication Critical patent/US20200084612A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0853Network architectures or network communication protocols for network security for authentication of entities using an additional device, e.g. smartcard, SIM or a different communication terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/102Entity profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • H04W12/35Protecting application or service provisioning, e.g. securing SIM application provisioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present disclosure relates to wireless communications, and, in particular embodiments, to a system and method for multi-subscriber information module (SIM) profiles or embedded SIM.
  • SIM subscriber information module
  • a dual SIM mobile phone is similar to a single SIM phone but with the addition of a second transceiver that allows the mobile phone to implement two separate SIMs.
  • a SIM is a small chip or card that slides into the back of a mobile phone and guides pick up of cellular signals.
  • a SIM generally is programmed to pick up the signal from a particular mobile network, receiving signals from that network's cellular towers. Because of mobile phones many features and capabilities, mobile subscribers are using more SIMs from multiple operators.
  • a dual SIM card allows a mobile phone to have two SIM cards for using two different service providers' services.
  • An embodiment method for initial subscriber information module (SIM) profile selection includes a mobile device accessing a first SIM profile stored on a SIM card for the mobile device, and attempting to connect to a first network according to the first SIM profile. In response to the attempting to connect to the first device failing, the mobile devices accesses a second SIM profile stored on the SIM card for the mobile device, and attempts to connect to a second network according to the second SIM profile. In an embodiment, this logic continues to the next SIM profiles stored on the SIM card for the mobile device until it is successfully connected to a network.
  • SIM subscriber information module
  • An embodiment mobile device includes a processor, a non-transitory computer readable storage medium storing programming for execution by the processor, and a subscriber information module (SIM) card operatively coupled to the processor, where the SIM card stores multiple SIM profiles for different network service providers.
  • SIM subscriber information module
  • FIG. 1 illustrates a multi-SIM profile solution
  • FIG. 2 illustrates a multi-SIM card logistic and EDI system
  • FIG. 3 illustrates initial SIM selection options
  • FIG. 4 illustrates a multi-SIM architecture for WiFi and default bootstrap options
  • FIG. 5 illustrates SIM selection via WiFi connection option
  • FIG. 6 illustrates SIM selection via a default bootstrap on SIM option
  • FIG. 7 illustrates a multi-SIM architecture for fixed order options
  • FIG. 8 illustrates a fixed SIM profile option
  • FIG. 9 illustrates an encryption-decryption sequence diagram
  • FIG. 10 illustrates device unique signature element generation
  • FIG. 11 illustrates server encryption
  • FIG. 12 illustrates device decryption
  • FIG. 13 illustrates an embedded/eco SIM solution
  • FIG. 14 illustrates a computing platform that may be used for implementing, for example, the devices and methods described herein, in accordance with an embodiment.
  • An embodiment deploys multiple SIM profiles on one SIM card for different network service providers.
  • An embodiment uses cloud technology over the air (OTA) to push SIM profile selection instruction to a device.
  • a device can be instructed by the OTA server to switch the wireless carrier from one to another electronically.
  • An embodiment simplifies an mobile virtual network operator (MVNO) end user switch carrier seamlessly.
  • MVNO mobile virtual network operator
  • An embodiment provides auto selection from the order of SIM profiles.
  • automatic SIM profile selection at the condition of no service is available at the first preset SIM profile.
  • the device at initial service establishment, when is no service, the device automatically switches to the next available SIM profile and re-establishes the service. This logic and the steps will continue till a service is established.
  • An embodiment establishes the initial wireless service smoothly under no service condition.
  • SIM profiles are stored on one SIM card in a preset order.
  • the mobile device powers up the first time out of the box, there is no service, or a network connection is established.
  • the device works with the network to set the connection using information on the SIM profile.
  • the first SIM profile in the preset order is triggered for registration/authentication/service confirmation. After it succeeds, there is network coverage, and the phone is powered up as normal and goes into idle state ready for use.
  • the phone goes to no service and is dead. There is not a chance to select other SIM profiles in this case, because there is no connection to the SIM selection server.
  • Automatic SIM profile selection automatically switches to the next SIM profile on the SIM card and tries the registration/authentication/service confirmation process on other network which is defined by the switched SIM profile. This process will continue until it gets a connection.
  • An embodiment provides dynamic switching of MNOs.
  • MVNO mobile virtual network operator
  • MNOs or carriers mobile network operators
  • An MVNO customer may request to switch a carrier for any reason other than MVNO originally assigned.
  • the change carrier/MNO is a very inconvenient and costly process today, involving phone calls, SIM card delivery, and an activation process. Furthermore, the planning work for SIM card allocation is difficult and inaccurate.
  • An MVNO assigns an MNO to a particular device based on an assumption that an end user is going to use the phone service near the location the retail store located where the device is sold. This is a very broad assumption and the reality can be very different from this assumption. If an end user situation is not within this assumption, an MVNO may have an unhappy customer. The MVNO needs to deal with the carrier change request.
  • Dynamic switch of MNO performs the carrier change in the background without service interruption and appears as a smooth process to both the end user and MVNO.
  • Embodiments are applicable to both multi-SIM profiles and embedded SIM.
  • An embodiment provides TxRx dual encoding security for securing OTA transmission.
  • Carrier selection is an important decision for the MVNO and MNO.
  • the carrier total subscriber base is changed by every carrier selection decision. There is a great deal of interest to gain a subscriber and entities are willing to pay a fee for it. That opens the door for a hacker to get into this field and alter the selection decision.
  • This technology requires tight security protection from both device and server.
  • the device RX from getting command from the server point of view
  • the Server (TX from pushing command to device point of view) encrypts the command together with the received device signature and sends the encrypted message to the device for the device to decrypt.
  • An embodiment provides an encryption algorithm for the server to encrypt the command content and an associated decryption algorithm for the device to decrypt the received content.
  • the OTA command for SIM profile selection is secured from hacking, replacement.
  • An embodiment securely protects the OTA instruction from unauthorized replacement.
  • An embodiment provides an integrated contact list/phone book that combines the phone book on the SIM card and the contacts on the device into one database on the device, and backs it up on the server.
  • An embodiment provides multiple SIM profiles in device native memory, such as flash memory, rather than on a SIM card. By doing this, the SIM card is eliminated altogether.
  • FIG. 1 illustrates a multi-SIM profile solution.
  • Multi-SIM allows multiple SIM profiles on one SIM.
  • Embedded SIM (eSIM) allows multiple SIM profiles on a device.
  • Multi-SIM and eSIM generally provide flexible carrier selection, eliminate SIM type management, SIM inventory hassle, and SIM kitting hassle.
  • MVNO mobile virtual network operator
  • the MVNO involves customer service and physically mails a different SIM card to the end user.
  • the multi SIM profile embodiment and an eSIM embodiment make this change automatic and seamless to an end user.
  • MVNO MVNO initiated carrier switch
  • a device is sealed at the kitting production line, the device is bound to a particular carrier with a physical SIM card.
  • the multi SIM profile embodiment and an embodiment eSIM makes MVNO switch of an end user carrier seamless and electronic.
  • the encryption/decryption algorithm for contents between the device terminal and the SIM provisioning server prevents from the contents get replaced.
  • FIG. 2 illustrates a multi-SIM card logistic and EDI system.
  • SIM card management a company may purchase SIM cards and manage inventory.
  • the eSIM provisional server controls the SIM profile selection.
  • An OEM installs a SIM card, and the device is assembled with SIM, battery and cover.
  • Options for initial SIM selection include using a WiFi channel for a SIM selection command, using a default bootstrap on the SIM card, and using a fixed order on multiple SIM profiles.
  • An integrated phone book may be used regardless of which SIM profile is engaged, for added user value.
  • Over the air (OTA) security encryption may be provided. Further, these three methods are just examples.
  • There are methods for sending the SIM selection command to the device including Blue Tooth, SD card, USB tethered line, and the like.
  • FIG. 3 illustrates three initial SIM profile selection options.
  • the first option for SIM profile selection is initiated by WiFi.
  • a Wifi connection is established between the mobile phone and the SIM provisioning server for service provider selection.
  • An MVNO makes a decision and sends the SIM profile selection command to the device, and the network connection will be established to that network.
  • the second option for SIM profile selection is initiated by default boot strap.
  • the default service provider is set to MNO1, then MNO1 activates the SIM by default and sends signal(s) to the provisioning server.
  • MNO2's service the customer selects MNO2 from the application in the mobile phone.
  • the SIM provisioning server receives the request and then sets up MNO's service and cuts off MNO1's service.
  • the third option for SIM profile selection is initiated by a fixed order SIM profile.
  • the order of the SIM profile is set as first MNO1, second MNO2, third MNO3, etc.
  • the mobile connection will try MNO1 first. If that fails, it will try MNO2. If that also fails, it will try MNO3, and so on, until the MNO that the customer selected is tried and connected.
  • FIG. 4 illustrates a multi-SIM architecture for WiFi and default bootstrap options.
  • FIG. 5 illustrates SIM selection via WiFi connection option.
  • a WiFi channel is used as the initial connection for SIM selection command push to the device.
  • This option uses native WiFi data connection capability to set up a communication channel between the device and the server. This option is stand alone and does not need to ask others for assistance.
  • No device-SIM security encryption needed, and one type of SIM covers all mobile network operators (MNOs).
  • WiFi connection is not available everywhere, however, and the user needs to make sure WiFi is working first before SIM selection can proceed.
  • FIG. 6 illustrates SIM selection via a default bootstrap on SIM option.
  • This option provides a smooth user experience, one type of SIM covers all MNOs, and no device-SIM security encryption needed. However, an MNO needs to agree to lend its network as the pilot connection for the SIM select command push.
  • FIG. 7 illustrates a multi-SIM architecture for fixed order options.
  • FIG. 8 illustrates a fixed order SIM profile option.
  • Fixed order MNO profiles are on the SIM card. This option is adjustable when there is no coverage on the first choice. This option provides a smooth user experience, device and server implementations are easier, and there is no need to borrow the MNO network.
  • Device-SIM interface security needs to be co-developed with the SIM vendor, and multiple SIM types will be required based on the default profile orders.
  • the device send out a device-specific signature element with a device hardware ID, a time stamp as the input to the server, which means only this particular device can generate this element at this time point.
  • This element is used to decrypt the message from the server at a later time.
  • the server receives the element from the device and uses it as an encryption element to encrypt the SIM profile selection command with the server private key, and sends the encrypted message over the air to the device.
  • the device decrypts the message with the server decryption public key and the device-generated unique signature element, verifies the time stamp, and authenticates the device hardware ID to validate the message.
  • FIG. 9 illustrates an encryption-decryption sequence diagram.
  • FIG. 10 illustrates device unique signature element generation.
  • FIG. 11 illustrates server encryption
  • FIG. 12 illustrates device decryption.
  • FIG. 13 illustrates an embedded/eco SIM solution. This option eliminates the SIM card completely.
  • a device can be provisioned with preloaded SIM(s) on the device, or OTA loaded SIM. This option saves on SIM card cost, eliminates SIM card kitting, SIM card management, and SIM card inventory hassle, and is easier for reverse logistic process.
  • FIG. 14 is a block diagram of a processing system that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc.
  • the processing system may comprise a processing unit equipped with one or more input/output devices, such as a speaker, microphone, touchscreen, keypad, display, and the like.
  • the processing unit may include a central processing unit (CPU), memory, a mass storage device, a video adapter, and an I/O interface connected to a bus.
  • the bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like.
  • the CPU may comprise any type of electronic data processor.
  • the memory may comprise any type of non-transitory system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like.
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • ROM read-only memory
  • the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
  • the mass storage device may comprise any type of non-transitory storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus.
  • the mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
  • the video adapter and the I/O interface provide interfaces to couple external input and output devices to the processing unit.
  • input and output devices include the display coupled to the video adapter.
  • Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized.
  • a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface.
  • USB Universal Serial Bus
  • the processing unit also includes one or more network interfaces, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks.
  • the network interface allows the processing unit to communicate with remote units via the networks.
  • the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas.
  • the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)

Abstract

Methods and apparatus are provided that select one or more initial subscriber information module (SIM) profile via a mobile device. Multiple SIM profiles including a first SIM profile and a second SIM profile can be stored on a SIM card for the mobile device. The mobile device may attempt to connect to a first network via the first SIM profile. In response to a failure to connect to the first network according to the first SIM profile, the mobile device can access the second SIM profile to connect to a second network according to the second SIM profile. In an embodiment, sequential accessing of SIM profiles stored on the SIM card continues until the mobile device is successfully connected to a network.

Description

    CROSS-REFERENCE
  • This application is a continuation of U.S. patent application Ser. No. 15/066,540, filed on Mar. 10, 2016, which is related to and claims the benefit of, U.S. Provisional Patent Application No. 62/131,704, filed on Mar. 11, 2015, entitled “System and Method for Multi-SIM Profiles or Embedded SIM”, Jian Chen et al. Each of the afore-mentioned patent applications is hereby incorporated by reference herein in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to wireless communications, and, in particular embodiments, to a system and method for multi-subscriber information module (SIM) profiles or embedded SIM.
  • BACKGROUND
  • A dual SIM mobile phone is similar to a single SIM phone but with the addition of a second transceiver that allows the mobile phone to implement two separate SIMs. A SIM is a small chip or card that slides into the back of a mobile phone and guides pick up of cellular signals. A SIM generally is programmed to pick up the signal from a particular mobile network, receiving signals from that network's cellular towers. Because of mobile phones many features and capabilities, mobile subscribers are using more SIMs from multiple operators. A dual SIM card allows a mobile phone to have two SIM cards for using two different service providers' services.
  • SUMMARY
  • An embodiment method for initial subscriber information module (SIM) profile selection includes a mobile device accessing a first SIM profile stored on a SIM card for the mobile device, and attempting to connect to a first network according to the first SIM profile. In response to the attempting to connect to the first device failing, the mobile devices accesses a second SIM profile stored on the SIM card for the mobile device, and attempts to connect to a second network according to the second SIM profile. In an embodiment, this logic continues to the next SIM profiles stored on the SIM card for the mobile device until it is successfully connected to a network.
  • An embodiment mobile device includes a processor, a non-transitory computer readable storage medium storing programming for execution by the processor, and a subscriber information module (SIM) card operatively coupled to the processor, where the SIM card stores multiple SIM profiles for different network service providers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
  • FIG. 1 illustrates a multi-SIM profile solution;
  • FIG. 2 illustrates a multi-SIM card logistic and EDI system;
  • FIG. 3 illustrates initial SIM selection options;
  • FIG. 4 illustrates a multi-SIM architecture for WiFi and default bootstrap options;
  • FIG. 5 illustrates SIM selection via WiFi connection option;
  • FIG. 6 illustrates SIM selection via a default bootstrap on SIM option;
  • FIG. 7 illustrates a multi-SIM architecture for fixed order options;
  • FIG. 8 illustrates a fixed SIM profile option;
  • FIG. 9 illustrates an encryption-decryption sequence diagram;
  • FIG. 10 illustrates device unique signature element generation;
  • FIG. 11 illustrates server encryption;
  • FIG. 12 illustrates device decryption;
  • FIG. 13 illustrates an embedded/eco SIM solution; and
  • FIG. 14 illustrates a computing platform that may be used for implementing, for example, the devices and methods described herein, in accordance with an embodiment.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The structure, manufacture and use of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the disclosure, and do not limit the scope of the disclosure.
  • An embodiment deploys multiple SIM profiles on one SIM card for different network service providers. An embodiment uses cloud technology over the air (OTA) to push SIM profile selection instruction to a device. A device can be instructed by the OTA server to switch the wireless carrier from one to another electronically. An embodiment simplifies an mobile virtual network operator (MVNO) end user switch carrier seamlessly.
  • An embodiment provides auto selection from the order of SIM profiles. In an embodiment, automatic SIM profile selection at the condition of no service is available at the first preset SIM profile. In an embodiment, at initial service establishment, when is no service, the device automatically switches to the next available SIM profile and re-establishes the service. This logic and the steps will continue till a service is established. An embodiment establishes the initial wireless service smoothly under no service condition.
  • With respect to initial SIM profile selection, multiple SIM profiles are stored on one SIM card in a preset order. When the mobile device powers up the first time out of the box, there is no service, or a network connection is established. The device works with the network to set the connection using information on the SIM profile. In an embodiment, the first SIM profile in the preset order is triggered for registration/authentication/service confirmation. After it succeeds, there is network coverage, and the phone is powered up as normal and goes into idle state ready for use.
  • If the location does not have coverage for the network for which the first SIM profile is defined, the phone goes to no service and is dead. There is not a chance to select other SIM profiles in this case, because there is no connection to the SIM selection server. Automatic SIM profile selection automatically switches to the next SIM profile on the SIM card and tries the registration/authentication/service confirmation process on other network which is defined by the switched SIM profile. This process will continue until it gets a connection.
  • An embodiment provides dynamic switching of MNOs. For a mobile virtual network operator (MVNO), one MVNO may use multiple mobile network operators (MNOs or carriers). An MVNO customer may request to switch a carrier for any reason other than MVNO originally assigned. The change carrier/MNO is a very inconvenient and costly process today, involving phone calls, SIM card delivery, and an activation process. Furthermore, the planning work for SIM card allocation is difficult and inaccurate. An MVNO assigns an MNO to a particular device based on an assumption that an end user is going to use the phone service near the location the retail store located where the device is sold. This is a very broad assumption and the reality can be very different from this assumption. If an end user situation is not within this assumption, an MVNO may have an unhappy customer. The MVNO needs to deal with the carrier change request.
  • Dynamic switch of MNO performs the carrier change in the background without service interruption and appears as a smooth process to both the end user and MVNO. Embodiments are applicable to both multi-SIM profiles and embedded SIM.
  • An embodiment provides TxRx dual encoding security for securing OTA transmission. Carrier selection is an important decision for the MVNO and MNO. The carrier total subscriber base is changed by every carrier selection decision. There is a great deal of interest to gain a subscriber and entities are willing to pay a fee for it. That opens the door for a hacker to get into this field and alter the selection decision. To prevent the unauthorized behavior via intercept, replace, fake a command over the air, on the device, this technology requires tight security protection from both device and server. The device (RX from getting command from the server point of view) issues a device unique signature to be sent to the server. The Server (TX from pushing command to device point of view) encrypts the command together with the received device signature and sends the encrypted message to the device for the device to decrypt.
  • An embodiment provides an encryption algorithm for the server to encrypt the command content and an associated decryption algorithm for the device to decrypt the received content. The OTA command for SIM profile selection is secured from hacking, replacement. An embodiment securely protects the OTA instruction from unauthorized replacement.
  • An embodiment provides an integrated contact list/phone book that combines the phone book on the SIM card and the contacts on the device into one database on the device, and backs it up on the server.
  • An embodiment provides multiple SIM profiles in device native memory, such as flash memory, rather than on a SIM card. By doing this, the SIM card is eliminated altogether.
  • FIG. 1 illustrates a multi-SIM profile solution. Multi-SIM allows multiple SIM profiles on one SIM. Embedded SIM (eSIM) allows multiple SIM profiles on a device. Multi-SIM and eSIM generally provide flexible carrier selection, eliminate SIM type management, SIM inventory hassle, and SIM kitting hassle.
  • For a mobile virtual network operator (MVNO), when an end user-initiated carrier change request is received, the MVNO involves customer service and physically mails a different SIM card to the end user. The multi SIM profile embodiment and an eSIM embodiment make this change automatic and seamless to an end user.
  • For an MVNO, it is difficult to perform an MVNO initiated carrier switch. Once a device is sealed at the kitting production line, the device is bound to a particular carrier with a physical SIM card. The multi SIM profile embodiment and an embodiment eSIM makes MVNO switch of an end user carrier seamless and electronic.
  • The encryption/decryption algorithm for contents between the device terminal and the SIM provisioning server prevents from the contents get replaced.
  • FIG. 2 illustrates a multi-SIM card logistic and EDI system. For SIM card management, a company may purchase SIM cards and manage inventory. The eSIM provisional server controls the SIM profile selection. An OEM installs a SIM card, and the device is assembled with SIM, battery and cover. Options for initial SIM selection include using a WiFi channel for a SIM selection command, using a default bootstrap on the SIM card, and using a fixed order on multiple SIM profiles. An integrated phone book may be used regardless of which SIM profile is engaged, for added user value. Over the air (OTA) security encryption may be provided. Further, these three methods are just examples. There are methods for sending the SIM selection command to the device, including Blue Tooth, SD card, USB tethered line, and the like.
  • FIG. 3 illustrates three initial SIM profile selection options. The first option for SIM profile selection is initiated by WiFi. A Wifi connection is established between the mobile phone and the SIM provisioning server for service provider selection. An MVNO makes a decision and sends the SIM profile selection command to the device, and the network connection will be established to that network.
  • The second option for SIM profile selection is initiated by default boot strap. For example, the default service provider is set to MNO1, then MNO1 activates the SIM by default and sends signal(s) to the provisioning server. If the customer wants a different service such as MNO2's service, the customer selects MNO2 from the application in the mobile phone. The SIM provisioning server receives the request and then sets up MNO's service and cuts off MNO1's service.
  • The third option for SIM profile selection is initiated by a fixed order SIM profile. For example, the order of the SIM profile is set as first MNO1, second MNO2, third MNO3, etc. The mobile connection will try MNO1 first. If that fails, it will try MNO2. If that also fails, it will try MNO3, and so on, until the MNO that the customer selected is tried and connected.
  • FIG. 4 illustrates a multi-SIM architecture for WiFi and default bootstrap options.
  • FIG. 5 illustrates SIM selection via WiFi connection option. A WiFi channel is used as the initial connection for SIM selection command push to the device. This option uses native WiFi data connection capability to set up a communication channel between the device and the server. This option is stand alone and does not need to ask others for assistance. No device-SIM security encryption needed, and one type of SIM covers all mobile network operators (MNOs). WiFi connection is not available everywhere, however, and the user needs to make sure WiFi is working first before SIM selection can proceed.
  • FIG. 6 illustrates SIM selection via a default bootstrap on SIM option. This option provides a smooth user experience, one type of SIM covers all MNOs, and no device-SIM security encryption needed. However, an MNO needs to agree to lend its network as the pilot connection for the SIM select command push.
  • FIG. 7 illustrates a multi-SIM architecture for fixed order options. FIG. 8 illustrates a fixed order SIM profile option. Fixed order MNO profiles are on the SIM card. This option is adjustable when there is no coverage on the first choice. This option provides a smooth user experience, device and server implementations are easier, and there is no need to borrow the MNO network. Device-SIM interface security, however, needs to be co-developed with the SIM vendor, and multiple SIM types will be required based on the default profile orders.
  • In an embodiment providing double encryption, the device send out a device-specific signature element with a device hardware ID, a time stamp as the input to the server, which means only this particular device can generate this element at this time point. This element is used to decrypt the message from the server at a later time. The server receives the element from the device and uses it as an encryption element to encrypt the SIM profile selection command with the server private key, and sends the encrypted message over the air to the device. Once the device receives the message, the device decrypts the message with the server decryption public key and the device-generated unique signature element, verifies the time stamp, and authenticates the device hardware ID to validate the message. FIG. 9 illustrates an encryption-decryption sequence diagram. FIG. 10 illustrates device unique signature element generation. FIG. 11 illustrates server encryption, and FIG. 12 illustrates device decryption.
  • FIG. 13 illustrates an embedded/eco SIM solution. This option eliminates the SIM card completely. A device can be provisioned with preloaded SIM(s) on the device, or OTA loaded SIM. This option saves on SIM card cost, eliminates SIM card kitting, SIM card management, and SIM card inventory hassle, and is easier for reverse logistic process.
  • FIG. 14 is a block diagram of a processing system that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc. The processing system may comprise a processing unit equipped with one or more input/output devices, such as a speaker, microphone, touchscreen, keypad, display, and the like. The processing unit may include a central processing unit (CPU), memory, a mass storage device, a video adapter, and an I/O interface connected to a bus.
  • The bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like. The CPU may comprise any type of electronic data processor. The memory may comprise any type of non-transitory system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like. In an embodiment, the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
  • The mass storage device may comprise any type of non-transitory storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus. The mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
  • The video adapter and the I/O interface provide interfaces to couple external input and output devices to the processing unit. As illustrated, an example of input and output devices include the display coupled to the video adapter. Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized. For example, a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface.
  • The processing unit also includes one or more network interfaces, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks. The network interface allows the processing unit to communicate with remote units via the networks. For example, the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas. In an embodiment, the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.
  • The following references are related to subject matter of the present application. Each of these references is incorporated herein by reference in its entirety:
    • [1] N. Mallikharjuna Rao and P. Seetharam, “Multiple Network Operator Services Utilization Using Single SIM Card,” International Journal of Computer Theory and Engineering, Vol. 3, No. 3, pp. 408-12, June 2011.
    • [2] http://www.theverge.com/2012/6/1/3057577/etsi-euicc-embedded-sim-apple; “Embedded SIMs: they're happening, and Apple thinks they could be in consumer products,” The Verge, Jun. 1, 2012.
  • While this disclosure has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the disclosure, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.

Claims (20)

What is claimed is:
1. A method for a wireless service, the method comprising:
transmitting, by a mobile device to a remote server, a device-specific signature element for activating an embedded subscriber information module (eSIM) of the mobile device, the device-specific signature element comprising a hardware identifier (ID) of the mobile device and a time stamp corresponding to a unique point in time;
receiving, by the mobile device from the remote server, an encrypted message comprising an encryption of a SIM profile command;
validating, by the mobile device, the encrypted message comprising the encryption of the SIM profile command in accordance with at least part of the device-specific signature element; and
activating, by the mobile device in response to the validation, the eSIM of the mobile device using a first SIM profile in accordance with the SIM profile command.
2. The method of claim 1, wherein the mobile device transmits the device-specific signature element and receives the encrypted message using a WiFi connection.
3. The method of claim 1, the method further comprising: switching, by the mobile device, the eSIM from the first SIM profile to a second SIM profile, the second SIM profile being associated with a different wireless service provider from a wireless service provider associated with the first SIM profile.
4. The method of claim 1, the method further comprising: selecting, by the mobile device, a second SIM profile for the eSIM of the mobile device, the second SIM profile being associated with a different wireless service provider from a wireless service provider associated with the first SIM profile.
5. The method of claim 1, the method further comprising: selecting, by the mobile device, the first SIM profile from a plurality of SIM profiles stored in the mobile device.
6. The method of claim 1, the method further comprising: selecting, by the mobile device, the first SIM profile in accordance with a downloaded SIM profile from the remote server.
7. The method of claim 1, the method further comprising: decrypting, by the mobile device, the encrypted message in accordance with a server decryption public key and said at least part of the device-specific signature element.
8. The method of claim 1, wherein the step of validating, by the mobile device, the encrypted message comprises: validating, by the mobile device, the encrypted message in accordance with the timestamp and the hardware ID of the mobile device.
9. A mobile device comprising:
an embedded subscriber information module (eSIM);
a memory storage comprising instructions; and
one or more processors in communication with the memory, wherein the instructions, when executed by the one or more processors, cause the mobile device to:
transmit a device-specific signature element for activating the eSIM of the mobile device to a remote server, the device-specific signature element comprising a hardware identifier (ID) of the mobile device and a time stamp corresponding to a unique point in time;
receive an encrypted message comprising an encryption of a SIM profile command from the remote server;
validate the encrypted message comprising the encryption of the SIM profile command in accordance with at least part of the device-specific signature element; and
activate, in response to the validation, the eSIM of the mobile device using a first SIM profile in accordance with the SIM profile command.
10. The mobile device of claim 9, wherein the instructions, when executed by the one or more processors, cause the device to transmit the device-specific signature element and to receive the encrypted message using a WiFi connection.
11. The mobile device of claim 9, wherein the instructions, when executed by the one or more processors, cause the device to switch the eSIM from the first SIM profile to a second SIM profile, the second SIM profile being associated with a different wireless service provider from a wireless service provider associated with the first SIM profile.
12. The mobile device of claim 9, wherein the instructions, when executed by the one or more processors, cause the device to select a second SIM profile for the eSIM of the mobile device, the second SIM profile belonging to a different wireless service provider from a wireless service provider of the first SIM profile.
13. The mobile device of claim 9, wherein the instructions, when executed by the one or more processors, cause the device to select the first SIM profile from a plurality of SIM profiles stored in the mobile device.
14. The mobile device of claim 9, wherein the instructions, when executed by the one or more processors, cause the device to select the first SIM profile in accordance with a downloaded SIM profile from the remote server.
15. The mobile device of claim 9, wherein the instructions, when executed by the one or more processors, cause the device to decrypt the encrypted message in accordance with a server decryption public key and said at least part of the device-specific signature element.
16. The mobile device of claim 9, wherein the at least part of the of the device-specific signature element comprises the timestamp and the hardware ID of the mobile device.
17. A server system, comprising:
a memory storage comprising instructions; and
one or more processors in communication with the memory, wherein the instructions, when executed by the one or more processors, cause the server system to:
receive a device-specific signature element for activating an embedded subscriber information module (eSIM) of a mobile device, the device-specific signature element comprising a hardware identifier (ID) of the mobile device and a time stamp corresponding to a unique point in time;
encrypt an SIM profile command using at least part of the device-specific signature element, the SIM profile command instructing the mobile device to activate the eSIM of the mobile device using a first SIM profile;
transmit an encrypted message comprising an encryption of the SIM profile command.
18. The server system of claim 17, wherein the SIM profile command comprises the first SIM profile.
19. The server system of claim 17, wherein the instructions, when executed by the one or more processors, cause the server to encrypt the SIM profile command using a server private key and said at least part of the device-specific signature element.
20. The server system of claim 17, wherein the at least part of the of the device-specific signature element comprises the timestamp and the hardware ID of the mobile device.
US16/358,428 2015-03-11 2019-03-19 System and Method for Multi-SIM Profiles or Embedded SIM Abandoned US20200084612A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/358,428 US20200084612A1 (en) 2015-03-11 2019-03-19 System and Method for Multi-SIM Profiles or Embedded SIM

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562131704P 2015-03-11 2015-03-11
US15/066,540 US10237722B2 (en) 2015-03-11 2016-03-10 System and method for multi-SIM profiles or embedded SIM
US16/358,428 US20200084612A1 (en) 2015-03-11 2019-03-19 System and Method for Multi-SIM Profiles or Embedded SIM

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/066,540 Continuation US10237722B2 (en) 2015-03-11 2016-03-10 System and method for multi-SIM profiles or embedded SIM

Publications (1)

Publication Number Publication Date
US20200084612A1 true US20200084612A1 (en) 2020-03-12

Family

ID=56888697

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/066,540 Active US10237722B2 (en) 2015-03-11 2016-03-10 System and method for multi-SIM profiles or embedded SIM
US16/358,428 Abandoned US20200084612A1 (en) 2015-03-11 2019-03-19 System and Method for Multi-SIM Profiles or Embedded SIM

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/066,540 Active US10237722B2 (en) 2015-03-11 2016-03-10 System and method for multi-SIM profiles or embedded SIM

Country Status (1)

Country Link
US (2) US10237722B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659662B (en) * 2014-09-29 2019-10-18 华为技术有限公司 A kind of method and device of shunting
US10237722B2 (en) * 2015-03-11 2019-03-19 Futurewei Technologies, Inc. System and method for multi-SIM profiles or embedded SIM
JP6097467B1 (en) 2015-06-10 2017-03-15 株式会社ソラコム Communication system and communication method for providing wireless terminal with access to IP network
EP3309740B1 (en) * 2015-06-10 2020-12-30 Soracom, Inc. Management method and management server for using plurality of sim cards
US10171537B2 (en) 2015-08-07 2019-01-01 At&T Intellectual Property I, L.P. Segregation of electronic personal health information
US9942747B2 (en) * 2015-08-07 2018-04-10 At&T Mobility Ii Llc Dynamic utilization of services by a temporary device
US10631192B2 (en) 2015-08-14 2020-04-21 At&T Intellectual Property I, L.P. Policy enforced intelligent persona manager
US10044780B2 (en) 2015-08-26 2018-08-07 At&T Intellectual Property I, L.P. Dynamic segregated secure data connection
KR102453705B1 (en) * 2015-09-25 2022-10-11 삼성전자주식회사 Operation Method of Payment Device for Selectively Enabling Payment Function According to Validity of Host
KR102425368B1 (en) * 2016-05-02 2022-07-27 삼성전자주식회사 Apparatus and Method for Managing Virtual Subscriber Identity Module
US10582412B2 (en) * 2016-05-12 2020-03-03 M2MD Technologies, Inc. Method and system for providing low bandwidth and high bandwidth communications services using different user equipment profiles
US9831903B1 (en) * 2016-07-28 2017-11-28 Apple Inc. Update of a trusted name list
US10462734B2 (en) * 2016-10-31 2019-10-29 Google Llc Method, apparatus and system with carrier network switching control
KR102559471B1 (en) 2018-06-25 2023-07-26 삼성전자주식회사 Apparatus and method for handling multiple telecom operator information
US10911945B1 (en) * 2018-11-19 2021-02-02 Sprint Spectrum L.P. Automated eUICC service profile configuration in view of operational issue with respect to eUICC service profile
CN109981125A (en) * 2019-02-28 2019-07-05 努比亚技术有限公司 A kind of wearable device, charging base and wearable device control method
EP3949471A4 (en) * 2019-04-05 2022-06-01 Samsung Electronics Co., Ltd. Method and apparatus for providing network connectivity in a wireless communication system
CN114342436B (en) * 2019-08-16 2024-07-16 交互数字专利控股公司 Registration and security enhancements for WTRUs with multiple USIMs
US11026081B2 (en) 2019-09-13 2021-06-01 T-Mobile Usa, Inc. RSP platform selection for ESIM profile procurement
US10939268B1 (en) 2019-09-13 2021-03-02 T-Mobile Usa, Inc. Meta RSP interface platform for eSIM profile distribution
CN113055857B (en) * 2019-12-28 2022-06-28 华为技术有限公司 Communication connection method and electronic equipment
CN113132142B (en) * 2019-12-31 2022-08-09 华为技术有限公司 Method and device for acquiring network slice identifier
US11115810B1 (en) 2020-03-17 2021-09-07 Sprint Communications Company L.P. Bootstrap electronic subscriber identity module configuration
US10887741B1 (en) 2020-03-17 2021-01-05 Sprint Communications Company L.P. Activation communication addresses of internet of things devices
US11140543B1 (en) * 2020-05-21 2021-10-05 Sprint Communications Company L.P. Embedded subscriber identity module (eSIM) profile adaptation based on context
US12081969B2 (en) 2020-09-15 2024-09-03 Motorola Solutions, Inc. Device agnostic remote eSIM provisioning
US11477636B1 (en) 2020-09-16 2022-10-18 Sprint Communications Company L.P. Electronic subscriber identity module (eSIM) profile provisioning
US11310654B1 (en) 2020-09-16 2022-04-19 Sprint Communications Company L.P. Electronic subscriber identity module (eSIM) profile delivery and activation system and methods
US11877349B2 (en) * 2021-06-29 2024-01-16 T-Mobile Innovations Llc Slices for applications based on multiple active sim profiles
CN115734211B (en) * 2021-08-30 2024-07-16 中移物联网有限公司 Identification analysis method and system and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070287433A1 (en) * 2006-06-08 2007-12-13 Maurice Wollersheim Device detection in mobile networks
US20120100832A1 (en) * 2010-10-22 2012-04-26 Quallcomm Incorporated Authentication of access terminal identities in roaming networks
US20150056960A1 (en) * 2012-09-06 2015-02-26 Dell Products, Lp Collaborative Method and System to Improve Carrier Network Policies with Context Aware Radio Communication Management
US20150229471A1 (en) * 2014-02-11 2015-08-13 Telefonaktiebolaget L M Ericsson (Publ) System and method for securing content keys delivered in manifest files
US10237722B2 (en) * 2015-03-11 2019-03-19 Futurewei Technologies, Inc. System and method for multi-SIM profiles or embedded SIM

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140148130A1 (en) * 2005-05-24 2014-05-29 Marshall Feature Recongnition Llc Remote subscriber identification (rsid) system and method
US9351236B2 (en) * 2011-07-19 2016-05-24 At&T Intellectual Property I, L.P. UICC carrier switching via over-the-air technology
US9967735B2 (en) * 2014-01-24 2018-05-08 Deere & Company Method and system for controlling wireless access or authorized features of a mobile transceiver
WO2015157933A1 (en) * 2014-04-16 2015-10-22 Qualcomm Incorporated System and methods for dynamic sim provisioning on a dual-sim wireless communication device
US9843939B2 (en) * 2014-05-16 2017-12-12 Apple Inc. Measurement of a first RAT based on metrics of a second RAT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070287433A1 (en) * 2006-06-08 2007-12-13 Maurice Wollersheim Device detection in mobile networks
US20120100832A1 (en) * 2010-10-22 2012-04-26 Quallcomm Incorporated Authentication of access terminal identities in roaming networks
US20150056960A1 (en) * 2012-09-06 2015-02-26 Dell Products, Lp Collaborative Method and System to Improve Carrier Network Policies with Context Aware Radio Communication Management
US20150229471A1 (en) * 2014-02-11 2015-08-13 Telefonaktiebolaget L M Ericsson (Publ) System and method for securing content keys delivered in manifest files
US10237722B2 (en) * 2015-03-11 2019-03-19 Futurewei Technologies, Inc. System and method for multi-SIM profiles or embedded SIM

Also Published As

Publication number Publication date
US20160269891A1 (en) 2016-09-15
US10237722B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
US20200084612A1 (en) System and Method for Multi-SIM Profiles or Embedded SIM
EP3603142B1 (en) Virtual sim with multiple mobile network operator profiles for operating over multiple wireless ip networks
US10476671B2 (en) Method and device for installing profile of eUICC
US10397771B2 (en) Techniques for provisioning bootstrap electronic subscriber identity modules (eSIMS) to mobile devices
US9609458B2 (en) Mobile radio communication devices, servers, methods for controlling a mobile radio communication device, and methods for controlling a server
US10015665B2 (en) Methods for provisioning universal integrated circuit cards
EP3565369B1 (en) Esim card activation method, wireless router and computer storage medium
US20160353274A1 (en) Sim module and method for managing a plurality of profiles in the sim module
EP3484199B1 (en) Virtual card downloading method and terminal
CN112534839B (en) Techniques for dynamically configuring electronic subscriber identity modules to mobile devices
CN106717042B (en) Method and device for providing a subscription profile on a mobile terminal
KR20160120598A (en) Method and apparatus for downloading a profile in a wireless communication system
KR101919111B1 (en) Advance personalization of eSIM to support massive eSIM delivery
US11832348B2 (en) Data downloading method, data management method, and terminal
US20200252787A1 (en) Subscriber identity privacy
CN107852603A (en) The method and apparatus of terminal authentication
CN105981416B (en) The method for managing several profiles in safety element
KR102128278B1 (en) Method for factory reset of subscriber certification module and apparatus using the method
WO2022245528A1 (en) Generation of a unique device identifier for a client device in a wireless network
US12127305B2 (en) Off-line profile provisioning for wireless devices
US20230020828A1 (en) Off-line profile provisioning for wireless devices

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION