US20190165720A1 - Solar tile system - Google Patents

Solar tile system Download PDF

Info

Publication number
US20190165720A1
US20190165720A1 US16/302,013 US201716302013A US2019165720A1 US 20190165720 A1 US20190165720 A1 US 20190165720A1 US 201716302013 A US201716302013 A US 201716302013A US 2019165720 A1 US2019165720 A1 US 2019165720A1
Authority
US
United States
Prior art keywords
photovoltaic
clad
tile unit
backer board
tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/302,013
Other languages
English (en)
Inventor
Patrick John Adrian Quinlan
Jason Michael Laverty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolaBlock LLC
Original Assignee
SolaBlock LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SolaBlock LLC filed Critical SolaBlock LLC
Priority to US16/302,013 priority Critical patent/US20190165720A1/en
Publication of US20190165720A1 publication Critical patent/US20190165720A1/en
Assigned to SolaBlock LLC reassignment SolaBlock LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAVERTY, JASON MICHAEL, QUINLAN, PATRICK JOHN
Assigned to SolaBlock LLC reassignment SolaBlock LLC CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY PREVIOUSLY RECORDED AT REEL: 050659 FRAME: 0542. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: LAVERTY, JASON MICHAEL, QUINLAN, PATRICK JOHN ADRIAN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to solar panels and more particularly to photovoltaic-clad tiles for providing solar-energy collection on building exteriors.
  • a photovoltaic cell or photocell is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect.
  • solar energy is the use of photovoltaic arrays on the outer surfaces of buildings and structures, such as the roofs and outer walls of the building or structure. Such photovoltaic arrays can be attached to the building and interconnected after the building is built, thus allowing a building to be retrofitted to use renewable energy.
  • Photovoltaic tile units including one-or-more photovoltaic cells (e.g., solar cells) for generation of electricity.
  • the tiles combine the physical attributes of a tile with the energy production of solar photovoltaics.
  • the tiles are configured to provide easy manufacturing, installing, and electrical connecting.
  • Photovoltaic-clad tile units can be used to “solarize” residential or commercial building walls, cavity walls, retaining walls, rights-of-way, garden walls, sound walls or any wall or portion of a facade receiving sunlight for a portion of the day.
  • the photovoltaic-clad tile units can also be used to harvest renewable energy from highway sound-walls, bridges, parking structures, railroad rights-of-way, property walls, or any other conventionally-walled location and/or provide solar power to unattended buildings, signs, or off-grid buildings.
  • photovoltaic-clad tile units may be used to provide power to critical buildings or shelters that may lose grid-power and/or have a likelihood of damage to conventional roof-mounted solar cells in extreme conditions such as in hurricane-force winds.
  • a photovoltaic-clad tile unit includes a rigid support structure with a back surface and includes a backer board, the back surface that defines a plurality of equal-length wiring channels in the rigid support structure and a pass-through channel extending across the tile in a straight line, and one or more photovoltaic cells supported by the rigid support structure, and a transparent cover disposed above the one or more photovoltaic cells and configured to be secured to the rigid support structure to provide a protective enclosure that encloses the one or more photovoltaic cells.
  • Embodiments can include one or more of the following features.
  • the plurality of equal-length wiring channels are configured such that adjacent wiring channels between adjacent photovoltaic-clad tile units are provided on an outward facing side of the photovoltaic-clad tile units.
  • each of the plurality of equal-length wiring channels extends from a first edge to one of: the first edge, an opposite edge, or a first or second adjacent edge of the backer board.
  • the plurality of equal-length wiring channels is a group of seven equal-length wiring channels.
  • each of the group of seven equal-length wiring channels extends from a primary entrance in the first edge of the backer board to one of a corresponding seven exits in the edges of the backer board.
  • the group of seven equal-length wiring channels can include: a first channel extending across the tile to a first exit in the opposite edge, a second channel extending to a second exit in the first edge; a third channel extending to a third exit in the first edge, a fourth channel extending to a fourth exit in first adjacent edge, a fifth channel extending to a fifth exit in the second adjacent edge, a sixth channel extending to a sixth exit in the opposite edge, and a seventh channel extending to a seventh exit in the opposite edge, wherein the primary entrance and the first, fourth and fifth exits are located in the approximate center of their respective edges, and wherein the second and third exits are located at a same distance from the primary entrance, and the sixth and seventh exits are located at the same distance from the first exist.
  • the pass-through wire follows the same channel as the wires conducting electrical current from a tile to adjacent tiles.
  • the tile further includes an adhesive layer disposed on the back surface of the tile, the adhesive layer configured to secure the photovoltaic-clad tile unit to a structure.
  • the photovoltaic tile unit further includes a pass though wire adhered to the back surface of the backer board in one of the plurality of equal-length wiring channels or the pass through channel, the pass though wire electrically isolated from the one or more PV cells.
  • the rigid support structure includes an input opening and an output opening, the opening providing an electrical connection to the one or more photovoltaic cells.
  • the photovoltaic tile unit further includes a power-conductor wire adhered to the back surface of the backer board in one of the plurality of equal-length wiring channels or the pass through channel, the power-conductor wire comprising an input wire in electrical connection with the one or more photovoltaic cells via the input opening and an output wire in electrical connection with the one or more photovoltaic cells via the output opening.
  • the back surface defines a cavity between the input and output opening, the cavity sized and positioned to house a bypass diode.
  • the back surface defines a cutout sized and positioned to house a connector.
  • the backer board includes alignment devices that are raised from the surface of the backer board.
  • the photovoltaic unit further includes an opaque removable label adhered to an outer surface of the cover.
  • the label includes a pre-printed label made of a dissolvable material.
  • the label includes a first indicator indicative of the location of the positive terminal and a second indicator indicative of the location of the negative terminal.
  • the cover includes a transparent glass or polymeric cover and the cover includes a top surface and sidewalls extending approximately perpendicular to the top surface.
  • the photovoltaic-clad tile unit further includes a gasket.
  • the photovoltaic-clad tile unit is configured to be electrically connected to other photovoltaic-clad tile units to form a photovoltaic array.
  • the backer board includes cement and reinforcing fibers. In some embodiments, backer board includes a Portland cement based core with glass fiber mat reinforcing. In some embodiments, the backer board includes glazed- or unglazed ceramic or porcelain material.
  • Solar technologies such as the photovoltaic-clad tile units described below, are designed specifically for structural facades in urban and remote areas to be vandal-resistant, theft resistant, and long-lived. These photovoltaic-clad tile units provide the building blocks to cover a wall or other facade. Solar technologies with these design characteristics can supply electricity to critical loads in unattended or remote locations.
  • the tile units can be affixed and grouted in the traditional manner and the wiring of the photovoltaic cells can be completed afterward on the front, outward facing, sides of the blocks (e.g., on the side of the blocks that includes the photovoltaic cells).
  • the photovoltaic-clad tile units provide the physical protective attributes of a tile unit wall and the energy production of solar electric modules.
  • the material of the tile unit provides the structural support for the solar cells while also providing a thermal sink that mitigates high-temperature-based reductions to performance and reliability.
  • the tile unit also provides strength to allow the solar cells to be better protected from damage, and eliminates the need for expensive metal framework supports for the cells.
  • One technical advantage of the photovoltaic-clad tile system permits installation of strings of photovoltaic-clad tile units that are sufficiently low weight for flexible installation in various configurations on a wall.
  • One aspect of this technical advantage is a unique form of pre-wiring of the interconnection wiring and the pass-through wiring, where the backer-board of each tile is configured to allow customer choice in the relative positioning from one tile to the next.
  • Pre-wiring of photovoltaic-clad tile units into strings avoids the weight, cost, and labor-requirements associated with connecting individual tiles to each other. For each possible user-designated subsequent tile location, constant-length channels in the backer-board create a corresponding wiring path.
  • FIGS. 1A-1G are examples of various tile orientations.
  • FIGS. 2A-2G are examples of various tile installations.
  • FIG. 3 is an illustration of the front-face of a tile.
  • FIGS. 4A and 4B are illustrations of the back-side of a tile without and with, respectively, electrical wiring.
  • FIG. 4C is a diagram of the back-side of the tile identifying the connections to adjacent tiles.
  • FIGS. 5A-5G show each of the paths that pass-through wiring can take through the equal-length channels.
  • FIGS. 6A-6C are front, rear, and side illustrations, respectively, of the backer board.
  • FIGS. 7A-7D are schematics of various wiring options for a single tile.
  • FIGS. 8A-8C are electrical schematics of three different strings of 10 tiles.
  • FIG. 9 is an illustration of a typical wall.
  • Solar technologies such as the photovoltaic-clad tile units described below, are designed specifically for structural facades in urban and remote areas that are vandal-resistant, theft resistant, and long-lived. These photovoltaic-clad tile units provide the building blocks to cover a wall or other facade. Solar technologies with these design characteristics can also supply electricity to critical loads in unattended or remote locations.
  • Solar photovoltaic-clad tile units provide the building blocks to cover a building, wall, facade, or other structure capable of producing power.
  • the tile units can be installed in the traditional manner and the wiring of the photovoltaic cells can be completed afterward on the front, outward facing, sides of the blocks (e.g., on the side of the blocks that includes the photovoltaic cells).
  • the photovoltaic-clad tile units provide the physical protective attributes of a tile unit wall and the energy production of solar electric modules.
  • the material of the tile unit provides the structural support for the solar cells while also providing a thermal sink that mitigates high-temperature-based reductions to performance and reliability.
  • the tile unit also provides strength to allow the solar cells to be better protected from damage, and eliminates the need for expensive metal framework supports for the cells.
  • the photovoltaic-clad tile units described herein are similar to the solar masonry systems described in U.S. Pat. No. 9,059,348, the details of which are herein incorporated by reference in their entity.
  • the present photovoltaic-clad tile units do not include a concrete masonry substrate or individual connection points.
  • the present photovoltaic-clad tiles units include a wiring technology that enables the photovoltaic-clad tiles units to be applied conventionally to existing walls.
  • One technical advantage of the photovoltaic-clad tile system permits installation of strings of photovoltaic-clad tile units that are low weight and flexible for installation in various configurations on a wall.
  • One aspect of this technical advantage is a unique form of pre-wiring of the interconnection wiring and the pass-through wiring, where the backer-board of each tile is configured to allow customer choice in the positioning from one tile to the next.
  • Pre-wiring of photovoltaic-clad tile units into strings avoids the weight, cost, and labor-requirements associated with connecting individual tiles to each other. For each possible user-designated subsequent tile location, constant-length channels in the backer-board create a corresponding wiring path.
  • the backer board is also constructed to provide sufficient space within each tile to allow a field-splice from one string to the next.
  • a central cavity within the backer-board provides the space for splice connectors to be made and cached into the back of the tile.
  • Wiring the photovoltaic-clad tile units may include 2-conductor wire, where one conductor is for power connections from tile to tile and the other is for pass-through wiring.
  • the wiring is constructed and insulated for direct burial applications.
  • the photovoltaic-clad tile units have a distinct physical and electrical design that distinguishes it from both conventional tile and photovoltaic-clad masonry units.
  • a physical difference is the presence of the photovoltaic components forming the product face, minus the concrete frame and substrate of photovoltaic-clad masonry units.
  • An electrical difference in comparison to photovoltaic-clad masonry units is the absence of the junction boxes.
  • the photovoltaic cell is a commercially available monocrystalline silicon cell with all electrical connections on the shaded side, with the tile measuring 147 mm (5.8 inches) square; the photovoltaic cell is 125 mm (4.9 inches) square. Grout between tiles in this example is 4.6 mm (0.18 inches) in width.
  • FIGS. 1A-1G are examples of various tile orientation options possible with one embodiment of the present design.
  • the small squares A,B in FIGS. 1A-1G are included to aid in orienting the tiles 101 , 102 in the drawing.
  • Tile 101 is the installed tile and tile 102 is the next tile to be installed.
  • Wire 103 is the input lead-wire/pass-through wire and wire 104 is the output lead-wire/pass-through wire leading to tile 102 .
  • FIGS. 1A-1G depict the seven possible locations that tile 102 can be installed relative to tile 101 . The positions correspond to either a square or offset pattern from course to course.
  • FIGS. 2A-2G are examples of various tile installations possible with the constant-length channels of the present design.
  • FIGS. 2A-2G depict example photovoltaic-clad tile unit installations that take advantage of this design flexibility.
  • the small black squares A are included in the diagrams for orientation purposes.
  • FIG. 2A depicts a linear installation of tiles 101 along a wall using the default internal wiring.
  • FIG. 2B shows the installation of two rows 210 a,b of tiles 101 with a grid-style and the wire path 13 traveling in a horizontal direction across a first row 210 a , down at the end of the first row 210 a into the second row 210 b , and across the second row 210 b in a horizontal direction.
  • FIG. 2C shows an alternate orientation of the first and second rows 210 a,b of tiles 101 with the second row 210 b offset horizontally from the first row 210 a .
  • FIG. 2D shows an example of wrapping a window 220 with a single string 210 c of tiles 101 .
  • FIG. 2E shows a string 210 d of tiles 101 oriented to fill areas within complex architectural constraints, for example, between two windows 220 .
  • FIG. 2F shows ‘Detail A’ of FIG. 2E .
  • the wiring patch 13 of each individual tile 101 around the windows 202 is shown, along with black squares A on each tile 101 indicating the orientation of the tile 101 .
  • FIG. 2G is an illustration of the course taken by an actual wire 14 through the plurality of tiles 101 in Detail A, with the course 14 though each tile 101 being dependent on the orientation of the tile 101 and the connection of the wire 14 to the adjacent tiles 101 .
  • This wire path 14 for each tile is show with more detail in FIGS. 5A-G .
  • FIG. 3 is an illustration of the front-face of a tile.
  • FIG. 3 shows the edge of the transparent glass or polycarbonate front cover 301 , the transparent encapsulant layer 302 , the upper layer 303 of the backer board ( 305 in FIG. 4A ), the photovoltaic (PV) cell 304 , and four locating pins 401 at each corner.
  • the input wire 103 , the output wire 104 , and the pass-through wire 105 are also shown.
  • the tile 101 is formed of multiple layers including the backer board ( 305 in FIG.
  • the elastomer encapsulant 302 e.g., polydimethylsiloxane Sylgard 184 manufactured by Dow Corning
  • PV cells 304 the PV cells 304
  • UV and abrasion resistant cover 410 the UV and abrasion resistant cover 410
  • a gasket not shown
  • the elastomer encapsulant 302 encases the PV cells 304 and the UV and abrasion resistant cover 301 surrounds the encapsulant 302 forming a weather resistant assembly. In some instances, all other voids between the transparent front cover 301 and the backer board 304 are also filled with the elastomer encapsulant 302 .
  • the PV cell 304 is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect.
  • the PV cells 304 can be made of various materials including crystalline silicon or polycrystalline silicon.
  • the PV cell 304 can be made from materials such as cadmium telluride, copper indium gallium selenide, gallium arsenide, or indium gallium nitride.
  • the PV cell 304 may include an anti-reflection coating to increase the amount of light coupled into the PV cell 304 .
  • Exemplary anti-reflection coatings include silicon nitride and titanium dioxide.
  • the PV cells 304 include a full area metal contact made on the back surface (e.g., the surface nearest to the backer board 305 ).
  • the top surface of the tile 101 is made of a UV and abrasion resistant transparent cover 301 .
  • the cover can be made of a glass material.
  • cover 301 can be made of a polycarbonate material.
  • the tiles are covered in a polycarbonate cover that is transparent and treated to mitigate against degradation from ultraviolet light, and that are uniquely formed with sidewalls extending perpendicularly from the face to protect the tile assembly.
  • Tiles may be covered in other materials performing the same technical role, such as glass, quartz, etc.
  • the use of a polycarbonate material rather than glass provides various advantages. For example, polycarbonate is less likely to shatter or break. UV protective additives and coatings provide long-life in sunny conditions. Additionally, the cost to manufacture a polycarbonate layer can be less than the cost to manufacture a glass layer because the polycarbonate layer can be made using an injection molding process.
  • the tiles 101 prior to installation on a wall, are shipped with adhesive opaque labels.
  • the labels prevent damage to the tiles during construction, and more importantly prevent light from energizing the tiles during installation and creating a safety hazard to installers.
  • the adhesive opaque labels remain until electrical commissioning of the wall system is completed; in one example, removal of the labels is accomplished via a cleaning process that dissolves the labels.
  • the tiles 101 can be initially covered with labels or other degradable surface material that prevents light from reaching the PV cell 304 prior to removal of the material.
  • the surface 101 of the tile 101 can be coated with a label that prevents activation of the PV cell 304 by blocking light from being transmitted through the label (e.g., the label is substantially opaque).
  • the label can protect the surface of the PV unit from being scratched during transportation and construction (e.g., while the tile units are on and removed from the pallet). After removal of the label the surface of the PV cell, 304 is able to receive light and generate power.
  • the label on the surface of the tile 101 can be formed from a soluble material that can be removed using a masonry cleaning solution.
  • biodegradable materials that can be used as a cover include starch-based products, which can be preprinted and applied to the surface of the tile 101 as a label.
  • the label on the tile 101 can include an indication of a positive and negative terminal for the tile 101 . Providing an indication of the positive/negative terminals can aid in laying the tiles 101 because it will provide a visual indication of the correct orientation of the tile 101 .
  • the portion of the label on the positive side of the tile 101 can be a different color from the portion of the label on the negative side of the tile 101 . As such, once the tiles 101 are assembled it will be visually apparent based on the pattern of the labels when a tile 101 is not placed in the planned orientation.
  • FIGS. 4A and 4B are illustrations of the back-side of a tile without and with, respectively, electrical wiring.
  • FIG. 4A shows wiring removed to expose the cavities 410 inset into the back-side of the backer board 305 .
  • the edge of the clear front cover 301 is visible at the outside-edge; adjacent is the transparent encapsulant layer 302 .
  • the cavities 410 expose a visible portion of the front-layer 303 of the backer-board 305 .
  • Pin 401 is one of four locating pins at each corner.
  • Hole 402 is the output wire 104 location from the photovoltaic cell; hole 403 is the input wire 103 location to the photovoltaic cell 304 .
  • the PV cells 304 are situated on the front side of the backer board 305 .
  • the PV 304 cells are aligned with the backer board 305 using the alignment pins 401 .
  • the backer board 305 forms the rear surface of the tile.
  • the backer board 305 provides various functions for the PV unit 400 including leveling the rough surface of the tile unit below the PV cell 304 . Providing a level surface below the PV cells 304 helps to prevent fracturing of the fragile PV cell 304 . For example fracturing can occur on application of pressure to the top of the tile unit 101 .
  • the backer board 305 also provides a surface to which other layers of the tile unit 101 are adhered to form an enclosed unit that is resistant to moisture, oxygen, or other contaminants that may damage the PV cell 304 .
  • the backer board 305 can also serve as a thermal sink to help transfer heat and potentially reduce high operating temperature of the PV cell 304 that may reduce its performance and longevity.
  • the backer board 305 can be formed of various materials including cement board, which is a combination of cement and reinforcing fibers. When used, cement board adds impact resistance and strength to the tile unit 101 .
  • the backer board 305 is made from a Portland cement based core with glass fiber mat reinforcing at both faces. In some examples, the backer board 305 is made of glass.
  • the backer board 305 includes alignment pins 401 that are raised from the surface of the backer board 305 .
  • the alignment pins 401 are used to position and hold the PV cell 304 at an appropriate location on the PV facing side 303 of the backer board 305 .
  • the alignment pins 401 have a height calibrated to space the abrasion resistant cover 301 apart from the PV cell 304 . In some examples, the pins 401 have a height between 1 mm to 4 mm. The length of these pins forms a defined thickness between the PV cell 304 and the clear cover 301 .
  • the alignment pins 401 contact the clear cover 301 such that impact forces applied to cover 301 are predominately transferred to the backer board 305 rather than through the PV cell 304 . Transferring of forces from cover 301 (e.g., from the surface of the PV unit) to the backer board 305 can prevent damage to the relatively fragile PV cells 304 .
  • FIG. 4B shows a default wiring pattern with power 404 , 405 and pass-though wiring 105 set into a serpentine channel 410 .
  • the power-conductor wire 404 , 405 and pass-through wire 105 are bundled together as a two-wire pair.
  • the pass-through wire 105 continues entirely through the tile 101 .
  • the serpentine path of the cavities 410 is necessary to create equal-length options for wiring to each of seven (7) possible positions of subsequent tiles, each of which are shown in FIGS. 5A-5G .
  • the backer-board 305 cavity 406 between locations 404 and 405 is sufficiently sized to house a bypass diode as needed for individual field applications.
  • the pass-through wire 105 is located between the encapsulant and the backer board 305 .
  • the pass-through wire 105 is secured to the backer board 305 using epoxy.
  • the pass-through wire 105 is configured to pass energy through the tile, but is not connected to the PV cell 304 of the particular tile.
  • the pass-through wire 105 serves as a return for a set of connected tiles to enable electrical design flexibility in individual applications. As such, both the individual wiring for the tile 103 , 104 and the pass-through wiring 105 are placed in the serpentine channel 303 in the backside of the backer board 305 .
  • FIG. 4C identifies the various channel entrances are exits corresponding to the named channels of FIGS. 4B and 5A-5G .
  • FIGS. 5A-5G show each of the paths that pass-through wiring can take through the equal-length channels.
  • Each of the FIGS. 5A through 5G outlines the internal wiring paths corresponding to the relative tile 101 positions shown in FIG. 1 .
  • FIG. 5D depicts the case where the tile 101 may be used to cache a splice connector 505 in a square cutout area 504 providing space for a butt-style connector 505 suitable for direct burial.
  • the square cutout area 504 or cavity is intentionally located where a splice can be made whatever path the wiring subsequently takes to the next tile 102 .
  • the physical channels 410 in the backer board are designed to route the connecting wiring to each possible location in a manner that requires the same length of wire to reach that location.
  • FIGS. 6A-6C are front, rear, and side illustrations, respectively, of the backer board.
  • FIG. 6 depicts the two layers 303 , 305 of the backer-board.
  • the board 305 is a cast mixture of Portland cement and other binders;
  • the front layer 303 is a single piece that forms the structural base of the tile 101 while also holding the photovoltaic cell 304 in place via locator pins.
  • FIG. 6B shows the back layer 305 is an 11-piece set of elements that form the wiring and interconnection cavities 410 .
  • FIG. 6C shows a side view of the assembled backer board pieces 303 , 305 .
  • the front 303 and back 305 are bonded or cast as a single piece.
  • the two pieces 303 , 305 are separate and affixed in the field in order to provide for inspection of all interconnection points in the installation prior to covering.
  • the back layer 305 is installed onto the wall with the rest of the tile 101 ; the connections are made, and the front-layer 303 , encapsulant 302 , photovoltaic-cell, 304 and polycarbonate cover 301 assembly is affixed afterward.
  • wiring 103 , 104 , 105 is connected via male-female lug terminals.
  • the exit wire is connected in the tile cavity with a splice connector and wired into a wall penetration to the interior of the building, where it is connected to conventional solar PV junction box, AC inverter, or DC battery system.
  • FIGS. 7A-7D are schematics of various wiring options for a single tile.
  • the electrical schematics of various wiring options for a single tile are shown in FIG. 7A-7D , with input lead ( ⁇ ) 103 , output lead (+) 104 , photovoltaic cell 304 , pass-through wire 105 , and diode 701 .
  • FIG. 7A shows a tile 101 with conventional power wiring and no bypass diode.
  • FIG. 7B shows the same wiring with a bypass diode added.
  • FIG. 7C shows a cell 304 with the output 104 wired to the pass-through wire 105 ;
  • FIG. 7D shows the same wiring as FIG. 7C , but with a bypass diode 701 added.
  • Table 1 lists the electrical characteristics of an example single tile 101 , based on typical single cell electrical parameters of an example photovoltaic cell 304 manufacturer.
  • a single tile 101 is nominally rated at 3.5 Watts, generating 6 Amps at 0.58 Volts.
  • the tiles 101 are set at nominal 152 mm (6-inch) distances center-to center, or 4 tiles 101 per square foot.
  • the maximum power on an area basis is 150 Watts peak DC per square meter (14 Watts peak DC per square foot).
  • maximum power is calculated to be 140 Watts peak DC per horizontal linear foot).
  • FIGS. 8A-8C are electrical schematics of three different strings of 10 tiles.
  • FIG. 8A illustrates a 10-tile string as it would be installed “out-of-the box.”
  • FIG. 8B illustrates how the pass-through wiring 105 is used to close a circuit within the tiles 101 .
  • FIG. 8C shows how the pass-through wiring 105 may be used to provide bypass-diode 701 circuitry for the ten tile group. These wiring options can be accomplished using the cavities and equal-length wiring channels 410 shown in FIG. 4 .
  • FIG. 9 shows an example photovoltaic tile system 900 wall installation.
  • the tiles 101 are cemented to the wall 901 and grouted between joints 902 . There are no connectors visible.
  • Tiles 101 are installed as full tiles or cut pieces. Tiles 101 can be installed in block fashion as shown or staggered per row. Cut pieces may be included in a finished wall system but are not be wired to produce electricity.
  • Field splices will be required at 30-tile intervals or due to customer design. Similar to solar masonry systems, separation of tasks required of tile-installers and electricians can be accomplished. For tile 101 , at each location where there is a splice, that top section of any tile 101 can be separated from the bottom section to permit access for the electrician. The separation is possible at the joint between the upper backer board 303 and lower backer board 305 . The upper backer board 303 wiring is attached to the lower section 305 wiring via two male-female quick connect terminals. After the electrician has completed the splices (and the local electrical inspector has inspected those splices), then the tile installer cements the top sections of the connector tiles to the lower section and grouts the wall.
  • photovoltaic tiles 101 are pre-wired, 30 tiles at a time.
  • the negative terminal of each tile 101 is pre-wired at a fixed connection point; the positive terminal is prewired at a connection point that allows wiring to the adjacent tile to be re-routed from a side-by-side location to other locations adjacent to it: directly above, directly below, staggered above, or staggered below the relative position of the current tile.
  • the connecting wire 103 , 104 , 105 used on the back of the backer board 305 is rated for direct concrete burial for photovoltaic applications, and is composed of two separate conductors—one for connecting each of the tiles 101 in series and one for pass-through wiring where needed.
  • each tile 101 is provided with an installation cavity 406 for a bypass diode 701 that enables the circuit to continue if the photovoltaic element 304 is disabled.
  • a bypass diode 701 is dictated by the individual field application; wall areas near ground or other possible shading may be fitted with diodes; areas in upper building levels clear of possible shading may not.
  • the channel 504 in the back of the backer board 305 provides sufficient cavity space for an appropriate splice connector 505 .
  • the splice can connect a string of tiles 101 , an end-conductor to a set of tiles 101 , or a splice to the pass-through wire 105 , as needed per individual application. Where a splice is made, that individual tile 101 can be identified by a small mark to aid in later maintenance of the installation if needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
US16/302,013 2016-05-17 2017-05-17 Solar tile system Abandoned US20190165720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/302,013 US20190165720A1 (en) 2016-05-17 2017-05-17 Solar tile system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662337651P 2016-05-17 2016-05-17
US16/302,013 US20190165720A1 (en) 2016-05-17 2017-05-17 Solar tile system
PCT/US2017/033045 WO2017201133A1 (en) 2016-05-17 2017-05-17 Solar tile system

Publications (1)

Publication Number Publication Date
US20190165720A1 true US20190165720A1 (en) 2019-05-30

Family

ID=60326570

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/302,013 Abandoned US20190165720A1 (en) 2016-05-17 2017-05-17 Solar tile system

Country Status (5)

Country Link
US (1) US20190165720A1 (de)
EP (1) EP3459172A4 (de)
JP (1) JP2019517159A (de)
CA (1) CA3024898A1 (de)
WO (1) WO2017201133A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998848B2 (en) * 2019-04-02 2021-05-04 Solarmass Energy Group Ltd. Method of routing and securing electrical power cables for a solar roof installation
USD921719S1 (en) 2018-12-19 2021-06-08 SolaBlock LLC Concrete block mold
US11309828B2 (en) * 2019-11-27 2022-04-19 GAF Energy LLC Roof integrated photovoltaic module with spacer
US11444569B2 (en) 2020-10-14 2022-09-13 GAF Energy LLC Mounting apparatus for photovoltaic modules
US11545928B2 (en) 2020-10-13 2023-01-03 GAF Energy LLC Solar roofing system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7694094A (en) * 1993-09-16 1995-04-03 Blue Planet Ag Solar roofing tile/slab
ATE556184T1 (de) * 2000-03-28 2012-05-15 Kaneka Corp Solarzellenmodul und mit generatorfunktion ausgestattetes dach zu dessen gebrauch
JP2002141541A (ja) * 2000-10-31 2002-05-17 Canon Inc 太陽光発電装置および建造物
US6928775B2 (en) * 2002-08-16 2005-08-16 Mark P. Banister Multi-use electric tile modules
US20080135092A1 (en) * 2006-12-11 2008-06-12 Sunmodular, Inc. Solar roof tiles with heat exchange
US20080302408A1 (en) * 2007-06-05 2008-12-11 Solar Roofing Systems, Inc., Method of manufacturing an integrated solar roofing tile
WO2009121062A1 (en) * 2008-03-28 2009-10-01 Wattman George G Photovoltaic roofing elements, laminates, systems and kits
EP2386807A1 (de) 2010-05-10 2011-11-16 T-Solar Global, S.A. Träger für eine Sonnenenergie-Generatoranordnung, Sonnenenergie-Generatoranordnung mit diesem Träger und Installationsverfahren dafür
NZ592562A (en) * 2011-04-29 2013-11-29 Edward Lawrence Noton An Improved Roof Tile
JP5938539B2 (ja) * 2011-06-15 2016-06-22 株式会社竹中工務店 電子部材固定構造
CN104094520A (zh) * 2012-02-08 2014-10-08 普尔瑞克有限公司 太阳能发电机平台
KR20140098960A (ko) * 2013-01-31 2014-08-11 삼성에스디아이 주식회사 광전소자 및 이를 포함하는 광전 시스템
GB2517914B (en) * 2013-09-02 2017-10-11 Solarmass Ltd Improved Solar Roof Tile
US9059348B1 (en) * 2014-01-17 2015-06-16 SolaBlock LLC Photovoltaic-clad masonry unit
JP2016025235A (ja) * 2014-07-22 2016-02-08 大日本印刷株式会社 太陽電池モジュールおよび太陽電池パネル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD921719S1 (en) 2018-12-19 2021-06-08 SolaBlock LLC Concrete block mold
US10998848B2 (en) * 2019-04-02 2021-05-04 Solarmass Energy Group Ltd. Method of routing and securing electrical power cables for a solar roof installation
US11309828B2 (en) * 2019-11-27 2022-04-19 GAF Energy LLC Roof integrated photovoltaic module with spacer
US20220385228A1 (en) * 2019-11-27 2022-12-01 GAF Energy LLC Roof integrated photovoltaic module with spacer
US11545928B2 (en) 2020-10-13 2023-01-03 GAF Energy LLC Solar roofing system
US11444569B2 (en) 2020-10-14 2022-09-13 GAF Energy LLC Mounting apparatus for photovoltaic modules

Also Published As

Publication number Publication date
WO2017201133A1 (en) 2017-11-23
JP2019517159A (ja) 2019-06-20
CA3024898A1 (en) 2017-11-23
EP3459172A4 (de) 2020-01-08
EP3459172A1 (de) 2019-03-27

Similar Documents

Publication Publication Date Title
US20190165720A1 (en) Solar tile system
US20210376786A1 (en) Photovoltaic-clad masonry unit
US11626829B2 (en) Methods of manufacturing and installing a solar roof tile assembly
JP2020518999A (ja) 光起電屋根タイルをパッケージするためのシステムおよび方法
CA3134675A1 (en) Solar roof tile with integrated cable management system
US7642449B2 (en) Photovoltaic integrated building component
US20160359451A1 (en) Apparatus and method for solar panel on-board wiring
US20040031219A1 (en) Multi-use electric tile modules
US20110162301A1 (en) Solar Cell Module and Solar Cell Array
US20080289272A1 (en) Flat roof tile with integrated photovoltaic module
US20190326459A1 (en) Single-cell encapsulation and flexible-format module architecture and mounting assembly for photovoltaic power generation and method for constructing, inspecting and qualifying the same
JP2000312019A (ja) 太陽電池モジュールアレイ、太陽電池モジュールアレイの設置構造、太陽電池モジュールの設置方法及び太陽光発電システム
US20130180575A1 (en) Structures for Solar Roofing
AU2018204182A1 (en) Road surface power generation unit and system
KR102005694B1 (ko) 아파트 및 박공형 공용주택의 태양광 필름 시공방법
JP4326990B2 (ja) 屋根材一体型太陽電池モジュール
GB2517914A (en) Improved Solar Roof Tile
WO2019058149A1 (en) ROOF COVER ELEMENT HAVING SOLAR CELL MODULE
WO2016195718A1 (en) Apparatus and method for solar panel on-board wiring
Pearsall et al. Design and Installation of the First Uk PV-Cladding Demonstration Project

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SOLABLOCK LLC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QUINLAN, PATRICK JOHN;LAVERTY, JASON MICHAEL;REEL/FRAME:050659/0542

Effective date: 20170206

AS Assignment

Owner name: SOLABLOCK LLC, MASSACHUSETTS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY PREVIOUSLY RECORDED AT REEL: 050659 FRAME: 0542. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:QUINLAN, PATRICK JOHN ADRIAN;LAVERTY, JASON MICHAEL;REEL/FRAME:050733/0121

Effective date: 20170206

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE