US20200071853A1 - Tufted carpet including polyethyleneterephthalate bulked continuous filament - Google Patents

Tufted carpet including polyethyleneterephthalate bulked continuous filament Download PDF

Info

Publication number
US20200071853A1
US20200071853A1 US16/304,278 US201816304278A US2020071853A1 US 20200071853 A1 US20200071853 A1 US 20200071853A1 US 201816304278 A US201816304278 A US 201816304278A US 2020071853 A1 US2020071853 A1 US 2020071853A1
Authority
US
United States
Prior art keywords
polyethylene terephthalate
carpet
yarn
tufted carpet
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/304,278
Inventor
Yong Chul Kwon
Seung Taek Oh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyosung Advanced Materials Corp
Original Assignee
Hyosung Advanced Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyosung Advanced Materials Corp filed Critical Hyosung Advanced Materials Corp
Assigned to HYOSUNG ADVANCED MATERIALS CORPORATION reassignment HYOSUNG ADVANCED MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KWON, YONG CHUL, OH, SEUNG TAEK
Publication of US20200071853A1 publication Critical patent/US20200071853A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05CEMBROIDERING; TUFTING
    • D05C17/00Embroidered or tufted products; Base fabrics specially adapted for embroidered work; Inserts for producing surface irregularities in embroidered products
    • D05C17/02Tufted products
    • D05C17/026Tufted products characterised by the tufted pile surface
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/042Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets of carpets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/10Melt spinning methods using organic materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/445Yarns or threads for use in floor fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0063Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf
    • D06N7/0065Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by the pile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0063Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf
    • D06N7/0068Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by the primary backing or the fibrous top layer
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/02Synthetic macromolecular fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1685Wear resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/263Cars
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • D10B2321/0211Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene high-strength or high-molecular-weight polyethylene, e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention relates to a polyethylene terephthalate bulked continuous filament suitable for use as an automotive carpet and a carpet including the same.
  • nylon 6 nylon 66, polypropylene, polyethylene terephthalate, and the like are used as a synthetic material of a bulked continuous filament (BCF) as a material for a tufted carpet.
  • BCF bulked continuous filament
  • nylon is the most suitable material for carpet, but it has a disadvantage of high price, so low-priced polypropylene is used as a substitute.
  • the BCF yarn itself must have tensile strength and strength properties against external force in order to improve the wear resistance of the carpet.
  • the tensile ratio is high, filament yarn breakage occurs and work becomes difficult. In severe cases, tensile strength is lowered.
  • Another object of the present invention is to provide a carpet which is improved in the sense of volume of the outer appearance and in the quality of abrasion resistance by including the polyethylene terephthalate bulked continuous filament.
  • a tufted carpet for automobiles includes: a pile layer including a polyethylene terephthalate bulked processing continuous filament (BCF) prepared by melt spinning a polyethylene terephthalate (PET) polymer; and at least one backing layer, wherein a monofilament of the BCF may have elongation of 5% or more at an initial stress of 1.0 g/d, elongation of 25 to 35% at a medium-term stress of 3.0 g/d, tensile strength of 0.0 to 6.0 g/d, and elongation of 40 to 60%.
  • BCF polyethylene terephthalate bulked processing continuous filament
  • PET polyethylene terephthalate
  • a content of a low molecular substance of 3 to 7 oligomers, which has not formed a polymer in the polyethylene terephthalate polymer may be 1.0 wt % or less, and a content of the low molecular substance in the filament may be 1.3 wt % or less.
  • polyethylene terephthalate polymer may have a weight average molecular weight of 50,000 to 70,000.
  • the continuous filament may be formed of multifilaments of 50 to 300 aggregates of monofilaments.
  • a total fineness of the bulked processing continuous filament may be 700 to 1500 denier.
  • a wear resistance level according to MS343-15 standard may be grade 3 or more.
  • the polyethylene terephthalate bulked continuous filament according to an embodiment of the present invention includes monofilaments having improved strength and elongation, so that the carpet including the same can also have improved volume feeling of the appearance and quality of the abrasion resistance.
  • FIG. 1 is a schematic view of an apparatus for producing polyethylene terephthalate bulked continuous filaments according to an example of the present invention.
  • FIG. 2 is a view illustrating the stress-strain curves for a polyethylene terephthalate monofilament according to one embodiment of the present invention.
  • FIG. 3 is a schematic view of a tufted carpet according to an example of the present invention.
  • the terms “include” or “having”, etc. are used to specify that there is a feature, figure, step, operation, element, part or combination thereof which is stated in the specification, and that it should not be construed to preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof. Also, when a part such as a layer, film, region, plate, or the like is referred to as being “on” another part, this includes not only the case where it is “directly over” another part, but also a case where there is another part therebetween.
  • a part such as a layer, film, region, plate or the like is referred to as being “under” another part, it includes not only the case where it is “directly under” another part, but also the case where there is another part in the middle.
  • FIG. 1 is a schematic view of an apparatus for producing polyethylene terephthalate bulked continuous filaments according to an example of the present invention.
  • a method of producing polyethylene terephthalate bulked continuous filaments according to an example may include melt spinning a polyethylene terephthalate chip.
  • the polyethylene terephthalate chip is preferably prepared by liquid phase polymerization or solid phase polymerization. At this time, it is preferable to use a batch or continuous polymerization method for the solid phase polymerization, but the present invention is not limited to this example. More specifically, the solid phase polymerization is carried out under vacuum conditions at 110 to 170° C. for 4 to 6 hours to remove moisture, and the temperature is raised from 235 to 255° C. for 4 to 6 hours, and the solid phase polymerization time is preferably 20 to 30 hours.
  • liquid phase polymerization or solid phase polymerized polyethylene terephthalate chips are melt-spun at 245-335° C. and passed through a spinneret 1 .
  • the polyethylene terephthalate resin that is the basis of the present invention preferably contains at least 90 mol % of repeating units of ethylene terephthalate.
  • the polyethylene terephthalate may include a small amount of units derived from ethylene glycol and terephthalenedicarboxylic acid or derivatives thereof and one or more ester-forming components as copolymer units.
  • ester forming components copolymerizable with the polyethylene terephthalate unit include glycols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and the like, and dicarboxylic acid such as terephthalic acid, isophthalic acid, hexahydroterephthalic acid, stilbene dicarboxylic acid, bibenzoic acid, adipic acid, sebacic acid, and azelaic acid.
  • the molecular weight of the polymer is very important in order to have a high level of tensile strength in an appropriate stretching ratio in the production of yarn.
  • the weight average molecular weight of the polyethylene terephthalate is preferably 50,000 or more, more preferably 50,000 to 70,000.
  • the stretching ratio should be increased to a very high level in the molecular weight range, and thus stable process operability cannot be secured.
  • the content of a low molecular material such as an oligomer having a number of oligomers (n) of 3 to 7 that does not form a polymer in a polyethylene terephthalate polymer is very important.
  • the low molecular weight material may have a weight average molecular weight of 550 to 1,500.
  • the content of such a low-molecular substance is preferably 1.0 wt % or less, more preferably 0.8 wt % or less, in the polyethylene terephthalate polymer. If the content is more than 1.0 wt %, foreign matters may be generated due to melt fracture occurring near the spinning nozzle, thereby shortening the wiping cycle and causing filament yarn breakage. As a result, tensile strength, elongation and the like may be deteriorated.
  • the low molecular weight material in the filament after winding is preferably 1.3 wt % or less, and more preferably 1.0 wt % or less.
  • the low-molecular substance in the filament is more than 1.3% wt %, when the carpet fabric is finally molded by heat and pressure, it is converted into carbonization or foreign matter, and it is difficult for BCF file to be formed properly, and as a result, it becomes difficult to express the volume feeling of the pile layer.
  • the moisture content of the polyethylene terephthalate chip is preferably 40 ppm or less.
  • Polyethylene terephthalate is very vulnerable to moisture, so that by controlling the water content of the chip to the above range, it is possible to prevent molecular weight drop due to hydrolysis.
  • the water content exceeds 40 ppm, a viscosity drop due to hydrolysis occurs, and the tensile strength of the monofilament is lowered.
  • the fineness of the polyethylene terephthalate yarn thus produced is preferably 700 to 1500 denier and more preferably 850 to 1350 denier.
  • the diameter of the polyethylene terephthalate yarn is preferably 6 to 20 dpf, more preferably 10 to 15 dpf.
  • the fineness of the yarn is less than 700 denier and the diameter is less than 6 dpf
  • the uprightness of the fabric pile is lowered when the carpet is formed, resulting in poor abrasion resistance, molding restorability and appearance
  • the fineness exceeds 1500 denier or the diameter exceeds 20 dpf the density of the carpet fabric is lowered, resulting in poor abrasion resistance and restoring force.
  • the cooling step may be a step of cooling the yarn at the cooling zone 3 with air at a speed of 0.2 to 1.0 m/sec.
  • the cooling temperature is preferably adjusted to 10 to 30° C., and if the cooling temperature is less than 10° C., it is disadvantageous from the economical point of view. If the cooling air speed is less than 0.2 m/sec, the cooling effect is insufficient. If the cooling air speed is more than 1.0 m/sec, the shaking of the yarn is excessive, which will cause a problem in the spinning workability, and thus it is preferable that the speed of the cooling air is 0.2 to 1.0 msec.
  • a spin finish step of performing oiling is carried out.
  • oil is firstly and secondarily lubricated by using a neat type emulsion or a water-soluble emulsion, thereby increasing rolling speed, lubricity and smoothness of the yarn.
  • the filament is fed to a stretching roller 6 at a speed of 300 to 1,200 m/min, preferably 500 to 800 m/min, on the feed roller 5 .
  • the stretching roller 6 is stretched at a speed of 2.0 to 5.0 times the feed roller 5 speed, preferably 2.5 to 4.5 times. If the stretching speed is less than 2.0 times, the stretching cannot be performed sufficiently. If the stretching speed is more than 5.0 times, the polyethylene terephthalate may not be stretched due to the nature of the material.
  • the filament that has passed through the stretching roller 6 passes through a texturing unit 7 having a texturing nozzle for imparting a bulking property.
  • a heating fluid of 150 to 270° C. is sprayed in the texturing unit 7 with a pressure of 3 to 10 kg/cm2 to thereby cause the filament to crimp irregularly in three dimensions.
  • the temperature of the heating fluid is preferably 150 to 250° C., and when the temperature is lower than 150° C., the texturing effect is lowered. If the temperature exceeds 250° C., the filament is damaged.
  • the pressure of the heating fluid is preferably 3 to 10 kg/cm2, and if less than 3 kg/cm2, the texturing effect is lowered, and if it exceeds 10 kg/cm2, the filament is damaged.
  • the filament that has passed through the texturing unit 7 is cooled through the cooling drum 8 disposed at the lower end of the texturing nozzle.
  • the cooled raw yarn is passed through the relax roller 9 at a speed of 0.65 to 0.95 times the drawing roller speed to give an over feed rate of 5 to 35%.
  • the speed of the relax roller is less than 0.65 times the speed of the stretching roller, the paper is not wound. If the speed exceeds 0.95 times, the bulkiness is reduced, the shrinkage of the yarn is significantly increased, and high tension is caused, thereby interfering with the job.
  • the yarn passed through the relax roller 9 passes through a collator 10 .
  • a slight twist and a knot are given at a pressure of 2.0 to 8.0 kg/m2 in order to improve the rolling speed of the yarn, and it is given in the range of 0 to 40 times/m, preferably 10 to 25 times/m. In case of exceeding 40 times of being interlaced, even after dyeing and post-processing, the interlaced state is maintained and the appearance of the carpet is damaged.
  • the yarn passed through the collator 10 is wound in the final winder 11 .
  • the speed of the winder is preferably adjusted so that the tension of the yarn usually ranges from 50 to 350 g. At this time, if the tension is less than 50 g in the winder, the winding is impossible, and if it exceeds 350 g, the bulkiness is decreased and the contraction of the yarn is largely caused and the high tension is generated.
  • the above method relates to a BCF produced only from a polyethylene terephthalate resin, and the stepwise process is the same as that described above in the case of producing a dope-dyed yarn according to the carpet use.
  • the BCF yarn itself needs to have physical properties against external force in order to improve the wear resistance of the carpet.
  • the tensile strength of the yarn should be high.
  • the yarn with high tensile strength is also highly wear-resistant.
  • the physical properties of the tensile strength that contributes to the abrasion resistance of the tufted carpet are not the tensile strength of the BCF yarn bundle but the tensile strength of each filament, i.e., the tensile strength of the monofilament.
  • the abrasion resistance analysis is carried out in a taber abrasion tester in accordance with ASTM D3384, in which the tensile strength of the monofilament is more important than the physical properties of the entire bundle, i.e., the multifilament, because each filament contacts the abrasive wheel.
  • the polyethylene terephthalate bulked continuous monofilament prepared according to the present invention may have a tensile strength of 4.0 to 6.0 g/d and an elongation percentage(strain) of 40 to 60%. Further, as shown in FIG. 2 , the monofilament is preferably elongated by 5% or more at an initial stress of 1.0 g/d, elongated by 25 to 35% at a medium-term stress of 3.0 g/d, and it is preferable to have a stree-strain curve that elongates by 5% or more until the yarn is cut from the stress of 4.0 g/d. When the stress is in the above range, the abrasion resistance of the nylon level of the same weight can be secured.
  • the polyethylene terephthalate bulked continuous multifilament may be formed of aggregate of 50 to 300 monofilaments, more preferably 60 to 200 monofilaments.
  • the polyethylene terephthalate multifilament prepared according to the present invention is manufactured as a carpet for automobiles through a post-process.
  • Carpets made from the BCF yarns of the present invention can be prepared in any manner known to those skilled in the art.
  • FIG. 3 shows a specific example of a tufted carpet for automobiles according to the present invention.
  • the carpet has a face yarn 12 supported by a first base foil 13 .
  • the first base foil 13 is referred to as a backing layer
  • the layer formed of the face yarn 12 is referred to as a pile layer.
  • the face yarn 12 which is the outermost layer where the consumer feels the visual sensation by the eye, is formed of BCF yarn.
  • the first base foil 13 is made of polyester or polyolefin and preferably has a spunbond or fabric shape of 90 to 150 gsm. Also, the pile layer including the face yarn 12 preferably has a weight of 180 to 700 gsm. Adjacent to the first base foil 13 is a coating layer 14 that fixes the face yarn 12 , which is a suitable material conventionally used in the art, such as latex or acrylic. Finally, the carpet is subjected to a secondary coating 15 to provide sound insulation or sound absorption performance in order to ensure quietness in the automobile. It is also possible to apply 300 to 5000 gsm of PE or EVA or to attach a sound-absorbing nonwoven fabric.
  • the carpet is produced using the polyethylene terephthalate BCF according to the present invention, the same appearance as that of nylon is exhibited even with the yarn weight of the same face yarn as that of the nylon tufted carpet, and the abrasion resistance according to the MS343-15 standard is not less than grade 3, and thus the abrasion resistance can be improved.
  • a slurry prepared by mixing 50 parts by weight of ethylene glycol with 100 parts by weight of terephthalic acid was added into an esterification reactor and pressurized at 250° C. for 4 hours under a pressure of 0.5 torr to allow water to flow out of the reactor and allow the esterification reaction to be performed, to thereby prepare (2-hydroxyethyl) terephthalate.
  • 300 ppm of a phosphorus heat stabilizer was added at the end of the esterification reaction.
  • 300 ppm of the antimony catalyst was added as an polymerization catalyst at the beginning of the polycondensation reaction, the temperature was raised from 250° C. to 285° C.
  • Solid phase polymerization is carried out to increase the viscosity of the liquid polymer.
  • the batch solid phase polymerizer is used to dry for 4 hours at 140° C. under vacuum condition. The temperature is raised from 235° C. to 245° C. for 4 hours to 6 hours until reaching the final target viscosity.
  • the polyethylene terephthalate polymer produced through the spinneret having 128 holes and a Y-shaped cross-section is melt-spun at 290° C.
  • the polymer exiting the spinneret is cooled by cooling air at 20° C. at the bottom of the nozzle at 0.5 m/s, and then passes through the emulsion feeder.
  • the yarn to which the emulsion has been applied passes through a feed roller maintained at a temperature of 90° C. at a speed of 598 m/min and then stretched at a rate of 2,840 m/min at 190° C. on the stretching roller.
  • the yarn passed through the stretching roller passes the texturing nozzle and is given a crimp.
  • the hot air temperature is 200° C.
  • the pressure is 7 kg/cm2
  • the back pressure is 5 kg/cm2.
  • the polyethylene terephthalate bulky continuous filament thus prepared was used to prepare a carpet.
  • Polyethylene terephthalate BCF yarn and carpet were prepared through the same procedure as in Example 1, except that the molecular weight of the polymer and the content of the low molecular weight substance were adjusted as shown in Table 1 below.
  • Ten monofilaments were extracted from a yarn (multifilament) which was left alone for 24 hours at a temperature of 25° C. and a relative humidity of 65RH %.
  • a load (approximately, mono-denier ⁇ 60 (mg)) stipulated per denier was applied in the Vibrojet, and it was then measured at a sample length of 20 mm and a tensile speed of 20 mm/min.
  • the monofilament properties were measured with the average value of the remaining eight values, excluding the maximum value and the minimum value among the ten measured values.
  • the initial modulus represents the slope of the graph before the yield point.
  • Abrasion resistance of carpet was evaluated as follows, and the results are shown in Table 1 below.
  • Test equipment Taber abrasion tester
  • High-performance liquid chromatography was used to analyze the content of low molecular weight materials in PET polymer and filament.
  • the conditions for detailed HPLC analysis are as follows.
  • Example 1 Polymer Monofilament Low Low Weight molecular molecular average weight weight carpet molecular content Strength Elongation Elongation at Elongation at content Weight Abrasion weight (wt %) (g/d) (%) 1.0 g/d (%) 3.0 g/d (%) (wt %) (g/m2) (Grade)
  • Example 1 55000 0.56 4.4 48 9.2 28.9 0.91 305 3
  • Example 2 60000 0.43 4.6 50 10.9 28.8 0.85 305 3
  • Example 3 65000 0.38 5.1 52 10.5 30 0.76 305 3 Comparative 40000 1.1 3.4 41 4.5 33.2 1.4 305 2 example 1
  • the produced monofilaments constituting the polyethylene terephthalate BCF has a strength of 4.0 to 6.0 g/d and elongation of 40 to 60%, and the tensile strength and elongation are improved by having the stress-strain curve as described above.
  • the tensile strength and elongation of the monofilament are improved, the physical properties against external force are improved and the wear resistance of the carpet is also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Carpets (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Automatic Embroidering For Embroidered Or Tufted Products (AREA)

Abstract

A monofilament of a polyethylene terephthalate bulked continuous filament (BCF) has elongation of 5% or more at an initial stress of 1.0 g/d, elongation of 25 to 35% at a medium-term stress of 3.0 g/d, tensile strength of .0 to 6.0g/d, and elongation of 40 to 60%.

Description

    TECHNICAL FIELD
  • The present invention relates to a polyethylene terephthalate bulked continuous filament suitable for use as an automotive carpet and a carpet including the same.
  • BACKGROUND ART
  • Generally, nylon 6, nylon 66, polypropylene, polyethylene terephthalate, and the like are used as a synthetic material of a bulked continuous filament (BCF) as a material for a tufted carpet. Among them, nylon is the most suitable material for carpet, but it has a disadvantage of high price, so low-priced polypropylene is used as a substitute.
  • However, since polypropylene has poor heat resistance and is not suitable for use in automobile carpets that are molded at high temperatures, nylon materials are widely used, but nonwoven type needle punches are used in many cases because the nylon materials are expensive. On the other hand, the needle punch nonwoven fabric has a disadvantage in that the quality of the appearance low and the abrasion resistance is poorer than that of the tufted carpet.
  • In recent years, in order to solve the above problems, attempts have been made to make BCF by using a polyethylene terephthalate material having excellent characteristics in comparison with other materials in terms of economy and having a high heat resistance to thereby be used for a carpet for automobiles, but since polyethylene terephthalate has higher specific gravity than that of nylon materials, the weight of the yarn should be increased in order to make the same outer appearance, which is disadvantageous in terms of cost. In addition, since the bulk stability of the yarn is lower than that of nylon, there is a problem that the yarn is pressed after molding, and the feeling of volume is lowered.
  • Further, when the carpet is produced using polyethylene terephthalate BCF, the BCF yarn itself must have tensile strength and strength properties against external force in order to improve the wear resistance of the carpet. In order to increase the tensile strength of the filament, it is necessary to stretch the fibers at a high rate in the stretching step in the BCF manufacturing process. However, when the tensile ratio is high, filament yarn breakage occurs and work becomes difficult. In severe cases, tensile strength is lowered.
  • DISCLOSURE Technical Problem
  • It is an object of the present invention to provide a polyethylene terephthalate bulked continuous filament suitable for use as an automobile carpet by including a monofilament having improved strength and elongation.
  • Another object of the present invention is to provide a carpet which is improved in the sense of volume of the outer appearance and in the quality of abrasion resistance by including the polyethylene terephthalate bulked continuous filament.
  • Technical Solution
  • A tufted carpet for automobiles according to an embodiment of the present invention includes: a pile layer including a polyethylene terephthalate bulked processing continuous filament (BCF) prepared by melt spinning a polyethylene terephthalate (PET) polymer; and at least one backing layer, wherein a monofilament of the BCF may have elongation of 5% or more at an initial stress of 1.0 g/d, elongation of 25 to 35% at a medium-term stress of 3.0 g/d, tensile strength of 0.0 to 6.0 g/d, and elongation of 40 to 60%.
  • Herein, a content of a low molecular substance of 3 to 7 oligomers, which has not formed a polymer in the polyethylene terephthalate polymer, may be 1.0 wt % or less, and a content of the low molecular substance in the filament may be 1.3 wt % or less.
  • Further, the polyethylene terephthalate polymer may have a weight average molecular weight of 50,000 to 70,000.
  • Further, the continuous filament may be formed of multifilaments of 50 to 300 aggregates of monofilaments.
  • Further, a total fineness of the bulked processing continuous filament may be 700 to 1500 denier.
  • Further, a wear resistance level according to MS343-15 standard may be grade 3 or more.
  • Advantageous Effects
  • The polyethylene terephthalate bulked continuous filament according to an embodiment of the present invention includes monofilaments having improved strength and elongation, so that the carpet including the same can also have improved volume feeling of the appearance and quality of the abrasion resistance.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an apparatus for producing polyethylene terephthalate bulked continuous filaments according to an example of the present invention.
  • FIG. 2 is a view illustrating the stress-strain curves for a polyethylene terephthalate monofilament according to one embodiment of the present invention.
  • FIG. 3 is a schematic view of a tufted carpet according to an example of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is capable of various modifications and various forms, and specific examples are described in detail in the following description. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but on the contrary, is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
  • In this application, the terms “include” or “having”, etc., are used to specify that there is a feature, figure, step, operation, element, part or combination thereof which is stated in the specification, and that it should not be construed to preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof. Also, when a part such as a layer, film, region, plate, or the like is referred to as being “on” another part, this includes not only the case where it is “directly over” another part, but also a case where there is another part therebetween. On the contrary, when a part such as a layer, film, region, plate or the like is referred to as being “under” another part, it includes not only the case where it is “directly under” another part, but also the case where there is another part in the middle.
  • Hereinafter, examples of the present invention will be described in detail.
  • Hereinafter, a method for producing a polyethylene terephthalate bulked continuous filament according to an example of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an apparatus for producing polyethylene terephthalate bulked continuous filaments according to an example of the present invention.
  • A method of producing polyethylene terephthalate bulked continuous filaments according to an example may include melt spinning a polyethylene terephthalate chip.
  • The polyethylene terephthalate chip is preferably prepared by liquid phase polymerization or solid phase polymerization. At this time, it is preferable to use a batch or continuous polymerization method for the solid phase polymerization, but the present invention is not limited to this example. More specifically, the solid phase polymerization is carried out under vacuum conditions at 110 to 170° C. for 4 to 6 hours to remove moisture, and the temperature is raised from 235 to 255° C. for 4 to 6 hours, and the solid phase polymerization time is preferably 20 to 30 hours.
  • As described above, the liquid phase polymerization or solid phase polymerized polyethylene terephthalate chips are melt-spun at 245-335° C. and passed through a spinneret 1.
  • The polyethylene terephthalate resin that is the basis of the present invention preferably contains at least 90 mol % of repeating units of ethylene terephthalate.
  • Alternatively, the polyethylene terephthalate may include a small amount of units derived from ethylene glycol and terephthalenedicarboxylic acid or derivatives thereof and one or more ester-forming components as copolymer units. Examples of other ester forming components copolymerizable with the polyethylene terephthalate unit include glycols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and the like, and dicarboxylic acid such as terephthalic acid, isophthalic acid, hexahydroterephthalic acid, stilbene dicarboxylic acid, bibenzoic acid, adipic acid, sebacic acid, and azelaic acid.
  • At this time, the molecular weight of the polymer is very important in order to have a high level of tensile strength in an appropriate stretching ratio in the production of yarn. In the present invention, the weight average molecular weight of the polyethylene terephthalate is preferably 50,000 or more, more preferably 50,000 to 70,000. When the weight average molecular weight is less than the above range, especially when the weight average molecular weight of the polyethylene terephthalate fiber is in the range of 35,000 to 45,000, the stretching ratio should be increased to a very high level in the molecular weight range, and thus stable process operability cannot be secured.
  • On the other hand, the content of a low molecular material such as an oligomer having a number of oligomers (n) of 3 to 7 that does not form a polymer in a polyethylene terephthalate polymer is very important. AT this time, the low molecular weight material may have a weight average molecular weight of 550 to 1,500. The content of such a low-molecular substance is preferably 1.0 wt % or less, more preferably 0.8 wt % or less, in the polyethylene terephthalate polymer. If the content is more than 1.0 wt %, foreign matters may be generated due to melt fracture occurring near the spinning nozzle, thereby shortening the wiping cycle and causing filament yarn breakage. As a result, tensile strength, elongation and the like may be deteriorated.
  • Further, in the process of melt spinning the polymer, thermally oxidative decomposition occurs due to heat and friction in a high-temperature extruder to thereby generate a low molecular weight material. At this time, the low molecular weight material in the filament after winding is preferably 1.3 wt % or less, and more preferably 1.0 wt % or less. On the other hand, in the case that the low-molecular substance in the filament is more than 1.3% wt %, when the carpet fabric is finally molded by heat and pressure, it is converted into carbonization or foreign matter, and it is difficult for BCF file to be formed properly, and as a result, it becomes difficult to express the volume feeling of the pile layer.
  • Further, the moisture content of the polyethylene terephthalate chip is preferably 40 ppm or less. Polyethylene terephthalate is very vulnerable to moisture, so that by controlling the water content of the chip to the above range, it is possible to prevent molecular weight drop due to hydrolysis. On the other hand, when the water content exceeds 40 ppm, a viscosity drop due to hydrolysis occurs, and the tensile strength of the monofilament is lowered.
  • The fineness of the polyethylene terephthalate yarn thus produced is preferably 700 to 1500 denier and more preferably 850 to 1350 denier. The diameter of the polyethylene terephthalate yarn is preferably 6 to 20 dpf, more preferably 10 to 15 dpf.
  • When the fineness of the yarn is less than 700 denier and the diameter is less than 6 dpf, the uprightness of the fabric pile is lowered when the carpet is formed, resulting in poor abrasion resistance, molding restorability and appearance, and when the fineness exceeds 1500 denier or the diameter exceeds 20 dpf, the density of the carpet fabric is lowered, resulting in poor abrasion resistance and restoring force.
  • Thereafter, the step of cooling the spun polyethylene terephthalate yarn may be performed. At this time, the cooling step may be a step of cooling the yarn at the cooling zone 3 with air at a speed of 0.2 to 1.0 m/sec. The cooling temperature is preferably adjusted to 10 to 30° C., and if the cooling temperature is less than 10° C., it is disadvantageous from the economical point of view. If the cooling air speed is less than 0.2 m/sec, the cooling effect is insufficient. If the cooling air speed is more than 1.0 m/sec, the shaking of the yarn is excessive, which will cause a problem in the spinning workability, and thus it is preferable that the speed of the cooling air is 0.2 to 1.0 msec.
  • After the cooling, a spin finish step of performing oiling is carried out. In a finishing applicator 4, oil is firstly and secondarily lubricated by using a neat type emulsion or a water-soluble emulsion, thereby increasing rolling speed, lubricity and smoothness of the yarn.
  • Thereafter, the filament is fed to a stretching roller 6 at a speed of 300 to 1,200 m/min, preferably 500 to 800 m/min, on the feed roller 5. At this time, the stretching roller 6 is stretched at a speed of 2.0 to 5.0 times the feed roller 5 speed, preferably 2.5 to 4.5 times. If the stretching speed is less than 2.0 times, the stretching cannot be performed sufficiently. If the stretching speed is more than 5.0 times, the polyethylene terephthalate may not be stretched due to the nature of the material.
  • The filament that has passed through the stretching roller 6 passes through a texturing unit 7 having a texturing nozzle for imparting a bulking property. At this time, a heating fluid of 150 to 270° C. is sprayed in the texturing unit 7 with a pressure of 3 to 10 kg/cm2 to thereby cause the filament to crimp irregularly in three dimensions.
  • In this case, the temperature of the heating fluid is preferably 150 to 250° C., and when the temperature is lower than 150° C., the texturing effect is lowered. If the temperature exceeds 250° C., the filament is damaged. In addition, the pressure of the heating fluid is preferably 3 to 10 kg/cm2, and if less than 3 kg/cm2, the texturing effect is lowered, and if it exceeds 10 kg/cm2, the filament is damaged.
  • The filament that has passed through the texturing unit 7 is cooled through the cooling drum 8 disposed at the lower end of the texturing nozzle. The cooled raw yarn is passed through the relax roller 9 at a speed of 0.65 to 0.95 times the drawing roller speed to give an over feed rate of 5 to 35%. At this time, if the speed of the relax roller is less than 0.65 times the speed of the stretching roller, the paper is not wound. If the speed exceeds 0.95 times, the bulkiness is reduced, the shrinkage of the yarn is significantly increased, and high tension is caused, thereby interfering with the job. The yarn passed through the relax roller 9 passes through a collator 10. In this part, a slight twist and a knot are given at a pressure of 2.0 to 8.0 kg/m2 in order to improve the rolling speed of the yarn, and it is given in the range of 0 to 40 times/m, preferably 10 to 25 times/m. In case of exceeding 40 times of being interlaced, even after dyeing and post-processing, the interlaced state is maintained and the appearance of the carpet is damaged. The yarn passed through the collator 10 is wound in the final winder 11.
  • The speed of the winder is preferably adjusted so that the tension of the yarn usually ranges from 50 to 350 g. At this time, if the tension is less than 50 g in the winder, the winding is impossible, and if it exceeds 350 g, the bulkiness is decreased and the contraction of the yarn is largely caused and the high tension is generated.
  • The above method relates to a BCF produced only from a polyethylene terephthalate resin, and the stepwise process is the same as that described above in the case of producing a dope-dyed yarn according to the carpet use. However, it is also possible to manufacture a dope-dyed yarn by feeding a certain amount of coloring agents into the base chip input amount in the supply of the raw material and spinning it.
  • On the other hand, when the carpet is produced using the polyethylene terephthalate BCF produced as described above, the BCF yarn itself needs to have physical properties against external force in order to improve the wear resistance of the carpet. In order to resist external forces, the tensile strength of the yarn should be high. Generally, the yarn with high tensile strength is also highly wear-resistant. However, the physical properties of the tensile strength that contributes to the abrasion resistance of the tufted carpet are not the tensile strength of the BCF yarn bundle but the tensile strength of each filament, i.e., the tensile strength of the monofilament. In general, the abrasion resistance analysis is carried out in a taber abrasion tester in accordance with ASTM D3384, in which the tensile strength of the monofilament is more important than the physical properties of the entire bundle, i.e., the multifilament, because each filament contacts the abrasive wheel.
  • The polyethylene terephthalate bulked continuous monofilament prepared according to the present invention may have a tensile strength of 4.0 to 6.0 g/d and an elongation percentage(strain) of 40 to 60%. Further, as shown in FIG. 2, the monofilament is preferably elongated by 5% or more at an initial stress of 1.0 g/d, elongated by 25 to 35% at a medium-term stress of 3.0 g/d, and it is preferable to have a stree-strain curve that elongates by 5% or more until the yarn is cut from the stress of 4.0 g/d. When the stress is in the above range, the abrasion resistance of the nylon level of the same weight can be secured.
  • The polyethylene terephthalate bulked continuous multifilament may be formed of aggregate of 50 to 300 monofilaments, more preferably 60 to 200 monofilaments.
  • As described above, the polyethylene terephthalate multifilament prepared according to the present invention is manufactured as a carpet for automobiles through a post-process. Carpets made from the BCF yarns of the present invention can be prepared in any manner known to those skilled in the art. FIG. 3 shows a specific example of a tufted carpet for automobiles according to the present invention. The carpet has a face yarn 12 supported by a first base foil 13. At this time, the first base foil 13 is referred to as a backing layer, and the layer formed of the face yarn 12 is referred to as a pile layer. The face yarn 12, which is the outermost layer where the consumer feels the visual sensation by the eye, is formed of BCF yarn. The first base foil 13 is made of polyester or polyolefin and preferably has a spunbond or fabric shape of 90 to 150 gsm. Also, the pile layer including the face yarn 12 preferably has a weight of 180 to 700 gsm. Adjacent to the first base foil 13 is a coating layer 14 that fixes the face yarn 12, which is a suitable material conventionally used in the art, such as latex or acrylic. Finally, the carpet is subjected to a secondary coating 15 to provide sound insulation or sound absorption performance in order to ensure quietness in the automobile. It is also possible to apply 300 to 5000 gsm of PE or EVA or to attach a sound-absorbing nonwoven fabric. When the carpet is produced using the polyethylene terephthalate BCF according to the present invention, the same appearance as that of nylon is exhibited even with the yarn weight of the same face yarn as that of the nylon tufted carpet, and the abrasion resistance according to the MS343-15 standard is not less than grade 3, and thus the abrasion resistance can be improved.
  • Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.
  • EXAMPLE 1
  • A slurry prepared by mixing 50 parts by weight of ethylene glycol with 100 parts by weight of terephthalic acid was added into an esterification reactor and pressurized at 250° C. for 4 hours under a pressure of 0.5 torr to allow water to flow out of the reactor and allow the esterification reaction to be performed, to thereby prepare (2-hydroxyethyl) terephthalate. At this time, 300 ppm of a phosphorus heat stabilizer was added at the end of the esterification reaction. After the esterification reaction, 300 ppm of the antimony catalyst was added as an polymerization catalyst at the beginning of the polycondensation reaction, the temperature was raised from 250° C. to 285° C. at 60° C./hr, and the pressure was reduced to 0.5 torr. Solid phase polymerization is carried out to increase the viscosity of the liquid polymer. During the process of solid phase polymerization in general, the batch solid phase polymerizer is used to dry for 4 hours at 140° C. under vacuum condition. The temperature is raised from 235° C. to 245° C. for 4 hours to 6 hours until reaching the final target viscosity.
  • The polyethylene terephthalate polymer produced through the spinneret having 128 holes and a Y-shaped cross-section is melt-spun at 290° C. The polymer exiting the spinneret is cooled by cooling air at 20° C. at the bottom of the nozzle at 0.5 m/s, and then passes through the emulsion feeder. The yarn to which the emulsion has been applied passes through a feed roller maintained at a temperature of 90° C. at a speed of 598 m/min and then stretched at a rate of 2,840 m/min at 190° C. on the stretching roller. The yarn passed through the stretching roller passes the texturing nozzle and is given a crimp. At this time, the hot air temperature is 200° C., the pressure is 7 kg/cm2, and the back pressure is 5 kg/cm2. Thereafter, the yarn was cooled at the outlet of the texturing nozzle, and relaxed by about 21% after passing the relax roller at 2250 m/min After being interlaced 20 times/m at a pressure of 4.0 kg/m2, it is wound in a winding machine.
  • The polyethylene terephthalate bulky continuous filament thus prepared was used to prepare a carpet.
  • EXAMPLES 2 TO 3 AND COMPARATIVE EXAMPLE 1
  • Polyethylene terephthalate BCF yarn and carpet were prepared through the same procedure as in Example 1, except that the molecular weight of the polymer and the content of the low molecular weight substance were adjusted as shown in Table 1 below.
  • EXPERIMENTAL EXAMPLE
  • 1) Strength and Elongation of Monofilament
  • Ten monofilaments were extracted from a yarn (multifilament) which was left alone for 24 hours at a temperature of 25° C. and a relative humidity of 65RH %. By using a monofilament tensile tester Vibrojet 2000 manufactured by Lenzing Co., a load (approximately, mono-denier×60 (mg)) stipulated per denier was applied in the Vibrojet, and it was then measured at a sample length of 20 mm and a tensile speed of 20 mm/min. The monofilament properties were measured with the average value of the remaining eight values, excluding the maximum value and the minimum value among the ten measured values. The initial modulus represents the slope of the graph before the yield point.
  • 2) Wear Resistance of Carpet
  • Abrasion resistance of carpet was evaluated as follows, and the results are shown in Table 1 below.
  • Related test method Specification: ASTM D3884
  • Test method: Hyundai Motor MS300-35
  • Test equipment: Taber abrasion tester
  • Sample size: 130 mm diameter Circular sample
  • Exam conditions
      • Wear wheel: H-18
      • Rotation speed: 70 times/minute
      • Load: 1000 g
      • Number of revolutions 1000
      • Evaluation method: Appearance evaluation 1st to 5th grade (Passed grade 3 or higher (3, 4, 5 grade) of MS343-15 of Hyundai Motor Company)
      • Evaluation criteria: Grade 5: No abrasion; Grade 4: Abrasion is slightly visible or almost invisible; Grade 3: Abrasion is visible; Grade 2: Abrasion is slightly severe; Grade 1: Abrasion is fairly severe
  • 3) Content of Low Molecular Substances
  • High-performance liquid chromatography (HPLC) was used to analyze the content of low molecular weight materials in PET polymer and filament. At this time, as a pretreatment, a sample of about 0.1 g was dissolved in 5 ml of HFIP(Hexafluoro-2-propanol)/CH2Cl2=1/3 (v/v) and re-precipitated with 10 ml of acetonitrile and then injected into UPLC. The conditions for detailed HPLC analysis are as follows.
      • Equipment used: Waters UPLC
      • Column: X-bridge C18 5 μm (4.6*250 mm)
      • Eluent: A/B=90/10→A/B=0/100→A/B=90/10, A: 0.3% H3PO4, B: CH3CN
      • Flow rate: 1.0 ml/min (5.0 μL Inj, Runtime: 40 min)
      • Detection: UV Detector at 242 nm
  • TABLE 1
    Polymer Monofilament
    Low Low
    Weight molecular molecular
    average weight weight Carpet
    molecular content Strength Elongation Elongation at Elongation at content Weight Abrasion
    weight (wt %) (g/d) (%) 1.0 g/d (%) 3.0 g/d (%) (wt %) (g/m2) (Grade)
    Example 1 55000 0.56 4.4 48 9.2 28.9 0.91 305 3
    Example 2 60000 0.43 4.6 50 10.9 28.8 0.85 305 3
    Example 3 65000 0.38 5.1 52 10.5 30 0.76 305 3
    Comparative 40000 1.1 3.4 41 4.5 33.2 1.4 305 2
    example 1
  • As shown in Table 1, in the case of the embodiment, as the content of the low-molecular substances in the polymer and the filament is 1.0 wt % or less and 1.3 wt % or less, the produced monofilaments constituting the polyethylene terephthalate BCF has a strength of 4.0 to 6.0 g/d and elongation of 40 to 60%, and the tensile strength and elongation are improved by having the stress-strain curve as described above. As the tensile strength and elongation of the monofilament are improved, the physical properties against external force are improved and the wear resistance of the carpet is also improved.
  • While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
  • Accordingly, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.
  • Description of Symbols
  •  1: spinneret  2: filament
     3: cooling zone  4: finishing applicator
     5: feed roller  6: stretching roller
     7: texturing unit  8: Cooling Drum
     9: relax roller 10: collator
    11: final winder 12: face yarn(BCF)
    13: first base foil 14: coating layer
    15: second coating layer

Claims (6)

1. A tufted carpet for automobiles, the turfed carpet comprising:
a pile layer including a polyethylene terephthalate bulked processing continuous filament (BCF) prepared by melt spinning a polyethylene terephthalate (PET) polymer; and
at least one backing layer,
wherein a monofilament of the BCF has elongation of 5% or more at an initial stress of 1.0 g/d, elongation of 25 to 35% at a medium-term stress of 3.0 g/d, tensile strength of 0.0 to 6.0 g/d, and elongation of 40 to 60%.
2. The tufted carpet of claim 1, wherein a content of a low molecular substance of 3 to 7 oligomers, which has not formed a polymer in the polyethylene terephthalate polymer, is 1.0 wt % or less, and a content of the low molecular substance in the filament is 1.3 wt % or less.
3. The tufted carpet of claim 1, wherein the polyethylene terephthalate polymer has a weight average molecular weight of 50,000 to 70,000.
4. The tufted carpet of claim 1, wherein the continuous filament is formed of multifilaments of 50 to 300 aggregates of monofilaments.
5. The tufted carpet of claim 1, wherein a total fineness of the bulked processing continuous filament is 700 to 1500 denier.
6. The tufted carpet of claim 1, wherein a wear resistance level according to MS343-15 standard is grade 3 or more.
US16/304,278 2018-09-04 2018-11-24 Tufted carpet including polyethyleneterephthalate bulked continuous filament Pending US20200071853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180105076A KR101989529B1 (en) 2018-09-04 2018-09-04 Tufted carpet including polyethyleneterephthalate bulked continuous filament
KR10-2018-0105076 2018-09-04

Publications (1)

Publication Number Publication Date
US20200071853A1 true US20200071853A1 (en) 2020-03-05

Family

ID=66846404

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/304,278 Pending US20200071853A1 (en) 2018-09-04 2018-11-24 Tufted carpet including polyethyleneterephthalate bulked continuous filament

Country Status (6)

Country Link
US (1) US20200071853A1 (en)
EP (1) EP3848493A4 (en)
JP (1) JP6967533B2 (en)
KR (1) KR101989529B1 (en)
MX (1) MX2018015774A (en)
WO (1) WO2020050450A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101989529B1 (en) 2018-09-04 2019-06-14 효성첨단소재 주식회사 Tufted carpet including polyethyleneterephthalate bulked continuous filament

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433806A1 (en) 2002-12-03 2004-06-30 Nan Ya Plastics Corp. Method for decreasing the cyclic oligomer content in polyester product
JP2005054310A (en) * 2003-08-04 2005-03-03 Unitika Ltd Tufted carpet of primary ground fabric for forming and tufted carpet for forming
KR100663254B1 (en) * 2006-02-23 2007-01-02 주식회사 효성 Process for preparing polyethylene terephthalate bulky continuous filament for carpet
KR100687032B1 (en) * 2006-04-14 2007-02-26 주식회사 효성 3-dimension crimp polyethyleneterephthalate multifilament for carpet
JP2007303012A (en) * 2006-05-10 2007-11-22 Toray Ind Inc Ground fabric for tufted carpet and tufted carpet using the ground fabric
KR100939023B1 (en) * 2007-11-13 2010-01-27 주식회사 효성 Flat finished yarn of polyester
KR100939022B1 (en) * 2007-11-13 2010-01-27 주식회사 효성 Flat fiber of polyester
ES2467340T3 (en) * 2009-05-18 2014-06-12 Autoneum Management Ag Carpets of inserted hair for automotive applications
KR101928866B1 (en) 2017-01-20 2018-12-14 효성첨단소재 주식회사 Method of manufacturing polyethyleneterephthalate yarn and carmat
KR101968986B1 (en) * 2017-01-20 2019-04-16 효성첨단소재 주식회사 BCF containing polyethyleneterephthalate copolymer
KR101989521B1 (en) * 2018-08-09 2019-06-14 효성첨단소재 주식회사 Tufted carpet including polyethyleneterephthalate bulked continuous filament
KR101989529B1 (en) 2018-09-04 2019-06-14 효성첨단소재 주식회사 Tufted carpet including polyethyleneterephthalate bulked continuous filament

Also Published As

Publication number Publication date
EP3848493A4 (en) 2021-11-03
EP3848493A1 (en) 2021-07-14
JP2020534445A (en) 2020-11-26
JP6967533B2 (en) 2021-11-17
MX2018015774A (en) 2020-10-28
WO2020050450A1 (en) 2020-03-12
KR101989529B1 (en) 2019-06-14

Similar Documents

Publication Publication Date Title
EP3011086B1 (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
TW577945B (en) Hetero-composite-composite yarn, fabrics thereof and methods of making
US6761970B2 (en) Poly(lactic acid) fiber
US20090068463A1 (en) Crimped Yarn, Method for Manufacture thereof, and Fiber Structure
US20200086779A1 (en) Tufted carpet including polyethyleneterephthalate bulked continuous filament
US6673443B2 (en) Polyester conjugate fiber pirn and method for producing same
JP2006336125A (en) Bulky sheath-core conjugated filaments and method for producing the same
US20200071853A1 (en) Tufted carpet including polyethyleneterephthalate bulked continuous filament
CN109563646B (en) Tufted carpet comprising bulked continuous polyethylene terephthalate filaments
US6572967B1 (en) Poly(trimethylene terephthalate) multifilament yarn
JP5964437B2 (en) Poly (trimethylene arylate) fiber, method for making the same, and fabric made therefrom
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
JP2020037758A (en) Polyethylene terephthalate bulky continuous filament and vehicle tufted carpet containing the same
JP2014526621A (en) Poly (trimethylene arylate) fiber, method for making the same, and fabric made therefrom
JP4298675B2 (en) Polytrimethylene terephthalate multifilament yarn
JP4784201B2 (en) Crimp yarns and carpets for carpets
JP4785136B2 (en) Multifilament fiber excellent in anti-snacking property and fabric using the same
KR20200027872A (en) Tufted carpet including polyethyleneterephthalate bulked continuous filament
JP2000211816A (en) Ultra-thin multi-filament package of polyester

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYOSUNG ADVANCED MATERIALS CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWON, YONG CHUL;OH, SEUNG TAEK;REEL/FRAME:047576/0073

Effective date: 20181122