US20200000427A1 - One piece stethoscope diaphragm - Google Patents

One piece stethoscope diaphragm Download PDF

Info

Publication number
US20200000427A1
US20200000427A1 US16/519,230 US201916519230A US2020000427A1 US 20200000427 A1 US20200000427 A1 US 20200000427A1 US 201916519230 A US201916519230 A US 201916519230A US 2020000427 A1 US2020000427 A1 US 2020000427A1
Authority
US
United States
Prior art keywords
diaphragm
rim
disc
chestpiece
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/519,230
Inventor
Joseph P. Keller
Dean Sitz
Mary Jo Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US16/519,230 priority Critical patent/US20200000427A1/en
Publication of US20200000427A1 publication Critical patent/US20200000427A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound

Definitions

  • the present invention relates to stethoscopes. More particularly, it relates to one piece diaphragms that can be positioned on a chestpiece of a stethoscope.
  • the diaphragms currently used on most stethoscopes are made of two pieces, the diaphragm and the rim.
  • the rim is used to hold the diaphragm on the chestpiece. While this construction works very well to hold the components on the chestpiece, the process for manufacturing the two piece rim/diaphragm construction requires numerous operators to produce the assembled rim/diaphragm constructions. Generally, operators are needed to manually mold the diaphragms, to manually mold the rims, to manually trim runners from diaphragms, to manually assemble the diaphragms into the rims, and to inspect all assembled products.
  • the present invention is a diaphragm including a disc formed from a first material and a rim formed from a second material.
  • the disc and the rim are a unitary piece.
  • the rim has a Shore A durometer hardness of between about 40 and 110.
  • the present invention is a stethoscope including a chestpiece and a first one piece diaphragm positionable on the chestpiece.
  • the one piece diaphragm includes a disc made of a first material and a rim made of a second material.
  • the rim has a Shore A durometer hardness of between about 40 and 110.
  • the present invention is a method of making a one piece diaphragm.
  • the method includes providing an injection mold, providing a circular disc formed from a first material, positioning the disc within the injection mold, providing a second material, heating the second material, melt molding the second material into the injection mold and around a peripheral edge of the disc to form a one piece diaphragm, and removing the one piece diaphragm from the injection mold.
  • FIG. 1 is a schematic view of a stethoscope using one piece diaphragms according to the present invention.
  • FIG. 2 is an enlarged, exploded, partial sectional view of a chestpiece of the stethoscope of FIG. 1 .
  • FIG. 3A is a cross-sectional view of an assembled chestpiece showing the one piece diaphragms of the present invention in an outer position.
  • FIG. 3B is a cross-sectional view of an assembled chestpiece showing a diaphragm of the one piece diaphragms of the present invention in an inner position.
  • FIG. 4A is a top view of a first embodiment of an adult-sized one piece diaphragm of the present invention.
  • FIG. 4B is a top view of a first embodiment of a pediatric-sized one piece diaphragm of the present invention.
  • FIG. 5A is a cross-sectional view of the first embodiment of an adult-sized one piece diaphragm of the present invention along lines 5 A- 5 A of FIG. 4A .
  • FIG. 5B is a cross-sectional view of the first embodiment of a pediatric-sized one piece diaphragm of the present invention along lines 5 B- 5 B of FIG. 4B .
  • FIG. 6A is an enlarged view of a part of the first embodiment of the adult-sized one piece diagram of the present invention shown in FIGS. 4A and 5A .
  • FIG. 6B is an enlarged view of a part of the first embodiment of the pediatric-sized one piece diagram of the present invention shown in FIGS. 4B and 5B .
  • FIG. 7A is a top view of a second embodiment of an adult-sized one piece diaphragm of the present invention.
  • FIG. 7B is a top view of a second embodiment of a pediatric-sized one piece diaphragm of the present invention.
  • FIG. 8A is a cross-sectional view of the second embodiment of an adult-sized one piece diaphragm of the present invention along lines 8 A- 8 A of FIG. 7A .
  • FIG. 8B is a cross-sectional view of the second embodiment of a pediatric-sized one piece diaphragm of the present invention along lines 8 B- 8 B of FIG. 7B .
  • FIG. 9A is an enlarged view of a part of the second embodiment of the adult-sized one piece diagram of the present invention shown in FIGS. 7A and 8A .
  • FIG. 9B is an enlarged view of a part of the second embodiment of the pediatric-sized one piece diagram of the present invention shown in FIGS. 7B and 8B .
  • FIG. 10 is a diagram of a laboratory test set-up to generate an autospectrum frequency response of stethoscopes using the one piece diaphragms of the present invention.
  • FIG. 11 is a graph showing the autospectrum frequency response curves for EX. 2 with a 100 gram, 600 gram, and 1.2 kilogram weights, respectively.
  • FIG. 12 is a graph showing the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 2 with a 1.2 kilogram weight, C-EX. 1 with a 1.2 kilogram weight, and EX. 1 with a 1.2 kilogram weight.
  • FIG. 13 is a graph showing the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 1 with a 100 gram weight, and EX. 2 with a 100 gram weight.
  • FIG. 14 is a graph showing the autospectrum frequency response curves for EX. 4 with a 100 gram, 600 gram, and 1 kilogram weights, respectively.
  • FIG. 15 is a graph showing the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, EX. 3 with a 100 gram weight, and EX. 4 with a 100 gram weight.
  • FIG. 16 is a graph showing the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, C-EX. 2 with a 1.2 kilogram weight, EX. 3 with a 1 kilogram weight, and EX. 4 with a 1 kilogram weight.
  • FIG. 17 is a graph showing the transfer function frequency response curves for Examples EX. 5 vs. EX. 6.
  • the present invention is a one piece diaphragm to be used with stethoscopes.
  • the stethoscopes are tunable stethoscopes.
  • An advantage of the one piece diaphragm is the ability to easily and thoroughly clean the diaphragm. Due to the elimination of the gap between the diaphragm and the rim that is present in current two piece designs, the one piece diaphragm eliminates locations for bacteria to grow. This is particularly true on the surface of the diaphragm that contacts the patient.
  • the one piece diaphragm of the present invention allows the entire surface to be cleaned. In current two piece designs, the disc and rim must be disassembled in order to be thoroughly cleaned, which can be difficult and time-consuming.
  • the one piece diaphragm is also significantly easier for the user to install than conventional two-piece diaphragms.
  • the one piece diaphragm of the present invention can be easily produced at low cost. This can allow for manufacturing disposable diaphragms for treating patients with contagious diseases or easily producing custom made diaphragms.
  • acoustical stiffness of the diaphragm designates the mechanical stiffness of the diaphragm as influenced by the mechanical stiffness of the diaphragm material itself, the thickness of the diaphragm, the shape of the diaphragm, the diameter of the diaphragm, and the manner in which the diaphragm is attached to the stethoscope head.
  • plane of the diaphragm refers to the generally planar surface of the diaphragm (disc).
  • the phrase “suspended diaphragm” designates a diaphragm having at least a suspension member as described below.
  • the diaphragm and suspension member are operatively associated with an immobilization means as described below.
  • the suspended diaphragm may be constructed according to the teachings of U.S. Pat. No. 4,440,258 to Packard (the entire contents of which are herein incorporated by reference).
  • a stethoscope 10 includes a chestpiece 12 formed of conventional material utilized in the fabrication of stethoscope heads, for example, metals such as stainless steel and aluminum, metallic composites, plastic and wood.
  • the chestpiece 12 is attached to a conventional headset such as that described in U.S. Pat. No. 4,200,169 which includes an elongated flexible tubing 14 that splits into flexible tubings 16 that run to ear tips 18 .
  • the lower end of the flexible tubing 14 is adapted to be coupled to a conventional stem fitting on the chestpiece 12 .
  • the coupling may utilize the indexing detent as taught in U.S. Pat. No. 4,770,270 (the entire contents of which are herein expressly incorporated by reference).
  • Binaural tubes for stethoscopes can be prepared in accordance with the teachings of U.S. Pat. Nos. 5,111,904; 5,380,182; and 5,324,471 to Packard et al. (each of which is hereby incorporated by reference).
  • Ear tips 18 are sized and shaped to engage the surfaces of the user's ears.
  • the ear tips 18 may include any suitable ear tips.
  • the ear tips 18 include the soft ear tips disclosed in U.S. Pat. Nos. 4,852,684; 4,913,259 and 5,449,865 (the entire contents hereby incorporated by reference).
  • the chestpiece 12 is a dual-sided chestpiece including a first sound collecting side 20 and a second sound collecting side 22 .
  • the one piece diaphragm of the present invention may also be used with a single-sided chestpiece without limiting the scope of the present invention.
  • the stethoscope 10 affords tuning in of sound while using either the first side 20 or the second side 22 of the chestpiece 12 .
  • the first sound collecting side 20 is sized and shaped to collect sounds from adult patients.
  • the second sound collecting side 22 is substantially smaller than the first sound collecting side to afford easier access to remote or difficult to reach locations.
  • the second sound collecting side 22 is sized and shaped to afford sufficient surface contact on pediatric or thin patients.
  • the first sound collecting side 20 has a first recess 24 with an innermost central portion 26 , an outer rim portion 28 , and an acoustic channel 30 , 32 communicating with the central portion 26 .
  • a first diaphragm 34 is a suspended diaphragm and is also located on the first sound collecting side 20 .
  • the first diaphragm 34 includes a rim 36 and disc 38 positioned within the rim 36 , together having a peripheral edge portion and a predetermined surface contour overlying at least a portion of the first recess 24 . As shown in FIGS. 3A and 3B , the first diaphragm 34 is moveably connected to or “operatively associated” with the outer rim portion 28 of the first recess 24 .
  • the first diaphragm 34 is positioned on the chestpiece 12 such that there can be movement of the first diaphragm 34 in a direction substantially perpendicular to the plane of the first diaphragm 34 between: 1) a normal outer position to which the first diaphragm 34 is biased and 2) an inner position more closely adjacent the central portion of the first recess 24 . This movement is accomplished without substantially changing the surface contour of or the lateral tension in the first diaphragm 34 .
  • a first immobilizing means 40 is situated on the first sound collecting side 20 of the chestpiece 12 .
  • the first immobilizing means 40 is located within the first recess 24 . Together with the central portion of the first recess 24 , the first immobilizing means 40 forms a shallow recess within the first recess 24 .
  • the immobilizing means 40 is sized and shaped to be contacted by the first diaphragm 34 . In FIG. 3B , it is the first diaphragm 34 which contacts the immobilizing means 40 . When the first diaphragm 34 is in the inner position, the immobilizing means 40 immobilizes the first diaphragm 34 .
  • the first sound collecting side 20 of the chestpiece 12 will pass low frequency (bass) sounds and gradually attenuate sounds with higher frequencies when the first diaphragm 34 is in the outer position and between the outer and inner positions.
  • the acoustical stiffness of the first diaphragm 34 will be significantly higher than the acoustical stiffness of the first diaphragm 34 when it is in the outer position, so that the first sound collecting side 20 of the chestpiece 12 will attenuate or block low frequency sounds while leaving higher frequency sounds unchanged.
  • a physician would simply modify the manual pressure exerted on the chestpiece 12 in order to switch between the outer and inner positions.
  • the level of bass attenuation varies from about 3 to about 21 dB.
  • the second sound collecting side 22 is adapted to include a second suspended diaphragm.
  • the second sound collecting side 22 has many reference characters similar to the reference characters used to describe elements of the first sound collecting side 20 except that the reference character “B” has been added.
  • the second sound collecting side 22 has a second recess 24 B with an innermost central portion 26 B, an outer rim portion 28 B, and an acoustic channel 30 , 32 ′ communicating with the central portion 26 B.
  • the second sound collecting side 22 has a second diaphragm 34 B including a rim 36 B and disc 38 B positioned within the rim 36 B, together having with a peripheral edge portion and a predetermined surface contour overlying at least a portion of the second recess 24 B.
  • the second diaphragm 34 B is moveably associated with the outer rim portion 28 B of the second recess 24 B.
  • a second immobilizing means 40 B is situated on the second sound collecting side 22 of the chestpiece 12 .
  • the second immobilizing means 40 B is located within the second recess 24 B. Together with the central portion 26 B of the second recess 24 B, the second immobilizing means 40 B forms a shallow recess within the second recess 24 B.
  • the second immobilizing means 40 B is sized and shaped to be contacted by the second diaphragm 34 B. When the second diaphragm 34 B is in the inner position (not shown in FIGS.), the second immobilizing means 40 B immobilizes the second diaphragm 34 B.
  • the second sound collecting side 22 of the chestpiece 12 will pass low frequency sounds and gradually attenuate sounds with higher frequencies when the second diaphragm 34 B is in the outer position and between the outer and inner positions.
  • the acoustical stiffness of the second diaphragm 34 B will be significantly higher than its first acoustical stiffness so that the second sound collecting side 22 of the chestpiece 12 will attenuate or block low frequency sounds while leaving higher frequency sounds unchanged.
  • the level of bass attenuation varies from about 3 to about 21 dB.
  • the size and shape of the first sound collecting side 20 is different than the size and shape of the second sound collecting side 22 .
  • the immobilizing means 40 and 40 B include ridges machined into the metal of the chestpiece 12 (see FIGS. 3A and 3B ).
  • Other immobilizing means which are suitable for employment in the stethoscope heads of the present invention include O-rings, molded ridges, and inserts (e.g., plastic inserts).
  • the machined ridge 40 B may have an inner diameter of about 1.053 inches, a depth radius of about 0.016 inches (0.41 millimeters), and a width of 0.015 inches (0.38 millimeters).
  • the diaphragms 34 and 34 B overlay their respective recesses 24 and 24 B sufficiently to afford contact of the diaphragms with the immobilizing means 40 and 40 B.
  • the rims 36 and 36 B and discs 38 and 38 B of diaphragms 34 and 34 B may comprise any material which is known in the art as being suitable for use as a diaphragm.
  • the rim and the disc may be formed of different materials.
  • the rim and the disc may be formed of the same material. While in most cases it is preferred that the rim and the disc are formed of different materials due to the different requirements of the rim and the disc, the rim and the disc may be made of the same material.
  • the rim and the disc are formed of different materials
  • the rim is formed of a polymeric resin while the disc is formed of plastic.
  • the rim and the disc may be formed of a flexible material so that the one piece diaphragm can be put on the chestpiece.
  • suitable materials when the rim and the disc are formed of one material include, but are not limited to: silicone, rubber, urethane, thermoplastic elastomers, flexible plastics such as polyphenylene ether, and fiberglass.
  • a suitable thickness for the diaphragms 34 and 34 B is about 5 to 20 mils (13 to 51 ⁇ m).
  • the response of chestpiece 12 to low frequency and high frequency sounds is affected by several parameters.
  • the thickness of the diaphragm affects the response, and suitable thicknesses for the diaphragms have been discussed hereinabove.
  • the relative dimensions of first recess and second recess affect the response.
  • the passage 32 ′ has a diameter of about 0.125 inches (3.175 millimeters).
  • the acoustical stiffness of the diaphragm can be increased suitably by contact of the suspension member with the immobilizing means.
  • FIGS. 4A, 4B, 5A, 5B, 6A and 6B a first embodiment of the one piece diaphragms of the present invention will be described in more detail.
  • FIGS. 4A, 5A and 6A show an embodiment on an adult-sized one piece diaphragm 100 of the present invention and
  • FIGS. 4B, 5B and 6B show an embodiment of a pediatric-sized one piece diaphragm 100 B of the present invention.
  • FIGS. 4A and 4B show top views of the adult and pediatric-sized one piece diagrams 100 and 100 B, respectively, according to a first embodiment of the present invention.
  • FIG. 5A shows the adult-sized diaphragm 100 at lines 5 A- 5 A of FIG. 4A and FIG.
  • FIG. 5B shows the pediatric-sized diaphragm 100 B at lines 5 B- 5 B of FIG. 4B .
  • FIG. 6A shows an enlarged view of a section of the adult-sized diaphragm 100 of FIGS. 4A and 5A .
  • FIG. 6B shows an enlarged view of a section of the pediatric-sized diaphragm 100 B of FIGS. 4B and 5B .
  • the pediatric-sized diaphragm 100 B has many reference characters similar to the reference characters used to describe elements of the adult-sized diaphragm 100 except that the reference character “B” has been added. The elements otherwise function similarly.
  • the one piece diaphragm 100 , 100 B includes a rim 102 , 102 B and a disc 104 , 104 B.
  • the rim 102 , 102 B and the disc 104 , 104 B may be made from different materials but are a unitary piece when fabricated.
  • the rim 102 , 102 B includes a wall 106 , 106 B having a first end 108 , 108 B and a second end 110 , 110 B, a lip 112 , 112 B extending substantially perpendicularly from the first end 108 , 108 B of the wall 106 , 106 B, a bridge 114 , 114 B extending substantially perpendicularly from the second end 110 , 110 B of the wall 106 , 106 B, a chestpiece outer diameter contact surface 116 , 116 B and a fork 118 , 118 B extending from the bridge 114 , 114 B.
  • the rim is formed from one of a polymeric resin, silicone, rubber, flexible plastic and fiberglass.
  • the wall 106 , 106 B has a circular or ring-shaped configuration and functions to maintain the diaphragm 100 , 100 B on the chestpiece 12 , 12 B.
  • the wall 106 , 106 B has an inner side 120 , 120 B and an opposite outer side 122 , 122 B, a patient facing edge 124 , 124 B and an opposite chestpiece facing edge 126 , 126 B.
  • the wall 106 , 106 B must be thick enough to have sufficient rigidity to stay on the chestpiece 12 , 12 B. If the wall 106 , 106 B is too thick, the diaphragm 100 , 100 B may fall off of the chestpiece 12 , 12 B when a small amount of pressure is applied.
  • the diaphragm may unintentionally fall off of the chestpiece.
  • the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters)
  • the adult-sized rim 102 has a wall thickness W T of between about 0.02 and about 0.10 inches (0.5 and 2.5 millimeters), particularly between about 0.03 and about 0.06 inches (0.76 and 1.54 millimeters) and more particularly between about 0.037 and about 0.043 inches (0.94 and 1.09 millimeters).
  • the pediatric-sized rim 102 B when the chestpiece 12 B has a diameter of about 1.355 inches (34.42 millimeters) the pediatric-sized rim 102 B has a wall thickness W T of between 0.02 and 0.1 inches (0.5 and 2.5 millimeters), particularly between 0.03 and about 0.06 inches (0.76 and 1.54 millimeters) and more particularly between about 0.037 and about 0.043 inches (0.94 and 1.09 millimeters).
  • the height of the wall 106 is important in determining the height of the disc 104 above the chestpiece 12 , which in turn affects tunability of the chestpiece 12 .
  • the adult-sized rim 102 has a wall height W H of between about 0.084 and about 0.314 inches (2.13 and 7.98 millimeters), particularly between about 0.1 and about 0.25 inches (2.54 and 6.35 millimeters) and more particularly between about 0.111 and about 0.117 inches (2.82 and 2.97 millimeters).
  • the pediatric-sized rim 102 B has a wall height W H of between about 0.08 and about 0.310 inches (2.03 and 7.87 millimeters), particularly between about 0.1 and about 0.25 inches (2.54 and 6.35 millimeters) and more particularly between about 0.107 and about 0.113 inches (2.72 and 2.87 millimeters).
  • the lip 112 , 112 B extends from the inner side 120 , 120 B at the first end 108 , 108 B of the wall 106 , 106 B at the chestpiece facing edge 124 , 124 B and functions to secure the diaphragm 100 , 100 B to the chestpiece 12 , 12 B.
  • the chestpiece 12 , 12 B is inserted between the lip 112 , 112 B and the fork 118 , 118 B of the rim 102 , 102 B.
  • the lip 112 , 112 B must hold the diaphragm 100 , 100 B tightly enough to stay on the chestpiece 12 , 12 B, but not so tight such that the diaphragm 100 , 100 B cannot be removed if desired, for example, for cleaning.
  • the adult-sized rim 102 when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a lip thickness L T of between about 0.018 and about 0.188 inches (0.46 and 3 millimeters), particularly between about 0.025 and about 0.06 inches (0.64 and 1.52 millimeters) and more particularly between about 0.033 and about 0.039 inches (0.84 and 1 millimeter).
  • the pediatric-sized rim 102 B when the chestpiece 12 B has a diameter of about 1.355 inches (34.42 millimeters), the pediatric-sized rim 102 B has a lip thickness L T of between about 0.018 and about 0.118 inches (0.46 and 3 millimeters), particularly between about 0.025 and about 0.06 inches (0.64 and 1.52 millimeters) and more particularly between about 0.025 and about 0.031 inches (0.64 and 0.79 millimeters).
  • the bridge 114 , 114 B extends from the inner side 120 , 120 B of the second end 110 , 110 B of the wall 106 , 106 B at the patient facing edge 126 , 126 B.
  • the bridge 114 , 114 B, and particularly the bridge height and thickness, allows the diaphragm 100 , 100 B to have sufficient flexibility to move and achieve good acoustics.
  • the bridge height needs to be as thin as possible while minimizing the risk of the rim 102 , 102 B breaking during normal use.
  • the adult-sized rim 102 when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a bridge height BH of between about 0.007 and about 0.028 inches (0.18 and 0.71 millimeters) (or substantially equal to the fork thickness), particularly between about 0.008 and about 0.02 inches (0.23 and 0.51 millimeters) and more particularly between about 0.009 and about 0.015 inches (0.23 and 0.38 millimeters).
  • the pediatric-sized rim 102 B when the chestpiece 12 B has a diameter of about 1.355 inches (34.42 millimeters), the pediatric-sized rim 102 B has a bridge height BH of between about 0.007 and about 0.028 inches (0.18 and 0.71 millimeters) (or substantially equal to the fork thickness), particularly between about 0.008 and about 0.02 inches (0.23 and 0.51 millimeters) and more particularly between about 0.009 and about 0.015 inches (0.23 and 0.38 millimeters).
  • the bridge width should be as long as possible between the chestpiece outer diameter contact surface and the disc while still allowing filling during molding.
  • the adult-sized rim has a bridge thickness B T of between about 0.01 and about 0.5 inches (0.01 and 12.7 millimeters), particularly between about 0.025 and about 0.2 inches (0.64 and 5.08 millimeters) and more particularly between about 0.04 and about 0.048 inches (1.02 and 1.22 millimeters).
  • the pediatric-sized rim has a bridge thickness B T of between about 0.01 and about 0.5 inches (0.01 and 12.7 millimeters), particularly between about 0.25 and about 0.2 inches (0.64 and 5.08 millimeters)and more particularly between about 0.06 and about 0.066 inches (1.52 and 1.68 millimeters).
  • the chestpiece outer diameter contact surface 116 , 116 B functions to ensure a tight fit when the diaphragm 100 , 100 B is positioned on the chestpiece 12 , 12 B.
  • the chestpiece outer diameter contact surface 116 , 116 B needs to be tight enough to create a good acoustic seal and so that the diaphragm 100 , 100 B does not rotate on the chestpiece 12 , 12 B and so that the diaphragm 100 , 100 B does not unintentionally come off of the chestpiece 12 , 12 B.
  • the adult-sized rim 102 when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a chestpiece outer diameter (OD) contact surface 116 of between about 1.66 and 1.74 inches (4.22 and 4.42 centimeters), particularly between about 1.685 and about 1.720 inches (4.28 and 4.37 centimeters) and more particularly between about 1.693 and about 1.703 inches (4.3 and 4.33 centimeters).
  • the diaphragm 100 has an interference of about 0.012 with the chestpiece outer diameter.
  • the diaphragm 100 has an interference of up to about 0.05 with the chestpiece outer diameter or up to about 0.30 clearance.
  • the pediatric-sized rim 102 B has a chestpiece outer diameter (OD) contact surface 116 B of between about 1.296 and 1.376 inches (3.29 and 3.5 centimeters), particularly between about 1.225 and about 1.360 inches (3.11 and 3.45 centimeters) and more particularly between about 1.341 and about 1.351 inches (3.41 and 3.43 centimeters).
  • the diaphragm 100 B has an interference of about 0.010 inches (0.25 millimeters) with the chestpiece outer diameter. In another embodiment of the pediatric-sized rim 102 B, the diaphragm 100 B has an interference of up to about 0.05 inches (1.27 millimeters) with the chestpiece outer diameter or up to about 0.30 inches (7.62 millimeters) clearance.
  • the fork 118 , 118 B extends from the bridge 114 , 114 B and functions to secure the disc 104 .
  • 104 B within the rim 102 , 102 B and includes a first flange 128 , 128 B and a second flange 130 , 130 B substantially perpendicular to the first flange 128 , 128 B.
  • the disc 104 , 104 B is positioned between the first and second flanges 128 , 128 B and 130 , 130 B, where it is maintained within the rim 102 , 102 B.
  • the fork flanges 128 , 128 B and 130 , 130 B need to be just thick enough to allow filling on both sides of the disc 104 , 104 B during the molding process.
  • the adult-sized rim 102 when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a fork height F H of between about 0.021 and about 0.057 inches (0.53 and 1.45 millimeters), particularly between about 0.022 and about 0.047 inches (0.56 and 1.19 millimeters) and more particularly between about 0.024 and about 0.03 inches (0.61 and 0.76 millimeters).
  • the pediatric-sized rim 102 B has a fork height FH of between about 0.021 and about 0.057 inches (0.53 and 1.45 millimeters), particularly between about 0.022 and about 0.047 inches (0.56 and 1.19 millimeters) and more particularly between about 0.024 and about 0.03 inches (0.61 and 0.76 millimeters).
  • the disc 104 , 104 B may be formed of any material which is known in the art as being suitable for use as a diaphragm disc.
  • suitable materials include plastics such as polyester, fiberglass-reinforced plastics, flexible plastics, silicone, rubber, fiberglass, polycarbonates, carbon fiber composites, polystyrene and metals such as stainless steel.
  • a suitable thickness for the disc is about 5 to about 20 mils (13 to 51 ⁇ m) and particularly about 10 to about 12 mils (25 to 30 ⁇ m).
  • the disc is a 10 mil-thick (25 ⁇ m-thick) epoxy resin-fiberglass laminate.
  • the disc 104 , 104 B may include at least one aperture (not shown) along a periphery of the disc.
  • the disc includes a plurality of apertures along the periphery of the disc.
  • the apertures aid in maintaining the disc 104 , 104 B to the rim 102 , 102 B during molding and long term use of the diaphragm 100 , 100 B.
  • the disc 104 , 104 B is placed in the one piece diaphragm rim die tool (for example an injection mold).
  • the material used for the rim 102 , 102 B is then melt molded (for example injection molded) around the edge of the diaphragm disc 104 , 104 B to form a unitary single piece diaphragm 100 , 100 B, which includes the rim 102 , 102 B.
  • the material flows through the one or more apertures along the periphery of the disc to securely bond the rim portion to the disc portion of the unitary single piece diaphragm by forming a bond 132 B (shown only in FIG. 6B ) between the flanges 128 B and 130 B of the fork 118 B.
  • the material used for the rim is a polymeric resin material.
  • FIGS. 7A, 7B, 8A, 8B, 9A and 9B another embodiment of the one piece diaphragms of the present invention will be described in more detail.
  • FIGS. 7A, 8A and 9A show a second embodiment on an adult-sized one piece diaphragm 200 of the present invention and
  • FIGS. 7B, 8B and 9B show a second embodiment of a pediatric-sized one piece diaphragm 200 B of the present invention.
  • FIGS. 7A and 7B show top views of the adult and pediatric-sized one piece diagrams 200 and 200 B, respectively, according to the second embodiment of the present invention.
  • FIG. 8A shows an adult-sized diaphragm 200 at lines 8 A- 8 A of FIG. 7A and FIG.
  • FIG. 8B shows a pediatric-sized diaphragm 200 B at lines 8 B- 8 B of FIG. 7B .
  • FIG. 9A shows an enlarged view of a section of the adult-sized diaphragm 200 of FIGS. 7A and 8A .
  • FIG. 9B shows an enlarged view of a section of the pediatric-sized diaphragm 200 B of FIGS. 7B and 8B .
  • the pediatric-sized diaphragm 200 B has many reference characters similar to the reference characters used to describe elements of the adult-sized diaphragm 200 except that the reference character “B” has been added. The elements otherwise function similarly.
  • the second embodiment of the diaphragm 200 and 200 A is very similar to the first embodiment of the diaphragm 100 and 100 A.
  • the diaphragm 200 , 200 B includes a rim 202 , 202 B and a disc 204 , 204 B that are a unitary piece when assembled.
  • the rim 202 , 202 B includes a wall 206 , 206 B having a first end 208 , 208 B and a second end 210 , 210 B, a lip 212 , 212 B extending substantially perpendicularly from the first end 208 , 208 B of the rim 202 , 202 B, a bridge 214 , 214 B extending substantially perpendicularly from the second end 210 , 210 B of the rim 202 , 202 B, chestpiece outer diameter contact surface 216 , 216 B, and a fork 218 , 218 B extending from the bridge 214 , 214 B and over both sides of the disc 204 , 204 B.
  • the only difference between the first and second embodiments of the diaphragm is that the second embodiment 200 ,
  • the step 232 , 232 B functions to maintain the disc 204 , 204 B at a desired distance from the chestpiece 12 , 12 B and to maintain the diaphragm 200 , 200 B to the chestpiece 12 , 12 B.
  • the step 232 , 232 B is positioned at the intersection of the second end 210 , 210 B of the wall 206 , 206 B and the bridge 214 , 214 B.
  • the step 232 , 232 B has a height substantially equal to the height of the fork 218 , 218 B.
  • the thickness of the step 232 , 232 B can be up to the thickness of the bridge 214 , 214 B.
  • the adult-sized rim 202 when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 202 has a step thickness S T of up to about 0.048 inches (i.e., all the way to the fork 218 ) (1.22 millimeters), particularly up to about 0.028 inches (0.71 millimeters) and particularly up to about 0.007 inches (0.18 millimeters) or eliminated completely.
  • the pediatric-sized rim 202 B has a step thickness S T of up to about 0.066 inches (1.68 millimeters) (i.e., all the way to the fork 218 B), particularly up to about 0.04 inches (1.02 millimeters) and more particularly up to about 0.007 inches (0.18 millimeters) or eliminated completely.
  • the disc is positioned within the fork of the rim.
  • the fork and the rim are then made into a unitary piece, for example, by molding.
  • portions of the fork are melted through any apertures in the disc, providing secure placement of disc within the rim.
  • the diaphragm Upon assembly onto the chestpiece, the diaphragm must have enough flexibility to allow the diaphragm to be easily positioned on, and removed from, the chestpiece and rigid enough to ensure that the diaphragm does not unintentionally fall off of the chestpiece.
  • the rim has a Shore A durometer hardness of between about 40 and about 110, particularly between about 70 and about 90 and more particularly between about 75 and 85.
  • the one piece diaphragm is made by providing an injection mold, providing a circular disc formed from a first material, positioning the disc within the injection mold, providing a second material, heating the second material, melt molding the second material into the injection mold and around a peripheral edge of the disc to form a one piece diaphragm and removing the one piece diaphragm from the injection mold.
  • the second material is a polymeric resin and the first material is plastic.
  • the first and the second material are the same, and may be, for example: silicone, rubber, flexible plastic or fiberglass.
  • the one piece diaphragm of the present invention offers numerous manufacturing benefits.
  • the one piece diaphragm yields a diaphragm that is ready to be positioned on a chestpiece without the need for any secondary operations after molding.
  • the one piece diaphragm design also allows the mold to run automatically, rather than manually, as is required on the two molds used today. Automation of the ejection step also allows for downstream automation, such as pad printing. All of the above benefits allows for reduced assembly costs. Because the one piece diaphragm can be easily produced at low cost, the diaphragms can be disposable or custom made.
  • Comparative Example 1 was a 3M LITTMANN CARDIOLOGY III Stethoscope (available from 3M Company of St. Paul, Minn.) used with the adult-sized (side) two piece diaphragm-rim assembly, as currently available from the manufacturer.
  • the two piece rim components were comprised of a thermoplastic polyurethane and the diaphragm disc material was a 10 mil-thick (254 um-thick) epoxy resin-fiberglass laminate.
  • the chestpiece had a diameter of about 1.7 inches (43 millimeters).
  • Comparative Example 2 (C-EX. 2) was a 3M LITTMANN CARDIOLOGY III Stethoscope (available from 3M Company of St. Paul, Minn.) used with the pediatric-sized (side) two piece diaphragm-rim assembly, as currently available from the manufacturer.
  • the rim and diaphragm disc were made of the same materials as describe in Comparative Example 1.
  • the chestpiece had a diameter of about 1.335 inches (34.42 millimeters) the pediatric-sized rim.
  • Example 1 was the same as C-EX. 1, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 4A, 5A, and 6A , sized to fit the adult side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 2 (EX. 2) was the same as C-EX. 1, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 7A, 8A, and 9A , sized to fit the adult side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 3 was the same as C-EX. 2, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 4B, 5B, and 6B , sized to fit the pediatric side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 4 was the same as C-EX. 2, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 7B, 8B, and 9B , sized to fit the pediatric side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 5 was the same as EX. 1, except the single-piece diaphragm assembly was attached to a 3M LITTMANN CLASSIC II SE Stethoscope.
  • Example 6 was the same as EX. 1, except the single-piece diaphragm assembly was formed by injection molding thermoplastic polyurethane around a diaphragm disc also made of the same thermoplastic polyurethane.
  • the diaphragm assembly of EX. 6 was attached to a 3M LITTMANN CLASSIC II SE Stethoscope.
  • Acoustic performance of a stethoscope can be described in terms of its frequency response to a broadband or pink noise source coupled to the chestpiece in a manner that simulates the human torso.
  • HATS Head and Torso Simulator
  • the sound source was a loudspeaker enclosed in a cylindrical sounder chamber with an 87 millimeters opening on top filled by a silicone gel pad with dimensions of 130 millimeters diameter ⁇ 30 millimeters thick.
  • the silicone gel pad was used to simulate human skin/flesh and was made from ECOLFEX 00-10 Super Soft Shore 00-10 Platinum Silicone Rubber Compound, available from Reynolds Advanced Materials of Countryside, Ill., USA.
  • a 3M LITTMANN CARDIOLOGY III Stethoscope (available from 3M Company of St. Paul, Minn.) was used with each of the example diaphragm assemblies tested.
  • the stethoscope chestpiece with the attached example diaphragm assembly was placed on the gel pad. A select weight was applied to the top of the chest piece.
  • the applied weight represented light (100 grams), medium (600 grams) or firm (1 kilogram or 1.2 kilogram) force that would be applied by a stethoscope user (clinician) to induce the tunable feature of the diaphragm of the CARDIOLOGY III Stethoscope.
  • the stethoscope ear tips were inserted into the ears of a Head simulator. Microphones in the ear couplers detected the stethoscope sound as in a manner equivalent to the human ear.
  • FIG. 11 shows the autospectrum frequency response curves for EX. 2 with a 100 gram, 600 gram, and 1.2 kilogram weights, respectively.
  • FIG. 12 shows the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 2 with a 1.2 kilogram weight, C-EX. 1 with a 1.2 kilogram weight, and EX. 1 with a 1.2 kilogram weight.
  • FIG. 13 shows the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 1 with a 100 gram weight, and EX. 2 with a 100 gram weight.
  • FIG. 14 shows the autospectrum frequency response curves for EX. 4 with a 100 gram, 600 gram, and 1 kilogram weights, respectively.
  • FIG. 15 shows the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, EX. 3 with a 100 gram weight, and EX. 4 with a 100 gram weight.
  • FIG. 16 shows the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, C-EX. 2 with a 1.2 kilogram weight, EX. 3 with a 1 kilogram weight, and EX.4 with a 1 kilogram weight.
  • FIG. 17 shows the transfer function frequency response curves for Examples EX. 5 vs. EX. 6, which compares the single-piece diaphragm assembly when it is made of two different materials for the disc and the rim (EX. 5) and the single-piece diaphragm assembly when it is made of the same material for the disc and the rim (EX. 6).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Diaphragms And Bellows (AREA)
  • Magnetic Record Carriers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Aspects of the present disclosure relate to a method of making a one piece diaphragm. The method includes providing a tool die, providing a disc formed from a first material, positioning the disc within an injection mold, providing a second material; heating the second material. The method includes melt molding the second material into the tool die and around a peripheral edge of the disc to form the one piece diaphragm comprising a rim, and removing the one piece diaphragm from the injection mold.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 15/500,128, filed Jan. 30, 2017, which is a national stage filing under 35 U.S.C. 371 of PCT/US2015/042851, filed Jul. 30, 2015, which claims the benefit of U.S. Provisional Application No. 62/032,844, filed Aug. 4, 2014, the disclosures of which are incorporated by reference in their entirety herein.
  • FIELD OF THE INVENTION
  • The present invention relates to stethoscopes. More particularly, it relates to one piece diaphragms that can be positioned on a chestpiece of a stethoscope.
  • BACKGROUND
  • Complete diagnosis of a patient using a stethoscope often requires that a physician monitor low frequency and high frequency sounds associated with, for example, the heart. With respect to the heart, it is important that the physician alternate between the monitoring of low frequency and high frequency sounds so that the physician does not lose the impression from the previously heard heartbeat before the next beat is heard. Without the benefit of tunable technology, the clinician would be required to turn the chestpiece over to hear additional sounds.
  • The diaphragms currently used on most stethoscopes are made of two pieces, the diaphragm and the rim. The rim is used to hold the diaphragm on the chestpiece. While this construction works very well to hold the components on the chestpiece, the process for manufacturing the two piece rim/diaphragm construction requires numerous operators to produce the assembled rim/diaphragm constructions. Generally, operators are needed to manually mold the diaphragms, to manually mold the rims, to manually trim runners from diaphragms, to manually assemble the diaphragms into the rims, and to inspect all assembled products.
  • SUMMARY
  • In one embodiment, the present invention is a diaphragm including a disc formed from a first material and a rim formed from a second material. The disc and the rim are a unitary piece. The rim has a Shore A durometer hardness of between about 40 and 110.
  • In another embodiment, the present invention is a stethoscope including a chestpiece and a first one piece diaphragm positionable on the chestpiece. The one piece diaphragm includes a disc made of a first material and a rim made of a second material. The rim has a Shore A durometer hardness of between about 40 and 110.
  • In yet another embodiment, the present invention is a method of making a one piece diaphragm. The method includes providing an injection mold, providing a circular disc formed from a first material, positioning the disc within the injection mold, providing a second material, heating the second material, melt molding the second material into the injection mold and around a peripheral edge of the disc to form a one piece diaphragm, and removing the one piece diaphragm from the injection mold.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These figures are not drawn to scale and are intended merely for illustrative purposes.
  • FIG. 1 is a schematic view of a stethoscope using one piece diaphragms according to the present invention.
  • FIG. 2 is an enlarged, exploded, partial sectional view of a chestpiece of the stethoscope of FIG. 1.
  • FIG. 3A is a cross-sectional view of an assembled chestpiece showing the one piece diaphragms of the present invention in an outer position.
  • FIG. 3B is a cross-sectional view of an assembled chestpiece showing a diaphragm of the one piece diaphragms of the present invention in an inner position.
  • FIG. 4A is a top view of a first embodiment of an adult-sized one piece diaphragm of the present invention.
  • FIG. 4B is a top view of a first embodiment of a pediatric-sized one piece diaphragm of the present invention.
  • FIG. 5A is a cross-sectional view of the first embodiment of an adult-sized one piece diaphragm of the present invention along lines 5A-5A of FIG. 4A.
  • FIG. 5B is a cross-sectional view of the first embodiment of a pediatric-sized one piece diaphragm of the present invention along lines 5B-5B of FIG. 4B.
  • FIG. 6A is an enlarged view of a part of the first embodiment of the adult-sized one piece diagram of the present invention shown in FIGS. 4A and 5A.
  • FIG. 6B is an enlarged view of a part of the first embodiment of the pediatric-sized one piece diagram of the present invention shown in FIGS. 4B and 5B.
  • FIG. 7A is a top view of a second embodiment of an adult-sized one piece diaphragm of the present invention.
  • FIG. 7B is a top view of a second embodiment of a pediatric-sized one piece diaphragm of the present invention.
  • FIG. 8A is a cross-sectional view of the second embodiment of an adult-sized one piece diaphragm of the present invention along lines 8A-8A of FIG. 7A.
  • FIG. 8B is a cross-sectional view of the second embodiment of a pediatric-sized one piece diaphragm of the present invention along lines 8B-8B of FIG. 7B.
  • FIG. 9A is an enlarged view of a part of the second embodiment of the adult-sized one piece diagram of the present invention shown in FIGS. 7A and 8A.
  • FIG. 9B is an enlarged view of a part of the second embodiment of the pediatric-sized one piece diagram of the present invention shown in FIGS. 7B and 8B.
  • FIG. 10 is a diagram of a laboratory test set-up to generate an autospectrum frequency response of stethoscopes using the one piece diaphragms of the present invention.
  • FIG. 11 is a graph showing the autospectrum frequency response curves for EX. 2 with a 100 gram, 600 gram, and 1.2 kilogram weights, respectively.
  • FIG. 12 is a graph showing the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 2 with a 1.2 kilogram weight, C-EX. 1 with a 1.2 kilogram weight, and EX. 1 with a 1.2 kilogram weight.
  • FIG. 13 is a graph showing the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 1 with a 100 gram weight, and EX. 2 with a 100 gram weight.
  • FIG. 14 is a graph showing the autospectrum frequency response curves for EX. 4 with a 100 gram, 600 gram, and 1 kilogram weights, respectively.
  • FIG. 15 is a graph showing the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, EX. 3 with a 100 gram weight, and EX. 4 with a 100 gram weight.
  • FIG. 16 is a graph showing the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, C-EX. 2 with a 1.2 kilogram weight, EX. 3 with a 1 kilogram weight, and EX. 4 with a 1 kilogram weight.
  • FIG. 17 is a graph showing the transfer function frequency response curves for Examples EX. 5 vs. EX. 6.
  • DETAILED DESCRIPTION
  • The present invention is a one piece diaphragm to be used with stethoscopes. In one embodiment, the stethoscopes are tunable stethoscopes. An advantage of the one piece diaphragm is the ability to easily and thoroughly clean the diaphragm. Due to the elimination of the gap between the diaphragm and the rim that is present in current two piece designs, the one piece diaphragm eliminates locations for bacteria to grow. This is particularly true on the surface of the diaphragm that contacts the patient. The one piece diaphragm of the present invention allows the entire surface to be cleaned. In current two piece designs, the disc and rim must be disassembled in order to be thoroughly cleaned, which can be difficult and time-consuming. In addition, the one piece diaphragm is also significantly easier for the user to install than conventional two-piece diaphragms. Furthermore, the one piece diaphragm of the present invention can be easily produced at low cost. This can allow for manufacturing disposable diaphragms for treating patients with contagious diseases or easily producing custom made diaphragms.
  • As used in the instant specification and claims, “acoustical stiffness” of the diaphragm designates the mechanical stiffness of the diaphragm as influenced by the mechanical stiffness of the diaphragm material itself, the thickness of the diaphragm, the shape of the diaphragm, the diameter of the diaphragm, and the manner in which the diaphragm is attached to the stethoscope head. The phrase “plane of the diaphragm” refers to the generally planar surface of the diaphragm (disc).
  • As used in the instant specification and claims, the phrase “suspended diaphragm” designates a diaphragm having at least a suspension member as described below. The diaphragm and suspension member are operatively associated with an immobilization means as described below. For example, the suspended diaphragm may be constructed according to the teachings of U.S. Pat. No. 4,440,258 to Packard (the entire contents of which are herein incorporated by reference).
  • Referring first to FIG. 1, a stethoscope 10 includes a chestpiece 12 formed of conventional material utilized in the fabrication of stethoscope heads, for example, metals such as stainless steel and aluminum, metallic composites, plastic and wood. The chestpiece 12 is attached to a conventional headset such as that described in U.S. Pat. No. 4,200,169 which includes an elongated flexible tubing 14 that splits into flexible tubings 16 that run to ear tips 18. The lower end of the flexible tubing 14 is adapted to be coupled to a conventional stem fitting on the chestpiece 12. The coupling may utilize the indexing detent as taught in U.S. Pat. No. 4,770,270 (the entire contents of which are herein expressly incorporated by reference). Binaural tubes for stethoscopes can be prepared in accordance with the teachings of U.S. Pat. Nos. 5,111,904; 5,380,182; and 5,324,471 to Packard et al. (each of which is hereby incorporated by reference).
  • Ear tips 18 are sized and shaped to engage the surfaces of the user's ears. The ear tips 18 may include any suitable ear tips. In one embodiment, the ear tips 18 include the soft ear tips disclosed in U.S. Pat. Nos. 4,852,684; 4,913,259 and 5,449,865 (the entire contents hereby incorporated by reference).
  • Referring to one embodiment shown in FIGS. 2-4, the chestpiece 12 is a dual-sided chestpiece including a first sound collecting side 20 and a second sound collecting side 22. It should be noted that although the one piece diaphragm of the present invention is discussed with respect to a dual-sided chestpiece, the one piece diaphragm may also be used with a single-sided chestpiece without limiting the scope of the present invention. In addition, while the figures depict a dual-sided chest piece, each with suspended (tunable) diaphragms, the one piece diaphragm of the present invention may be used with a non-suspended configuration (non-tunable). In one embodiment, the stethoscope 10 affords tuning in of sound while using either the first side 20 or the second side 22 of the chestpiece 12. The first sound collecting side 20 is sized and shaped to collect sounds from adult patients. The second sound collecting side 22 is substantially smaller than the first sound collecting side to afford easier access to remote or difficult to reach locations. Thus, the second sound collecting side 22 is sized and shaped to afford sufficient surface contact on pediatric or thin patients.
  • The first sound collecting side 20 has a first recess 24 with an innermost central portion 26, an outer rim portion 28, and an acoustic channel 30, 32 communicating with the central portion 26. A first diaphragm 34 is a suspended diaphragm and is also located on the first sound collecting side 20. The first diaphragm 34 includes a rim 36 and disc 38 positioned within the rim 36, together having a peripheral edge portion and a predetermined surface contour overlying at least a portion of the first recess 24. As shown in FIGS. 3A and 3B, the first diaphragm 34 is moveably connected to or “operatively associated” with the outer rim portion 28 of the first recess 24.
  • The first diaphragm 34 is positioned on the chestpiece 12 such that there can be movement of the first diaphragm 34 in a direction substantially perpendicular to the plane of the first diaphragm 34 between: 1) a normal outer position to which the first diaphragm 34 is biased and 2) an inner position more closely adjacent the central portion of the first recess 24. This movement is accomplished without substantially changing the surface contour of or the lateral tension in the first diaphragm 34.
  • A first immobilizing means 40 is situated on the first sound collecting side 20 of the chestpiece 12. The first immobilizing means 40 is located within the first recess 24. Together with the central portion of the first recess 24, the first immobilizing means 40 forms a shallow recess within the first recess 24. The immobilizing means 40 is sized and shaped to be contacted by the first diaphragm 34. In FIG. 3B, it is the first diaphragm 34 which contacts the immobilizing means 40. When the first diaphragm 34 is in the inner position, the immobilizing means 40 immobilizes the first diaphragm 34.
  • The first sound collecting side 20 of the chestpiece 12 will pass low frequency (bass) sounds and gradually attenuate sounds with higher frequencies when the first diaphragm 34 is in the outer position and between the outer and inner positions. When the first diaphragm 34 is in the inner position, the acoustical stiffness of the first diaphragm 34 will be significantly higher than the acoustical stiffness of the first diaphragm 34 when it is in the outer position, so that the first sound collecting side 20 of the chestpiece 12 will attenuate or block low frequency sounds while leaving higher frequency sounds unchanged. In use, a physician would simply modify the manual pressure exerted on the chestpiece 12 in order to switch between the outer and inner positions. In one embodiment, the level of bass attenuation varies from about 3 to about 21 dB.
  • The second sound collecting side 22 is adapted to include a second suspended diaphragm. The second sound collecting side 22 has many reference characters similar to the reference characters used to describe elements of the first sound collecting side 20 except that the reference character “B” has been added. The second sound collecting side 22 has a second recess 24B with an innermost central portion 26B, an outer rim portion 28B, and an acoustic channel 30, 32′ communicating with the central portion 26B. The second sound collecting side 22 has a second diaphragm 34B including a rim 36B and disc 38B positioned within the rim 36B, together having with a peripheral edge portion and a predetermined surface contour overlying at least a portion of the second recess 24B. The second diaphragm 34B is moveably associated with the outer rim portion 28B of the second recess 24B.
  • A second immobilizing means 40B is situated on the second sound collecting side 22 of the chestpiece 12. The second immobilizing means 40B is located within the second recess 24B. Together with the central portion 26B of the second recess 24B, the second immobilizing means 40B forms a shallow recess within the second recess 24B. The second immobilizing means 40B is sized and shaped to be contacted by the second diaphragm 34B. When the second diaphragm 34B is in the inner position (not shown in FIGS.), the second immobilizing means 40B immobilizes the second diaphragm 34B.
  • The second sound collecting side 22 of the chestpiece 12 will pass low frequency sounds and gradually attenuate sounds with higher frequencies when the second diaphragm 34B is in the outer position and between the outer and inner positions. When the second diaphragm 34B is in the inner position, the acoustical stiffness of the second diaphragm 34B will be significantly higher than its first acoustical stiffness so that the second sound collecting side 22 of the chestpiece 12 will attenuate or block low frequency sounds while leaving higher frequency sounds unchanged. In one embodiment, the level of bass attenuation varies from about 3 to about 21 dB.
  • The size and shape of the first sound collecting side 20 is different than the size and shape of the second sound collecting side 22.
  • In one embodiment, the immobilizing means 40 and 40B include ridges machined into the metal of the chestpiece 12 (see FIGS. 3A and 3B). Other immobilizing means which are suitable for employment in the stethoscope heads of the present invention include O-rings, molded ridges, and inserts (e.g., plastic inserts). For example, the machined ridge 40B may have an inner diameter of about 1.053 inches, a depth radius of about 0.016 inches (0.41 millimeters), and a width of 0.015 inches (0.38 millimeters).
  • The diaphragms 34 and 34B overlay their respective recesses 24 and 24B sufficiently to afford contact of the diaphragms with the immobilizing means 40 and 40B. The rims 36 and 36B and discs 38 and 38B of diaphragms 34 and 34B may comprise any material which is known in the art as being suitable for use as a diaphragm. In one embodiment, the rim and the disc may be formed of different materials. In another embodiment, the rim and the disc may be formed of the same material. While in most cases it is preferred that the rim and the disc are formed of different materials due to the different requirements of the rim and the disc, the rim and the disc may be made of the same material. For example, in one embodiment when the rim and the disc are formed of different materials, the rim is formed of a polymeric resin while the disc is formed of plastic. In an embodiment when the rim and the disc are formed of the same material, the rim and the disc may be formed of a flexible material so that the one piece diaphragm can be put on the chestpiece. Examples of suitable materials when the rim and the disc are formed of one material include, but are not limited to: silicone, rubber, urethane, thermoplastic elastomers, flexible plastics such as polyphenylene ether, and fiberglass. A suitable thickness for the diaphragms 34 and 34B is about 5 to 20 mils (13 to 51 μm).
  • The response of chestpiece 12 to low frequency and high frequency sounds is affected by several parameters. The thickness of the diaphragm affects the response, and suitable thicknesses for the diaphragms have been discussed hereinabove. Also, the relative dimensions of first recess and second recess affect the response. The following have been found to be suitable dimensions for the recess 24B: the recess 24B has a diameter of about 1.32 inches (3.35 centimeters), a major radius as seen in FIGS. 3A and 3B of about 0.196 inches (4.98 millimeters), an initial major depth of about 0.22 inches (5.6 millimeters) and a secondary depth of about 0.235 inches (5.97 millimeters). The passage 32′ has a diameter of about 0.125 inches (3.175 millimeters).
  • It is contemplated that the acoustical stiffness of the diaphragm can be increased suitably by contact of the suspension member with the immobilizing means.
  • Turning now to FIGS. 4A, 4B, 5A, 5B, 6A and 6B, a first embodiment of the one piece diaphragms of the present invention will be described in more detail. FIGS. 4A, 5A and 6A show an embodiment on an adult-sized one piece diaphragm 100 of the present invention and FIGS. 4B, 5B and 6B show an embodiment of a pediatric-sized one piece diaphragm 100B of the present invention. FIGS. 4A and 4B show top views of the adult and pediatric-sized one piece diagrams 100 and 100B, respectively, according to a first embodiment of the present invention. FIG. 5A shows the adult-sized diaphragm 100 at lines 5A-5A of FIG. 4A and FIG. 5B shows the pediatric-sized diaphragm 100B at lines 5B-5B of FIG. 4B. FIG. 6A shows an enlarged view of a section of the adult-sized diaphragm 100 of FIGS. 4A and 5A. FIG. 6B shows an enlarged view of a section of the pediatric-sized diaphragm 100B of FIGS. 4B and 5B. The pediatric-sized diaphragm 100B has many reference characters similar to the reference characters used to describe elements of the adult-sized diaphragm 100 except that the reference character “B” has been added. The elements otherwise function similarly. As mentioned above, the one piece diaphragm 100, 100B includes a rim 102, 102B and a disc 104, 104B. The rim 102, 102B and the disc 104, 104B may be made from different materials but are a unitary piece when fabricated. The rim 102, 102B includes a wall 106, 106B having a first end 108, 108B and a second end 110, 110B, a lip 112, 112B extending substantially perpendicularly from the first end 108, 108B of the wall 106, 106B, a bridge 114, 114B extending substantially perpendicularly from the second end 110, 110B of the wall 106, 106B, a chestpiece outer diameter contact surface 116, 116B and a fork 118, 118B extending from the bridge 114, 114B. In one embodiment, the rim is formed from one of a polymeric resin, silicone, rubber, flexible plastic and fiberglass.
  • The wall 106, 106B has a circular or ring-shaped configuration and functions to maintain the diaphragm 100, 100B on the chestpiece 12, 12B. The wall 106, 106B has an inner side 120, 120B and an opposite outer side 122, 122B, a patient facing edge 124, 124B and an opposite chestpiece facing edge 126, 126B. The wall 106, 106B must be thick enough to have sufficient rigidity to stay on the chestpiece 12, 12B. If the wall 106, 106B is too thick, the diaphragm 100, 100B may fall off of the chestpiece 12, 12B when a small amount of pressure is applied. For example, if the wall is too thick, when the chestpiece rubs on clothing, such as when a health care provider removes the chestpiece from a pocket, the diaphragm may unintentionally fall off of the chestpiece. In one embodiment, when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters) the adult-sized rim 102 has a wall thickness WT of between about 0.02 and about 0.10 inches (0.5 and 2.5 millimeters), particularly between about 0.03 and about 0.06 inches (0.76 and 1.54 millimeters) and more particularly between about 0.037 and about 0.043 inches (0.94 and 1.09 millimeters). In one embodiment, when the chestpiece 12B has a diameter of about 1.355 inches (34.42 millimeters) the pediatric-sized rim 102B has a wall thickness WT of between 0.02 and 0.1 inches (0.5 and 2.5 millimeters), particularly between 0.03 and about 0.06 inches (0.76 and 1.54 millimeters) and more particularly between about 0.037 and about 0.043 inches (0.94 and 1.09 millimeters). The height of the wall 106 is important in determining the height of the disc 104 above the chestpiece 12, which in turn affects tunability of the chestpiece 12. In one embodiment, the adult-sized rim 102 has a wall height WH of between about 0.084 and about 0.314 inches (2.13 and 7.98 millimeters), particularly between about 0.1 and about 0.25 inches (2.54 and 6.35 millimeters) and more particularly between about 0.111 and about 0.117 inches (2.82 and 2.97 millimeters). In one embodiment, the pediatric-sized rim 102B has a wall height WH of between about 0.08 and about 0.310 inches (2.03 and 7.87 millimeters), particularly between about 0.1 and about 0.25 inches (2.54 and 6.35 millimeters) and more particularly between about 0.107 and about 0.113 inches (2.72 and 2.87 millimeters).
  • The lip 112, 112B extends from the inner side 120, 120B at the first end 108, 108B of the wall 106, 106B at the chestpiece facing edge 124, 124B and functions to secure the diaphragm 100, 100B to the chestpiece 12, 12B. The chestpiece 12, 12B is inserted between the lip 112, 112B and the fork 118, 118B of the rim 102, 102B. The lip 112, 112B must hold the diaphragm 100, 100B tightly enough to stay on the chestpiece 12, 12B, but not so tight such that the diaphragm 100, 100B cannot be removed if desired, for example, for cleaning. In one embodiment, when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a lip thickness LT of between about 0.018 and about 0.188 inches (0.46 and 3 millimeters), particularly between about 0.025 and about 0.06 inches (0.64 and 1.52 millimeters) and more particularly between about 0.033 and about 0.039 inches (0.84 and 1 millimeter). In one embodiment, when the chestpiece 12B has a diameter of about 1.355 inches (34.42 millimeters), the pediatric-sized rim 102B has a lip thickness LT of between about 0.018 and about 0.118 inches (0.46 and 3 millimeters), particularly between about 0.025 and about 0.06 inches (0.64 and 1.52 millimeters) and more particularly between about 0.025 and about 0.031 inches (0.64 and 0.79 millimeters).
  • The bridge 114, 114B extends from the inner side 120, 120B of the second end 110, 110B of the wall 106, 106B at the patient facing edge 126, 126B. The bridge 114, 114B, and particularly the bridge height and thickness, allows the diaphragm 100, 100B to have sufficient flexibility to move and achieve good acoustics. The bridge height needs to be as thin as possible while minimizing the risk of the rim 102, 102B breaking during normal use. In one embodiment, when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a bridge height BH of between about 0.007 and about 0.028 inches (0.18 and 0.71 millimeters) (or substantially equal to the fork thickness), particularly between about 0.008 and about 0.02 inches (0.23 and 0.51 millimeters) and more particularly between about 0.009 and about 0.015 inches (0.23 and 0.38 millimeters). In one embodiment, when the chestpiece 12B has a diameter of about 1.355 inches (34.42 millimeters), the pediatric-sized rim 102B has a bridge height BH of between about 0.007 and about 0.028 inches (0.18 and 0.71 millimeters) (or substantially equal to the fork thickness), particularly between about 0.008 and about 0.02 inches (0.23 and 0.51 millimeters) and more particularly between about 0.009 and about 0.015 inches (0.23 and 0.38 millimeters). The bridge width should be as long as possible between the chestpiece outer diameter contact surface and the disc while still allowing filling during molding. In one embodiment, the adult-sized rim has a bridge thickness BT of between about 0.01 and about 0.5 inches (0.01 and 12.7 millimeters), particularly between about 0.025 and about 0.2 inches (0.64 and 5.08 millimeters) and more particularly between about 0.04 and about 0.048 inches (1.02 and 1.22 millimeters). In one embodiment, the pediatric-sized rim has a bridge thickness BT of between about 0.01 and about 0.5 inches (0.01 and 12.7 millimeters), particularly between about 0.25 and about 0.2 inches (0.64 and 5.08 millimeters)and more particularly between about 0.06 and about 0.066 inches (1.52 and 1.68 millimeters).
  • The chestpiece outer diameter contact surface 116, 116B functions to ensure a tight fit when the diaphragm 100, 100B is positioned on the chestpiece 12, 12B. The chestpiece outer diameter contact surface 116, 116B needs to be tight enough to create a good acoustic seal and so that the diaphragm 100, 100B does not rotate on the chestpiece 12, 12B and so that the diaphragm 100, 100B does not unintentionally come off of the chestpiece 12, 12B. In one embodiment, when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a chestpiece outer diameter (OD) contact surface 116 of between about 1.66 and 1.74 inches (4.22 and 4.42 centimeters), particularly between about 1.685 and about 1.720 inches (4.28 and 4.37 centimeters) and more particularly between about 1.693 and about 1.703 inches (4.3 and 4.33 centimeters). In one embodiment of the adult-sized rim 102, the diaphragm 100 has an interference of about 0.012 with the chestpiece outer diameter. In another embodiment of the adult-sized rim 102, the diaphragm 100 has an interference of up to about 0.05 with the chestpiece outer diameter or up to about 0.30 clearance. In one embodiment, when the chestpiece 12B has a diameter of about 1.335 inches (34.42 millimeters) the pediatric-sized rim 102B has a chestpiece outer diameter (OD) contact surface 116B of between about 1.296 and 1.376 inches (3.29 and 3.5 centimeters), particularly between about 1.225 and about 1.360 inches (3.11 and 3.45 centimeters) and more particularly between about 1.341 and about 1.351 inches (3.41 and 3.43 centimeters). In one embodiment of the pediatric-sized rim 102B, the diaphragm 100B has an interference of about 0.010 inches (0.25 millimeters) with the chestpiece outer diameter. In another embodiment of the pediatric-sized rim 102B, the diaphragm 100B has an interference of up to about 0.05 inches (1.27 millimeters) with the chestpiece outer diameter or up to about 0.30 inches (7.62 millimeters) clearance.
  • The fork 118, 118B extends from the bridge 114, 114B and functions to secure the disc 104. 104B within the rim 102, 102B and includes a first flange 128, 128B and a second flange 130, 130B substantially perpendicular to the first flange 128, 128B. The disc 104, 104B is positioned between the first and second flanges 128, 128B and 130, 130B, where it is maintained within the rim 102, 102B. The fork flanges 128, 128B and 130, 130B need to be just thick enough to allow filling on both sides of the disc 104, 104B during the molding process. In one embodiment, when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 102 has a fork height FH of between about 0.021 and about 0.057 inches (0.53 and 1.45 millimeters), particularly between about 0.022 and about 0.047 inches (0.56 and 1.19 millimeters) and more particularly between about 0.024 and about 0.03 inches (0.61 and 0.76 millimeters). In one embodiment, when the chestpiece 12B has a diameter of about 1.355 inches (34.42 millimeters), the pediatric-sized rim 102B has a fork height FH of between about 0.021 and about 0.057 inches (0.53 and 1.45 millimeters), particularly between about 0.022 and about 0.047 inches (0.56 and 1.19 millimeters) and more particularly between about 0.024 and about 0.03 inches (0.61 and 0.76 millimeters).
  • The disc 104, 104B may be formed of any material which is known in the art as being suitable for use as a diaphragm disc. Examples of suitable materials include plastics such as polyester, fiberglass-reinforced plastics, flexible plastics, silicone, rubber, fiberglass, polycarbonates, carbon fiber composites, polystyrene and metals such as stainless steel. A suitable thickness for the disc is about 5 to about 20 mils (13 to 51 μm) and particularly about 10 to about 12 mils (25 to 30 μm). In one embodiment, the disc is a 10 mil-thick (25 μm-thick) epoxy resin-fiberglass laminate. In one embodiment, the disc 104, 104B may include at least one aperture (not shown) along a periphery of the disc. In one embodiment, the disc includes a plurality of apertures along the periphery of the disc. The apertures aid in maintaining the disc 104, 104B to the rim 102, 102B during molding and long term use of the diaphragm 100, 100B. In the unitary molding process, the disc 104, 104B is placed in the one piece diaphragm rim die tool (for example an injection mold). The material used for the rim 102, 102B is then melt molded (for example injection molded) around the edge of the diaphragm disc 104, 104B to form a unitary single piece diaphragm 100, 100B, which includes the rim 102, 102B. In one embodiment, the material flows through the one or more apertures along the periphery of the disc to securely bond the rim portion to the disc portion of the unitary single piece diaphragm by forming a bond 132B (shown only in FIG. 6B) between the flanges 128B and 130B of the fork 118B. In one embodiment, the material used for the rim is a polymeric resin material.
  • Turning now to FIGS. 7A, 7B, 8A, 8B, 9A and 9B, another embodiment of the one piece diaphragms of the present invention will be described in more detail. FIGS. 7A, 8A and 9A show a second embodiment on an adult-sized one piece diaphragm 200 of the present invention and FIGS. 7B, 8B and 9B show a second embodiment of a pediatric-sized one piece diaphragm 200B of the present invention. FIGS. 7A and 7B show top views of the adult and pediatric-sized one piece diagrams 200 and 200B, respectively, according to the second embodiment of the present invention. FIG. 8A shows an adult-sized diaphragm 200 at lines 8A-8A of FIG. 7A and FIG. 8B shows a pediatric-sized diaphragm 200B at lines 8B-8B of FIG. 7B. FIG. 9A shows an enlarged view of a section of the adult-sized diaphragm 200 of FIGS. 7A and 8A. FIG. 9B shows an enlarged view of a section of the pediatric-sized diaphragm 200B of FIGS. 7B and 8B. Similar to the first embodiment, the pediatric-sized diaphragm 200B has many reference characters similar to the reference characters used to describe elements of the adult-sized diaphragm 200 except that the reference character “B” has been added. The elements otherwise function similarly. The second embodiment of the diaphragm 200 and 200A is very similar to the first embodiment of the diaphragm 100 and 100A. The diaphragm 200, 200B includes a rim 202, 202B and a disc 204, 204B that are a unitary piece when assembled. The rim 202, 202B includes a wall 206, 206B having a first end 208, 208B and a second end 210, 210B, a lip 212, 212B extending substantially perpendicularly from the first end 208, 208B of the rim 202, 202B, a bridge 214, 214B extending substantially perpendicularly from the second end 210, 210B of the rim 202, 202B, chestpiece outer diameter contact surface 216, 216B, and a fork 218, 218B extending from the bridge 214, 214B and over both sides of the disc 204, 204B. The only difference between the first and second embodiments of the diaphragm is that the second embodiment 200, 200B includes a step 232, 232B between the wall 206, 206B and the bridge 214, 214B.
  • The step 232, 232B functions to maintain the disc 204, 204B at a desired distance from the chestpiece 12, 12B and to maintain the diaphragm 200, 200B to the chestpiece 12, 12B. The step 232, 232B is positioned at the intersection of the second end 210, 210B of the wall 206, 206B and the bridge 214, 214B. In one embodiment, the step 232, 232B has a height substantially equal to the height of the fork 218, 218B. The thickness of the step 232, 232B can be up to the thickness of the bridge 214, 214B. In one embodiment, when the chestpiece 12 has a diameter of about 1.71 inches (43.43 millimeters), the adult-sized rim 202 has a step thickness ST of up to about 0.048 inches (i.e., all the way to the fork 218) (1.22 millimeters), particularly up to about 0.028 inches (0.71 millimeters) and particularly up to about 0.007 inches (0.18 millimeters) or eliminated completely. In one embodiment, when the chestpiece 12B has a diameter of about 1.355 inches (34.29 millimeters), the pediatric-sized rim 202B has a step thickness ST of up to about 0.066 inches (1.68 millimeters) (i.e., all the way to the fork 218B), particularly up to about 0.04 inches (1.02 millimeters) and more particularly up to about 0.007 inches (0.18 millimeters) or eliminated completely.
  • In practice, the disc is positioned within the fork of the rim. The fork and the rim are then made into a unitary piece, for example, by molding. In one embodiment, when the fork and the rim are integrally molded, portions of the fork are melted through any apertures in the disc, providing secure placement of disc within the rim. Upon assembly onto the chestpiece, the diaphragm must have enough flexibility to allow the diaphragm to be easily positioned on, and removed from, the chestpiece and rigid enough to ensure that the diaphragm does not unintentionally fall off of the chestpiece. In one embodiment, the rim has a Shore A durometer hardness of between about 40 and about 110, particularly between about 70 and about 90 and more particularly between about 75 and 85.
  • In another embodiment, the one piece diaphragm is made by providing an injection mold, providing a circular disc formed from a first material, positioning the disc within the injection mold, providing a second material, heating the second material, melt molding the second material into the injection mold and around a peripheral edge of the disc to form a one piece diaphragm and removing the one piece diaphragm from the injection mold. In one embodiment, the second material is a polymeric resin and the first material is plastic. In another embodiment, the first and the second material are the same, and may be, for example: silicone, rubber, flexible plastic or fiberglass.
  • The one piece diaphragm of the present invention offers numerous manufacturing benefits. The one piece diaphragm yields a diaphragm that is ready to be positioned on a chestpiece without the need for any secondary operations after molding. The one piece diaphragm design also allows the mold to run automatically, rather than manually, as is required on the two molds used today. Automation of the ejection step also allows for downstream automation, such as pad printing. All of the above benefits allows for reduced assembly costs. Because the one piece diaphragm can be easily produced at low cost, the diaphragms can be disposable or custom made.
  • EXAMPLES
  • The present invention is more particularly described in the following examples that are intended as illustrations only, since numerous modifications and variations within the scope of the present invention will be apparent to those skilled in the art. Unless otherwise noted, all parts, percentages, and ratios reported in the following example are on a weight basis.
  • Comparative Example 1 (C-EX. 1) was a 3M LITTMANN CARDIOLOGY III Stethoscope (available from 3M Company of St. Paul, Minn.) used with the adult-sized (side) two piece diaphragm-rim assembly, as currently available from the manufacturer. The two piece rim components were comprised of a thermoplastic polyurethane and the diaphragm disc material was a 10 mil-thick (254 um-thick) epoxy resin-fiberglass laminate. The chestpiece had a diameter of about 1.7 inches (43 millimeters).
  • Comparative Example 2 (C-EX. 2) was a 3M LITTMANN CARDIOLOGY III Stethoscope (available from 3M Company of St. Paul, Minn.) used with the pediatric-sized (side) two piece diaphragm-rim assembly, as currently available from the manufacturer. The rim and diaphragm disc were made of the same materials as describe in Comparative Example 1. The chestpiece had a diameter of about 1.335 inches (34.42 millimeters) the pediatric-sized rim.
  • Example 1 (EX. 1) was the same as C-EX. 1, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 4A, 5A, and 6A, sized to fit the adult side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 2 (EX. 2) was the same as C-EX. 1, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 7A, 8A, and 9A, sized to fit the adult side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 3 (EX. 3) was the same as C-EX. 2, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 4B, 5B, and 6B, sized to fit the pediatric side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 4 (EX. 4) was the same as C-EX. 2, except the two piece diaphragm-rim assembly was replaced with the single-piece diaphragm assembly represented in FIGS. 7B, 8B, and 9B, sized to fit the pediatric side of the 3M LITTMANN CARDIOLOGY III Stethoscope, wherein the one piece rim material was injection molded around the diaphragm disc.
  • Example 5 (EX. 5) was the same as EX. 1, except the single-piece diaphragm assembly was attached to a 3M LITTMANN CLASSIC II SE Stethoscope.
  • Example 6 (EX. 6) was the same as EX. 1, except the single-piece diaphragm assembly was formed by injection molding thermoplastic polyurethane around a diaphragm disc also made of the same thermoplastic polyurethane. The diaphragm assembly of EX. 6 was attached to a 3M LITTMANN CLASSIC II SE Stethoscope.
  • Stethoscope Acoustic Testing Apparatus and Procedure
  • Acoustic performance of a stethoscope can be described in terms of its frequency response to a broadband or pink noise source coupled to the chestpiece in a manner that simulates the human torso. The test apparatus used to characterize the acoustic performance of the Comparative Examples: C-EX. 1 and C-EX. 2, and the Examples EX. 1-EX. 4, is illustrated in FIG. 10. The equipment included: a Brüel & Kjær Head and Torso Simulator (HATS) type 4128C with 4159C Left Ear Simulator, 4158C Right Ear Simulator, and Calibrated Left and Right pinnae. The sound source was a loudspeaker enclosed in a cylindrical sounder chamber with an 87 millimeters opening on top filled by a silicone gel pad with dimensions of 130 millimeters diameter×30 millimeters thick. The silicone gel pad was used to simulate human skin/flesh and was made from ECOLFEX 00-10 Super Soft Shore 00-10 Platinum Silicone Rubber Compound, available from Reynolds Advanced Materials of Countryside, Ill., USA. A 3M LITTMANN CARDIOLOGY III Stethoscope (available from 3M Company of St. Paul, Minn.) was used with each of the example diaphragm assemblies tested. The stethoscope chestpiece with the attached example diaphragm assembly was placed on the gel pad. A select weight was applied to the top of the chest piece. The applied weight represented light (100 grams), medium (600 grams) or firm (1 kilogram or 1.2 kilogram) force that would be applied by a stethoscope user (clinician) to induce the tunable feature of the diaphragm of the CARDIOLOGY III Stethoscope. The stethoscope ear tips were inserted into the ears of a Head simulator. Microphones in the ear couplers detected the stethoscope sound as in a manner equivalent to the human ear.
  • Sounds were generated, recorded and characterized by a Brüel & Kjaer (B&K) LAN-XI acoustic test system which operates with a PC using B&K PULSE software. An audio amplifier was used to drive the loudspeaker with sound produced by the LAN-XI system. The sounder cylinder with speaker inside was positioned on a 600 millimeter×900 millimeter Newport IsoStation Vibration Isolation Workstation. An autospectrum frequency response curve was generated for each Example with various weights used to apply a force to the chestpiece resting on the gel pad. Results for the adult-sized diaphragms are shown in FIGS. 11-13. Results for the pediatric-sized diaphragms are shown in FIGS. 14-16.
  • For Examples 5 and 6, a transfer function frequency response curve was generated for each example with a 100 gram weight used to apply a force to the chest-piece resting on the gel pad. Results are shown in FIG. 17.
  • FIG. 11 shows the autospectrum frequency response curves for EX. 2 with a 100 gram, 600 gram, and 1.2 kilogram weights, respectively.
  • FIG. 12 shows the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 2 with a 1.2 kilogram weight, C-EX. 1 with a 1.2 kilogram weight, and EX. 1 with a 1.2 kilogram weight.
  • FIG. 13 shows the autospectrum frequency response curves for C-EX. 1 with a 100 gram weight, EX. 1 with a 100 gram weight, and EX. 2 with a 100 gram weight.
  • FIG. 14 shows the autospectrum frequency response curves for EX. 4 with a 100 gram, 600 gram, and 1 kilogram weights, respectively.
  • FIG. 15 shows the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, EX. 3 with a 100 gram weight, and EX. 4 with a 100 gram weight.
  • FIG. 16 shows the autospectrum frequency response curves for C-EX. 2 with a 100 gram weight, C-EX. 2 with a 1.2 kilogram weight, EX. 3 with a 1 kilogram weight, and EX.4 with a 1 kilogram weight.
  • FIG. 17 shows the transfer function frequency response curves for Examples EX. 5 vs. EX. 6, which compares the single-piece diaphragm assembly when it is made of two different materials for the disc and the rim (EX. 5) and the single-piece diaphragm assembly when it is made of the same material for the disc and the rim (EX. 6).
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (16)

What is claimed is:
1. A method of making a one piece diaphragm comprising:
providing a tool die;
providing a disc formed from a first material;
positioning the disc within an injection mold;
providing a second material;
heating the second material;
melt molding the second material into the tool die and around a peripheral edge of the disc to form the one piece diaphragm comprising a rim; and
removing the one piece diaphragm from the injection mold.
2. The method of claim 1, wherein the tool die is an injection mold and wherein melt molding is an injection molding process.
3. The method of claim 1, wherein the disc is further provided with a plurality of apertures positioned around the periphery of the disc.
4. The method of claim 3, wherein melt molding further comprises melt molding the second material into the plurality of apertures and forming a plurality of bonds which connect rim material on one side of the disc to rim material on the opposite side of the disc.
5. The method of claim 1, wherein the first material is selected from a group consisting of: polyester, fiberglass-reinforced plastics, fiberglass, polycarbonates, carbon fiber composites, polystyrene, and metals.
6. The method of claim 1, wherein the rim comprises:
a wall having a first end and a second end;
a lip extending substantially perpendicularly from the first end of the wall;
a bridge extending substantially perpendicularly from the second end of the wall; and
a fork extending from the bridge.
7. The method of claim 6, wherein portions of the fork are melted through any apertures in the disc to provide secure placement of disc within the rim.
8. The method of claim 6, wherein the wall has a circular or a ring-shaped configuration, the wall having an inner side and an opposite outer side, and a patient facing edge and an opposite chestpiece facing edge;
wherein the lip extends substantially perpendicularly from the inner side of the wall at the chestpiece facing edge; and
wherein the bridge extends substantially perpendicularly from the inner side of the wall at the patient facing edge of the wall.
9. The method of claim 8, wherein a patient facing surface of the rim of the one piece diaphragm is flat.
10. The method of claim 1, wherein the rim further comprises a step.
11. The method of claim 1, wherein the second material is at least one of polymeric resin, silicone, rubber, flexible plastic and fiberglass
12. The method of claim 1, wherein, upon removing the one piece diaphragm, the disc and the rim are a unitary piece.
13. The method of claim 1, wherein the rim has a Shore A durometer hardness of between about 40 and 110.
14. The method of claim 13, wherein the rim has a Shore A durometer hardness of between about 70 and 90.
15. The method of claim 1, further comprising positioning the one-piece diaphragm on a chestpiece.
16. The method of claim 15, further comprising attaching the chestpiece to a headset.
US16/519,230 2014-08-04 2019-07-23 One piece stethoscope diaphragm Abandoned US20200000427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/519,230 US20200000427A1 (en) 2014-08-04 2019-07-23 One piece stethoscope diaphragm

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462032844P 2014-08-04 2014-08-04
PCT/US2015/042851 WO2016022380A2 (en) 2014-08-04 2015-07-30 One piece stethoscope diaphragm
US201715500128A 2017-01-30 2017-01-30
US16/519,230 US20200000427A1 (en) 2014-08-04 2019-07-23 One piece stethoscope diaphragm

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/500,128 Division US10398406B2 (en) 2014-08-04 2015-07-30 One piece stethoscope diaphragm
PCT/US2015/042851 Division WO2016022380A2 (en) 2014-08-04 2015-07-30 One piece stethoscope diaphragm

Publications (1)

Publication Number Publication Date
US20200000427A1 true US20200000427A1 (en) 2020-01-02

Family

ID=54056251

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/500,128 Active 2035-11-18 US10398406B2 (en) 2014-08-04 2015-07-30 One piece stethoscope diaphragm
US16/519,230 Abandoned US20200000427A1 (en) 2014-08-04 2019-07-23 One piece stethoscope diaphragm

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/500,128 Active 2035-11-18 US10398406B2 (en) 2014-08-04 2015-07-30 One piece stethoscope diaphragm

Country Status (6)

Country Link
US (2) US10398406B2 (en)
EP (1) EP3177211B1 (en)
JP (1) JP6773641B2 (en)
CN (1) CN106659462B (en)
BR (1) BR112017002097B1 (en)
WO (1) WO2016022380A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425823B2 (en) 2015-01-21 2018-11-21 スリーエム イノベイティブ プロパティズ カンパニー Stethoscope diaphragm
TWI661813B (en) * 2017-09-06 2019-06-11 創心醫電股份有限公司 Diaphragm, methods for manufacturing same and stethoscopes provided with same
CN110868934A (en) * 2017-06-02 2020-03-06 维托臣股份有限公司 Diaphragm and stethoscope head assembly thereof
US20200187894A1 (en) * 2017-09-06 2020-06-18 Vitalchains Corporation Diaphragm, Methods for Manufacturing Same and Stethoscope Provided with Same
EP3775086B1 (en) 2018-04-05 2022-09-14 3M Innovative Properties Company Gel adhesive comprising crosslinked blend of polydiorganosiloxane and acrylic polymer
USD877327S1 (en) * 2018-10-03 2020-03-03 Donald Lynn Loriaux Stethoscope diaphraghm
WO2020072561A1 (en) 2018-10-05 2020-04-09 3M Innovative Properties Company Metal injection molding for stethoscope chestpiece
US20220061795A1 (en) * 2019-01-22 2022-03-03 3M Innovative Properties Company Stethoscope chestpiece with multiple cavities
WO2020153956A1 (en) * 2019-01-24 2020-07-30 Vitalchains Corporation Switchable stethoscope head and stethoscope assembly having the same
CN211633336U (en) * 2019-05-21 2020-10-09 无锡市凯顺医疗器械制造有限公司 Multi-audio stethoscope listening head
US11766822B2 (en) 2019-08-20 2023-09-26 3M Innovative Properties Company Microstructured surface with increased microorganism removal when cleaned, articles and methods
EP4153060A1 (en) 2020-05-20 2023-03-29 3M Innovative Properties Company Medical articles with microstructured surface
TWI799813B (en) * 2021-03-16 2023-04-21 精國醫療器材有限公司 Quick release structure for diaphragm set of stethoscope
US11523794B2 (en) 2021-04-08 2022-12-13 Chin Kou Medical Instrument Co., Ltd. Quick release structure of diaphragm assembly of stethoscope
US11890130B2 (en) * 2022-06-01 2024-02-06 Jazz Hipster Corporation Pickup diaphragm

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200169A (en) 1978-10-16 1980-04-29 Minnesota Mining And Manufacturing Company Stethoscope
US4461368A (en) * 1982-04-15 1984-07-24 Plourde R Gilles Diaphragm cover for a stethoscope
US4440258A (en) 1982-05-12 1984-04-03 Minnesota Mining & Manufacturing Company Tunable stethoscope
US4770270A (en) 1987-05-13 1988-09-13 Minnesota Mining And Manufacturing Company Stethoscope chestpiece with a sound conveying indexing detent
US4852684A (en) 1987-12-16 1989-08-01 Minnesota Mining And Manufacturing Company Compressible ear tip
US4913259A (en) 1987-12-16 1990-04-03 Minnesota Mining And Manufacturing Company Compressible ear tip
US5111904A (en) 1989-06-02 1992-05-12 Minnesota Mining And Manufacturing Company Molded article having elastomeric mold member used therewith
US4995473A (en) * 1989-12-21 1991-02-26 Minnesota Mining And Manufacturing Company Stethoscope with diaphragm head adapter
US5932849A (en) * 1992-11-13 1999-08-03 Minnesota Mining And Manufacturing Company Stethoscope having microphone therein
US5449865A (en) 1994-01-28 1995-09-12 Minnesota Mining And Manufacturing Company Ear tips having molded-in recesses for attachment to a stethoscope
FR2738141B1 (en) * 1995-08-29 1998-01-02 Boussignac Georges BIAURICULAR STETHOSCOPE WITH ENVIRONMENTAL LISTENING
CH691757A5 (en) * 1997-05-13 2001-10-15 Artemio Granzotto Stethoscope head.
GB2327353A (en) * 1997-07-22 1999-01-27 Shieh Woei Kang A Switch-Frequency Stethoscope
US5945640A (en) * 1997-08-01 1999-08-31 3M Innovative Properties Company Stethoscope chestpiece having two suspended diaphragms
US5931792A (en) * 1997-11-06 1999-08-03 3M Innovative Properties Company Stethoscope chestpiece
US5910992A (en) * 1998-01-21 1999-06-08 Ho; Chi-Sheng Stethoscope with an indexing detent
US6019187A (en) * 1998-03-13 2000-02-01 Appavu; Aramudhan S. Disposable stethoscope cover diaphragm
US6378648B1 (en) 2000-03-06 2002-04-30 Marc S. Werblud Diaphragm assembly for stethoscope chest piece
US6523639B1 (en) * 2002-09-05 2003-02-25 Woei-Kang Shieh Receiver structure of stethoscope
GB0322478D0 (en) * 2003-09-25 2003-10-29 Agahi Arjang Cover device for a medical instrument and apparatus for dispensing same
CA2592849A1 (en) 2004-12-30 2006-07-13 3M Innovative Properties Company Stethoscope with frictional noise reduction
US7424929B1 (en) 2005-09-22 2008-09-16 Stethocap, Inc. Cover for a bell or a diaphragm of a stethoscope
US7757807B1 (en) * 2005-09-22 2010-07-20 Stethocap, Inc. Cover for a bell or a diaphragm of a stethoscope
CN201409934Y (en) * 2009-04-27 2010-02-24 单希杰 Matching structure of membrane and listening head body of two-band stethoscope
CN201409932Y (en) * 2009-04-27 2010-02-24 单希杰 High-elasticity deformable composite membrane
CN103156635A (en) * 2013-03-21 2013-06-19 无锡市凯顺医疗器械制造有限公司 Combined-type stethoscope membrane assembly
CN203244411U (en) * 2013-05-07 2013-10-23 鹿得医疗器械(南通)有限公司 Novel frequency conversion membrane structure
US9770307B2 (en) * 2013-06-21 2017-09-26 Jon Krupnick Cover assembly for a stethoscope and a dispenser kit
CN203710039U (en) 2013-12-12 2014-07-16 刘忠芬 Stethoscope

Also Published As

Publication number Publication date
WO2016022380A2 (en) 2016-02-11
EP3177211B1 (en) 2022-05-18
EP3177211A2 (en) 2017-06-14
JP6773641B2 (en) 2020-10-21
BR112017002097B1 (en) 2022-09-06
CN106659462A (en) 2017-05-10
JP2017526418A (en) 2017-09-14
US10398406B2 (en) 2019-09-03
BR112017002097A2 (en) 2017-11-21
US20180214114A1 (en) 2018-08-02
CN106659462B (en) 2020-10-16
WO2016022380A3 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
US20200000427A1 (en) One piece stethoscope diaphragm
US7806226B2 (en) Stethoscope with frictional noise reduction
JP3626198B2 (en) Electronic stethoscope
JPH04210050A (en) Stethoscope head and adaptor for stetho- scope head
TWI661813B (en) Diaphragm, methods for manufacturing same and stethoscopes provided with same
US10213181B2 (en) Stethoscope diaphragm
JPS58206730A (en) Stethoscope head
US10667782B2 (en) Stethoscope
CN213372091U (en) One-piece diaphragm, ring and earphone head
US20200187894A1 (en) Diaphragm, Methods for Manufacturing Same and Stethoscope Provided with Same
JP3200110U (en) Diaphragm type stethoscope
CN111867476B (en) Stethoscope and method for making same
CN111035406A (en) One-piece diaphragm, ring and earphone head
JPH02172449A (en) Structure of highly analyzable chest piece for stethoscope

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION