US20190199412A1 - Beam change - Google Patents

Beam change Download PDF

Info

Publication number
US20190199412A1
US20190199412A1 US16/311,260 US201716311260A US2019199412A1 US 20190199412 A1 US20190199412 A1 US 20190199412A1 US 201716311260 A US201716311260 A US 201716311260A US 2019199412 A1 US2019199412 A1 US 2019199412A1
Authority
US
United States
Prior art keywords
user equipment
resource
scheduling request
message
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/311,260
Other languages
English (en)
Inventor
Timo KOSKELA
Samuli Turtinen
Juho Pirskanen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Priority to US16/311,260 priority Critical patent/US20190199412A1/en
Assigned to NOKIA TECHNOLOGIES OY reassignment NOKIA TECHNOLOGIES OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PIRSKANEN, JUHO, KOSKELA, TIMO, TURTINEN, SAMULI
Publication of US20190199412A1 publication Critical patent/US20190199412A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06958Multistage beam selection, e.g. beam refinement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • H04W72/0413
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • This invention relates to wireless communications, and more particularly to the establishment of a wireless connection between user equipment and a radio access network with 5G radio access technology being developed involving beamforming and the indications exchanged regarding the beamforming.
  • Wireless radio access technologies continue to be improved to handle increased data volumes and larger numbers of subscribers.
  • the 3GPP organization is developing 5th Generation (5G) wireless networks utilizing beamforming.
  • 5G 5th Generation
  • UE user equipment
  • MIMO capabilities has been somewhat less robust as compared to exploiting the potential of MIMO at the network side.
  • the UE Based on beamformed downlink reference signaling, the UE can make beam-specific measurements and feed back to the network the index of what the UE sees as the best downlink beam.
  • BSI may have different formats. For example, if PUCCH is used then only limited number of fields (e.g. one or two BSI field(s)) may be included.
  • MAC CE or PUSCH refers to a physical layer multiplexing of uplink control information (UCI) on UL-SCHI) is used, then multiple BSI fields may be signaled in one control element (CE)/UCI message.
  • CE control element
  • Beam Refinement Information is a report containing beam related information corresponding to beam refinement process (measured from BRRS signals which are additional beam reference signals transmitted by 5G-NB to allow UE to refine/determine its RX beams).
  • BRI field refinement beam index ⁇ beam RSRP.
  • BRI may have different formats e.g. if PUCCH is used only one BRI field is included. If MAC CE is used, multiple BRI fields may be signaled in one CE.
  • 5G-NB beam groups and related signaling are being discussed.
  • the 5G (New Radio) standardization work has started in 3GPP and is on a study item phase.
  • eNB or eNodeB Evolved Node B LTE base station
  • LTE-M LTE system to support MTC or M2M
  • Node B Node B (NB) Node B (base station in UTRAN)
  • the invention described herein is directed at a method for UE-side actions upon receiving a beam change indication (BCI) either by DCI signaling or MAC CE and further determining different actions based on various conditions.
  • BCI beam change indication
  • An example of an embodiment of the current invention is a method that comprises a user equipment receiving a downlink control information message from an access point in a wireless communications network and echoing a new beam index in the PUCCH feedback resource in response to the message indicating a PUCCH feedback resource and containing a beam change indication or in response to a message indicating a downlink grant containing a beam change indication MAC control element but no CSI-feedback is scheduled for the PUCCH feedback resource.
  • a further example of an embodiment of the current invention is a method that comprises, if a scheduling request resource is indicated by the message or the MAC control element, triggering the user equipment to transmit a scheduling request on that indicated scheduling request resource.
  • a still further example of an embodiment of the current invention is a method that comprises, if a scheduling request resource is not indicated by the message or the MAC control element, triggering the user equipment to perform a scheduling request procedure on a periodic scheduling request resource.
  • An additional example of an embodiment of the current invention would be an apparatus comprising at least one processor; at least one memory including computer program code, wherein the at least one processor, in response to execution of the computer program code, is configured to cause the apparatus to perform at least the following: receiving a downlink control information message from an access point in a wireless communications network and echoing a new beam index in the PUCCH feedback resource in response to the message indicating a PUCCH feedback resource and containing a beam change indication or in response to a message indicating a downlink grant containing a beam change indication MAC control element but no CSI-feedback is scheduled for the PUCCH feedback resource.
  • a further example of an embodiment of the current invention is an apparatus wherein the at least one processor, in response to execution of the computer program code, is configured to cause the apparatus to further perform at least the following: if a scheduling request resource is indicated by the message or the MAC control element, being triggered to transmit a scheduling request on that indicated scheduling request resource.
  • a still further example of an embodiment of the current invention is an apparatus wherein the at least one processor, in response to execution of the computer program code, is configured to cause the apparatus to further perform at least the following: if a scheduling request resource is not indicated by the message or the MAC control element, being triggered to perform a scheduling request procedure on a periodic scheduling request resource.
  • An additional example of an embodiment of the current invention would be an apparatus comprising mean to receive a downlink control information message from an access point in a wireless communications network and means to echo a new beam index in the PUCCH feedback resource in response to the message indicating a PUCCH feedback resource and containing a beam change indication or in response to a message indicating a downlink grant containing a beam change indication MAC control element but no CSI-feedback is scheduled for the PUCCH feedback resource.
  • a further example of an embodiment of the current invention is an apparatus with further means, if a scheduling request resource is indicated by the message or the MAC control element, to trigger to transmit a scheduling request on that indicated scheduling request resource.
  • a still further example of an embodiment of the current invention is an apparatus with means, if a scheduling request resource is not indicated by the message or the MAC control element, to trigger to perform a scheduling request procedure on a periodic scheduling request resource.
  • Yet a further example of an embodiment of the current invention would be a computer program product embodied on a non-transitory computer-readable medium in which a computer program is stored that, when being executed by a computer, would be configured to provide instructions to control or carry out receiving a downlink control information message from an access point in a wireless communications network and echoing a new beam index in the PUCCH feedback resource in response the message indicating a PUCCH feedback resource and containing a beam change indication or a message indicating a downlink grant containing a beam change indication MAC control element but no CSI-feedback is scheduled for the PUCCH feedback resource.
  • a further example of an embodiment of the current invention is a computer program product embodied on a non-transitory computer-readable medium in which a computer program is stored that, when being executed by a computer, would be configured to provide further instructions to control or carry out, if a scheduling request resource is indicated by the message or the MAC control element, to trigger to transmit a scheduling request on that indicated scheduling request resource.
  • a still further example of an embodiment of the current invention is a computer program product embodied on a non-transitory computer-readable medium in which a computer program is stored that, when being executed by a computer, would be configured to provide further instructions to control or carry out, if a scheduling request resource is not indicated by the message or the MAC control element, to trigger to perform a scheduling request procedure on a periodic scheduling request resource.
  • FIG. 1 illustrates a sweeping subframe
  • FIG. 2 is an illustration of beam group associations of a single/collocated TRPs or a Cell
  • FIG. 3 is an illustration of association of beam groups from different TRPs of a cell
  • FIG. 4 illustrates beam change by MAC CE
  • FIG. 5 illustrates beam change by DCI signaling
  • FIG. 6 illustrates validation of the 5G-NB communication beam change
  • FIG. 7 is a block diagram of an exemplary system in which the exemplary embodiments may be practiced.
  • FIG. 8 is a logic flow diagram illustrating the operation of an exemplary method or methods, resulting from an execution of computer program instructions embodied on a computer readable memory, and/or functions performed by logic implemented in hardware or other means, in accordance with exemplary embodiments, which would be possible.
  • transceiver architectures are considered for 5G radio access system: digital, analog or so-called hybrid (which utilizes a hybrid of digital baseband processing (such as MIMO Multiple Input Multiple Output and/or digital precoding) and analog beamforming.
  • digital baseband processing such as MIMO Multiple Input Multiple Output and/or digital precoding
  • analog beamforming it should be appreciated that the methods are applicable also for digital beamforming transceiver architecture
  • transceiver architectures provide means for implementing beamforming in future systems depending on the cost and complexity limitations.
  • systems deployed to lower frequencies e.g. ⁇ sub 6 GHz
  • the higher frequencies where the number of antenna elements required for cell coverage may range from tens to hundreds
  • the cut-off frequency between higher and lower frequencies is merely an example.
  • a so-called sweeping subframe may be introduced to provide coverage for common control channel signaling with beamforming.
  • a sweeping subframe consists of sweeping blocks (SB) where a single block covers a specific area of the cell with a set of active beams.
  • Sweeping subframe is illustrated in FIG. 1 as item 114 , where an access point is shown with different active beams during different sweeping blocks.
  • the access point is represented with the different sweeping beams, such that in SB 1 the access point relates to sweeping beam 110 , in SB 2 relates to sweeping beam 112 , and in SB N relates to sweeping beam 114 .
  • [WY( 1 ][EMZ 2 ] The total number of beams required to cover required cell area is typically much larger than the number of concurrent active beams (an active beam is defined as a beam which can be used for communication at a given time) the access point is able to form[WY( 3 ].
  • access points need to sweep through the cell coverage area in time domain by activating different set of beams on each SB.
  • similar sweep is needed for both directions.
  • the radiation patterns of uplink and downlink may differ and potentially different number of beams are used for DL and UL sweep.
  • Downlink sweep block may have similar length e.g. 1 or more symbols as uplink sweep block or uplink sweep block may have different length to e.g. accommodate PRACH signaling.
  • each SBs would carry essential cell access information such as DL synchronization signals, system information such as MIB, SIB, or the like (including PRACH/RACH configurations), also paging (or any control information that needs to be broadcasted in a cell).
  • the sweeping subframe/subframes may accommodate resources for random access channel or other uplink channels requiring periodic availability such as SR (scheduling request) and SRS (sounding reference signal).
  • Identifying different beams may be beneficial, for instance, when a UE indicates to the network the preferred communication beam during an initial access or, for example, when reporting the said measurements to network, mapping a measurement to a common reference index between UE and 5G-NB.
  • the beam specific reference signals may or may not map to (or be derived from) a physical cell identifier or a cell identifier.
  • the following mappings can be made, for example, if 8 different BRS signals are transmitted per sweep block, receiver is potentially able to measure 8 different signal indices (beams or beam indices).
  • the same BRS signals may be reused in the next sweep block, thus the sweep block ID needs to be determined to be able to determine the beam index.
  • Sweep block index may be explicitly signaled if the sweep block (sweep symbol or multiple symbols) also conveys information such as MIB/SIB/DL CTRL/DL DATA etc. Or the sweep block may include a specific sequence to identify the block.
  • the sweep block may include a specific sequence to identify the block.
  • In one alternative way to identify a beam is to assign different reference signals to each beam. The number of beams, which are supported without reuse of reference signals, is limited by reference signal space.
  • a UE may perform BRS signal level measurements on downlink sweep on 5G-NB communication beams (detected BRS signals) and report the measurement results to 5G-NB.
  • the network may also send additional reference signals for the UE to measure and provide feedback.
  • These reference signals may be, for example, so-called BRRS signals (beam refinement signals).
  • BRRS signals beam refinement signals
  • BRS measurements may be performed on the beam reference signals which can be directly associated by the UE to a specific beam index while the BRRS measurements may be performed on specific beam reference signals but the beams used to send the signals may not be known at UE side.
  • 5G-NB is able to map the measurement results on each reference signals to actual beam indices.
  • a UE may feedback the measurement results by using physical layer signaling (e.g. PUCCH/PUSCH) or higher layer signaling such as L2 (MAC) or L3 (RRC) by transmitting a BSI report (Beam State Information) or, in more general terms, a beam report.
  • the BSI report may include information such as Beam Index-Beam RSRP (or RSRQ) of all detected beams or N highest quality beams (where N is an integer).
  • the BSI report format may be limited by the used signaling method such as PUCCH (fixed number of bits)/PUSCH/MAC CE (flexibility determined by the grant size). Depending on the measurement type, whether the measurement was made on BRS or BRRS (or the like) for instance, the report format may be different.
  • a UE when measuring BRS signals, a UE may explicitly detect the beam indexes which it measures but in case of BRRS measurements it may only use logical index of detected beam specific reference signals.
  • the report of BRRS measurements may be referred as BRI (Beam Refinement Information consists of Refinement Beam Index-Beam RSRP value).
  • BRI Beam Refinement Information consists of Refinement Beam Index-Beam RSRP value.
  • the beam index space of BSI and BRI may differ in size as BSI report may refer to actual beam indices and BRI report refers to a set of logical values currently measured using BRRS signals (e.g. ranging from 0-7).
  • the UE may also feedback the Cell ID to give provide context to the beam level measurements.
  • beam specific reference signals may be derived using physical cell identifier (PCI) which may be transmitted using primary synchronization signal (PSS) and secondary synchronization signals (SSS) or the like.
  • PCI physical cell identifier
  • PSS primary synchronization signal
  • SSS secondary synchronization signals
  • the UE may also use beamforming.
  • the UE may need to steer/form its RX beam to multiple directions to determine the desired or highest quality communication beam/direction.
  • UE may measure several RX directions and determine which direction provides highest quality based on the predefined metrics. Such metrics may show, for example, which RX direction detected the highest RSRP of 5G-NB beam or which RX direction detected the highest number of beams above a specific quality threshold.
  • a UE may be able to detect multiple beams per RX direction. The UE may then associate the detected 5G-NB beams per its RX direction, so it may group 5G-NB beams to potentially multiple groups.
  • a special case is where a UE maintains a group of ‘one’ so that one 5G-NB beam is associated to one UE RX beam.
  • One beam in the group can be, for example, a beam with the highest quality (RSRP) measured by UE. If reciprocity is assumed (e.g. in TDD system) the downlink beam measurements to determine link and channel qualities may be utilized also for reverse direction e.g. best UE RX direction is also the best transmit direction.
  • RSRP highest quality
  • FIG. 2 illustrates the beam grouping on high level, specifically, beam group associations of a single/collocated TRPs or a Cell along with reflecting surface object 214 .
  • Access point 212 is illustrated with access point communication beams 202 .
  • a UE 210 is able to determine an association between a set of 5G-NB beams per its RX direction.
  • the UE 210 is shown with the UE communication beams 204 .
  • the UE is able to form multiple beams concurrently, for example, 2 beams, it may group the detected 5G-NB beams per RX direction as one group.
  • the FIG. 2 illustrates the grouping example by using so called grid-of-beams.
  • the UE may also form alternative beam radiation patterns (wider/narrower) and thus it may be able to detect a different amount of 5G-NB beams but with potentially different (reduced/increased) beamforming gain.
  • the UE communication beams 204 has one beam in each group association while the access point communication beams may have two or more beams in each group association.
  • FIG. 3 further illustrates a similar example as FIG. 2 with non-collocated TRPs where as in FIG. 2 the TRPs may be collocated or a single TRP is used.
  • TRP 1 302 sweeps out two active beams which are in beam group association 310 with one beam of the UE communications beams 308 of UE 306 while TRP 2 304 also sweeps out two other active beams which are in beam group association 312 with one other beam of the UE communications beams 308 of UE 306 .
  • Based on the UE beam reporting 5G-NB may determine a set of beams it may potentially use to communicate with UE, namely, a candidate set of beams. Out of that set, the network may select a smaller set it currently utilizes (at least one beam) for active scheduling
  • the UE can use them to communicate with to send downlink control channels. These beams can be selected from a set of beams reported by UE. The available set of beams may be called a candidate set and out of that set the 5G-NB may select “serving” beam or beams.
  • scheduling commands on PDCCH could be used to detect e.g. a deteriorating beam quality
  • a UE may aperiodically/periodically update beam groups by providing feedback based on BRS or BRRS measurements for example.
  • 5G-NB may update the current serving set based on UE feedback on BRS or BRRS signals for example (using Beam State Information or Beam Refinement Information reporting respectively).
  • UE when 5G-NB indicates the serving beam (or a set of serving beams) it currently uses (either for DL transmission or UL reception), the UE would need to align its own communication (TX/RX) beam accordingly.
  • TX/RX own communication
  • UE may also utilize a so-called omnidirectional radiation pattern which has equal beamforming gain to all directions. As the pattern radiates equally to all directions the beamforming gain may be less than with directional transmission.
  • One way to indicate the beam or beam group change by 5G-NB is to refer to the latest UE reported measurement.
  • a UE may send a beam report of N-beams (beam index-RSRP) either by UCI (PUCCH/PUSCH) or MAC layer signaling and the beam change may be indicated by the network by sending a single bit indication in DCI message.
  • This single bit indication may refer to a pre-agreed value, for instance, the highest quality beam previously reported.
  • the UE determines whether it needs to change its current communication beam as well (there may a preconfigured number of subframes when this change is done).
  • a DCI message could be defined to carry full beam index instead of a single bit indication, the DCI messages are typically not acknowledged.
  • the beam switch indication may not reach UE and so the 5G-NB would have no knowledge if the change indication has been applied. This may lead to a misalignment of 5G-NB and UE communication beams and potentially extra signaling and delay to recover from such error, for instance, by determining the lack of transmission on an allocated grant on PDCCH.
  • MAC layer signaling could be used to send a beam index to indicate the new (or current) 5G-NB beam.
  • MAC layer signaling benefits from the feedback loop, namely, HARQ, to ensure that the messages are received correctly. While the HARQ seemingly ensures that the transmitted information is received correctly there is a drawback, namely, that HARQ signaling loop may fail due to NACK-to-ACK error.
  • a network may indicate the beam change to UE by signaling an indication of a beam change by assigning a new beam index explicitly, using MAC CE which is shown in FIG. 4 .
  • Beam change indication 410 is sent from the 5G-NB to the UE, wherein processing 440 takes place.
  • the BCI MAC CE is processed before the HARQ feedback grant time +3 +X.
  • the beam change is done right after transmitting/receiving ACK. In this figure, an example is illustrated where the beam change occurs (new serving beam is used) immediately after the subframe used to transmit ACK.
  • a fixed minimum time for beam change may be defined. Such time may include, for example, HARQ processing time and additional processing time for the BCI MAC CE. Additional processing time may also include the subframe to transmit HARQ feedback. If the UE feedback subframe (the feedback subframe may be explicitly scheduled to occur after N subframes of reception of the data) occurs before the fixed minimum time the beam change is done after the fixed minimum time. If the feedback time is larger than the fixed minimum time, then the beam change occurs after the subframe when the feedback (ACK) has been sent. Alternatively or additionally, an additional beam change delay (in subframes) may be added after transmitting ACK to catch the ACK to NACK error for MAC CE.
  • the UE waits for retransmission for given amount of time. If the network retransmits the same transmission block, then the UE would detect an ACK to NACK error and may indicate it by resending an acknowledgement or the indicated SR which is discussed later herein.
  • a network could also indicate the beam change to UE by signaling an indication of a beam change by referring to a pre-determined or pre-agreed value with single bit indication, as shown in FIG. 5 via DCI.
  • FIG. 5 illustrates a beam change by DCI signaling.
  • Item 510 depicts the beam switch indication DCI.
  • the beam change is done after K subframes 520 from receiving the beam change indication.
  • Arrow 530 depicts BRI/BSI feedback on xPUCCH.
  • an arrow 540 depicts communication using the new serving beam.
  • a beam change can be made based on the BRRS measurement.
  • MAC layer also physical layer signaling (MAC CE) may be used to couple the logical beam index (referred as Refinement Beam Index, RBI) of a BRRS signal measurement with the actual beam index.
  • RBI Refinement Beam Index
  • BRRS measurements by UE are performed on reference signals (or ports) without explicit information on which beams were used by 5G-NB to send the said BRRS signals
  • there 5G-NB may signal the RBI-Beam index mappings to UE (containing multiple values) and indicate beam change by pointing to one RBI-BI mapping in the message.
  • 5G-NB may signal beam change by referring to a Beam Index value.
  • 5G-NB may only signal one RBI-Beam Index (BI) value to indicate beam change.
  • BI RBI-Beam Index
  • UE learns the association between the measured RBI index and the beam index values.
  • RBI index maps to a specific UE RX beam thus providing mapping to a serving beam UE can align its own beams according to the 5G-NB beams.
  • 5G-NB may configure the BRRS signals to be transmitted from a preconfigured set of beams which are known at 5G-NB and UE side. This pre-association can be a current candidate beam set for example.
  • the UE may need to have up-to-date information of the current 5G-NB serving beam or set of serving beams (and potentially candidate beams) and the mappings to its own RX beams to facilitate successful beam change.
  • Exemplary embodiments of the invention comprise UE side actions upon receiving a beam change indication (BCI) either by DCI signaling or MAC CE based on conditions discussed below.
  • BCI beam change indication
  • the UE shall echo the new beam index in the PUCCH resource.
  • Beam index may be coupled with the latest BRS measurement results (Beam RSRP) of the echoed beam index.
  • Beam RSRP the latest BRS measurement results
  • the network schedules a PUCCH allocation with the size of at least one beam report. The UE will report the current serving beam (beam index and the quality (RSRP/RSRQ)) which tells the network whether the UE changed the beam.
  • the UE shall trigger SR transmission on the indicated resource using new serving beam regardless of other SR triggers.
  • the SR transmission (as in the subsequent paragraphs) may validate the beam change indication sent by network and additionally it may or may not trigger pre-configured/pre-determined resource allocation by 5G-NB to UE to transmit additional information (e.g. MAC CE containing beam information, buffer status, PHR (Power Head Room) etc. report).
  • additional information e.g. MAC CE containing beam information, buffer status, PHR (Power Head Room) etc. report.
  • the procedure to validate the beam change may only trigger UE-side action to transmit indication on the scheduled SR resource (or the like, could be also RACH resource) and no 5G-NB response is expected as typically in SR procedure.
  • the UE For MAC CE beam change, if the DCI message indicates a downlink grant and an explicit allocation for SR resource, then the UE shall decode the DL grant and determine if beam change indication (BCI) MAC CE is transmitted by network. If beam change indication MAC CE is detected, then the UE shall transmit SR on the explicitly allocated resource
  • the UE shall, upon receiving BCI MAC CE, trigger SR procedure on the periodic SR resource (on uplink sweep). Upon receiving UL resource by using SR procedure, the UE shall generate BSI report including at least the indicated beam index in the MAC BCI.
  • the UE shall echo the new beam index in the PUCCH resource.
  • a UE may request beam change by network explicitly by signaling a preferred network communication beam index (or by reporting BSI). The network may then respond with above mechanisms.
  • the beam index may also refer to a beam group index.
  • Further exemplary embodiments of the current invention comprise the following actions if a UE receives a beam change indication.
  • a UE If a UE receives a beam change indication (to new serving beam) signaled by the network and has not previously (e.g. during last N*BRS measurement periods, where N is configurable) reported Beam State Information, then it shall trigger SR procedure to report BSI information.
  • a UE If a UE receives a beam change indication to a new serving beam which belongs to different beam group than the current serving beam (groups are reported by UE and determined by the UE RX beams), then it shall trigger SR procedure (which could be on an explicitly signaled resource) to validate the group change using the new beam corresponding to the indicated serving beam. Changing the serving beam in the same beam group may not change the UE beam alignment and thus the allocation of SR resource may not be in present.
  • UE receives an indication to change the new beam group (5G-NB may also change the beam group by explicit signaling such as beam group change MAC CE or DCI signaling) it may receive an explicit DCI allocation of an SRS resource (Sounding Reference Signal) or a like.
  • SRS signals are transmitted by UE and used to determine (uplink) channel quality between UE and 5G-NB. Assuming uplink/downlink reciprocity, the UL channel quality may reflect also the DL channel quality similarly as the DL BRS measurements may reflect the UL channel quality.
  • the SRS allocation is linked together with beam or beam group change the SRS transmission is triggered upon detection of the said change indication on the scheduled resource.
  • the UE transmits the SRS on the allocated resource, for example, on PUCCH region (or UL-SCH region if configured) or in the uplink sweep using the beam which is aligned with the new beam group (5G-NB beam groups are associated with UE beams).
  • This enables 5G-NB to measure the channel/beam quality of the indicated beam group.
  • the similar triggers conditions and UE side actions which are described for SR transmission in the beam change procedure similarly apply also for SRS.
  • 5G-NB may allocate only SR resource when indicating a beam change, it may perform channel estimation based on the SR reception.
  • SRS provides better estimation on the channel quality as the signal has typically wider bandwidth.
  • the next SR opportunity is used to send SR signal regardless of other conditions for SR triggering is met e.g. uplink data availability/BSR (buffer status report)
  • the network may, by requesting PUCCH/MAC beam report, confirm the current serving beam quality of the UE.
  • Embodiments of the invention are concerned with the configuration of SR transmission. It should be appreciated that, as indicated previously, the embodiments may alternatively or additionally be concerned with the configuration of an SRS in place of SR. Alternatively SR and SRS allocations may or may not be mutually exclusive, i.e. both allocations may be configured.
  • the scheduled SR transmission is performed by a UE using the beam associated to the changed 5G-NB beam index (new serving beam index).
  • the SR resource may be scheduled by DCI signaling on PUCCH region or in UL sweep (on RACH/SR region).
  • the SRS resource may be scheduled by DCI signaling on PUCCH region or in UL sweep (on RACH/SR region).
  • the SR resource may be scheduled to a TTI when the beam change occurs or N-TTIs (where N is an integer) after a configured beam change or N-TTIs after an expected feedback transmission (HARQ feedback or a configured feedback to DCI indication) or may be configured periodically to be valid for a pre-determined/configured time.
  • the UE transmits (HARQ A/N to MAC PDU) feedback to confirm the change the SR resource may be scheduled concurrently with the feedback.
  • the UE may have 2 TXRU implementation and it may use 2 different beams to transmit SR and A/N feedback to different 5G-NB beams.
  • the UE may have preconfigured set of SR/SRS resources (e.g. SR sequence indices and frequency location and in case of SRS, the bandwidth).
  • the SR resource is scheduled by referring to a UE specific resource configuration by an SR configuration index.
  • the UE may have preconfigured set of SR resource configurations for beam management actions.
  • the SR resource allocation in the DCI message may refer to a specific configuration of a set of SR signals. Configurations may contain one or multiple SR allocations regarding beam management actions such as SR for beam validation, SR for beam recovery (e.g. to indicate that current serving beam is below threshold or other beam is an offset dB better), SR for requesting resource for BSI report, SR for requesting BRRS transmission by 5G-NB, etc.
  • the different configurations may be indicated by a logical index in the DCI message (or MAC CE) so that configuration_1 refers to specific SR allocations and configuration_2 refers to another set of SR allocations.
  • the network may configure specific beam management action which the SR allocation refers to upon receiving beam change indication.
  • the SR allocation may be permanent, e.g. override the current SR allocation on uplink sweep or another periodical SR resource.
  • a scheduled SR resource may include implicit or explicit indication of periodicity, for instance, the SR resource may be periodically available for N-SR occasions, for example, every 10th subframe.
  • the SR resource or the PUCCH feedback configuration may also be cell specific (not UE specific) and the location of SR resources are pre-configured (e.g. every 2nd subframe, every 4th subframe, every 8th subframe, etc.) so that 5G-NB activates specific SR resources by signaling a SR-resource mask configuration
  • Such configuration may be signaled by using a logical index which maps to a specific configuration; for instance, one configuration may provide one or more SR opportunities in time/frequency/SR resource index grid.
  • the UE may repeat SR transmission on each scheduled resource until it receives UE specific DL control (e.g. C-RNTI masked PDCCH transmission) or max_number_srTx-times
  • UE specific DL control e.g. C-RNTI masked PDCCH transmission
  • the UL resource allocation comprises of an allocation to transmit MAC CE to confirm the change (for instance, specific LCID is used to indicate).
  • SR masking solution could be applied where, for instance, every other SR occasion is used for confirming the beam change indication and every other for requesting new UL data.
  • FIG. 6 is an illustration of validation of the 5G-NB communication beam change.
  • Item 602 represents a UE measurement that indicates that beam B is better in some respect than the currently serving beam A.
  • a beam change may be initiated based on the UE beam report or an explicit request to change beam to a specific index, this signal being sent on beam A.
  • the network may determine the need for a beam change.
  • Item 606 shows the beam change indication on beam A to allocate UE Tx resources on beam B. So, the network signals the beam change indication (either DCI or MAC CE/RRC message) and, additionally, the uplink signaling resource to validate the beam change.
  • the UE transmits the validation signal using the beam which is aligned to the indicated 5G-NB beam as further shown by item 608 . Communication then continues on beam B as shown by item 610 .
  • 5G-NB may trigger retransmission of a Beam Change Indication using both new serving beam and the previous (old) serving beam and indicate a retransmission of beam change indication; thereupon correct reception, triggering a BSI report at UE side.
  • 5G-NB may need to repeat the transmission to multiple direction. Reception of such message may trigger the UE to report BSI.
  • the scheduled SR resource may have no relation to sending SR, for instance, on other allocated resource or in other configured events (e.g. UL data based, sending BSR), for example, when the beam change may occur with DL traffic only and new UL data may be available at UE after sending scheduled SR on the resource indicated in beam change procedure.
  • UL data based, sending BSR UL data based, sending BSR
  • 5G-NB indicates the new serving beam out of the same beam group (previously reported by UE), this may not trigger SR transmission or 5G-NB may not explicitly schedule such resource.
  • FIG. 7 shows a block diagram of one possible and non-limiting exemplary system in which the exemplary embodiments may be practiced.
  • a user equipment (UE) 110 is in wireless communication with a wireless network 700 .
  • a UE is a wireless, typically mobile device that can access a wireless network.
  • the UE 710 includes one or more processors 720 , one or more memories 725 , and one or more transceivers 730 interconnected through one or more buses 727 .
  • Each of the one or more transceivers 730 includes a receiver, Rx, 732 and a transmitter, Tx, 733 .
  • the one or more buses 727 may be address, data, or control buses, and may include any interconnection mechanism, such as a series of lines on a motherboard or integrated circuit, fiber optics or other optical communication equipment, and the like.
  • the one or more transceivers 730 are connected to one or more antennas 728 .
  • the one or more memories 725 include computer program code 723 .
  • the UE 710 includes a YYY module 740 , comprising one of or both parts 740 - 1 and/or 740 - 2 , which may be implemented in a number of ways.
  • the YYY module 740 may be implemented in hardware as YYY module 740 - 1 , such as being implemented as part of the one or more processors 720 .
  • the YYY module 740 - 1 may be implemented also as an integrated circuit or through other hardware such as a programmable gate array.
  • the YYY module 740 may be implemented as YYY module 740 - 2 , which is implemented as computer program code 723 and is executed by the one or more processors 720 .
  • the one or more memories 725 and the computer program code 723 may be configured to, with the one or more processors 720 , cause the user equipment 710 to perform one or more of the operations as described herein.
  • the UE 710 communicates with eNB 770 via a wireless link 711 .
  • the gNB (NR/5G Node B) 770 is a base station (e.g., for 5G) that provides access by wireless devices such as the UE 710 to the wireless network 700 .
  • the gNB 770 includes one or more processors 752 , one or more memories 755 , one or more network interfaces (N/W I/F(s)) 761 , and one or more transceivers 760 interconnected through one or more buses 757 .
  • Each of the one or more transceivers 760 includes a receiver, Rx, 762 and a transmitter, Tx, 763 .
  • the one or more transceivers 760 are connected to one or more antennas 758 .
  • the one or more memories 755 include computer program code 753 .
  • the gNB 770 includes a ZZZ module 750 , comprising one of or both parts 750 - 1 and/or 750 - 2 , which may be implemented in a number of ways.
  • the ZZZ module 750 may be implemented in hardware as ZZZ module 750 - 1 , such as being implemented as part of the one or more processors 752 .
  • the ZZZ module 750 - 1 may be implemented also as an integrated circuit or through other hardware such as a programmable gate array.
  • the ZZZ [WY( 4 ]module 750 may be implemented as ZZZ module 750 - 2 , which is implemented as computer program code 753 and is executed by the one or more processors 752 .
  • the one or more memories 755 and the computer program code 753 are configured to, with the one or more processors 752 , cause the gNB 770 to perform one or more of the operations as described herein.
  • the one or more network interfaces 761 communicate over a network such as via the links 776 and 731 .
  • Two or more gNBs 770 communicate using, e.g., link 776 .
  • the link 776 may be wired or wireless or both and may implement, e.g., an X2 interface.
  • the one or more buses 757 may be address, data, or control buses, and may include any interconnection mechanism, such as a series of lines on a motherboard or integrated circuit, fiber optics or other optical communication equipment, wireless channels, and the like.
  • the one or more transceivers 760 may be implemented as a remote radio head (RRH) 795 , with the other elements of the gNB 770 being physically in a different location from the RRH, and the one or more buses 757 could be implemented in part as fiber optic cable to connect the other elements of the gNB 170 to the RRH 795 .
  • RRH remote radio head
  • the wireless network 700 may include a network control element (NCE) 790 that may include MME (Mobility Management Entity)/SGW (Serving Gateway) functionality, and which provides connectivity with a further network, such as a telephone network and/or a data communications network (e.g., the Internet).
  • the gNB 770 is coupled via a link 731 to the NCE 790 .
  • the link 731 may be implemented as, e.g., an S1 interface.
  • the NCE 790 includes one or more processors 775 , one or more memories 771 , and one or more network interfaces (N/W I/F(s)) 180 , interconnected through one or more buses 785 .
  • the one or more memories 771 include computer program code 773 .
  • the one or more memories 771 and the computer program code 773 are configured to, with the one or more processors 775 , cause the NCE 7190 to perform one or more operations.
  • the wireless network 700 may implement network virtualization, which is the process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Network virtualization involves platform virtualization, often combined with resource virtualization.
  • Network virtualization is categorized as either external, combining many networks, or parts of networks, into a virtual unit, or internal, providing network-like functionality to software containers on a single system. Note that the virtualized entities that result from the network virtualization are still implemented, at some level, using hardware such as processors 752 or 775 and memories 755 and 771 , and also such virtualized entities create technical effects.
  • the computer readable memories 725 , 755 , and 771 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the computer readable memories 725 , 755 , and 771 may be means for performing storage functions.
  • the processors 720 , 752 , and 775 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multi-core processor architecture, as non-limiting examples.
  • the processors 720 , 752 , and 775 may be means for performing functions, such as controlling the UE 710 , gNB 770 , and other functions as described herein.
  • the various embodiments of the user equipment 710 can include, but are not limited to, cellular telephones such as smart phones, tablets, personal digital assistants (PDAs) having wireless communication capabilities, portable computers having wireless communication capabilities, image capture devices such as digital cameras having wireless communication capabilities, gaming devices having wireless communication capabilities, music storage and playback appliances having wireless communication capabilities, Internet appliances permitting wireless Internet access and browsing, tablets with wireless communication capabilities, as well as portable units or terminals that incorporate combinations of such functions.
  • PDAs personal digital assistants
  • portable computers having wireless communication capabilities
  • image capture devices such as digital cameras having wireless communication capabilities
  • gaming devices having wireless communication capabilities
  • music storage and playback appliances having wireless communication capabilities
  • Internet appliances permitting wireless Internet access and browsing, tablets with wireless communication capabilities, as well as portable units or terminals that incorporate combinations of such functions.
  • Embodiments herein may be implemented in software (executed by one or more processors), hardware (e.g., an application specific integrated circuit), or a combination of software and hardware.
  • the software e.g., application logic, an instruction set
  • a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer, with one example of a computer described and depicted, e.g., in FIG. 7 .
  • a computer-readable medium may comprise a computer-readable storage medium or other device that may be any media or means that can contain or store the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer.
  • LTE networks The current architecture in LTE networks is fully distributed in the radio and fully centralized in the core network.
  • the low latency requires bringing the content close to the radio which leads to local break out and multi-access edge computing (MEC).
  • 5G may use edge cloud and local cloud architecture.
  • Edge computing covers a wide range of technologies such as wireless sensor networks, mobile data acquisition, mobile signature analysis, cooperative distributed peer-to-peer ad hoc networking and processing also classifiable as local cloud/fog computing and grid/mesh computing, dew computing, mobile edge computing, cloudlet, distributed data storage and retrieval, autonomic self-healing networks, remote cloud services and augmented reality.
  • edge cloud may mean node operations to be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head or base station comprising radio parts. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labor between core network operations and base station operations may differ from that of the LTE or even be non-existent. Some other technology advancements probably to be used are Software-Defined Networking (SDN), Big Data, and all-IP, which may change the way networks are being constructed and managed.
  • SDN Software-Defined Networking
  • Big Data Big Data
  • all-IP all-IP
  • An exemplary embodiment comprises a radio node connected to a server.
  • Exemplary embodiments implementing the system allow the edge cloud server and the radio node as stand-alone apparatuses communicating with each other via a radio path or via a wired connection or they may be located in a same entity communicating via a wired connection.
  • FIG. 8 is a logic flow diagram illustrating the operation of an exemplary method or methods, resulting from an execution of computer program instructions embodied on a computer readable memory, and/or functions performed by logic implemented in hardware or other means, in accordance with exemplary embodiments, which would be possible.
  • Item 802 represents the UE requesting/reporting beam change request.
  • Item 804 represents the UE receiving a downlink control information message from AP.
  • Item 806 illustrates BCI via the DCI, wherein the message indicates a PUCCH feedback resource and comprises BCI but no MAC layer data is granted, while item 808 illustrates the BCI via MAC CE, wherein message indicates a downlink grant which, when decoded by UE, discloses BCI MAC CE but no CSI-feedback is scheduled for the PUCCH feedback resource.
  • the UE echoes a new beam index in PUCCH feedback resource as shown by item 810 .
  • An example of an embodiment, which can be referred to as item 1, is a method that comprises receiving, by a user equipment from an access point in a wireless communications network, a downlink control information message; and in response to the message indicating a physical uplink control channel feedback resource and comprising a beam change indication wherein no MAC layer data is granted, or the message indicating a downlink grant, wherein the downlink grant is decoded by the user equipment to detect a beam change indication MAC control element transmitted by the network, and no CSI-feedback is scheduled for the physical uplink control channel feedback resource, echoing a new beam index by the user equipment in the physical uplink control channel feedback resource.
  • An example of a further embodiment, which can be referred to as item 2, is the method of item 1, where the beam change indication comprises an indication of a new serving beam different from a currently used serving beam by the access point for either downlink transmission or uplink reception.
  • An example of a further embodiment, which can be referred to as item 3, is the method of either item above, where the message or the MAC control element indicates a scheduling request resource, triggering by the user equipment transmission of a scheduling request on the indicated scheduling request resource.
  • An example of a further embodiment, which can be referred to as item 4, is the method of item 3, where the scheduling request is transmitted using the new serving beam.
  • An example of a further embodiment, which can be referred to as item 5, is the method of items 3 or 4, where the scheduling request is triggered regardless of other scheduling request triggers.
  • An example of a further embodiment, which can be referred to as item 6, is the method of any item above, where the message or the MAC control element does not indicate a scheduling request resource, in response to the detection of the beam change indication MAC control element, triggering a scheduling request procedure on a periodic scheduling request resource.
  • An example of a further embodiment, which can be referred to as item 7, is the method of any item above, where, when the message indicates the physical uplink control channel feedback resource, the physical uplink control channel feedback resource scheduled by the network is allocated with a size of at least one beam reported by the user equipment.
  • An example of a further embodiment, which can be referred to as item 8, is the method of any item above, which further comprises reporting by the user equipment a current serving beam to the access point.
  • An example of a further embodiment, which can be referred to as item 9, is the method of any item above, where reporting by the user equipment the current serving beam informs the network whether the user equipment changed the beam.
  • An example of a further embodiment, which can be referred to as item 10, is the method of any item above, which further comprises upon receiving an uplink resource by triggering the scheduling request procedure, generating by the user equipment a beam state information report
  • An example of a further embodiment, which can be referred to as item 11, is the method of any item above, which further comprises triggering the receiving by sending a beam change request by the user equipment to the network.
  • An example of a further embodiment, which can be referred to as item 12, is the method of item 11, where the beam change request comprises a preferred network communication beam index or a beam state information report.
  • An example of a further embodiment, which can be referred to as item 13, is the method of any item above, which further comprises in response to the user equipment receiving or detecting the beam change indication, wherein the user equipment has not previously reported beam state information for N measurement periods of a beam reference signal, where N is configurable, transmitting a scheduling request on a scheduling request resource if indicated in the message or triggering a scheduling request procedure if no scheduling request resource is indicated in the message, to report the beam state information.
  • An example of a further embodiment, which can be referred to as item 14, is the method of any item above, which further comprises in response to the user equipment receiving or detecting the beam change indication, wherein a new serving beam belongs to a different beam group than a current serving beam, transmitting a scheduling request on a scheduling request resource if indicated in the message or triggering a scheduling request procedure if no scheduling request resource is indicated in the message, to validate a group change using the new serving beam
  • An example of a further embodiment, which can be referred to as item 15, is the method of item 14, where groups are reported by the user equipment.
  • An example of a further embodiment, which can be referred to as item 16, is the method of items 14 or 15, where groups are determined by reception direction of the user equipment.
  • An example of a further embodiment, which can be referred to as item 17, is the method of any of items 14 through 16, where changing the serving beam in a group does not change beam alignment of the user equipment.
  • Embodiments herein may be implemented in software (executed by one or more processors), hardware (e.g., an application specific integrated circuit), or a combination of software and hardware.
  • the software e.g., application logic, an instruction set
  • a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer, with one example of a computer described and depicted, e.g., in FIG. 7 .
  • a computer-readable medium may comprise a computer-readable storage medium (e.g., memories 725 , 755 , 771 or other device) that may be any media or means that can contain, store, and/or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer.
  • a computer-readable storage medium does not comprise propagating signals.
  • modules YYY and ZZZ could be where embodiments of the methods herein may be implemented in the UE and gNB, respectively.
  • Embodiments of the invention could be implemented as an apparatus comprising at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer code are configured with the at least one processor, to cause the apparatus to at least perform the any of the methods disclosed herein can serve as an embodiment of this invention.
  • Embodiments of the invention could also be implemented as a computer program product embodied on a non-transitory computer-readable medium, in which a computer program is stored which, when being executed by a computer, is configured to provide instructions to control or carry out any of the methods disclosed herein can also serve as an embodiment of this invention.
  • An example of another embodiment of the present invention which can be referred to as item 18, is an apparatus comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to perform at least the following: receiving, from an access point in a wireless communications network, a downlink control information message; and in response to the message indicating a physical uplink control channel feedback resource and comprising a beam change indication wherein no MAC layer data is granted, or the message indicating a downlink grant, wherein the downlink grant is decoded by the user equipment to detect a beam change indication MAC control element transmitted by the network, and no CSI-feedback is scheduled for the physical uplink control channel feedback resource, echoing a new beam index in the physical uplink control channel feedback resource.
  • Embodiments of the present invention may be a combination of means or steps for performing particular aspects or features of the invention which may cover a variety of corresponding structures, materials, or acts and equivalents thereof as described in this specification.
  • An example of another embodiment of the present invention which can be referred to as item 19, is an apparatus comprising: means to receive, from an access point in a wireless communications network, a downlink control information message; and in response to the message indicating a physical uplink control channel feedback resource and comprising a beam change indication wherein no MAC layer data is granted, or the message indicating a downlink grant, wherein the downlink grant is decoded by the user equipment to detect a beam change indication MAC control element transmitted by the network, and no CSI-feedback is scheduled for the physical uplink control channel feedback resource, means to echo a new beam index in the physical uplink control channel feedback resource.
  • Embodiments of the invention described herein may be implemented in software (executed by one or more processors), hardware (e.g., an application specific integrated circuit), or a combination of software and hardware.
  • the software e.g., application logic, an instruction set, etc.
  • a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer.
  • a computer-readable medium may comprise a computer-readable storage medium that may be any media or means that can contain or store the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer.
  • An example of another embodiment of the present invention, which can be referred to as item 20 is a computer program comprising code to perform any of the method described in items 1 through 17 above.
  • An example of another embodiment of the present invention which can be referred to as item 22, is a computer-readable medium encoded with instructions that, when executed by a computer, performs the methods of any of items 1 through 17.
  • the different functions discussed herein may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the above-described functions may be optional or may be combined.
  • a technical problem that might be addressed by embodiments of the invention discussed herein is shortening the time to detect failure in beam change procedure.
  • the different functions discussed herein may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the above-described functions may be optional or may be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
US16/311,260 2016-06-23 2017-06-22 Beam change Abandoned US20190199412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/311,260 US20190199412A1 (en) 2016-06-23 2017-06-22 Beam change

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662353832P 2016-06-23 2016-06-23
PCT/IB2017/053745 WO2017221202A1 (fr) 2016-06-23 2017-06-22 Changement de faisceau
US16/311,260 US20190199412A1 (en) 2016-06-23 2017-06-22 Beam change

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/053745 A-371-Of-International WO2017221202A1 (fr) 2016-06-23 2017-06-22 Changement de faisceau

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/243,814 Continuation US20210281296A1 (en) 2016-06-23 2021-04-29 Beam Change

Publications (1)

Publication Number Publication Date
US20190199412A1 true US20190199412A1 (en) 2019-06-27

Family

ID=60784129

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/311,260 Abandoned US20190199412A1 (en) 2016-06-23 2017-06-22 Beam change
US17/243,814 Pending US20210281296A1 (en) 2016-06-23 2021-04-29 Beam Change

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/243,814 Pending US20210281296A1 (en) 2016-06-23 2021-04-29 Beam Change

Country Status (3)

Country Link
US (2) US20190199412A1 (fr)
EP (2) EP3476154A4 (fr)
WO (1) WO2017221202A1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124635A1 (en) * 2017-09-18 2019-04-25 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
US20190230680A1 (en) * 2016-08-12 2019-07-25 Lg Electronics Inc. Method for signal transmission in wireless communication system and device therefor
US20190239207A1 (en) * 2016-10-13 2019-08-01 Huawei Technologies Co., Ltd. Communication method, and communications apparatus and system
US20190245605A1 (en) * 2018-02-07 2019-08-08 Qualcomm Incorporated Reporting variation of beam quality for beam management
US20190305839A1 (en) * 2016-12-19 2019-10-03 Huawei Technologies Co., Ltd. Transmission method using dynamically adjusted beam set, base station, and terminal
US20190313389A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Uplink control channel beam switch procedure
US20190342768A1 (en) * 2016-08-11 2019-11-07 Convida Wireless, Llc Csi feedback design for new radio
US20200014444A1 (en) * 2018-07-04 2020-01-09 Intel IP Corporation Techniques for control of beam switching
US20200028560A1 (en) * 2016-09-30 2020-01-23 China Academy Of Telecommunications Technology Antenna beam management method and related device
US20200044720A1 (en) * 2018-08-03 2020-02-06 Qualcomm Incorporated Facilitating uplink beam selection for a user equipment
US20200136787A1 (en) * 2017-03-24 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) CSI-RS for AMM Measurements
US10660048B2 (en) * 2017-10-02 2020-05-19 Lenovo (Singapore) Pte Ltd Uplink power control
WO2021022556A1 (fr) * 2019-08-08 2021-02-11 Nokia Shanghai Bell Co., Ltd. Alignement de faisceau
US10951300B2 (en) * 2017-08-11 2021-03-16 National Instruments Corporation Radio frequency beam management and recovery
WO2021050045A1 (fr) * 2019-09-10 2021-03-18 Nokia Technologies Oy Amélioration de la fiabilité d'une transmission de données précoce (edt) à terminaison mobile (mt)
US11032840B2 (en) * 2019-11-12 2021-06-08 Qualcomm Incorporated Resolution of collisions between beam failure recovery requests and uplink communications
US11031981B1 (en) * 2020-01-31 2021-06-08 Qualcomm Incorporated Spatial diversity reporting for effective reliable and low-latency communications
WO2021142708A1 (fr) * 2020-01-16 2021-07-22 Qualcomm Incorporated Indication de faisceau pour un canal de commande de liaison montante physique
WO2021145750A1 (fr) * 2020-01-17 2021-07-22 Samsung Electronics Co., Ltd. Adaptation dynamique de faisceau dans un système à multiples faisceaux
US11088750B2 (en) * 2018-02-16 2021-08-10 Qualcomm Incorporated Feedback of beam switch time capability
US11140654B2 (en) * 2017-08-11 2021-10-05 Huawei Technologies Co., Ltd. Method for sending paging message and related device
US20210367738A1 (en) * 2020-05-22 2021-11-25 Qualcomm Incorporated Feedback for beam changes
US11277760B2 (en) * 2017-08-10 2022-03-15 Sony Corporation Communication apparatus, communication control method, and computer program for beam measurement
US11284430B2 (en) * 2018-05-09 2022-03-22 Datang Mobile Communications Equipment Co., Ltd. Method of determining ambiguous period, terminal and network-side device
US11296846B2 (en) 2017-04-03 2022-04-05 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (PTRS) ports
US11316569B2 (en) * 2017-02-10 2022-04-26 Ntt Docomo, Inc. User terminal and radio communication method
US20220225299A1 (en) * 2021-01-14 2022-07-14 Qualcomm Incorporated Techniques for common beam updates indicated by common downlink control information
WO2022191761A1 (fr) * 2021-03-11 2022-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Commutation de faisceau pour communication sans fil
US11451992B2 (en) 2019-04-12 2022-09-20 Qualcomm Incorporated Beam preference feedback for data transmissions
US11452011B2 (en) * 2019-03-29 2022-09-20 Huawei Technologies Co., Ltd. User equipment-centric inter-cell mobility
WO2022206958A1 (fr) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 Procédé et appareil de détermination de ressources
US11528657B1 (en) 2021-06-18 2022-12-13 Nokia Technologies Oy Intelligent reflecting surface configuration
US11646849B2 (en) * 2018-01-12 2023-05-09 Ntt Docomo, Inc. User terminal and radio communication method
US11777206B2 (en) 2021-06-18 2023-10-03 Nokia Technologies Oy Initialization and operation of intelligent reflecting surface
US11800590B2 (en) * 2017-11-28 2023-10-24 Zte Corporation Method and apparatus for sending beam recovery information, and beam detection method and apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060928A1 (fr) * 2016-09-30 2018-04-05 Nokia Technologies Oy Détermination, par un nœud d'accès, d'une association entre un indice de faisceau d'affinement (bl) et un bl logique
US10194442B2 (en) 2017-02-10 2019-01-29 Qualcomm Incorporated Uplink resources for beam recovery
US11456830B2 (en) 2018-01-09 2022-09-27 Qualcomm Incorporated Aperiod tracking reference signal
CN110035505B (zh) * 2018-01-11 2021-08-24 维沃移动通信有限公司 半静态srs资源指示、处理方法、网络侧设备、用户终端
CN111566945A (zh) * 2018-01-11 2020-08-21 瑞典爱立信有限公司 用于波束故障恢复的基于竞争的随机接入
CN110120862A (zh) * 2018-02-06 2019-08-13 英特尔Ip公司 用于波束管理的装置和方法
KR20190099841A (ko) * 2018-02-20 2019-08-28 삼성전자주식회사 무선 통신 시스템에서 제어 채널을 전송하는 방법 및 장치
US10721631B2 (en) 2018-04-11 2020-07-21 At&T Intellectual Property I, L.P. 5D edge cloud network design
CN111357212A (zh) * 2018-06-21 2020-06-30 谷歌有限责任公司 波束故障报告
AU2018432105A1 (en) 2018-07-13 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for indicating beam failure recovery, device, and storage medium
US11758412B2 (en) 2018-07-27 2023-09-12 Ntt Docomo, Inc. User terminal and radio communication method
WO2020063874A1 (fr) 2018-09-28 2020-04-02 Mediatek Inc. Dispositif électronique et procédé pour le rétablissement après défaillance de faisceau
US11240684B2 (en) * 2018-12-21 2022-02-01 Qualcomm Incorporated Beam switching robustness in unlicensed radio frequency spectrum band
US11575488B2 (en) * 2019-12-13 2023-02-07 Qualcomm Incorporated Coverage enhancement for a beam change acknowledgement
CN111246591B (zh) * 2020-01-20 2022-09-13 展讯通信(上海)有限公司 一种信息传输方法、装置及相关设备
WO2022082790A1 (fr) * 2020-10-23 2022-04-28 华为技术有限公司 Procédé et appareil d'indication de faisceau
CN113630226B (zh) * 2021-06-28 2023-04-07 中国信息通信研究院 一种感知资源请求方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098689A1 (en) * 2012-09-28 2014-04-10 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration
US20170359826A1 (en) * 2016-06-10 2017-12-14 Qualcomm Incorporated Informing base station regarding user equipment's reception of beam change instruction
US20180132221A1 (en) * 2015-01-26 2018-05-10 Asustek Computer Inc. Method and apparatus for handling transmission in a wireless communication system
US20200037297A1 (en) * 2016-09-28 2020-01-30 Idac Holdings, Inc. New radio random access in beamforming systems
US20200092899A1 (en) * 2016-03-02 2020-03-19 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230931B2 (en) * 2001-01-19 2007-06-12 Raze Technologies, Inc. Wireless access system using selectively adaptable beam forming in TDD frames and method of operation
US8030319B2 (en) 2005-02-10 2011-10-04 Duquesne University Of The Holy Ghost Methods for treating cancer and other pathological proliferating disorders by inhibiting mitosis using pyrrolo[2 3-d]pyrimidines
KR20140056561A (ko) * 2012-10-29 2014-05-12 한국전자통신연구원 다중 빔을 운영하는 이동통신시스템에서 기지국 및 단말의 동작 방법
US9473276B2 (en) * 2013-08-08 2016-10-18 Intel IP Corporation Cooperative multiple beam transmission
KR102201599B1 (ko) * 2014-07-01 2021-01-13 한국전자통신연구원 핸드오버 방법 및 그 장치
US20160105817A1 (en) * 2014-10-10 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method for csi feedback
WO2016068521A1 (fr) * 2014-10-27 2016-05-06 Samsung Electronics Co., Ltd. Procédé et appareil pour une formation de faisceau multiutilisateur dans des systèmes de communication sans fil
WO2016086144A1 (fr) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Accès initial dans des systèmes sans fil haute fréquence
EP3289695A1 (fr) * 2015-04-30 2018-03-07 Nokia Solutions and Networks Oy Commande de formation de faisceau rf dans un système de communication
WO2017034607A1 (fr) * 2015-08-27 2017-03-02 Intel IP Corporation Commande de mobilité inter-faisceau dans des systèmes de communication mimo
WO2017074497A1 (fr) * 2015-10-26 2017-05-04 Intel IP Corporation Signal de référence pour un affinement de faisceau de réception dans des systèmes cellulaires
US9960830B2 (en) * 2016-04-04 2018-05-01 Samsung Electronics Co., Ltd. Method and apparatus for managing beam in beamforming system
US10716013B2 (en) * 2017-03-24 2020-07-14 Qualcomm Incorporated Beam refinement for millimeter wave (MMW) system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098689A1 (en) * 2012-09-28 2014-04-10 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration
US20180132221A1 (en) * 2015-01-26 2018-05-10 Asustek Computer Inc. Method and apparatus for handling transmission in a wireless communication system
US20200092899A1 (en) * 2016-03-02 2020-03-19 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
US20170359826A1 (en) * 2016-06-10 2017-12-14 Qualcomm Incorporated Informing base station regarding user equipment's reception of beam change instruction
US20200037297A1 (en) * 2016-09-28 2020-01-30 Idac Holdings, Inc. New radio random access in beamforming systems

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10735980B2 (en) * 2016-08-11 2020-08-04 Convida Wireless, Llc CSI feedback design for new radio
US11064374B2 (en) 2016-08-11 2021-07-13 Covida Wireless, LLC CSI feedback design for new radio
US20190342768A1 (en) * 2016-08-11 2019-11-07 Convida Wireless, Llc Csi feedback design for new radio
US11765603B2 (en) 2016-08-11 2023-09-19 Interdigital Patent Holdings, Inc. CSI feedback design for new radio
US10779306B2 (en) * 2016-08-12 2020-09-15 Lg Electronics Inc. Method for signal transmission in wireless communication system and device therefor
US20190230680A1 (en) * 2016-08-12 2019-07-25 Lg Electronics Inc. Method for signal transmission in wireless communication system and device therefor
US20200028560A1 (en) * 2016-09-30 2020-01-23 China Academy Of Telecommunications Technology Antenna beam management method and related device
US10804994B2 (en) * 2016-09-30 2020-10-13 China Academy Of Telecommunications Technology Antenna beam management method and related device
US20190239207A1 (en) * 2016-10-13 2019-08-01 Huawei Technologies Co., Ltd. Communication method, and communications apparatus and system
US10966205B2 (en) * 2016-10-13 2021-03-30 Huawei Technologies Co., Ltd. Communication method, and communications apparatus and system
US10763944B2 (en) * 2016-12-19 2020-09-01 Huawei Technologies Co., Ltd. Transmission method using dynamically adjusted beam set, base station, and terminal
US20190305839A1 (en) * 2016-12-19 2019-10-03 Huawei Technologies Co., Ltd. Transmission method using dynamically adjusted beam set, base station, and terminal
US11316569B2 (en) * 2017-02-10 2022-04-26 Ntt Docomo, Inc. User terminal and radio communication method
US20200136787A1 (en) * 2017-03-24 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) CSI-RS for AMM Measurements
US11611420B2 (en) * 2017-03-24 2023-03-21 Telefonaktiebolaget Lm Ericsson (Publ) CSI-RS for AMM measurements
US11296846B2 (en) 2017-04-03 2022-04-05 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (PTRS) ports
US11277760B2 (en) * 2017-08-10 2022-03-15 Sony Corporation Communication apparatus, communication control method, and computer program for beam measurement
US10951300B2 (en) * 2017-08-11 2021-03-16 National Instruments Corporation Radio frequency beam management and recovery
US11140654B2 (en) * 2017-08-11 2021-10-05 Huawei Technologies Co., Ltd. Method for sending paging message and related device
US10893516B2 (en) 2017-09-18 2021-01-12 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
US10708902B2 (en) * 2017-09-18 2020-07-07 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
US11638244B2 (en) 2017-09-18 2023-04-25 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
US20190124635A1 (en) * 2017-09-18 2019-04-25 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
US11419067B2 (en) * 2017-10-02 2022-08-16 Lenovo (Singapore) Pte. Ltd. Uplink power control
US11991647B2 (en) 2017-10-02 2024-05-21 Lenovo (Singapore) Pte. Ltd. Uplink power control
US10986593B2 (en) * 2017-10-02 2021-04-20 Lenovo (Singapore) Pte. Ltd. Uplink power control
US10660048B2 (en) * 2017-10-02 2020-05-19 Lenovo (Singapore) Pte Ltd Uplink power control
US11134452B2 (en) 2017-10-02 2021-09-28 Lenovo (Singapore) Pte. Ltd. Uplink power control
US11800590B2 (en) * 2017-11-28 2023-10-24 Zte Corporation Method and apparatus for sending beam recovery information, and beam detection method and apparatus
US11646849B2 (en) * 2018-01-12 2023-05-09 Ntt Docomo, Inc. User terminal and radio communication method
US11070273B2 (en) 2018-02-07 2021-07-20 Qualcomm Incorporated Reporting variation of beam quality for beam management
US10700753B2 (en) * 2018-02-07 2020-06-30 Qualcomm Incorporated Reporting variation of beam quality for beam management
US20190245605A1 (en) * 2018-02-07 2019-08-08 Qualcomm Incorporated Reporting variation of beam quality for beam management
US11088750B2 (en) * 2018-02-16 2021-08-10 Qualcomm Incorporated Feedback of beam switch time capability
US20190313389A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Uplink control channel beam switch procedure
US11109380B2 (en) * 2018-04-05 2021-08-31 Qualcomm Incorporated Uplink control channel beam switch procedure
US11284430B2 (en) * 2018-05-09 2022-03-22 Datang Mobile Communications Equipment Co., Ltd. Method of determining ambiguous period, terminal and network-side device
US10812161B2 (en) * 2018-07-04 2020-10-20 Intel IP Corporation Techniques for control of beam switching
US20200014444A1 (en) * 2018-07-04 2020-01-09 Intel IP Corporation Techniques for control of beam switching
US11184077B2 (en) * 2018-08-03 2021-11-23 Qualcomm Incorporated Facilitating uplink beam selection for a user equipment
US20200044720A1 (en) * 2018-08-03 2020-02-06 Qualcomm Incorporated Facilitating uplink beam selection for a user equipment
US11452011B2 (en) * 2019-03-29 2022-09-20 Huawei Technologies Co., Ltd. User equipment-centric inter-cell mobility
US11451992B2 (en) 2019-04-12 2022-09-20 Qualcomm Incorporated Beam preference feedback for data transmissions
WO2021022556A1 (fr) * 2019-08-08 2021-02-11 Nokia Shanghai Bell Co., Ltd. Alignement de faisceau
WO2021050045A1 (fr) * 2019-09-10 2021-03-18 Nokia Technologies Oy Amélioration de la fiabilité d'une transmission de données précoce (edt) à terminaison mobile (mt)
US11032840B2 (en) * 2019-11-12 2021-06-08 Qualcomm Incorporated Resolution of collisions between beam failure recovery requests and uplink communications
WO2021142708A1 (fr) * 2020-01-16 2021-07-22 Qualcomm Incorporated Indication de faisceau pour un canal de commande de liaison montante physique
US11658727B2 (en) 2020-01-17 2023-05-23 Samsung Electronics Co., Ltd. Dynamic beam adaptation in a multi-beam system
WO2021145750A1 (fr) * 2020-01-17 2021-07-22 Samsung Electronics Co., Ltd. Adaptation dynamique de faisceau dans un système à multiples faisceaux
US11031981B1 (en) * 2020-01-31 2021-06-08 Qualcomm Incorporated Spatial diversity reporting for effective reliable and low-latency communications
US11909690B2 (en) * 2020-05-22 2024-02-20 Qualcomm Incorporated Feedback for beam changes
US20210367738A1 (en) * 2020-05-22 2021-11-25 Qualcomm Incorporated Feedback for beam changes
US20220225299A1 (en) * 2021-01-14 2022-07-14 Qualcomm Incorporated Techniques for common beam updates indicated by common downlink control information
WO2022191761A1 (fr) * 2021-03-11 2022-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Commutation de faisceau pour communication sans fil
WO2022206958A1 (fr) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 Procédé et appareil de détermination de ressources
US11528657B1 (en) 2021-06-18 2022-12-13 Nokia Technologies Oy Intelligent reflecting surface configuration
US11777206B2 (en) 2021-06-18 2023-10-03 Nokia Technologies Oy Initialization and operation of intelligent reflecting surface

Also Published As

Publication number Publication date
EP4007368A1 (fr) 2022-06-01
EP3476154A1 (fr) 2019-05-01
EP3476154A4 (fr) 2020-01-15
WO2017221202A1 (fr) 2017-12-28
US20210281296A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US20210281296A1 (en) Beam Change
CN110832790B (zh) 用于发送波束故障恢复请求的系统和方法
US10574304B2 (en) Method, system and apparatus of beam selection
CN111279785B (zh) 随机接入信道(rach)设计
US10666400B2 (en) Enhancing monitoring of multiple physical downlink control channels in beam based system
US10945165B2 (en) UE reported SRS switching capability
US11595171B2 (en) Methods and apparatuses for reference signal configuration
US11152996B2 (en) Refinement beam index beam identifier association
EP3432678A1 (fr) Dispositif et procédé de configuration d'un noeud secondaire et de rapport en double connectivité
US20220295413A1 (en) Panel specific ul power control
CN110741564A (zh) 多波束系统中的小区排名
CN110999395B (zh) 用于新无线电的增强的无线电链路监测
US20240049207A1 (en) Beam Management in Multi-TRP Operation
WO2021077372A1 (fr) Procédé et nœud de réseau d'accès pour gestion de faisceaux
WO2020206581A1 (fr) Procédé de transmission de signal, dispositif terminal, et dispositif de réseau
US20230403654A1 (en) Exposure control
CN110149189B (zh) 一种信息传输方法和装置
CN116491178A (zh) 用于随机接入的服务组
JP2023508160A (ja) 通信のための方法、ユーザ装置及び基地局
US11528707B2 (en) Primary and secondary beams based channel access
US11800322B2 (en) Signalling for positioning latency control
US12010059B2 (en) Methods and apparatuses for reference signal configuration
US20220104086A1 (en) Cell ranking in multi beam system
US20240187995A1 (en) Method and apparatus for pusch transmission with repetitions
WO2024068805A1 (fr) Équipement utilisateur et station de base

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOKIA TECHNOLOGIES OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOSKELA, TIMO;TURTINEN, SAMULI;PIRSKANEN, JUHO;SIGNING DATES FROM 20160627 TO 20160801;REEL/FRAME:047814/0771

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION