US20190225304A1 - Dual cavity air lubrication system - Google Patents

Dual cavity air lubrication system Download PDF

Info

Publication number
US20190225304A1
US20190225304A1 US16/329,488 US201716329488A US2019225304A1 US 20190225304 A1 US20190225304 A1 US 20190225304A1 US 201716329488 A US201716329488 A US 201716329488A US 2019225304 A1 US2019225304 A1 US 2019225304A1
Authority
US
United States
Prior art keywords
air
cavity
cavities
pipe
lubrication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/329,488
Other languages
English (en)
Inventor
Noah SILBERSCHMIDT
Johannes Johannesson
Panayiotis PAPPAS
Dominic TASKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SilverStream Technologies BV
Original Assignee
SilverStream Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SilverStream Technologies BV filed Critical SilverStream Technologies BV
Publication of US20190225304A1 publication Critical patent/US20190225304A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a dual cavity air lubrication system comprising a first and a second air cavity which are arranged for providing air to an air lubricating layer between a substantially flat bottom of a vessel and the water flowing under the bottom as the vessel is moving through the water.
  • the invention also relates to a vessel, in particular a displacement vessel, provided with a number of such air lubrication systems.
  • JP 2011-011699A describes a microscopic bubble generator which discharges bubbles to a submerged surface of a vessel's hull from a number of discharge ports arranged at different height levels in the submerged surface to reduce the friction resistance of the hull.
  • the bubble generator comprises an air blower in which a pair of three-lobe displacement rotors arranged in a blower casing are rotatable by a drive motor; an outlet pipe connected on the side of a discharge port thereof and which is connected to an air header manifold arranged at the water line.
  • a diffuser pipe unit is connected to the distal end of a branch pipe that branches from the outlet pipe via the air header manifold. At a position spaced apart from the air header manifold and close to the hull, the diffuser pipe unit and/or branch pipes are provided with check valves that are specifically adapted for preventing ingress of water into the branch pipes.
  • WO 2013/125951 schematically shows in FIGS. 1 and 2 a side view of a vessel and a bottom view thereof respectively, said vessel having a hull, wherein at a bottom surface of said hull two rows of cavities are provided, each row having five cavities arranged next to each other across the width of the vessel. Further shown are a compressor which takes in atmospheric air through a duct and supplies air to a cavity. When the vessel is sailing through the water, the moving water across a water air-interface in the cavity results in a Kelvin-Helmholtz mixing effect and forms air bubbles which escape via a bubble outflow region at the rear end of the cavity and towards the aft of the hull to cover a portion of the bottom surface.
  • WO 2015/133900 A1 proposes providing a compressor for each cavity or pair of cavities on opposite sides of the centre line of the hull at a predetermined length position, for injecting air into the cavity at a pressure substantially corresponding to the hydrostatic pressure in each cavity.
  • the air pressure within one cavity may differ significantly from the air pressure within another cavity that is arranged at a different position. For instance, during roll of the ship, movement of a wave across one or both cavities, and/or when one of the cavities is submerged in the water at one depth while the other located at a different depth, the pressures in the cavities will differ significantly. This can lead to collapse of the air lubricating layer at one or both of the cavities.
  • the present invention provides a dual cavity air lubrication system comprising: a first air cavity and a second air cavity spaced apart therefrom, wherein said first and second air cavity are adapted for providing an air lubricating layer between the hull of a vessel and the water flowing under the hull as said vessel is moving through the water; an air flow splitter comprising an air inlet pipe which branches into a first branch pipe which is connected to said first air cavity, and a second branch pipe which is connected to said second air cavity; an air compressor connected to said air inlet pipe for supplying air to both said first and second air cavity; wherein said system further comprises: a first passive valve arranged in said first branch pipe, and a second passive valve arranged in said second branch pipe, wherein said branch pipes are in fluid communication with each other upstream from their respective valves, and wherein said valves are adapted for regulating the flow of air to said air cavities to compensate for difference in air pressure in said cavities caused by a relative change in level of the cavities due to roll
  • the passive valves cause a back pressure in the air inlet pipe as well as a pressure drop across the valves in the respective branch pipes, so that even under rough sailing conditions in which there are sudden relative changes between the level at which the first air cavity is submerged in the water and the level at which the second air cavity is submerged in the water, the pressure at the upstream side of each valve, i.e. at the side closest to the air inlet pipe along the direction of the air flow of the air inlet pipe to the branch pipe, will be generally be substantially higher than the pressure at the downstream side of the valve. Due to the drop in air pressure caused by both the valves a more even distribution of air to both cavities is achieved even if different hydrostatic pressures are present in each cavity. Similarly, the stability of the air flow from the air inlet pipe through each of the respective valves and air cavities is improved, even during roll and heel of the vessel.
  • the corresponding valve When the air pressure in at least one of the air cavities increases such that the pressure in that air cavity exceeds the air pressure in the air inlet pipe, the corresponding valve will inhibit or block flow of air from that air cavity past the valve. This prevents air from being pushed out of the air cavity and back into the air inlet pipe, and further improves the stability of the air flow to the air cavity, as a reversal of the air flow is substantially prevented.
  • the air pressure in both the first and second air cavity exceeds that of the air inlet pipe. A likely collapse of the air lubricating layer at an air cavity when the air flow is directed from the air cavity through the valve back towards the air inlet pipe would, is thus prevented.
  • valves are passive, i.e. the degree of opening/closing of the valves during operation of the system depends only on the pressure/flow rate in the respective branch pipes, the system can respond sufficiently fast to sudden changes in air pressure in the air cavities to substantially prevent collapse of the air lubrication layer at both cavities.
  • valves instead of passive valves, valves are used which are actively controlled, e.g. when opening and closing of the valves is powered by a motor in dependence on sensor measurements or when the valves are manually operated by personnel in dependence on measured differences in air pressure between the air cavities, opening and closing of the valves is not carried out fast enough to prevent collapse of the air lubricating layer at one or both of the cavities when the vessel is rolling.
  • each valve in one of the branch pipes inhibits or block flow of air there through thus depends on which portion of the total air flow from the air inlet pipe passes through that valve, and consequently also on which portion of the total air flow from the air inlet pipe passes through the valve in the other branch pipe.
  • each of the valves aids in providing a more even flow of air to its respective cavity, regardless of whether the air pressure in both air cavities is below the air pressure in the air inlet pipe, or the air pressure in one the air cavities is above the air pressure in the air inlet pipe.
  • the present invention thus provides a compact and relatively low cost air lubrication system in which both air cavities are supplied with air by the same air compressor, while preventing pressure fluctuations due to roll or heel of the vessel in one cavity from affecting the operation of the other cavity or cavities.
  • the invention can easily be extended to comprise a number of air cavities greater than two, e.g. to four or six air cavities, as long as the air flow splitter comprises a same number of branch pipes as there are air cavities, each branch pipe having a corresponding passive valve arranged therein, and as long as the branch pipes at their ends upstream of the valves are in fluid communication with each other.
  • each valve is arranged at a distance, along the direction of flow from the air inlet pipe to the branch pipe in which the valve is arranged, in the range of 0.2-2.5 m, preferably 0.3-1 m, more preferably 0.4-0.6 m from the point where the air inlet pipe branches into said branch pipe.
  • This ensures that the direct flow path between the valves is relatively short, further improving the responsiveness of the system.
  • the greater the distance of the valves, in particular the upstream sides thereof, from the downstream end of the air inlet pipe the greater the length of the flow path between two valves, and consequently the greater the delay in the regulation of flow of air to the air cavities to compensate for difference in air pressure in said air cavities. Too large a delay may result in collapse of the air lubricating layer generated by one or both of the air cavities. The delay is prevented from becoming too large by keeping this distance relatively small.
  • this distance is substantially the same.
  • first and second valves are non-return valves or leaky non-return valves arranged for substantially blocking flow of air from the respective air cavities to the air inlet pipe.
  • Non-return valves have a predetermined opening pressure, i.e. open when the pressure at their downstream side is smaller than the pressure at their upstream side by at least said predetermined opening pressure, and otherwise are closed.
  • a suitable value for the opening pressure has been found to be 20 mbar, so that the non-return valves are open when the pressure at their respective downstream sides is at least 20 mbar lower than at their upstream sides.
  • the non-return valves may be selected for instance from the group of spring loaded check valves, clapper type non-return valves, diaphragm check valves, and so on.
  • the first and second non-return valves are both the same kind of valve with a same opening pressure, preferably a spring loaded wafer check valve with an opening pressure of 20 mbar, it is possible to use a different kind of valve in the first branch pipe than in the second branch pipe instead.
  • Leaky non-return valves also open when the pressure at their downstream side is smaller than the pressure at their upstream side by at least a predetermined opening pressure, but otherwise, as long as the pressure at the downstream side is lower than the pressure at the upstream side, close only to an extent that still allows some air to flow through the valve.
  • the use of leaky non-return valves thus results in a smoother change in air flow rate to the air cavities when compared to regular non-return valves.
  • said first and second valves are pressure-differential regulator valves adapted for causing a predetermined substantially constant pressure drop across the valve, preferably a pressure drop of 20 mbar or more. More preferably the predetermined pressure drop is between 100 and 200 mbar, corresponding to a pressure difference between two air cavities when one of the cavities is submerged between 1 and 2 m deeper in the water than the other cavity.
  • a pressure-differential regulator valve in general increases an aperture through which it allows air to flow when the pressure differential between the outlet and the inlet of the valve increases, and reduces the aperture when the pressure differential decreases. When the pressure differential between the inlet and outlet is constant, the valve allows some air to flow through while causing the predetermined pressure drop. The use of pressure differential valves thus results in a more constant pressure drop across each valve and consequently a more constant flow rate to the air cavities.
  • first and second valves are each adapted for regulating a pressure drop at its respective branch pipe such that there is a pressure drop of at least 20 mbar, preferably at least 100 mbar, from an inlet side of said valve to an outlet side of said valve when the compressor supplies air to said air inlet pipe to generate the air lubricating layer.
  • a pressure drop of at least 20 mbar preferably at least 100 mbar
  • the pressure at the upstream side of the valve will be higher than at the downstream side.
  • air may then still flow from the higher pressure side of the valve to the lower pressure portion of the valve.
  • each of the valves is further adapted for regulating said pressure drop such that it is less than or equal to 200 mbar.
  • said first and second valve are each biased towards allowing flow of air through said valve in a downstream direction of its respective branch pipe and against allowing flow of air through said valve in the opposite direction.
  • Each of the valves thus more easily allows flow of air in the downstream direction when the pressure at its upstream side is higher than at its downstream side by a certain amount, than in the upstream direction when the pressure at its downstream side is higher than at its upstream side by the same amount.
  • Such biasing may be achieved in a manner commonly known in the art, e.g. by using a spring, and/or using elastic valve membranes.
  • said first and second branch pipe each comprise a restricted pipe section having a smaller cross-sectional flow area than said air inlet pipe, wherein said passive valve is arranged in the first restricted pipe section and said second passive valve is arranged in the second restricted pipe section.
  • the first and second restricted pipe sections cause a further drop in pressure in the air flow from the air inlet pipe to downstream ends of the branch pipes. The combined drop in air pressure caused by each restricted section and the corresponding valve placed therein helps to provide a more even distribution of air to both cavities.
  • a passive valve typically has a minimum flow rate that is required to keep the valve open in a stable position.
  • the cross-sectional flow area is larger for the air inlet pipe than for the respective restricted sections, the flow rate of air flowing in a downstream direction, i.e. air flowing from the air inlet to the downstream ends of the branch pipes, is increased at the restricted sections.
  • This enables each valve in a respective restricted section to allow air to pass through from the air inlet pipe to its air cavity even if the flow rate of the air stream at the air inlet pipe is relatively low.
  • a stable and reliable operation of the valves can thus be achieved even at low rpm counts of the air compressor which supplies air to the air inlet pipe.
  • said first and second branch pipes each further comprise an outlet section downstream from its restricted section and connected thereto and having a larger cross-sectional flow area than said restricted section.
  • the restricted section thus throttles air flow from the outlet section of a branch pipe to the air inlet pipe and/or to the other branch pipe. This substantially reduces propagation of sudden changes in air pressure in the air cavity to beyond the restricted section.
  • valves used are non-return valves
  • pressure fluctuations originating in one cavity are substantially isolated from the other cavity by the non-return valves which only open when the respective pressures at their upstream sides are greater by at least the predetermined opening pressures than the pressures at their downstream sides.
  • the restriction in cross-section flow area from an outlet section to its corresponding restricted section and a resulting increase in air flow rate from the outlet section to the corresponding non-return valve enables faster closing of the valve if the valve does not operate at at least its opening pressure.
  • said cross-sectional flow area of said first and/or second outlet section is smaller than that of the air inlet pipe, preferably by a factor 2 or more, more preferably by a factor between 2 and 3.5, and most preferably by a factor of about 2.25.
  • the air inlet pipe and the outlet sections all have circular cross-sectional flow areas, and the inner diameter of the air inlet section is about 15.24 cm (i.e. about 6 inches), and the diameter of both outlet sections is about 10.16 cm (about 4 inches), then the cross-sectional flow area of each outlet section would be about 2.25 times less than that of the air inlet pipe.
  • the diameters are herein provided purely by way of example. Depending on the desired rate of air flow there through pipes having other cross-sectional flow areas or other diameters may be used instead.
  • the cross-sectional flow area of said first and/or second restricted pipe section is smaller by a factor 3 or more than that of the air inlet pipe, more preferably by a factor between 3 and 8, most preferably by a factor 4.
  • the air inlet pipe and the restricted sections all have circular cross-sectional flow areas, and the inner diameter of the air inlet section is about 15.24 cm (i.e. about 6 inches), and the inner diameter of both restricted sections is about 7.62 cm (i.e. about 3 inches) then the cross-sectional flow area of each restricted section would be about 4 times less than that of the air inlet pipe.
  • said first and second branch pipe each further comprise a pipe section which extends from said air inlet pipe to the respective restricted section, said pipe section having a larger cross-sectional flow area than said restricted section, preferably substantially equal to said cross-sectional flow area of the air inlet pipe.
  • the air inlet pipe preferably transitions smoothly into the first and second branch pipe.
  • the air inlet pipe and the pipe sections of the first and second and branch pipes may each have an inner diameter of 15.24 cm.
  • each branch pipe is arranged at distance of less than 5 m, preferably less than 3 m, most preferably less than 1.5 m from the connection of said branch pipe to its corresponding air cavity.
  • Any fluctuation in air pressure originating from an air cavity will thus propagate only a short distance before reaching the restricted section and/or before being blocked from propagating any further by the non-return valve arranged therein.
  • the isolation of pressure fluctuations in the cavities is of particular importance when the air cavities are arranged close to each other. In prior art dual cavity air lubrication systems such short distances were undesirable as at these distances a sudden pressure in one cavity would almost immediately result in a sudden pressure change in the other cavity.
  • cross-sectional flow area of said branch pipes and/or said restricted sections thereof has a circular contour, preferably wherein the cross-section flow area of said air inlet pipe has a circular contour.
  • the dual cavity air lubrication system further comprises an adjustable valve in said air inlet pipe.
  • the degree to which the adjustable valve is open or closed is set manually by an operator, or is controlled using a motor or other actuator that is not powered by the flow of air through the air inlet pipe.
  • the adjustable valve can be used to set the air pressure for the air cavities that are fluidly connected to the respective branch pipes.
  • the adjustable valve is typically closed so that ingress of water and water vapour to the air compressor is prevented.
  • opening of one or both of the non-return valves may be substantially prevented as well.
  • first branch pipe and said second branch pipe each have a length of less than 10 m from their end proximate to the air splitter section to the ends connected to their respective air cavity.
  • the relatively short length of each branch pipe reduces the total length of the required piping.
  • the length of each branch pipe is preferably is less than 5 m to keep the total length of piping low.
  • said first branch pipe and said second branch pipe are substantially of equal shape and length.
  • the air flow splitter is provided with a heat insulating material along at least half the length thereof. This protects personnel from burns if they accidentally come in into contact with the air inlet pipe and/or branch pipes, which may become very hot (>60 degrees Celsius) since the air compressor and the air supplied thereby typically heat up significantly.
  • the air flow splitter may comprise or be made of galvanized steel, making it less susceptible to corrosion. This is especially important when the system is used in a salt water environment.
  • the first air cavity may be defined by a first chamber and the second air cavity may be defined by a second chamber separate from said first chamber, wherein each chamber is sealed off from the other, e.g. by an air-tight wall, so that fluid communication between the air cavities can substantially only take place through the air flow splitter.
  • said first and second air cavities each comprise: sidewalls and a top wall defining said cavity with an opening situated in an interface plane that is transversal to the sidewalls, the opening having a front end and a rear end seen in the length direction of the cavity, an air inlet spaced from the opening and connected to one of said branch pipes for introducing air into the cavity, wherein the length of the opening of the cavity is between 2 and 10 m, and the distance of the top wall from the interface plane is between 0.2 m and 0.5 m.
  • a compact air lubrication system is provided in which two air cavities are supplied with air from a single air inlet pipe, and wherein the dual cavity air lubrication system is arranged for dampening sudden changes in air pressure in each air cavity.
  • the more stable air pressure in each air cavity results in an improved stability of the air lubricating layer and reduces the chance of the air lubricating layer at one or both of the cavities collapsing.
  • said air compressor is the only air compressor that is connected to said air inlet pipe for supplying air to both said first and second air cavity.
  • the air inlet pipe is preferably directly connected to the air compressor, i.e. without other branches or pipes between the air compressor and the air inlet pipe.
  • the present invention furthermore provides a vessel, or displacement vessel, comprising a hull having a centre line, opposing sides and a substantially flat bottom, the vessel having a number of air lubricating systems as described herein, with the air cavities of the air lubricating systems debouching in the flat bottom.
  • a vessel or displacement vessel, comprising a hull having a centre line, opposing sides and a substantially flat bottom, the vessel having a number of air lubricating systems as described herein, with the air cavities of the air lubricating systems debouching in the flat bottom.
  • the vessel is in a horizontal orientation, the air cavities of each air lubrication system thus debouch at substantially the same level in the water. Consequently, for each air lubrication system, the pressure difference, if any, between the air cavities will typically be small enough to be compensated by the regulating valves. It is particularly undesirable to arrange air cavities of an air lubrication system at significantly different levels, e.g.
  • the cavities of the dual cavity air lubricating systems each have a length, a distance of the top wall from the interface plane (Hc) and a width (W), wherein the ratio Lc/Hc is in the range of 7:1 to 13:1, the ratio W/H is in the range of 1.3:1 to 2.5:1 and the ratio Lc/W is in the range of 3.5 to 1 to 7:1.
  • the invention provides a reduced drag of the vessel when the air lubricating systems are operation, with each of the air lubrication systems adapted for dampening sudden changes in air pressure in each of the air cavities connected thereto, resulting in generation of a more stable air lubrication layer
  • said first and second air cavity of one or more of said dual cavity air lubricating systems are arranged adjacent to each other along the width of the hull.
  • This embodiment may be advantageously used when the distance between the first and second cavities is relatively small and allows a particularly compact arrangement.
  • the first and second air cavities of a majority or all of the dual cavity air lubricating systems of the vessel are arranged in this manner.
  • the vessel accommodates said first and said second air cavities of each of said air lubricating systems on opposite sides of the center line at a predetermined length position.
  • this arrangement of air cavities it is generally advantageous to supply substantially a same air flow to each of the cavities, which is easily done using the dual cavity air lubrication system.
  • This substantially same air flow may be regulated for both cavities at the same time, by adjusting the adjustable valve and/or by adjusting the air flow output by the compressor.
  • the vessel accommodates said first and said second air cavities of each of said air lubricating systems on a same side of the centre line at a predetermined length position, and wherein said first air cavity neighbours said second air cavity.
  • the branch pipes can thus be kept particularly short.
  • FIG. 1 shows a schematic side view of a vessel comprising an air lubrication system according to the invention
  • FIG. 2 shows an arrangement of air cavity pairs near the bow of a ship
  • FIGS. 3A and 3B respectively show a schematic cross-sectional view and a top view of an air flow splitter of a dual cavity air lubrication system according to the invention
  • FIG. 3C schematically shows a cross-sectional view of the cavities 54 , 54 ′ of FIG. 2 connected to an air flow splitter of FIGS. 3A and 3B ,
  • FIG. 4A-4D respectively show cross-sectional flow areas through lines A-A, B-B, C-C- and D-D of FIG. 3B ,
  • FIG. 5 shows a graph of a pressure drop across the non-return valves in the dual cavity air lubrication supply system according to the invention
  • FIG. 6 shows a schematic view of a dual cavity air lubrication system according to the invention
  • FIG. 7 shows a schematic view of the opening of an air cavity of FIG. 6 , seen from the bottom of the vessel.
  • FIG. 1 shows a vessel 1 having a length Lv of between 20 m and 500 m, and a width between 5 m and 75 m.
  • the vessel 1 may have a water displacement of at least 10000 ton, preferably at least 50000 ton and is an ocean going vessel.
  • the vessel 1 has a hull 4 with a bow 2 , a stern 3 , sides 5 a substantially flat bottom 6 and a propeller 10 .
  • Air lubricating cavities 7 , 8 and 7 ′, 8 ′ that are open in the plane of the bottom 6 , are distributed along the bottom 6 to generate a layer of bubbles 9 travelling towards the stern 3 , along the flat bottom 6 .
  • a single compressor 11 is connected via an air flow splitter to a pair of air cavities 7 , 8 for supplying air to a first air cavity 7 and a second cavity 8 of said pair at an hydrostatic pressure inside each cavity at the prevailing draught level of the vessel.
  • the compressor 11 , air cavities 7 , 8 and air flow splitter all are part of a dual cavity air lubrication system 100 according to the invention.
  • a single compressor 12 is connected via another air flow splitter to a pair of cavities 7 ′, 8 ′ for supplying air to a first air cavity 7 ′ and second air cavity 8 ′ of said pair.
  • the air compressor 12 , air flow splitter and cavities 7 ′, 8 ′ all are part of another dual cavity air lubrication system 100 ′ according to the invention which is of a similar construction as the dual cavity air lubrication system 100 .
  • Each of the compressors 11 , 12 is further connected to a respective air inlet duct 13 for taking in ambient air.
  • the compressors 11 , 12 are controlled by a controller 15 , for regulating the air supply in dependence of the sailing speed, sea state and during starting and stopping.
  • FIG. 2 show that a number of cavity pairs 54 , 54 ′- 59 , 59 ′ is distributed along lines running from the centre line 50 to sides 51 , 52 of the hull 6 when going in a rearward direction.
  • Each cavity pair comprises a first cavity 54 - 59 and a second cavity 54 ′- 59 ′, wherein each cavity pair is part of a dual cavity air lubrication system according to the invention.
  • the cavities of each pair are connected to only a single air compressor, e.g. cavities 54 , 54 ′are part of a dual cavity air lubrication system in which the air is supplied to both cavities using only one air compressor, cavities 55 , 55 ′ are part of another dual cavity air lubrication system , and so on.
  • Two central cavities 53 , 53 ′ of one of the pairs are provided in proximity to the centre line 50 .
  • the centre line of the cavities 54 - 59 ′ is at a slight angle with respect to the centreline 50 .
  • the front part 71 is located closer to the bow 2 of the hull than the rear part 72 of the cavity ahead. This ‘overlap’ provides an even distribution of air bubbles across the flat bottom 6 .
  • Each cavity pair is connected to only a single air compressor of a dual cavity air lubrication system according to the present invention.
  • an multiple cavity air lubrication system having a greater number of air cavities which are connected to only one common air compressor, e.g. in such a case cavities 54 , 54 ′ and 55 , 55 ′ would all be connected to the same air compressor and supplied with air using only that single air compressor.
  • FIG. 3A schematically shows a cross-sectional view of a portion of a dual cavity lubrication system 100 according to the present invention, in which the air compressor and the air cavities are not shown.
  • the system 100 comprises an air flow splitter 101 having an air inlet pipe 102 which branches into a first branch pipe 110 and a second branch pipe 120 at branch point 104 .
  • the first branch pipe 110 and the second branch pipe 120 comprise pipe sections 111 and 121 respectively, which extend from just downstream of the air inlet pipe 102 to directly upstream of respective restricted sections 112 and 122 .
  • the flow of air indicated by arrows in Fig. 3 A, can thus travel from the air inlet pipe 102 through pipe sections 111 , 121 before entering the restricted pipe sections 112 , 122 .
  • the air lubrication systems 100 is further provided with an adjustable valve 103 which can be closed when the system is not in operation, i.e. when no compressed air is provided by the compressor 11 of the air lubrication system 100 .
  • the branch pipes 110 , 120 are each further provided with a passive valve 115 , 125 adapted for substantially blocking flow of air from the branch pipes 110 , 120 , in particular from pipe outlet sections 117 , 127 at the downstream ends thereof, back to the air inlet pipe 102 .
  • the passive valves also substantially block flow of air directed from one of the pipe outlet sections 117 , 127 to the other 127 , 117 .
  • the passive valves 115 , 125 shown are non-return valves, leaky non-return valves may be used instead.
  • Passive valve 115 is arranged, when seen along the direction of flow from the point 104 where the air inlet pipe 102 branches into branch pipe 110 , at a distance s 1 of 0.5 m from the branch point 104 .
  • passive valve 120 passive valve 115 is arranged, when seen along the direction of flow from the point 104 where the air inlet pipe 102 branches into branch pipe 120 , at a distance s 2 of 0.5 m from the branch point 104 .
  • the maximum length of a flow path between air in the first pipe section 111 and air in the second pipe section 121 is thus less than or equal to the sum of the distances s 1 ,s 2 .
  • Such a relatively short maximum length for the flow path between the valves 115 , 125 allows particularly fast response times for the air lubrication system of the invention. It has been found that if the flow path between the regulating valves 115 , 125 is considerably larger, e.g. greater than 5 m, the delay in response of the valves to roll or heel of the vessel due to the inertia of air in the first and second pipe sections 111 , 121 increases significantly, even to the extent that lag between roll or heel of the vessel and regulation of the airflow to the air lubrication chambers by the valves may result in collapse of the air lubrication layer at one or more of the air cavities.
  • the present invention thus improves the stability of the air supply to two air cavities while the air supply for both cavities originates from a single air inlet pipe that is to be connected to only a single air compressor. For instance when the vessel is rolling or when only one of the cavities is hit by a wave, the air lubrication system can thus at least partially compensate for temporary differences in pressure between both air cavities and prevent collapse of the air lubricating layer at each of the cavities.
  • the restricted pipe sections 112 , 122 transition into the respective outlet sections 117 , 127 which are arranged to be connected to the air cavities.
  • the outlet sections 117 , 127 each have a larger cross-sectional flow area than the corresponding restricted section (see also FIGS. 3B and 4A-4D ), so that any air stream that is directed from an outlet section back to the air inlet pipe must pass the corresponding restricted section where the increase in air pressure further helps the passive valve to close off the restricted section.
  • pipe outlet section 117 may be connected to a first air cavity, with the pipe outlet section 127 connected to a second air cavity in which the air pressure is consistently lower than in the first air cavity.
  • Another possible source for operational differences in air pressure at the pipe outlets 117 , 127 is formed by differences in the restriction of air flow caused by the passive valve 117 and passive valve 127 .
  • a different kind of non-return valve is used in each branch pipe and/or that the non-return valves are differently dimensioned.
  • the non-return valves 115 , 125 shown in FIG. 3A are of a similar or same construction, typically there will be some differences in placement of the valves and/or air pressure thresholds for closing and opening each of the valves, which may lead to one of the valves restricting the air flow in its branch pipe to a different extent than the other valve, and to a corresponding difference in air pressure at the pipe outlet sections.
  • a remote controlled adjustable valve 103 is provided for closing off the inlet 102 when the air compressor is inactive.
  • the air inlet is closed, there is substantially no flow of air through the first and second pipe sections 111 , 121 as air flow from the air inlet is prevented, and the restricted sections 112 , 122 in combination with the non-return valves 115 , 125 prevent air from flowing back from said restricted sections to the pipe sections.
  • valve 103 may also be used to adjust the flow of air from the air compressor to the air inlet pipe, though it is typically more energy efficient to instead directly control the air compressor to output a desired flow of air to the air inlet pipe.
  • FIG. 3B A top view of the same air flow splitter 101 of dual cavity air lubrication system 100 is show in FIG. 3B .
  • the air inlet pipe 102 is preferably a heat insulated inlet pipe and made from material suitable for use in a salt-water environment, such as galvanized steel.
  • the insulation helps prevent condensation from forming inside the air inlet and the branch pipes.
  • the cross-sectional flow area of the air inlet pipe is substantially constant along the length thereof. Just after the point where the branch pipes are split from the air inlet pipe, the branch pipes have a cross-sectional flow area that is substantially equal to that of the air inlet pipe. At the restricted section of each branch pipe the cross-sectional flow area is smaller than that of the air inlet pipe, whereas downstream of the restricted section the branch pipes have a cross-sectional flow greater than in the restricted area.
  • FIG. 3C schematically shows a cross-sectional view through air cavities 54 , 54 ′ of the vessel of FIG. 2 , wherein the air cavities are connected to respective branch pipes 120 , 110 of an air splitter as shown in FIGS. 3A and 3B .
  • FIG. 3C shows the vessel at a roll relative to horizontal water surface 14 , so that the cavity 54 is submerged further by a distance L in the water than the cavity 54 ′. Differences in relative level between the cavities cause corresponding differences in pressure in the respective cavities. For instance, if cavity 54 is submerged 1 m deeper than cavity 54 ′, i.e. L equals 1 meter, then the resulting pressure difference between the cavities caused thereby is 100 mbar.
  • the dual cavity air lubrication system according to the invention substantially reduces interruption or change in air flow to both cavities during such a relative change in level between both cavities.
  • FIGS. 4A-4D Cross-sectional areas of the pipes along lines A-A, B-B, C-C, and D-D are shown in FIGS. 4A-4D respectively, all of which have a cross-sectional area with a circular contour.
  • FIG. 4A shows that the inlet section 102 has an inner diameter of d 1 , which may be in the range of 110 to 180 mm.
  • FIG. 4B shows that the cross sectional area of the pipe section 111 of branch pipe 110 has a diameter d 2 that is equal to the diameter d 1 , and that the cross sectional area of the pipe section 111 is equal to that of the air inlet pipe 102 .
  • the restricted pipe section 112 shown in FIG. 4C has a cross-sectional area with a diameter d 3 , e.g. in the range of 50 - 90 mm, that is smaller than the diameter d 2 of pipe section 111 .
  • the restricted section 112 transitions into outlet section 117 downstream of the restricted section, and having a larger cross-sectional area than the restricted section.
  • the diameter d 4 of the cross-sectional area of the outlet section is larger than the diameter d 3 of the restricted section, e.g. between 70-120 mm, but in any case is smaller than the diameter d 2 of pipe section 111 .
  • the cross-sectional areas all have a circular contour
  • other contour shapes are possible as well, e.g. oval and/or rectangular contour shapes, as long at the restricted section has a cross-sectional area that is smaller than that of both the outlet section and the pipe section, and preferably wherein the outlet section has a cross-sectional area that is smaller than that of the pipe section.
  • FIG. 5 shows an exemplary graph of the air pressure P in millibar vs distance along the flow direction X, for an air stream V 1 for the first air cavity and for an air stream V 2 for supplying air to the second air cavity.
  • Both air streams V 1 ,V 2 travel through a dual cavity air lubrication system according to the invention and originate from a single common air compressor.
  • the pressures up to point 502 of the flow direction are representative of the pressures of the air streams V 1 and V 2 in respective branch pipes that are part of a same air splitter, e.g. an air inlet pipe 101 as described above.
  • the pressures from point 502 to 512 represent the pressures of the air streams V 1 , V 2 within the pipe section of the respective branch pipes that are arranged upstream to the restricted section of the corresponding branch pipe. From point 502 to 512 along the flow direction these pressures are substantially equal for both branch pipes.
  • the pressures from point 512 to 517 represent the pressures in the restricted sections of the branch pipes, wherein the drop in the air pressures is substantially caused by the respective non-return valves that are arranged across portion 515 in the restricted section.
  • the non-return valves are adapted to open at an opening pressure of 20 mbar, and, as the air pressures at the left of portion 515 differ by more than 20 mbar from the air pressures at the right of portion 515 , are thus open and let the air streams V 1 and V 2 pass through.
  • the pressures from point 517 represent the pressures in the pipe outlet sections of the first and second branch pipe, and is substantially equal to the air pressure of the first and second air cavity that are connected to the respective outlet sections. From the beginning of the restricted section 512 to the end of the restricted section 517 there is a drop in pressure of about 60 mbar for the air stream V 1 , and a drop in pressure of about 63 mbar for the air stream V 2 . At point 517 the air pressure of the air stream V 1 in outlet section of the first branch pipe differs by about 3 mbar from the air pressure of the air stream V 2 in the outlet section of the second branch pipe, so that a substantially even air pressure is achieved in the first and second
  • a single air compressor provides air at a pressure of about 907 mbar to the air inlet pipe, which pressure stays substantially constant in the air inlet pipe up to the restricted sections of the branches.
  • the air pressures start to differ significantly as the air streams pass the respective valves at point 515 .
  • the air pressure of both air streams at point 517 i.e. at the outlet sections each branch pipe, remain substantially constant.
  • the respective air pressures at both outlet sections may differ somewhat from each other, e.g.
  • the improved stability of the air lubricating layer generated by each cavity as provided by the present invention is accomplished by ensuring that the air streams that are supplied the air cavities are each provided at a substantially constant air pressure.
  • FIG. 6 shows a dual cavity air lubrication system comprising two cavities 60 , 60 ′ each having a respective front end 61 , 61 ′, rear end 62 , 62 ′, a top wall 63 , 63 ′ two side walls (see FIG. 7 ), a rear wall 66 , 66 ′, and an air inlet port 70 , 70 ′, and an air supply duct 71 , 71 ′ connected to the air inlet port 70 , 71 ′.
  • the cavities 60 , 60 ′ further comprises a respective opening 67 , 67 ′ which is substantially flush with bottom surface 6 of the hull.
  • the opening 67 , 67 ′ has a length Lc, Lc′ which is relatively short compared the vessel length Lh and which has a length of between 2 m and 10 m.
  • the width W of the opening 67 (see FIG. 7 ) is preferably between 0.5 m and 1.5 m.
  • the cavities 60 , 60 ′ have a height H,H′ respectively, measured from the bottom surface 6 to a top wall 63 , 63 ′ which height may be between 0.2 m and for instance 0.5 m.
  • an air inlet port 70 , 70 ′ is provided, which is connected to an a outlet section 117 , 127 of respective branch pipe 110 , 120 of an dual cavity air lubrication system 100 .
  • a compressor 80 takes in atmospheric air through a duct 13 and supplies compressed air to both cavities 60 , 60 ′ in order to expel water therefrom.
  • a controller 81 such as a computer device, is connected to the compressor 80 for operating the compressor depending on the speed of the vessel. When the vessel is sailing through the water the moving water across the water-air interfaces in the cavities 60 , 60 ′ results in a Kelvin Helmholtz mixing effect and forms air bubbles 9 .
  • each cavity 60 , 60 ′ these bubbles escape via a bubble outflow region at the rear end 62 , 62 ′ thereof.
  • the cavities 60 , 60 ′ each have a downwardly sloping surface 66 , 66 ′ forming a wedge-shaped space near the rear 62 , 62 ′ of the respective cavity. From this outflow region, the bubbles 9 spread towards the stern 3 of the hull 4 , to cover a majority of the bottom surface 6 .
  • the downwardly sloping surface can be formed as straight wall, it is here shown as curved wall 66 , 66 ′ which at the position 62 , 62 ′ of the bottom surface 6 is tangent with said bottom surface 6 .
  • the lower part of the rear wall 66 , 66 ′ is curved or inclined.
  • the rear wall 66 , 66 ′ extends all the way to the position 62 , 62 ′ of the bottom surface 6 . It is not necessary that the portion of the rear wall 66 , 66 ′ that is adjacent the top wall 63 , 63 ′ is curved or inclined. This portion of the rear wall 66 , 66 ′ could, for example, be vertical.
  • each cavity 60 , 60 ′ is provided with a wave deflecting member 90 , 90 ′ which extends transversely therein and has a closed planar bottom side 91 , 91 ′ arranged at a distance h 1 , h 1 ′ of between 2-15 cm from the respective opening 67 , 67 ′. Typically, this distance must be at least 2 cm to ensure sufficient Kelvin-Helmholtz mixing to form an air lubricating layer.
  • Each of these wave deflecting members stays clear from its corresponding top wall 63 , 63 ′ and/or side walls for allowing a free flow of air through the cavity. Though side walls 64 , 64 ′ are only shown for air cavity 60 in FIG.
  • the air cavity 60 ′ comprises similar sidewalls.
  • the wave deflecting members 90 , 90 ′ facilitate the starting-up of the air lubrication system. Before the air lubrication system is activated both cavities 60 , 60 ′ will normally be full of water.
  • the wave deflecting members 90 , 90 ′ serve to deflect the waves emerging from the front ends 61 , 61 ′ of the cavities 60 , 60 ′ when the vessel is moving forward through the water, and the turbulence generated there from will be deflected so that less air will be drawn out of the cavities 60 , 60 ′ during the initial start-up of the air lubrication system.
  • the wave deflecting members 90 , 90 ′ each have a peripheral edge (shown for air cavity 60 as peripheral edge 92 in FIG. 7 ) which is spaced apart from the sidewalls as well as from the rear wall 66 , 66 ′.
  • the peripheral edge 92 of the wave deflecting member 90 is spaced apart from the sidewalls 64 , 64 ′ and from the rear wall by means of spacer arms 95 which bridge a gap 99 between the peripheral edge 92 and the side walls through which air can pass from within the cavity 60 towards the opening 67 .

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Compressor (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • General Details Of Gearings (AREA)
  • Lubricants (AREA)
US16/329,488 2016-08-30 2017-08-30 Dual cavity air lubrication system Abandoned US20190225304A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16186405.3A EP3290324A1 (de) 2016-08-30 2016-08-30 Luftschmiersystem mit dualem hohlraum
EP16186405.3 2016-08-30
PCT/NL2017/050570 WO2018044162A1 (en) 2016-08-30 2017-08-30 Dual cavity air lubrication system

Publications (1)

Publication Number Publication Date
US20190225304A1 true US20190225304A1 (en) 2019-07-25

Family

ID=56855287

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/329,488 Abandoned US20190225304A1 (en) 2016-08-30 2017-08-30 Dual cavity air lubrication system

Country Status (9)

Country Link
US (1) US20190225304A1 (de)
EP (2) EP3290324A1 (de)
JP (1) JP2019524557A (de)
KR (1) KR20190095248A (de)
CN (1) CN109641637A (de)
BR (1) BR112019003789A2 (de)
PH (1) PH12019500449A1 (de)
SG (1) SG11201901663PA (de)
WO (1) WO2018044162A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111186527A (zh) * 2020-01-15 2020-05-22 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种船用气层减阻节能装置
USD919544S1 (en) * 2019-05-29 2021-05-18 Silverstream Technologies B.V. Air release unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219788A1 (en) * 2019-05-03 2022-07-14 Paha Designs, Llc Transport vehicle with reduced drag
CN112238922A (zh) * 2019-07-17 2021-01-19 章洪 超空泡高速船舶
US20230365229A1 (en) * 2020-09-28 2023-11-16 Maersk A/S An air supply system for a hull of a vessel and a vessel comprising the air supply system
GB202106034D0 (en) 2021-04-28 2021-06-09 Armada Tech Limited System and method for reducing drag on a marine vessel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2230540A1 (en) * 1973-01-15 1974-12-20 Fiacre Jean Marie Method of reducing drag on ships hulls - layer of air around hull is formed from fresh air and air within layer
JPS6033715B2 (ja) * 1981-03-17 1985-08-05 勇 土田 船体の推進装置
US6186085B1 (en) * 1995-12-04 2001-02-13 Hiroharu Kato Method for reducing frictional resistance of hull, frictional resistance reducing ship using such method, and method for analyzing ejected air-bubbles from ship
US5967071A (en) * 1997-12-02 1999-10-19 Wipper; Daniel J. Energy efficient system and method for reducing water friction on the hull of a marine vessel
EP1361150A1 (de) * 2002-05-07 2003-11-12 DK Group N.A. N.V. Schiff mit keilförmigen und/oder längsversetzten, luftgefüllten Hohlräumen am Bodem und mit Rollsteuerungsmitteln
US9376167B2 (en) * 2008-04-01 2016-06-28 National Maritime Research Institute Frictional resistance reduction device for ship
JP4959667B2 (ja) * 2008-11-21 2012-06-27 三菱重工業株式会社 船体摩擦抵抗低減装置
JP5022346B2 (ja) * 2008-11-21 2012-09-12 三菱重工業株式会社 船体摩擦抵抗低減装置
JP5073710B2 (ja) * 2009-06-08 2012-11-14 株式会社アンレット 船体における微細気泡発生装置
JP2011011699A (ja) * 2009-07-06 2011-01-20 Anlet Co Ltd 船体における微細気泡発生装置
CN101792010B (zh) * 2010-04-12 2012-07-25 钱建其 重型船舶产生气垫的方法及其重型气垫船舶
JP5797418B2 (ja) * 2011-02-15 2015-10-21 国立研究開発法人海上技術安全研究所 船舶の摩擦抵抗低減用気泡吹出装置
DK2817208T3 (en) 2012-02-21 2016-07-25 Silverstream Tech Bv Air Lubrication System
JP2014151819A (ja) * 2013-02-12 2014-08-25 Mitsubishi Heavy Ind Ltd 船体摩擦抵抗低減装置、船体摩擦抵抗低減方法、取水ポンプ保護構造、取水ポンプ保護方法、および船舶
PT2915735T (pt) * 2014-03-05 2016-09-07 Silverstream Tech Bv Sistema de lubrificação a ar e recipiente que compreende tal sistema
CN105584587A (zh) * 2016-01-27 2016-05-18 王小兵 自吸式轮船

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD919544S1 (en) * 2019-05-29 2021-05-18 Silverstream Technologies B.V. Air release unit
CN111186527A (zh) * 2020-01-15 2020-05-22 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种船用气层减阻节能装置

Also Published As

Publication number Publication date
EP3507184A1 (de) 2019-07-10
KR20190095248A (ko) 2019-08-14
WO2018044162A1 (en) 2018-03-08
EP3290324A1 (de) 2018-03-07
PH12019500449A1 (en) 2019-06-03
BR112019003789A2 (pt) 2019-05-21
CN109641637A (zh) 2019-04-16
SG11201901663PA (en) 2019-03-28
JP2019524557A (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
US20190225304A1 (en) Dual cavity air lubrication system
US8402906B2 (en) Device for reducing frictional resistance of ship body
KR101413928B1 (ko) 선체 마찰 저항 저감 장치
JP4953294B2 (ja) 船体摩擦抵抗低減装置
US9102383B2 (en) Air lubrication system of ship
JP5030080B2 (ja) 船体摩擦抵抗低減装置
KR20160128182A (ko) 선박 공기 윤활 장치
CN114013559A (zh) 采用分支管路调节气量的船用气层减阻系统和气层减阻船
JP2012201338A (ja) 摩擦抵抗低減船およびその運転方法
WO2012140946A1 (ja) 摩擦抵抗低減型船舶
KR20180009636A (ko) 선박
EP3489124B1 (de) Reibungsminderungsvorrichtung und schiff damit
KR102111306B1 (ko) 선박
KR101563709B1 (ko) 선저공기공급장치
KR20200047475A (ko) 선박
KR102190553B1 (ko) 선박의 마찰 저감 장치
KR20180009668A (ko) 선박
WO2018168585A1 (ja) 船舶
JP2018122717A (ja) 船舶の摩擦低減装置
IT9012499A1 (it) Impianto antincendio per navi o simili, in particolare per cacciamine
JPH1035482A (ja) 船尾シール内圧調整式エアクッション船

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION