US20190186985A1 - Method for real-time mass estimation of a vehicle system - Google Patents

Method for real-time mass estimation of a vehicle system Download PDF

Info

Publication number
US20190186985A1
US20190186985A1 US15/848,770 US201715848770A US2019186985A1 US 20190186985 A1 US20190186985 A1 US 20190186985A1 US 201715848770 A US201715848770 A US 201715848770A US 2019186985 A1 US2019186985 A1 US 2019186985A1
Authority
US
United States
Prior art keywords
mass
vehicle system
vehicle
estimated
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/848,770
Other versions
US10612961B2 (en
Inventor
Xiaoyu Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to US15/848,770 priority Critical patent/US10612961B2/en
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, Xiaoyu
Priority to CN201811543789.XA priority patent/CN109941291B/en
Priority to DE102018132911.3A priority patent/DE102018132911B4/en
Publication of US20190186985A1 publication Critical patent/US20190186985A1/en
Application granted granted Critical
Publication of US10612961B2 publication Critical patent/US10612961B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/086Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles wherein the vehicle mass is dynamically estimated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/03Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass

Definitions

  • the present disclosure relates to a method of estimating the real-time mass of a vehicle and more particularly a method of estimating the real-time mass of a vehicle utilizing existing hardware in the vehicle.
  • vehicle mass is an input consideration for algorithms for proper gear changing control in a transmission having staged gears or motor torque output control for an electric powered vehicle.
  • Vehicle mass may also be used by various vehicle controllers in anti-lock brake systems, intelligent vehicle/highway systems and fleet management systems, to name a few.
  • vehicle mass can be useful in speed control systems, such as for use with an active speed control system.
  • One problem with using vehicle mass estimation as a control parameter is that it varies with vehicle loading and configuration and is usually difficult to predict with minimal error.
  • the mass of a medium sized sedan can increase several hundred pounds when going from zero passengers to having a full capacity vehicle. Adding four passengers at 150 lbs. each is a total of 600 lbs. which can add approximately 25% to the weight of the vehicle. This can cause significant differences between the best operating parameters for the vehicle and how the vehicle is actually operated.
  • the mass of a particular vehicle may vary greatly, a means for accurately estimating actual vehicle mass when the vehicle is in operation is required if the dynamic vehicle mass is to be used as a control parameter.
  • the mass parameter is fixed at a particular value in the control system, then the various control features described above will not allow for optimal vehicle performance under all types of load, road, and driving conditions.
  • Vehicle acceleration is typically measured by an accelerometer in the vehicle.
  • speed signal is typically very noisy.
  • speed signal is typically very noisy.
  • the noise problem is even more significant.
  • it is often necessary to measure the increase or decrease in speed values at very close time intervals. This differentiation in speed values at close time intervals causes the acceleration signal to be buried in the noise of the speed signal. Inaccurate determinations of vehicle acceleration and a correspondingly inaccurate determination of vehicle mass may result.
  • the various controllers relying on an accurate vehicle mass determination may in turn perform ineffectively and inefficiently.
  • the present invention provides a method for estimating the mass of a vehicle system.
  • the method comprises a number of steps including a first step of providing a vehicle system having a vehicle control module and a powertrain having an ignition system.
  • a second step detects if the ignition system of the vehicle system is on.
  • a third step initializes an initial mass M 0 representing a most recent estimated mass M est in a stored memory of the vehicle control module.
  • a fourth step detects if the vehicle system is traveling in a straight line until the vehicle system is detected traveling in a straight line.
  • a fifth step estimates a first estimated mass M 1 using the equation
  • M 1 F d - K b ⁇ P b - K a ⁇ V x 2 ( a x + ⁇ ⁇ ⁇ g ) .
  • a sixth step detects an event in which a change in acceleration occurs including the acceleration of the vehicle system changes from positive to negative or the acceleration of the vehicle system changes from negative to positive.
  • a seventh step records a first and a second data points. The first data point is when the velocity of the vehicle system is V x before the event in which a change in acceleration occurs. The second data point is when the velocity of the vehicle system is V x after the event in which a change in acceleration occurs.
  • An eighth step estimates a second estimated mass M 2 using the equation
  • M 2 ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA ) .
  • the method for estimating the mass of a vehicle system further comprises setting a new estimated mass M est from the initial, first estimated, and second estimated mass M 0 , M 1 , M 2 .
  • setting a new estimated mass M est from the initial, first estimated, and second estimated mass M 0 , M 1 , M 2 further comprises setting a new estimated mass M est from the initial, first estimated, and second estimated mass M 0 , M 1 , M 2 .
  • the new estimate mass M est M 2 if M 2 has been calculated.
  • the new estimated mass M est M 1 if M 2 has not been calculated.
  • the new estimated mass M est M 0 if each of M 1 and M 2 have not been calculated.
  • the method for estimating the mass of a vehicle system further comprises communicating the new estimated mass M est to the vehicle control module.
  • M 1 F d - K b ⁇ P b - K a ⁇ V x 2 ( a x + ⁇ ⁇ ⁇ g )
  • M 1 F d - K b ⁇ P b - K a ⁇ V x 2 ( a x + ⁇ ⁇ ⁇ g )
  • F d is a drive force
  • P b is a brake pressure
  • K a V x 2 is an aerodynamic force
  • F dA and F dB are drive forces
  • F bA and F bB are brake forces
  • a xA and a xB are measured acceleration.
  • F dA is the drive force at the first data point
  • F dB is the drive force a the second data point
  • F bA is the brake force at the first data point
  • F bB is the brake force at the second data points
  • a xA and a xB are the measured acceleration at the first and second data points, respectively.
  • the present invention provides a vehicle system having a vehicle body, a powertrain, at least two wheels, a brake system, a suspension system, and a vehicle control module.
  • the vehicle body has a frontal area A having a constant K a .
  • the powertrain is disposed within the body of the vehicle system and has an ignition system.
  • the powertrain selectively provides a drive force F d on the vehicle system.
  • the brake system is disposed in the body and the at least two wheels.
  • the brake system selectively provides a brake force F b on the vehicle system.
  • the suspension system is disposed between the at least two wheels and the body and powertrain. The suspension system supports the body and powertrain upon the at least two wheels.
  • the vehicle control module is electronically connected to the vehicle system and has control logic operable to control a plurality of dynamic driving parameters of the vehicle system, the control logic including.
  • the first control logic detects if the vehicle system ignition is on and the powertrain is running.
  • the second control logic initializes a variable M 0 representing the most recent estimated mass M est in memory.
  • the third control logic detects if the vehicle system is traveling in a straight line. If the vehicle system is not traveling in a straight line the third control logic repeats until the vehicle system is traveling in a straight line.
  • the fourth control logic estimates a first vehicle mass M 1 using the equation
  • M 1 ( a x + ⁇ g ) F d ⁇ K b P b ⁇ K a V x 2 .
  • the fifth control logic detects if the number of data points at the set velocity V x has exceeded 1. If the number of data points at the set velocity V x has not exceeded 1 the fifth control logic repeats until the number of data points at the set velocity V x has exceeded 1 and recording a first and a second data points, the first data point is recorded the at the first time the set velocity V x is reached, and the second data point is recorded at the second time the set velocity V x is reached.
  • the sixth control logic estimates a second vehicle mass M 2 using the equation
  • the vehicle system of further comprises a seventh control logic for setting a new estimated mass M est equal to one of the most recent estimated mass M 0 , the first vehicle mass M 1 , and the second vehicle mass M 2 from each of the second control logic, the fourth control logic, and the sixth control logic each time the particular control logic is executed and the new mass estimate M est is calculated or initialized.
  • the vehicle system of further comprises an eighth control logic that communicates the mass estimate M est of the seventh control logic to the vehicle control module.
  • the vehicle system further comprises a ninth control logic that upon an initial execution of the sixth control logic repeats the sixth control logic until the ignition of the vehicle system is turned off.
  • the sixth control logic further comprises estimating the second vehicle mass M 2 wherein F dA and F dB are the drive forces, F bA and F bB are the brake forces, and a xA and a XB are acceleration.
  • the fourth control logic further comprises estimating the first vehicle mass M 1 wherein F d is a drive force, P b is a brake pressure, and K a V x 2 is an aerodynamic force.
  • the vehicle system further comprises at least one of a passenger, a payload, and a trailer.
  • FIG. 1 is a schematic of a dynamic vehicle system according to the present disclosure
  • FIG. 2 is a graph detailing data collected during a dynamic event for a vehicle according to the present disclosure
  • FIG. 3 is a graph detailing data collected during a dynamic event for a vehicle according to the present disclosure
  • FIG. 4 is a graph comparing the accuracy of the mass estimation method of the present disclosure to the prior art mass estimation method
  • FIG. 5 is a flowchart detailing the steps of a method for vehicle mass estimation according the present disclosure.
  • the vehicle system 10 in the present example is shown as a light duty pick-up truck having the capacity of transporting several occupants and several hundred pounds or kilograms in cargo in the truck bed.
  • a vehicle system 10 also includes a trailer (not shown) connected to the rear of the vehicle system 10 thus providing the capability of adding to the weight capacity of the vehicle system 10 .
  • the vehicle system 10 primary purpose is for transporting passengers such as a school bus or a transit bus that is continuously picking up or dropping off passengers.
  • F x is sum of the forces acting on the vehicle system and ax is the acceleration or gravity which also includes a road grade component.
  • the vehicle system 10 includes a powertrain 12 , a body 14 , a suspension 16 , wheels 18 , a brake system 20 , and a vehicle or powertrain control module 21 . More particularly, the powertrain 12 provides torque to the wheels 18 through several components.
  • the powertrain 18 includes an internal combustion engine 22 , a transmission 24 , a transfer case 26 , a front and rear driveshafts 28 , front and rear differentials (not shown), and front and rear axles (not shown).
  • the engine 22 produces torque which is passed through the various gear ratios of the transmission 24 to the transfer case 26 .
  • the transfer case 26 selectively transfers torque to the front and rear differentials through the front and rear driveshafts 28 .
  • the differentials distribute the torque to the wheels 18 .
  • the powertrain 12 may produce torque through an electric motor or a combination of an electric motor and an internal combustion engine 22 without departing from the scope of the invention.
  • the torque produced and distributed by the powertrain 12 applies a drive force F d on the vehicle system 10 .
  • the body 14 of the vehicle system 10 includes a passenger compartment 30 , a payload bed 32 , and has a frontal area A.
  • the passenger compartment 30 and payload bed 32 are portions of the vehicle system 10 capable of carrying or offloading passengers and payloads 34 .
  • the frontal area A determines a major portion of an aerodynamic drag force F a , as defined in the following equation:
  • Ka is the constant including air density ⁇ , the aerodynamic drag coefficient C d , and a constant frontal area A.
  • the suspension 16 of the vehicle system 10 includes springs 36 , shocks or dampers (not shown), and various other components making it possible to control the vehicle system 10 and carry passengers and payloads.
  • the mass M of the vehicle system 10 includes sprung mass, unsprung mass, payload, and passengers.
  • the sprung mass includes the mass of the vehicle system 10 that is supported by the springs 36 of the suspension 16 .
  • the unsprung mass includes the mass of the portion of the powertrain that is supported by the wheels 18 such as the front and rear differentials, axles, and a portion of the driveshafts 28 .
  • the brake system 20 of the vehicle system 10 provides the stopping power or brake force F b for slowing or causing the vehicle system 10 to decelerate.
  • the brake force F b is found using the equation:
  • the wheels 18 of the vehicle system 10 include at least a hub 38 and a tire 40 .
  • the hub is fixed to the end of one of the axles of the powertrain 12 .
  • the tire 40 is mounted to the hub 38 and is the point of contact between the vehicle system 10 and the road surface.
  • a road friction Fr component of the forces acting on the vehicle system 10 is due to the rolling resistance of the tires 40 .
  • Several factors affect rolling resistance including tire temperature, tire pressure, velocity, tire material and design, and tire slip.
  • a friction coefficient ⁇ is used to calculate road friction Fr that represents the various factors.
  • the equation for road friction is given as:
  • the assumption of the terms K b , K a , and ⁇ as being constant is not necessarily a good assumption.
  • the friction coefficient ⁇ changes with tire pressure and temperature and with dynamic road conditions.
  • the aerodynamic coefficient K a will change greatly with the addition of a trailer; especially if the trailer height or width creates a larger frontal area A.
  • the brake coefficient K b can change as the brake hardware is worn or as the brake temperature changes.
  • the road grade term a x results from a sensor reading and not a constant, the road grade term a x may include an unknown pitch angle term brought on by deflection of the suspension 16 .
  • FIGS. 2 and 3 a method of estimating the mass M of the vehicle system 10 is demonstrated using graphs.
  • the top or first graph 50 of FIG. 2 shows the position of the throttle pedal 52 vs. time [s] 54 , the position of the brake pedal 56 vs. time[s] 54 , and the overall acceleration term a x [g] 58 , shown on the y-axis 60 , vs. time[s] 54 of the event.
  • graph 50 depicts an acceleration-to-coasting event.
  • the event entails a throttle pedal position steadily increasing 62 , then a lift-off the throttle pedal 64 without any depression of the brake pedal.
  • the acceleration term a x is between 0.01 g and 0.02 g.
  • the coasting portion 64 results in acceleration of about ⁇ 0.3 g to ⁇ 0.05 g.
  • the bottom or second graph 66 of FIG. 2 traces the actual velocity V a 68 in km/h (y-axis) 70 vs. time[s] 54 over the course of the event.
  • the method either uses a preset velocity constant V k or selects a velocity V x using a routine. In whichever manner, a velocity V x is chosen to intersect with the actual velocity V a and two data points A and B are recorded.
  • the method as depicted in the graphs 50 , 66 of FIGS. 2 and 3 require several inputs from existing sensors or hardware which with vehicles are already equipped.
  • the inputs for the method include total axle drive torque, brake pressure (or regenerative brake torques if the vehicle system 10 is so equipped), longitudinal acceleration, throttle pedal position, brake pedal position, and straight line driving detection.
  • the total axle drive torque is used to calculate the drive force F d .
  • Brake pressure for each wheel 18 is required to calculate brake force F b .
  • Straight line detection is required to rule out other dynamic force variables in the mass estimation calculation.
  • a flowchart depicts a method 70 of estimating the mass M est of the vehicle system 10 as featured in the graphs 50 , 66 of FIGS. 2 and 3 .
  • the method 70 includes a first step 72 for detecting if the vehicle system 10 ignition is on and the engine is running.
  • a second step 74 of the method 70 initializes a variable M 0 representing the most recent estimated mass M est in memory.
  • a third step 76 detects if the vehicle system 10 is traveling in a straight line. If the vehicle system 10 is not traveling in a straight line, the third step 76 repeats until the vehicle system 10 is traveling in a straight line.
  • a fourth step 78 estimates the vehicle mass M 1 using the equation [11] from above:
  • M 1 ( a x + ⁇ g ) F d ⁇ K b P b ⁇ K a V x 2 [11].
  • a fifth step 80 of the method 70 detects if the number or data points at the set velocity V x has exceeded 1. If the number or data points at the set velocity V x has not exceeded 1, the fifth step 80 repeats until the number or data points at the set velocity V x has exceeded 1. This effectively detects when one of the three events occurs; the acceleration-to-deceleration event, the acceleration-to-coasting event, or the deceleration-to-acceleration event. Once the number or data points at the set velocity V x have exceeded 1, a sixth step 82 estimates the vehicle mass M 2 using the equation [15] from above:
  • a seventh step 84 sets a new estimated mass M est from estimated mass M 0 , M 1 , M 2 from each of the second step 72 , the fourth step 76 , and the sixth step 82 each time the particular step is executed and a mass estimate M 0 , M 1 , M 2 is calculated or initialized.
  • An eighth step 86 outputs the estimated mass M est from the seventh step 84 to the vehicle control module. Once the sixth step 82 is executed a first time, the sixth step 82 repeats until the ignition of the vehicle system is turned off.
  • the vehicle control module 21 is electronically connected to at least the powertrain 12 and sensors throughout the vehicle system 10 is preferably an electronic control device having a preprogrammed digital computer or processor, control logic, memory used to store data, and at least one I/O peripheral.
  • the control logic includes a plurality of logic routines for monitoring, manipulating, and generating data.
  • the vehicle control module 21 controls the operation of the powertrain 12 and other actuatable mechanisms of the vehicle system 10 .
  • the control logic may be implemented in hardware, software, or a combination of hardware and software.
  • control logic may be in the form of program code that is stored on the electronic memory storage and executable by the processor.
  • the vehicle control module 21 receives the output signals of several sensors throughout the transmission and engine, performs the control logic and sends command signals to the vehicle system 10 .
  • the vehicle system 10 receives command signals from the vehicle control module 21 and converts the command signals to control actions operable in the vehicle system 10 .
  • Some of the control actions include but are not limited to increasing engine 22 speed, changing air/fuel ratio, changing transmission 24 gear ratios, altering suspension 16 control parameters, etc., among many other control actions.
  • a control logic implemented in software program code that is executable by the processor of the vehicle control module 21 includes control logic for implementing a method of estimating the mass M est of the vehicle system 10 as featured in the graphs 50 , 66 of FIGS. 2 and 3 .
  • the control logic includes a first control logic for detecting if the vehicle system 10 ignition is on and the engine is running.
  • a second control logic initializes a variable M 0 representing the most recent estimated mass M est in memory.
  • the third control logic detects if the vehicle system 10 is traveling in a straight line. If the vehicle system 10 is not traveling in a straight line, the third control logic repeats until the vehicle system 10 is traveling in a straight line.
  • the fourth control logic estimates the vehicle mass M 1 using the equation [11] from above:
  • M 1 ( a x + ⁇ g ) F d ⁇ K b P b ⁇ K a V x 2 [11].
  • the fifth control logic detects if the number or data points at the set velocity V x has exceeded 1. If the number or data points at the set velocity V x has not exceeded 1, the fifth control logic repeats until the number or data points at the set velocity V x has exceeded 1. Once the number or data points at the set velocity V x have exceeded 1, a sixth control logic estimates the vehicle mass M 2 using the equation [15] from above:
  • a seventh control logic sets a new estimated mass M est from estimated mass M 0 , M 1 , M 2 from each of the second control logic, the fourth control logic, and the sixth control logic each time the particular step is executed and a mass estimate M 0 , M 1 , M 2 is calculated or initialized.
  • An eighth control logic outputs the estimated mass M est from the seventh control logic to the vehicle control module. Once the sixth control logic is executed a first time, the sixth control logic repeats until the ignition of the vehicle system is turned off.
  • a graph 90 presents a data set as generated by the operation of the method 70 depicted in FIG. 5 .
  • the graph 90 includes an x-axis 92 representing time (s) beginning with ignition of the engine 22 of the vehicle system 10 .
  • the y-axis 94 represents the mass of the vehicle (kg) both actual and estimated M est .
  • the actual mass 96 of the vehicle system 10 is constant in this example.
  • the estimated mass M est is set to M 0 or the most recent estimated mass M est prior to shutdown of the vehicle system 10 .
  • the estimated mass M est is set to M 1 and is shown having an error of approximately 25%.
  • the estimated mass M est is set to M 2 which is shown have a significantly reduced error at less than 5%.

Abstract

A method for estimating the mass of a vehicle system includes a number of steps including a first step of providing a vehicle system having at least a powertrain and a vehicle control module. Three different mass estimates are assigned with the last mass estimate being the most accurate. The mass estimates are used in the vehicle control module calculations for vehicle control parameters in the event that the weight of the vehicle changes.

Description

    FIELD
  • The present disclosure relates to a method of estimating the real-time mass of a vehicle and more particularly a method of estimating the real-time mass of a vehicle utilizing existing hardware in the vehicle.
  • BACKGROUND
  • The statements in this section merely provide background information related to the present disclosure and may or may not constitute prior art.
  • The determination of vehicle mass is important to the efficient operation of today's vehicles, especially in highly efficient light and heavy duty trucks, increasingly capable autonomous driving vehicles, and continuously developed electric powered vehicles. For example, vehicle mass is an input consideration for algorithms for proper gear changing control in a transmission having staged gears or motor torque output control for an electric powered vehicle. Vehicle mass may also be used by various vehicle controllers in anti-lock brake systems, intelligent vehicle/highway systems and fleet management systems, to name a few. In addition, vehicle mass can be useful in speed control systems, such as for use with an active speed control system. One problem with using vehicle mass estimation as a control parameter is that it varies with vehicle loading and configuration and is usually difficult to predict with minimal error. For example, the mass of a medium sized sedan can increase several hundred pounds when going from zero passengers to having a full capacity vehicle. Adding four passengers at 150 lbs. each is a total of 600 lbs. which can add approximately 25% to the weight of the vehicle. This can cause significant differences between the best operating parameters for the vehicle and how the vehicle is actually operated.
  • Because the mass of a particular vehicle may vary greatly, a means for accurately estimating actual vehicle mass when the vehicle is in operation is required if the dynamic vehicle mass is to be used as a control parameter. Thus, if the mass parameter is fixed at a particular value in the control system, then the various control features described above will not allow for optimal vehicle performance under all types of load, road, and driving conditions.
  • Vehicle acceleration is typically measured by an accelerometer in the vehicle. However, one of the problems associated with the collection of speed data is that speed signal is typically very noisy. When vehicle acceleration is used to estimate the vehicle mass, the noise problem is even more significant. In order to determine acceleration, it is often necessary to measure the increase or decrease in speed values at very close time intervals. This differentiation in speed values at close time intervals causes the acceleration signal to be buried in the noise of the speed signal. Inaccurate determinations of vehicle acceleration and a correspondingly inaccurate determination of vehicle mass may result. The various controllers relying on an accurate vehicle mass determination may in turn perform ineffectively and inefficiently.
  • What is therefore needed is a technique for estimating vehicle mass that addresses the foregoing shortcomings as well as other deficiencies. Such a technique should provide reliable, more accurate estimates of vehicle mass. The technique should also be inexpensive to implement, and be readily integrated into existing vehicle control systems.
  • SUMMARY
  • The present invention provides a method for estimating the mass of a vehicle system. The method comprises a number of steps including a first step of providing a vehicle system having a vehicle control module and a powertrain having an ignition system. A second step detects if the ignition system of the vehicle system is on. A third step initializes an initial mass M0 representing a most recent estimated mass Mest in a stored memory of the vehicle control module. A fourth step detects if the vehicle system is traveling in a straight line until the vehicle system is detected traveling in a straight line. A fifth step estimates a first estimated mass M1 using the equation
  • M 1 = F d - K b P b - K a V x 2 ( a x + μ g ) .
  • A sixth step detects an event in which a change in acceleration occurs including the acceleration of the vehicle system changes from positive to negative or the acceleration of the vehicle system changes from negative to positive. A seventh step records a first and a second data points. The first data point is when the velocity of the vehicle system is Vx before the event in which a change in acceleration occurs. The second data point is when the velocity of the vehicle system is Vx after the event in which a change in acceleration occurs. An eighth step estimates a second estimated mass M2 using the equation
  • M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA ) .
  • In one example of the present invention, the method for estimating the mass of a vehicle system further comprises setting a new estimated mass Mest from the initial, first estimated, and second estimated mass M0, M1, M2.
  • In another example of the present invention, setting a new estimated mass Mest from the initial, first estimated, and second estimated mass M0, M1, M2 further comprises setting a new estimated mass Mest from the initial, first estimated, and second estimated mass M0, M1, M2. The new estimate mass Mest=M2 if M2 has been calculated. The new estimated mass Mest=M1 if M2 has not been calculated. The new estimated mass Mest=M0 if each of M1 and M2 have not been calculated.
  • In yet another example of the present invention, the method for estimating the mass of a vehicle system further comprises communicating the new estimated mass Mest to the vehicle control module.
  • In yet another example of the present invention, estimating a first estimated mass M1 using the equation
  • M 1 = F d - K b P b - K a V x 2 ( a x + μ g )
  • further comprises estimating a second estimated mass M1 using the equation
  • M 1 = F d - K b P b - K a V x 2 ( a x + μ g )
  • and
    Fd is a drive force, Pb is a brake pressure, and KaVx 2 is an aerodynamic force.
  • In yet another example of the present invention, estimating a second estimated mass M2 using the equation
  • M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
  • further comprises estimating a third estimated mass M3 using the equation
  • M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
  • and
    FdA and FdB are drive forces, FbA and FbB are brake forces, and axA and axB are measured acceleration.
  • In yet another example of the present invention, estimating a second estimated mass M2 using the equation
  • M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
  • further comprises estimating a third estimated mass M3 using the equation
  • M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
  • and
    FdA is the drive force at the first data point, FdB is the drive force a the second data point, FbA is the brake force at the first data point, FbB is the brake force at the second data points, and axA and axB are the measured acceleration at the first and second data points, respectively.
  • The present invention provides a vehicle system having a vehicle body, a powertrain, at least two wheels, a brake system, a suspension system, and a vehicle control module. The vehicle body has a frontal area A having a constant Ka. The powertrain is disposed within the body of the vehicle system and has an ignition system. The powertrain selectively provides a drive force Fd on the vehicle system. The brake system is disposed in the body and the at least two wheels. The brake system selectively provides a brake force Fb on the vehicle system. The suspension system is disposed between the at least two wheels and the body and powertrain. The suspension system supports the body and powertrain upon the at least two wheels. The vehicle control module is electronically connected to the vehicle system and has control logic operable to control a plurality of dynamic driving parameters of the vehicle system, the control logic including. The first control logic detects if the vehicle system ignition is on and the powertrain is running. The second control logic initializes a variable M0 representing the most recent estimated mass Mest in memory. The third control logic detects if the vehicle system is traveling in a straight line. If the vehicle system is not traveling in a straight line the third control logic repeats until the vehicle system is traveling in a straight line. The fourth control logic estimates a first vehicle mass M1 using the equation

  • M 1(a x +μg)=F d −K b P b −K a V x 2.
  • The fifth control logic detects if the number of data points at the set velocity Vx has exceeded 1. If the number of data points at the set velocity Vx has not exceeded 1 the fifth control logic repeats until the number of data points at the set velocity Vx has exceeded 1 and recording a first and a second data points, the first data point is recorded the at the first time the set velocity Vx is reached, and the second data point is recorded at the second time the set velocity Vx is reached. The sixth control logic estimates a second vehicle mass M2 using the equation

  • M 2(a xB −a xA)=(F dB −F bB)−(F dA −F bA).
  • In one example of the present invention, the vehicle system of further comprises a seventh control logic for setting a new estimated mass Mest equal to one of the most recent estimated mass M0, the first vehicle mass M1, and the second vehicle mass M2 from each of the second control logic, the fourth control logic, and the sixth control logic each time the particular control logic is executed and the new mass estimate Mest is calculated or initialized.
  • In another example of the present invention, the vehicle system of further comprises an eighth control logic that communicates the mass estimate Mest of the seventh control logic to the vehicle control module.
  • In yet another example of the present invention, the vehicle system further comprises a ninth control logic that upon an initial execution of the sixth control logic repeats the sixth control logic until the ignition of the vehicle system is turned off.
  • In yet another example of the present invention, the seventh control logic further comprises setting a new estimated mass Mest equal to one of the most recent estimated mass M0, the first vehicle mass M1, and the second vehicle mass M2 wherein the new estimate mass Mest=M2 if M2 has been calculated, the new estimate mass Mest=M1 if M2 has not been calculated, and the new estimate mass Mest=M0 if each of M1 and M2 have not been calculated.
  • In yet another example of the present invention, the sixth control logic further comprises estimating the second vehicle mass M2 wherein FdA and FdB are the drive forces, FbA and FbB are the brake forces, and axA and aXB are acceleration.
  • In yet another example of the present invention, the fourth control logic further comprises estimating the first vehicle mass M1 wherein Fd is a drive force, Pb is a brake pressure, and KaVx 2 is an aerodynamic force.
  • In yet another example of the present invention, the vehicle system further comprises at least one of a passenger, a payload, and a trailer.
  • Further features and advantages of the present disclosure will become apparent by reference to the following description and appended drawings wherein like reference numbers refer to the same component, element or feature.
  • DRAWINGS
  • The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way;
  • FIG. 1 is a schematic of a dynamic vehicle system according to the present disclosure;
  • FIG. 2 is a graph detailing data collected during a dynamic event for a vehicle according to the present disclosure;
  • FIG. 3 is a graph detailing data collected during a dynamic event for a vehicle according to the present disclosure;
  • FIG. 4 is a graph comparing the accuracy of the mass estimation method of the present disclosure to the prior art mass estimation method, and
  • FIG. 5 is a flowchart detailing the steps of a method for vehicle mass estimation according the present disclosure.
  • DETAILED DESCRIPTION
  • The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
  • With reference to FIG. 1, an exemplary schematic for a vehicle system, generally indicated by reference number 10, is depicted and will now be described. The vehicle system 10 in the present example is shown as a light duty pick-up truck having the capacity of transporting several occupants and several hundred pounds or kilograms in cargo in the truck bed. In one example of the present invention, a vehicle system 10 also includes a trailer (not shown) connected to the rear of the vehicle system 10 thus providing the capability of adding to the weight capacity of the vehicle system 10. In another example of the present invention, the vehicle system 10 primary purpose is for transporting passengers such as a school bus or a transit bus that is continuously picking up or dropping off passengers. Thus, the capability of the vehicle system to have up to several thousand pounds of additional weight adds to the complexity of operating the vehicle system when just a small amount of weight change can cause the vehicle system 10 to react differently to the same road conditions. Therefore, the importance of knowing the instantaneous mass M of the vehicle is increased. Estimating the mass M of the vehicle system 10 starts with the following equation:

  • F x =Ma x  [1], or

  • M=F x /a x  [2],
  • where Fx is sum of the forces acting on the vehicle system and ax is the acceleration or gravity which also includes a road grade component.
  • The vehicle system 10 includes a powertrain 12, a body 14, a suspension 16, wheels 18, a brake system 20, and a vehicle or powertrain control module 21. More particularly, the powertrain 12 provides torque to the wheels 18 through several components. In this example, the powertrain 18 includes an internal combustion engine 22, a transmission 24, a transfer case 26, a front and rear driveshafts 28, front and rear differentials (not shown), and front and rear axles (not shown). The engine 22 produces torque which is passed through the various gear ratios of the transmission 24 to the transfer case 26. The transfer case 26 selectively transfers torque to the front and rear differentials through the front and rear driveshafts 28. The differentials distribute the torque to the wheels 18. In another example, the powertrain 12 may produce torque through an electric motor or a combination of an electric motor and an internal combustion engine 22 without departing from the scope of the invention. The torque produced and distributed by the powertrain 12 applies a drive force Fd on the vehicle system 10.
  • The body 14 of the vehicle system 10 includes a passenger compartment 30, a payload bed 32, and has a frontal area A. The passenger compartment 30 and payload bed 32 are portions of the vehicle system 10 capable of carrying or offloading passengers and payloads 34. The frontal area A determines a major portion of an aerodynamic drag force Fa, as defined in the following equation:
  • F a = 1 2 ρ V x 2 C d A [ 3 ]
  • where ρ is air density, Vx is vehicle system 10 velocity; Cd is an aerodynamic drag coefficient. For the purposes of this invention, air density ρ, and the aerodynamic drag coefficient Cd will be combined to a constant Xa to give the equation

  • F a =X a V x 2 A  [4]
  • where the only variables are the velocity Vx and the frontal area A of the vehicle system 10. However, in many calculations the frontal area A is considered constant even while adding to the frontal area of the vehicle system 10 in the form of a trailer. Thus, using the previous equation with the frontal area A as a constant and not including a measurement of the total frontal area A will be a source of error or inaccuracy. Therefore, for a given vehicle system 10 the equation for determining the aerodynamic force Fa is reduced to

  • F a =K a V x 2  [5]
  • where Ka is the constant including air density ρ, the aerodynamic drag coefficient Cd, and a constant frontal area A.
  • The suspension 16 of the vehicle system 10 includes springs 36, shocks or dampers (not shown), and various other components making it possible to control the vehicle system 10 and carry passengers and payloads. The mass M of the vehicle system 10 includes sprung mass, unsprung mass, payload, and passengers. The sprung mass includes the mass of the vehicle system 10 that is supported by the springs 36 of the suspension 16. The unsprung mass includes the mass of the portion of the powertrain that is supported by the wheels 18 such as the front and rear differentials, axles, and a portion of the driveshafts 28.
  • The brake system 20 of the vehicle system 10 provides the stopping power or brake force Fb for slowing or causing the vehicle system 10 to decelerate. The brake force Fb is found using the equation:

  • F b =K b P b  [6],
  • where Pb is the brake system pressure and Kb is a constant.
  • The wheels 18 of the vehicle system 10 include at least a hub 38 and a tire 40. The hub is fixed to the end of one of the axles of the powertrain 12. The tire 40 is mounted to the hub 38 and is the point of contact between the vehicle system 10 and the road surface. A road friction Fr component of the forces acting on the vehicle system 10 is due to the rolling resistance of the tires 40. Several factors affect rolling resistance including tire temperature, tire pressure, velocity, tire material and design, and tire slip. In general, a friction coefficient μ is used to calculate road friction Fr that represents the various factors. Thus, the equation for road friction is given as:

  • F r =μM g  [7],
  • where the friction coefficient μ is a constant and g is gravity.
  • As a result, the total force Fx acting on the vehicle system 10 is estimated using the following equations:

  • F x =F d −F b −F a −F r  [8], or

  • F x =F d −K b P b −K a V x 2 −μMg  [9] and

  • F x =Ma x  [10].
  • Finding for the mass M of the vehicle system 10 results in the following equation:

  • M(a x +μg)=F d −K b P b −K a V x 2  [11].
  • However, a major shortfall with applying this equation directly to the estimation of the mass M of the vehicle system 10 is that the assumption of the terms Kb, Ka, and μ as being constant is not necessarily a good assumption. For example, the friction coefficient μ, as stated above, changes with tire pressure and temperature and with dynamic road conditions. The aerodynamic coefficient Ka will change greatly with the addition of a trailer; especially if the trailer height or width creates a larger frontal area A. The brake coefficient Kb can change as the brake hardware is worn or as the brake temperature changes. Furthermore, while the road grade term ax results from a sensor reading and not a constant, the road grade term ax may include an unknown pitch angle term brought on by deflection of the suspension 16.
  • Turning now to FIGS. 2 and 3, a method of estimating the mass M of the vehicle system 10 is demonstrated using graphs. Each of the FIGS. 2 and 3 depict an event such as dynamic acceleration-to-deceleration event, acceleration-to-coasting event, or a deceleration-to-acceleration event. The top or first graph 50 of FIG. 2 shows the position of the throttle pedal 52 vs. time [s] 54, the position of the brake pedal 56 vs. time[s] 54, and the overall acceleration term ax[g] 58, shown on the y-axis 60, vs. time[s] 54 of the event. In particular, graph 50 depicts an acceleration-to-coasting event. Thus the event entails a throttle pedal position steadily increasing 62, then a lift-off the throttle pedal 64 without any depression of the brake pedal. During the acceleration portion 62, the acceleration term ax is between 0.01 g and 0.02 g. The coasting portion 64 results in acceleration of about −0.3 g to −0.05 g. The bottom or second graph 66 of FIG. 2 traces the actual velocity V a 68 in km/h (y-axis) 70 vs. time[s] 54 over the course of the event. The method either uses a preset velocity constant Vk or selects a velocity Vx using a routine. In whichever manner, a velocity Vx is chosen to intersect with the actual velocity Va and two data points A and B are recorded.
  • Applying the above equation to data point A and data point B results in the following equations:

  • M(a xA +μg)=F dA −K b P bA −K a V xA 2  [12]

  • M(a xB +μg)=F dB −K b P bB −K a V xB 2  [13].
  • Since VxA 2=VxB 2 due to the data points A and B taken at a constant Velocity Vx, the equations reduce to:

  • M(a xB −a xA)=(F dB −K b P bB)−(F dA −K b P bA)  [14], or

  • M(a xB −a xA)=(F dB −F bB)−(F dA −F bA)  [15].
  • Furthermore, since this particular event is an acceleration-to-coasting event, the brake forces FbA, FbB and drive force FdB are zero resulting in the following equation:

  • M(a xB −a xA)=−F dA  [16].
  • When considering the other events such as the acceleration-to-deceleration event depicted in FIG. 3, the brake force FbA and the drive force FdB are zero, thus:

  • M(a xB −a xA)=−F bB −F dA  [17]
  • Furthermore, when applying the equation to a deceleration-to-acceleration event, the brake force FbB and the drive force FdA are zero, providing:

  • M(a xB −a xA)=F dB +F bA  [18].
  • The method as depicted in the graphs 50, 66 of FIGS. 2 and 3 require several inputs from existing sensors or hardware which with vehicles are already equipped. The inputs for the method include total axle drive torque, brake pressure (or regenerative brake torques if the vehicle system 10 is so equipped), longitudinal acceleration, throttle pedal position, brake pedal position, and straight line driving detection. For example, the total axle drive torque is used to calculate the drive force Fd. Brake pressure for each wheel 18 is required to calculate brake force Fb. Straight line detection is required to rule out other dynamic force variables in the mass estimation calculation.
  • Referring now to FIG. 5, a flowchart depicts a method 70 of estimating the mass Mest of the vehicle system 10 as featured in the graphs 50, 66 of FIGS. 2 and 3. The method 70 includes a first step 72 for detecting if the vehicle system 10 ignition is on and the engine is running. A second step 74 of the method 70 initializes a variable M0 representing the most recent estimated mass Mest in memory. A third step 76 detects if the vehicle system 10 is traveling in a straight line. If the vehicle system 10 is not traveling in a straight line, the third step 76 repeats until the vehicle system 10 is traveling in a straight line. Once the vehicle system 10 detects that the vehicle system 10 is traveling in a straight line, a fourth step 78 estimates the vehicle mass M1 using the equation [11] from above:

  • M 1(a x +μg)=F d −K b P b −K a V x 2  [11].
  • A fifth step 80 of the method 70 detects if the number or data points at the set velocity Vx has exceeded 1. If the number or data points at the set velocity Vx has not exceeded 1, the fifth step 80 repeats until the number or data points at the set velocity Vx has exceeded 1. This effectively detects when one of the three events occurs; the acceleration-to-deceleration event, the acceleration-to-coasting event, or the deceleration-to-acceleration event. Once the number or data points at the set velocity Vx have exceeded 1, a sixth step 82 estimates the vehicle mass M2 using the equation [15] from above:

  • M 2(a xB −a xA)=(F dB −F bB)−(F dA −F bA)  [15].
  • A seventh step 84 sets a new estimated mass Mest from estimated mass M0, M1, M2 from each of the second step 72, the fourth step 76, and the sixth step 82 each time the particular step is executed and a mass estimate M0, M1, M2 is calculated or initialized. An eighth step 86 outputs the estimated mass Mest from the seventh step 84 to the vehicle control module. Once the sixth step 82 is executed a first time, the sixth step 82 repeats until the ignition of the vehicle system is turned off.
  • The vehicle control module 21 is electronically connected to at least the powertrain 12 and sensors throughout the vehicle system 10 is preferably an electronic control device having a preprogrammed digital computer or processor, control logic, memory used to store data, and at least one I/O peripheral. The control logic includes a plurality of logic routines for monitoring, manipulating, and generating data. The vehicle control module 21 controls the operation of the powertrain 12 and other actuatable mechanisms of the vehicle system 10. The control logic may be implemented in hardware, software, or a combination of hardware and software. For example, control logic may be in the form of program code that is stored on the electronic memory storage and executable by the processor. The vehicle control module 21 receives the output signals of several sensors throughout the transmission and engine, performs the control logic and sends command signals to the vehicle system 10. The vehicle system 10 receives command signals from the vehicle control module 21 and converts the command signals to control actions operable in the vehicle system 10. Some of the control actions include but are not limited to increasing engine 22 speed, changing air/fuel ratio, changing transmission 24 gear ratios, altering suspension 16 control parameters, etc., among many other control actions.
  • For example, a control logic implemented in software program code that is executable by the processor of the vehicle control module 21 includes control logic for implementing a method of estimating the mass Mest of the vehicle system 10 as featured in the graphs 50, 66 of FIGS. 2 and 3. The control logic includes a first control logic for detecting if the vehicle system 10 ignition is on and the engine is running. A second control logic initializes a variable M0 representing the most recent estimated mass Mest in memory. The third control logic detects if the vehicle system 10 is traveling in a straight line. If the vehicle system 10 is not traveling in a straight line, the third control logic repeats until the vehicle system 10 is traveling in a straight line. Once the vehicle system 10 detects that the vehicle system 10 is traveling in a straight line, the fourth control logic estimates the vehicle mass M1 using the equation [11] from above:

  • M 1(a x +μg)=F d −K b P b −K a V x 2  [11].
  • The fifth control logic detects if the number or data points at the set velocity Vx has exceeded 1. If the number or data points at the set velocity Vx has not exceeded 1, the fifth control logic repeats until the number or data points at the set velocity Vx has exceeded 1. Once the number or data points at the set velocity Vx have exceeded 1, a sixth control logic estimates the vehicle mass M2 using the equation [15] from above:

  • M 2(a xB −a xA)=(F dB −F bB)−(F dA −F bA)  [15].
  • A seventh control logic sets a new estimated mass Mest from estimated mass M0, M1, M2 from each of the second control logic, the fourth control logic, and the sixth control logic each time the particular step is executed and a mass estimate M0, M1, M2 is calculated or initialized. An eighth control logic outputs the estimated mass Mest from the seventh control logic to the vehicle control module. Once the sixth control logic is executed a first time, the sixth control logic repeats until the ignition of the vehicle system is turned off.
  • Turning now to FIG. 4, a graph 90 presents a data set as generated by the operation of the method 70 depicted in FIG. 5. The graph 90 includes an x-axis 92 representing time (s) beginning with ignition of the engine 22 of the vehicle system 10. The y-axis 94 represents the mass of the vehicle (kg) both actual and estimated Mest. The actual mass 96 of the vehicle system 10 is constant in this example. During the first seconds of ignition, the estimated mass Mest is set to M0 or the most recent estimated mass Mest prior to shutdown of the vehicle system 10. For the next approximately 280 seconds of ignition, the estimated mass Mest is set to M1 and is shown having an error of approximately 25%. At approximately 300 s after ignition, the estimated mass Mest is set to M2 which is shown have a significantly reduced error at less than 5%.
  • The description of the disclosure is merely exemplary in nature and variations that do not depart from the gist of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.

Claims (20)

What is claimed is:
1. A method for estimating the mass of a vehicle system, the method comprising:
providing a vehicle system having a vehicle control module and a powertrain having an ignition system;
detecting if the ignition system is on;
initializing an initial mass M0 representing a most recent estimated mass Mest in a stored memory of the vehicle control module;
detecting if the vehicle system is traveling in a straight line until the vehicle system is detected traveling in a straight line;
estimating a first estimated mass M1;
detecting an event in which a change in acceleration occurs, wherein the acceleration of the vehicle system changes from positive to negative or the acceleration of the vehicle system changes from negative to positive;
recording a first and a second data points, wherein the first data point is when the velocity of the vehicle system is Vx before the event in which a change in acceleration occurs and the second data point is when the velocity of the vehicle system is Vx after the event in which a change in acceleration occurs; and
using the first and second data points to calculate a second estimated mass M2.
2. The method for estimating the mass of a vehicle system of claim 1 further comprising setting a new estimated mass Mest from the initial, first estimated and second estimated mass M0, M1, M2.
3. The method for estimating the mass of a vehicle system of claim 2 wherein setting a new estimated mass Mest from the initial, first estimated and second estimated mass M0, M1, M2 further comprises setting a new estimated mass Mest from the initial, first estimated and second estimated mass M0, M1, M2 wherein the new estimate mass Mest=M2 if M2 has been calculated, the new estimated mass Mest=M1 if M2 has not been calculated, and the new estimated mass Mest=M0 if each of M1 and M2 have not been calculated.
4. The method for estimating the mass of a vehicle system of claim 2 further comprising communicating the new estimated mass Mest to the vehicle control module.
5. The method for estimating the mass of a vehicle system of claim 1 wherein estimating a first estimated mass M1 further comprises estimating a second estimated mass M1 using the equation
M 1 = F d - K b P b - K a V x 2 ( a x + μ g )
and
wherein Fd is a drive force, Pb is a brake pressure, and KaVx 2 is an aerodynamic force.
6. The method for estimating the mass of a vehicle system of claim 1 wherein using the first and second data points to calculate a third estimated mass M3 further comprises using the first and second data points to calculate a second estimated mass M2 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
and
wherein FdA and FdB are drive forces, FbA and FbB are brake forces, and axA and axB are measured acceleration.
7. The method for estimating the mass of a vehicle system of claim 1 wherein using the first and second data points to calculate a third estimated mass M3 further comprises using the first and second data points to calculate a second estimated mass M2 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
and
wherein FdA is the drive force at the first data point, FdB is the drive force a the second data point, FbA is the brake force at the first data point, FbB is the brake force at the second data points, and axA and axB are the measured acceleration at the first and second data points, respectively.
8. A method for estimating the mass of a vehicle system, the method comprising:
providing a vehicle system having a vehicle control module and a powertrain having an ignition system
detecting if the ignition of the vehicle system is on;
initializing an initial mass M0 representing a most recent estimated mass Mest in a stored memory of the vehicle control module;
detecting if the vehicle system is traveling in a straight line until the vehicle system is detected to be traveling in a straight line;
estimating a first estimated mass M2 using the equation
M 1 = F d - K b P b - K a V x 2 ( a x + μ g ) ;
detecting an event in which a change in acceleration occurs, wherein the acceleration of the vehicle system goes from positive to negative or the acceleration of the vehicle system goes from negative to positive;
recording a first and a second data points, wherein the first data point is when the velocity of the vehicle system is Vx before the event and the second data point is when the velocity of the vehicle system is Vx after the event;
estimating a second estimated mass M3 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA ) ;
setting a new estimated mass Mest from the initial, first estimated and second estimated mass M0, M1, M2, and
communicating the new estimated mass Mest to the vehicle control module.
9. The method for estimating the mass of a vehicle system of claim 8 wherein setting a new estimated mass Mest from the initial, first estimated and second estimated mass M0, M1, M2 further comprises setting a new estimated mass Mest from the initial, first estimated and second estimated mass M0, M1, M2 wherein the new estimate mass Mest=M2 if M2 has been calculated, new estimate mass Mest=M1 if M2 has not been calculated, and new estimate mass Mest=M0 if each of M1 and M2 have not been calculated.
10. The method for estimating the mass of a vehicle system of claim 9 wherein estimating a first estimated mass M1 using the equation
M 1 = F d - K b P b - K a V x 2 ( a x + μ g )
further comprises estimating a second estimated mass M2 using the equation
M 1 = F d - K b P b - K a V x 2 ( a x + μ g )
and
Fd is a drive force, Pb is a brake pressure, and KaVx 2 is an aerodynamic force.
11. The method for estimating the mass of a vehicle system of claim 10 wherein estimating a third estimated mass M3 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
further comprises estimating a third estimated mass M3 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
and
FdA and FdB are drive forces, FbA and FbB are brake forces, and axA and aXB are acceleration.
12. The method for estimating the mass of a vehicle system of claim 11 wherein estimating a second estimated mass M3 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
further comprises estimating a third estimated mass M3 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA )
and
wherein FdA is the drive force at the first data point, FdB is the drive force a the second data point, FbA is the brake force at the first data point, FbB is the brake force at the second data points, and axA and aXB are the measured acceleration at the first and second data points respectively.
13. A vehicle system comprising:
a vehicle body having a frontal area A having a constant Ka;
a powertrain disposed within the body of the vehicle system and having an ignition system, and wherein the powertrain selectively provides a drive force Fd on the vehicle system;
at least two wheels;
a brake system disposed in the body and the at least two wheels, and wherein the brake system selectively provides a brake force Fb on the vehicle system;
a suspension system disposed between the at least two wheel and the body and powertrain, wherein the suspension supports the body and powertrain upon the at least two wheels; and
a vehicle control module electronically connected to the vehicle system, the vehicle control module has control logic operable to control a plurality of dynamic driving parameters of the vehicle system, the control logic including:
a first control logic for detecting if the ignition system is on and the powertrain is running;
a second control logic initializes a variable M0 representing the most recent estimated mass Mest in memory;
a third control logic detects if the vehicle system is traveling in a straight line, and wherein if the vehicle system is not traveling in a straight line, the third control logic repeats until the vehicle system is traveling in a straight line;
a fourth control logic estimates a first vehicle mass M1 using the equation

M 1(a x +μg)=F d −K b P b −K a V x 2;
a fifth control logic detects if the number of data points at the set velocity Vx has exceeded 1, and wherein if the number of data points at the set velocity Vx has not exceeded 1, the fifth control logic repeats until the number of data points at the set velocity Vx has exceeded 1 and recording a first and a second data points, the first data point is recorded the at the first time the set velocity Vx is reached, and the second data point is recorded at the second the set velocity Vx is reached; and
a sixth control logic estimates a second vehicle mass M2 using the equation

M 2(a xB −a xA)=(F dB −F bB)−(F dA −F bA).
14. The vehicle system of claim 13 further comprising a seventh control logic sets a new estimated mass Mest equal to one of the most recent estimated mass M0, the first vehicle mass M1, and the second vehicle mass M2 from each of the second control logic, the fourth control logic, and the sixth control logic each time the particular step is executed and the new mass estimate Mest is calculated or initialized.
15. The vehicle system of claim 14 further comprising an eighth control logic that communicates the mass estimate Mest of the seventh control logic to the vehicle control module.
16. The vehicle system of claim 15 further comprising a ninth control logic that upon an initial execution of the sixth control logic repeats the sixth control logic until the ignition of the vehicle system is turned off.
17. The vehicle system of claim 16 wherein the seventh control logic further comprises setting a new estimated mass Mest equal to one of the most recent estimated mass M0, the first vehicle mass M1, and the second vehicle mass M2 wherein the new estimate mass Mest=M2 if M2 has been calculated, the new estimate mass Mest=M1 if M2 has not been calculated, and the new estimate mass Mest=M0 if each of M1 and M2 have not been calculated.
18. The vehicle system of claim 17 wherein the sixth control logic of estimating the second vehicle mass M2 using the equation
M 2 = ( F dB - F bB ) - ( F dA - F bA ) ( a xB - a xA ) ,
further comprises estimating the second vehicle mass M2 wherein FdA and FdB are the drive forces, FbA and FbB are the brake forces, and axA and axB are acceleration.
19. The vehicle system of claim 18 wherein the fourth control logic of estimating the first vehicle mass M1 using the equation
M 1 = F d - K b P b - K a V x 2 ( a x + μ g )
further comprises estimating the first vehicle mass M1 wherein Fd is a drive force, Pb is a brake pressure, and KaVx 2 is an aerodynamic force.
20. The vehicle system of claim 19 further comprising at least one of a passenger, a payload, and a trailer.
US15/848,770 2017-12-20 2017-12-20 Method for real-time mass estimation of a vehicle system Active 2037-12-24 US10612961B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/848,770 US10612961B2 (en) 2017-12-20 2017-12-20 Method for real-time mass estimation of a vehicle system
CN201811543789.XA CN109941291B (en) 2017-12-20 2018-12-17 Real-time quality estimation method for vehicle system
DE102018132911.3A DE102018132911B4 (en) 2017-12-20 2018-12-19 Method for mass estimation of a vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/848,770 US10612961B2 (en) 2017-12-20 2017-12-20 Method for real-time mass estimation of a vehicle system

Publications (2)

Publication Number Publication Date
US20190186985A1 true US20190186985A1 (en) 2019-06-20
US10612961B2 US10612961B2 (en) 2020-04-07

Family

ID=66768108

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/848,770 Active 2037-12-24 US10612961B2 (en) 2017-12-20 2017-12-20 Method for real-time mass estimation of a vehicle system

Country Status (3)

Country Link
US (1) US10612961B2 (en)
CN (1) CN109941291B (en)
DE (1) DE102018132911B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043147A (en) * 2019-09-13 2021-03-18 いすゞ自動車株式会社 Weight estimation device and vehicle
US20210201034A1 (en) * 2018-10-18 2021-07-01 Hitachi Astemo, Ltd. State quantity estimation device, control device, and state quantity estimation method
WO2024042429A1 (en) * 2022-08-26 2024-02-29 STREPARAVA S.p.A. CON SOCIO UNICO Method for calculating the mass of a vehicle and system for calculating the mass of said vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857540B (en) * 2021-01-15 2022-11-29 一汽解放汽车有限公司 Vehicle quality identification method, vehicle and storage medium
US11845444B2 (en) 2021-09-01 2023-12-19 GM Global Technology Operations LLC System and method for performing advanced driver-assistance functions including adaptively accounting for impact of different payload or trailer configurations
CN113859252B (en) * 2021-10-29 2023-07-18 北汽福田汽车股份有限公司 Vehicle weight determining method and device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724092B4 (en) 1997-06-07 2006-02-16 Robert Bosch Gmbh Method and device for determining the vehicle mass
US5973237A (en) 1998-03-06 1999-10-26 Pioneer Hi-Bred International, Inc. Hybrid maize plant and seed 39K38
US6167357A (en) 1998-04-23 2000-12-26 Cummins Engine Company, Inc. Recursive vehicle mass estimation
US6567734B2 (en) 2001-08-23 2003-05-20 Cummins, Inc. System and method for estimating vehicle mass
DE10307511B4 (en) * 2003-02-21 2004-12-09 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Method and device for computer-aided estimation of the mass of a vehicle, in particular a commercial vehicle
CN100545595C (en) * 2005-09-27 2009-09-30 比亚迪股份有限公司 A kind of automotive quality estimation system and method
DE102007045998A1 (en) 2007-09-26 2009-04-09 Lucas Automotive Gmbh Driving stability improving method for motor vehicle e.g. sports car, involves determining total mass of motor vehicle, and determining individual wheel braking force based on determined total mass
WO2009071104A1 (en) * 2007-12-03 2009-06-11 Nira Dynamics Ab Estimation of the load of a vehicle
US7818140B2 (en) * 2008-01-29 2010-10-19 Zf Friedrichshafen Ag System for estimating a vehicle mass
US9395233B2 (en) * 2010-01-08 2016-07-19 Fca Us Llc Mass, drag coefficient and inclination determination using accelerometer sensor
JP4926258B2 (en) 2010-03-03 2012-05-09 住友ゴム工業株式会社 Vehicle mass estimation apparatus, method and program
US8977415B2 (en) 2011-08-02 2015-03-10 GM Global Technology Operations LLC Use of on-vehicle accelerometer to estimate vehicle grade and mass while vehicle is in motion
US8798887B2 (en) * 2011-11-30 2014-08-05 GM Global Technology Operations LLC System and method for estimating the mass of a vehicle
CN102627108B (en) * 2012-04-11 2014-04-09 清华大学 Entire car mass estimation method based on high-frequency information extraction
KR101386756B1 (en) * 2012-04-13 2014-04-18 엘에스산전 주식회사 Load compensating device in railway vehicles
US10166980B2 (en) * 2013-02-28 2019-01-01 Ford Global Technologies, Llc Vehicle mass computation
US8892291B2 (en) * 2013-03-12 2014-11-18 Ford Global Technologies, Llc Vehicle mass detection system
DE102013211243A1 (en) 2013-06-17 2014-12-18 Continental Teves Ag & Co. Ohg Method for determining a vehicle mass
ITTO20130584A1 (en) * 2013-07-11 2015-01-12 Fiat Ricerche ESTIMATE OF THE MASS OF A VEHICLE AND OF THE SLOPE OF THE ROAD
US20150258994A1 (en) * 2014-03-17 2015-09-17 Ford Global Technologies, Llc Vehicle with mass and grade responsive cruise control
US9340212B2 (en) * 2014-04-01 2016-05-17 GM Global Technology Operations LLC System and method for estimating road grade based on an output of a longitudinal acceleration sensor in a vehicle
US9725093B2 (en) * 2014-09-23 2017-08-08 Cummins Inc. Vehicle controls including dynamic vehicle mass and road grade estimation during vehicle operation
GB2535773B (en) * 2015-02-27 2019-10-30 Jaguar Land Rover Ltd Vehicle mass estimation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210201034A1 (en) * 2018-10-18 2021-07-01 Hitachi Astemo, Ltd. State quantity estimation device, control device, and state quantity estimation method
JP2021043147A (en) * 2019-09-13 2021-03-18 いすゞ自動車株式会社 Weight estimation device and vehicle
JP7131515B2 (en) 2019-09-13 2022-09-06 いすゞ自動車株式会社 Weight estimator and vehicle
WO2024042429A1 (en) * 2022-08-26 2024-02-29 STREPARAVA S.p.A. CON SOCIO UNICO Method for calculating the mass of a vehicle and system for calculating the mass of said vehicle

Also Published As

Publication number Publication date
CN109941291B (en) 2022-05-17
US10612961B2 (en) 2020-04-07
DE102018132911B4 (en) 2022-11-03
DE102018132911A1 (en) 2019-06-27
CN109941291A (en) 2019-06-28

Similar Documents

Publication Publication Date Title
US10612961B2 (en) Method for real-time mass estimation of a vehicle system
US10328915B2 (en) Vehicle stability control system and method
US10071742B2 (en) Determining weight of electric and hybrid vehicles
US10246139B2 (en) Method and apparatus for controlling vehicle tractive effort
EP2521665B1 (en) Mass, drag coefficient and inclination determination using accelerometer sensor
US6321141B1 (en) Method and device for detecting motor vehicle tilt
US6311111B1 (en) Method and device for detecting motor vehicle tilt
US10994715B2 (en) Auto gain adjusting trailer brake controller
US6339749B1 (en) Device for determining the weight of a motor vehicle
US6980900B2 (en) Method for determining an estimate of the mass of a motor vehicle
US10053104B2 (en) Determining gross combined weight
EP3084371B1 (en) Method and vehicle with arrangement for estimating mass of the vehicle
JPH1172372A (en) Method and apparatus for obtaining mass value indicating vehicle mass of automobile, particularly practical automobile
CN104487297A (en) Braking/driving force control device
US7873459B2 (en) Load transfer adaptive traction control system
US20030101805A1 (en) Device for recognising the risk of aquaplaning which can occur during the driving of a vehicle
CN105416294A (en) Heavy-duty combination vehicle parameter estimation method
Muhamad Vehicle steering dynamic calculation and simulation
US11787394B2 (en) Supervisory control for e-AWD and e-LSD
US6275762B1 (en) Drive control for engagement and disengagement of axles of a vehicle
JP2000292316A (en) Estimation arithmetic device of center-of-gravity height of vehicle
JP2002104158A (en) Road surface frictional state calculating device, tire type determining device, tire abrasion determining device, road surface gradient estimating device, and offset correcting device of acceleration sensor
US20240042870A1 (en) Vehicle mass and road grade based regenerative braking and anti-rollback
CN114537540B (en) System and method for optimal vehicle downforce distribution
JP6905566B2 (en) Vehicle center of gravity position estimation system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, XIAOYU;REEL/FRAME:044472/0183

Effective date: 20171219

STPP Information on status: patent application and granting procedure in general

Free format text: EX PARTE QUAYLE ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4