US20190267174A9 - Method for Manufacturing a Pole Tube for an Electromagnet - Google Patents
Method for Manufacturing a Pole Tube for an Electromagnet Download PDFInfo
- Publication number
- US20190267174A9 US20190267174A9 US14/571,672 US201414571672A US2019267174A9 US 20190267174 A9 US20190267174 A9 US 20190267174A9 US 201414571672 A US201414571672 A US 201414571672A US 2019267174 A9 US2019267174 A9 US 2019267174A9
- Authority
- US
- United States
- Prior art keywords
- tube
- pole
- ring
- pole tube
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000007765 extrusion coating Methods 0.000 claims abstract description 18
- 238000005266 casting Methods 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- 229910001369 Brass Inorganic materials 0.000 claims description 4
- 229910000906 Bronze Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010951 brass Substances 0.000 claims description 4
- 239000010974 bronze Substances 0.000 claims description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 229910000897 Babbitt (metal) Inorganic materials 0.000 description 5
- 239000011152 fibreglass Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0675—Electromagnet aspects, e.g. electric supply therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/081—Magnetic constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/127—Assembling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
- H01F7/1615—Armatures or stationary parts of magnetic circuit having permanent magnet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
- F16D2048/0221—Valves for clutch control systems; Details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
- F16D2048/0224—Details of conduits, connectors or the adaptors therefor specially adapted for clutch control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/102—Actuator
- F16D2500/1021—Electrical type
- F16D2500/1022—Electromagnet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/108—Gear
- F16D2500/1081—Actuation type
- F16D2500/1085—Automatic transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/50—Problem to be solved by the control system
- F16D2500/51—Relating safety
- F16D2500/5116—Manufacture, testing, calibrating, i.e. test or calibration of components during or soon after assembly, e.g. at the end of the production line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/081—Magnetic constructions
- H01F2007/085—Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material
Definitions
- the present invention relates to a method for manufacturing a pole tube, in particular for a solenoid valve of an automatic transmission in a motor vehicle according to the description herein.
- the present invention also relates to a pole tube for an electromagnet, in particular for a solenoid valve of an automatic transmission in a motor vehicle according to the definition of the species in description herein.
- the present invention relates to electromagnets for solenoid valves according to the definitions of the species in the further description herein.
- Electromagnetically operated pressure control valves are used for this purpose. These pressure control valves may be configured either as seat valves or as slide valves.
- Electromagnetic operation results in an electromagnetic force which is proportional to the coil current and which operates a hydraulic slide valve.
- the electromagnet has a precise force-current characteristic curve having a low variance of the force level.
- the resulting magnetic force should be largely independent of the position of the control piston or of the armature in the slide valve, i.e., the electromagnet should also have what may be a force-distance characteristic curve.
- a force hysteresis which depends on the direction of movement or the direction of current, due to friction in the armature bearing or due to a hysteresis during magnetization of the magnetic circuit materials, should be avoided.
- a high force level of the electromagnets during use of the electromagnetically operated pressure control valves in automatic transmissions is desirable.
- DE 10 2006 011 078 A1 It is believed to be understood from DE 10 2006 011 078 A1 that a two-piece pole tube including a pole core and a bearing sleeve made of a thin nonmagnetic material may be provided to supply a low-friction bearing.
- Patent document DE 10 2006 015 233 B4 discusses a one-piece pole tube, which has a thinly turned location.
- DE 10 2006 015 070 A1 discusses a three-piece pole tube, in which a nonmagnetic ring is welded between two magnetic pole parts to prevent a magnetic short circuit.
- the problem on which the present invention is based is solved by a method for manufacturing a pole tube having two magnetic pole tube components and having a nonmagnetic ring situated axially between the pole tube components for an electromagnet, in particular for a solenoid valve, for an automatic transmission in a motor vehicle.
- the method according to the present invention includes the steps:
- a pole core and a magnet tube may advantageously be used as pole tube components.
- the magnet tube has a through-hole, which may have the same inside diameter as the pole core.
- the pole tube components and the ring may be situated concentrically to a median longitudinal axis of the pole tube or of the centering pin. If the pole tube components and the ring are extrusion coated and/or cast, then a blind hole in the pole core, the through-hole in the magnet tube and the ring form a magnet space to accommodate the armature situated displaceably in the pole tube.
- the form-fitting connection being able to prevent a subsequent movement of the connected components due to the extrusion coating.
- the air gaps present in the magnetic circuit may be minimized due to the concentric configuration.
- the air gap between the armature and the pole core i.e., the radial air gap and the so-called “recess step” and the radial air gap between the movable armature and the magnet tube, which is referred to as a so-called “secondary air gap,” may be minimized.
- a pole tube having small radial air gaps in the “recess step” and in the “secondary air gap” may be manufactured using the method according to the present invention, so that high magnetic forces may be implemented, on the one hand, and a low friction armature bearing may be provided, on the other hand, since it is possible to prevent transverse magnetic forces due to eccentricities in the pole tube components and the nonmagnetic ring. Reworking of the armature bearing surface bordering the magnet space may be avoided since stresses cannot be introduced into the components, in contrast with connecting the pole tube components to the ring with the aid of a thermal joining method, such as welding, for example.
- One advantageous refinement of the method provides that, prior to the concentric configuration and/or centering, grooves are applied to the lateral surface of the ring and/or knurls are applied to the lateral surface of the pole tube components.
- a better connection to the extrusion coating material or casting material is achievable through the knurls and/or grooves. It is advantageous to provide knurls on the magnetic components since knurls have less influence on the magnetic cross section. Grooves, which are advantageously easier to manufacture, may be provided on the nonmagnetic ring.
- pole tube components and a ring be used which have the same inside diameter.
- the pole tube components and the ring may be pushed onto a centering pin easily from above. Therefore, no special tool is required for centering and for concentric configuration of the pole tube components and the ring. If the pole tube components and the ring have the same inside diameter, then an armature bearing surface, which is largely without offset, may be provided.
- a ring which has a smaller inside diameter than the magnetic pole tube components.
- the inside diameter of the ring may be only slightly smaller than the inside diameter of the pole tube components.
- the part of the ring extending in the direction of the magnet space may be used as a protruding friction bearing section for support of an armature in the pole tube.
- An internal collet chuck is advantageously used as a tool for the step of concentric configuration and/or centering since components having different diameters may also be situated concentrically to one another by using this tool.
- a ring made of a bearing metal, in particular brass or bronze may be used in this embodiment. The effects of friction on the bearing location may be minimized by using a ring made of bearing metal.
- a pole tube for an electromagnet in particular for a solenoid valve of an automatic transmission in a motor vehicle having the features of Claim 5 . It is provided accordingly that an external lateral surface of the pole core, of the ring and of its magnet tube is extrusion coated using an extrusion coating or casting material, in particular a plastic. As explained at the outset, the air gaps present in the magnetic circuit may be minimized in the “recess step” and in the “secondary air gap” due to the concentric configuration. Consequently a high magnetic force with a low friction armature bearing at the same time may be provided with a pole tube according to the present invention.
- the ring has two conical sections facing away from one another in the axial direction, which cooperate with conical sections of the pole core and of the magnet tube.
- the conical sections therefore may have the same angle on the ring, on the pole core and on the magnet tube.
- the conical sections may then engage in or mesh with one another and ensure a high radial strength after the form-fitting connection by extrusion coating and/or casting.
- a decentering of the individual pole tube components is avoidable.
- the pole core and the magnet tube have knurls on the exterior lateral surface and/or if the ring has grooves on the exterior lateral surface.
- a better connection to the casting material, for example, to plastic may be achieved by applying knurls and/or grooves.
- the ring is manufactured from a bearing metal, in particular brass or bronze.
- the pole tube, the intermediate piece and the magnet tube may have the same inside diameter.
- the pole tube components and the ring may then be simply pushed onto a centering pin for the manufacturing process.
- the pole tube provides that the intermediate piece has a smaller inside diameter than the pole tube and the magnet tube.
- the section of the ring extending into the magnet space may then be used as a friction bearing section for supporting the armature in the pole tube.
- the problem on which the present invention is based is also solved by an electromagnet for a solenoid valve having the features described herein.
- the electromagnet therefore has a bearing foil between the pole tube and a lateral surface of an armature situated in the pole tube.
- An offset may occur on the armature bearing surface in the concentric configuration of the pole tube components and the ring at the same inside diameters of the components in each case, this offset depending on the joint clearance prior to the extrusion coating and/or casting; the offset in the armature bearing surface may be compensated for by the flexibility of the bearing foil, which may be manufactured from plastic or a plastic-fiberglass.
- an electromagnet for a solenoid valve having the features described herein.
- Such an electromagnet has, on the side which faces away from the pole core, a friction bearing sleeve between the pole tube and a lateral surface of an armature situated in the pole tube.
- the part of the ring extending in the magnet space may be used as the first bearing point of the armature, and the friction bearing sleeve may be used as the second bearing point.
- a coil in particular a copper wire winding
- the extrusion-coated lateral surface of the pole tube may be used here as a coil carrier. Because of the omission of thick-walled coil carriers, more space for the copper wire winding may then be created, so that a higher magnetic force may also be achieved.
- FIG. 1 shows a flow chart of the method according to the present invention.
- FIG. 2 shows the individual method steps of a method according to the present invention for manufacturing a pole tube according to the present invention.
- FIG. 3 shows a first specific embodiment of an electromagnet for a solenoid valve according to the present invention.
- FIG. 4 shows a second specific embodiment of an electromagnet according to the present invention for a solenoid valve.
- FIG. 1 shows a flow chart for the method steps illustrated in FIG. 2 .
- a first step S 100 grooves and/or knurls, not shown in FIG. 2 but indicated in FIGS. 3 and 4 , are applied to a lateral surface of the components shown in FIG. 2 a.
- pole tube 10 has a pole core 12 and a magnet tube 14 .
- a nonmagnetic ring 16 is situated between pole core 12 and magnet tube 14 .
- a second step S 200 magnet tube 14 , ring 16 and pole core 12 are attached to a centering pin 18 shown in FIG. 2 b and are thereby positioned concentrically to one another.
- a step S 300 an external lateral surface 20 of pole core 12 , magnet tube 14 and ring 16 is then extrusion coated and/or cast using extrusion coating or casting material, for example, plastic. This step is also shown in FIG. 2 c .
- FIG. 2 d shows pole tube 10 after step S 300 having an extrusion coating or casting layer 22 applied to exterior lateral surface 20 .
- armature bearing surface 24 may be configured in such a way that small radial air gaps may be achieved between armature bearing surface 24 and an armature, not shown in FIG. 2 , which may be situated displaceably in pole tube 10 . Therefore, a high level of magnetic force may be achieved, on the one hand, and a low-friction armature bearing may be achieved, on the other hand.
- FIG. 3 shows a partial detail of a section through an electromagnet 26 according to the present invention for a solenoid valve having a pole tube 10 according to the present invention in a first specific embodiment.
- a pole tube 10 in electromagnet 26 is situated concentrically to a median longitudinal axis 28 of electromagnet 26 .
- Pole tube 10 includes a pole core 12 and a magnet tube 14 , both of which are made of magnetic material.
- pole tube 10 includes a nonmagnetic ring 16 .
- An extrusion coating or casting layer 22 is molded onto an exterior lateral surface 20 of pole tube 12 , of magnet tube 14 and of ring 16 .
- This extrusion coating or casting layer functions as a winding carrier for a coil 30 situated around it in the form of a copper wire winding.
- Coil 30 is delimited toward the outside by a cylindrical housing 32 .
- housing 32 is sealed with a cover 34 .
- a flow disk 36 is inserted at least partially into housing 32 on the side which faces away from cover
- Flow disk 36 has a central opening (no reference numeral) in which an operating pin 38 for a valve element is guided displaceably.
- Operating pin 38 is operable by an armature 42 supported in pole tube 10 or in opening 40 in armature bearing surface 24 and operable by an armature bolt 44 connected to armature 42 .
- Ring 16 has a conical section 46 , 48 on each of its sides facing pole core 12 and magnet tube 14 .
- Conical section 46 extends at an angle 50 of approximately 30° to median longitudinal axis 28 .
- Conical section 48 also extends at an angle 52 of approximately 30° to median longitudinal axis 28 .
- Pole core 12 also has a conical section 54 on its side which faces ring 16 , the angle of the conical section corresponding approximately to angle 50 of conical section 46 .
- magnet tube 14 also has a conical section 56 on its side which faces ring 16 , the angle of this conical section corresponding approximately to angle 52 of conical section 48 .
- Knurls not shown in the figures are applied to one exterior lateral side of pole core 12 and of magnet tube 14 .
- grooves 58 are applied to the exterior lateral side of ring 16 . Knurls and/or grooves 58 facilitate a connection of pole core 12 , magnet tube 14 and ring 16 to the extrusion coating or casting layer 22 . Due to conical sections 46 , 48 , which cooperate with conical sections 54 , 56 , a high radial strength of pole tube 10 is achievable by using the extrusion coating or casting layer 22 . Pole tube 10 , shown in FIG. 3 , has an approximately constant diameter 60 in the magnet space.
- a bearing foil 62 which is made of plastic or plastic-fiberglass in particular, is provided in the magnet space between pole tube 10 and armature 42 .
- armature 42 may be moved back and forth in the magnet space with a high magnetic force and a low friction, when coil 30 is energized and acts on operating pin 38 via armature bolt 44 .
- FIG. 4 shows a second specific embodiment of electromagnet 26 according to the present invention for a solenoid valve in a second specific embodiment of pole tube 10 according to the present invention.
- the components corresponding to the specific embodiment shown in FIG. 3 are labeled with corresponding reference numerals.
- Ring 16 of pole tube 10 in contrast with ring 16 of pole tube 10 in FIG. 3 , has an inside diameter 64 , which is slightly smaller than diameter 60 , i.e., than the diameter of pole core 12 and magnet tube 14 .
- Ring 16 of pole tube 10 shown in FIG. 4 is made of a bearing metal, in particular bronze or brass.
- a peripheral bearing location 66 may be provided for armature 42 in the magnet space due to its smaller inside diameter 64 .
- a friction bearing sleeve 68 is inserted into magnet tube 14 on the side facing away from pole core 12 .
- This friction bearing sleeve 68 provides a second bearing location 70 for armature 42 . Consequently, a two-point bearing may be provided in a simple manner without any offset between the components of pole tube 10 .
- pole tube 10 shown in FIG. 4 the radial air gaps between armature bearing surface 24 and armature 42 may be still further reduced, since in the exemplary embodiment shown in FIG. 4 , it is possible to omit the configuration of a bearing foil 62 .
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Magnetically Actuated Valves (AREA)
- Electromagnets (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
- The present application claims priority to and the benefit of German patent application no. 10 2013 226 619.7, which was filed in Germany on Dec. 19, 2013, the disclosure of which is incorporated herein by reference.
- The present invention relates to a method for manufacturing a pole tube, in particular for a solenoid valve of an automatic transmission in a motor vehicle according to the description herein. The present invention also relates to a pole tube for an electromagnet, in particular for a solenoid valve of an automatic transmission in a motor vehicle according to the definition of the species in description herein. Furthermore, the present invention relates to electromagnets for solenoid valves according to the definitions of the species in the further description herein.
- In modern automatic transmissions for passenger vehicles, hydraulically operated clutches are used for changing gears. In order for these shifting operations to take place without pressure and not be noticeable by the driver, the hydraulic pressure on the clutches must be adjusted with an extremely high precision according to predefined pressure ramps. Electromagnetically operated pressure control valves are used for this purpose. These pressure control valves may be configured either as seat valves or as slide valves.
- Electromagnetic operation results in an electromagnetic force which is proportional to the coil current and which operates a hydraulic slide valve. For a high pressure precision, it is advantageous if the electromagnet has a precise force-current characteristic curve having a low variance of the force level. In addition, the resulting magnetic force should be largely independent of the position of the control piston or of the armature in the slide valve, i.e., the electromagnet should also have what may be a force-distance characteristic curve. A force hysteresis, which depends on the direction of movement or the direction of current, due to friction in the armature bearing or due to a hysteresis during magnetization of the magnetic circuit materials, should be avoided. Furthermore, a high force level of the electromagnets during use of the electromagnetically operated pressure control valves in automatic transmissions is desirable.
- It is believed to be understood from
DE 10 2006 011 078 A1 that a two-piece pole tube including a pole core and a bearing sleeve made of a thin nonmagnetic material may be provided to supply a low-friction bearing.Patent document DE 10 2006 015 233 B4 discusses a one-piece pole tube, which has a thinly turned location. Furthermore,DE 10 2006 015 070 A1 discusses a three-piece pole tube, in which a nonmagnetic ring is welded between two magnetic pole parts to prevent a magnetic short circuit. - To achieve a high force level of the electromagnetic actuating device, it is important for the radial air gaps between the pole tube and the armature to be configured small, if desired. Furthermore, even extremely minor eccentricities may result in an asymmetrical magnetic field, and therefore, transverse forces, which burden the armature bearing and cause increased friction. It is therefore important to position the components centrally (if desired) with respect to one another.
- The problem on which the present invention is based is solved by a method for manufacturing a pole tube having two magnetic pole tube components and having a nonmagnetic ring situated axially between the pole tube components for an electromagnet, in particular for a solenoid valve, for an automatic transmission in a motor vehicle. Advantageous refinements are described herein. Features important for the present invention are also found in the following description and in the drawings, where the features may be important for the present invention, either alone or in various combinations, without having to mention this again explicitly.
- The method according to the present invention includes the steps:
-
- Concentric configuration and/or centering of the pole tube components and the ring, in particular on a centering pin;
- Form-fitting connection, in particular extrusion coating and/or casting an exterior lateral surface of the pole tube components and of the ring.
- A pole core and a magnet tube may advantageously be used as pole tube components. To accommodate an armature, the magnet tube has a through-hole, which may have the same inside diameter as the pole core. The pole tube components and the ring may be situated concentrically to a median longitudinal axis of the pole tube or of the centering pin. If the pole tube components and the ring are extrusion coated and/or cast, then a blind hole in the pole core, the through-hole in the magnet tube and the ring form a magnet space to accommodate the armature situated displaceably in the pole tube. Due to the concentric configuration and/or centering, a small joint clearance may be achieved prior to extrusion coating, the form-fitting connection being able to prevent a subsequent movement of the connected components due to the extrusion coating. The air gaps present in the magnetic circuit may be minimized due to the concentric configuration. In particular the air gap between the armature and the pole core, i.e., the radial air gap and the so-called “recess step” and the radial air gap between the movable armature and the magnet tube, which is referred to as a so-called “secondary air gap,” may be minimized. Consequently, a pole tube having small radial air gaps in the “recess step” and in the “secondary air gap” may be manufactured using the method according to the present invention, so that high magnetic forces may be implemented, on the one hand, and a low friction armature bearing may be provided, on the other hand, since it is possible to prevent transverse magnetic forces due to eccentricities in the pole tube components and the nonmagnetic ring. Reworking of the armature bearing surface bordering the magnet space may be avoided since stresses cannot be introduced into the components, in contrast with connecting the pole tube components to the ring with the aid of a thermal joining method, such as welding, for example.
- One advantageous refinement of the method provides that, prior to the concentric configuration and/or centering, grooves are applied to the lateral surface of the ring and/or knurls are applied to the lateral surface of the pole tube components. A better connection to the extrusion coating material or casting material is achievable through the knurls and/or grooves. It is advantageous to provide knurls on the magnetic components since knurls have less influence on the magnetic cross section. Grooves, which are advantageously easier to manufacture, may be provided on the nonmagnetic ring.
- Additionally, it is provided that the pole tube components and a ring be used which have the same inside diameter. Thus, the pole tube components and the ring may be pushed onto a centering pin easily from above. Therefore, no special tool is required for centering and for concentric configuration of the pole tube components and the ring. If the pole tube components and the ring have the same inside diameter, then an armature bearing surface, which is largely without offset, may be provided.
- Another advantageous embodiment of the present invention provides that a ring is used which has a smaller inside diameter than the magnetic pole tube components. The inside diameter of the ring may be only slightly smaller than the inside diameter of the pole tube components. The part of the ring extending in the direction of the magnet space may be used as a protruding friction bearing section for support of an armature in the pole tube. An internal collet chuck is advantageously used as a tool for the step of concentric configuration and/or centering since components having different diameters may also be situated concentrically to one another by using this tool. In particular, a ring made of a bearing metal, in particular brass or bronze, may be used in this embodiment. The effects of friction on the bearing location may be minimized by using a ring made of bearing metal.
- The underlying problem on which the present invention is based is also solved by a pole tube for an electromagnet, in particular for a solenoid valve of an automatic transmission in a motor vehicle having the features of Claim 5. It is provided accordingly that an external lateral surface of the pole core, of the ring and of its magnet tube is extrusion coated using an extrusion coating or casting material, in particular a plastic. As explained at the outset, the air gaps present in the magnetic circuit may be minimized in the “recess step” and in the “secondary air gap” due to the concentric configuration. Consequently a high magnetic force with a low friction armature bearing at the same time may be provided with a pole tube according to the present invention.
- One advantageous refinement of the pole tube provides that the ring has two conical sections facing away from one another in the axial direction, which cooperate with conical sections of the pole core and of the magnet tube. The conical sections therefore may have the same angle on the ring, on the pole core and on the magnet tube. During centering and/or concentric configuration of the components, the conical sections may then engage in or mesh with one another and ensure a high radial strength after the form-fitting connection by extrusion coating and/or casting. Thus, even at a high radial load, a decentering of the individual pole tube components is avoidable.
- In addition, it is advantageous if the pole core and the magnet tube have knurls on the exterior lateral surface and/or if the ring has grooves on the exterior lateral surface. As already explained, a better connection to the casting material, for example, to plastic, may be achieved by applying knurls and/or grooves.
- In addition, it is advantageous if the ring is manufactured from a bearing metal, in particular brass or bronze.
- The pole tube, the intermediate piece and the magnet tube may have the same inside diameter. The pole tube components and the ring may then be simply pushed onto a centering pin for the manufacturing process.
- Another advantageous embodiment of the pole tube provides that the intermediate piece has a smaller inside diameter than the pole tube and the magnet tube. When using a ring made of bearing metal, the section of the ring extending into the magnet space may then be used as a friction bearing section for supporting the armature in the pole tube.
- The problem on which the present invention is based is also solved by an electromagnet for a solenoid valve having the features described herein. The electromagnet therefore has a bearing foil between the pole tube and a lateral surface of an armature situated in the pole tube. An offset may occur on the armature bearing surface in the concentric configuration of the pole tube components and the ring at the same inside diameters of the components in each case, this offset depending on the joint clearance prior to the extrusion coating and/or casting; the offset in the armature bearing surface may be compensated for by the flexibility of the bearing foil, which may be manufactured from plastic or a plastic-fiberglass.
- Furthermore, the problem on which the present invention is based is solved by an electromagnet for a solenoid valve having the features described herein. Such an electromagnet has, on the side which faces away from the pole core, a friction bearing sleeve between the pole tube and a lateral surface of an armature situated in the pole tube. When using a pole tube in which the ring has a smaller inside diameter than the pole tube components, the part of the ring extending in the magnet space may be used as the first bearing point of the armature, and the friction bearing sleeve may be used as the second bearing point. Thus a simple two-point bearing which is inexpensive to manufacture is achievable.
- In addition, it is advantageous if a coil, in particular a copper wire winding, is situated around the extrusion-coated lateral surface of the pole tube. The extrusion-coated lateral surface of the pole tube may be used here as a coil carrier. Because of the omission of thick-walled coil carriers, more space for the copper wire winding may then be created, so that a higher magnetic force may also be achieved.
- Additional details and advantageous embodiments of the present invention are derived from the following description, on the basis of which the method shown in the figures and the specific embodiments shown in the figures are described and explained in greater detail.
-
FIG. 1 shows a flow chart of the method according to the present invention. -
FIG. 2 shows the individual method steps of a method according to the present invention for manufacturing a pole tube according to the present invention. -
FIG. 3 shows a first specific embodiment of an electromagnet for a solenoid valve according to the present invention. -
FIG. 4 shows a second specific embodiment of an electromagnet according to the present invention for a solenoid valve. -
FIG. 1 shows a flow chart for the method steps illustrated inFIG. 2 . In a first step S100, grooves and/or knurls, not shown inFIG. 2 but indicated inFIGS. 3 and 4 , are applied to a lateral surface of the components shown inFIG. 2 a. - According to
FIG. 2 ,pole tube 10 has apole core 12 and amagnet tube 14. Anonmagnetic ring 16 is situated betweenpole core 12 andmagnet tube 14. - In a second step S200,
magnet tube 14,ring 16 andpole core 12 are attached to a centeringpin 18 shown inFIG. 2b and are thereby positioned concentrically to one another. In a step S300, an externallateral surface 20 ofpole core 12,magnet tube 14 andring 16 is then extrusion coated and/or cast using extrusion coating or casting material, for example, plastic. This step is also shown inFIG. 2c .FIG. 2d showspole tube 10 after step S300 having an extrusion coating orcasting layer 22 applied to exteriorlateral surface 20.Pole tube 10 according toFIG. 2d need not have an offset onarmature bearing surface 24 formed in the interior ofpole tube 10, i.e., between the inside diameters ofpole core 12,magnet tube 14 andring 16. Due to the high centricity ofpole core 12,magnet tube 14 andring 16,armature bearing surface 24 may be configured in such a way that small radial air gaps may be achieved betweenarmature bearing surface 24 and an armature, not shown inFIG. 2 , which may be situated displaceably inpole tube 10. Therefore, a high level of magnetic force may be achieved, on the one hand, and a low-friction armature bearing may be achieved, on the other hand. -
FIG. 3 shows a partial detail of a section through anelectromagnet 26 according to the present invention for a solenoid valve having apole tube 10 according to the present invention in a first specific embodiment. Apole tube 10 inelectromagnet 26 is situated concentrically to a medianlongitudinal axis 28 ofelectromagnet 26.Pole tube 10 includes apole core 12 and amagnet tube 14, both of which are made of magnetic material. Furthermore,pole tube 10 includes anonmagnetic ring 16. An extrusion coating orcasting layer 22 is molded onto an exteriorlateral surface 20 ofpole tube 12, ofmagnet tube 14 and ofring 16. This extrusion coating or casting layer functions as a winding carrier for acoil 30 situated around it in the form of a copper wire winding.Coil 30 is delimited toward the outside by acylindrical housing 32. On a right side inFIG. 3 ,housing 32 is sealed with acover 34. Aflow disk 36 is inserted at least partially intohousing 32 on the side which faces away fromcover 34. -
Flow disk 36 has a central opening (no reference numeral) in which anoperating pin 38 for a valve element is guided displaceably. Operatingpin 38 is operable by anarmature 42 supported inpole tube 10 or in opening 40 inarmature bearing surface 24 and operable by anarmature bolt 44 connected toarmature 42.Ring 16 has aconical section pole core 12 andmagnet tube 14.Conical section 46 extends at anangle 50 of approximately 30° to medianlongitudinal axis 28.Conical section 48 also extends at anangle 52 of approximately 30° to medianlongitudinal axis 28.Pole core 12 also has aconical section 54 on its side which facesring 16, the angle of the conical section corresponding approximately toangle 50 ofconical section 46. Furthermore,magnet tube 14 also has aconical section 56 on its side which facesring 16, the angle of this conical section corresponding approximately toangle 52 ofconical section 48. Knurls not shown in the figures are applied to one exterior lateral side ofpole core 12 and ofmagnet tube 14. - Furthermore,
grooves 58 are applied to the exterior lateral side ofring 16. Knurls and/orgrooves 58 facilitate a connection ofpole core 12,magnet tube 14 andring 16 to the extrusion coating orcasting layer 22. Due toconical sections conical sections pole tube 10 is achievable by using the extrusion coating orcasting layer 22.Pole tube 10, shown inFIG. 3 , has an approximatelyconstant diameter 60 in the magnet space. For compensation of possible component offsets betweenpole core 12,magnet tube 14 andring 16 due to a joint clearance during the manufacture ofpole tube 10, a bearingfoil 62, which is made of plastic or plastic-fiberglass in particular, is provided in the magnet space betweenpole tube 10 andarmature 42. During operation ofelectromagnet 26, shown inFIG. 3 ,armature 42 may be moved back and forth in the magnet space with a high magnetic force and a low friction, whencoil 30 is energized and acts on operatingpin 38 viaarmature bolt 44. -
FIG. 4 shows a second specific embodiment ofelectromagnet 26 according to the present invention for a solenoid valve in a second specific embodiment ofpole tube 10 according to the present invention. The components corresponding to the specific embodiment shown inFIG. 3 are labeled with corresponding reference numerals.Ring 16 ofpole tube 10, in contrast withring 16 ofpole tube 10 inFIG. 3 , has aninside diameter 64, which is slightly smaller thandiameter 60, i.e., than the diameter ofpole core 12 andmagnet tube 14.Ring 16 ofpole tube 10 shown inFIG. 4 is made of a bearing metal, in particular bronze or brass. Aperipheral bearing location 66 may be provided forarmature 42 in the magnet space due to its smaller insidediameter 64. - Furthermore, a
friction bearing sleeve 68 is inserted intomagnet tube 14 on the side facing away frompole core 12. Thisfriction bearing sleeve 68 provides asecond bearing location 70 forarmature 42. Consequently, a two-point bearing may be provided in a simple manner without any offset between the components ofpole tube 10. Usingpole tube 10 shown inFIG. 4 , the radial air gaps betweenarmature bearing surface 24 andarmature 42 may be still further reduced, since in the exemplary embodiment shown inFIG. 4 , it is possible to omit the configuration of abearing foil 62.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013226619.7A DE102013226619A1 (en) | 2013-12-19 | 2013-12-19 | Method for producing a pole tube, pole tube for an electromagnet and solenoid valve |
DE102013226619.7 | 2013-12-19 | ||
DE102013226619 | 2013-12-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
US20160172091A1 US20160172091A1 (en) | 2016-06-16 |
US10388446B2 US10388446B2 (en) | 2019-08-20 |
US20190267174A9 true US20190267174A9 (en) | 2019-08-29 |
Family
ID=53275127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/571,672 Active 2035-04-05 US10388446B2 (en) | 2013-12-19 | 2014-12-16 | Method for manufacturing a pole tube for an electromagnet |
Country Status (5)
Country | Link |
---|---|
US (1) | US10388446B2 (en) |
JP (1) | JP6534522B2 (en) |
KR (1) | KR102215161B1 (en) |
CN (1) | CN104733172B (en) |
DE (1) | DE102013226619A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015011238A1 (en) * | 2015-08-25 | 2017-03-02 | Thomas Magnete Gmbh | Electromagnet and process for its production |
JP6645505B2 (en) * | 2015-09-30 | 2020-02-14 | アイシン・エィ・ダブリュ株式会社 | Linear solenoid valve and method of manufacturing linear solenoid valve |
DE102016100704A1 (en) * | 2016-01-18 | 2017-07-20 | Hilite Germany Gmbh | A method of manufacturing a pile tube assembly and hydraulic valve having a pile tube assembly |
EP3244425A1 (en) | 2016-02-23 | 2017-11-15 | Rausch und Pausch GmbH | Pole tube for solenoids and magnetic valves, and method and device for producing the same |
DE102016104133A1 (en) * | 2016-03-07 | 2017-09-07 | Svm Schultz Verwaltungs-Gmbh & Co. Kg | Electromagnetic component |
US10871242B2 (en) | 2016-06-23 | 2020-12-22 | Rain Bird Corporation | Solenoid and method of manufacture |
DE102016113135A1 (en) * | 2016-07-15 | 2018-01-18 | Svm Schultz Verwaltungs-Gmbh & Co. Kg | electromagnet |
DE102016117812A1 (en) | 2016-09-21 | 2018-03-22 | Pierburg Gmbh | Electromagnetic actuator and method for making such an electromagnetic actuator |
DE102018000269A1 (en) | 2017-02-25 | 2018-08-30 | Thomas Magnete Gmbh | Electromagnet and method of making the electromagnet |
KR101998479B1 (en) * | 2017-11-08 | 2019-07-09 | 주식회사 현대케피코 | Solenoid valve |
US11503782B2 (en) | 2018-04-11 | 2022-11-22 | Rain Bird Corporation | Smart drip irrigation emitter |
CN108834354B (en) * | 2018-07-10 | 2020-10-30 | 北京小米移动软件有限公司 | Functional module, control method of functional module and terminal |
DE102018128577A1 (en) | 2018-11-14 | 2020-05-14 | Rapa Automotive Gmbh & Co. Kg | POLE TUBE FOR ELECTROMAGNETS, LIFTING MAGNETS AND SOLENOID VALVES AND METHOD FOR THE PRODUCTION THEREOF |
DE102018222614A1 (en) * | 2018-12-20 | 2020-06-25 | Robert Bosch Gmbh | Electromagnetic actuator |
JP2020125800A (en) * | 2019-02-04 | 2020-08-20 | 日本電産トーソク株式会社 | Electromagnetic valve |
DE102019121192A1 (en) * | 2019-08-06 | 2021-02-11 | Rapa Automotive Gmbh & Co. Kg | EMPTY STROKE ADJUSTMENT OF A MAGNETIC ACTUATOR |
JP2021068907A (en) * | 2019-10-28 | 2021-04-30 | フスコ オートモーティブ ホールディングス エル・エル・シーHUSCO Automotive Holdings LLC | System and method for solenoid having permanent magnet |
DE102019218092A1 (en) * | 2019-11-22 | 2021-05-27 | Robert Bosch Gmbh | Electromagnetic actuator |
DE102019218094A1 (en) * | 2019-11-22 | 2021-05-27 | Robert Bosch Gmbh | Electromagnetic actuator |
JP7143835B2 (en) * | 2019-11-28 | 2022-09-29 | 株式会社デンソー | solenoid |
US11721465B2 (en) | 2020-04-24 | 2023-08-08 | Rain Bird Corporation | Solenoid apparatus and methods of assembly |
CN112197048A (en) * | 2020-09-23 | 2021-01-08 | 中国科学院空天信息创新研究院 | Ballast valve structure for aerostat |
DE102020216125A1 (en) * | 2020-12-17 | 2022-06-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Electromagnetic actuator |
DE102022133388A1 (en) | 2022-12-15 | 2024-06-20 | Schaeffler Technologies AG & Co. KG | Method for producing an electromagnet, electromagnet and solenoid valve with an electromagnet produced according to the method |
DE102022133393A1 (en) | 2022-12-15 | 2024-06-20 | Schaeffler Technologies AG & Co. KG | Method for producing an electromagnet, electromagnet and solenoid valve with an electromagnet produced according to the method |
FR3145832A1 (en) * | 2023-02-14 | 2024-08-16 | Valeo Embrayages | Linear electromagnetic actuator |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH655984A5 (en) | 1982-04-07 | 1986-05-30 | Sulzer Ag | SOLENOID VALVE WITH POWER AMPLIFIER. |
JP2690984B2 (en) | 1987-12-29 | 1997-12-17 | 日立建機株式会社 | solenoid valve |
JPH07190236A (en) * | 1993-12-28 | 1995-07-28 | Rinnai Corp | Solenoid valve for absorption type refrigerating device |
DE19821741C2 (en) | 1998-05-14 | 2002-02-07 | Elektroteile Gmbh | Magnetic armature bearings, in particular for proportional magnets and switching magnets in hydraulic or pneumatic operation and process for its manufacture |
DE19907732B4 (en) | 1999-02-23 | 2008-08-28 | Bosch Rexroth Aktiengesellschaft | Hydraulic solenoid valve |
JP2001143924A (en) | 1999-11-15 | 2001-05-25 | Aisin Seiki Co Ltd | Electromagnet |
DE10119939A1 (en) * | 2001-04-23 | 2002-10-24 | Mannesmann Rexroth Ag | Magnet coil arrangement e.g. for hydraulic valve, has sealing element between connector and tubular metal part |
US7033156B2 (en) * | 2002-04-11 | 2006-04-25 | Luka Gakovic | Ceramic center pin for compaction tooling and method for making same |
JP2003314731A (en) | 2002-04-22 | 2003-11-06 | Toyoda Mach Works Ltd | Solenoid valve |
JP3696195B2 (en) | 2002-10-31 | 2005-09-14 | 三菱電機株式会社 | solenoid valve |
DE102006015070A1 (en) | 2006-01-17 | 2007-07-19 | Robert Bosch Gmbh | Pole tube for hub magnet of hydraulic valve, has intermediate piece that is thermally connected with pole piece and tube piece such that the intermediate piece with pole and tube pieces form connection region |
DE102006011078B4 (en) | 2006-03-08 | 2011-05-05 | Thomas Magnete Gmbh | Solenoid and method for its production |
DE102006015233B4 (en) | 2006-03-30 | 2009-04-16 | Eto Magnetic Gmbh | Electromagnetic actuator |
DE102007036310A1 (en) * | 2007-07-31 | 2009-02-05 | Hydac Electronic Gmbh | safety device |
DE102008015415B4 (en) * | 2008-03-20 | 2012-08-23 | Thyssenkrupp Bilstein Suspension Gmbh | Damping valve for a hydraulic vibration damper |
DE102008029979B4 (en) * | 2008-06-24 | 2024-02-29 | Robert Bosch Gmbh | Actuating magnet with anti-adhesive disc |
CN101614277B (en) * | 2009-07-30 | 2013-01-16 | 中国一拖集团有限公司 | Electrical control unit of tractor dynamic power shift gear box |
CN201689755U (en) | 2009-12-11 | 2010-12-29 | 三烨企业有限公司 | Induction electromagnet of zero-differential-pressure electromagnetic valve |
CN201818876U (en) | 2010-08-31 | 2011-05-04 | 熊颖申 | Novel alternating-current electromagnetic valve |
CN202001140U (en) | 2010-11-11 | 2011-10-05 | 温伟光 | Novel electronic control carburetor solenoid valve |
CN102788186B (en) | 2012-07-17 | 2014-10-29 | 宁波市鄞州通力液压电器厂 | Proportional electromagnet for controlling position of valve core of hydraulic valve |
-
2013
- 2013-12-19 DE DE102013226619.7A patent/DE102013226619A1/en active Pending
-
2014
- 2014-12-16 US US14/571,672 patent/US10388446B2/en active Active
- 2014-12-17 KR KR1020140182157A patent/KR102215161B1/en active IP Right Grant
- 2014-12-18 CN CN201410785837.1A patent/CN104733172B/en active Active
- 2014-12-19 JP JP2014258056A patent/JP6534522B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR102215161B1 (en) | 2021-02-16 |
KR20150072355A (en) | 2015-06-29 |
CN104733172A (en) | 2015-06-24 |
DE102013226619A1 (en) | 2015-06-25 |
CN104733172B (en) | 2020-08-04 |
JP2015119185A (en) | 2015-06-25 |
US10388446B2 (en) | 2019-08-20 |
US20160172091A1 (en) | 2016-06-16 |
JP6534522B2 (en) | 2019-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10388446B2 (en) | Method for manufacturing a pole tube for an electromagnet | |
US8854164B2 (en) | Pressure-regulating valve | |
US11315715B2 (en) | Electromagnetic actuator | |
US11846365B2 (en) | Solenoid valve | |
US20140225690A1 (en) | Linear solenoid | |
US8994484B2 (en) | Linear solenoid | |
US11562842B2 (en) | Electromagnetic actuating device and method for manufacturing an electromagnetic actuating device | |
US20200278045A1 (en) | Solenoid valve | |
US20200096130A1 (en) | Linear actuators for pressure-regulating valves | |
US20220128166A1 (en) | Solenoid valve | |
US6922124B2 (en) | Electromagnetic drive device | |
US20050178451A1 (en) | Solenoid valve | |
JP2009174623A (en) | Solenoid valve | |
US11990275B2 (en) | Electromagnetic actuator device and use of such a device | |
US20230400117A1 (en) | Solenoid valve | |
US11201005B2 (en) | Solenoid having inverse tapered armature for solenoid-actuated valve | |
US11867311B2 (en) | Electromagnetic actuator | |
WO2021193356A1 (en) | Solenoid valve | |
US20230013945A1 (en) | Solenoid valve | |
JP2017183673A (en) | Cartridge assembly for solenoid valve, solenoid for solenoid valve, and solenoid valve | |
JP2009203992A (en) | Solenoid valve | |
JP2016022513A (en) | Connecting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OTT, CHRISTOF;SCHUDT, KLAUS;MOSER, FREDERICH;SIGNING DATES FROM 20150105 TO 20150113;REEL/FRAME:034999/0293 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |