US20190154335A1 - Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker - Google Patents

Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker Download PDF

Info

Publication number
US20190154335A1
US20190154335A1 US16/257,665 US201916257665A US2019154335A1 US 20190154335 A1 US20190154335 A1 US 20190154335A1 US 201916257665 A US201916257665 A US 201916257665A US 2019154335 A1 US2019154335 A1 US 2019154335A1
Authority
US
United States
Prior art keywords
exhaust gas
bypass exhaust
rotary kiln
mixing chamber
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/257,665
Inventor
Heiko Schuermann
Florian Nassenstein
Andreas Hand
Rolf Gussmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KHD Humboldt Wedag AG
Original Assignee
KHD Humboldt Wedag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KHD Humboldt Wedag AG filed Critical KHD Humboldt Wedag AG
Priority to US16/257,665 priority Critical patent/US20190154335A1/en
Assigned to KHD HUMBOLDT WEDAG GMBH reassignment KHD HUMBOLDT WEDAG GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Gussmann, Rolf, Nassenstein, Florian, HAND, ANDREAS, SCHUERMANN, HEIKO
Publication of US20190154335A1 publication Critical patent/US20190154335A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B2007/2091Means for eliminating compounds from gases by condensation, e.g. alkali metals

Definitions

  • the invention relates to a method for the denitrification of bypass exhaust gases in a plant for producing cement clinker, wherein the plant has a rotary kiln for the sintering of raw meal to cement clinker and has a calciner for the deacidification of the raw meal, downstream of the rotary kiln in the kiln exhaust gas flow direction, the rotary kiln has a rotary kiln inlet chamber which is connected directly or via a kiln riser duct to the calciner, and the bypass exhaust gas is drawn off in the region of the rotary kiln inlet chamber.
  • the invention further relates to a corresponding plant for the denitrification of bypass exhaust gases in the production of cement clinker, comprising a rotary kiln for the sintering of raw meal to cement clinker, the rotary kiln having a rotary kiln inlet chamber, a calciner for the deacidification of the raw meal, the rotary kiln inlet chamber being connected directly or via a kiln riser duct to the calciner, and a takeoff device for drawing off the bypass exhaust gases from the region of the rotary kiln inlet chamber.
  • plants are employed in which silicate-containing and carbonate-containing raw meal is sintered to cement clinker in a rotary kiln.
  • the sintering in the rotary kiln which proceeds at temperatures of up to around 1450° C., produces flue gases which, as hot exhaust gases, leave the rotary kiln in the direction opposite to the flow of material, through the inlet chamber of the rotary kiln.
  • the kiln exhaust gases then flow into a calcining zone, in which the raw meal is deacidified.
  • the calcining zone is most often formed in a kiln riser duct or in a calciner, or in a kiln riser duct and a calciner downstream (in the gas flow direction).
  • the flue gas then flows further into a heat exchanger, designed, for example, as a multistage cyclone heat exchanger, which serves for the preheating of the raw meal.
  • a problem affecting the operation of cement clinker production is the formation and/or release of a series of pollutants.
  • nitrogen oxides (NOx) are formed in the rotary kiln by combustion of the nitrogen which is contained within the atmospheric air.
  • nitrogen oxides have adverse consequences for people and the environment—as a cause of acid rain, and through breakdown of ozone in the stratosphere, for example—there are strict limits on the emission of nitrogen oxides into the atmospheric environment. In the course of cement production, therefore, methods must be employed for the denitrification of the flue gases.
  • a further problem is that the raw materials for cement clinker production, and also the fuels employed, especially secondary fuels, contain by-constituents (alkali metal compounds, chlorine, sulfur compounds, heavy metals, etc.) which not only may be detrimental to the quality of the combustion process and/or of the cement clinker, but may also form deleterious substance circuits within the plant for cement clinker production.
  • alkali metal compounds e.g., sodium chloride (KCl).
  • these compounds pass through the kiln inlet chamber into the calcining zone and the heat exchanger, and they condense on the raw meal particles in the cooler regions, and pass with the material stream back into the rotary kiln, where they evaporate again.
  • rapid cooling and condensation of these compounds give rise, through solidification, to caking on the walls of the cooler sections of the circuit, which may cause the plant to become blocked over time.
  • the patent specification DE 197 18 259 B4 discloses drawing off, as a bypass, a part of the flue gas that flows as kiln exhaust gas from the rotary kiln, in the region of the rotary kiln inlet chamber.
  • Even the bypass exhaust gas contains a higher level of nitrogen oxides, and so flue gas denitrification must be performed for the bypass exhaust gas as well.
  • One widespread method for the denitrification of flue gases involves feeding the NOx-affected flue gases with an aqueous ammonia solution, ammonia (NH3) or ammonia-releasing compounds in a reaction space (see, for instance, the proposal contained in EP 0 854 339 A1). Denitrification then proceeds by the process of selective non-catalytic reduction (SNCR), in which ammonia is converted by thermolysis with the nitrogen oxides into nitrogen and water. These reactions proceed preferably in a temperature window from 800° C. to more than 950° C. For effective implementation, furthermore, it is necessary to realize a timespan which requires precise establishment, and at any rate a minimum time, for the processes within the reaction space.
  • SNCR selective non-catalytic reduction
  • One known procedure (DE 197 18 259 B4, DE 199 10 927 A1) is to carry out rapid cooling, preferably to just a few hundred ° C., of the hot bypass exhaust gas stream in mixing chambers, in which a cooling medium such as water or air is injected and is mixed as extensively as possible with the gas stream.
  • a cooling medium such as water or air
  • the German patent application with the number 10 2013 016 701.9 discloses a method for the denitrification of bypass exhaust gases in a plant for producing cement clinker by initially cooling the bypass exhaust gas to temperatures between 260° C. and 400° C. in a mixing chamber, for instance. This is followed by the feeding of the cooled bypass exhaust gas with substances containing ammonia, containing urea and/or containing ammonium.
  • the nitrogen oxides are subject to selective chemical reduction over a catalyst which is present in a ceramic filter arrangement and/or which immediately follows the ceramic filter arrangement, in the presence of the substances containing ammonia, urea and/or ammonium.
  • the denitrification in this case is based on the process of selective catalytic reduction (SCR).
  • SCR selective catalytic reduction
  • a further part of the object of the invention is to propose a plant for the denitrification of bypass exhaust gases that corresponds to the method.
  • An object of the invention is achieved by passing of the bypass exhaust gas into a first mixing chamber, the bypass exhaust gas being cooled in the first mixing chamber to a temperature of between 800° C. and 950° C., passing of the bypass exhaust gas from the first mixing chamber through a reaction section which is disposed in a conduit, the residence time of the bypass exhaust gas in the reaction section being between 0.5 s and 3 s, and ammonia, aqueous ammonia solution or ammonia-releasing substances being injected into the reaction section for denitrification of the bypass exhaust gas in accordance with the process of selective non-catalytic reduction (SNCR), passing of the bypass exhaust gas from the reaction section into a second mixing chamber, the bypass exhaust gas being cooled in the second mixing chamber to a temperature of between 150° C.
  • SNCR selective non-catalytic reduction
  • An object of the invention is further achieved by a plant corresponding to this method, for the denitrification of bypass exhaust gases in the production of cement clinker.
  • the invention provides a multistage bypass system wherein the hot bypass exhaust gas is first cooled in a first mixing chamber to a temperature of between 800° C. and 950° C.
  • the temperature window thereby established in the NOx-affected bypass exhaust gas is one which is favorable for SNCR.
  • the temperatures here are not lowered in one step. To do so would be to rule out an SNCR approach.
  • the method is continued in the next step by the denitrification itself, namely by injection of ammonia, aqueous ammonia solution or ammonia-releasing substances into a reaction section which is disposed in a reactor cavity, implemented primarily as a conduit.
  • the denitrification here is based on the SNCR method, and thus in comparison to the SCR method does not necessitate any costly and difficult-to-operate catalysts.
  • the further parameter needed for effective denitrification namely the residence time of the bypass exhaust gas in the reaction section (0.5 to 3 seconds), is established through the dimensioning of the conduit, thus more particularly by the length thereof and also the cross-sectional area thereof.
  • the operating regime according to the invention then provides for cooling of the denitrified bypass exhaust gas in a second mixing chamber.
  • the target final temperature of between 150° C. and 250° C. is achieved here by rapid cooling, and so other pollutants as well, as in the case of conventional methods which operate with rapid cooling (quenching), are condensed on the dust and are separated off together with the particulate solids at a downstream filter.
  • suitable filters are fabric filters/cloth filters/bag filters.
  • One preferred embodiment provides for the residence time of the bypass exhaust gas in the reaction section to be between one and two seconds.
  • a passage time of this kind for the bypass exhaust gas proves to be ideally suited to achieving efficient, far-reaching denitrification of the bypass exhaust gas by selective non-catalytic reduction (SNCR), at the temperature levels of 800° C. to 950° C. which are established by cooling in the preceding method step in the first mixing chamber, without having to equip the reaction section for an even longer residence time of the bypass exhaust gas.
  • the reaction section is designed as a zone in a conduit or in a conduit-like cavity, the residence time may be determined through the dimensioning, i.e., through the dimensions of the conduit on the basis of the typical values in the specific plant in question.
  • An embodiment of the invention provides for the bypass exhaust gas to be cooled in the second mixing chamber preferably to a temperature of between 180° C. and 220° C.
  • the primary consideration here is rapid cooling of the bypass exhaust gas.
  • formation of dioxins (chlorinated and polychlorinated dibenzodioxins) and furans (chlorinated and polychlorinated dibenzofurans) is largely prevented.
  • the rapid attainment of this final temperature is the most effective way of achieving condensation of pollutants on the dust, which is then deposited downstream in the filter.
  • the system for purifying the bypass exhaust gas that has been drawn off comprises a multistage system which comprises two mixing chambers; as and when necessary, further mixing chambers may also be provided.
  • a cooling medium typically air or water
  • the cooling medium injected into the second mixing chamber to comprise water or fresh air, or a combination of water and fresh air.
  • water or fresh air, or a combination of water and fresh air is also injected into the first mixing chamber, which may also be termed a premixing chamber.
  • the injection of water into a mixing chamber here takes place advantageously with atomization in a spray, using two-fluid nozzles, for instance.
  • the injection of fresh air (for instance atmospheric ambient air) and/or water may occur at various points distributed over the mixing chamber wall, the aim being for maximum mixing and uniform cooling.
  • a particular embodiment of the invention introduces fresh air, water and cold raw meal or any desired combination, in other words one, two or three components thereof, as a cooling medium into the first mixing chamber.
  • the injection of cold meal has the additional advantage of reducing the sulfur dioxide content of the bypass exhaust gas; the raw meal, with the surface area of its particles, is available as a sorbent for pollutant purification in the subsequent course of the method as well.
  • hot meal if not yet deacidified, can also be used as a cooling medium and/or as a constituent in the stated cooling media combination.
  • suction blowers or fans may be used.
  • a fan may be disposed downstream of the at least one filter in the gas flow direction.
  • This fan may also be a motor-driven compressor.
  • the purified bypass exhaust gas is subsequently given off into the environment via a chimney, although is also available to be fed back in, where appropriate, at a suitable point within the overall process of cement production.
  • the reaction section is fed with at least one sorbent for the additional, pollutant-removing purification of the bypass exhaust gas, for which purpose at least one device for feeding in at least one such sorbent is disposed in the region of the conduit that constitutes the reaction section.
  • Contemplated here in principle are all chemical compounds or sorbents which within the time of passage of the bypass exhaust gas through the reaction section, and at the temperatures prevailing therein, are suitable for ensuring reduction in the level of pollutants. In this case, it is possible for the temperature which is needed for the particular reaction to be established in a defined way in the first mixing chamber.
  • calcium compounds such as calcium carbonate may contribute to desulfurization, and also to reduction of further acidic constituents in the flue gas-like bypass exhaust gas.
  • Activated carbon provides large surface areas for the adsorption of pollutants, such as of heavy metals like mercury. Removal then takes place within the filter unit.
  • the invention here is oriented to the implementation of SNCR denitrification, but is not confined to this important case.
  • the construction of the bypass system makes it possible in principle for a temperature window to be established by cooling of a hot exhaust gas stream in a first mixing chamber, and for a time window for the residence of the gas stream in a reaction section to be established subsequently. Temperature intervals and time intervals here may also be realized in such a way that, when suitable chemical compounds and/or sorbents are injected into the reaction section, other reactions and/or methods for pollutant-removing purification of the exhaust gas are favored.
  • the skilled person is able here to transpose the principle to the particular group of pollutants that is the primary object for removal from the exhaust gas stream, on the basis of limit values, for instance.
  • the invention is not confined to plants which have a calciner, since the bypass gases are drawn off in the region of the rotary kiln inlet chamber itself.
  • the process of the invention of purification of bypass exhaust gas in the bypass mixing chamber system proposed can instead be employed universally for kiln exhaust gas purification.
  • the FIGURE shows a schematic representation of the method of the invention for the denitrification of bypass exhaust gases in a plant for producing cement clinker.
  • flue gas 1 flows into the rotary kiln inlet chamber 5 from a rotary kiln 2 , in which raw meal 3 is sintered to form cement clinker which is then cooled in a clinker cooler 4 .
  • a kiln riser duct 6 and a calciner 7 for the deacidification of the raw meal 3 .
  • a fraction of the flue gas 1 flows through kiln riser duct 6 and calciner 7 into the heat exchanger 8 (presently a multistage cyclone heat exchanger), which serves for the preheating of the raw meal 3 for cement production.
  • a part of the flue gas stream 1 emerging from the rotary kiln 2 is drawn off as bypass exhaust gas 9 in the region of the rotary kiln inlet chamber 5 , i.e., from the rotary kiln inlet chamber 5 or from the kiln riser duct 6 .
  • the bypass exhaust gas 9 which initially on emergence from the rotary kiln 2 has temperatures typically of around 1200° C. to 1300° C., and of around 1000° C. to 1200° C. at the takeoff location, is passed to the first mixing chamber 10 .
  • Cooling media fed into the first mixing chamber 10 may be fresh air 11 , water 12 or cold meal 12 a , or else hot meal, and also any desired mixtures of these.
  • atmospheric fresh air 11 , water 12 and cold meal 12 a are injected, with cold raw meal—that is, raw meal which has not already been heated in the heat exchanger—is advantageous particularly for a reduction in the amount of sulfur dioxide in the bypass exhaust gas.
  • cold raw meal that is, raw meal which has not already been heated in the heat exchanger
  • the bypass exhaust gas 9 is cooled to temperatures of between 800° C. and 950° C.
  • the bypass exhaust gas 9 After emerging from the first mixing chamber 10 , i.e., after the first cooling stage, the bypass exhaust gas 9 enters a conduit 13 . Injected into the conduit 13 are ammonia, aqueous ammonia solution or ammonia-releasing substances 14 .
  • the flow rate of the bypass exhaust gas and the dimensioning of the conduit 13 are matched to one another in such a way as to result in a residence time for the bypass exhaust gas 9 in the conduit 13 of 0.5 s to 3 s, preferably between 1 s and 2 s.
  • the temperature conditions of the bypass exhaust gas 9 and the residence time are therefore established in such a way that there is effective denitrification of the bypass exhaust gas by the process of selective non-catalytic reduction (SNCR) over a reaction section 15 which is formed within the interior of the conduit.
  • Ammonia 14 here is converted by thermolysis into nitrogen and water.
  • the temperatures of the bypass exhaust gas 9 without cooling or before cooling in the first mixing chamber 10 would be too high for such an SNCR, since the reducing agents would undergo combustion at such high temperatures. Additional feeding of sorbents which ensure further pollutant-removing purification of the bypass exhaust gas 9 is possible in the region of the reaction section 15 .
  • the bypass exhaust gas 9 is passed into a second mixing chamber 16 .
  • the second mixing chamber 16 it is rapidly cooled to the desired final temperature of between 150° C. and 250° C., preferably between 180° C. and 220° C.
  • This second cooling stage is accomplished by injection of water 12 and/or fresh air 11 into the second mixing chamber 16 . Rapid cooling to these temperatures minimizes the formation of dioxins and furans and leads to condensation of pollutants on the dust.
  • the bypass exhaust gas 9 thus conditioned is subsequently dedusted in at least one filter 17 . Suitability here is possessed by fabric filters/cloth filters/bag filters, and the use of electrostatic filters, and also a combination of different types of filter in series, may also be advantageous.
  • the purified bypass exhaust gas 9 subsequently passes through a fan 18 , and is drawn off by a chimney 19 and released into the environment.
  • a fan 18 In the bypass system as a whole, such as especially in the mixing chambers, effective commixing and a correspondingly uniform temperature field, and also a suitable bypass exhaust gas flow rate, are important for effective method steps.
  • the means of denitrification of the bypass exhaust gases is also effective and is also favorable in terms of acquisition and in operation, and removes the need for SCR catalysts to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

A method and a corresponding plant for denitrifying bypass exhaust gases in a cement clinker production plant. Raw meal is sintered in a rotary kiln and deacidified in a calciner. A rotary kiln inlet chamber is connected to the calciner directly or by a riser duct. Bypass exhaust gas is drawn off near the inlet chamber. This exhaust gas is guided into a first mixing chamber, in which the exhaust gas is cooled to between 800 and 950° C., then the exhaust gas is guided through a reaction pipeline segment, wherein the dwell time is between 0.5 and 3 seconds and ammonia, aqueous ammonia solution, or ammonia-releasing substances are injected for denitrification. Then the exhaust gas is guided into a second mixing chamber, in which the exhaust gas is cooled to between 150 to 250° C. Then the exhaust gas is guided to a filter for dust removal.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 15/554,163, filed on Aug. 28, 2017, which is a national stage of International Patent Application No. PCT/EP2016/054381, filed on Mar. 2, 2016, which claims the benefit of the German patent application No. 10 2015 002 688.7 filed on Mar. 4, 2015, the entire disclosures of which are incorporated herein by way of reference.
  • BACKGROUND OF THE INVENTION
  • The invention relates to a method for the denitrification of bypass exhaust gases in a plant for producing cement clinker, wherein the plant has a rotary kiln for the sintering of raw meal to cement clinker and has a calciner for the deacidification of the raw meal, downstream of the rotary kiln in the kiln exhaust gas flow direction, the rotary kiln has a rotary kiln inlet chamber which is connected directly or via a kiln riser duct to the calciner, and the bypass exhaust gas is drawn off in the region of the rotary kiln inlet chamber. The invention further relates to a corresponding plant for the denitrification of bypass exhaust gases in the production of cement clinker, comprising a rotary kiln for the sintering of raw meal to cement clinker, the rotary kiln having a rotary kiln inlet chamber, a calciner for the deacidification of the raw meal, the rotary kiln inlet chamber being connected directly or via a kiln riser duct to the calciner, and a takeoff device for drawing off the bypass exhaust gases from the region of the rotary kiln inlet chamber.
  • Within the overall operation of cement production, plants are employed in which silicate-containing and carbonate-containing raw meal is sintered to cement clinker in a rotary kiln. The sintering in the rotary kiln, which proceeds at temperatures of up to around 1450° C., produces flue gases which, as hot exhaust gases, leave the rotary kiln in the direction opposite to the flow of material, through the inlet chamber of the rotary kiln. In the normal instance, the kiln exhaust gases then flow into a calcining zone, in which the raw meal is deacidified. The calcining zone is most often formed in a kiln riser duct or in a calciner, or in a kiln riser duct and a calciner downstream (in the gas flow direction). The flue gas then flows further into a heat exchanger, designed, for example, as a multistage cyclone heat exchanger, which serves for the preheating of the raw meal. A problem affecting the operation of cement clinker production is the formation and/or release of a series of pollutants. In particular, on account of the high temperatures of the burner flames (about 1800° C. to 2000° C.), nitrogen oxides (NOx) are formed in the rotary kiln by combustion of the nitrogen which is contained within the atmospheric air. The fuel required as well, especially when using secondary fuels such as the replacement fuels obtained from waste, is another source of nitrogen oxides. Given that nitrogen oxides have adverse consequences for people and the environment—as a cause of acid rain, and through breakdown of ozone in the stratosphere, for example—there are strict limits on the emission of nitrogen oxides into the atmospheric environment. In the course of cement production, therefore, methods must be employed for the denitrification of the flue gases.
  • A further problem is that the raw materials for cement clinker production, and also the fuels employed, especially secondary fuels, contain by-constituents (alkali metal compounds, chlorine, sulfur compounds, heavy metals, etc.) which not only may be detrimental to the quality of the combustion process and/or of the cement clinker, but may also form deleterious substance circuits within the plant for cement clinker production. In the rotary kiln, for example, there is evaporation of alkali metal sulfates and alkali metal chloride compounds, e.g., potassium chloride (KCl). With the kiln exhaust gas, these compounds pass through the kiln inlet chamber into the calcining zone and the heat exchanger, and they condense on the raw meal particles in the cooler regions, and pass with the material stream back into the rotary kiln, where they evaporate again. Further to the disadvantages of such substance circuits for the cement clinker and the combustion process, rapid cooling and condensation of these compounds give rise, through solidification, to caking on the walls of the cooler sections of the circuit, which may cause the plant to become blocked over time.
  • For the purpose of suppressing substance circuits of this kind in plants for cement clinker production, and for reducing the level of circuit-forming substances, the patent specification DE 197 18 259 B4 discloses drawing off, as a bypass, a part of the flue gas that flows as kiln exhaust gas from the rotary kiln, in the region of the rotary kiln inlet chamber. The phrase “in the region of the rotary kiln inlet chamber,” here and below, refers consistently to removal from the rotary kiln inlet chamber or else to removal from the lower end of any kiln riser duct there may be. Even the bypass exhaust gas, however, contains a higher level of nitrogen oxides, and so flue gas denitrification must be performed for the bypass exhaust gas as well.
  • One widespread method for the denitrification of flue gases involves feeding the NOx-affected flue gases with an aqueous ammonia solution, ammonia (NH3) or ammonia-releasing compounds in a reaction space (see, for instance, the proposal contained in EP 0 854 339 A1). Denitrification then proceeds by the process of selective non-catalytic reduction (SNCR), in which ammonia is converted by thermolysis with the nitrogen oxides into nitrogen and water. These reactions proceed preferably in a temperature window from 800° C. to more than 950° C. For effective implementation, furthermore, it is necessary to realize a timespan which requires precise establishment, and at any rate a minimum time, for the processes within the reaction space. In the case of the desired denitrification of bypass exhaust gas, however, denitrification by the SNCR process proves to be problematic, since the temperatures of the bypass exhaust gas drawn off are too high and, in addition, compliance with the residence time in the reaction space imposes exacting requirements on the operating regime. It is true that the temperature of the exhaust gases in the kiln falls from up to about 1250° C. on entry into the rotary kiln inlet chamber and the lower part of any kiln riser duct that may be present, and yet the gas temperatures of around 1150° C. which still prevail at this point are still so high that reducing agents added would undergo combustion.
  • One known procedure (DE 197 18 259 B4, DE 199 10 927 A1) is to carry out rapid cooling, preferably to just a few hundred ° C., of the hot bypass exhaust gas stream in mixing chambers, in which a cooling medium such as water or air is injected and is mixed as extensively as possible with the gas stream. This does have the advantage that evaporated substances which are drawn off from the pollutant circuits condense on the surfaces of the particulate solids and can then be removed together with these solids by means of dust filters. For effective denitrification, however, this operation is not suitable.
  • The German patent application with the number 10 2013 016 701.9 discloses a method for the denitrification of bypass exhaust gases in a plant for producing cement clinker by initially cooling the bypass exhaust gas to temperatures between 260° C. and 400° C. in a mixing chamber, for instance. This is followed by the feeding of the cooled bypass exhaust gas with substances containing ammonia, containing urea and/or containing ammonium. A consequence of this is that the nitrogen oxides are subject to selective chemical reduction over a catalyst which is present in a ceramic filter arrangement and/or which immediately follows the ceramic filter arrangement, in the presence of the substances containing ammonia, urea and/or ammonium. In terms of method, therefore, the denitrification in this case is based on the process of selective catalytic reduction (SCR). Capital costs and operating costs for the catalyst and/or catalytic filter required in the case of SCR, however, are comparatively high. Especially when volume flows of bypass exhaust gas are comparatively low, this process may prove economically to be not very advantageous, thus illustrating the advantageous nature of alternative procedures.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention, therefore, to specify an effective method for the denitrification of bypass exhaust gases in a plant for producing cement clinker that does not involve the use of SCR catalysts. A further part of the object of the invention is to propose a plant for the denitrification of bypass exhaust gases that corresponds to the method.
  • An object of the invention is achieved by passing of the bypass exhaust gas into a first mixing chamber, the bypass exhaust gas being cooled in the first mixing chamber to a temperature of between 800° C. and 950° C., passing of the bypass exhaust gas from the first mixing chamber through a reaction section which is disposed in a conduit, the residence time of the bypass exhaust gas in the reaction section being between 0.5 s and 3 s, and ammonia, aqueous ammonia solution or ammonia-releasing substances being injected into the reaction section for denitrification of the bypass exhaust gas in accordance with the process of selective non-catalytic reduction (SNCR), passing of the bypass exhaust gas from the reaction section into a second mixing chamber, the bypass exhaust gas being cooled in the second mixing chamber to a temperature of between 150° C. and 250° C., and by passing of the bypass exhaust gas from the second mixing chamber to at least one filter for the dedusting of the bypass exhaust gas. An object of the invention is further achieved by a plant corresponding to this method, for the denitrification of bypass exhaust gases in the production of cement clinker.
  • Following diversion of the bypass exhaust gas stream, therefore, the invention provides a multistage bypass system wherein the hot bypass exhaust gas is first cooled in a first mixing chamber to a temperature of between 800° C. and 950° C. The temperature window thereby established in the NOx-affected bypass exhaust gas is one which is favorable for SNCR. In comparison to the stated conventional methods, in which the bypass exhaust gas temperature is lowered in one step typically to temperatures of 200° C. to 400° C., then, the temperatures here are not lowered in one step. To do so would be to rule out an SNCR approach. By appropriate internal construction of the mixing chamber, particularly of the path length for the gas stream, and by appropriate metering of the injected cooling media, the skilled person instead achieves the desired cooling to 800° C. to 950° C. The method is continued in the next step by the denitrification itself, namely by injection of ammonia, aqueous ammonia solution or ammonia-releasing substances into a reaction section which is disposed in a reactor cavity, implemented primarily as a conduit. The denitrification here is based on the SNCR method, and thus in comparison to the SCR method does not necessitate any costly and difficult-to-operate catalysts. The further parameter needed for effective denitrification, namely the residence time of the bypass exhaust gas in the reaction section (0.5 to 3 seconds), is established through the dimensioning of the conduit, thus more particularly by the length thereof and also the cross-sectional area thereof. Accordingly, there is extensive denitrification without excessive construction volumes, on the one hand, and with avoidance of inadequate flow rates of the bypass exhaust gas, on the other hand. The operating regime according to the invention then provides for cooling of the denitrified bypass exhaust gas in a second mixing chamber. The target final temperature of between 150° C. and 250° C. is achieved here by rapid cooling, and so other pollutants as well, as in the case of conventional methods which operate with rapid cooling (quenching), are condensed on the dust and are separated off together with the particulate solids at a downstream filter. Examples of suitable filters are fabric filters/cloth filters/bag filters.
  • One preferred embodiment provides for the residence time of the bypass exhaust gas in the reaction section to be between one and two seconds. A passage time of this kind for the bypass exhaust gas proves to be ideally suited to achieving efficient, far-reaching denitrification of the bypass exhaust gas by selective non-catalytic reduction (SNCR), at the temperature levels of 800° C. to 950° C. which are established by cooling in the preceding method step in the first mixing chamber, without having to equip the reaction section for an even longer residence time of the bypass exhaust gas. Since the reaction section is designed as a zone in a conduit or in a conduit-like cavity, the residence time may be determined through the dimensioning, i.e., through the dimensions of the conduit on the basis of the typical values in the specific plant in question. For fine adjustments or for compensating for fluctuations in the flow rate of the bypass exhaust gas in the operation of the plant for producing cement clinker, it is possible, furthermore, to adapt the withdrawal of the volume flow of the bypass exhaust gas or to vary the flow rate in the conduit with the reaction section, by altering the cross-sectional area, for instance.
  • An embodiment of the invention provides for the bypass exhaust gas to be cooled in the second mixing chamber preferably to a temperature of between 180° C. and 220° C. The primary consideration here is rapid cooling of the bypass exhaust gas. Within this temperature window, formation of dioxins (chlorinated and polychlorinated dibenzodioxins) and furans (chlorinated and polychlorinated dibenzofurans) is largely prevented. Furthermore, the rapid attainment of this final temperature is the most effective way of achieving condensation of pollutants on the dust, which is then deposited downstream in the filter.
  • In accordance with the invention, the system for purifying the bypass exhaust gas that has been drawn off comprises a multistage system which comprises two mixing chambers; as and when necessary, further mixing chambers may also be provided. In the case of conventional mixing chambers, a cooling medium, typically air or water, is injected into the mixing chamber, and mixes with the bypass exhaust gas through appropriate steering of the gas stream in the mixing chamber, and rapidly cools the bypass exhaust gas in the process. As a preferred embodiment of the invention, accordingly, provision is made for the cooling medium injected into the second mixing chamber to comprise water or fresh air, or a combination of water and fresh air. According to one embodiment, water or fresh air, or a combination of water and fresh air, is also injected into the first mixing chamber, which may also be termed a premixing chamber. The injection of water into a mixing chamber here takes place advantageously with atomization in a spray, using two-fluid nozzles, for instance. In principle, the injection of fresh air (for instance atmospheric ambient air) and/or water may occur at various points distributed over the mixing chamber wall, the aim being for maximum mixing and uniform cooling. A particular embodiment of the invention introduces fresh air, water and cold raw meal or any desired combination, in other words one, two or three components thereof, as a cooling medium into the first mixing chamber. The injection of cold meal has the additional advantage of reducing the sulfur dioxide content of the bypass exhaust gas; the raw meal, with the surface area of its particles, is available as a sorbent for pollutant purification in the subsequent course of the method as well. In the first mixing chamber, furthermore, hot meal, if not yet deacidified, can also be used as a cooling medium and/or as a constituent in the stated cooling media combination.
  • In order to maintain continuous, uniform gas flow within the bypass system, suction blowers or fans may be used. In one embodiment of the invention, provision is made for a fan to be disposed downstream of the at least one filter in the gas flow direction. This fan may also be a motor-driven compressor. In normal circumstances, the purified bypass exhaust gas is subsequently given off into the environment via a chimney, although is also available to be fed back in, where appropriate, at a suitable point within the overall process of cement production.
  • In a further embodiment of the invention, the reaction section is fed with at least one sorbent for the additional, pollutant-removing purification of the bypass exhaust gas, for which purpose at least one device for feeding in at least one such sorbent is disposed in the region of the conduit that constitutes the reaction section. Contemplated here in principle are all chemical compounds or sorbents which within the time of passage of the bypass exhaust gas through the reaction section, and at the temperatures prevailing therein, are suitable for ensuring reduction in the level of pollutants. In this case, it is possible for the temperature which is needed for the particular reaction to be established in a defined way in the first mixing chamber. Here, for example, calcium compounds such as calcium carbonate may contribute to desulfurization, and also to reduction of further acidic constituents in the flue gas-like bypass exhaust gas. Activated carbon provides large surface areas for the adsorption of pollutants, such as of heavy metals like mercury. Removal then takes place within the filter unit.
  • The invention here is oriented to the implementation of SNCR denitrification, but is not confined to this important case. The construction of the bypass system makes it possible in principle for a temperature window to be established by cooling of a hot exhaust gas stream in a first mixing chamber, and for a time window for the residence of the gas stream in a reaction section to be established subsequently. Temperature intervals and time intervals here may also be realized in such a way that, when suitable chemical compounds and/or sorbents are injected into the reaction section, other reactions and/or methods for pollutant-removing purification of the exhaust gas are favored. The skilled person is able here to transpose the principle to the particular group of pollutants that is the primary object for removal from the exhaust gas stream, on the basis of limit values, for instance.
  • Furthermore, the invention is not confined to plants which have a calciner, since the bypass gases are drawn off in the region of the rotary kiln inlet chamber itself. The process of the invention of purification of bypass exhaust gas in the bypass mixing chamber system proposed can instead be employed universally for kiln exhaust gas purification.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is illustrated with the FIGURE that follows.
  • The FIGURE shows a schematic representation of the method of the invention for the denitrification of bypass exhaust gases in a plant for producing cement clinker.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the FIGURE it is evident schematically that flue gas 1 flows into the rotary kiln inlet chamber 5 from a rotary kiln 2, in which raw meal 3 is sintered to form cement clinker which is then cooled in a clinker cooler 4. Following this in the direction of gas flow, in the working example depicted, are a kiln riser duct 6 and a calciner 7 for the deacidification of the raw meal 3. A fraction of the flue gas 1 (kiln exhaust gas) flows through kiln riser duct 6 and calciner 7 into the heat exchanger 8 (presently a multistage cyclone heat exchanger), which serves for the preheating of the raw meal 3 for cement production.
  • In accordance with the invention, a part of the flue gas stream 1 emerging from the rotary kiln 2 is drawn off as bypass exhaust gas 9 in the region of the rotary kiln inlet chamber 5, i.e., from the rotary kiln inlet chamber 5 or from the kiln riser duct 6. The bypass exhaust gas 9, which initially on emergence from the rotary kiln 2 has temperatures typically of around 1200° C. to 1300° C., and of around 1000° C. to 1200° C. at the takeoff location, is passed to the first mixing chamber 10. Cooling media fed into the first mixing chamber 10 may be fresh air 11, water 12 or cold meal 12 a, or else hot meal, and also any desired mixtures of these. In the working example depicted, atmospheric fresh air 11, water 12 and cold meal 12 a are injected, with cold raw meal—that is, raw meal which has not already been heated in the heat exchanger—is advantageous particularly for a reduction in the amount of sulfur dioxide in the bypass exhaust gas. In the first mixing chamber 10, by extensive mixing of the bypass exhaust gas 9 with the cooling media, the bypass exhaust gas 9 is cooled to temperatures of between 800° C. and 950° C.
  • After emerging from the first mixing chamber 10, i.e., after the first cooling stage, the bypass exhaust gas 9 enters a conduit 13. Injected into the conduit 13 are ammonia, aqueous ammonia solution or ammonia-releasing substances 14. The flow rate of the bypass exhaust gas and the dimensioning of the conduit 13 are matched to one another in such a way as to result in a residence time for the bypass exhaust gas 9 in the conduit 13 of 0.5 s to 3 s, preferably between 1 s and 2 s. The temperature conditions of the bypass exhaust gas 9 and the residence time are therefore established in such a way that there is effective denitrification of the bypass exhaust gas by the process of selective non-catalytic reduction (SNCR) over a reaction section 15 which is formed within the interior of the conduit. Ammonia 14 here is converted by thermolysis into nitrogen and water. The temperatures of the bypass exhaust gas 9 without cooling or before cooling in the first mixing chamber 10 would be too high for such an SNCR, since the reducing agents would undergo combustion at such high temperatures. Additional feeding of sorbents which ensure further pollutant-removing purification of the bypass exhaust gas 9 is possible in the region of the reaction section 15.
  • Following completed denitrification by SNCR in the reaction section 15, the bypass exhaust gas 9 is passed into a second mixing chamber 16. In the second mixing chamber 16 it is rapidly cooled to the desired final temperature of between 150° C. and 250° C., preferably between 180° C. and 220° C. This second cooling stage is accomplished by injection of water 12 and/or fresh air 11 into the second mixing chamber 16. Rapid cooling to these temperatures minimizes the formation of dioxins and furans and leads to condensation of pollutants on the dust. The bypass exhaust gas 9 thus conditioned is subsequently dedusted in at least one filter 17. Suitability here is possessed by fabric filters/cloth filters/bag filters, and the use of electrostatic filters, and also a combination of different types of filter in series, may also be advantageous. In the working example, the purified bypass exhaust gas 9 subsequently passes through a fan 18, and is drawn off by a chimney 19 and released into the environment. In the bypass system as a whole, such as especially in the mixing chambers, effective commixing and a correspondingly uniform temperature field, and also a suitable bypass exhaust gas flow rate, are important for effective method steps. Depending on the arrangement and the associated path lengths, it may be advantageous in particular plants to provide internals in the gas pathway that ensure effective commixing, and also to provide additional fans in the bypass section, which introduce air into the bypass exhaust gas flow through continuous or discontinuous operation.
  • As a result of the construction according to the invention, altered relative to conventional procedures, and by the altered operating regime, the means of denitrification of the bypass exhaust gases is also effective and is also favorable in terms of acquisition and in operation, and removes the need for SCR catalysts to be used.
  • As is apparent from the foregoing specification, the invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. It should be understood that I wish to embody within the scope of the patent warranted hereon all such modifications as reasonably and properly come within the scope of my contribution to the art.

Claims (5)

Claimed is:
1. A plant for the denitrification of bypass exhaust gases in the production of cement clinker, comprising:
a rotary kiln for the sintering of raw meal to cement clinker, the rotary kiln having a rotary kiln inlet chamber,
a calciner for the deacidification of the raw meal, the rotary kiln inlet chamber being connected directly or via a kiln riser duct to the calciner, and
a takeoff device for drawing off the bypass exhaust gases from the region of the rotary kiln inlet chamber,
wherein a first mixing chamber is provided for the cooling of the bypass exhaust gas, drawn off from the region of the rotary kiln inlet chamber, to a temperature of between 800° C. and 950° C. so that chloride compounds remain in a gaseous phase after the bypass exhaust gas is cooled,
wherein downstream of the first mixing chamber in the gas flow direction, a reaction section is provided which is disposed in a conduit,
wherein the conduit has dimensioning such that the residence time of the bypass exhaust gas in the reaction section is between 0.5 s and 3 s, and
wherein in the region of the conduit, at least one device is provided for the injection of ammonia, aqueous ammonia solution or ammonia-releasing substances into the reaction section for the denitrification of the bypass exhaust gas by the process of selective non-catalytic reduction (SNCR),
wherein downstream of the reaction section, a second mixing chamber is disposed, for the cooling of the bypass exhaust gas to a temperature of between 150° C. and 250° C. to remove chloride compounds from the gaseous phase by deposition, and
wherein downstream of the second mixing chamber at least one filter is disposed for the dedusting of the bypass exhaust gas.
2. The plant as claimed in claim 1, wherein the conduit is dimensioned such that the residence time of the bypass exhaust gas in the reaction section is between 1 s and 2 s.
3. The plant as claimed in claim 1, wherein downstream of the at least one filter in the gas flow direction there is disposed a fan.
4. The plant as claimed in claim 1, wherein in the region of the conduit, at least one device is provided for feeding at least one sorbent into the reaction section for additional, pollutant-removing purification of the bypass exhaust gas.
5. An apparatus for the denitrification of bypass exhaust gases in the production of cement clinker, comprising:
a rotary kiln configured to sinter raw meal and provide cement clinker, the rotary kiln having a rotary kiln inlet chamber;
a calciner configured to deacidify raw meal, the rotary kiln inlet chamber being connected directly or via a kiln riser duct to the calciner;
a first mixing chamber configured to receive bypass exhaust gas from the rotary kiln inlet chamber and cool the bypass exhaust gas to a temperature of between 800° C. and 950° C. so that chloride compounds remain in a gaseous phase after the bypass exhaust gas is cooled;
a reactor, configured to receive the bypass exhaust gas after the bypass exhaust gas is cooled in the first mixing chamber, the reactor disposed in a conduit and dimensioned such that the residence time of the bypass exhaust gas in the conduit is between 0.5 s and 3 s,
at least one device configured to inject ammonia, aqueous ammonia solution or ammonia-releasing substances into the reactor for the denitrification of the bypass exhaust gas by the process of selective non-catalytic reduction (SNCR),
a second mixing chamber configured to receive the bypass exhaust gas and ammonia, aqueous ammonia solution or ammonia-releasing substances from the reactor and to cool the bypass exhaust gas to a temperature of between 150° C. and 250° C. to remove chloride compounds by deposition, and
at least one filter, downstream of the second mixing chamber in the gas flow direction, for dedusting the bypass exhaust gas after it has been cooled in the second mixing chamber.
US16/257,665 2015-03-04 2019-01-25 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker Abandoned US20190154335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/257,665 US20190154335A1 (en) 2015-03-04 2019-01-25 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102015002688.7A DE102015002688B3 (en) 2015-03-04 2015-03-04 Process and plant for the denitrification of bypass exhaust gases in a multi-stage system of mixing chambers in a plant for the production of cement clinker
DE102015002688.7 2015-03-04
PCT/EP2016/054381 WO2016139225A1 (en) 2015-03-04 2016-03-02 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker
US201715554163A 2017-08-28 2017-08-28
US16/257,665 US20190154335A1 (en) 2015-03-04 2019-01-25 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2016/054381 Division WO2016139225A1 (en) 2015-03-04 2016-03-02 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker
US15/554,163 Division US10260809B2 (en) 2015-03-04 2016-03-02 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker

Publications (1)

Publication Number Publication Date
US20190154335A1 true US20190154335A1 (en) 2019-05-23

Family

ID=55446814

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/554,163 Active US10260809B2 (en) 2015-03-04 2016-03-02 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker
US16/257,665 Abandoned US20190154335A1 (en) 2015-03-04 2019-01-25 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/554,163 Active US10260809B2 (en) 2015-03-04 2016-03-02 Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker

Country Status (6)

Country Link
US (2) US10260809B2 (en)
EP (1) EP3265733B1 (en)
CN (1) CN107428610B (en)
DE (1) DE102015002688B3 (en)
DK (1) DK3265733T3 (en)
WO (1) WO2016139225A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053986A1 (en) * 2020-09-09 2022-03-17 Flsmidth A/S Cement kiln bypass emissions reduction
SE2251221A1 (en) * 2022-10-19 2024-04-20 Plagazi Ab Method and system for elimination of formation of dioxins and furans upon extraction of syngas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294441A4 (en) * 2015-05-12 2018-12-05 FLSmidth A/S Nox reduction process in a cement kiln manufacturing system
DE102017119155B3 (en) * 2017-08-22 2018-05-09 Thyssenkrupp Ag Plant and process for the production of cement clinker
DE102017218634A1 (en) 2017-10-18 2018-12-20 Thyssenkrupp Ag Process for nitrogen oxide reduction in bypass exhaust gases
CN111672294A (en) * 2020-07-07 2020-09-18 天津水泥工业设计研究院有限公司 Bypass air-discharging purification system and method for cement kiln
CN112880422A (en) * 2021-02-04 2021-06-01 天津水泥工业设计研究院有限公司 Environment-friendly bypass air discharging process and equipment without discharged gas
CN114210202B (en) * 2021-12-10 2023-11-07 国能(福州)热电有限公司 Soot blowing system of denitration reactor and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937771A (en) * 1995-12-11 1999-08-17 Taiheiyo Cement Corporation Method of processing kiln exhaust gases by chlorine bypass system and apparatus therefor
EP2287126A1 (en) * 2008-06-17 2011-02-23 Taiheiyo Cement Corporation Apparatus and method for treating gas discharged from cement kiln

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649922A1 (en) * 1996-12-02 1998-06-04 Krupp Polysius Ag Method and device for the heat treatment of fine-grained material
DE19718259B4 (en) * 1997-04-30 2008-02-28 Khd Humboldt Wedag Gmbh Method for reducing pollutant cycles in the production of cement clinker from raw meal and plant for the production of cement clinker from polluted raw meal
DE19910927A1 (en) * 1999-03-12 2000-09-14 Kloeckner Humboldt Wedag Method and device for cooling a hot gas stream in a mixing chamber
DE10003283A1 (en) 2000-01-26 2001-08-02 Krupp Polysius Ag Process and plant for the heat treatment of fine-grained material
DE102011001773B4 (en) * 2011-04-04 2013-01-24 Thyssenkrupp Polysius Ag Process and plant for the production of cement clinker
US20120315590A1 (en) * 2011-06-10 2012-12-13 Hansen Eric R Method and apparatus for reducing nox emissions in rotary kilns by sncr
ITMI20111149A1 (en) 2011-06-23 2012-12-24 Ecospray Technologies S R L APPARATUS AND METHOD FOR NO CATALYTIC SELECTIVE REDUCTION SNCR OF NOX WITHIN INDUSTRIAL CEMENT PRODUCTION PLANTS
DE102013016701B4 (en) * 2013-10-08 2017-06-14 Khd Humboldt Wedag Gmbh Process for the denitrification of bypass exhaust gases in a plant for the production of cement clinker and plant for the production of cement clinker
CN203525562U (en) * 2013-11-08 2014-04-09 青岛华拓科技股份有限公司 Selective non-catalytic reduction (SNCR) denitration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937771A (en) * 1995-12-11 1999-08-17 Taiheiyo Cement Corporation Method of processing kiln exhaust gases by chlorine bypass system and apparatus therefor
EP2287126A1 (en) * 2008-06-17 2011-02-23 Taiheiyo Cement Corporation Apparatus and method for treating gas discharged from cement kiln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Geodecke et al. "High Efficiency SCNR for Non-Calciner Kilns - Potentials and Limits", 2014, Cement International, 12, 72-76 (Year: 2014) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053986A1 (en) * 2020-09-09 2022-03-17 Flsmidth A/S Cement kiln bypass emissions reduction
SE2251221A1 (en) * 2022-10-19 2024-04-20 Plagazi Ab Method and system for elimination of formation of dioxins and furans upon extraction of syngas

Also Published As

Publication number Publication date
WO2016139225A1 (en) 2016-09-09
DK3265733T3 (en) 2019-07-29
EP3265733A1 (en) 2018-01-10
EP3265733B1 (en) 2019-05-08
CN107428610B (en) 2020-08-07
US20180038648A1 (en) 2018-02-08
DE102015002688B3 (en) 2016-05-19
US10260809B2 (en) 2019-04-16
CN107428610A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
US20190154335A1 (en) Method and plant for denitrifying bypass gases in a multi-stage system of mixing chambers in a plant for producing cement clinker
RU2668445C2 (en) Method for denitrification of bypass exhaust gases in plant for producing cement clinker
JP4932840B2 (en) Method for removing sulfur trioxide from exhaust gas stream
JP4891226B2 (en) Cement clinker manufacturing apparatus and manufacturing method
EP2719440A1 (en) Method for removing contaminants from exhaust gases by adding ozone
JP2009507632A (en) Removal of sulfur trioxide from exhaust gas stream
US9855527B2 (en) Method for cleaning bypass gases of the cement or mineral industry, and system of the cement or mineral industry
US8936678B2 (en) Process and plant for producing cement clinker and for purifying the offgases formed
CA2729668C (en) Apparatus and method for controlling mercury pollution from a cement plant
US10005026B2 (en) Limestone supply device and air pollution control system
US9914093B2 (en) Method for heat-treating a material flow and for cleaning resulting exhaust gases
US10392302B2 (en) Cement clinker line and a method for operating a cement clinker line
EP3331834A1 (en) Use of clinker kiln dust for gas scrubbing
GB2560248A (en) A process and a device for the purification of waste gas
RU2469949C2 (en) Method of purifying smoke gases, containing nitrogen oxides
EP3299080B1 (en) Method for controlling ammonia content in cement flue gas and cement plant with controlled ammonia emission
FI97333B (en) Method of reducing NOx in combustion
US8980205B1 (en) Method for reducing the mercury (Hg) and other metal emissions from a plant for manufacturing cement clinker and other industrial processes
WO2016183027A1 (en) Nox reduction process in a cement kiln manufacturing system
KR102140953B1 (en) Device for evaporating urea-water solution using high-temperature process gas in the kiln
KR20130002125A (en) Used refrigerant treatment method using limestone calcination furnace
WO2022053986A1 (en) Cement kiln bypass emissions reduction
KR20170104466A (en) Method for reducing nitrogen oxides in the exhaust gas of an entrained-flow treatment plant, and entrained-flow treatment plant
KR20230072551A (en) Air atomizing nozzle for urea water injection installed in a combustion furnace and/or preheater that generates NOx-containing combustion gas by combustion reaction during the cement manufacturing process

Legal Events

Date Code Title Description
AS Assignment

Owner name: KHD HUMBOLDT WEDAG GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHUERMANN, HEIKO;NASSENSTEIN, FLORIAN;HAND, ANDREAS;AND OTHERS;SIGNING DATES FROM 20170828 TO 20170829;REEL/FRAME:048164/0109

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION