US20190198636A1 - Semiconductor Devices and Methods of Manufacturing the Same - Google Patents

Semiconductor Devices and Methods of Manufacturing the Same Download PDF

Info

Publication number
US20190198636A1
US20190198636A1 US16/015,852 US201816015852A US2019198636A1 US 20190198636 A1 US20190198636 A1 US 20190198636A1 US 201816015852 A US201816015852 A US 201816015852A US 2019198636 A1 US2019198636 A1 US 2019198636A1
Authority
US
United States
Prior art keywords
spacer
pattern
substrate
thickness
active pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/015,852
Inventor
Changwoo Noh
Munhyeon Kim
Hansu Oh
Sungman Whang
Dongwon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OH, HANSU, KIM, DONGWON, KIM, MUNHYEON, NOH, CHANGWOO, WHANG, SUNGMAN
Publication of US20190198636A1 publication Critical patent/US20190198636A1/en
Priority to US16/836,138 priority Critical patent/US11257925B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Definitions

  • the present disclosure relates generally to semiconductor devices and, more particularly, to three-dimensional semiconductor devices and methods of manufacturing the same.
  • Semiconductor devices are beneficial in the electronic industry because of their small size, multi-functionality, and/or low fabrication cost.
  • Semiconductor devices may encompass semiconductor memory devices storing logic data, semiconductor logic devices processing operations of logic data, and hybrid semiconductor devices having both memory and logic elements.
  • Semiconductor devices have been increasingly required for high integration with the advanced development of the electronic industry. For example, semiconductor devices have been increasingly requested for high reliability, high speed, and/or multi-functionality. Semiconductor devices are gradually complicated and integrated to meet these requested characteristics. As semiconductor devices become highly integrated, the scale down of transistors is also being accelerated and, thus, semiconductor devices may decrease in operating characteristics. As semiconductor devices become highly integrated, transistors have increasingly difficulty in achieving high performance to meet customer's requirements.
  • Some embodiments of the present inventive concept provide methods of manufacturing a semiconductor device including forming on a substrate an active pattern that protrudes from the substrate and extends in one direction; forming on the active pattern a sacrificial gate structure that extends in a direction intersecting the active pattern; forming a first spacer on a side surface of the sacrificial gate structure, the first spacer including a first portion at a lower level than a top surface of the active pattern and a second portion on the first portion; and reducing a thickness of the second portion of the first spacer.
  • the transistor may comprise: a channel pattern extending in one direction on the substrate; a gate electrode crossing over the channel pattern; a dielectric layer between the channel pattern and the gate electrode; and a first spacer covering a side surface of the gate electrode.
  • the first spacer may comprise a first portion at a lower level than a top surface of the channel pattern and a second portion on the first portion. A thickness of the second portion may be less than a thickness of the first portion.
  • Still further embodiments of the present inventive concept provide semiconductor devices including an active pattern protruding from a substrate and extending in one direction; a gate electrode running across the active pattern; a first spacer on a side surface of the gate electrode and disposed at a lower level than a top surface of the active pattern; and a second spacer on the side surface of the gate electrode and on the first spacer.
  • a dielectric constant of the second spacer may be less than a dielectric constant of the first spacer.
  • FIGS. 1 and 10 are plan views illustrating of semiconductor devices in accordance with some embodiments of the present inventive concept.
  • FIGS. 2 and 11 are perspective views according to some embodiments of the present inventive concept.
  • FIGS. 3A to 9A are cross-sections along the lines I-I′ of FIGS. 1 and 10 , respectively, illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 3B to 9B are cross-sections along the lines II-II′ of FIGS. 1 and 10 , respectively, illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIG. 12 illustrates a cross-section illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 13A to 15A illustrate cross-sections showing a method of manufacturing a semiconductor device according to exemplary embodiments of inventive concept.
  • FIGS. 13B to 15B are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept
  • FIGS. 16A and 17A are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 16B and 17B are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 18A to 20A are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 18B to 20B are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • first, second, third, fourth etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present inventive concept.
  • spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation Furthermore to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • Example embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized example embodiments (and intermediate structures). As such, variations from the shapes of the illustrations as a result, For example, of manufacturing techniques and/or tolerances, are to be expected. Thus, example embodiments should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, For example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region.
  • a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present inventive concept.
  • FIGS. 1 and 10 illustrate plan views illustrating processing steps in the fabrication of semiconductor devices in accordance with some embodiments of the present inventive concept.
  • FIGS. 2 and 11 illustrate perspective views showing portions of FIGS. 1 and 10 , respectively.
  • FIGS. 3A to 9A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 3B to 9B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to exemplary embodiments of inventive concept.
  • FIG. 12 illustrates a cross-section taken along line I-I′ of FIG. 10 illustrating processing steps in the fabrication of semiconductor devices according to exemplary embodiments of inventive concept.
  • the substrate 100 may have an active region.
  • the substrate 100 may be a semiconductor substrate.
  • the semiconductor substrate may be a bulk silicon substrate, a silicon-on-insulator (SOI) substrate, a germanium substrate, a germanium-on-insulator (GOI) substrate, a silicon-germanium substrate, or an epitaxial thin-layer substrate obtained by performing a selective epitaxial growth (SAG) process.
  • the bulk silicon substrate may be doped with n-type or p-type impurities.
  • the semiconductor substrate may be III-V group compound semiconductor substrate.
  • III-V group compound semiconductor substrate may include one or more of gallium arsenide (GaAs), indium gallium arsenide (InGaAs), aluminum gallium arsenide (Algae's), and a mixture thereof.
  • GaAs gallium arsenide
  • InGaAs indium gallium arsenide
  • Algae's aluminum gallium arsenide
  • An active pattern 110 may be formed on the substrate 100 .
  • the active pattern 110 may have a fin-shape.
  • the active pattern 110 may have a linear shape or bar shape extending in a first direction D 1 on the substrate 100 .
  • the active pattern 110 may be a portion of the substrate 100 , or may be formed by etching an epitaxial layer grown from the substrate 100 .
  • the active pattern 110 may include a semiconductor material, such as silicon (Si) or germanium (Ge).
  • the active pattern 110 may include a compound semiconductor, such as IV group compound semiconductor or III-V group compound semiconductor.
  • IV group compound semiconductor may be a binary or ternary compound including two or more of carbon (C), silicon (Si), germanium (Ge), and tin (Sn), or such binary or ternary compound doped with IV group element.
  • III-V group compound semiconductor may include one of binary, ternary, and quaternary compounds that is formed when one or more of III group elements, such as aluminum (Al), gallium (Ga), and indium (In), are combined with one of V group elements, such as phosphorous (P), arsenic (As) and antimony (Sb).
  • a device isolation layer 120 may be formed on the substrate 100 .
  • the formation of the device isolation layer 120 may include forming an insulation layer on an entire surface of the substrate 100 and recessing the insulation layer until the active pattern 110 is fully exposed.
  • a top surface of the device isolation layer 120 may become lower than a top surface 110 a of the active pattern 110 .
  • a sacrificial gate structure 130 may be formed to run across the active pattern 110 .
  • the sacrificial gate structure 130 may be formed to have a linear or bar shape extending in a second direction D 2 .
  • the formation of the sacrificial gate structure 130 may include forming a sacrificial layer on the substrate 100 , forming a first mask pattern M 1 on the sacrificial layer, and using the first mask pattern M 1 as an etching mask to etch the sacrificial layer.
  • the sacrificial layer may be formed using polysilicon.
  • the first mask pattern M 1 may be formed using a silicon oxide layer, a silicon nitride layer, or a silicon ox nitride layer.
  • a first spacer 140 may be formed on opposite sidewalls of the sacrificial gate structure 130 .
  • An insulation spacer 150 may be formed on opposite sidewalls 110 b of the active pattern 110 .
  • the first spacer 140 and the insulation spacer 150 may be formed at the same time.
  • the first spacer 140 and the insulation spacer 150 may include the same material as each other.
  • the first spacer 140 and the insulation spacer 150 may include one or more of silicon carbonitride (SiCN), silicon carbon oxynitride (SiCON), and silicon nitride (SiN).
  • the formation of the first spacer 140 and the insulation spacer 150 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a first spacer layer on the entire surface of the substrate 100 , and performing an anisotropic etching process on the first spacer layer.
  • the first spacer 140 may include an upper portion 144 at a higher level than the top surface 110 a of the active pattern 110 and a lower portion 142 at a lower level than the top surface 110 a of the active pattern 110 .
  • the upper and lower portions 144 and 142 of the first spacer 140 may have therebetween a boundary 140 a at substantially the same level as the top surface 110 a of the active pattern 110 .
  • the lower portion 142 of the first spacer 140 may be provided on a sidewall of the active pattern 110
  • the upper portion 144 of the first spacer 140 may be provided on the active pattern 110 and the lower portion 142 of the first spacer 140 .
  • a buried layer 200 may be formed on the substrate 100 .
  • the buried layer 200 may cover the sacrificial gate structure 130 , the active pattern 110 , the first spacer 140 , and the insulation spacer 150 .
  • the buried layer 200 may be a tonensilazene (TOSZ) oxide layer.
  • the buried layer 200 may have an etch selectivity to the first spacer 140 and the insulation spacer 150 .
  • an etching process may be performed on the buried layer 200 .
  • An upper portion of the buried layer 200 may be selectively removed, and the first spacer 140 and the insulation spacer 150 may be relatively less etched or may not be substantially etched during the etching process.
  • the buried layer 200 may have a portion overlying the top surface 110 a of the active pattern 110 , and the portion of the buried layer 200 may be removed when the etching process is performed, which process may form a second mask pattern M 2 .
  • the buried layer 200 may have other portion underlying the top surface 110 a of the active pattern 110 , and the other portion of the buried layer 200 may not be etched.
  • the etching process may continue until a top surface of the second mask pattern M 2 reaches a level substantially the same as the top surface 110 a of the active pattern 110 .
  • the top surface of the second mask pattern M 2 may be substantially coplanar with the top surface 110 a of the active pattern 110 .
  • the second mask pattern M 2 may be formed to have a top surface lower than the top surface 110 a of the active pattern 110 .
  • the etching process may continue even after the top surface of the second mask pattern M 2 reaches a level substantially the same as the top surface 110 a of the active pattern 110 .
  • the upper portion 144 of the first spacer 140 may be etched.
  • the lower portion 142 of the first spacer 140 may be buried in or covered with the second mask pattern M 2 , while the upper portion 144 of the first spacer 140 may be exposed.
  • An anisotropic etching process may be performed on the exposed upper portion 144 of the first spacer 140 .
  • the upper portion 144 of the first spacer 140 may accordingly have a small thickness T 2 .
  • the lower portion 142 of the first spacer 140 may have a thickness T 1 greater than the thickness T 2 of the upper portion 144 of the first spacer 140 .
  • the first spacer 140 may have a stepped shape between the lower portion 142 and the upper portion 144 on the boundary 140 a.
  • the second mask pattern M 2 may be removed.
  • the lower portion 142 of the first spacer 140 may be exposed.
  • the first mask pattern M 1 and the first spacer 140 may be used as an etching mask to etch the active pattern 110 , which etching may form a channel pattern 115 .
  • the active pattern 110 may be etched to form recess regions R.
  • the channel pattern 115 may be defined between a pair of neighboring recess regions R.
  • the active pattern 110 may be over-etched during the etching process.
  • the active pattern 110 may be etched on its portion between the neighboring recess regions R and further be etched on its other portion beneath the sacrificial gate structure 130 .
  • the recess regions R may have sidewalls each protruding toward and below the sacrificial gate structure 130 .
  • the channel pattern 115 may thus be formed to have a small length W. Since the active pattern 110 is over-etched, the recess regions R may each have a bottommost end lower than the top surface of the device isolation layer 120 .
  • the upper portion 144 of the first spacer 140 may have the small thickness T 2 covering the sidewall of the sacrificial gate structure 130 .
  • the active pattern 110 is generally required to be horizontally etched from a position below the upper portion 144 of the first spacer 140 toward a position below the sacrificial gate structure 130 in order to form the channel pattern 115 having the small length W
  • the small thickness T 2 of the upper portion 144 may reduce the horizontal etching length of the active pattern 110 and the active pattern 110 may be easily etched below the sacrificial gate structure 130 .
  • the insulation spacer 150 may be removed.
  • the insulation spacer 150 may be removed before the active pattern 110 is etched.
  • Source/drain patterns 160 may be formed to fill the recess regions R.
  • the formation of the source/drain patterns 160 may include performing a selective epitaxial growth process on the active pattern 110 .
  • the source/drain patterns 160 may be formed of a semiconductor element, such as silicon germanium (SiGe). Simultaneously with or after the selective epitaxial growth process, the source/drain patterns 160 may be doped with p-type or n-type impurities. Since the sidewalls of the recess regions R protrude toward and below the sacrificial gate structures 130 , the source/drain patterns 160 may also protrude toward and below the sacrificial gate structures 130 .
  • a gate electrode 170 may be formed to fabricate a semiconductor device.
  • the formation of the gate electrode 170 may include removing the first mask pattern Ml, selectively removing the sacrificial gate structure 130 , and forming a gate dielectric layer, a gate electrode, and a capping layer in an empty space where the sacrificial gate structure 130 is removed.
  • a semiconductor device may be provided with a substrate 100 .
  • the substrate 100 may have an active region.
  • the substrate 100 may be a semiconductor substrate.
  • a device isolation layer 120 may be provided on the substrate 100 .
  • the device isolation layer 120 may define an active pattern 110 on an upper portion of the substrate 100 .
  • the active pattern 110 may have a fin-shape.
  • the active pattern 110 may have a linear or bar shape extending in a first direction D 1 on the substrate 100 .
  • the active pattern 110 may be provided thereon with a channel pattern 115 and source/drain patterns 160 .
  • the channel pattern 115 may be interposed between a pair of neighboring source/drain patterns 160 .
  • the channel pattern 115 may include one or more of silicon (Si), germanium (Ge), and silicon germanium (SiGe).
  • the source/drain patterns 160 may be epitaxial patterns grown from the active pattern 110 serving as a seed layer.
  • the source/drain patterns 160 may be p-type impurity regions.
  • the source/drain patterns 160 may include a semiconductor element, such as silicon germanium (SiGe).
  • a gate electrode 170 may be disposed on the channel pattern 115 .
  • the gate electrode 170 may extend in a second direction D 2 while crossing over the channel pattern 115 .
  • the gate electrode 170 may include metal or polysilicon.
  • a first spacer 140 may be disposed on opposite sidewalls of the gate electrode 170 .
  • the first spacer 140 may extend in the second direction D 2 along the gate electrode 170 .
  • the first spacer 140 may include a lower portion 142 at a lower level than a top surface of the channel pattern 115 and an upper portion 144 at a higher level than the top surface of the channel pattern 115 .
  • a boundary 140 a between the upper and lower portions 144 and 142 of the first spacer 140 may be located at substantially the same level as a top surface 110 a of the active pattern 110 .
  • the upper portion 144 of the first spacer 140 may have a thickness less than that of the lower portion 142 of the first spacer 140 .
  • the first spacer 140 may have a stepped shape between the lower portion 142 and the upper portion 144 on the boundary 140 a.
  • the lower portion 142 of the first spacer 140 may be placed between the gate electrode 170 and the source/drain patterns 160 .
  • the first spacer 140 may include one or more of silicon carbonitride (SiCN), silicon carbon oxynitride (SiCON), and silicon nitride (SiN).
  • a gate dielectric layer 172 may be between the gate electrode 170 and the channel pattern 115 .
  • the gate dielectric layer 172 may cover the channel pattern 115 .
  • the gate dielectric layer 172 may include a high-k dielectric material.
  • the high-k dielectric material may include one or more of hafnium oxide, hafnium silicon oxide, lanthanum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, lithium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate.
  • a gate capping pattern 174 may be provided on the gate electrode 170 .
  • the gate capping pattern 174 may extend in the second direction D 2 along the gate electrode 170 .
  • the gate capping pattern 174 may include one or more of silicon oxide (SiO 2 ), silicon carbonitride (SiCN), silicon carbon oxynitride (SiCON), and silicon nitride (SiN).
  • the first spacer 140 since the first spacer 140 includes the upper portion 144 having a small thickness on the channel pattern 115 , it may be easy to form the source/drain patterns 160 protruding toward and below the gate electrode 170 and to also form the channel pattern 115 having the small length W. The channel pattern 115 may then decrease in resistance.
  • the first spacer 140 since the first spacer 140 includes the lower portion 142 having a great thickness, it may be possible to reduce a parasitic capacitance between the gate electrodes 170 adjacent to a side of the channel pattern 115 and between the gate electrode 170 and the source/drain patterns 160 .
  • a semiconductor device according to inventive concept may consequently increase in electrical characteristics.
  • FIGS. 13A to 15A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 13B to 15B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • a second spacer 180 may be formed on a resultant structure of FIGS. 8A and 8B .
  • the second spacer 180 may be formed on a top surface of the first mask pattern M 1 and exposed sidewalls of the upper portion 144 of the first spacer 140 .
  • the upper portion 144 of the first spacer 140 may have a shape extending from the lower portion 142 toward between the second spacer 180 and the sacrificial gate structure 130 .
  • the formation of the second spacer 180 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a second spacer layer on the entire surface of the substrate 100 , and performing an anisotropic etching process on the second spacer layer.
  • the second spacer 180 may have a dielectric constant less than that of the first spacer 140 .
  • the second spacer 180 may include silicon carbon oxynitride (SiCON) or silicon oxide (SiO 2 ).
  • the second mask pattern M 2 may be removed.
  • the lower portion 142 of the first spacer 140 may be exposed.
  • a sum of the thickness T 2 of the upper portion 144 of the first spacer 140 and a thickness T 3 of the second spacer 180 may be the same as the thickness T 1 of the lower portion 142 of the first spacer 140 .
  • a side surface of the lower portion 142 of the first spacer 140 may be coplanar with a side surface of the second spacer 180 .
  • the sum of the thickness T 2 the upper portion 144 of the first spacer 140 and the thickness T 3 of the second spacer 180 may be less than the thickness T 1 of the lower portion 142 of the first spacer 140 .
  • the first mask pattern Ml, the first spacer 140 , and the second spacer 180 may be used as an etching mask to etch the active pattern 110 , which etching may form a channel pattern 115 .
  • the channel pattern 115 may be defined between a pair of neighboring recess regions R.
  • Source/drain patterns 160 may be formed to fill the recess regions R.
  • the formation of the source/drain patterns 160 may include performing a selective epitaxial growth process on the active pattern 110 . Simultaneously with or after the selective epitaxial growth process, the source/drain patterns 160 may be doped with p-type or n-type impurities. Thereafter, a gate electrode 170 may be formed as discussed with reference to FIGS. 10 to 12 above.
  • FIGS. 16A and 17A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 16B and 17B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • an etching process may be performed on a resultant structure of FIGS. 8A and 8B .
  • the etching process may completely remove the upper portion 144 of the first spacer 140 .
  • the sacrificial gate structure 130 may be partially exposed when the etching process is performed.
  • a second spacer 180 may be formed.
  • the second spacer 180 may be formed on a top surface of the first mask pattern M 1 and exposed sidewalls of the sacrificial gate structure 130 .
  • the formation of the second spacer 180 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a second spacer layer on the entire surface of the substrate 100 , and performing an anisotropic etching process on the second spacer layer.
  • the second spacer 180 may have a dielectric constant less than that of the first spacer 140 .
  • a thickness T 3 of the second spacer 180 may be the same as the thickness T 1 of the lower portion 142 of the first spacer 140 .
  • a side surface of the lower portion 142 of the first spacer 140 may be coplanar with a side surface of the second spacer 180 .
  • the thickness T 3 of the second spacer 180 may be less than the thickness T 1 of the lower portion 142 of the first spacer 140 .
  • the channel pattern 115 may be provided thereon with the second spacer 180 having a low dielectric constant.
  • the gate electrode 170 may be provided on its upper portion with the second spacer 180 having a low dielectric constant, and therefore, it may be possible to reduce a leakage current from the upper portion of the gate electrode 170 .
  • the upper portion of the gate electrode 170 and the source/drain pattern 160 are provided therebetween with the second spacer 180 having a low dielectric constant, it may be possible to reduce a parasitic capacitance between the upper portion of the gate electrode 170 and the source/drain pattern 160 .
  • FIGS. 18A to 20A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 18B to 20B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • a substrate 100 may be provided.
  • the substrate 100 may have an active region.
  • the substrate 100 may be a semiconductor substrate.
  • An active pattern 110 may be formed on the substrate 100 .
  • sacrificial layers 112 and semiconductor layers 114 may be alternately and repeatedly stacked on an entire surface of the substrate 100 .
  • the sacrificial layers 112 may include a material having an etch selectivity to the semiconductor layers 114 .
  • the sacrificial layers 112 may include silicon germanium (SiGe) or germanium (Ge), and the semiconductor layers 114 may include silicon (Si).
  • the sacrificial layers 112 and the semiconductor layers 114 may be formed by an epitaxial growth process in which the substrate 100 serves as a seed layer.
  • the sacrificial layers 112 and the semiconductor layers 114 may be conformally grown on the entire surface of the substrate 100 .
  • the sacrificial layers 112 and the semiconductor layers 114 may be patterned to form an active pattern 110 .
  • the active pattern 110 may have a fin-shape.
  • a device isolation layer 120 may be formed on the substrate 100 .
  • the formation of the device isolation layer 120 may include forming an insulation layer on the entire surface of the substrate 100 and recessing the insulation layer until the active pattern 110 is fully exposed.
  • a sacrificial gate structure 130 may be formed to run across the active pattern 110 .
  • the sacrificial gate structure 130 may be formed to have a linear or bar shape extending in a second direction D 2 .
  • the formation of the sacrificial gate structure 130 may include forming a sacrificial layer on the substrate 100 , forming a first mask pattern M 1 on the sacrificial layer, and using the first mask pattern M 1 as an etching mask to etch the sacrificial layer.
  • a first spacer 140 may be formed on opposite sidewalls of the sacrificial gate structure 130 .
  • the formation of the first spacer 140 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a first spacer layer on the entire surface of the substrate 100 , and performing an anisotropic etching process on the first spacer layer.
  • the first spacer 140 may include an upper portion 144 at a higher level than a top surface 110 a of the active pattern 110 and a lower portion 142 at a lower level than the top surface 110 a of the active pattern 110 .
  • a second mask pattern M 2 may be formed on the substrate 100 .
  • the formation of the second mask pattern M 2 may include forming a buried layer on the substrate 100 and etching the buried layer to partially remove portions of the buried layer that are located at a higher level than the top surface 110 a of the active pattern 110 .
  • the second mask pattern M 2 may have a top surface substantially coplanar with the top surface 110 a of the active pattern 110 .
  • the upper portion 144 of the first spacer 140 may be etched. An anisotropic etching process may be performed on the exposed upper portion 144 of the first spacer 140 . The upper portion 144 of the first spacer 140 may accordingly have a small thickness. The second mask pattern M 2 may be removed.
  • the first mask pattern M 1 and the first spacer 140 may be used as an etching mask to etch the active pattern 110 , which etching may form a channel pattern 115 .
  • the active pattern 110 may be etched to form recess regions R.
  • Source/drain patterns 160 may be formed to fill the recess regions R. The formation of the source/drain patterns 160 may include performing a selective epitaxial growth process on the active pattern 110 .
  • a gate electrode 170 may be formed as discussed with reference to FIGS. 10 to 12 above.
  • a semiconductor device may be formed to include the source/drain patterns protruding toward and below the sacrificial gate structure and also include the channel pattern having a small length, thereby decreasing in resistance of the channel pattern. Furthermore, the thick lower portion of the first spacer may reduce a parasitic capacitance between the gate electrodes adjacent to each other and/or between the gate electrode and the source/drain pattern.
  • a semiconductor device is configured such that the gate electrode is provided on its upper portion with the second spacer having a low dielectric constant to reduce a leakage current originating from the upper portion of the gate electrode. Moreover, a parasitic capacitance may be reduced between the upper portion of the gate electrode and the source/drain pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Semiconductor devices and methods of fabricating the same are provided. The method includes forming on a substrate an active pattern that protrudes from the substrate and extends in one direction; forming on the active pattern a sacrificial gate structure that extends in a direction intersecting the active pattern; forming on a side surface of the sacrificial gate structure a first spacer including a first portion at a lower level than a top surface of the active pattern and a second portion on the first portion, and reducing a thickness of the second portion of the first spacer.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims the benefit of priority under 35 U.S.C. § 119 to Korean Patent Application No. 10-2017-0177189, filed on Dec. 21, 2017, in the Korean Intellectual Property Office, the entire contents of which are hereby incorporated by reference.
  • FIELD
  • The present disclosure relates generally to semiconductor devices and, more particularly, to three-dimensional semiconductor devices and methods of manufacturing the same.
  • BACKGROUND
  • Semiconductor devices are beneficial in the electronic industry because of their small size, multi-functionality, and/or low fabrication cost. Semiconductor devices may encompass semiconductor memory devices storing logic data, semiconductor logic devices processing operations of logic data, and hybrid semiconductor devices having both memory and logic elements. Semiconductor devices have been increasingly required for high integration with the advanced development of the electronic industry. For example, semiconductor devices have been increasingly requested for high reliability, high speed, and/or multi-functionality. Semiconductor devices are gradually complicated and integrated to meet these requested characteristics. As semiconductor devices become highly integrated, the scale down of transistors is also being accelerated and, thus, semiconductor devices may decrease in operating characteristics. As semiconductor devices become highly integrated, transistors have increasingly difficulty in achieving high performance to meet customer's requirements.
  • SUMMARY
  • Some embodiments of the present inventive concept provide methods of manufacturing a semiconductor device including forming on a substrate an active pattern that protrudes from the substrate and extends in one direction; forming on the active pattern a sacrificial gate structure that extends in a direction intersecting the active pattern; forming a first spacer on a side surface of the sacrificial gate structure, the first spacer including a first portion at a lower level than a top surface of the active pattern and a second portion on the first portion; and reducing a thickness of the second portion of the first spacer.
  • Further embodiments of the present inventive concept provide semiconductor devices including a substrate having an active region; and a transistor on the active region of the substrate. The transistor may comprise: a channel pattern extending in one direction on the substrate; a gate electrode crossing over the channel pattern; a dielectric layer between the channel pattern and the gate electrode; and a first spacer covering a side surface of the gate electrode. The first spacer may comprise a first portion at a lower level than a top surface of the channel pattern and a second portion on the first portion. A thickness of the second portion may be less than a thickness of the first portion.
  • Still further embodiments of the present inventive concept provide semiconductor devices including an active pattern protruding from a substrate and extending in one direction; a gate electrode running across the active pattern; a first spacer on a side surface of the gate electrode and disposed at a lower level than a top surface of the active pattern; and a second spacer on the side surface of the gate electrode and on the first spacer. A dielectric constant of the second spacer may be less than a dielectric constant of the first spacer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 and 10 are plan views illustrating of semiconductor devices in accordance with some embodiments of the present inventive concept.
  • FIGS. 2 and 11 are perspective views according to some embodiments of the present inventive concept.
  • FIGS. 3A to 9A are cross-sections along the lines I-I′ of FIGS. 1 and 10, respectively, illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 3B to 9B are cross-sections along the lines II-II′ of FIGS. 1 and 10, respectively, illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIG. 12 illustrates a cross-section illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 13A to 15A illustrate cross-sections showing a method of manufacturing a semiconductor device according to exemplary embodiments of inventive concept.
  • FIGS. 13B to 15B are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept
  • FIGS. 16A and 17A are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 16B and 17B are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 18A to 20A are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • FIGS. 18B to 20B are cross-sections illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Various example embodiments will be described more fully hereinafter with reference to the accompanying drawings, in which some example embodiments are shown. The present inventive concept may, however, be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein. Rather, these example embodiments are provided so that this description will be thorough and complete, and will fully convey the scope of the present inventive concept to those skilled in the art. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity.
  • It will be understood that when an element or layer is referred to as being “on,” “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numerals refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • It will be understood that, although the terms first, second, third, fourth etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present inventive concept.
  • Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation Furthermore to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present inventive concept. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • Example embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized example embodiments (and intermediate structures). As such, variations from the shapes of the illustrations as a result, For example, of manufacturing techniques and/or tolerances, are to be expected. Thus, example embodiments should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, For example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present inventive concept.
  • Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • Processing steps in the fabrication of semiconductor devices according to inventive concept will now be discussed with reference to accompanying drawings. Like reference numerals may indicate like components throughout the description.
  • FIGS. 1 and 10 illustrate plan views illustrating processing steps in the fabrication of semiconductor devices in accordance with some embodiments of the present inventive concept. FIGS. 2 and 11 illustrate perspective views showing portions of FIGS. 1 and 10, respectively. FIGS. 3A to 9A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept. FIGS. 3B to 9B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to exemplary embodiments of inventive concept. FIG. 12 illustrates a cross-section taken along line I-I′ of FIG. 10 illustrating processing steps in the fabrication of semiconductor devices according to exemplary embodiments of inventive concept.
  • Referring to FIGS. 1, 2, 3A, and 3B, a substrate 100 is provided. As illustrated, the substrate 100 may have an active region. The substrate 100 may be a semiconductor substrate. For example, the semiconductor substrate may be a bulk silicon substrate, a silicon-on-insulator (SOI) substrate, a germanium substrate, a germanium-on-insulator (GOI) substrate, a silicon-germanium substrate, or an epitaxial thin-layer substrate obtained by performing a selective epitaxial growth (SAG) process. The bulk silicon substrate may be doped with n-type or p-type impurities. In some embodiments, the semiconductor substrate may be III-V group compound semiconductor substrate. For example, III-V group compound semiconductor substrate may include one or more of gallium arsenide (GaAs), indium gallium arsenide (InGaAs), aluminum gallium arsenide (Algae's), and a mixture thereof.
  • An active pattern 110 may be formed on the substrate 100. The active pattern 110 may have a fin-shape. For example, the active pattern 110 may have a linear shape or bar shape extending in a first direction D1 on the substrate 100. The active pattern 110 may be a portion of the substrate 100, or may be formed by etching an epitaxial layer grown from the substrate 100. The active pattern 110 may include a semiconductor material, such as silicon (Si) or germanium (Ge). In some embodiments, the active pattern 110 may include a compound semiconductor, such as IV group compound semiconductor or III-V group compound semiconductor. For example, IV group compound semiconductor may be a binary or ternary compound including two or more of carbon (C), silicon (Si), germanium (Ge), and tin (Sn), or such binary or ternary compound doped with IV group element. For example, III-V group compound semiconductor may include one of binary, ternary, and quaternary compounds that is formed when one or more of III group elements, such as aluminum (Al), gallium (Ga), and indium (In), are combined with one of V group elements, such as phosphorous (P), arsenic (As) and antimony (Sb).
  • A device isolation layer 120 may be formed on the substrate 100. The formation of the device isolation layer 120 may include forming an insulation layer on an entire surface of the substrate 100 and recessing the insulation layer until the active pattern 110 is fully exposed. A top surface of the device isolation layer 120 may become lower than a top surface 110 a of the active pattern 110.
  • Referring to FIGS. 1, 2, 4A, and 4B, a sacrificial gate structure 130 may be formed to run across the active pattern 110. The sacrificial gate structure 130 may be formed to have a linear or bar shape extending in a second direction D2. The formation of the sacrificial gate structure 130 may include forming a sacrificial layer on the substrate 100, forming a first mask pattern M1 on the sacrificial layer, and using the first mask pattern M1 as an etching mask to etch the sacrificial layer. The sacrificial layer may be formed using polysilicon. The first mask pattern M1 may be formed using a silicon oxide layer, a silicon nitride layer, or a silicon ox nitride layer.
  • Referring to FIGS. 1, 2, 5A, and 5B, a first spacer 140 may be formed on opposite sidewalls of the sacrificial gate structure 130. An insulation spacer 150 may be formed on opposite sidewalls 110 b of the active pattern 110. The first spacer 140 and the insulation spacer 150 may be formed at the same time. The first spacer 140 and the insulation spacer 150 may include the same material as each other. For example, the first spacer 140 and the insulation spacer 150 may include one or more of silicon carbonitride (SiCN), silicon carbon oxynitride (SiCON), and silicon nitride (SiN). The formation of the first spacer 140 and the insulation spacer 150 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a first spacer layer on the entire surface of the substrate 100, and performing an anisotropic etching process on the first spacer layer. The first spacer 140 may include an upper portion 144 at a higher level than the top surface 110 a of the active pattern 110 and a lower portion 142 at a lower level than the top surface 110 a of the active pattern 110. For example, the upper and lower portions 144 and 142 of the first spacer 140 may have therebetween a boundary 140 a at substantially the same level as the top surface 110 a of the active pattern 110. The lower portion 142 of the first spacer 140 may be provided on a sidewall of the active pattern 110, and the upper portion 144 of the first spacer 140 may be provided on the active pattern 110 and the lower portion 142 of the first spacer 140.
  • Referring to FIGS. 1, 2, 6A, and 6B, a buried layer 200 may be formed on the substrate 100. The buried layer 200 may cover the sacrificial gate structure 130, the active pattern 110, the first spacer 140, and the insulation spacer 150. The buried layer 200 may be a tonensilazene (TOSZ) oxide layer. The buried layer 200 may have an etch selectivity to the first spacer 140 and the insulation spacer 150.
  • Referring to FIGS. 1, 2, 7A, and 7B, an etching process may be performed on the buried layer 200. An upper portion of the buried layer 200 may be selectively removed, and the first spacer 140 and the insulation spacer 150 may be relatively less etched or may not be substantially etched during the etching process. The buried layer 200 may have a portion overlying the top surface 110 a of the active pattern 110, and the portion of the buried layer 200 may be removed when the etching process is performed, which process may form a second mask pattern M2. The buried layer 200 may have other portion underlying the top surface 110 a of the active pattern 110, and the other portion of the buried layer 200 may not be etched. The etching process may continue until a top surface of the second mask pattern M2 reaches a level substantially the same as the top surface 110 a of the active pattern 110. For example, the top surface of the second mask pattern M2 may be substantially coplanar with the top surface 110 a of the active pattern 110.
  • In some embodiments, the second mask pattern M2 may be formed to have a top surface lower than the top surface 110 a of the active pattern 110. For example, the etching process may continue even after the top surface of the second mask pattern M2 reaches a level substantially the same as the top surface 110 a of the active pattern 110. Some embodiments in which the top surface of the second mask pattern M2 is located at the same level as the top surface 110 a of the active pattern 110 will be discussed.
  • Referring to FIGS. 1, 2, 8A, and 8B, the upper portion 144 of the first spacer 140 may be etched. For example, the lower portion 142 of the first spacer 140 may be buried in or covered with the second mask pattern M2, while the upper portion 144 of the first spacer 140 may be exposed. An anisotropic etching process may be performed on the exposed upper portion 144 of the first spacer 140. The upper portion 144 of the first spacer 140 may accordingly have a small thickness T2.
  • On the boundary 140 a between the lower portion 142 and the upper portion 144, the lower portion 142 of the first spacer 140 may have a thickness T1 greater than the thickness T2 of the upper portion 144 of the first spacer 140. For example, the first spacer 140 may have a stepped shape between the lower portion 142 and the upper portion 144 on the boundary 140 a.
  • Referring to FIGS. 1, 2, 9A, and 9B, the second mask pattern M2 may be removed. The lower portion 142 of the first spacer 140 may be exposed. The first mask pattern M1 and the first spacer 140 may be used as an etching mask to etch the active pattern 110, which etching may form a channel pattern 115. For example, the active pattern 110 may be etched to form recess regions R. The channel pattern 115 may be defined between a pair of neighboring recess regions R. The active pattern 110 may be over-etched during the etching process. For example, the active pattern 110 may be etched on its portion between the neighboring recess regions R and further be etched on its other portion beneath the sacrificial gate structure 130. The recess regions R may have sidewalls each protruding toward and below the sacrificial gate structure 130. The channel pattern 115 may thus be formed to have a small length W. Since the active pattern 110 is over-etched, the recess regions R may each have a bottommost end lower than the top surface of the device isolation layer 120.
  • According to some embodiments of the inventive concept, the upper portion 144 of the first spacer 140 may have the small thickness T2 covering the sidewall of the sacrificial gate structure 130. Though the active pattern 110 is generally required to be horizontally etched from a position below the upper portion 144 of the first spacer 140 toward a position below the sacrificial gate structure 130 in order to form the channel pattern 115 having the small length W, the small thickness T2 of the upper portion 144 may reduce the horizontal etching length of the active pattern 110 and the active pattern 110 may be easily etched below the sacrificial gate structure 130.
  • Thereafter, the insulation spacer 150 may be removed. In some embodiments, the insulation spacer 150 may be removed before the active pattern 110 is etched.
  • Source/drain patterns 160 may be formed to fill the recess regions R. The formation of the source/drain patterns 160 may include performing a selective epitaxial growth process on the active pattern 110. The source/drain patterns 160 may be formed of a semiconductor element, such as silicon germanium (SiGe). Simultaneously with or after the selective epitaxial growth process, the source/drain patterns 160 may be doped with p-type or n-type impurities. Since the sidewalls of the recess regions R protrude toward and below the sacrificial gate structures 130, the source/drain patterns 160 may also protrude toward and below the sacrificial gate structures 130.
  • Referring to FIGS. 10 to 12, a gate electrode 170 may be formed to fabricate a semiconductor device. The formation of the gate electrode 170 may include removing the first mask pattern Ml, selectively removing the sacrificial gate structure 130, and forming a gate dielectric layer, a gate electrode, and a capping layer in an empty space where the sacrificial gate structure 130 is removed.
  • A semiconductor device may be provided with a substrate 100. The substrate 100 may have an active region. The substrate 100 may be a semiconductor substrate.
  • A device isolation layer 120 may be provided on the substrate 100. The device isolation layer 120 may define an active pattern 110 on an upper portion of the substrate 100. The active pattern 110 may have a fin-shape. For example, the active pattern 110 may have a linear or bar shape extending in a first direction D1 on the substrate 100.
  • The active pattern 110 may be provided thereon with a channel pattern 115 and source/drain patterns 160. The channel pattern 115 may be interposed between a pair of neighboring source/drain patterns 160. The channel pattern 115 may include one or more of silicon (Si), germanium (Ge), and silicon germanium (SiGe). The source/drain patterns 160 may be epitaxial patterns grown from the active pattern 110 serving as a seed layer. The source/drain patterns 160 may be p-type impurity regions. The source/drain patterns 160 may include a semiconductor element, such as silicon germanium (SiGe).
  • A gate electrode 170 may be disposed on the channel pattern 115. The gate electrode 170 may extend in a second direction D2 while crossing over the channel pattern 115. The gate electrode 170 may include metal or polysilicon.
  • A first spacer 140 may be disposed on opposite sidewalls of the gate electrode 170. The first spacer 140 may extend in the second direction D2 along the gate electrode 170. The first spacer 140 may include a lower portion 142 at a lower level than a top surface of the channel pattern 115 and an upper portion 144 at a higher level than the top surface of the channel pattern 115. For example, a boundary 140 a between the upper and lower portions 144 and 142 of the first spacer 140 may be located at substantially the same level as a top surface 110 a of the active pattern 110. On the boundary 140 a between the lower portion 142 and the upper portion 144, the upper portion 144 of the first spacer 140 may have a thickness less than that of the lower portion 142 of the first spacer 140. The first spacer 140 may have a stepped shape between the lower portion 142 and the upper portion 144 on the boundary 140 a. The lower portion 142 of the first spacer 140 may be placed between the gate electrode 170 and the source/drain patterns 160. The first spacer 140 may include one or more of silicon carbonitride (SiCN), silicon carbon oxynitride (SiCON), and silicon nitride (SiN).
  • A gate dielectric layer 172 may be between the gate electrode 170 and the channel pattern 115. The gate dielectric layer 172 may cover the channel pattern 115. The gate dielectric layer 172 may include a high-k dielectric material. For example, the high-k dielectric material may include one or more of hafnium oxide, hafnium silicon oxide, lanthanum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, lithium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate.
  • A gate capping pattern 174 may be provided on the gate electrode 170. The gate capping pattern 174 may extend in the second direction D2 along the gate electrode 170. The gate capping pattern 174 may include one or more of silicon oxide (SiO2), silicon carbonitride (SiCN), silicon carbon oxynitride (SiCON), and silicon nitride (SiN).
  • According to some embodiments of the inventive concept, since the first spacer 140 includes the upper portion 144 having a small thickness on the channel pattern 115, it may be easy to form the source/drain patterns 160 protruding toward and below the gate electrode 170 and to also form the channel pattern 115 having the small length W. The channel pattern 115 may then decrease in resistance. In addition, since the first spacer 140 includes the lower portion 142 having a great thickness, it may be possible to reduce a parasitic capacitance between the gate electrodes 170 adjacent to a side of the channel pattern 115 and between the gate electrode 170 and the source/drain patterns 160. A semiconductor device according to inventive concept may consequently increase in electrical characteristics.
  • FIGS. 13A to 15A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept. FIGS. 13B to 15B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • Referring to FIGS. 13A and 13B, a second spacer 180 may be formed on a resultant structure of FIGS. 8A and 8B. For example, the second spacer 180 may be formed on a top surface of the first mask pattern M1 and exposed sidewalls of the upper portion 144 of the first spacer 140. The upper portion 144 of the first spacer 140 may have a shape extending from the lower portion 142 toward between the second spacer 180 and the sacrificial gate structure 130. The formation of the second spacer 180 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a second spacer layer on the entire surface of the substrate 100, and performing an anisotropic etching process on the second spacer layer. The second spacer 180 may have a dielectric constant less than that of the first spacer 140. For example, when the first spacer 140 includes SiN, the second spacer 180 may include silicon carbon oxynitride (SiCON) or silicon oxide (SiO2).
  • Referring to FIGS. 14A and 14B, the second mask pattern M2 may be removed. The lower portion 142 of the first spacer 140 may be exposed. On the boundary 140 a between the lower portion 142 and the upper portion 144, a sum of the thickness T2 of the upper portion 144 of the first spacer 140 and a thickness T3 of the second spacer 180 may be the same as the thickness T1 of the lower portion 142 of the first spacer 140. For example, a side surface of the lower portion 142 of the first spacer 140 may be coplanar with a side surface of the second spacer 180. In some embodiments, on the boundary 140 a between the lower portion 142 and the upper portion 144, the sum of the thickness T2 the upper portion 144 of the first spacer 140 and the thickness T3 of the second spacer 180 may be less than the thickness T1 of the lower portion 142 of the first spacer 140.
  • Referring to FIGS. 15A and 15B, the first mask pattern Ml, the first spacer 140, and the second spacer 180 may be used as an etching mask to etch the active pattern 110, which etching may form a channel pattern 115. The channel pattern 115 may be defined between a pair of neighboring recess regions R.
  • Source/drain patterns 160 may be formed to fill the recess regions R. The formation of the source/drain patterns 160 may include performing a selective epitaxial growth process on the active pattern 110. Simultaneously with or after the selective epitaxial growth process, the source/drain patterns 160 may be doped with p-type or n-type impurities. Thereafter, a gate electrode 170 may be formed as discussed with reference to FIGS. 10 to 12 above.
  • FIGS. 16A and 17A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept. FIGS. 16B and 17B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • Referring to FIGS. 16A and 16B, an etching process may be performed on a resultant structure of FIGS. 8A and 8B. The etching process may completely remove the upper portion 144 of the first spacer 140. The sacrificial gate structure 130 may be partially exposed when the etching process is performed.
  • Referring to FIGS. 17A and 17B, a second spacer 180 may be formed. For example, the second spacer 180 may be formed on a top surface of the first mask pattern M1 and exposed sidewalls of the sacrificial gate structure 130. The formation of the second spacer 180 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a second spacer layer on the entire surface of the substrate 100, and performing an anisotropic etching process on the second spacer layer. The second spacer 180 may have a dielectric constant less than that of the first spacer 140. On the boundary 140 a between the lower portion 142 and the upper portion 144, a thickness T3 of the second spacer 180 may be the same as the thickness T1 of the lower portion 142 of the first spacer 140. For example, a side surface of the lower portion 142 of the first spacer 140 may be coplanar with a side surface of the second spacer 180. Alternatively, the thickness T3 of the second spacer 180 may be less than the thickness T1 of the lower portion 142 of the first spacer 140. After that, a similar process as that discussed with reference to FIGS. 15A and 15B may be performed.
  • According to some embodiments of inventive concept, the channel pattern 115 may be provided thereon with the second spacer 180 having a low dielectric constant. In such a configuration, the gate electrode 170 may be provided on its upper portion with the second spacer 180 having a low dielectric constant, and therefore, it may be possible to reduce a leakage current from the upper portion of the gate electrode 170. Furthermore, since the upper portion of the gate electrode 170 and the source/drain pattern 160 are provided therebetween with the second spacer 180 having a low dielectric constant, it may be possible to reduce a parasitic capacitance between the upper portion of the gate electrode 170 and the source/drain pattern 160.
  • FIGS. 18A to 20A are cross-sections taken along line I-I′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept. FIGS. 18B to 20B are cross-sections taken along line II-II′ of FIG. 1 illustrating processing steps in the fabrication of semiconductor devices according to some embodiments of the present inventive concept.
  • Referring to FIGS. 18A and 18B, a substrate 100 may be provided. The substrate 100 may have an active region. The substrate 100 may be a semiconductor substrate.
  • An active pattern 110 may be formed on the substrate 100. For example, sacrificial layers 112 and semiconductor layers 114 may be alternately and repeatedly stacked on an entire surface of the substrate 100. The sacrificial layers 112 may include a material having an etch selectivity to the semiconductor layers 114. For example, the sacrificial layers 112 may include silicon germanium (SiGe) or germanium (Ge), and the semiconductor layers 114 may include silicon (Si). The sacrificial layers 112 and the semiconductor layers 114 may be formed by an epitaxial growth process in which the substrate 100 serves as a seed layer. The sacrificial layers 112 and the semiconductor layers 114 may be conformally grown on the entire surface of the substrate 100. The sacrificial layers 112 and the semiconductor layers 114 may be patterned to form an active pattern 110. The active pattern 110 may have a fin-shape.
  • A device isolation layer 120 may be formed on the substrate 100. The formation of the device isolation layer 120 may include forming an insulation layer on the entire surface of the substrate 100 and recessing the insulation layer until the active pattern 110 is fully exposed.
  • A sacrificial gate structure 130 may be formed to run across the active pattern 110. The sacrificial gate structure 130 may be formed to have a linear or bar shape extending in a second direction D2. The formation of the sacrificial gate structure 130 may include forming a sacrificial layer on the substrate 100, forming a first mask pattern M1 on the sacrificial layer, and using the first mask pattern M1 as an etching mask to etch the sacrificial layer.
  • Referring to FIGS. 19A, and 19B, a first spacer 140 may be formed on opposite sidewalls of the sacrificial gate structure 130. The formation of the first spacer 140 may include performing a deposition process, such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), to form a first spacer layer on the entire surface of the substrate 100, and performing an anisotropic etching process on the first spacer layer. The first spacer 140 may include an upper portion 144 at a higher level than a top surface 110 a of the active pattern 110 and a lower portion 142 at a lower level than the top surface 110 a of the active pattern 110.
  • A second mask pattern M2 may be formed on the substrate 100. The formation of the second mask pattern M2 may include forming a buried layer on the substrate 100 and etching the buried layer to partially remove portions of the buried layer that are located at a higher level than the top surface 110 a of the active pattern 110. The second mask pattern M2 may have a top surface substantially coplanar with the top surface 110 a of the active pattern 110.
  • Referring to FIGS. 20A and 20B, the upper portion 144 of the first spacer 140 may be etched. An anisotropic etching process may be performed on the exposed upper portion 144 of the first spacer 140. The upper portion 144 of the first spacer 140 may accordingly have a small thickness. The second mask pattern M2 may be removed.
  • Identical to that discussed with reference to FIGS. 9A and 9B, the first mask pattern M1 and the first spacer 140 may be used as an etching mask to etch the active pattern 110, which etching may form a channel pattern 115. For example, the active pattern 110 may be etched to form recess regions R. Source/drain patterns 160 may be formed to fill the recess regions R. The formation of the source/drain patterns 160 may include performing a selective epitaxial growth process on the active pattern 110. A gate electrode 170 may be formed as discussed with reference to FIGS. 10 to 12 above.
  • A semiconductor device according to some embodiments of inventive concept may be formed to include the source/drain patterns protruding toward and below the sacrificial gate structure and also include the channel pattern having a small length, thereby decreasing in resistance of the channel pattern. Furthermore, the thick lower portion of the first spacer may reduce a parasitic capacitance between the gate electrodes adjacent to each other and/or between the gate electrode and the source/drain pattern.
  • According to some embodiments of the inventive concept, a semiconductor device is configured such that the gate electrode is provided on its upper portion with the second spacer having a low dielectric constant to reduce a leakage current originating from the upper portion of the gate electrode. Moreover, a parasitic capacitance may be reduced between the upper portion of the gate electrode and the source/drain pattern.
  • Although the present invention has been described in connection with the embodiments of inventive concept illustrated in the accompanying drawings, it will be understood by one of ordinary skill in the art that variations in form and detail may be made therein without departing from the spirit and essential feature of inventive concept. The above disclosed embodiments should thus be considered illustrative and not restrictive.

Claims (20)

What is claimed is:
1. A method of manufacturing a semiconductor device, the method comprising:
forming an active pattern on a substrate, the active pattern protruding from the substrate and extending in a first direction;
forming a sacrificial gate structure on the active pattern, the sacrificial gate structure extending in a second direction and the second direction intersecting the first direction of the active pattern;
forming a first spacer on a side surface of the sacrificial gate structure, the first spacer including a first portion and a second portion, the first portion having a surface at a lower level than an upper surface of the active pattern and the second portion being on the first portion; and
decreasing a thickness of the second portion of the first spacer.
2. The method of claim 1, wherein decreasing the thickness of the second portion of the first spacer comprises:
forming a first mask on the first portion of the first spacer and exposing the second portion of the first spacer, the first mask having a top surface at a same level as or a lower level than the top surface of the active pattern;
performing a first etching process on the second portion according to the first mask; and
removing the first mask.
3. The method of claim 1:
wherein, after the thickness of the second portion is decreased, the first portion and the second portion have a stepped shape on a boundary therebetween; and
wherein the thickness of the second portion is less than a thickness of the first portion.
4. The method of claim 1, further comprising, wherein after decreasing the thickness of the second portion of the first spacer is followed by forming a second spacer on the first portion, the second spacer covering the sacrificial gate structure.
5. The method of claim 4, wherein forming the second spacer comprises:
forming a second mask on the first portion of the first spacer, the second mask having a top surface at a same level as or a lower level than the top surface of the active pattern;
forming a spacer layer covering the second mask and the sacrificial gate structure;
forming a second spacer by removing the spacer layer on the second mask; and
removing the second mask.
6. The method of claim 4, wherein a dielectric constant of the second spacer is less than a dielectric constant of the first spacer.
7. The method of claim 4, wherein, on a boundary between the first portion and the second portion, a sum of a thickness of the second spacer and the thickness of the second portion is less than a thickness of the first portion.
8. The method of claim 4, wherein forming the second spacer is performed after performing a second etching process to remove the second portion.
9. The method of claim 8, wherein the second spacer is formed at a higher level than the upper surface of the active pattern, the second spacer being in contact with the sacrificial gate structure.
10. The method of claim 1, wherein the active pattern comprises:
a first semiconductor pattern and a second semiconductor pattern that are sequentially stacked on the substrate;
a first sacrificial layer between the substrate and the first semiconductor pattern; and
a second sacrificial layer between the first semiconductor pattern and the second semiconductor pattern.
11. The method of claim 1, further comprising:
forming recess regions by etching the active pattern using the first spacer as an etching mask; and
forming source/drain patterns filling the recess regions,
wherein a sidewall of the recess region protrudes toward and below the sacrificial gate structure.
12. A semiconductor device, comprising:
a substrate having an active region; and
a transistor on the active region of the substrate,
wherein the transistor comprises:
a channel pattern extending in a first direction on the substrate;
a gate electrode crossing over the channel pattern in a second direction;
a dielectric layer between the channel pattern and the gate electrode; and
a first spacer covering a side surface of the gate electrode,
wherein the first spacer comprises a first portion at a lower level than a top surface of the channel pattern and a second portion on the first portion; and
wherein a thickness of the second portion is less than a thickness of the first portion.
13. The device of claim 12, further comprising a second spacer on the first portion and covering the second portion.
14. The device of claim 13, wherein a dielectric constant of the second spacer is less than a dielectric constant of the first spacer.
15. The device of claim 13, wherein, on a boundary between the first portion and the second portion, a sum of a thickness of the second spacer and the thickness of the second portion is less than the thickness of the first portion.
16. The device of claim 12:
wherein an active pattern comprises semiconductor patterns sequentially stacked on the substrate; and
wherein the gate electrode comprises a first metal pattern between the semiconductor patterns and a second metal pattern on the first metal pattern, the first metal pattern filling a gap between the semiconductor patterns.
17. A semiconductor device, comprising:
an active pattern protruding from a substrate and extending in a first direction;
a gate electrode running across the active pattern in a second direction;
a first spacer on a side surface of the gate electrode and disposed at a lower level than a top surface of the active pattern; and
a second spacer on the side surface of the gate electrode and on the first spacer,
wherein a dielectric constant of the second spacer is less than a dielectric constant of the first spacer.
18. The device of claim 17, wherein a portion of the first spacer extends between the gate electrode and the second spacer.
19. The device of claim 17, wherein a side surface of the first spacer is coplanar with a side surface of the second spacer.
20. The device of claim 17:
wherein the active pattern comprises semiconductor patterns sequentially stacked on the substrate; and
wherein the gate electrode comprises a first metal pattern between the semiconductor patterns and a second metal pattern on the first metal pattern, the first metal pattern filling a gap between the semiconductor patterns.
US16/015,852 2017-12-21 2018-06-22 Semiconductor Devices and Methods of Manufacturing the Same Abandoned US20190198636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/836,138 US11257925B2 (en) 2017-12-21 2020-03-31 Semiconductor devices having a fin-shaped active region and methods of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170177189A KR102432655B1 (en) 2017-12-21 2017-12-21 A semiconductor device and a method for manufacturing the same
KR10-2017-0177189 2017-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/836,138 Continuation US11257925B2 (en) 2017-12-21 2020-03-31 Semiconductor devices having a fin-shaped active region and methods of manufacturing the same

Publications (1)

Publication Number Publication Date
US20190198636A1 true US20190198636A1 (en) 2019-06-27

Family

ID=66950677

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/015,852 Abandoned US20190198636A1 (en) 2017-12-21 2018-06-22 Semiconductor Devices and Methods of Manufacturing the Same
US16/836,138 Active US11257925B2 (en) 2017-12-21 2020-03-31 Semiconductor devices having a fin-shaped active region and methods of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/836,138 Active US11257925B2 (en) 2017-12-21 2020-03-31 Semiconductor devices having a fin-shaped active region and methods of manufacturing the same

Country Status (3)

Country Link
US (2) US20190198636A1 (en)
KR (1) KR102432655B1 (en)
CN (1) CN109994386B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374108B2 (en) * 2018-02-27 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Fin semiconductor device having a stepped gate spacer sidewall

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578952B2 (en) * 2009-08-19 2014-08-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
US8658505B2 (en) 2011-12-14 2014-02-25 International Business Machines Corporation Embedded stressors for multigate transistor devices
US8835244B2 (en) 2013-02-21 2014-09-16 GlobalFoundries, Inc. Integrated circuits and methods for fabricating integrated circuits having metal gate electrodes
US9209302B2 (en) * 2013-03-13 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of reducing the heights of source-drain sidewall spacers of FinFETs through etching
KR101851259B1 (en) 2013-11-05 2018-06-11 삼성전자 주식회사 Semiconductor device and method for fabricating the same
KR102178830B1 (en) 2013-12-05 2020-11-13 삼성전자 주식회사 Semiconductor Device Having a Spacer
US9269792B2 (en) 2014-06-09 2016-02-23 International Business Machines Corporation Method and structure for robust finFET replacement metal gate integration
US9490340B2 (en) * 2014-06-18 2016-11-08 Globalfoundries Inc. Methods of forming nanowire devices with doped extension regions and the resulting devices
US9287403B1 (en) 2014-12-05 2016-03-15 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET and method for manufacturing the same
US9685532B2 (en) 2015-03-24 2017-06-20 International Business Machines Corporation Replacement metal gate structures
KR102389813B1 (en) 2015-05-19 2022-04-22 삼성전자주식회사 Semiconductor device
US9536980B1 (en) 2015-07-28 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Gate spacers and methods of forming same
KR20170020604A (en) 2015-08-12 2017-02-23 삼성전자주식회사 A method for manufacturing semiconductor device
US9779959B2 (en) 2015-09-17 2017-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device structure
US9911824B2 (en) * 2015-09-18 2018-03-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with multi spacer
KR102367948B1 (en) 2015-10-08 2022-02-24 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR20170066914A (en) 2015-12-07 2017-06-15 삼성전자주식회사 Semiconductor device and Method for fabricating the same
US9893171B2 (en) * 2016-06-03 2018-02-13 International Business Machines Corporation Fin field effect transistor fabrication and devices having inverted T-shaped gate
CN108010880A (en) 2016-10-31 2018-05-08 中芯国际集成电路制造(上海)有限公司 Semiconductor device and its manufacture method
EP3718142A4 (en) 2017-11-30 2021-09-22 Intel Corporation Fin patterning for advanced integrated circuit structure fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374108B2 (en) * 2018-02-27 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Fin semiconductor device having a stepped gate spacer sidewall

Also Published As

Publication number Publication date
CN109994386A (en) 2019-07-09
KR20190075532A (en) 2019-07-01
US11257925B2 (en) 2022-02-22
CN109994386B (en) 2023-10-31
US20200235222A1 (en) 2020-07-23
KR102432655B1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
US10566331B1 (en) Semiconductor devices
CN107887387B (en) Semiconductor device, method of manufacturing the same, and electronic apparatus including the same
US9178045B2 (en) Integrated circuit devices including FinFETS and methods of forming the same
US9576960B2 (en) Structure for finFET CMOS
US20230307545A1 (en) Method of manufacturing semiconductor devices
US20190006485A1 (en) Method for fabricating semiconductor device
US9583590B2 (en) Integrated circuit devices including FinFETs and methods of forming the same
US11862679B2 (en) Semiconductor device having increased contact area between a source/drain pattern and an active contact
US11961914B2 (en) Integrated circuit devices and methods of manufacturing the same
US11387237B2 (en) Semiconductor component having a fin and an epitaxial contact structure over an epitaxial layer thereof
US20200350174A1 (en) Method for fabricating vertical transistor having a silicided bottom
US10777468B1 (en) Stacked vertical field-effect transistors with sacrificial layer patterning
US20230231015A1 (en) Crossing multi-stack nanosheet structure and method of manufacturing the same
CN105185712A (en) Integrated circuit devices including finfets and methods of forming the same
US20180337033A1 (en) Novel approach to improve sdb device performance
US11257925B2 (en) Semiconductor devices having a fin-shaped active region and methods of manufacturing the same
US20230352589A1 (en) Source/drain regions of finfet devices and methods of forming same
EP4270464A1 (en) 3d-stacked semiconductor device including gate structure formed of polycrystalline silicon or polycrystalline silicon including dopants
US20220352309A1 (en) Semiconductor device
US20230033289A1 (en) Gate structures in transistor devices and methods of forming same
US20230207622A1 (en) Semiconductor structure having stacked power rails
US20240040766A1 (en) Method for fabricating semiconductor structure and semiconductor structure
US20230087690A1 (en) Semiconductor structures with power rail disposed under active gate
KR20220108561A (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOH, CHANGWOO;KIM, MUNHYEON;OH, HANSU;AND OTHERS;SIGNING DATES FROM 20180530 TO 20180604;REEL/FRAME:046178/0589

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION