US20200003020A1 - Extended reach tool - Google Patents

Extended reach tool Download PDF

Info

Publication number
US20200003020A1
US20200003020A1 US16/566,447 US201916566447A US2020003020A1 US 20200003020 A1 US20200003020 A1 US 20200003020A1 US 201916566447 A US201916566447 A US 201916566447A US 2020003020 A1 US2020003020 A1 US 2020003020A1
Authority
US
United States
Prior art keywords
chamber
expansion chamber
constricted
extended reach
reach tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/566,447
Inventor
Robert Kletzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coil Solutions Inc USA
Original Assignee
Coil Solutions Inc USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coil Solutions Inc USA filed Critical Coil Solutions Inc USA
Priority to US16/566,447 priority Critical patent/US20200003020A1/en
Assigned to COIL SOLUTIONS, INC. reassignment COIL SOLUTIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLETZEL, ROBERT
Publication of US20200003020A1 publication Critical patent/US20200003020A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B31/00Fishing for or freeing objects in boreholes or wells
    • E21B31/005Fishing for or freeing objects in boreholes or wells using vibrating or oscillating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production

Definitions

  • the disclosure relates generally to apparatus and methods for creating a vibration within a wellbore.
  • the disclosure relates specifically to a vibrating downhole tool configured to vibrate equipment located within a wellbore.
  • vibrator devices have been employed with pipe strings in order to provide vibration. Some such vibrator devices typically employ reciprocating impact elements that move back and forth along the axis of the pipe string to induce vibration in the pipe string. Other such vibrator devices employ the use of eccentrically weighted rotating masses, eccentric shafts or rods, or rotatable impact elements that rotate about the longitudinal axis of the drill or pipe string to strike an impact anvil in order to apply a rotational or torsional vibration to the pipe string.
  • Moineau power sections that are generally used in downhole mud motors or pumps.
  • Moineau power sections typically utilize rubber or rubber-like elastomers as seals which are negatively affected by elevated wellbore temperatures and pressures, certain drilling fluids and or chemicals, and contaminants or debris in the wellbore or drilling fluids.
  • Two fluidic oscillators are achieved by employing wedge-shaped splitters to route the flow of a fluid down diverging diffuser legs.
  • the oscillators connect to a source of fluid flow, provide a mechanism for oscillating the fluid flow between two different locations within the oscillator, and emit fluid pulses downstream of the source of the fluid flow.
  • a feedback passageway from each leg is routed back to the flow path upstream of the splitter to create a condition establishing oscillating flow through the legs.
  • a passageway between the legs downstream of the upstream end of the splitter creates a condition establishing oscillating flow through the legs.
  • a disadvantage of this kind of oscillator is that the diverging diffuser legs required to establish oscillation are expensive to fabricate and prone to clogging from debris in the fluid because of the relative incline between the leg and the axial of the pipe string.
  • the present invention is directed to a helix oscillating delivery system that creates an erratic helical pulsating stream within a circular cylindrical structure.
  • the helix oscillating delivery system connects to a source of fluid flow at its upper end and has a plurality of separate flow paths that are constricted and expanded repeatedly.
  • the erratic helical pulsating stream is caused by the flow paths and strengthened by an expansion chamber.
  • the helix oscillating delivery system comprises two or more separate flow paths.
  • Each of the flow paths has multiple hollow chambers connected in series.
  • Each of the hollow chambers comprises a first constricted chamber 6 with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, a second constricted chamber with an upper end connected to the lower end of the first expansion chamber; a separate second expansion chamber connected to the lower ends of a plurality of the second constricted chambers; and a single port located adjacent to the lower end of the second expansion chamber.
  • the cross-section area of the first constricted chamber is smaller than that of the first expansion chamber and the cross-section area of the first expansion chamber is larger than that of the second constricted chamber.
  • the cross-section area of the second expansion chamber gradually decreases from a top end to a bottom end of the second expansion chamber.
  • the shape of the cross-section of the second expansion chamber is circular, and the longitudinal section of the second expansion chamber is a trapezoidal section with a large top base and a small bottom base.
  • the invention is directed to an extended reach tool.
  • the tool comprises two or more separate flow paths.
  • Each of the flow paths has multiple hollow chambers connected in series.
  • Each of the hollow chambers comprises a first constricted chamber with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, a second constricted chamber with the upper end connected to the lower end of the first expansion chamber; a separate second expansion chamber connected to the lower ends of a plurality of the second constricted chambers; and a single port located adjacent to the lower end of the second expansion chamber.
  • the extended reach tool can be attached to a tubing or motor on a top side of the extended reach tool and attached to a bottom hole assembly on a bottom end of the extended reach tool.
  • the extended reach tool comprises a thread pin adapted to engage a threaded box of a tubing or motor, and a threaded box end to receive male threaded pin end of a bottom hole assembly.
  • the invention is direct to a method of delivering an erratic helical pulsating jet stream within an extended reach tool connected to a drill string pipe/coil tubing or a bottom hole assembly.
  • the tool receives fluid from the drill string pipe or coil tubing into a hollow interior of the tool, wherein the fluid is separated into two or more separate flow paths.
  • the fluid is repeatedly compressed and expanded, which will create a pulsating flow with erratic helical flow, and the pulsating flow passes out of the tool through ports in the tool to create pulsing and erratic helical jets of fluid.
  • the erratic, helically pulsating jets of fluid will cause the extended reach tool to vibrate and pulsate a bottom hole assembly and coil tubing/tubing to release friction around them so as to move the bottom hole assembly freely downhole and up hole.
  • the fluid is separated into two separate paths.
  • FIG. 1 a is a transparent perspective view of an extended reach tool in accord with one possible embodiment of the present invention
  • FIG. 1 b is a cross-sectional view of the extended reach tool in FIG. 1 a in accord with one possible embodiment of the present invention
  • FIG. 2 is a view to show the fluid flowing in chambers of a flow path in a helix oscillating delivery system.
  • the present invention pertains to a helix oscillating delivery system that creates a pulsating flow within a circular cylindrical structure.
  • the helix oscillating delivery system connects to a source of fluid flow at its upper end and has a plurality of separate flow paths that are constricted and expanded repeatedly. The flow paths enter into an expanded area and the expanded area connects to a single port on its lower end.
  • the helix oscillating delivery system comprises two or more separate flow paths 5 , each of the flow paths 5 has multiple hollow chambers connected in series.
  • a flow path has a first constricted chamber 6 with a fluid entry, a first expansion chamber 7 is located adjacent to a lower end of the first constricted chamber 6 .
  • the chambers 6 , 7 , and 8 are columnar hollow structures and the shapes of the cross-section of the chambers are arbitrary. In some embodiments, the cross-sectional shapes can be rectangular, squares, triangular, rhomboid, and ellipse. In a preferred embodiment, the shapes of the cross-section of the chambers are circular in order to reduce the effects of resistance and drag applied to the fluid flow in the chambers.
  • FIG. 2 illustrate fluid flowing in chambers 6 , 7 and 8 which are connected in series. The arrows indicate the direction of the movement of the fluid.
  • chamber 6 , 7 and 8 are of cylinder shapes and have inner diameters d 1 , D and d 2 respectively, where d 1 ⁇ D and D>d 2 .
  • the fluid is compressed in chamber 6 because of the restriction in flow and decrease in diameter, and the velocity of the fluid will increase.
  • the shape of the cross-section of the expanded chamber 9 can be rectangles, squares, triangles, rhomboid, ellipse.
  • the cross-section area of the expanded chamber 9 gradually decreases from a top end to a bottom end of it.
  • the shape of the cross-section of the expanded chamber 9 is circular, the longitudinal section of the expanded chamber 9 is a trapezoidal section with a large top base and a small bottom base.
  • the erratic helical flow further amplifies the pulsation of the pulsing flow in the expanded chamber 9 . Then the pulsing flow is deflected and forced into the single port 10 .
  • the single port 10 can be a hollow cylinder or a conical structure with an up-narrow and down-wide configuration to form a flow path for the erratic helical pulsating stream.
  • the helix oscillating delivery system can be used in a downhole system to provide pulsation. In one embodiment, it can be used as an extended reach tool to prevent stick-slip incidences with coil tubing or lock-up of jointed pipe between cased hole/open hole, and with tubing or coil tubing while milling, drilling or performing service work.
  • the extended reach tool can be used to vibrate and pulsate coil tubing/tubing and milling, drilling, or service work bottom hole assemblies to eliminate friction of the coil tubing or tubing in cased hole or open hole, so as to allow the bottom hole assembly to reach the depth in the cased hole or open hole well to complete the desired milling, drilling, or service job.
  • the extended reach tool 10 will be attached to a tubing or motor (not shown) on top side 2 and attached to a bottom hole assembly (not shown) on the bottom end 3 .
  • the extended reach tool 10 can be used on any size tubing.
  • the top side 2 may have a male threaded box adapted to receive a female threaded pin of the tubing
  • the bottom end 3 may comprise a female threaded pin end to engage a male threaded box end of the bottom hole assembly.
  • Fluid flow 4 enters from the top side 2 into the extended reach tool 10 .
  • the entry of the flow into the tool can be through an inclusive box or pin of said tool or a crossover that can be attached to the tool.
  • the tool is provided internally with two or more separate flow paths 5 , each of the flow paths 5 has multiple hollow chamber connected in series.
  • a flow path 5 has a first constricted chamber 6 with a fluid entry, a first expansion chamber 7 is located adjacent to a lower end of the first constricted chamber 6 .
  • An upper end of the second constricted chamber 8 is connected to a lower end of the first expansion chamber 7 .
  • Fluid flow 4 is alternatingly constricted in chamber 6 , then expanded in chamber 7 and then constricted in chamber 8 to cause itself to pulsate in a flow pattern with erratic helical flow.
  • the flow paths are all arranged in a case 12 .
  • the flow 4 from the chamber 8 enters into the second expansion chamber 9 and is forced into the single port 10 which can be part of the tool or an add on, extending through the extended reach tool 10 on a lower end for delivering erratic helically pulsating jets of fluid out of the tool.
  • the erratic helically pulsating jets of fluid will cause the extended reach tool 10 to vibrate and pulsate the bottom hole assembly and coil tubing/tubing to release friction around them to move the bottom hole assembly freely downhole and up hole.
  • Yet another aspect of the current invention is a method of delivering an erratic helical pulsating jet stream within an extended reach tool connected to a drill string pipe/coil tubing or a bottom hole assembly, so that the tool receives fluid from the drill string pipe or coil tubing into a hollow interior of the tool, wherein the fluid is separated into two or more separate flow paths, causing the fluid to be repeatedly compressed and expanded which in turn will create a pulsating flow with erratic helical flow, and causing the pulsating flow to pass out of the tool through ports in the tool to create pulsing and erratic helical jets of fluid.
  • the erratic helically pulsating jets of fluid will cause the extended reach tool to vibrate and pulsate a bottom hole assembly and coil tubing/tubing to release friction around them to move the bottom hole assembly freely downhole and up hole.
  • the extended reach tool 10 is provided internally with two or more separate flow paths that are repeatedly compressed and expanded to cause the fluid to pulsate in an erratic helical flow pattern, and a single port extending through the extended reach tool 10 that is deflected back to one flow path on a lower end of the tool for delivering erratic helical pulsating jets of fluid out of the tool.
  • the erratic helically pulsating jets of fluid will cause the tool to vibrate and pulsate the bottom hole assembly and coil tubing/tubing.
  • compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the disclosure. More specifically, it will be apparent that certain agents which are both chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Earth Drilling (AREA)

Abstract

An extended reach tool includes two or more separate flow paths, wherein each of the flow paths has multiple hollow chambers connected in series. Each of the hollow chambers includes a first constricted chamber with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, and a second constricted chamber with the upper end of connected to the lower end of the first expansion chamber. A separate second expansion chamber is connected to the lower end of a plurality of the second constricted chambers. A single port is located adjacent to the lower end of the second expansion chamber.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. Non-provisional patent application Ser. No. 15/970,691 entitled Extended Reach Tool filed May 3, 2018, which claims the benefit of U. S. Provisional Patent Application No. 62/500,870 entitled Extended Reach Tool filed on May 3, 2017, each of which are specifically incorporated by reference in its entirety herein.
  • FIELD
  • The disclosure relates generally to apparatus and methods for creating a vibration within a wellbore. The disclosure relates specifically to a vibrating downhole tool configured to vibrate equipment located within a wellbore.
  • BACKGROUND
  • In the drilling of oil and gas wells as well as other downhole activities, it is common to use a downhole system which provides a percussive or hammer effect to the drill string to increase drilling rate. For example, in the process of drilling a wellbore, frictional forces acting against the drill pipe or other component running through the wellbore limit the maximum length or depth to which the wellbore may be drilled. Solutions of this problem include mechanisms for vibrating the drill pipe during drilling in order to convert static frictional forces on the drill pipe to dynamic frictional forces between the drill pipe and the wall of the wellbore.
  • Various types of vibrator devices have been employed with pipe strings in order to provide vibration. Some such vibrator devices typically employ reciprocating impact elements that move back and forth along the axis of the pipe string to induce vibration in the pipe string. Other such vibrator devices employ the use of eccentrically weighted rotating masses, eccentric shafts or rods, or rotatable impact elements that rotate about the longitudinal axis of the drill or pipe string to strike an impact anvil in order to apply a rotational or torsional vibration to the pipe string.
  • Still other types of vibrator devices utilize Moineau power sections that are generally used in downhole mud motors or pumps. Moineau power sections typically utilize rubber or rubber-like elastomers as seals which are negatively affected by elevated wellbore temperatures and pressures, certain drilling fluids and or chemicals, and contaminants or debris in the wellbore or drilling fluids.
  • Apparatus utilizing one or both of these principles is described in U.S. Pat. No. 5,165,438 to David M. Facteau. Two fluidic oscillators are achieved by employing wedge-shaped splitters to route the flow of a fluid down diverging diffuser legs. The oscillators connect to a source of fluid flow, provide a mechanism for oscillating the fluid flow between two different locations within the oscillator, and emit fluid pulses downstream of the source of the fluid flow. In one vibrator, a feedback passageway from each leg is routed back to the flow path upstream of the splitter to create a condition establishing oscillating flow through the legs. In a second vibrator, a passageway between the legs downstream of the upstream end of the splitter creates a condition establishing oscillating flow through the legs. A disadvantage of this kind of oscillator is that the diverging diffuser legs required to establish oscillation are expensive to fabricate and prone to clogging from debris in the fluid because of the relative incline between the leg and the axial of the pipe string.
  • Consequently, there is a need to provide an even more effective fluid oscillator for down hole tools which is reliable, long-lived and economical.
  • SUMMARY
  • The present invention is directed to a helix oscillating delivery system that creates an erratic helical pulsating stream within a circular cylindrical structure. The helix oscillating delivery system connects to a source of fluid flow at its upper end and has a plurality of separate flow paths that are constricted and expanded repeatedly. The erratic helical pulsating stream is caused by the flow paths and strengthened by an expansion chamber.
  • In one embodiment, the helix oscillating delivery system comprises two or more separate flow paths. Each of the flow paths has multiple hollow chambers connected in series. Each of the hollow chambers comprises a first constricted chamber 6 with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, a second constricted chamber with an upper end connected to the lower end of the first expansion chamber; a separate second expansion chamber connected to the lower ends of a plurality of the second constricted chambers; and a single port located adjacent to the lower end of the second expansion chamber.
  • The cross-section area of the first constricted chamber is smaller than that of the first expansion chamber and the cross-section area of the first expansion chamber is larger than that of the second constricted chamber.
  • The cross-section area of the second expansion chamber gradually decreases from a top end to a bottom end of the second expansion chamber.
  • In a preferred embodiment, the shape of the cross-section of the second expansion chamber is circular, and the longitudinal section of the second expansion chamber is a trapezoidal section with a large top base and a small bottom base.
  • In another aspect, the invention is directed to an extended reach tool. The tool comprises two or more separate flow paths. Each of the flow paths has multiple hollow chambers connected in series. Each of the hollow chambers comprises a first constricted chamber with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, a second constricted chamber with the upper end connected to the lower end of the first expansion chamber; a separate second expansion chamber connected to the lower ends of a plurality of the second constricted chambers; and a single port located adjacent to the lower end of the second expansion chamber.
  • In one embodiment, the extended reach tool can be attached to a tubing or motor on a top side of the extended reach tool and attached to a bottom hole assembly on a bottom end of the extended reach tool.
  • In one embodiment, the extended reach tool comprises a thread pin adapted to engage a threaded box of a tubing or motor, and a threaded box end to receive male threaded pin end of a bottom hole assembly.
  • In another aspect, the invention is direct to a method of delivering an erratic helical pulsating jet stream within an extended reach tool connected to a drill string pipe/coil tubing or a bottom hole assembly. The tool receives fluid from the drill string pipe or coil tubing into a hollow interior of the tool, wherein the fluid is separated into two or more separate flow paths. The fluid is repeatedly compressed and expanded, which will create a pulsating flow with erratic helical flow, and the pulsating flow passes out of the tool through ports in the tool to create pulsing and erratic helical jets of fluid. The erratic, helically pulsating jets of fluid will cause the extended reach tool to vibrate and pulsate a bottom hole assembly and coil tubing/tubing to release friction around them so as to move the bottom hole assembly freely downhole and up hole.
  • In one embodiment, the fluid is separated into two separate paths.
  • The foregoing has outlined rather broadly the features of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter, which form the subject of the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order that the manner in which the above-recited and other enhancements and objects of the disclosure are obtained, a more particular description of the disclosure briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the disclosure and are therefore not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through the use of the accompanying drawings in which:
  • FIG. 1a is a transparent perspective view of an extended reach tool in accord with one possible embodiment of the present invention;
  • FIG. 1b is a cross-sectional view of the extended reach tool in FIG. 1a in accord with one possible embodiment of the present invention;
  • FIG. 2 is a view to show the fluid flowing in chambers of a flow path in a helix oscillating delivery system.
  • DETAILED DESCRIPTION
  • The particulars shown herein are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present disclosure only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of various embodiments of the disclosure. In this regard, no attempt is made to show structural details of the disclosure in more detail than is necessary for the fundamental understanding of the disclosure, the description taken with the drawings making apparent to those skilled in the art how the several forms of the disclosure may be embodied in practice.
  • The following definitions and explanations are meant and intended to be controlling in any future construction unless clearly and unambiguously modified in the following examples or when application of the meaning renders any construction meaningless or essentially meaningless. In cases where the construction of the term would render it meaningless or essentially meaningless, the definition should be taken from Webster's Dictionary 3rd Edition.
  • The present invention pertains to a helix oscillating delivery system that creates a pulsating flow within a circular cylindrical structure. The helix oscillating delivery system connects to a source of fluid flow at its upper end and has a plurality of separate flow paths that are constricted and expanded repeatedly. The flow paths enter into an expanded area and the expanded area connects to a single port on its lower end. Referring to FIG. 1, the helix oscillating delivery system comprises two or more separate flow paths 5, each of the flow paths 5 has multiple hollow chambers connected in series. For example, a flow path has a first constricted chamber 6 with a fluid entry, a first expansion chamber 7 is located adjacent to a lower end of the first constricted chamber 6. An upper end of the second constricted chamber 8 is connected to a lower end of the first expansion chamber 7. There is a separate second expansion chamber 9 connected to the lower ends of a plurality of the second constricted chambers 8 of the flow paths 5. Then a single port 10 is located adjacent to a lower end of the second expansion chamber 9. The chambers 6, 7, and 8 are columnar hollow structures and the shapes of the cross-section of the chambers are arbitrary. In some embodiments, the cross-sectional shapes can be rectangular, squares, triangular, rhomboid, and ellipse. In a preferred embodiment, the shapes of the cross-section of the chambers are circular in order to reduce the effects of resistance and drag applied to the fluid flow in the chambers.
  • The cross-section area of the first constricted chamber 6 is smaller than that of the first expansion chamber 7 and the cross-section area of the first expansion chamber 7 is larger than that of the second constricted chamber 8. FIG. 2 illustrate fluid flowing in chambers 6, 7 and 8 which are connected in series. The arrows indicate the direction of the movement of the fluid. In FIG. 2, chamber 6, 7 and 8 are of cylinder shapes and have inner diameters d1, D and d2 respectively, where d1<D and D>d2. The fluid is compressed in chamber 6 because of the restriction in flow and decrease in diameter, and the velocity of the fluid will increase. When the fluid enters into chamber 7, it will expand and the velocity of the fluid will decrease because of the increase in diameter of the chamber 7. Then when the fluid enters into chamber 8 from chamber 7, the fluid will be compressed and the velocity of it will increase, which will create a pulsing flow. The fluid near the section between chamber 6 and chamber 7 will be subject to high shear forces because of the density and viscosity of the fluid and the sudden expansion of the fluid. The shear forces cause vortex turbulence in the chamber 7. Similarly, shear forces near the section between chamber 7 and chamber 8 cause vortex turbulence in the chamber 7 because of the sudden contraction of the fluid. The vortex turbulence is propagated in the chamber 7, which induces an erratic helical flow. The erratic helical flow amplifies the pulsation of the pulsing flow.
  • In some embodiments, the shape of the cross-section of the expanded chamber 9 can be rectangles, squares, triangles, rhomboid, ellipse. The cross-section area of the expanded chamber 9 gradually decreases from a top end to a bottom end of it. In a preferred embodiment the shape of the cross-section of the expanded chamber 9 is circular, the longitudinal section of the expanded chamber 9 is a trapezoidal section with a large top base and a small bottom base. With this construction, the pulsing flows from a plurality of chambers 8 will expand and generate vortex turbulence which will interfuse with each other, such that the erratic helical flows from a plurality of chambers 8 will interfere with each other to generate stronger erratic helical flow. And at the same time, the fluid will be concentrated because of the gradually decreased cross-section area of the expanded chamber 9. The erratic helical flow further amplifies the pulsation of the pulsing flow in the expanded chamber 9. Then the pulsing flow is deflected and forced into the single port 10. The single port 10 can be a hollow cylinder or a conical structure with an up-narrow and down-wide configuration to form a flow path for the erratic helical pulsating stream.
  • As a result, a strong pulsating stream with erratic helical flow is developed in the helix oscillating delivery system without any external excitation, and no moving parts or valve arrangements are required to bring about a pulse flow.
  • The helix oscillating delivery system can be used in a downhole system to provide pulsation. In one embodiment, it can be used as an extended reach tool to prevent stick-slip incidences with coil tubing or lock-up of jointed pipe between cased hole/open hole, and with tubing or coil tubing while milling, drilling or performing service work.
  • The extended reach tool can be used to vibrate and pulsate coil tubing/tubing and milling, drilling, or service work bottom hole assemblies to eliminate friction of the coil tubing or tubing in cased hole or open hole, so as to allow the bottom hole assembly to reach the depth in the cased hole or open hole well to complete the desired milling, drilling, or service job.
  • Referring back to FIG. 1, the extended reach tool 10 will be attached to a tubing or motor (not shown) on top side 2 and attached to a bottom hole assembly (not shown) on the bottom end 3. The extended reach tool 10 can be used on any size tubing. The top side 2 may have a male threaded box adapted to receive a female threaded pin of the tubing, and the bottom end 3 may comprise a female threaded pin end to engage a male threaded box end of the bottom hole assembly.
  • Fluid flow 4 enters from the top side 2 into the extended reach tool 10. The entry of the flow into the tool can be through an inclusive box or pin of said tool or a crossover that can be attached to the tool. The tool is provided internally with two or more separate flow paths 5, each of the flow paths 5 has multiple hollow chamber connected in series. A flow path 5 has a first constricted chamber 6 with a fluid entry, a first expansion chamber 7 is located adjacent to a lower end of the first constricted chamber 6. An upper end of the second constricted chamber 8 is connected to a lower end of the first expansion chamber 7. Fluid flow 4 is alternatingly constricted in chamber 6, then expanded in chamber 7 and then constricted in chamber 8 to cause itself to pulsate in a flow pattern with erratic helical flow. The flow paths are all arranged in a case 12. The flow 4 from the chamber 8 enters into the second expansion chamber 9 and is forced into the single port 10 which can be part of the tool or an add on, extending through the extended reach tool 10 on a lower end for delivering erratic helically pulsating jets of fluid out of the tool. The erratic helically pulsating jets of fluid will cause the extended reach tool 10 to vibrate and pulsate the bottom hole assembly and coil tubing/tubing to release friction around them to move the bottom hole assembly freely downhole and up hole.
  • Yet another aspect of the current invention is a method of delivering an erratic helical pulsating jet stream within an extended reach tool connected to a drill string pipe/coil tubing or a bottom hole assembly, so that the tool receives fluid from the drill string pipe or coil tubing into a hollow interior of the tool, wherein the fluid is separated into two or more separate flow paths, causing the fluid to be repeatedly compressed and expanded which in turn will create a pulsating flow with erratic helical flow, and causing the pulsating flow to pass out of the tool through ports in the tool to create pulsing and erratic helical jets of fluid. The erratic helically pulsating jets of fluid will cause the extended reach tool to vibrate and pulsate a bottom hole assembly and coil tubing/tubing to release friction around them to move the bottom hole assembly freely downhole and up hole.
  • Referring back to FIG. 1, the extended reach tool 10 is provided internally with two or more separate flow paths that are repeatedly compressed and expanded to cause the fluid to pulsate in an erratic helical flow pattern, and a single port extending through the extended reach tool 10 that is deflected back to one flow path on a lower end of the tool for delivering erratic helical pulsating jets of fluid out of the tool. The erratic helically pulsating jets of fluid will cause the tool to vibrate and pulsate the bottom hole assembly and coil tubing/tubing.
  • All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the disclosure. More specifically, it will be apparent that certain agents which are both chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.

Claims (15)

What is claimed is:
1. An extended reach tool configured to be coupled to at least one of a bottom hole assembly, a tubing, and of a motor, the extended reach tool comprising:
at least two separate flow paths extending through the extended reach tool, wherein each flow path of the at least two separate flow paths includes:
a first constricted chamber with an upper end and a lower end spaced apart from the upper end of the first constricted chamber, the first constricted chamber including a first constricted chamber diameter;
a first expansion chamber with an upper end and a lower end spaced apart from the upper end of the first expansion chamber, the first expansion chamber including a first expansion chamber diameter, wherein the first expansion chamber diameter is greater than the first constricted chamber diameter;
a second constricted chamber with an upper end and a lower end spaced apart from the upper end of the second constricted chamber, the second constricted chamber including a second constricted chamber diameter, wherein the first expansion chamber diameter is greater than the second constricted chamber diameter; and,
a second expansion chamber with a top end and a bottom end spaced apart from the top end, wherein the top end of the second expansion chamber is fluidly coupled to the lower end of the second constricted chamber of each of the at least two separate flow paths.
2. The extended reach tool of claim 1, further comprising a single port located proximate to the bottom end of the second expansion chamber.
3. The extended reach tool of claim 1, wherein the single port is one of a) a hollow-cylinder and b) a hollow-conical structure with a first width proximate the second expansion chamber and a second width spaced apart from the first width, wherein the first width is smaller than the second width.
4. The extended reach tool of claim 1, further comprising at least one of a) a top side with a threaded box configured to receive a threaded pin of the bottom hole assembly and b) a bottom end with a threaded pin wherein the threaded pin is configured to be received in a threaded box of one of the tubing and the motor.
5. The extended reach tool of claim 1, wherein each of the at least two separate flow paths are configured such that when a fluid flows through the extended reach tool the fluid flows sequentially through the first constricted chamber, the first expansion chamber, the second constricted chamber, and the second expansion chamber.
6. The extended reach tool of claim 1, wherein the first constricted chamber and the first expansion chamber are configured such that when a fluid flows through the extended reach tool the fluid flow becomes turbulent upon entering the first expansion chamber from the first constricted chamber.
7. The extended reach tool of claim 1, wherein the first expansion chamber and the second constricted chamber are configured such that when a fluid flows through the extended reach tool a portion of the fluid flow within the first expansion chamber becomes turbulent as another portion of the fluid flow exits the first expansion chamber and enters the second constricted chamber.
8. The extended reach tool of claim 1, wherein the first constricted chamber, the first expansion chamber, and the second constricted chamber are configured such that when a fluid flows through the extended reach tool a portion of the fluid within the first expansion chamber becomes turbulent and propagates through the first expansion chamber.
9. The extended reach tool of claim 1, wherein a cross-section of at least one of the first constricted chamber, the first expansion chamber, and the second constricted chamber of at least one of the at least two separate flow paths, and the second expansion chamber is one of a columnar hollow shape, a rectangular shape, a square shape, a triangular shape, a rhomboidal shape, an elliptical shape, and a circular shape.
10. The extended reach tool of claim 1, wherein a cross-sectional area of the second expansion chamber decreases from the top end to the bottom end of the second expansion chamber.
11. The extended reach tool of claim 1, wherein a longitudinal section of the second expansion chamber is a trapezoidal section.
12. The extended reach tool of claim 11, wherein the trapezoidal section includes a top base proximate the top of the second expansion chamber and a bottom base proximate the bottom of the second expansion chamber, wherein the top base is longer than the bottom base.
13. The extended reach tool of claim 1, wherein the second expansion chamber and each second constricted chamber of the at least two flow paths are configured such that when a fluid flows through the extended reach tool a portion of the fluid flow within each of second constricted chamber enters the second expansion chamber, thereby causing the flow of fluid to become turbulent within the second expansion chamber and amplify a pulsation of the fluid flowing through the second expansion chamber.
14. A method of delivering a pulsing fluid, comprising:
positioning the extended reach tool of claim 1 in a well bore;
providing a fluid to the extended reach tool;
separating the fluid into the at least two separate flow paths in the extended reach tool.
15. A drill string comprising:
at least one of a tubing and a motor;
a bottom hole assembly; and,
the extended reach tool of claim 1.
US16/566,447 2017-05-03 2019-09-10 Extended reach tool Abandoned US20200003020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/566,447 US20200003020A1 (en) 2017-05-03 2019-09-10 Extended reach tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762500870P 2017-05-03 2017-05-03
US15/970,691 US10502014B2 (en) 2017-05-03 2018-05-03 Extended reach tool
US16/566,447 US20200003020A1 (en) 2017-05-03 2019-09-10 Extended reach tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/970,691 Continuation US10502014B2 (en) 2017-05-03 2018-05-03 Extended reach tool

Publications (1)

Publication Number Publication Date
US20200003020A1 true US20200003020A1 (en) 2020-01-02

Family

ID=64014533

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/970,691 Active US10502014B2 (en) 2017-05-03 2018-05-03 Extended reach tool
US16/566,447 Abandoned US20200003020A1 (en) 2017-05-03 2019-09-10 Extended reach tool

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/970,691 Active US10502014B2 (en) 2017-05-03 2018-05-03 Extended reach tool

Country Status (2)

Country Link
US (2) US10502014B2 (en)
WO (1) WO2018204655A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204655A1 (en) * 2017-05-03 2018-11-08 Coil Solutions, Inc. Extended reach tool
US11624240B2 (en) * 2020-08-25 2023-04-11 Saudi Arabian Oil Company Fluidic pulse activated agitator

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US137881A (en) 1873-04-15 Improvement in hose-pipe nozzles
US4012061A (en) * 1974-12-23 1977-03-15 Smith International, Inc. Dual conduit drill stem member
US4067596A (en) * 1976-08-25 1978-01-10 Smith International, Inc. Dual flow passage drill stem
CA1217759A (en) * 1983-07-08 1987-02-10 Intech Oil Tools Ltd. Drilling equipment
US4633958A (en) 1985-02-04 1987-01-06 Mouton David E Downhole fluid supercharger
US4852800A (en) * 1985-06-17 1989-08-01 Flow Systems, Inc. Method and apparatus for stablizing flow to sharp edges orifices
US4667750A (en) * 1985-07-24 1987-05-26 Gas Research Institute Vibratory earth penetrator with synchronized air lance control
ZA872710B (en) * 1986-04-18 1987-10-05 Wade Oakes Dickinson Ben Iii Hydraulic drilling apparatus and method
FR2655372A1 (en) * 1989-12-01 1991-06-07 Total Petroles SYSTEM FOR IRRIGATION OF A ROTARY TOOL, IN PARTICULAR A DRILLING TOOL, USING A FLUID DISPENSED BY A FLUIDIC OSCILLATOR
CA2035702C (en) * 1991-02-05 1996-10-01 Mohan Vijay Ultrasonically generated cavitating or interrupted jet
RU2081292C1 (en) * 1991-10-15 1997-06-10 Палс Nozzle for self-excited oscillations of drilling mud and drilling tool with this nozzle
US5228508A (en) * 1992-05-26 1993-07-20 Facteau David M Perforation cleaning tools
US5732885A (en) * 1994-10-07 1998-03-31 Spraying Systems Co. Internal mix air atomizing spray nozzle
JP3478914B2 (en) 1995-10-20 2003-12-15 株式会社日立製作所 Fluid injection nozzle and stress improvement processing method using the nozzle
DK0901562T3 (en) 1996-05-18 2005-01-17 Andergauge Ltd Borehole Device
GB2324818B (en) 1997-05-02 1999-07-14 Sofitech Nv Jetting tool for well cleaning
US6039117A (en) 1997-06-11 2000-03-21 Mobil Oil Corporation Downhole wash tool
US6029746A (en) 1997-07-22 2000-02-29 Vortech, Inc. Self-excited jet stimulation tool for cleaning and stimulating wells
US6470980B1 (en) 1997-07-22 2002-10-29 Rex A. Dodd Self-excited drill bit sub
GB2335213B (en) 1998-03-09 2000-09-13 Sofitech Nv Nozzle arrangement for well cleaning apparatus
JP2003307931A (en) 2002-04-17 2003-10-31 Canon Inc Process cartridge and electrophotographic image forming apparatus
KR100493384B1 (en) 2002-11-07 2005-06-07 엘지.필립스 엘시디 주식회사 structure for loading of substrate in substrate bonding device for manucturing a liquid crystal display device
US7011158B2 (en) * 2003-09-05 2006-03-14 Jerry Wayne Noles, Jr., legal representative Method and apparatus for well bore cleaning
US7404416B2 (en) 2004-03-25 2008-07-29 Halliburton Energy Services, Inc. Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US7051817B2 (en) * 2004-08-09 2006-05-30 Sorowell Production Services Llc Device for improving oil and gas recovery in wells
US20060086507A1 (en) * 2004-10-26 2006-04-27 Halliburton Energy Services, Inc. Wellbore cleanout tool and method
US6976507B1 (en) 2005-02-08 2005-12-20 Halliburton Energy Services, Inc. Apparatus for creating pulsating fluid flow
US8066059B2 (en) * 2005-03-12 2011-11-29 Thru Tubing Solutions, Inc. Methods and devices for one trip plugging and perforating of oil and gas wells
DK1890823T3 (en) * 2005-05-06 2013-11-25 Dieter Wurz Spray nozzle, spray device and method for operating a spray nozzle and spray device
ITMI20052280A1 (en) 2005-11-29 2007-05-30 Weatherford Mediterranea S P A DEVICE AND PROCEDURE FOR WASHING A CYLINDRICAL CAVITY
US20140202699A1 (en) 2006-06-14 2014-07-24 Thru Tubing Solutions, Inc. System and Method for Removing Debris from a Downhole Wellbore
US7650941B2 (en) 2007-11-05 2010-01-26 Baker Hughes Incorporated Equalizing injection tool
BRPI0905704B1 (en) 2008-01-17 2019-02-05 Wavefront Reservoir Tech Ltd equipment for pulse injection of well drilling pressurized fluid
US8424620B2 (en) 2009-04-24 2013-04-23 Kenny P. Perry, JR. Apparatus and method for lateral well drilling
US20100270081A1 (en) 2009-04-27 2010-10-28 Radial Drilling Technologies II, LLC. Apparatus and Method for Lateral Well Drilling Utilizing a Nozzle Assembly with Gauge Ring and/or Centralizer
US20100276204A1 (en) 2009-05-01 2010-11-04 Thru Tubing Solutions, Inc. Vibrating tool
US20110315403A1 (en) 2009-08-21 2011-12-29 Thru Tubing Solutions, Inc. Bottom hole assembly comprising flow through setting tool and frac plug
US8230912B1 (en) 2009-11-13 2012-07-31 Thru Tubing Solutions, Inc. Hydraulic bidirectional jar
US20130213716A1 (en) 2010-04-23 2013-08-22 Kenny P. Perry Apparatus and method for lateral well drilling
US8448700B2 (en) 2010-08-03 2013-05-28 Thru Tubing Solutions, Inc. Abrasive perforator with fluid bypass
US8584744B2 (en) 2010-09-13 2013-11-19 Baker Hughes Incorporated Debris chamber with helical flow path for enhanced subterranean debris removal
US20110259602A1 (en) 2010-12-15 2011-10-27 Thru Tubing Solutions, Inc. Christmas tree installation using coiled tubing injector
US20120168013A1 (en) 2010-12-31 2012-07-05 Halliburton Energy Services, Inc. Conical fluidic oscillator inserts for use with a subterranean well
US8550155B2 (en) 2011-03-10 2013-10-08 Thru Tubing Solutions, Inc. Jarring method and apparatus using fluid pressure to reset jar
US8453745B2 (en) 2011-05-18 2013-06-04 Thru Tubing Solutions, Inc. Vortex controlled variable flow resistance device and related tools and methods
US9212522B2 (en) 2011-05-18 2015-12-15 Thru Tubing Solutions, Inc. Vortex controlled variable flow resistance device and related tools and methods
US8424605B1 (en) 2011-05-18 2013-04-23 Thru Tubing Solutions, Inc. Methods and devices for casing and cementing well bores
US8240373B1 (en) 2011-12-27 2012-08-14 Thru Tubing Solutions, Inc. Apparatus and method for removing debris from a well
US9228422B2 (en) 2012-01-30 2016-01-05 Thru Tubing Solutions, Inc. Limited depth abrasive jet cutter
CN102536121B (en) 2012-02-08 2013-12-18 中国石油大学(北京) Pulse type underground pressurization jet flow drilling method and device
AU2013252728B2 (en) 2012-04-25 2016-12-22 Thru Tubing Solutions, Inc. Methods and devices for casing and cementing a wellbore
US8608209B1 (en) 2012-06-04 2013-12-17 Thru Tubing Solutions, Inc. Downhole safety joint
US8413525B1 (en) 2012-06-11 2013-04-09 Thru Tubing Solutions, Inc. Portable torque measurement and notification system and method of using same
US8549932B1 (en) 2012-06-11 2013-10-08 Thru Tubing Solutions, Inc. Portable torque measurement and notification system and method of using same
US8528423B1 (en) 2012-06-11 2013-09-10 Thru Tubing Solutions, Inc. Portable torque measurement and notification system and method of using same
US9157818B2 (en) 2012-06-11 2015-10-13 Thru Tubing Solutions, Inc. Portable torque measurement and notification system and method of using same
US20140007743A1 (en) 2012-07-03 2014-01-09 Thru Tubing Solutions, Inc. Wrench with grip enhancing apparatus
US8657007B1 (en) 2012-08-14 2014-02-25 Thru Tubing Solutions, Inc. Hydraulic jar with low reset force
CA2887298C (en) 2012-08-16 2020-07-07 Thru Tubiing Solutions, Inc. Drill pipe perforator apparatus and method of use
US8459365B1 (en) 2012-08-21 2013-06-11 Thru Tubing Solutions, Inc. Apparatus for creating bidirectional rotary force or motion in a downhole device and method for using same
US9194181B2 (en) 2012-08-30 2015-11-24 Thru Tubing Solutions, Inc. Motor and rotor catch assembly
US9840896B2 (en) 2012-09-21 2017-12-12 Thru Tubing Solutions, Inc. Acid soluble abrasive material and method of use
WO2014098859A1 (en) 2012-12-20 2014-06-26 Halliburton Energy Services, Inc. Rotational motion-inducing flow control devices and methods of use
US9194208B2 (en) 2013-01-11 2015-11-24 Thru Tubing Solutions, Inc. Downhole vibratory apparatus
US8869630B2 (en) 2013-01-16 2014-10-28 Thru Tubing Solutions, Inc. Torque measuring vise and notification system and method of using same
US20140216712A1 (en) 2013-02-01 2014-08-07 Thru Tubing Solutions, Inc. Downhole tool with erosion resistant layer
WO2014160716A2 (en) 2013-03-25 2014-10-02 Thru Tubing Solutions, Inc. System and method for removing debris from a downhole wellbore
US10012033B2 (en) 2013-08-27 2018-07-03 Thru Tubing Solutions, Inc. Connection apparatus for coiled tubing and method of attaching same
MX368877B (en) 2013-09-12 2019-10-21 Thru Tubing Solutions Inc Downhole gas separator.
US9080414B2 (en) 2013-10-10 2015-07-14 Thru Tubing Solutions, Inc. Method of treating a downhole formation using a downhole packer
US9181773B2 (en) 2013-10-10 2015-11-10 Thru Tubing Solutions, Inc. Downhole packer with multiple areas of relative rotation
CA2926646C (en) 2013-10-10 2023-04-25 Thru Tubing Solutions, Inc. Downhole packer and method of treating a downhole formation using the downhole packer
US9140070B2 (en) 2013-11-22 2015-09-22 Thru Tubing Solutions, Inc. Method of using a downhole force generating tool
US9181767B2 (en) 2013-11-26 2015-11-10 Thru Tubing Solutions, Inc. Downhole bypass tool
US8752647B1 (en) 2013-12-12 2014-06-17 Thru Tubing Solutions, Inc. Mud motor
US9702230B2 (en) 2014-02-05 2017-07-11 Thru Tubing Solutions, Inc. Downhole perforator gun bypass tool
CA2945290C (en) 2014-04-07 2022-06-28 Thru Tubing Solutions, Inc. Downhole vibration enhancing apparatus and method of using and tuning the same
US10189149B2 (en) 2014-04-18 2019-01-29 Thru Tubing Solutions, Inc. Retention apparatus for portions of adjustable wrench
WO2015179271A1 (en) 2014-05-18 2015-11-26 Thru Tubing Solutions, Inc. Sleeve shifting tool
CA2951397C (en) 2014-06-11 2022-06-28 Thru Tubing Solutions, Inc. Downhole vibratory bypass tool
EP3169866A4 (en) 2014-07-16 2018-02-28 Thru Tubing Solutions, Inc. Downhole tool for guiding a cutting tool
WO2016014979A1 (en) 2014-07-25 2016-01-28 Thru Tubing Solutions, Inc. Locking mechanism for use with tubing or casing tongs
US9534460B2 (en) 2014-08-15 2017-01-03 Thru Tubing Solutions, Inc. Flapper valve tool
US10006261B2 (en) 2014-08-15 2018-06-26 Thru Tubing Solutions, Inc. Flapper valve tool
US20160069173A1 (en) 2014-09-05 2016-03-10 Baker Hughes Incorporated Extended Reach Methods for Multistage Fracturing Systems
CA2963386C (en) 2014-10-28 2019-01-22 Thru Tubing Solutions, Inc. Well tool with indexing device
US9920592B2 (en) 2014-10-28 2018-03-20 Thru Tubing Solutions, Inc. Well tool with indexing device
US9810051B2 (en) 2014-11-20 2017-11-07 Thru Tubing Solutions, Inc. Well completion
WO2016126267A1 (en) 2015-02-06 2016-08-11 Thru Tubing Solutions, Inc. Flapper stabilization for back pressure valve
US11066883B2 (en) 2015-02-18 2021-07-20 Thru Tubing Solutions, Inc. Hydraulic disconnect tool
CA2983253C (en) 2015-04-28 2023-01-03 Thru Tubing Solutions, Inc. Flow control in subterranean wells
WO2016176181A1 (en) 2015-04-28 2016-11-03 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9816341B2 (en) 2015-04-28 2017-11-14 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
US10233719B2 (en) 2015-04-28 2019-03-19 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9745820B2 (en) 2015-04-28 2017-08-29 Thru Tubing Solutions, Inc. Plugging device deployment in subterranean wells
US9567826B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Flow control in subterranean wells
WO2016175876A1 (en) 2015-04-28 2016-11-03 Thru Tubing Solutions, Inc. Flow cotrol in subterranean wells
US9708883B2 (en) 2015-04-28 2017-07-18 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US10641069B2 (en) 2015-04-28 2020-05-05 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9523267B2 (en) 2015-04-28 2016-12-20 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567825B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Flow control in subterranean wells
US9567824B2 (en) 2015-04-28 2017-02-14 Thru Tubing Solutions, Inc. Fibrous barriers and deployment in subterranean wells
CA2928237C (en) 2015-04-28 2018-07-10 Thru Tubing Solutions, Inc. Fibrous barriers and deployment in subterranean wells
US9309746B1 (en) 2015-05-06 2016-04-12 Thru Tubing Solutions, Inc. Fluid communication with an earth formation through cement
CA2983660C (en) 2015-05-06 2019-12-17 Thru Tubing Solutions, Inc. Multi-cycle circulating valve assembly
WO2016187420A1 (en) 2015-05-21 2016-11-24 Thru Tubing Solutions, Inc. Advancement of a tubular string into a wellbore
US9932798B1 (en) * 2015-06-16 2018-04-03 Coil Solutions CA. Helix nozzle oscillating delivery system
US10584558B2 (en) 2015-06-24 2020-03-10 Thru Tubing Solutions, Inc. Downhole packer tool
US10753174B2 (en) 2015-07-21 2020-08-25 Thru Tubing Solutions, Inc. Plugging device deployment
US9316065B1 (en) 2015-08-11 2016-04-19 Thru Tubing Solutions, Inc. Vortex controlled variable flow resistance device and related tools and methods
WO2018204655A1 (en) * 2017-05-03 2018-11-08 Coil Solutions, Inc. Extended reach tool
US10301883B2 (en) * 2017-05-03 2019-05-28 Coil Solutions, Inc. Bit jet enhancement tool

Also Published As

Publication number Publication date
US20180320468A1 (en) 2018-11-08
US10502014B2 (en) 2019-12-10
WO2018204655A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US10865605B1 (en) Vortex controlled variable flow resistance device and related tools and methods
AU2012256028B2 (en) Vortex controlled variable flow resistance device and related tools and methods
US9212522B2 (en) Vortex controlled variable flow resistance device and related tools and methods
RU2081292C1 (en) Nozzle for self-excited oscillations of drilling mud and drilling tool with this nozzle
US9879495B2 (en) Hydraulic pipe string vibrator for reducing well bore friction
US9382760B2 (en) Pulsing tool
US10465464B2 (en) Apparatus and method for creating tunable pressure pulse
US20200003020A1 (en) Extended reach tool
US10174592B2 (en) Well stimulation and cleaning tool
US11098534B2 (en) Bit jet enhancement tool
US10550668B2 (en) Vortices induced helical fluid delivery system
RU2122102C1 (en) Jetting nozzle of drill bit

Legal Events

Date Code Title Description
AS Assignment

Owner name: COIL SOLUTIONS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KLETZEL, ROBERT;REEL/FRAME:050330/0564

Effective date: 20190621

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION