US20200081684A1 - Semiconductor device and sound output device - Google Patents

Semiconductor device and sound output device Download PDF

Info

Publication number
US20200081684A1
US20200081684A1 US16/568,889 US201916568889A US2020081684A1 US 20200081684 A1 US20200081684 A1 US 20200081684A1 US 201916568889 A US201916568889 A US 201916568889A US 2020081684 A1 US2020081684 A1 US 2020081684A1
Authority
US
United States
Prior art keywords
signal
threshold
semiconductor device
playback
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/568,889
Other versions
US10963212B2 (en
Inventor
Hiroji Akahori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Publication of US20200081684A1 publication Critical patent/US20200081684A1/en
Assigned to Lapis Semiconductor Co., Ltd. reassignment Lapis Semiconductor Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKAHORI, HIROJI
Application granted granted Critical
Publication of US10963212B2 publication Critical patent/US10963212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/187Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1071Measuring or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1071Measuring or testing
    • H03M1/1076Detection or location of converter hardware failure, e.g. power supply failure, open or short circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups

Definitions

  • the present invention relates to a semiconductor device and a sound output device, and in particular relates to a technique that can be effectively applied to a semiconductor device and a sound output device having a fault detection function.
  • Japanese Patent Application Laid-Open Publication No. 2014-230016 discloses a fault detection device that detects an anomaly in an amplifier of an alarm device that includes an alarm sound emission means that emits an alarm sound, an alarm signal transmission means that transmits, to the alarm sound emission means, an alarm signal for emitting an alarm sound, and an amplifier that amplifies the alarm signal, the fault detection device having: a detection signal transmission means that transmits, to the amplifier, a fault detection signal having two pulse waves of differing polarities and phases; a first detection circuit for detecting a first detection signal attained by the amplifier amplifying the fault detection signal and outputting the amplified fault detection signal from a positive-side output terminal; a second detection circuit for detecting a second detection signal attained by the amplifier amplifying the fault detection signal and outputting the amplified fault detection signal from a negative-side output terminal; and a determination means that determines whether or not an anomaly has occurred in the amplifier on the basis of the detected first detection signal and second detection signal.
  • Japanese Patent Application Laid-Open Publication No. 2005-202624 discloses an electronic device having: a sensor; a microcomputer that selects sound source data by controlling a sound source IC when it is determined according to a detection signal from the sensor that an anomaly has occurred; an amplification means that amplifies the sound source data outputted from the sound source IC; an alarm output means that is connected to the amplification means and that outputs an alarm sound based on the sound source data; and a fault test means that outputs a test signal to the alarm output means, the microcomputer including a fault diagnosis means that controls the fault test means so as to output the test signal, and determines that the alarm output means is in a normal state if the test signal is detected to be flowing to the alarm output means.
  • Japanese Patent Application Laid-Open Publication No. H1-176952 discloses a fault diagnosis device for an audio device having: a voltage source that is connected to a prescribed circuit of an audio device when diagnosing a fault, and that supplies a prescribed voltage to the circuit; a means that is connected between the prescribed circuit of the audio device and the voltage source and forms a voltage-dividing circuit together with the circuit; a means for detecting the voltage of the means forming the voltage-dividing circuit and comparing the voltage to a reference value; and a means for performing notification according to comparison results from the means that performs comparison.
  • speech notification regarding handling and the like has become common in devices in various technical fields.
  • speech notification is used for driving assistance, notification of faults, and the like.
  • Functional safety is a general term for techniques used to avoid unacceptable risks using safety functions and measures.
  • the “function” in functional safety refers to the role of safety devices that monitor an object to be controlled or a controller.
  • safety devices use computers, and if a fault or the like occurs in the controller, the computer stops operation of the object to be controlled and issues a warning to the user. The issuance of the warning is often performed by speech.
  • sound output devices in various modern devices often have the function not only of emitting speech or music, but also the function of issuing a notification of information directly relevant to safety.
  • As one aspect of ensuring the reliability of sound output devices there is increased importance for detecting faults such as a signal not reaching a speaker, for example. In such a case, more detailed detection of faults is desirable from the perspective of reliability, with no great increase in cost.
  • current sound output devices include not only those that handle analog signals but many sound output devices handle digital signals, and thus, techniques applicable to both types of sound output devices are sought after.
  • the present invention considers the above situation, and an object thereof is to provide a semiconductor device and a sound output device that can perform detailed detection of faults in a relatively small-scale circuit, and can handle various signal formats.
  • a semiconductor device includes: a sound source playback unit that plays back a sound source and outputs a playback signal; an amplification unit that amplifies the playback signal and outputs the playback signal as an output signal converted to sound in a speaker; and a fault detection unit including a first conversion circuit that compares the playback signal to a predetermined first threshold, converts a waveform of the playback signal, and outputs the converted waveform as a converted playback signal, a second conversion circuit that compares the output signal to a predetermined second threshold, converts a waveform of the output signal, and outputs the converted waveform as a converted output signal, a comparison circuit that compares the converted playback signal to the converted output signal, and a determination circuit that determines an output of the comparison circuit, the fault detection unit detecting a fault in the amplification unit.
  • a sound output device includes: the above-mentioned semiconductor device; a sound source that transmits a signal to be played back by the sound source playback unit; and a speaker that amplifies the playback signal and converts the playback signal to sound.
  • the present invention exhibits the effect of enabling provision of a semiconductor device and a sound output device that can perform detailed detection of faults in a relatively small-scale circuit, and can handle various signal formats.
  • FIG. 1 is a block diagram showing an example of a semiconductor device and a sound output device according to one embodiment.
  • FIGS. 2A to 2D depict operations of a comparator when provided with a plurality of thresholds in a semiconductor device and a sound output device according to one embodiment.
  • FIG. 3 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 4 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 5 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment
  • FIG. 6 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 7 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 8 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 9 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 10 depicts the position of an observation point of a semiconductor device according to an embodiment.
  • FIG. 11 depicts the position of an observation point of a semiconductor device according to another embodiment.
  • FIG. 12 depicts the position of an observation point of a semiconductor device according to another embodiment.
  • embodiments of the present invention will be described in detail with reference to the drawings.
  • a sound output device that outputs assistance speech for driving or the like
  • a configuration of a semiconductor device according to the present invention that is applied to a sound playback device is also illustrated.
  • a configuration in which the sound output device (semiconductor device) according to embodiments below is connected to a microcontroller unit (MCU) that is not shown and receives controls from the MCU is described as an example.
  • MCU microcontroller unit
  • embodiments of the invention include sound output devices in any other context, not just in a moving vehicle.
  • the sound output device 1 A includes a semiconductor device 10 A, a sound source 14 , and a speaker 30 .
  • the sound source 14 is a device, or portion of a device, that stores a signal to be played back by the semiconductor device 10 A.
  • the above-mentioned assistance speech is stored in a signal format such as pulse-code modulation (PCM).
  • PCM pulse-code modulation
  • a sound source stored on a storage medium such as a CD or a sound source stored in a storage unit such as the MCU is used as the sound source 14 , for example, and this sound source is inputted to a sound source playback unit 11 through an interface (not shown) in the semiconductor device 10 A.
  • the present embodiment describes, as an example, a configuration in which the sound source 14 is connected as an external unit to the semiconductor device 10 A, but a sound source that is stored in a memory or the like provided inside the semiconductor device 10 A and read as necessary may be used as the sound source 14 .
  • Embodiments of the invention include a sound source 14 that may be internal to or external to the semiconductor device 10 A.
  • the sound source 14 may be any type of memory device used to store sound information that may be processed by the semiconductor device 10 A and output by the speaker 30 .
  • the semiconductor device 10 A includes the sound source playback unit 11 , a digital-to-analog converter 12 (DAC), an analog amplifier 13 A, and a fault detection circuit 20 A.
  • the sound source playback unit 11 is a circuit that generates an input signal to the DAC or a digital amplifier to be mentioned later, and, in one example, outputs a signal that is speech data including the sampling timing.
  • the sound source playback unit 11 also includes a circuit, such as a decoder such as MP3 or adaptive differential pulse-code modulation (ADPCM), that converts a compressed sound source to an input signal for a DAC or a digital amplifier, for example.
  • a decoder such as MP3 or adaptive differential pulse-code modulation (ADPCM)
  • the sound source playback unit 11 is a circuit that plays back (decodes) a PCM signal received from the sound source 14 and outputted by the speaker 30 , and converts the PCM signal into a sampled digital signal (hereinafter, “playback signal”).
  • the analog amplifier 13 A is a circuit that amplifies an analog signal from the DAC 12 .
  • the fault detection circuit 20 A includes a digital comparator 21 A, a comparator 22 A, a delay unit 23 , a comparison unit 24 , a comparison filter 25 , and a determination unit 26 .
  • the digital comparator 21 A is a circuit that has a preset threshold and that compares the inputted playback signal to the threshold and converts the playback signal to a binary signal including a signal greater than the threshold and a signal less than the threshold.
  • the comparator 22 A is a circuit that also has a preset threshold and that compares an inputted analog signal (hereinafter, “output signal”) from the analog amplifier 13 A to the threshold and converts the playback signal to a binary signal including a signal greater than the threshold and a signal less than the threshold.
  • the reason for using a digital comparator 21 A and a comparator 22 A in the semiconductor device 10 A of the present embodiment is in order to convert the playback signal and the output signal into a comparable signal format (amplitude, etc.) for when the comparison unit 24 to be mentioned later performs a logical comparison of the playback signal and the output signal.
  • the digital comparator 21 A is an example of the first conversion circuit of the present invention
  • the comparator 22 A is an example of the second conversion circuit of the present invention.
  • “conversion circuit” is sometimes used as a general term for the first conversion circuit and the second conversion circuit.
  • the delay unit 23 is a circuit for suppressing the difference between a delay time in the path from the sound source playback unit 11 to the digital comparator 21 A and the delay time in the path of the sound source playback unit 11 , the DAC 12 , the analog amplifier 13 A, and the comparator 22 A.
  • the delay time on the latter path is greater than the delay time in the former path by primarily an amount equal to the time required for the signal to pass through the DAC 12 and the analog amplifier 13 A.
  • the delay unit 23 is provided in order to match the times at which signals passing through both paths are inputted to the comparison unit 24 .
  • the bit width is reduced by the digital comparator 21 A, which provides the advantage that the circuit size is reduced in relation to the number of delay stages.
  • the delay unit 23 may be omitted if the difference in delay times poses no problem.
  • the comparison unit 24 is a circuit that logically (i.e. using digital logic circuitry) compares a playback signal from the delay unit 23 to an output signal from the comparator 22 A.
  • the comparison unit 24 is configured using an exclusive disjunction (XOR) circuit, for example, and outputs a logical value of “0” if the playback signal matches the output signal and outputs a logical value of “1” if the playback signal differs from the output signal, for example.
  • XOR exclusive disjunction
  • the comparison filter 25 is a low-pass filter (LPF) that smooths comparison results from the comparison unit 24 .
  • An output Fo from the comparison filter 25 satisfies 0 ⁇ Fo ⁇ 1 according to the statistical degree of matching between the playback signal and the output signal. If the output of the comparison unit 24 follows the above logic, then it is determined that the closer the value of Fo is to 0, the greater the degree of matching is between the playback signal (played back sound source signal) and the output signal (input signal of speaker), and thus, that a fault has not occurred.
  • the determination unit 26 determines whether or not the playback signal matches the output signal on the basis of the output from the comparison filter 25 .
  • the output Fo from the comparison filter 25 is an analog value within the range of 0 ⁇ Fo ⁇ 1, and thus, a threshold Vtf is set for the determination unit 26 and it is determined whether there is a match according to the size relationship between the output Fo and the threshold Vtf. That is, if 0 ⁇ Fo ⁇ Vtf, then the playback signal matches the output signal, and if Vtf ⁇ Fo ⁇ 1, then the playback signal differs from the output signal and it is determined that a fault has occurred.
  • the determination results from the determination unit 26 are transmitted to an MCU (not shown), for example, and the MCU upon receiving the determination results performs the necessary notification or the like through a UI (user interface) or the like (not shown), for example.
  • the semiconductor device 10 A of the present embodiment includes a fault detection circuit 20 A.
  • the fault detection circuit 20 A compares the digital signal immediately after the sound source 14 is played by the sound source playback unit 11 to the analog signal immediately before being inputted to the speaker 30 , and detects a fault between extracted points of the two signals, or in other words, a fault primarily in the section including the DAC 12 and the analog amplifier 13 A in the present embodiment.
  • the semiconductor device 10 A and the sound output device 1 A of the present embodiment in consideration of the fact that the playback signal (digital signal in the present embodiment) outputted from the sound source playback unit 11 cannot be directly compared to the output signal (analog signal in the present embodiment) inputted to the speaker 30 due to differences in signal format, signal level, and the like, conversion circuits (digital comparator 21 A, comparator 22 A) are introduced to convert both signals so as to be comparable to each other. This is conceptually similar to that of the semiconductor devices and sound output devices of other embodiments described below.
  • the semiconductor device 10 A and the sound output device 1 A of the present embodiment it is possible to provide a semiconductor device and a sound output device that can perform detailed detection of faults using a relatively small scale circuit. Also, according to the semiconductor device 10 A and the sound output device 1 A, in order to compare signals prior to and after the section where a fault is detected, a conversion circuit that converts such signals to a format, level, and the like that enables comparison therebetween is provided. Thus, the present invention can be applied even if the output signal is an analog signal unlike the playback signal, or even if the output signal is a digital signal of a differing signal format, level, or the like. In other words, the present invention enables provision of a semiconductor device and a sound output device that can handle various signal formats.
  • FIGS. 10 to 12 a summary of specific configuration examples of sound output devices that differ in signal format will be described. Details of the configuration examples shown in FIGS. 10 to 12 will be described in later embodiments.
  • the observation points [1] to [5] shown in FIGS. 10 to 12 correspond to observation points of semiconductor devices according to embodiments below.
  • FIG. 10 shows a configuration in which, after the sound source playback unit 11 , the DAC 12 , the analog amplifier 13 A, and the speaker 30 are connected in the stated order.
  • a class A, class AB, class B analog amplifier, or the like is used as the analog amplifier 13 A, for example.
  • the speaker 30 is driven by the analog signal indicated with ⁇ 1> in FIG. 10 .
  • the above sound output device 1 A has this configuration.
  • FIG. 11 shows a configuration in which, after the sound source playback unit 11 , a digital amplifier 13 B, an LPF 15 , and the speaker 30 are connected in the stated order. That is, the playback signal is amplified as a digital signal without passing through a DAC.
  • a class D digital amplifier is used as the digital amplifier 13 B, for example.
  • the LPF 15 is a filter that extracts a sound signal (audio signal) from the output of the digital amplifier 13 B.
  • ⁇ 2> and ⁇ 3> represent input/output waveforms of the LPF 15 .
  • FIG. 12 shows a configuration in which, after the sound source playback unit 11 , a filterless class D digital amplifier 13 B and the speaker 30 are connected in the stated order. That is, the playback signal is transmitted to the speaker 30 after passing through only the digital amplifier 13 B.
  • ⁇ 4> represents an output waveform of the digital amplifier 13 B.
  • the present embodiment is a configuration in which a hysteresis is applied to the threshold of the conversion circuits (digital comparator 21 A and comparator 22 A in the above embodiment), and in which a plurality of thresholds are provided.
  • a configuration in which there are two thresholds Vt 1 and Vt 2 will be explained as an example.
  • ⁇ 1> represents the input waveform of the comparator
  • ⁇ 2> represents the positional relationship between the input signal and the thresholds Vt 1 and Vt 2
  • ⁇ 3> represents the output waveform of the comparator.
  • the waveform indicating the comparator input in ⁇ 1> of FIG. 2A is a waveform indicating the same analog signal as the waveform indicated in ⁇ 1> of FIG. 10 .
  • the comparator here corresponds to the comparator 22 A of FIG. 1 . If the two thresholds Vt 1 and Vt 2 are set for the analog signal, the output from the comparator forms a ternary waveform as shown in ⁇ 3>.
  • the waveform indicating the comparator input in ⁇ 2> of FIG. 2B is a waveform indicating the same digital signal as the waveform indicated in ⁇ 2> of FIG. 11 . If the two thresholds Vt 1 and Vt 2 are set for the digital signal, the output forms a ternary waveform, but outwardly, the appearance of the output from the comparator is no different from the input signal as shown in ⁇ 3>.
  • the waveform indicating the comparator input in ⁇ 1> of FIG. 2C is a waveform indicating the same analog signal as the waveform indicated in ⁇ 3> of FIG. 11 . If the two thresholds Vt 1 and Vt 2 are set for the analog signal, the output from the comparator forms a ternary waveform as shown in ⁇ 3>.
  • the reason that the +1 pulse of the output waveform shown in ⁇ 3> or the rising or falling of the pulse indicating ⁇ 1 is divided into a plurality of sections is that there is ambiguity in terms of whether the sampling value is +1 or ⁇ 1 at each level of the thresholds Vt 1 and Vt 2 .
  • the waveform indicating the comparator input in ⁇ 1> of FIG. 2D is a waveform indicating the same digital signal as the waveform indicated in ⁇ 4> of FIG. 12 .
  • the comparator here corresponds to the digital comparator 21 A of FIG. 1 . If the two thresholds Vt 1 and Vt 2 are set for the digital signal, the output forms a ternary waveform, but outwardly, the appearance of the output from the comparator is no different from the input signal as shown in ⁇ 3>.
  • one possible configuration is to have two thresholds and apply a hysteresis to both thresholds. Also, a configuration may be adopted in which the plurality of thresholds can be adjusted from outside.
  • the plurality of thresholds are used in the following case, for example.
  • a waveform having an intermediate value in advance such as the output of the filterless class D amplifier (see ⁇ 4> in FIG. 1 )
  • the comparator or digital comparator stays at a high level or a low level (depending on the previous state) in a state where the intermediate value is outputted for a long time
  • a signal of a frequency component greatly differing from the actual signal frequency is sometimes outputted.
  • a semiconductor device 10 B and a sound output device 1 B according to the present embodiment will be described with reference to FIG. 3 .
  • the present embodiment is one in which the semiconductor device 10 A of the above embodiment is modified such that the analog amplifier 13 A is replaced with a digital amplifier 13 B, the fault detection circuit 20 A is replaced with a fault detection circuit 20 B, and the DAC 12 is omitted.
  • the semiconductor device 10 A of the above embodiment is modified such that the analog amplifier 13 A is replaced with a digital amplifier 13 B, the fault detection circuit 20 A is replaced with a fault detection circuit 20 B, and the DAC 12 is omitted.
  • components similar to those of the semiconductor device 10 A are assigned the same reference characters and detailed descriptions thereof are omitted.
  • the sound output device 1 B of the sound emitted by the speaker 30 , the digital signal immediately after having been played back in the sound source playback unit 11 from the sound source 14 is compared to the output signal from the digital amplifier 13 B, and a fault that occurs between these two paths is detected.
  • the semiconductor device 10 B of the present embodiment first the output of the digital amplifier 13 B is sampled by the comparator 22 A, and then only the frequency component of sound played back by the speaker 30 is extracted by a digital LPF 27 and additionally subjected to waveform conversion by the digital comparator 21 B.
  • the playback signal from the digital comparator 21 A is compared to the output signal from the digital comparator 21 B in the comparison unit 24 .
  • the process in the comparison filter 25 and the determination unit 26 thereafter is similar to that of the above embodiment.
  • the waveforms inputted to the digital comparators 21 A and 21 B are waveforms primarily having frequency components played back by the speaker 30 , and thus, comparison can be performed by a similar configuration to the embodiment above.
  • the comparator 22 A and the digital comparators 21 A and 21 B used in this case may have the configuration of the above modification example, that is, a configuration in which a plurality of thresholds are provided.
  • a semiconductor device 10 C and a sound output device 1 C according to the present embodiment will be described with reference to FIG. 4 .
  • the semiconductor device 10 C includes a fault detection circuit 20 C.
  • the fault detection circuit 20 C has a configuration in which the fault detection circuit 20 A ( FIG. 1 ) of the semiconductor device 10 A of the above embodiment is additionally provided with a threshold control unit 28 .
  • a threshold control unit 28 a threshold control unit
  • the threshold control unit 28 receives the output signal from the delay unit 23 and executes a necessary process thereon, generates a signal to control the threshold of the digital comparator 21 A, and controls the threshold of the digital comparator 21 A using this control signal. Also, the threshold control unit 28 receives the output signal from the comparator 22 A and executes a necessary process thereon, generates a signal to control the threshold of the comparator 22 A, and controls the threshold of the comparator 22 A using this control signal. Of course, the threshold control unit 28 need not control both the threshold of the digital comparator 21 A and the threshold of the comparator 22 A, and may control either one thereof.
  • the reason for controlling the threshold of the digital comparator 21 A or the threshold of the comparator 22 A is as follows.
  • the waveform of the digital signal inputted to the digital comparator 21 A is as shown in ⁇ 1> of FIG. 2D
  • the waveform inputted to the comparator 22 A is as shown in ⁇ 1> of FIG. 2A .
  • Each of these input waveforms is converted to a binary signal with the thresholds set therefor as bounds, but if the positions of the thresholds (sometimes referred to below as “threshold setting values”) in relation to the amplitude of the two input waveforms diverge by a prescribed value or greater, then even if the amplitude of the input waveform of the digital comparator 21 A were the same as the amplitude of the input waveform of the comparator 22 A, the outputs from the digital comparator 21 A and the comparator 22 A might greatly differ.
  • the difference in threshold setting values occurs if the output level of the analog amplifier 13 A is large, for example.
  • the threshold control unit 28 automatically controls the threshold of the digital comparator 21 A or the threshold of the comparator 22 A such that the threshold setting values thereof substantially match. More specifically, the output of the digital comparator 21 A or the output of the comparator 22 A is converted to amplitude information using the filter (LPF), the difference between the peak and the threshold is calculated, and by performing control based on this difference, the threshold is adjusted such that the threshold setting values are equivalent. In such a case, both of the threshold setting values may be adjusted independently, or one threshold setting value may be adjusted so as to match the other threshold setting value. If setting a plurality of thresholds such as in the above modification example, the filter can be omitted.
  • a semiconductor device 10 D and a sound output device 1 D according to the present embodiment will be described with reference to FIG. 5 .
  • the semiconductor device 10 D includes a fault detection circuit 20 D.
  • the fault detection circuit 20 D has a configuration in which the fault detection circuit 20 B ( FIG. 3 ) of the semiconductor device 10 B of the above embodiment is additionally provided with a threshold control unit 28 .
  • a threshold control unit 28 a threshold control unit
  • the threshold control unit 28 receives the output signal from the delay unit 23 and executes a necessary process thereon, generates a signal to control the threshold of the digital comparator 21 A, and controls the threshold of the digital comparator 21 A using this control signal. Also, the threshold control unit 28 receives the output signal from the digital comparator 21 B and executes a necessary process thereon, generates a signal to control the threshold of the comparator 22 A, and controls the threshold of the comparator 22 A using this control signal. Of course, the threshold control unit 28 need not control both the threshold of the digital comparator 21 A and the threshold of the comparator 22 A, and may control either one thereof.
  • a method for changing the threshold of the digital comparator or the comparator a method may be employed in which the threshold of the digital comparator or the comparator is set to be constant while the input signal of the digital comparator or the comparator is amplified or attenuated so as to adjust the amplitude thereof, thereby changing the threshold. This similar applies to cases mentioned below in which the threshold is changed in the digital comparator or the comparator.
  • the reason for and the principle by which at least one of the threshold of the digital comparator 21 A and the threshold of the comparator 22 A is controlled are similar to those of the semiconductor device 10 C, and thus, detailed descriptions thereof are omitted here.
  • the thresholds of the comparator 22 A and the digital comparator 21 A are automatically controlled using the outputs of the two digital comparators 21 A and 21 B such that the setting of the thresholds in relation to the input signal levels of the two digital comparators 21 A and 21 B, that is, the threshold setting values are equivalent.
  • the output of the digital comparator 21 A or the output of the comparator 22 A is converted to amplitude information using the filter (LPF), the difference between the peak and the threshold is calculated, and by performing control based on this difference the threshold is adjusted such that the threshold setting values are equivalent. If setting a plurality of thresholds such as in the above modification example, the filter can be omitted.
  • a semiconductor device 10 E and a sound output device 1 E according to the present embodiment will be described with reference to FIG. 6 .
  • the semiconductor device 10 E has a configuration in which the fault detection circuit 20 A of the semiconductor device 10 A ( FIG. 1 ) of the above embodiment is replaced with the fault detection circuit 20 E, and a waveform combination unit 16 is added.
  • the fault detection circuit 20 E has, in addition to the configuration of the fault detection circuit 20 A, a comparator 22 B, a digital LPF 27 , and a combination unit 29 .
  • components similar to those of the semiconductor device 10 A are assigned the same reference characters and detailed descriptions thereof are omitted.
  • an external input is inputted from the outside in the present embodiment.
  • the “external input” of the present embodiment is an analog audio signal of music, for example, and is played back in a speaker simultaneously to the audio signal of the sound source 14 . That is, the external input that is an analog signal is combined by the waveform combination unit 16 with the output signal of the DAC 12 , which is also an analog signal.
  • the combined analog signal (sometimes referred to below as “combined output signal”) is amplified by the analog amplifier 13 A and converted to sound by the speaker 30 .
  • the output of the analog amplifier 13 A branched from the input to the speaker 30 is inputted to the comparator 22 A in a manner similar to that of the semiconductor device 10 A.
  • the comparator 22 B and the digital LPF 27 are added on the playback signal side.
  • the other branched external input is converted to a binary signal by the comparator 22 B and low frequency components thereof are extracted by the digital LPF 27 .
  • the external signal that passed through the comparator 22 B and the digital LPF 27 is combined by the combination unit 29 with the playback signal from the sound source playback unit 11 , and the combined sound signal is inputted to the digital comparator 21 A.
  • the combination unit 29 has the function of adjusting the level of the playback signal from the sound source playback unit 11 and the level of the external input so as to be at appropriate levels.
  • the signals combined by the combination unit 29 are sometimes referred to as the “combined playback signal”.
  • the combined playback signal that has undergone waveform conversion by the digital comparator 21 A and the combined output signal (signal attained by combining the playback signal and the external input) that has undergone waveform conversion by the comparator 22 A are compared by the comparison unit 24 , and the process after the comparison unit 24 is similar to that of the embodiments above, and thus, detailed descriptions thereof are omitted.
  • the present embodiment is one in which a configuration employing external input is applied to the semiconductor device 10 A of Embodiment 1, but this configuration is not limited to being applied to the present embodiment and may be applied to the semiconductor devices 10 B to 10 D of Embodiments 2 to 4.
  • the delay unit 23 is omitted, but if the difference in delay, from the perspective of input to the comparison unit 24 , between the path including the digital comparator 21 A and the path including the comparator 22 A is problematic, then a delay unit 23 may be provided on either or both of the paths. Also, if the difference in delay is problematic when performing combination at the waveform combination unit 16 or the combination unit 29 , then a delay unit 23 may be provided at an appropriate position such as between the sound source playback unit 11 and the combination unit 29 , between the digital LPF 27 and the combination unit 29 , between the DAC 12 and the waveform combination unit 16 , before or after the branching of the external input, or the like. In such a case, by adding a delay to the output of the digital comparator 21 A or the output of the comparator 22 B, the circuit size would be reduced due to the low bit width.
  • the semiconductor device 10 F has a configuration in which a signal combination unit 17 is added to the semiconductor device 10 B ( FIG. 3 ) according to Embodiment 2, and the fault detection circuit 20 F is the same as the fault detection circuit 20 B.
  • the fault detection circuit 20 F is the same as the fault detection circuit 20 B.
  • the external input was an analog signal, but in the present embodiment, the external input is a digital signal.
  • the external input according to the present embodiment has a signal format corresponding to the signal format of the output from the sound source playback unit 11 (that is, a decoded PCM signal), and thus, the signal combination unit 17 , which performs combination with the external input, is disposed between the sound source playback unit 11 and the digital comparator 21 A.
  • the output from the signal combination unit 17 is a signal corresponding to the playback signal.
  • the process thereafter is similar to that of the semiconductor device 10 B, and thus, detailed descriptions thereof are omitted.
  • a semiconductor device 10 G and a sound output device 1 G according to the present embodiment will be described with reference to FIG. 8 .
  • fault detection of the DAC 12 is performed in greater detail.
  • the semiconductor device 10 G includes the DAC 12 , the analog amplifier 13 A, and a fault detection circuit 20 G.
  • the fault detection circuit 20 G includes a test data generation unit 40 , a comparator 22 A, a determination unit 26 , and a test data control unit 41 .
  • Recent sound signals are often high resolution with the number of steps of the amplitude being 16 bits or 24 bits.
  • the DAC 12 is also high resolution to correspond to the number of bits.
  • a method for detecting a fault by comparing the playback signal that is played by the sound source playback unit 11 to the output signal that is the input to the speaker 30 such as in the semiconductor devices and sound output devices of the above embodiments, it is sometimes not possible to determine a fault for lower bits of a high resolution DAC 12 .
  • the semiconductor device 10 G is configured such that bit position corresponding to the resolution of the DAC 12 for which a fault is to be detected can be distinguished.
  • the comparator 22 A of the present embodiment includes a threshold setting function having a resolution that can identify the lower bits, and a fault in the DAC 12 is detected using this threshold setting function.
  • the test data generation unit 40 generates test data for detecting a fault in the DAC 12 .
  • the test data generation unit 40 can generate test data in which the value of the bit in which the fault of the test data is to be detected is changed.
  • the comparator 22 A converts the output signal from the DAC 12 into a binary signal.
  • the determination unit 26 compares the test data to the output signal from the comparator 22 A to perform determination.
  • the determination results are transmitted to the test data control unit 41 or an MCU (not shown).
  • the test data control unit 41 that has received the determination results changes the test data, that is, changes the value of the target bit, and performs the following fault detection process. Alternatively, the MCU that has received the determination results executes a necessary process such as notification.
  • the test data control unit 41 controls the test data generation unit 40 , the comparator 22 A, and the determination unit 26 .
  • test data control unit 41 controls the test data generation unit 40 such that test data that has set thereto the value of the bit for which fault detection is to be performed (hereinafter, “detection bit”) is outputted.
  • the comparator 22 A is controlled such that a threshold is moved (scanned) in relation to the output signal after the test data set by the test data generation unit 40 passes through the DAC 12 . Then, the threshold of the comparator 22 A for when the output of the comparator 22 A has changed is maintained.
  • the determination as to whether the output from the comparator 22 A has changed is performed by controlling the determination unit 26 so as to perform comparative determination of the test data from the test data generation unit 40 and the output signal from the comparator 22 A.
  • the test data control unit 41 additionally controls the test data generation unit 40 such that test data with changed detection bits is generated, and similarly maintains the threshold of the comparator 22 A for when the output of the comparator 22 A is changed.
  • the presence or absence of a fault in the DAC 12 is determined at the bit level according to whether or not the relationship between the input of the DAC 12 and the threshold 22 A is as intended.
  • the present embodiment describes as an example a configuration using the analog amplifier 13 A, but the fault detection method according to the present embodiment can be applied to the DAC even if the analog amplifier 13 A were replaced with a digital amplifier, as long as the digital amplifier has the DAC.
  • a semiconductor device 10 H and a sound output device 1 H according to the present embodiment will be described with reference to FIG. 9 .
  • the object of the semiconductor device 10 H is also to detect faults in the DAC 12 at the bit level, but in the semiconductor device 10 H, the observation point [5] of the semiconductor device 10 G of the above embodiment is changed to the observation point [1], or in other words, to the output position of the analog amplifier 13 A.
  • a fault detection circuit 20 H is the same as the fault detection circuit 20 G. Thus, components similar to those of the semiconductor device 10 G are assigned the same reference characters and detailed descriptions thereof are omitted.
  • test data control unit 41 controls the test data generation unit 40 so as to generate test data at a frequency that can pass through, and then controls the determination unit 26 so as to perform determination using the test data.
  • Embodiments 7 and 8 a configuration was described as an example in which the semiconductor devices 10 G and 10 H were made independent, as a configuration for performing detailed fault detection of the DAC 12 , but the embodiments are not limited to this configuration.
  • the semiconductor device 10 G of Embodiment 7 or the semiconductor device 10 H of Embodiment 8 may be incorporated into the semiconductor device 10 A of Embodiment 1 such that both normal fault detection and detailed fault detection of the DAC 12 can be performed.
  • the input signal to the DAC 12 may be configured such that a switch can be used to switch between the playback signal and the test data, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Otolaryngology (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

A sound source playback unit plays back sound data from a sound source and outputs a playback signal. An amplification unit amplifies the playback signal and outputs the playback signal as an output signal converted to sound in a speaker. A fault detection unit including a first conversion circuit compares the playback signal to a predetermined first threshold, converts a waveform of the playback signal, and outputs the converted waveform as a converted playback signal. A second conversion circuit compares the output signal to a predetermined second threshold, converts a waveform of the output signal, and outputs the converted waveform as a converted output signal. A comparison circuit compares the converted playback signal to the converted output signal, and a determination circuit determines an output of the comparison circuit. Based on the determination, the fault detection unit detects a fault in the amplification unit.

Description

    TECHNICAL FIELD
  • The present invention relates to a semiconductor device and a sound output device, and in particular relates to a technique that can be effectively applied to a semiconductor device and a sound output device having a fault detection function.
  • BACKGROUND ART
  • Regarding fault detection, Japanese Patent Application Laid-Open Publication No. 2014-230016 discloses a fault detection device that detects an anomaly in an amplifier of an alarm device that includes an alarm sound emission means that emits an alarm sound, an alarm signal transmission means that transmits, to the alarm sound emission means, an alarm signal for emitting an alarm sound, and an amplifier that amplifies the alarm signal, the fault detection device having: a detection signal transmission means that transmits, to the amplifier, a fault detection signal having two pulse waves of differing polarities and phases; a first detection circuit for detecting a first detection signal attained by the amplifier amplifying the fault detection signal and outputting the amplified fault detection signal from a positive-side output terminal; a second detection circuit for detecting a second detection signal attained by the amplifier amplifying the fault detection signal and outputting the amplified fault detection signal from a negative-side output terminal; and a determination means that determines whether or not an anomaly has occurred in the amplifier on the basis of the detected first detection signal and second detection signal.
  • Also, Japanese Patent Application Laid-Open Publication No. 2005-202624 discloses an electronic device having: a sensor; a microcomputer that selects sound source data by controlling a sound source IC when it is determined according to a detection signal from the sensor that an anomaly has occurred; an amplification means that amplifies the sound source data outputted from the sound source IC; an alarm output means that is connected to the amplification means and that outputs an alarm sound based on the sound source data; and a fault test means that outputs a test signal to the alarm output means, the microcomputer including a fault diagnosis means that controls the fault test means so as to output the test signal, and determines that the alarm output means is in a normal state if the test signal is detected to be flowing to the alarm output means.
  • Meanwhile, Japanese Patent Application Laid-Open Publication No. H1-176952 discloses a fault diagnosis device for an audio device having: a voltage source that is connected to a prescribed circuit of an audio device when diagnosing a fault, and that supplies a prescribed voltage to the circuit; a means that is connected between the prescribed circuit of the audio device and the voltage source and forms a voltage-dividing circuit together with the circuit; a means for detecting the voltage of the means forming the voltage-dividing circuit and comparing the voltage to a reference value; and a means for performing notification according to comparison results from the means that performs comparison.
  • SUMMARY OF THE INVENTION
  • Currently, speech notification regarding handling and the like has become common in devices in various technical fields. For example, in the field of automobiles, speech notification is used for driving assistance, notification of faults, and the like.
  • Meanwhile, the concept of functional safety is currently under consideration. Functional safety is a general term for techniques used to avoid unacceptable risks using safety functions and measures. The “function” in functional safety refers to the role of safety devices that monitor an object to be controlled or a controller. Typically, safety devices use computers, and if a fault or the like occurs in the controller, the computer stops operation of the object to be controlled and issues a warning to the user. The issuance of the warning is often performed by speech.
  • In other words, sound output devices in various modern devices often have the function not only of emitting speech or music, but also the function of issuing a notification of information directly relevant to safety. Thus, it is important to ensure that such sound output devices are reliable. As one aspect of ensuring the reliability of sound output devices, there is increased importance for detecting faults such as a signal not reaching a speaker, for example. In such a case, more detailed detection of faults is desirable from the perspective of reliability, with no great increase in cost. Furthermore, current sound output devices include not only those that handle analog signals but many sound output devices handle digital signals, and thus, techniques applicable to both types of sound output devices are sought after.
  • The present invention considers the above situation, and an object thereof is to provide a semiconductor device and a sound output device that can perform detailed detection of faults in a relatively small-scale circuit, and can handle various signal formats.
  • In order to solve the above problem, a semiconductor device according to one aspect of the present invention includes: a sound source playback unit that plays back a sound source and outputs a playback signal; an amplification unit that amplifies the playback signal and outputs the playback signal as an output signal converted to sound in a speaker; and a fault detection unit including a first conversion circuit that compares the playback signal to a predetermined first threshold, converts a waveform of the playback signal, and outputs the converted waveform as a converted playback signal, a second conversion circuit that compares the output signal to a predetermined second threshold, converts a waveform of the output signal, and outputs the converted waveform as a converted output signal, a comparison circuit that compares the converted playback signal to the converted output signal, and a determination circuit that determines an output of the comparison circuit, the fault detection unit detecting a fault in the amplification unit.
  • A sound output device according to another aspect of the present invention includes: the above-mentioned semiconductor device; a sound source that transmits a signal to be played back by the sound source playback unit; and a speaker that amplifies the playback signal and converts the playback signal to sound.
  • The present invention exhibits the effect of enabling provision of a semiconductor device and a sound output device that can perform detailed detection of faults in a relatively small-scale circuit, and can handle various signal formats.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing an example of a semiconductor device and a sound output device according to one embodiment.
  • FIGS. 2A to 2D depict operations of a comparator when provided with a plurality of thresholds in a semiconductor device and a sound output device according to one embodiment.
  • FIG. 3 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 4 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 5 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment
  • FIG. 6 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 7 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 8 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 9 is a block diagram showing an example of a semiconductor device and a sound output device according to another embodiment.
  • FIG. 10 depicts the position of an observation point of a semiconductor device according to an embodiment.
  • FIG. 11 depicts the position of an observation point of a semiconductor device according to another embodiment.
  • FIG. 12 depicts the position of an observation point of a semiconductor device according to another embodiment.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Below, embodiments of the present invention will be described in detail with reference to the drawings. In the description that follows, embodiments of the invention are described in the context of being installed in a moving body such as an automobile, such that the sound output device is a speaker in the automobile. In the example embodiments, a sound output device that outputs assistance speech for driving or the like, and a configuration of a semiconductor device according to the present invention that is applied to a sound playback device is also illustrated. Furthermore, a configuration in which the sound output device (semiconductor device) according to embodiments below is connected to a microcontroller unit (MCU) that is not shown and receives controls from the MCU is described as an example. However, embodiments of the invention include sound output devices in any other context, not just in a moving vehicle.
  • Embodiment 1
  • A semiconductor device and a sound output device according to the present embodiment will be described with reference to FIG. 1. As shown in FIG. 1, the sound output device 1A according to the present embodiment includes a semiconductor device 10A, a sound source 14, and a speaker 30.
  • The sound source 14 is a device, or portion of a device, that stores a signal to be played back by the semiconductor device 10A. In one example of the sound source 14, the above-mentioned assistance speech is stored in a signal format such as pulse-code modulation (PCM). A sound source stored on a storage medium such as a CD or a sound source stored in a storage unit such as the MCU is used as the sound source 14, for example, and this sound source is inputted to a sound source playback unit 11 through an interface (not shown) in the semiconductor device 10A. The present embodiment describes, as an example, a configuration in which the sound source 14 is connected as an external unit to the semiconductor device 10A, but a sound source that is stored in a memory or the like provided inside the semiconductor device 10A and read as necessary may be used as the sound source 14. Embodiments of the invention include a sound source 14 that may be internal to or external to the semiconductor device 10A. The sound source 14 may be any type of memory device used to store sound information that may be processed by the semiconductor device 10A and output by the speaker 30.
  • The semiconductor device 10A includes the sound source playback unit 11, a digital-to-analog converter 12 (DAC), an analog amplifier 13A, and a fault detection circuit 20A. The sound source playback unit 11 is a circuit that generates an input signal to the DAC or a digital amplifier to be mentioned later, and, in one example, outputs a signal that is speech data including the sampling timing. The sound source playback unit 11 also includes a circuit, such as a decoder such as MP3 or adaptive differential pulse-code modulation (ADPCM), that converts a compressed sound source to an input signal for a DAC or a digital amplifier, for example. In other words, the sound source playback unit 11 is a circuit that plays back (decodes) a PCM signal received from the sound source 14 and outputted by the speaker 30, and converts the PCM signal into a sampled digital signal (hereinafter, “playback signal”). The analog amplifier 13A is a circuit that amplifies an analog signal from the DAC 12.
  • The fault detection circuit 20A includes a digital comparator 21A, a comparator 22A, a delay unit 23, a comparison unit 24, a comparison filter 25, and a determination unit 26.
  • The digital comparator 21A is a circuit that has a preset threshold and that compares the inputted playback signal to the threshold and converts the playback signal to a binary signal including a signal greater than the threshold and a signal less than the threshold. The comparator 22A is a circuit that also has a preset threshold and that compares an inputted analog signal (hereinafter, “output signal”) from the analog amplifier 13A to the threshold and converts the playback signal to a binary signal including a signal greater than the threshold and a signal less than the threshold. The reason for using a digital comparator 21A and a comparator 22A in the semiconductor device 10A of the present embodiment is in order to convert the playback signal and the output signal into a comparable signal format (amplitude, etc.) for when the comparison unit 24 to be mentioned later performs a logical comparison of the playback signal and the output signal. The digital comparator 21A is an example of the first conversion circuit of the present invention, and the comparator 22A is an example of the second conversion circuit of the present invention. Below, “conversion circuit” is sometimes used as a general term for the first conversion circuit and the second conversion circuit.
  • The delay unit 23 is a circuit for suppressing the difference between a delay time in the path from the sound source playback unit 11 to the digital comparator 21A and the delay time in the path of the sound source playback unit 11, the DAC 12, the analog amplifier 13A, and the comparator 22A. In other words, the delay time on the latter path is greater than the delay time in the former path by primarily an amount equal to the time required for the signal to pass through the DAC 12 and the analog amplifier 13A. Thus, the delay unit 23 is provided in order to match the times at which signals passing through both paths are inputted to the comparison unit 24. The bit width is reduced by the digital comparator 21A, which provides the advantage that the circuit size is reduced in relation to the number of delay stages. Of course, the delay unit 23 may be omitted if the difference in delay times poses no problem.
  • The comparison unit 24 is a circuit that logically (i.e. using digital logic circuitry) compares a playback signal from the delay unit 23 to an output signal from the comparator 22A. The comparison unit 24 is configured using an exclusive disjunction (XOR) circuit, for example, and outputs a logical value of “0” if the playback signal matches the output signal and outputs a logical value of “1” if the playback signal differs from the output signal, for example.
  • The comparison filter 25 is a low-pass filter (LPF) that smooths comparison results from the comparison unit 24. An output Fo from the comparison filter 25 satisfies 0<Fo<1 according to the statistical degree of matching between the playback signal and the output signal. If the output of the comparison unit 24 follows the above logic, then it is determined that the closer the value of Fo is to 0, the greater the degree of matching is between the playback signal (played back sound source signal) and the output signal (input signal of speaker), and thus, that a fault has not occurred.
  • The determination unit 26 determines whether or not the playback signal matches the output signal on the basis of the output from the comparison filter 25. As described above, the output Fo from the comparison filter 25 is an analog value within the range of 0<Fo<1, and thus, a threshold Vtf is set for the determination unit 26 and it is determined whether there is a match according to the size relationship between the output Fo and the threshold Vtf. That is, if 0<Fo<Vtf, then the playback signal matches the output signal, and if Vtf<Fo<1, then the playback signal differs from the output signal and it is determined that a fault has occurred. The determination results from the determination unit 26 are transmitted to an MCU (not shown), for example, and the MCU upon receiving the determination results performs the necessary notification or the like through a UI (user interface) or the like (not shown), for example.
  • As described above, the semiconductor device 10A of the present embodiment includes a fault detection circuit 20A. The fault detection circuit 20A compares the digital signal immediately after the sound source 14 is played by the sound source playback unit 11 to the analog signal immediately before being inputted to the speaker 30, and detects a fault between extracted points of the two signals, or in other words, a fault primarily in the section including the DAC 12 and the analog amplifier 13A in the present embodiment.
  • Also, in the semiconductor device 10A and the sound output device 1A of the present embodiment, in consideration of the fact that the playback signal (digital signal in the present embodiment) outputted from the sound source playback unit 11 cannot be directly compared to the output signal (analog signal in the present embodiment) inputted to the speaker 30 due to differences in signal format, signal level, and the like, conversion circuits (digital comparator 21A, comparator 22A) are introduced to convert both signals so as to be comparable to each other. This is conceptually similar to that of the semiconductor devices and sound output devices of other embodiments described below.
  • As described above, according to the semiconductor device 10A and the sound output device 1A of the present embodiment, it is possible to provide a semiconductor device and a sound output device that can perform detailed detection of faults using a relatively small scale circuit. Also, according to the semiconductor device 10A and the sound output device 1A, in order to compare signals prior to and after the section where a fault is detected, a conversion circuit that converts such signals to a format, level, and the like that enables comparison therebetween is provided. Thus, the present invention can be applied even if the output signal is an analog signal unlike the playback signal, or even if the output signal is a digital signal of a differing signal format, level, or the like. In other words, the present invention enables provision of a semiconductor device and a sound output device that can handle various signal formats.
  • Here, with reference to FIGS. 10 to 12, a summary of specific configuration examples of sound output devices that differ in signal format will be described. Details of the configuration examples shown in FIGS. 10 to 12 will be described in later embodiments. The observation points [1] to [5] shown in FIGS. 10 to 12 correspond to observation points of semiconductor devices according to embodiments below.
  • FIG. 10 shows a configuration in which, after the sound source playback unit 11, the DAC 12, the analog amplifier 13A, and the speaker 30 are connected in the stated order. A class A, class AB, class B analog amplifier, or the like is used as the analog amplifier 13A, for example. In this configuration, the speaker 30 is driven by the analog signal indicated with <1> in FIG. 10. The above sound output device 1A has this configuration.
  • FIG. 11 shows a configuration in which, after the sound source playback unit 11, a digital amplifier 13B, an LPF 15, and the speaker 30 are connected in the stated order. That is, the playback signal is amplified as a digital signal without passing through a DAC. A class D digital amplifier is used as the digital amplifier 13B, for example. The LPF 15 is a filter that extracts a sound signal (audio signal) from the output of the digital amplifier 13B. In FIG. 11, <2> and <3> represent input/output waveforms of the LPF 15. If employing a configuration in which a DAC is provided inside the digital amplifier 13B and the signal is temporarily converted to an analog signal, then it is also possible to detect a fault in the DAC by extracting a signal to be compared to the output signal from the input position of the DAC.
  • FIG. 12 shows a configuration in which, after the sound source playback unit 11, a filterless class D digital amplifier 13B and the speaker 30 are connected in the stated order. That is, the playback signal is transmitted to the speaker 30 after passing through only the digital amplifier 13B. In FIG. 12, <4> represents an output waveform of the digital amplifier 13B. If employing a configuration in which a DAC is provided inside the digital amplifier 13B and the signal is temporarily converted to an analog signal, then it is also possible to detect a fault in the DAC by extracting a signal to be compared to the output signal from the input position of the DAC.
  • Modification Examples
  • A semiconductor device and a sound output device according to the present modification example will be described with reference to FIGS. 2A to 2D. The present embodiment is a configuration in which a hysteresis is applied to the threshold of the conversion circuits (digital comparator 21A and comparator 22A in the above embodiment), and in which a plurality of thresholds are provided. In the description below, a configuration in which there are two thresholds Vt1 and Vt2 will be explained as an example. In FIGS. 2A to 2D, <1> represents the input waveform of the comparator, <2> represents the positional relationship between the input signal and the thresholds Vt1 and Vt2, and <3> represents the output waveform of the comparator.
  • The waveform indicating the comparator input in <1> of FIG. 2A is a waveform indicating the same analog signal as the waveform indicated in <1> of FIG. 10. The comparator here corresponds to the comparator 22A of FIG. 1. If the two thresholds Vt1 and Vt2 are set for the analog signal, the output from the comparator forms a ternary waveform as shown in <3>.
  • The waveform indicating the comparator input in <2> of FIG. 2B is a waveform indicating the same digital signal as the waveform indicated in <2> of FIG. 11. If the two thresholds Vt1 and Vt2 are set for the digital signal, the output forms a ternary waveform, but outwardly, the appearance of the output from the comparator is no different from the input signal as shown in <3>.
  • The waveform indicating the comparator input in <1> of FIG. 2C is a waveform indicating the same analog signal as the waveform indicated in <3> of FIG. 11. If the two thresholds Vt1 and Vt2 are set for the analog signal, the output from the comparator forms a ternary waveform as shown in <3>. The reason that the +1 pulse of the output waveform shown in <3> or the rising or falling of the pulse indicating −1 is divided into a plurality of sections is that there is ambiguity in terms of whether the sampling value is +1 or −1 at each level of the thresholds Vt1 and Vt2.
  • The waveform indicating the comparator input in <1> of FIG. 2D is a waveform indicating the same digital signal as the waveform indicated in <4> of FIG. 12. The comparator here corresponds to the digital comparator 21A of FIG. 1. If the two thresholds Vt1 and Vt2 are set for the digital signal, the output forms a ternary waveform, but outwardly, the appearance of the output from the comparator is no different from the input signal as shown in <3>.
  • Even if there were only one threshold here, by applying a hysteresis to the threshold of the comparator 22A and the digital comparator 21A of the above embodiment, for example, it is possible to reduce the effect of noise if a small amount of noise were to enter the input of the speaker 30 and there were no playback sound, for example. Additionally, as shown in FIGS. 2A to 2D, one possible configuration is to have two thresholds and apply a hysteresis to both thresholds. Also, a configuration may be adopted in which the plurality of thresholds can be adjusted from outside.
  • The plurality of thresholds are used in the following case, for example. In a waveform having an intermediate value in advance such as the output of the filterless class D amplifier (see <4> in FIG. 1), if the comparator or digital comparator stays at a high level or a low level (depending on the previous state) in a state where the intermediate value is outputted for a long time, a signal of a frequency component greatly differing from the actual signal frequency is sometimes outputted. Thus, by having a plurality of thresholds for the comparator and the digital comparator as in the present modification example and enabling identification of values such as the intermediate value (fixing the intermediate value), it is possible to mitigate a greatly differing frequency component.
  • Embodiment 2
  • A semiconductor device 10B and a sound output device 1B according to the present embodiment will be described with reference to FIG. 3.
  • The present embodiment is one in which the semiconductor device 10A of the above embodiment is modified such that the analog amplifier 13A is replaced with a digital amplifier 13B, the fault detection circuit 20A is replaced with a fault detection circuit 20B, and the DAC 12 is omitted. Thus, components similar to those of the semiconductor device 10A are assigned the same reference characters and detailed descriptions thereof are omitted. In the sound output device 1B, of the sound emitted by the speaker 30, the digital signal immediately after having been played back in the sound source playback unit 11 from the sound source 14 is compared to the output signal from the digital amplifier 13B, and a fault that occurs between these two paths is detected.
  • Unlike the above embodiment, in the semiconductor device 10B of the present embodiment, first the output of the digital amplifier 13B is sampled by the comparator 22A, and then only the frequency component of sound played back by the speaker 30 is extracted by a digital LPF 27 and additionally subjected to waveform conversion by the digital comparator 21B. The playback signal from the digital comparator 21A is compared to the output signal from the digital comparator 21B in the comparison unit 24. The process in the comparison filter 25 and the determination unit 26 thereafter is similar to that of the above embodiment. By adopting this configuration of the semiconductor device 10B, the waveforms inputted to the digital comparators 21A and 21B are waveforms primarily having frequency components played back by the speaker 30, and thus, comparison can be performed by a similar configuration to the embodiment above. The comparator 22A and the digital comparators 21A and 21B used in this case may have the configuration of the above modification example, that is, a configuration in which a plurality of thresholds are provided.
  • Embodiment 3
  • A semiconductor device 10C and a sound output device 1C according to the present embodiment will be described with reference to FIG. 4.
  • The semiconductor device 10C includes a fault detection circuit 20C. The fault detection circuit 20C has a configuration in which the fault detection circuit 20A (FIG. 1) of the semiconductor device 10A of the above embodiment is additionally provided with a threshold control unit 28. Thus, components similar to those of the semiconductor device 10A are assigned the same reference characters and detailed descriptions thereof are omitted.
  • As shown in FIG. 4, the threshold control unit 28 receives the output signal from the delay unit 23 and executes a necessary process thereon, generates a signal to control the threshold of the digital comparator 21A, and controls the threshold of the digital comparator 21A using this control signal. Also, the threshold control unit 28 receives the output signal from the comparator 22A and executes a necessary process thereon, generates a signal to control the threshold of the comparator 22A, and controls the threshold of the comparator 22A using this control signal. Of course, the threshold control unit 28 need not control both the threshold of the digital comparator 21A and the threshold of the comparator 22A, and may control either one thereof.
  • In the present embodiment, the reason for controlling the threshold of the digital comparator 21A or the threshold of the comparator 22A is as follows. The waveform of the digital signal inputted to the digital comparator 21A is as shown in <1> of FIG. 2D, and the waveform inputted to the comparator 22A is as shown in <1> of FIG. 2A. Each of these input waveforms is converted to a binary signal with the thresholds set therefor as bounds, but if the positions of the thresholds (sometimes referred to below as “threshold setting values”) in relation to the amplitude of the two input waveforms diverge by a prescribed value or greater, then even if the amplitude of the input waveform of the digital comparator 21A were the same as the amplitude of the input waveform of the comparator 22A, the outputs from the digital comparator 21A and the comparator 22A might greatly differ. The difference in threshold setting values occurs if the output level of the analog amplifier 13A is large, for example.
  • To deal with this situation, in the semiconductor device 10C, the threshold control unit 28 automatically controls the threshold of the digital comparator 21A or the threshold of the comparator 22A such that the threshold setting values thereof substantially match. More specifically, the output of the digital comparator 21A or the output of the comparator 22A is converted to amplitude information using the filter (LPF), the difference between the peak and the threshold is calculated, and by performing control based on this difference, the threshold is adjusted such that the threshold setting values are equivalent. In such a case, both of the threshold setting values may be adjusted independently, or one threshold setting value may be adjusted so as to match the other threshold setting value. If setting a plurality of thresholds such as in the above modification example, the filter can be omitted.
  • Embodiment 4
  • A semiconductor device 10D and a sound output device 1D according to the present embodiment will be described with reference to FIG. 5.
  • The semiconductor device 10D includes a fault detection circuit 20D. The fault detection circuit 20D has a configuration in which the fault detection circuit 20B (FIG. 3) of the semiconductor device 10B of the above embodiment is additionally provided with a threshold control unit 28. Thus, components similar to those of the semiconductor device 10B are assigned the same reference characters and detailed descriptions thereof are omitted.
  • As shown in FIG. 5, the threshold control unit 28 receives the output signal from the delay unit 23 and executes a necessary process thereon, generates a signal to control the threshold of the digital comparator 21A, and controls the threshold of the digital comparator 21A using this control signal. Also, the threshold control unit 28 receives the output signal from the digital comparator 21B and executes a necessary process thereon, generates a signal to control the threshold of the comparator 22A, and controls the threshold of the comparator 22A using this control signal. Of course, the threshold control unit 28 need not control both the threshold of the digital comparator 21A and the threshold of the comparator 22A, and may control either one thereof. As a method for changing the threshold of the digital comparator or the comparator, a method may be employed in which the threshold of the digital comparator or the comparator is set to be constant while the input signal of the digital comparator or the comparator is amplified or attenuated so as to adjust the amplitude thereof, thereby changing the threshold. This similar applies to cases mentioned below in which the threshold is changed in the digital comparator or the comparator.
  • In the semiconductor device 10D, the reason for and the principle by which at least one of the threshold of the digital comparator 21A and the threshold of the comparator 22A is controlled are similar to those of the semiconductor device 10C, and thus, detailed descriptions thereof are omitted here. In the semiconductor device 10D, the thresholds of the comparator 22A and the digital comparator 21A are automatically controlled using the outputs of the two digital comparators 21A and 21B such that the setting of the thresholds in relation to the input signal levels of the two digital comparators 21A and 21B, that is, the threshold setting values are equivalent. Similar to the semiconductor device 10C, in the semiconductor device 10D as well, the output of the digital comparator 21A or the output of the comparator 22A is converted to amplitude information using the filter (LPF), the difference between the peak and the threshold is calculated, and by performing control based on this difference the threshold is adjusted such that the threshold setting values are equivalent. If setting a plurality of thresholds such as in the above modification example, the filter can be omitted.
  • Embodiment 5
  • A semiconductor device 10E and a sound output device 1E according to the present embodiment will be described with reference to FIG. 6.
  • As shown in FIG. 6, the semiconductor device 10E has a configuration in which the fault detection circuit 20A of the semiconductor device 10A (FIG. 1) of the above embodiment is replaced with the fault detection circuit 20E, and a waveform combination unit 16 is added. The fault detection circuit 20E has, in addition to the configuration of the fault detection circuit 20A, a comparator 22B, a digital LPF 27, and a combination unit 29. Thus, components similar to those of the semiconductor device 10A are assigned the same reference characters and detailed descriptions thereof are omitted.
  • As shown in FIG. 6, an external input is inputted from the outside in the present embodiment. The “external input” of the present embodiment is an analog audio signal of music, for example, and is played back in a speaker simultaneously to the audio signal of the sound source 14. That is, the external input that is an analog signal is combined by the waveform combination unit 16 with the output signal of the DAC 12, which is also an analog signal. The combined analog signal (sometimes referred to below as “combined output signal”) is amplified by the analog amplifier 13A and converted to sound by the speaker 30. The output of the analog amplifier 13A branched from the input to the speaker 30 is inputted to the comparator 22A in a manner similar to that of the semiconductor device 10A.
  • In order to handle the above configuration in which a sound signal from the external input is superimposed on the sound signal outputted from the analog amplifier 13A, the comparator 22B and the digital LPF 27 are added on the playback signal side. In other words, the other branched external input is converted to a binary signal by the comparator 22B and low frequency components thereof are extracted by the digital LPF 27. The external signal that passed through the comparator 22B and the digital LPF 27 is combined by the combination unit 29 with the playback signal from the sound source playback unit 11, and the combined sound signal is inputted to the digital comparator 21A. In this case, the combination unit 29 has the function of adjusting the level of the playback signal from the sound source playback unit 11 and the level of the external input so as to be at appropriate levels. Below, the signals combined by the combination unit 29 are sometimes referred to as the “combined playback signal”.
  • The combined playback signal that has undergone waveform conversion by the digital comparator 21A and the combined output signal (signal attained by combining the playback signal and the external input) that has undergone waveform conversion by the comparator 22A are compared by the comparison unit 24, and the process after the comparison unit 24 is similar to that of the embodiments above, and thus, detailed descriptions thereof are omitted.
  • The present embodiment is one in which a configuration employing external input is applied to the semiconductor device 10A of Embodiment 1, but this configuration is not limited to being applied to the present embodiment and may be applied to the semiconductor devices 10B to 10D of Embodiments 2 to 4.
  • In the semiconductor device 10E, the delay unit 23 is omitted, but if the difference in delay, from the perspective of input to the comparison unit 24, between the path including the digital comparator 21A and the path including the comparator 22A is problematic, then a delay unit 23 may be provided on either or both of the paths. Also, if the difference in delay is problematic when performing combination at the waveform combination unit 16 or the combination unit 29, then a delay unit 23 may be provided at an appropriate position such as between the sound source playback unit 11 and the combination unit 29, between the digital LPF 27 and the combination unit 29, between the DAC 12 and the waveform combination unit 16, before or after the branching of the external input, or the like. In such a case, by adding a delay to the output of the digital comparator 21A or the output of the comparator 22B, the circuit size would be reduced due to the low bit width.
  • Embodiment 6
  • A semiconductor device 10F and a sound output device 1F according to the present embodiment will be described with reference to FIG. 7. The semiconductor device 10F has a configuration in which a signal combination unit 17 is added to the semiconductor device 10B (FIG. 3) according to Embodiment 2, and the fault detection circuit 20F is the same as the fault detection circuit 20B. Thus, components similar to those of the semiconductor device 10B are assigned the same reference characters and detailed descriptions thereof are omitted.
  • In Embodiment 5, the external input was an analog signal, but in the present embodiment, the external input is a digital signal. The external input according to the present embodiment has a signal format corresponding to the signal format of the output from the sound source playback unit 11 (that is, a decoded PCM signal), and thus, the signal combination unit 17, which performs combination with the external input, is disposed between the sound source playback unit 11 and the digital comparator 21A. In other words, the output from the signal combination unit 17 is a signal corresponding to the playback signal. The process thereafter is similar to that of the semiconductor device 10B, and thus, detailed descriptions thereof are omitted.
  • Embodiment 7
  • A semiconductor device 10G and a sound output device 1G according to the present embodiment will be described with reference to FIG. 8. In the present embodiment, fault detection of the DAC 12 is performed in greater detail.
  • As shown in FIG. 8, the semiconductor device 10G includes the DAC 12, the analog amplifier 13A, and a fault detection circuit 20G. The fault detection circuit 20G includes a test data generation unit 40, a comparator 22A, a determination unit 26, and a test data control unit 41.
  • Recent sound signals are often high resolution with the number of steps of the amplitude being 16 bits or 24 bits. In such a case, the DAC 12 is also high resolution to correspond to the number of bits. In a method for detecting a fault by comparing the playback signal that is played by the sound source playback unit 11 to the output signal that is the input to the speaker 30, such as in the semiconductor devices and sound output devices of the above embodiments, it is sometimes not possible to determine a fault for lower bits of a high resolution DAC 12. The semiconductor device 10G is configured such that bit position corresponding to the resolution of the DAC 12 for which a fault is to be detected can be distinguished. In other words, the comparator 22A of the present embodiment includes a threshold setting function having a resolution that can identify the lower bits, and a fault in the DAC 12 is detected using this threshold setting function.
  • In FIG. 8, the test data generation unit 40 generates test data for detecting a fault in the DAC 12. The test data generation unit 40 can generate test data in which the value of the bit in which the fault of the test data is to be detected is changed. The comparator 22A converts the output signal from the DAC 12 into a binary signal. The determination unit 26 compares the test data to the output signal from the comparator 22A to perform determination. The determination results are transmitted to the test data control unit 41 or an MCU (not shown). The test data control unit 41 that has received the determination results changes the test data, that is, changes the value of the target bit, and performs the following fault detection process. Alternatively, the MCU that has received the determination results executes a necessary process such as notification. The test data control unit 41 controls the test data generation unit 40, the comparator 22A, and the determination unit 26.
  • Next, the operation of the semiconductor device 10G will be described. First, the test data control unit 41 controls the test data generation unit 40 such that test data that has set thereto the value of the bit for which fault detection is to be performed (hereinafter, “detection bit”) is outputted.
  • Next, the comparator 22A is controlled such that a threshold is moved (scanned) in relation to the output signal after the test data set by the test data generation unit 40 passes through the DAC 12. Then, the threshold of the comparator 22A for when the output of the comparator 22A has changed is maintained. The determination as to whether the output from the comparator 22A has changed is performed by controlling the determination unit 26 so as to perform comparative determination of the test data from the test data generation unit 40 and the output signal from the comparator 22A. The test data control unit 41 additionally controls the test data generation unit 40 such that test data with changed detection bits is generated, and similarly maintains the threshold of the comparator 22A for when the output of the comparator 22A is changed. By repeating the above, the presence or absence of a fault in the DAC 12 is determined at the bit level according to whether or not the relationship between the input of the DAC 12 and the threshold 22A is as intended. The present embodiment describes as an example a configuration using the analog amplifier 13A, but the fault detection method according to the present embodiment can be applied to the DAC even if the analog amplifier 13A were replaced with a digital amplifier, as long as the digital amplifier has the DAC.
  • Embodiment 8
  • A semiconductor device 10H and a sound output device 1H according to the present embodiment will be described with reference to FIG. 9. The object of the semiconductor device 10H is also to detect faults in the DAC 12 at the bit level, but in the semiconductor device 10H, the observation point [5] of the semiconductor device 10G of the above embodiment is changed to the observation point [1], or in other words, to the output position of the analog amplifier 13A. A fault detection circuit 20H is the same as the fault detection circuit 20G. Thus, components similar to those of the semiconductor device 10G are assigned the same reference characters and detailed descriptions thereof are omitted.
  • Here, in the output after the signal has passed through the analog amplifier 13A, DC (direct current) components sometimes do not pass through depending on the configuration. In such a case, in consideration of the frequency characteristics of the path, the test data control unit 41 controls the test data generation unit 40 so as to generate test data at a frequency that can pass through, and then controls the determination unit 26 so as to perform determination using the test data.
  • In Embodiments 7 and 8, a configuration was described as an example in which the semiconductor devices 10G and 10H were made independent, as a configuration for performing detailed fault detection of the DAC 12, but the embodiments are not limited to this configuration. For example, the semiconductor device 10G of Embodiment 7 or the semiconductor device 10H of Embodiment 8 may be incorporated into the semiconductor device 10A of Embodiment 1 such that both normal fault detection and detailed fault detection of the DAC 12 can be performed. In such a case, the input signal to the DAC 12 may be configured such that a switch can be used to switch between the playback signal and the test data, for example.
  • DESCRIPTION OF REFERENCE CHARACTERS
      • 1 sound output device
      • 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H semiconductor device (sound playback device)
      • 11 sound source playback unit
      • 12 DAC
      • 13A analog amplifier
      • 13B digital amplifier
      • 14 sound source
      • 15 LPF
      • 16 waveform combination unit
      • 17 signal combination unit
      • 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H fault detection circuit
      • 21A, 21B digital comparator
      • 22A, 22B comparator
      • 23 delay unit
      • 24 comparison unit
      • 25 comparison filter
      • 26 determination unit
      • 27 digital LPF
      • 28 threshold control unit
      • 29 combination unit
      • 30 speaker
      • 40 test data generation unit
      • 41 test data control unit

Claims (11)

What is claimed is:
1. A semiconductor device, comprising:
a sound source playback unit that plays back sound data from a sound source and outputs a playback signal;
an amplification unit that amplifies the playback signal and outputs the playback signal as an output signal converted to sound in a speaker; and
a fault detection unit including a first conversion circuit that compares the playback signal to a predetermined first threshold, converts a waveform of the playback signal, and outputs the converted waveform as a converted playback signal, a second conversion circuit that compares the output signal to a predetermined second threshold, converts a waveform of the output signal, and outputs the converted waveform as a converted output signal, a comparison circuit that compares the converted playback signal to the converted output signal, and a determination circuit that determines an output of the comparison circuit to detect a fault in the amplification unit.
2. The semiconductor device according to claim 1,
wherein the sound data is a digital signal, and
wherein the amplification unit includes a digital/analog conversion circuit that converts the playback signal that is a digital signal to an analog signal.
3. The semiconductor device according to claim 1,
wherein the first conversion circuit is a comparator that converts the playback signal into a first binary signal to generate the converted playback signal, and
wherein the second conversion circuit is a comparator that converts the output signal into a second binary signal to generate the converted output signal.
4. The semiconductor device according to claim 3, further comprising:
a low-pass filter between the comparison circuit and the determination circuit,
wherein the comparison circuit outputs a first logical value if the converted playback signal and the converted output signal match and a second logical value if the converted playback signal and the converted output signal differ from each other,
wherein the low-pass filter outputs a value between the first logical value and the second logical value, and
wherein the determination circuit has a threshold value between the first logical value and the second logical value, and compares the output from the low-pass filter to the threshold to determine the output of the comparison circuit.
5. The semiconductor device according to claim 1,
wherein the first conversion circuit has N said first thresholds that differ from each other (N being an integer of 3 or greater) and converts the playback signal into a first (N+1)-ary signal, and
wherein the second conversion circuit has N said second thresholds that differ from each other and converts the output signal into a second (N+1)-ary signal.
6. The semiconductor device according to claim 1, further comprising:
a threshold control unit that controls a value of the first threshold in relation to an amplitude of the playback signal, and controls a value of the second threshold in relation to an amplitude of the output signal,
wherein the threshold control unit controls the first threshold and the second threshold such that the value of the first threshold is the same as the value of the second threshold.
7. The semiconductor device according to claim 1, further comprising:
a first combination unit that combines an external signal inputted from outside the semiconductor device with the playback signal to generate a combined playback signal; and
a second combination unit that combines the external signal with the output signal to generate a combined output signal,
wherein the first conversion circuit converts the combined playback signal to output the converted playback signal, and
wherein the second conversion circuit converts the combined output signal to output the converted output signal.
8. The semiconductor device according to claim 1,
wherein the sound data is a digital signal with a predetermined bit count,
wherein the amplification unit includes a digital/analog conversion circuit that converts the playback signal that is a digital signal to an analog signal, and
wherein the semiconductor device further comprises: a bit fault detection unit that designates a bit position of the bit count of the digital/analog conversion circuit and detects a fault in the digital/analog conversion circuit.
9. The semiconductor device according to claim 8,
wherein the bit fault detection unit includes a generation unit that generates test data for detecting a fault in the digital/analog conversion circuit by designating the bit position and inputs the test data into the digital/analog conversion circuit, a second comparison circuit that compares the output of the digital/analog conversion circuit to a third threshold, and a control unit that controls the generation unit and the second comparison circuit, and
wherein the control unit changes the third thresholds for each of a plurality of pieces of the test data that are inputted to the second comparison circuit and have differing said bit positions and compares the third thresholds, compares the value of the third threshold with inverted comparison results to an expected value to which the third threshold acquired in advance is to invert, and detects a fault in each of the bit positions.
10. The semiconductor device according to claim 1, further comprising:
the sound source that transmits a signal to be played back by the sound source playback unit.
11. A sound output device, comprising:
the semiconductor device according to claim 1;
the sound source that transmits a signal to be played back by the sound source playback unit; and
the speaker that amplifies the playback signal and converts the playback signal to sound.
US16/568,889 2018-09-12 2019-09-12 Semiconductor device and sound output device Active US10963212B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-170850 2018-09-12
JP2018170850A JP7173800B2 (en) 2018-09-12 2018-09-12 Semiconductor device and sound output device
JPJP2018-170850 2018-09-12

Publications (2)

Publication Number Publication Date
US20200081684A1 true US20200081684A1 (en) 2020-03-12
US10963212B2 US10963212B2 (en) 2021-03-30

Family

ID=69720781

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/568,889 Active US10963212B2 (en) 2018-09-12 2019-09-12 Semiconductor device and sound output device

Country Status (3)

Country Link
US (1) US10963212B2 (en)
JP (1) JP7173800B2 (en)
CN (1) CN110896516B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311398A1 (en) * 2021-03-24 2022-09-29 Kabushiki Kaisha Toshiba Isolation amplifier and anomaly state detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752832A (en) * 1985-07-30 1988-06-21 Victor Company Of Japan, Ltd. Video and audio signal recording and/or reproducing apparatus
US20180358937A1 (en) * 2015-12-25 2018-12-13 Panasonic Intellectual Property Management Co., Ltd. Protective device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110335Y2 (en) * 1979-03-20 1986-04-03
JPH0666599B2 (en) * 1986-02-13 1994-08-24 日本電気株式会社 Power amplifier circuit
JPH01176952A (en) 1988-01-06 1989-07-13 Clarion Co Ltd Trouble diagnostic device for audio equipment
US4887298A (en) 1988-06-15 1989-12-12 Renkus-Heinz Electronic circuit for sensing disconnect or failure of a power output sense line in an audio power system
JP3893309B2 (en) * 2002-04-11 2007-03-14 株式会社ケンウッド Audio amplifier, abnormality detection device, and abnormality detection method
JP4160437B2 (en) 2003-04-15 2008-10-01 アルパイン株式会社 AUDIO DEVICE, OFFSET VOLTAGE DETECTION METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP2005202624A (en) 2004-01-15 2005-07-28 Osaka Gas Co Ltd Electronic equipment
GB2421648B (en) * 2004-12-23 2009-01-07 Zetex Plc Amplifier fault detection circuit
JP2006338845A (en) * 2005-06-06 2006-12-14 Pioneer Electronic Corp Signal converter, signal conversion method, and the like
US8275559B2 (en) * 2007-03-29 2012-09-25 Linage Power Corporation Fault detector for a tip and ring circuit, a method of protecting such a circuit and a power supply including the fault detector
JP5137953B2 (en) * 2008-06-24 2013-02-06 パナソニック株式会社 Analog / digital conversion circuit, optical disk reproducing device, receiving device
WO2011004580A1 (en) * 2009-07-06 2011-01-13 パナソニック株式会社 Clock data recovery circuit
JP5430438B2 (en) * 2010-02-18 2014-02-26 パナソニック株式会社 Digital amplifier
JP2012186675A (en) 2011-03-07 2012-09-27 Sony Corp Signal processing device and signal processing method
JP5423748B2 (en) * 2011-09-17 2014-02-19 株式会社デンソー Abnormality detection device for speaker circuit for generating vehicle operation notification sound
JP2014183543A (en) 2013-03-21 2014-09-29 Toshiba Corp Acoustic output device
JP6301592B2 (en) 2013-05-21 2018-03-28 矢崎エナジーシステム株式会社 Failure detection device
CN103648075A (en) * 2013-12-16 2014-03-19 惠州华阳通用电子有限公司 Device and method for automatically detecting abnormality of power amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752832A (en) * 1985-07-30 1988-06-21 Victor Company Of Japan, Ltd. Video and audio signal recording and/or reproducing apparatus
US20180358937A1 (en) * 2015-12-25 2018-12-13 Panasonic Intellectual Property Management Co., Ltd. Protective device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311398A1 (en) * 2021-03-24 2022-09-29 Kabushiki Kaisha Toshiba Isolation amplifier and anomaly state detection device
US11979122B2 (en) * 2021-03-24 2024-05-07 Kabushiki Kaisha Toshiba Isolation amplifier and anomaly state detection device

Also Published As

Publication number Publication date
JP2020041953A (en) 2020-03-19
US10963212B2 (en) 2021-03-30
CN110896516A (en) 2020-03-20
CN110896516B (en) 2023-10-31
JP7173800B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5423748B2 (en) Abnormality detection device for speaker circuit for generating vehicle operation notification sound
US20090184853A1 (en) Analog to digital converter with improved input overload recovery
US10581386B2 (en) Protective device
US9580053B2 (en) Signal processing apparatus for wheel speed sensor
CN104854635B (en) The audio frequency of man-machine interface safety is played
CN105704634A (en) Feedback audio output detection method and device
JP2007205792A (en) Testing device and testing method
US20080279393A1 (en) Noise Eliminating Circuit
US10963212B2 (en) Semiconductor device and sound output device
US20220086577A1 (en) Integrated circuit with switching amplifier output fault detection
US8421540B1 (en) Method and apparatus for run-time short circuit protection for amplifiers
JP4644132B2 (en) Measuring apparatus, test apparatus, and measuring method
US9119005B2 (en) Connection diagnostics for parallel speakers
CN111479206B (en) Failure determination device and audio output device
US7233452B2 (en) Method of verifying preamplifier circuit functions, and magnetic record regeneration apparatus using the same
US20140115392A1 (en) Self-diagnostic non-bussed control module
US9813816B2 (en) Audio plug detection structure in audio jack corresponding to audio plug and method thereof
JP2011229001A (en) Receiver
JP4382723B2 (en) Failure detection device for medium wave digital processing type transmitter
US11190889B2 (en) Semiconductor device and sound output device
US20100238575A1 (en) Write driver monitoring and detection
US20240120896A1 (en) Differential amplifier circuit
US20240040308A1 (en) Semiconductor Device And Electronic Apparatus
US20210352423A1 (en) Audio diagnostics in a vehicle
JP2785566B2 (en) Passive sonar device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: LAPIS SEMICONDUCTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AKAHORI, HIROJI;REEL/FRAME:055397/0110

Effective date: 20210205

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4