US20190143059A1 - Systems and methods for ventilation of patients - Google Patents
Systems and methods for ventilation of patients Download PDFInfo
- Publication number
- US20190143059A1 US20190143059A1 US16/174,945 US201816174945A US2019143059A1 US 20190143059 A1 US20190143059 A1 US 20190143059A1 US 201816174945 A US201816174945 A US 201816174945A US 2019143059 A1 US2019143059 A1 US 2019143059A1
- Authority
- US
- United States
- Prior art keywords
- patient
- map
- mechanical ventilator
- pressure
- ventilation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/021—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
- A61M16/022—Control means therefor
- A61M16/024—Control means therefor including calculation means, e.g. using a processor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0051—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/04847—Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0027—Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/18—General characteristics of the apparatus with alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/42—Rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/46—Resistance or compliance of the lungs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/60—Muscle strain, i.e. measured on the user
Definitions
- VILI ventilator-induced lung injury
- ARDS acute respiratory distress syndrome
- Lung-protective ventilation strategies have been developed to reduce the incidence of VILI or the exacerbation of existing lung injury. These strategies include reducing the tidal volume (V T ), reducing the applied insufflation pressure ( ⁇ P), reducing end-inspiratory (peak inspiratory) pressure, and increasing positive end-expiratory pressure (PEEP), as a few examples.
- These lung-protective strategies (sometimes referred to as LPV for lung protective ventilation) are intended to prevent VILI by reducing the extent of stretch applied to the lungs by the ventilator. LPV may reduce lung injury and reduce mortality for those patients at risk of lung injury on mechanical ventilation.
- the remainder of this disclosure describes improvements in this field to deliver safe mechanical ventilation based on a unique characterization and visualization of the patient's respiratory status.
- FIG. 1 illustrates a ventilatory mechanics map with a current patient status identified, according to an embodiment of the present disclosure.
- FIG. 1A illustrates a ventilatory mechanics map including suggested boundary lines and alert messages, according to an embodiment of the present disclosure.
- FIG. 2 illustrates a dashboard view of a ventilatory mechanics map including a patient's current status and recent trend, and suggested boundary lines, according to an embodiment of the present disclosure.
- FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient, according to an embodiment of the present disclosure.
- FIG. 4 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a spontaneously breathing patient, according to an embodiment of the present disclosure.
- FIG. 5 illustrates a view of a distending pressure bar, according to an embodiment of the present disclosure.
- FIG. 6 is schematic diagram illustrating a ventilator ventilating a patient utilizing a respiratory mechanics dashboard, according to an embodiment of the present disclosure.
- a mechanical ventilator includes a dashboard display that identifies a patient's current ventilatory status within a global or universal ventilatory mechanics map.
- This dashboard display is dynamically updated with the patient's condition, and shows trends in the patient's ventilation over time.
- the map identifies suggested safe and unsafe regions of ventilation, and the ventilator can display informational texts, trigger auditory and/or visual alarms, and transmit alarm communications in response to determining that the patient is approaching or has entered an unsafe region.
- the dashboard view gives caregivers a tool for characterizing and tracking a patient's ventilatory status as it changes over time, so that the mechanical ventilation delivered to the patient can be maintained within a suggested safe zone. Safe ventilation can then be delivered by the ventilator, based on the condition and physiology of an individual patient, rather than based on more generic “lung protective” guidelines. Additionally, different individual patients can be tracked across the same universal map, so that physicians and other caregivers can use the same map as a global reference and context for all of their patients.
- FIG. 1 An introduction to a ventilatory mechanics map 110 is shown in FIG. 1 .
- This map 110 provides a visualization of ventilatory mechanics of human patients, normalized by their predicted body weight (as described in the next paragraph).
- the map 110 is defined by distending pressure (Pdist or ⁇ P) on the x-axis, and normalized tidal volume (mL/kg) on the y-axis.
- Distending pressure is the total pressure applied to the lungs during an inhalation, above the PEEP level (positive end-expiratory pressure).
- Distending pressure is the difference in pressure between PEEP and end-inspiratory pressure. Distending pressure may also be referred to as “drive” pressure.
- the distending pressure is the sum of the pressure applied by the ventilator (Paw, or airway pressure, or also called Pvent) and the pressure applied by the patient's own diaphragmatic efforts (Pmus, or muscle pressure). That is, Pdist equals Paw plus Pmus. If a patient is spontaneously breathing, then the Pmus value will be nonzero. If the patient is not spontaneously breathing (for example, the patient is sedated), then Pmus will be zero, and Pdist equals Paw.
- Paw airway pressure, or also called Pvent
- Pmus pressure applied by the patient's own diaphragmatic efforts
- Normalized tidal volume is the volume of the breath (in mL), per kg of predicted body weight.
- Predicted body weight is an adjusted weight based on a patient's gender and height, rather than an actual weight of the patient.
- Predicted body weight (PBW, or sometimes referred to as ideal weight) has been found to be a good predictor of the patient's lung size.
- PBW can be calculated from a patient's gender and height, as height correlates proportionately with PBW.
- the map may be created based on other indicators of lung size or ideal weight.
- dividing the tidal volume of a breath by PBW normalizes the tidal volume across all patient sizes, enabling patients of very different weights and lung sizes to be placed on the same map 110 .
- Equation 1 The relationship between distending pressure Pdist (on the x-axis) and resulting (normalized) tidal volume VT of the breath (on the y-axis) can be modeled as a linear relationship, as follows in Equation 1:
- C is the normalized compliance of the patient's respiratory system.
- increasing the distending pressure (increasing along the x-axis) will produce a tidal volume that increases linearly along an upward line, the line having a slope of 1/C.
- FIG. 1 Several such lines are drawn in FIG. 1 as exemplary compliance values. These lines radiate out from the origin as spokes 120 , 122 , and 124 a - h.
- Spoke 124 a is associated with a compliance C of 0.30 (in mL/cmH2O/kg), spoke 124 b is 0.40, 124 c is 0.60, 124 d is 0.80, 124 e is 1.0, 124 f is 1.2, 124 g is 1.6, and 124 h is 2.0.
- the boundary lines 120 and 122 represent compliance values of 0.20 and 3.33 respectively. These lines define the physiologic region 112 because compliance values below 0.20 and above 3.33 have not been documented in humans. However the chart is not limited to these specific boundary lines 120 and 122 , and can be created with different boundary lines defining different regions.
- Compliance is a measure of the lung's ability to stretch or expand. A low compliance value indicates that the lungs are stiff, and difficult to stretch. A high compliance value indicates that the lungs expand easily, but may not have enough resistance to recoil during exhalation. A healthy compliance value (normalized by kg) is considered to be about 1.0 (in mL/cmH2O/kg), as indicated by the line 124 e.
- the scales of the axes on the map 110 are chosen to span a range of breaths that are physiologically possible in human patients.
- the x-axis ranges from zero (or a nonzero PEEP) to 100 cmH2O
- the y-axis ranges from zero to 26 mL/kg. In other embodiments, these ranges can be changed to focus on different areas of breathing or ventilation.
- the scales of the axes on the map 110 , the spoke lines 120 , 122 , and 124 a - h, and the boundaries of the physiologic region 112 were compiled through a thorough review of academic literature to compile pressure, volume, and compliance data from academic studies, research papers, and other publications.
- the origin (the intersection of the axes) of the map 110 represents both the patient and ventilator at rest, except for the ventilator's delivery of PEEP. That is, the origin of the x-axis should be set at the value of PEEP (which could be zero or nonzero). At the origin, Pmus and Pvent are both zero, and thus tidal volume is also zero. The x-axis then shows the distending pressure above PEEP.
- PEEP is the positive pressure remaining in the lungs at the end of exhalation (positive end-exhalation pressure). In mechanically ventilated patients, PEEP is typically greater than zero, so that some pressure is maintained to keep the lungs inflated and open.
- the distending pressure along the x-axis is intended to show the amount of pressure that was needed to deliver the resulting tidal volume (on the y-axis). This is an incremental or additional pressure above PEEP, and thus, the x-axis can be set to begin at PEEP instead of at zero. Alternatively, the x-axis can be set to begin at zero, and PEEP can be subtracted from distending pressure, giving an x-axis value of Pdist minus PEEP. In this case, Equation 1 changes to:
- the map 110 of FIG. 1 can be interpreted as outlining a pressure-volume space of respiratory activity in humans.
- FIG. 1 includes a physiologic region 112 , and non-physiologic regions 114 and 116 .
- the physiologic region 112 is a triangular region with linear boundaries 120 and 122 .
- the physiologic region 112 begins at a normalized tidal volume of about 6 mL/kg. Below 6 mL/kg is the non-physiologic region 116 . This means that in human patients, a pressure of 30 cmH2O is not expected to deliver a tidal volume less than 6 mL/kg.
- the distending pressure in the physiologic region 112 ranges from about 2 to 25 cmH2O. This means that in human patients, a tidal volume of 5 mL/kg is produced by distending pressures within a range of about 2 to 25 cmH2O.
- the non-physiologic regions 114 and 116 are termed “non-physiologic” because the combinations of pressure and volume are not typically found in human patients.
- an individual patient is plotted on the map 110 to provide a characterization of the patient's respiratory status.
- a graphical marker such as circle 150 is placed at the location on the map 110 corresponding to the patient's most recent breath (or average of recent breaths).
- FIG. 1 illustrates a single breath (or average of recent breaths) whose distending pressure was 15 cmH2O and a resulting tidal volume of 6 ml/kg. As indicated by the linear compliance spokes, the compliance indicated by this breath is about 0.40 (ml/cmH2O)/kg (along line 124 b ).
- the map 110 is characterized by several different regions and boundaries.
- the map 110 includes vertical lines 130 and 132 that indicate nominal and high pressure limits, respectively, for pressure control or pressure support ventilation.
- Horizontal lines 134 , 136 , 138 , and 139 indicate tidal volume limits.
- Line 134 indicates a threshold below which ventilation is likely inadequate; this lowest corner of the physiologic region 112 is identified as the inadequate ventilation region 140 . In this region, normalized tidal volume is so low that it is likely to be insufficient to meet the patient's needs for oxygenation and gas exchange.
- Horizontal line 136 indicates a lower limit of suggested normalized tidal volume for mechanical ventilation of adult patients.
- the region 142 between lines 134 and 136 is a region of marginal ventilation for adults, and potentially acceptable ventilation for neonatal patients. In this region, normalized tidal volumes are still potentially too low, but may be acceptable in marginal cases.
- the horizontal line 138 indicates an upper limit of suggested normalized tidal volume for mechanical ventilation.
- the region 144 bounded by compliance spoke 1.6, line 138 , line 130 , compliance spoke 0.20, and line 136 is the region 144 of preferred or normal ventilation. Most patients will receive adequate ventilation in this region.
- horizontal line 139 indicates an upper limit for normalized tidal volume, and the region 146 below that line 139 is a cautionary region of likely over-pressure or over-volume. Above line 139 are normalized tidal volumes that should not be delivered to human patients, to avoid VILI.
- the ventilatory mechanics map is presented as a dashboard view for display on a mechanical ventilator.
- the dashboard view shows a patient's current (or recently-averaged) respiratory status, the patient's recent trend in respiratory status, and relevant regions of target ventilation for the patient.
- FIG. 2 shows a dashboard view 200 including a respiratory mechanics map 210 .
- An individual patient can be placed on the map 210 based on current or recently-averaged respiratory parameters, and the patient's movement around the map can be plotted or trended over time.
- An embodiment of a display of patient status and trend is shown in FIG. 2 .
- a patient's current status is shown by a visual marker such as the large circle 250 .
- the patient's previous status is identified by smaller circles 252 a - b of diminishing sizes.
- the current status 250 can be shown in other ways than increased size, such as by using a marker or icon that has a different shape than the trend shapes 252 a - b, blinks or flashes, or is displayed with a different font, outline, or color, or combinations of these options.
- the trend-indicating markers can also be shown in a variety of different shapes, icons, colors, lines, or similar graphic elements.
- the patient's trend shows an improving compliance C. That is, for a decreasing distending pressure (moving down from about 16 cmH2O to about 10 cmH2O from marker 252 b to 250 ), the patient is exhibiting increasing normalized tidal volume (moving up from about 6 to about 8 mL/kg).
- the delivery of additional volume at the same or decreasing pressure is an indication of increasing compliance C.
- the lungs are able to stretch further at the same pressure, resulting in a larger volume expansion.
- a target region 248 has been shaded, to identify a preferred region of ventilation for this individual patient.
- the target region 248 is shown as an example only, and regions with different shapes or sizes can be highlighted for different patients.
- the region 248 a is bounded by an upper compliance spoke (at normalized compliance value of 1.6), an upper tidal volume limit (at 12 mL/kg) (labeled as boundary 238 ), an upper pressure limit (at 35 cmH2O), a lower compliance spoke (at a value of 0.20), a lower tidal volume limit (at 5 mL/kg), and a lower pressure limit (at 5 cmH2O).
- This region 248 is a target area for ventilation of the current patient (the patient whose breaths are shown with markers 250 , 252 a, 252 b ). Region 248 was identified based the patient's physiologic condition and/or disease state, and associated upper and lower limits for tidal volume, distending pressure, and compliance, in order to ventilate the patient within these parameters. These boundaries may differ for other patients, based on their physiology, disease state, or other factors.
- a mechanical ventilator triggers an alert or alarm based on a determination that the patient is approaching or has crossed a boundary on a dashboard 200 or a map 110 , 210 .
- the normalized tidal volume being delivered to the patient is increasing, moving the patient's location 250 on the map upward toward the boundary 238 .
- the ventilator can trigger an alert or alarm if the patient's location 250 reaches or crosses the boundary line 238 , or when the patient's location 250 moves within a proximity (such as a buffer distance) of the line 238 .
- a proximity such as a buffer distance
- the ventilator is programmed to sound an alarm when the patient's location 250 moves within 0.5 mL/kg (a buffer distance) of the line 238 .
- the marker 250 can have a first color to indicate that compliance is increasing (such as a green color) or a second color to indicate that compliance is decreasing (such as a red color).
- the marker could also include an up or down arrow to show recent trend at a glance. These visual cues can help display the patient's state or trend even before reaching a boundary or buffer.
- the boundary lines that determine the safe areas of ventilation, or that are used for alarms or alerts can be adjusted by a user.
- any of the boundary lines (such as lines 130 , 132 , 134 , 136 , 138 , and 139 in FIG. 1A , or any compliance spoke boundaries) can be moved, adjusted, or removed by a user based on a patient's current condition, procedure, or treatment.
- the ventilator then adjusts its alerts or alarms accordingly, so that the alerts or alarms are triggered at the positions on the map desired by the user.
- An alert or alarm may be any combination of audible, visual, graphic, textual, kinetic, or other messages that inform a clinician to attend to the ventilator and the patient.
- a ventilator is programmed to adjust a setting in response to such an alert or alarm.
- the ventilator can adjust a setting by one increment (moving a pressure or volume target down by an incremental amount, for example), while continuing to operate the alert or alarm. This empowers the ventilator to take an automatic step to address the potentially unsafe condition, without providing complete closed-loop control to the ventilator.
- a ventilator reduces a calculated pressure target by a set amount (such as 5, 10, 15, or 20 cmH2O or other values) in response to an alarm triggered by the dashboard 200 or map 110 , 210 .
- the map 110 , 210 is used in connection with a closed-loop ventilator system in which the ventilator adjusts settings automatically based on the patient's ventilatory status, and displays the patient's current, recently-averaged, and/or trending respiratory status on a dashboard display 200 such as on the map 210 , 110 .
- a ventilator that is operated by a closed-loop control system can visually locate the patient on the map 110 , 210 , enabling the clinician to visualize the patient's ventilatory status and confirm the proper operation of the closed-loop controller to maintain the patient in a safe zone.
- the processor that executes the program instructions for identifying the patient status and displaying it on the map 110 , 210 can be integrated as part of a closed-loop controller, or can be housed in a different system, such as part of the ventilator, the ventilator display, or a separate processor and display.
- the dashboard 200 featuring the respiratory mechanics map 210 , 110 is a useful tool for a medical caregiver attending to a patient on a mechanical ventilator, and is advantageous in that the same map 210 , 110 can be used for all patients, regardless of gender, age, size, or medical condition.
- caregivers can become familiar with one map of respiratory mechanics and can quickly identify when an individual patient is moving into an unsafe or problematic region on the map.
- the map provides the caregiver with a single reference frame in which to evaluate most or all individual patients.
- FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient.
- the method includes delivering an inspiratory breath to a patient, at 301 .
- the method includes measuring the pressure applied by the mechanical ventilator during the breath, at 302 .
- the measured pressure can be an end-inspiratory pressure measured by the ventilator at the end of the breath, or a pressure target calculated by the ventilator for the breath.
- the method also includes measuring the total tidal volume delivered by the ventilator to the patient during the breath, at 303 .
- the method then includes normalizing the tidal volume, such as by dividing by PBW, at 304 .
- the method includes filtering the pressure and tidal volume values, at 305 .
- This step could encompass discarding measurements that are outliers, that appear to be non-physiological, that were disturbed (such as by the patient coughing), or fail quality or noise checks.
- the filter could also or alternatively include adding the measured values to a running average, based on equal or non-equal weights (such as weighting new values more or less than the prior average). Many other methods for filtering measurements taken by a medical ventilator may be applied here.
- the method includes placing a marker (such as circle 150 ) on the map 110 at the position corresponding to the filtered pressure and volume values.
- the method of FIG. 3 contemplates plotting a patient's position based on pressure and volume. With those values and the map 110 , 210 , the patient's compliance C can be determined, by identifying the slope (or spoke 124 ) that crosses that position on the map. Knowledge of the patient's compliance C can be useful in assessing the patient's condition, as described above.
- the method of FIG. 3 is particularly useful in sedated patients, where Pmus is zero (because the patient is not initiating or contributing to breaths), and thus distending pressure equals Pvent, which can be measured directly.
- the patient's normalized compliance value C can be determined. This can be useful for particular types of patients (such as patients with ARDS), in order to evaluate improving or declining compliance.
- Pdist (along the x-axis) can be difficult to measure, due to the contribution of Pmus by the patient.
- Pmus is the pressure applied by the patient's diaphragmatic effort, and this pressure can be difficult to measure.
- Existing methods for measuring Pmus include invasive use of balloon catheters, or manipulation of a delivered breath to add a pause at the end of inspiration.
- the dashboard 200 with map 110 , 210 enables Pdist to be determined in actively breathing patients, even with Pmus is unknown. This can be done by measuring the tidal volume and obtaining a measurement or estimate of the patient's compliance C.
- the patient's compliance C can be measured by applying an end-inspiratory hold during a proportional assist mode of ventilation, such as PAV+ ventilation from Medtronic (Boulder, Colo.).
- Proportional assist ventilation is particularly well-suited for compliance measurements, as the flow of gas delivered by the ventilator during inspiration is driven by the patient's demand, and the ventilator ceases delivery of flow then the patient voluntarily ends the breath.
- the ventilator is synchronized with the patient, and amplifies the patient's efforts to breathe.
- the ventilator ends its delivery of gas when the patient ends his or her diaphragmatic activity, and at that moment at the end of inspiration, Pmus is zero.
- the ventilator measures the end-inspiratory pressure. With that pressure measurement, and the tidal volume of that same breath, the ventilator can calculate the patient's compliance C according to Equations 1 or 2 above.
- a method includes delivering an inspiratory breath to a spontaneously breathing patient, at 401 .
- the method includes measuring the tidal volume delivered during the breath at 402 , and filtering and normalizing the tidal volume at 403 .
- the method includes placing a marker (such as marker 250 ) on the map 110 , 210 based on the tidal volume and a measurement or estimate of the patient's compliance C.
- the method includes determining total distending pressure Pdist, at 405 .
- Total distending pressure can be determined from the x-axis value that corresponds to the position of the marker on the map. Thus, the total distending pressure can be determined even when the patient's contribution Pmus is unknown or not measured directly. Determining distending pressure is very valuable in actively breathing patients, where otherwise measuring Pvent without knowing the contribution of Pmus may result in an under-estimation of Pdist.
- the method of FIG. 4 enables lung-protective strategies to be employed in spontaneously breathing patients based on distending pressure, taking into account both Pvent and Pmus, rather than addressing lung protective strategies through other values such as tidal volume.
- total distending pressure Pdist is plotted in bar format as shown in FIG. 5 .
- a display screen 500 includes a parameter display 580 , a waveform graphical display 582 , and a distending pressure bar 510 .
- the bar 510 includes pressure values along a scale, such as values from 0 at the left end of the bar to 40, 50, 60, or 70 at the right end (in cmH2O). Different ranges of pressure values are highlighted along the bar to indicate safe and unsafe pressure for the patient's lungs. For example, as shown in FIG. 5 , a safe range 512 is indicated by brackets, shading, hatching, color, or other graphics, between values of 5 and 15 cmH2O.
- the patient's current distending pressure is indicated by the marker 520 .
- the marker 520 is positioned in the safe zone 512 , indicating that the total distending pressure that is being applied to the patient's lungs is within a safe range.
- the ventilator can be programmed to trigger alarms based on a determination that the marker 520 is approaching or has crossed a boundary into an unsafe range.
- FIG. 6 is a diagram illustrating an aspect of an exemplary ventilator 600 connected to a human patient 650 .
- Ventilator 600 includes a pneumatic system 602 (also referred to as a pressure generating system 602 ) for circulating breathing gases to and from patient 650 via the ventilation tubing system 630 , which couples the patient 650 to the pneumatic system 602 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 680 .
- invasive e.g., endotracheal tube, as shown
- non-invasive e.g., nasal mask
- Ventilation tubing system 630 may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 650 .
- a fitting typically referred to as a “wye-fitting” 670 , may be provided to couple a patient interface 680 (as shown, an endotracheal tube) to an inspiratory limb 632 and an expiratory limb 634 of the ventilation tubing system 630 .
- Pneumatic system 602 may be configured in a variety of ways.
- pneumatic system 602 includes an expiratory module 608 coupled with the expiratory limb 134 and an inspiratory module 604 coupled with the inspiratory limb 632 .
- Compressor 606 or other source(s) of pressurized gases e.g., air, oxygen, and/or helium
- inspiratory module 604 and the expiratory module 608 are coupled with inspiratory module 604 and the expiratory module 608 to provide a gas source for ventilatory support via inspiratory limb 632 .
- the inspiratory module 604 is configured to deliver gases to the patient 650 according to prescribed ventilatory settings. In some aspects, inspiratory module 604 is configured to provide ventilation according to various breath types, e.g., via volume-control, pressure-control, or via any other suitable breath types.
- the expiratory module 608 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically, expiratory module 608 is associated with and/or controls an expiratory valve for releasing gases from the patient 650 .
- the ventilator 600 may also include one or more sensors 607 communicatively coupled to ventilator 600 .
- the sensors 607 may be located in the pneumatic system 602 , ventilation tubing system 630 , and/or on the patient 650 .
- the aspect of FIG. 6 illustrates a sensor 607 in pneumatic system 602 .
- Sensors 607 may communicate with various components of ventilator 600 , e.g., pneumatic system 602 , other sensors 607 , processor 616 , ventilatory mechanics map module 618 , and any other suitable components and/or modules.
- a module as used herein refers to memory, one or more processors, storage, and/or other components of the type commonly found in command and control computing devices.
- sensors 607 generate output and send this output to pneumatic system 602 , other sensors 607 , processor 616 , ventilatory mechanics map module 618 , and any other suitable components and/or modules.
- Sensors 607 may employ any suitable sensory or derivative technique for monitoring one or more patient parameters or ventilator parameters associated with the ventilation of a patient 650 .
- Sensors 607 may detect changes in patient parameters indicative of patient triggering, for example.
- Sensors 607 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to the ventilator 600 . Further, sensors 607 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules of ventilator 600 .
- sensors 607 may be coupled to the inspiratory and/or expiratory modules for detecting changes in, for example, circuit pressure and/or flow.
- sensors 607 may be affixed to the ventilatory tubing or may be embedded in the tubing itself.
- sensors 607 may be provided at or near the lungs (or diaphragm) for detecting a pressure in the lungs.
- sensors 607 may be affixed or embedded in or near wye-fitting 670 and/or patient interface 680 .
- any sensory device useful for monitoring changes in measurable parameters during ventilatory treatment may be employed in accordance with aspects described herein.
- the pneumatic system 602 may include a variety of other components, including mixing modules, valves, tubing, accumulators, filters, etc.
- Controller 610 is operatively coupled with pneumatic system 602 , signal measurement and acquisition systems, and an operator interface 620 that may enable an operator to interact with the ventilator 600 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).
- the operator interface 620 of the ventilator 600 includes a display 622 communicatively coupled to ventilator 600 .
- Display 622 provides various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician.
- the display 622 is configured to include a graphical user interface (GUI).
- GUI graphical user interface
- the GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations.
- other suitable means of communication with the ventilator 600 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device.
- operator interface 620 may accept commands and input through display 622 .
- Display 622 may also provide useful information in the form of various ventilatory data regarding the physical condition of a patient 650 .
- the useful information may be derived by the ventilator 600 , based on data collected by a processor 616 , and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, or other suitable forms of graphic display.
- patient data may be displayed on the GUI and/or display 622 .
- patient data may be communicated to a remote monitoring system coupled via any suitable means to the ventilator 600 .
- the display 622 may display one or more of a current patient effort, a percent support setting, a reduced percent support setting, an increased percent support setting, a notification of a reduced percent support setting, and a notification of a return to a set or desired percent support setting.
- Controller 610 may include memory 612 , one or more processors 616 , storage 614 , and/or other components of the type commonly found in command and control computing devices. Controller 610 may further include an ventilatory mechanics map module 618 configured to deliver gases to the patient 650 according to prescribed breath types as illustrated in FIG. 6 . In alternative aspects, the ventilatory mechanics map module 618 may be located in other components of the ventilator 600 , such as the pressure generating system 602 (also known as the pneumatic system 602 ).
- the memory 612 includes non-transitory, computer-readable storage media that stores and/or encodes software (such as computer executable instruction) that is executed by the processor 616 and which controls the operation of the ventilator 600 .
- the memory 612 includes one or more solid-state storage devices such as flash memory chips.
- the memory 612 may be mass storage connected to the processor 616 through a mass storage controller (not shown) and a communications bus (not shown).
- computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
- computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
- the controller includes a respiratory mechanics map module 618 that generates a respiratory mechanics map and/or dashboard view as described in detail throughout the above.
- the systems and methods described here may be provided in the form of tangible and non-transitory machine-readable medium or media (such as a hard disk drive, hardware memory, etc.) having instructions recorded thereon for execution by a processor or computer.
- the set of instructions may include various commands that instruct the computer or processor to perform specific operations such as the methods and processes of the various embodiments described here.
- the set of instructions may be in the form of a software program or application.
- the computer storage media may include volatile and non-volatile media, and removable and non-removable media, for storage of information such as computer-readable instructions, data structures, program modules or other data.
- the computer storage media may include, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic disk storage, or any other hardware medium which may be used to store desired information and that may be accessed by components of the system.
- Components of the system may communicate with each other via wired or wireless communication.
- the components may be separate from each other, or various combinations of components may be integrated together into a medical monitor or processor, or contained within a workstation with standard computer hardware (for example, processors, circuitry, logic circuits, memory, and the like).
- the system may include processing devices such as microprocessors, microcontrollers, integrated circuits, control units, storage media, and other hardware.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application Serial No. 62/725,490, filed Aug. 31, 2018, and claims priority to U.S. Provisional Application Ser. No. 62/586,077, filed Nov. 14, 2017, the complete disclosures of which are hereby incorporated herein by reference in their entireties.
- Patients undergoing positive pressure mechanical ventilation are at risk of experiencing ventilator-induced lung injury (VILI). VILI can be caused by mechanical ventilation that applies excessive pressure or delivers excessive volume to the lungs, causing stress or strain to lung tissue. This excess stress or strain can be particularly severe in patients with fragile or underdeveloped lungs, such as very young or premature infants, or in patients with lung disease, such as acute respiratory distress syndrome (ARDS).
- Lung-protective ventilation strategies have been developed to reduce the incidence of VILI or the exacerbation of existing lung injury. These strategies include reducing the tidal volume (VT), reducing the applied insufflation pressure (ΔP), reducing end-inspiratory (peak inspiratory) pressure, and increasing positive end-expiratory pressure (PEEP), as a few examples. These lung-protective strategies (sometimes referred to as LPV for lung protective ventilation) are intended to prevent VILI by reducing the extent of stretch applied to the lungs by the ventilator. LPV may reduce lung injury and reduce mortality for those patients at risk of lung injury on mechanical ventilation.
- However, these strategies can overcompensate for the risk of VILI, and can deliver tidal volumes that are too low for some patients. The strategies are based on collected data and experiences across populations of patients, and they provide generic guidelines that are not tailored to an individual patient. They can also fail to account for the additional diaphragmatic efforts, and resulting pressure and volume, that occur with spontaneously breathing patients.
- The remainder of this disclosure describes improvements in this field to deliver safe mechanical ventilation based on a unique characterization and visualization of the patient's respiratory status.
-
FIG. 1 illustrates a ventilatory mechanics map with a current patient status identified, according to an embodiment of the present disclosure. -
FIG. 1A illustrates a ventilatory mechanics map including suggested boundary lines and alert messages, according to an embodiment of the present disclosure. -
FIG. 2 illustrates a dashboard view of a ventilatory mechanics map including a patient's current status and recent trend, and suggested boundary lines, according to an embodiment of the present disclosure. -
FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient, according to an embodiment of the present disclosure. -
FIG. 4 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a spontaneously breathing patient, according to an embodiment of the present disclosure. -
FIG. 5 illustrates a view of a distending pressure bar, according to an embodiment of the present disclosure. -
FIG. 6 is schematic diagram illustrating a ventilator ventilating a patient utilizing a respiratory mechanics dashboard, according to an embodiment of the present disclosure. - The present disclosure relates to mechanical ventilation, and in particular to systems and methods for providing safe ventilation to individual patients. In an embodiment, a mechanical ventilator includes a dashboard display that identifies a patient's current ventilatory status within a global or universal ventilatory mechanics map. This dashboard display is dynamically updated with the patient's condition, and shows trends in the patient's ventilation over time. The map identifies suggested safe and unsafe regions of ventilation, and the ventilator can display informational texts, trigger auditory and/or visual alarms, and transmit alarm communications in response to determining that the patient is approaching or has entered an unsafe region. The dashboard view gives caregivers a tool for characterizing and tracking a patient's ventilatory status as it changes over time, so that the mechanical ventilation delivered to the patient can be maintained within a suggested safe zone. Safe ventilation can then be delivered by the ventilator, based on the condition and physiology of an individual patient, rather than based on more generic “lung protective” guidelines. Additionally, different individual patients can be tracked across the same universal map, so that physicians and other caregivers can use the same map as a global reference and context for all of their patients.
- An introduction to a
ventilatory mechanics map 110 is shown inFIG. 1 . Thismap 110 provides a visualization of ventilatory mechanics of human patients, normalized by their predicted body weight (as described in the next paragraph). Themap 110 is defined by distending pressure (Pdist or ΔP) on the x-axis, and normalized tidal volume (mL/kg) on the y-axis. Distending pressure is the total pressure applied to the lungs during an inhalation, above the PEEP level (positive end-expiratory pressure). Distending pressure is the difference in pressure between PEEP and end-inspiratory pressure. Distending pressure may also be referred to as “drive” pressure. During mechanical ventilation, the distending pressure is the sum of the pressure applied by the ventilator (Paw, or airway pressure, or also called Pvent) and the pressure applied by the patient's own diaphragmatic efforts (Pmus, or muscle pressure). That is, Pdist equals Paw plus Pmus. If a patient is spontaneously breathing, then the Pmus value will be nonzero. If the patient is not spontaneously breathing (for example, the patient is sedated), then Pmus will be zero, and Pdist equals Paw. - Normalized tidal volume is the volume of the breath (in mL), per kg of predicted body weight. Predicted body weight is an adjusted weight based on a patient's gender and height, rather than an actual weight of the patient. Predicted body weight (PBW, or sometimes referred to as ideal weight) has been found to be a good predictor of the patient's lung size. PBW can be calculated from a patient's gender and height, as height correlates proportionately with PBW. Though PBW is used in this example, the map may be created based on other indicators of lung size or ideal weight. On the y-axis of the
map 110, dividing the tidal volume of a breath by PBW normalizes the tidal volume across all patient sizes, enabling patients of very different weights and lung sizes to be placed on thesame map 110. - The relationship between distending pressure Pdist (on the x-axis) and resulting (normalized) tidal volume VT of the breath (on the y-axis) can be modeled as a linear relationship, as follows in Equation 1:
-
P dist =V T /C Eq. 1 - where C is the normalized compliance of the patient's respiratory system. In this model, for a given compliance value C, increasing the distending pressure (increasing along the x-axis) will produce a tidal volume that increases linearly along an upward line, the line having a slope of 1/C. Several such lines are drawn in
FIG. 1 as exemplary compliance values. These lines radiate out from the origin asspokes 120, 122, and 124 a-h. Spoke 124 a is associated with a compliance C of 0.30 (in mL/cmH2O/kg), spoke 124 b is 0.40, 124 c is 0.60, 124 d is 0.80, 124 e is 1.0, 124 f is 1.2, 124 g is 1.6, and 124 h is 2.0. Theboundary lines 120 and 122 represent compliance values of 0.20 and 3.33 respectively. These lines define thephysiologic region 112 because compliance values below 0.20 and above 3.33 have not been documented in humans. However the chart is not limited to thesespecific boundary lines 120 and 122, and can be created with different boundary lines defining different regions. - Compliance is a measure of the lung's ability to stretch or expand. A low compliance value indicates that the lungs are stiff, and difficult to stretch. A high compliance value indicates that the lungs expand easily, but may not have enough resistance to recoil during exhalation. A healthy compliance value (normalized by kg) is considered to be about 1.0 (in mL/cmH2O/kg), as indicated by the line 124 e.
- The scales of the axes on the
map 110 are chosen to span a range of breaths that are physiologically possible in human patients. For example, inFIG. 1 , the x-axis ranges from zero (or a nonzero PEEP) to 100 cmH2O, and the y-axis ranges from zero to 26 mL/kg. In other embodiments, these ranges can be changed to focus on different areas of breathing or ventilation. The scales of the axes on themap 110, thespoke lines 120, 122, and 124 a-h, and the boundaries of thephysiologic region 112 were compiled through a thorough review of academic literature to compile pressure, volume, and compliance data from academic studies, research papers, and other publications. - The origin (the intersection of the axes) of the
map 110 represents both the patient and ventilator at rest, except for the ventilator's delivery of PEEP. That is, the origin of the x-axis should be set at the value of PEEP (which could be zero or nonzero). At the origin, Pmus and Pvent are both zero, and thus tidal volume is also zero. The x-axis then shows the distending pressure above PEEP. - PEEP is the positive pressure remaining in the lungs at the end of exhalation (positive end-exhalation pressure). In mechanically ventilated patients, PEEP is typically greater than zero, so that some pressure is maintained to keep the lungs inflated and open. The distending pressure along the x-axis is intended to show the amount of pressure that was needed to deliver the resulting tidal volume (on the y-axis). This is an incremental or additional pressure above PEEP, and thus, the x-axis can be set to begin at PEEP instead of at zero. Alternatively, the x-axis can be set to begin at zero, and PEEP can be subtracted from distending pressure, giving an x-axis value of Pdist minus PEEP. In this case,
Equation 1 changes to: -
P dist−PEEP=V T /C Eq. 2 - The
map 110 ofFIG. 1 can be interpreted as outlining a pressure-volume space of respiratory activity in humans. In particular,FIG. 1 includes aphysiologic region 112, andnon-physiologic regions physiologic region 112 is a triangular region withlinear boundaries 120 and 122. As an example, for a distending pressure of 30 cmH2O (above PEEP), thephysiologic region 112 begins at a normalized tidal volume of about 6 mL/kg. Below 6 mL/kg is thenon-physiologic region 116. This means that in human patients, a pressure of 30 cmH2O is not expected to deliver a tidal volume less than 6 mL/kg. As another example, for a tidal volume of 5 mL/kg, the distending pressure in thephysiologic region 112 ranges from about 2 to 25 cmH2O. This means that in human patients, a tidal volume of 5 mL/kg is produced by distending pressures within a range of about 2 to 25 cmH2O. On the other sides of theboundary lines 120 and 122 are thenon-physiologic regions - In an embodiment, an individual patient is plotted on the
map 110 to provide a characterization of the patient's respiratory status. For example, a graphical marker such ascircle 150 is placed at the location on themap 110 corresponding to the patient's most recent breath (or average of recent breaths). Specifically,FIG. 1 illustrates a single breath (or average of recent breaths) whose distending pressure was 15 cmH2O and a resulting tidal volume of 6 ml/kg. As indicated by the linear compliance spokes, the compliance indicated by this breath is about 0.40 (ml/cmH2O)/kg (along line 124 b). - Horizontal and vertical limits can be imposed on the map to indicate boundaries of safe ventilation. For example, turning to
FIG. 1A , themap 110 is characterized by several different regions and boundaries. Themap 110 includesvertical lines 130 and 132 that indicate nominal and high pressure limits, respectively, for pressure control or pressure support ventilation.Horizontal lines Line 134 indicates a threshold below which ventilation is likely inadequate; this lowest corner of thephysiologic region 112 is identified as the inadequate ventilation region 140. In this region, normalized tidal volume is so low that it is likely to be insufficient to meet the patient's needs for oxygenation and gas exchange.Horizontal line 136 indicates a lower limit of suggested normalized tidal volume for mechanical ventilation of adult patients. Theregion 142 betweenlines - The
horizontal line 138 indicates an upper limit of suggested normalized tidal volume for mechanical ventilation. Theregion 144 bounded by compliance spoke 1.6,line 138,line 130, compliance spoke 0.20, andline 136 is theregion 144 of preferred or normal ventilation. Most patients will receive adequate ventilation in this region. Finally,horizontal line 139 indicates an upper limit for normalized tidal volume, and the region 146 below thatline 139 is a cautionary region of likely over-pressure or over-volume. Aboveline 139 are normalized tidal volumes that should not be delivered to human patients, to avoid VILI. - In an embodiment, the ventilatory mechanics map is presented as a dashboard view for display on a mechanical ventilator. The dashboard view shows a patient's current (or recently-averaged) respiratory status, the patient's recent trend in respiratory status, and relevant regions of target ventilation for the patient. An example is shown in
FIG. 2 , which shows adashboard view 200 including a respiratory mechanics map 210. An individual patient can be placed on themap 210 based on current or recently-averaged respiratory parameters, and the patient's movement around the map can be plotted or trended over time. An embodiment of a display of patient status and trend is shown inFIG. 2 . In this embodiment, a patient's current status is shown by a visual marker such as thelarge circle 250. The patient's previous status is identified by smaller circles 252 a-b of diminishing sizes. Thecurrent status 250 can be shown in other ways than increased size, such as by using a marker or icon that has a different shape than the trend shapes 252 a-b, blinks or flashes, or is displayed with a different font, outline, or color, or combinations of these options. The trend-indicating markers can also be shown in a variety of different shapes, icons, colors, lines, or similar graphic elements. - In the example shown in
FIG. 2 , the patient's trend shows an improving compliance C. That is, for a decreasing distending pressure (moving down from about 16 cmH2O to about 10 cmH2O from marker 252 b to 250), the patient is exhibiting increasing normalized tidal volume (moving up from about 6 to about 8 mL/kg). The delivery of additional volume at the same or decreasing pressure is an indication of increasing compliance C. As compliance increases, the lungs are able to stretch further at the same pressure, resulting in a larger volume expansion. - In
FIG. 2 , atarget region 248 has been shaded, to identify a preferred region of ventilation for this individual patient. Thetarget region 248 is shown as an example only, and regions with different shapes or sizes can be highlighted for different patients. InFIG. 2 , the region 248 a is bounded by an upper compliance spoke (at normalized compliance value of 1.6), an upper tidal volume limit (at 12 mL/kg) (labeled as boundary 238), an upper pressure limit (at 35 cmH2O), a lower compliance spoke (at a value of 0.20), a lower tidal volume limit (at 5 mL/kg), and a lower pressure limit (at 5 cmH2O). Thisregion 248 is a target area for ventilation of the current patient (the patient whose breaths are shown withmarkers 250, 252 a, 252 b).Region 248 was identified based the patient's physiologic condition and/or disease state, and associated upper and lower limits for tidal volume, distending pressure, and compliance, in order to ventilate the patient within these parameters. These boundaries may differ for other patients, based on their physiology, disease state, or other factors. - In an embodiment, a mechanical ventilator triggers an alert or alarm based on a determination that the patient is approaching or has crossed a boundary on a
dashboard 200 or amap FIG. 2 , the normalized tidal volume being delivered to the patient is increasing, moving the patient'slocation 250 on the map upward toward theboundary 238. The ventilator can trigger an alert or alarm if the patient'slocation 250 reaches or crosses theboundary line 238, or when the patient'slocation 250 moves within a proximity (such as a buffer distance) of theline 238. As an example, referring toFIG. 2 , the ventilator is programmed to sound an alarm when the patient'slocation 250 moves within 0.5 mL/kg (a buffer distance) of theline 238. As an example, themarker 250 can have a first color to indicate that compliance is increasing (such as a green color) or a second color to indicate that compliance is decreasing (such as a red color). The marker could also include an up or down arrow to show recent trend at a glance. These visual cues can help display the patient's state or trend even before reaching a boundary or buffer. - In an embodiment, the boundary lines that determine the safe areas of ventilation, or that are used for alarms or alerts, can be adjusted by a user. For example, any of the boundary lines (such as
lines FIG. 1A , or any compliance spoke boundaries) can be moved, adjusted, or removed by a user based on a patient's current condition, procedure, or treatment. The ventilator then adjusts its alerts or alarms accordingly, so that the alerts or alarms are triggered at the positions on the map desired by the user. An alert or alarm may be any combination of audible, visual, graphic, textual, kinetic, or other messages that inform a clinician to attend to the ventilator and the patient. - In an embodiment, a ventilator is programmed to adjust a setting in response to such an alert or alarm. For example, the ventilator can adjust a setting by one increment (moving a pressure or volume target down by an incremental amount, for example), while continuing to operate the alert or alarm. This empowers the ventilator to take an automatic step to address the potentially unsafe condition, without providing complete closed-loop control to the ventilator. In an embodiment, a ventilator reduces a calculated pressure target by a set amount (such as 5, 10, 15, or 20 cmH2O or other values) in response to an alarm triggered by the
dashboard 200 ormap - In another embodiment, the
map dashboard display 200 such as on themap map map - The
dashboard 200 featuring the respiratory mechanics map 210, 110 is a useful tool for a medical caregiver attending to a patient on a mechanical ventilator, and is advantageous in that thesame map -
FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient. According to an embodiment, the method includes delivering an inspiratory breath to a patient, at 301. The method includes measuring the pressure applied by the mechanical ventilator during the breath, at 302. The measured pressure can be an end-inspiratory pressure measured by the ventilator at the end of the breath, or a pressure target calculated by the ventilator for the breath. The method also includes measuring the total tidal volume delivered by the ventilator to the patient during the breath, at 303. The method then includes normalizing the tidal volume, such as by dividing by PBW, at 304. The method includes filtering the pressure and tidal volume values, at 305. This step could encompass discarding measurements that are outliers, that appear to be non-physiological, that were disturbed (such as by the patient coughing), or fail quality or noise checks. The filter could also or alternatively include adding the measured values to a running average, based on equal or non-equal weights (such as weighting new values more or less than the prior average). Many other methods for filtering measurements taken by a medical ventilator may be applied here. Finally, at 306, the method includes placing a marker (such as circle 150) on themap 110 at the position corresponding to the filtered pressure and volume values. - The method of
FIG. 3 contemplates plotting a patient's position based on pressure and volume. With those values and themap FIG. 3 is particularly useful in sedated patients, where Pmus is zero (because the patient is not initiating or contributing to breaths), and thus distending pressure equals Pvent, which can be measured directly. When the patient is plotted on themap - However, with spontaneously breathing patients, distending pressure Pdist (along the x-axis) can be difficult to measure, due to the contribution of Pmus by the patient. Pmus is the pressure applied by the patient's diaphragmatic effort, and this pressure can be difficult to measure. Existing methods for measuring Pmus include invasive use of balloon catheters, or manipulation of a delivered breath to add a pause at the end of inspiration.
- Notably, the
dashboard 200 withmap Equations - With a measurement or estimate of the patient's compliance C, the patient can be located on the
map FIG. 4 , in an embodiment. According to this embodiment, a method includes delivering an inspiratory breath to a spontaneously breathing patient, at 401. The method includes measuring the tidal volume delivered during the breath at 402, and filtering and normalizing the tidal volume at 403. At 404, the method includes placing a marker (such as marker 250) on themap FIG. 4 enables lung-protective strategies to be employed in spontaneously breathing patients based on distending pressure, taking into account both Pvent and Pmus, rather than addressing lung protective strategies through other values such as tidal volume. - In an embodiment, total distending pressure Pdist is plotted in bar format as shown in
FIG. 5 . In the embodiment ofFIG. 5 , adisplay screen 500 includes aparameter display 580, a waveform graphical display 582, and a distending pressure bar 510. The bar 510 includes pressure values along a scale, such as values from 0 at the left end of the bar to 40, 50, 60, or 70 at the right end (in cmH2O). Different ranges of pressure values are highlighted along the bar to indicate safe and unsafe pressure for the patient's lungs. For example, as shown inFIG. 5 , asafe range 512 is indicated by brackets, shading, hatching, color, or other graphics, between values of 5 and 15 cmH2O. To the left of thesafe range 512 is an unsafe range 514 of underpressure (between 0 and 5 cmH2O), and to the right of the safe range is an unsafe range of 516 (between 15 and 20 cmH2O), followed to the right by an over-pressure limit 518 (set at 20 cmH2O). The patient's current distending pressure, as determined from themap 110, 210 (for example, by the method ofFIG. 3 or 4 ) is indicated by themarker 520. InFIG. 5 , themarker 520 is positioned in thesafe zone 512, indicating that the total distending pressure that is being applied to the patient's lungs is within a safe range. The ventilator can be programmed to trigger alarms based on a determination that themarker 520 is approaching or has crossed a boundary into an unsafe range. -
FIG. 6 is a diagram illustrating an aspect of anexemplary ventilator 600 connected to ahuman patient 650.Ventilator 600 includes a pneumatic system 602 (also referred to as a pressure generating system 602) for circulating breathing gases to and frompatient 650 via theventilation tubing system 630, which couples thepatient 650 to thepneumatic system 602 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask)patient interface 680. - Ventilation tubing system 630 (or patient circuit 630) may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the
patient 650. In a two-limb aspect, a fitting, typically referred to as a “wye-fitting” 670, may be provided to couple a patient interface 680 (as shown, an endotracheal tube) to aninspiratory limb 632 and anexpiratory limb 634 of theventilation tubing system 630. -
Pneumatic system 602 may be configured in a variety of ways. In the present example,pneumatic system 602 includes anexpiratory module 608 coupled with theexpiratory limb 134 and aninspiratory module 604 coupled with theinspiratory limb 632.Compressor 606 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled withinspiratory module 604 and theexpiratory module 608 to provide a gas source for ventilatory support viainspiratory limb 632. - The
inspiratory module 604 is configured to deliver gases to thepatient 650 according to prescribed ventilatory settings. In some aspects,inspiratory module 604 is configured to provide ventilation according to various breath types, e.g., via volume-control, pressure-control, or via any other suitable breath types. - The
expiratory module 608 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically,expiratory module 608 is associated with and/or controls an expiratory valve for releasing gases from thepatient 650. - The
ventilator 600 may also include one or more sensors 607 communicatively coupled toventilator 600. The sensors 607 may be located in thepneumatic system 602,ventilation tubing system 630, and/or on thepatient 650. The aspect ofFIG. 6 illustrates a sensor 607 inpneumatic system 602. - Sensors 607 may communicate with various components of
ventilator 600, e.g.,pneumatic system 602, other sensors 607,processor 616, ventilatory mechanics mapmodule 618, and any other suitable components and/or modules. A module as used herein refers to memory, one or more processors, storage, and/or other components of the type commonly found in command and control computing devices. - In one aspect, sensors 607 generate output and send this output to
pneumatic system 602, other sensors 607,processor 616, ventilatory mechanics mapmodule 618, and any other suitable components and/or modules. Sensors 607 may employ any suitable sensory or derivative technique for monitoring one or more patient parameters or ventilator parameters associated with the ventilation of apatient 650. Sensors 607 may detect changes in patient parameters indicative of patient triggering, for example. Sensors 607 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to theventilator 600. Further, sensors 607 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules ofventilator 600. For example, sensors 607 may be coupled to the inspiratory and/or expiratory modules for detecting changes in, for example, circuit pressure and/or flow. In other examples, sensors 607 may be affixed to the ventilatory tubing or may be embedded in the tubing itself. According to some aspects, sensors 607 may be provided at or near the lungs (or diaphragm) for detecting a pressure in the lungs. Additionally or alternatively, sensors 607 may be affixed or embedded in or near wye-fitting 670 and/orpatient interface 680. Indeed, any sensory device useful for monitoring changes in measurable parameters during ventilatory treatment may be employed in accordance with aspects described herein. - The
pneumatic system 602 may include a variety of other components, including mixing modules, valves, tubing, accumulators, filters, etc.Controller 610 is operatively coupled withpneumatic system 602, signal measurement and acquisition systems, and anoperator interface 620 that may enable an operator to interact with the ventilator 600 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). - In one aspect, the
operator interface 620 of theventilator 600 includes adisplay 622 communicatively coupled toventilator 600.Display 622 provides various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician. In one aspect, thedisplay 622 is configured to include a graphical user interface (GUI). The GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations. Alternatively, other suitable means of communication with theventilator 600 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device. Thus,operator interface 620 may accept commands and input throughdisplay 622.Display 622 may also provide useful information in the form of various ventilatory data regarding the physical condition of apatient 650. The useful information may be derived by theventilator 600, based on data collected by aprocessor 616, and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, or other suitable forms of graphic display. For example, patient data may be displayed on the GUI and/ordisplay 622. Additionally or alternatively, patient data may be communicated to a remote monitoring system coupled via any suitable means to theventilator 600. In one aspect, thedisplay 622 may display one or more of a current patient effort, a percent support setting, a reduced percent support setting, an increased percent support setting, a notification of a reduced percent support setting, and a notification of a return to a set or desired percent support setting. -
Controller 610 may include memory 612, one ormore processors 616,storage 614, and/or other components of the type commonly found in command and control computing devices.Controller 610 may further include an ventilatory mechanics mapmodule 618 configured to deliver gases to thepatient 650 according to prescribed breath types as illustrated inFIG. 6 . In alternative aspects, the ventilatory mechanics mapmodule 618 may be located in other components of theventilator 600, such as the pressure generating system 602 (also known as the pneumatic system 602). - The memory 612 includes non-transitory, computer-readable storage media that stores and/or encodes software (such as computer executable instruction) that is executed by the
processor 616 and which controls the operation of theventilator 600. In an aspect, the memory 612 includes one or more solid-state storage devices such as flash memory chips. In an alternative aspect, the memory 612 may be mass storage connected to theprocessor 616 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by theprocessor 616. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer. - In an embodiment, the controller includes a respiratory mechanics map
module 618 that generates a respiratory mechanics map and/or dashboard view as described in detail throughout the above. - The systems and methods described here may be provided in the form of tangible and non-transitory machine-readable medium or media (such as a hard disk drive, hardware memory, etc.) having instructions recorded thereon for execution by a processor or computer. The set of instructions may include various commands that instruct the computer or processor to perform specific operations such as the methods and processes of the various embodiments described here. The set of instructions may be in the form of a software program or application. The computer storage media may include volatile and non-volatile media, and removable and non-removable media, for storage of information such as computer-readable instructions, data structures, program modules or other data. The computer storage media may include, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic disk storage, or any other hardware medium which may be used to store desired information and that may be accessed by components of the system. Components of the system may communicate with each other via wired or wireless communication. The components may be separate from each other, or various combinations of components may be integrated together into a medical monitor or processor, or contained within a workstation with standard computer hardware (for example, processors, circuitry, logic circuits, memory, and the like). The system may include processing devices such as microprocessors, microcontrollers, integrated circuits, control units, storage media, and other hardware.
- Although exemplary embodiments have been described and illustrated, it should be understood that changes and modifications to these exemplary embodiments are also within the intended scope of this disclosure.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/174,945 US11559643B2 (en) | 2017-11-14 | 2018-10-30 | Systems and methods for ventilation of patients |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762586077P | 2017-11-14 | 2017-11-14 | |
US201862725490P | 2018-08-31 | 2018-08-31 | |
US16/174,945 US11559643B2 (en) | 2017-11-14 | 2018-10-30 | Systems and methods for ventilation of patients |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190143059A1 true US20190143059A1 (en) | 2019-05-16 |
US11559643B2 US11559643B2 (en) | 2023-01-24 |
Family
ID=64277936
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/174,945 Active 2041-11-25 US11559643B2 (en) | 2017-11-14 | 2018-10-30 | Systems and methods for ventilation of patients |
US16/174,483 Active US10668239B2 (en) | 2017-11-14 | 2018-10-30 | Systems and methods for drive pressure spontaneous ventilation |
US16/859,526 Active 2041-07-23 US11931509B2 (en) | 2017-11-14 | 2020-04-27 | Systems and methods for drive pressure spontaneous ventilation |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/174,483 Active US10668239B2 (en) | 2017-11-14 | 2018-10-30 | Systems and methods for drive pressure spontaneous ventilation |
US16/859,526 Active 2041-07-23 US11931509B2 (en) | 2017-11-14 | 2020-04-27 | Systems and methods for drive pressure spontaneous ventilation |
Country Status (6)
Country | Link |
---|---|
US (3) | US11559643B2 (en) |
EP (2) | EP3656431B1 (en) |
CN (1) | CN110049799B (en) |
AU (1) | AU2018353928B2 (en) |
CA (1) | CA3046571C (en) |
WO (1) | WO2019099185A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10668239B2 (en) | 2017-11-14 | 2020-06-02 | Covidien Lp | Systems and methods for drive pressure spontaneous ventilation |
WO2022039586A1 (en) | 2020-08-19 | 2022-02-24 | Rosano Garcia Julio Alberto | Assisted breathing apparatus and method |
US11426546B2 (en) * | 2018-10-12 | 2022-08-30 | Air Liquide Medical Systems | Medical ventilation apparatus with selectors for selecting a patient category and compatible ventilation modes |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8424520B2 (en) | 2008-09-23 | 2013-04-23 | Covidien Lp | Safe standby mode for ventilator |
US9364624B2 (en) | 2011-12-07 | 2016-06-14 | Covidien Lp | Methods and systems for adaptive base flow |
US9375542B2 (en) | 2012-11-08 | 2016-06-28 | Covidien Lp | Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation |
US11478594B2 (en) | 2018-05-14 | 2022-10-25 | Covidien Lp | Systems and methods for respiratory effort detection utilizing signal distortion |
US11517691B2 (en) | 2018-09-07 | 2022-12-06 | Covidien Lp | Methods and systems for high pressure controlled ventilation |
US11752287B2 (en) | 2018-10-03 | 2023-09-12 | Covidien Lp | Systems and methods for automatic cycling or cycling detection |
CN111383764B (en) * | 2020-02-25 | 2024-03-26 | 山东师范大学 | Correlation detection system for mechanical ventilation driving pressure and ventilator related event |
US20220096764A1 (en) * | 2020-09-25 | 2022-03-31 | Covidien Lp | Synchronized high-flow system |
DE102022107947A1 (en) * | 2022-04-04 | 2023-10-05 | Drägerwerk AG & Co. KGaA | Medical system and procedures |
Family Cites Families (511)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3669108A (en) | 1969-10-20 | 1972-06-13 | Veriflo Corp | Ventilator |
US3908680A (en) | 1973-10-12 | 1975-09-30 | Flow Pharma Inc | Methods for cleaning and bleaching plastic articles |
US4044763A (en) | 1975-07-07 | 1977-08-30 | Bird F M | Ventilator and method |
US4141356A (en) * | 1976-06-16 | 1979-02-27 | Bourns, Inc. | Respirator system and method |
JPS568675U (en) | 1979-06-27 | 1981-01-24 | ||
JPS5858927U (en) | 1981-10-16 | 1983-04-21 | 三菱自動車工業株式会社 | vehicle |
US4448192A (en) | 1982-03-05 | 1984-05-15 | Hewlett Packard Company | Medical ventilator device parametrically controlled for patient ventilation |
US4821709A (en) | 1983-08-01 | 1989-04-18 | Sensormedics Corporation | High frequency ventilator and method |
US4655213A (en) | 1983-10-06 | 1987-04-07 | New York University | Method and apparatus for the treatment of obstructive sleep apnea |
US4527557A (en) | 1984-11-01 | 1985-07-09 | Bear Medical Systems, Inc. | Medical ventilator system |
US4805612A (en) | 1985-09-13 | 1989-02-21 | Sensormedics Corporation | High frequency ventilation |
US4637385A (en) | 1986-01-13 | 1987-01-20 | Tibor Rusz | Pulmonary ventilator controller |
US5150291A (en) | 1986-03-31 | 1992-09-22 | Puritan-Bennett Corporation | Respiratory ventilation apparatus |
US4773411A (en) | 1986-05-08 | 1988-09-27 | Downs John B | Method and apparatus for ventilatory therapy |
US4805613A (en) | 1986-05-23 | 1989-02-21 | Bird F M | Ventilator which can be readily transported for emergency situations |
US4752089A (en) | 1987-01-29 | 1988-06-21 | Puritan-Bennett Corporation | Connector means providing fluid-tight but relatively rotatable joint |
GB8704104D0 (en) | 1987-02-21 | 1987-03-25 | Manitoba University Of | Respiratory system load apparatus |
US4921642A (en) | 1987-12-03 | 1990-05-01 | Puritan-Bennett Corporation | Humidifier module for use in a gas humidification assembly |
US4986268A (en) | 1988-04-06 | 1991-01-22 | Tehrani Fleur T | Method and apparatus for controlling an artificial respirator |
US5325861A (en) | 1989-04-12 | 1994-07-05 | Puritan-Bennett Corporation | Method and apparatus for measuring a parameter of a gas in isolation from gas pressure fluctuations |
US5072737A (en) | 1989-04-12 | 1991-12-17 | Puritan-Bennett Corporation | Method and apparatus for metabolic monitoring |
US5259373A (en) | 1989-05-19 | 1993-11-09 | Puritan-Bennett Corporation | Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds |
US4954799A (en) | 1989-06-02 | 1990-09-04 | Puritan-Bennett Corporation | Proportional electropneumatic solenoid-controlled valve |
GB8913085D0 (en) | 1989-06-07 | 1989-07-26 | Whitwam James G | Improvements in or relating to medical ventilators |
US5299568A (en) | 1989-06-22 | 1994-04-05 | Puritan-Bennett Corporation | Method for controlling mixing and delivery of respiratory gas |
US5148802B1 (en) | 1989-09-22 | 1997-08-12 | Respironics Inc | Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders |
USRE35295E (en) | 1989-09-22 | 1996-07-16 | Respironics, Inc. | Sleep apnea treatment apparatus |
US5239995A (en) | 1989-09-22 | 1993-08-31 | Respironics, Inc. | Sleep apnea treatment apparatus |
US5632269A (en) | 1989-09-22 | 1997-05-27 | Respironics Inc. | Breathing gas delivery method and apparatus |
US5165398A (en) | 1989-12-08 | 1992-11-24 | Bird F M | Ventilator and oscillator for use therewith and method |
US5161525A (en) | 1990-05-11 | 1992-11-10 | Puritan-Bennett Corporation | System and method for flow triggering of pressure supported ventilation |
US5390666A (en) | 1990-05-11 | 1995-02-21 | Puritan-Bennett Corporation | System and method for flow triggering of breath supported ventilation |
US5237987A (en) | 1990-06-07 | 1993-08-24 | Infrasonics, Inc. | Human lung ventilator system |
US5407174A (en) | 1990-08-31 | 1995-04-18 | Puritan-Bennett Corporation | Proportional electropneumatic solenoid-controlled valve |
US5057822A (en) | 1990-09-07 | 1991-10-15 | Puritan-Bennett Corporation | Medical gas alarm system |
DE69131836T2 (en) | 1990-09-19 | 2000-07-27 | The University Of Melbourne, Parkville | CONTROL CIRCUIT FOR MONITORING THE ARTERIAL CO 2 CONTENT |
US5279549A (en) | 1991-01-04 | 1994-01-18 | Sherwood Medical Company | Closed ventilation and suction catheter system |
GB9103419D0 (en) | 1991-02-19 | 1991-04-03 | Univ Manitoba | Piston-based ventilator design and operation |
US5542415A (en) | 1991-05-07 | 1996-08-06 | Infrasonics, Inc. | Apparatus and process for controlling the ventilation of the lungs of a patient |
US5303698A (en) | 1991-08-27 | 1994-04-19 | The Boc Group, Inc. | Medical ventilator |
US6629527B1 (en) | 1991-10-17 | 2003-10-07 | Respironics, Inc. | Sleep apnea treatment apparatus |
US7013892B2 (en) | 1991-11-01 | 2006-03-21 | Ric Investments, Llc | Sleep apnea treatment apparatus |
US5271389A (en) | 1992-02-12 | 1993-12-21 | Puritan-Bennett Corporation | Ventilator control system that generates, measures, compares, and corrects flow rates |
US5385142A (en) | 1992-04-17 | 1995-01-31 | Infrasonics, Inc. | Apnea-responsive ventilator system and method |
US5333606A (en) | 1992-04-24 | 1994-08-02 | Sherwood Medical Company | Method for using a respirator accessory access port and adaptor therefore |
US5645048A (en) | 1992-05-06 | 1997-07-08 | The Kendall Company | Patient ventilating apparatus with modular components |
FR2692152B1 (en) | 1992-06-15 | 1997-06-27 | Pierre Medical Sa | BREATHING AID, PARTICULARLY FOR TREATING SLEEP APNEA. |
FR2695830B1 (en) | 1992-09-18 | 1994-12-30 | Pierre Medical Sa | Breathing aid device. |
US5353788A (en) | 1992-09-21 | 1994-10-11 | Miles Laughton E | Cardio-respiratory control and monitoring system for determining CPAP pressure for apnea treatment |
US5339807A (en) | 1992-09-22 | 1994-08-23 | Puritan-Bennett Corporation | Exhalation valve stabilizing apparatus |
US5357946A (en) | 1992-10-19 | 1994-10-25 | Sherwood Medical Company | Ventilator manifold with accessory access port and adaptors therefore |
US5517983A (en) | 1992-12-09 | 1996-05-21 | Puritan Bennett Corporation | Compliance meter for respiratory therapy |
US5368019A (en) | 1992-12-16 | 1994-11-29 | Puritan-Bennett Corporation | System and method for operating a respirator compressor system under low voltage conditions |
US5438980A (en) | 1993-01-12 | 1995-08-08 | Puritan-Bennett Corporation | Inhalation/exhalation respiratory phase detection circuit |
GB9302291D0 (en) | 1993-02-05 | 1993-03-24 | Univ Manitoba | Method for improved control of airway pressure during mechanical ventilation |
US6758217B1 (en) | 1993-02-05 | 2004-07-06 | University Of Manitoba | Control of airway pressure during mechanical ventilation |
US5443075A (en) | 1993-03-01 | 1995-08-22 | Puritan-Bennett Corporation | Flow measuring apparatus |
US5813399A (en) | 1993-03-16 | 1998-09-29 | Puritan Bennett Corporation | System and method for closed loop airway pressure control during the inspiratory cycle of a breath in a patient ventilator using the exhalation valve as a microcomputer-controlled relief valve |
US5398676A (en) | 1993-09-30 | 1995-03-21 | Press; Roman J. | Portable emergency respirator |
US5351522A (en) | 1993-11-02 | 1994-10-04 | Aequitron Medical, Inc. | Gas sensor |
EP2113196A3 (en) | 1993-11-05 | 2009-12-23 | ResMed Limited | Control of CPAP treatment |
US6675797B1 (en) | 1993-11-05 | 2004-01-13 | Resmed Limited | Determination of patency of the airway |
BR9304638A (en) | 1993-12-06 | 1995-07-25 | Intermed Equipamento Medico Ho | Respiratory cycle control system |
US5401135A (en) | 1994-01-14 | 1995-03-28 | Crow River Industries | Foldable platform wheelchair lift with safety barrier |
US6932084B2 (en) | 1994-06-03 | 2005-08-23 | Ric Investments, Inc. | Method and apparatus for providing positive airway pressure to a patient |
US5535738A (en) | 1994-06-03 | 1996-07-16 | Respironics, Inc. | Method and apparatus for providing proportional positive airway pressure to treat sleep disordered breathing |
US6105575A (en) | 1994-06-03 | 2000-08-22 | Respironics, Inc. | Method and apparatus for providing positive airway pressure to a patient |
US5794615A (en) | 1994-06-03 | 1998-08-18 | Respironics, Inc. | Method and apparatus for providing proportional positive airway pressure to treat congestive heart failure |
AU683753B2 (en) | 1994-07-06 | 1997-11-20 | Teijin Limited | An apparatus for assisting in ventilating the lungs of a patient |
US5524615A (en) | 1994-09-08 | 1996-06-11 | Puritan-Bennett Corporation | Ventilator airway fluid collection system |
US5596984A (en) | 1994-09-12 | 1997-01-28 | Puritan-Bennett Corporation | Lung ventilator safety circuit |
FR2724322A1 (en) | 1994-09-12 | 1996-03-15 | Pierre Medical Sa | PRESSURE CONTROLLED BREATHING AID |
US5531221A (en) | 1994-09-12 | 1996-07-02 | Puritan Bennett Corporation | Double and single acting piston ventilators |
US6866040B1 (en) | 1994-09-12 | 2005-03-15 | Nellcor Puritan Bennett France Developpement | Pressure-controlled breathing aid |
US5632270A (en) | 1994-09-12 | 1997-05-27 | Puritan-Bennett Corporation | Method and apparatus for control of lung ventilator exhalation circuit |
US5794986A (en) | 1994-09-15 | 1998-08-18 | Infrasonics, Inc. | Semi-disposable ventilator breathing circuit tubing with releasable coupling |
US5520071A (en) | 1994-09-30 | 1996-05-28 | Crow River Industries, Incorporated | Steering wheel control attachment apparatus |
WO1996011717A1 (en) | 1994-10-14 | 1996-04-25 | Bird Products Corporation | Portable drag compressor powered mechanical ventilator |
FI945649A0 (en) | 1994-11-30 | 1994-11-30 | Instrumentarium Oy | Foerfarande och anordning Foer indentifiering av en koppling vid ventilation av en patient |
US5672041A (en) | 1994-12-22 | 1997-09-30 | Crow River Industries, Inc. | Collapsible, powered platform for lifting wheelchair |
SE9500275L (en) | 1995-01-26 | 1996-07-27 | Siemens Elema Ab | Method and apparatus for determining a transfer function for a connection system |
JPH10500347A (en) | 1995-02-08 | 1998-01-13 | ピューリタン−ベネット・コーポレイション | Gas mixing device for ventilator |
WO1996024401A1 (en) | 1995-02-09 | 1996-08-15 | Puritan-Bennett Corporation | Piston based ventilator |
US5598838A (en) | 1995-04-07 | 1997-02-04 | Healthdyne Technologies, Inc. | Pressure support ventilatory assist system |
WO1996040337A1 (en) | 1995-06-07 | 1996-12-19 | Nellcor Puritan Bennett Incorporated | Pressure control for constant minute volume |
US5544674A (en) | 1995-07-14 | 1996-08-13 | Infrasonics, Inc. | Gas mixing apparatus for respirator |
US5513631A (en) | 1995-07-21 | 1996-05-07 | Infrasonics, Inc. | Triggering of patient ventilator responsive to a precursor signal |
US6000396A (en) | 1995-08-17 | 1999-12-14 | University Of Florida | Hybrid microprocessor controlled ventilator unit |
ES2170186T3 (en) | 1995-10-13 | 2002-08-01 | Siemens Elema Ab | TRAQUEAL TUBE AND DEVICE FOR VENTILATION SYSTEMS. |
US6135105A (en) | 1995-10-20 | 2000-10-24 | University Of Florida | Lung classification scheme, a method of lung class identification and inspiratory waveform shapes |
AUPN616795A0 (en) | 1995-10-23 | 1995-11-16 | Rescare Limited | Ipap duration in bilevel cpap or assisted respiration treatment |
SE9504311D0 (en) | 1995-12-01 | 1995-12-01 | Siemens Elema Ab | Breathing apparatus |
US6041777A (en) | 1995-12-01 | 2000-03-28 | Alliance Pharmaceutical Corp. | Methods and apparatus for closed-circuit ventilation therapy |
US6463930B2 (en) | 1995-12-08 | 2002-10-15 | James W. Biondi | System for automatically weaning a patient from a ventilator, and method thereof |
US5735267A (en) | 1996-03-29 | 1998-04-07 | Ohmeda Inc. | Adaptive control system for a medical ventilator |
US5762480A (en) | 1996-04-16 | 1998-06-09 | Adahan; Carmeli | Reciprocating machine |
US5692497A (en) | 1996-05-16 | 1997-12-02 | Children's Medical Center Corporation | Microprocessor-controlled ventilator system and methods |
US6725447B1 (en) | 1996-05-31 | 2004-04-20 | Nellcor Puritan Bennett Incorporated | System and method for graphic creation of a medical logical module in the arden syntax file format |
US5975081A (en) | 1996-06-21 | 1999-11-02 | Northrop Grumman Corporation | Self-contained transportable life support system |
SE9602913D0 (en) | 1996-08-02 | 1996-08-02 | Siemens Elema Ab | Fan system and method of operating a fan system |
US5752506A (en) | 1996-08-21 | 1998-05-19 | Bunnell Incorporated | Ventilator system |
US5694923A (en) | 1996-08-30 | 1997-12-09 | Respironics, Inc. | Pressure control in a blower-based ventilator |
SE9603249D0 (en) | 1996-09-06 | 1996-09-06 | Siemens Elema Ab | Device for compensating flow resistance at fan / ventilator |
AUPO247496A0 (en) | 1996-09-23 | 1996-10-17 | Resmed Limited | Assisted ventilation to match patient respiratory need |
US6371113B1 (en) | 1996-10-10 | 2002-04-16 | Datex-Ohmeda, Inc. | Zero flow pause during volume ventilation |
US5884622A (en) | 1996-12-20 | 1999-03-23 | University Of Manitoba | Automatic determination of passive elastic and resistive properties of the respiratory system during assisted mechanical ventilation |
US8932227B2 (en) | 2000-07-28 | 2015-01-13 | Lawrence A. Lynn | System and method for CO2 and oximetry integration |
US5826575A (en) | 1997-03-13 | 1998-10-27 | Nellcor Puritan Bennett, Incorporated | Exhalation condensate collection system for a patient ventilator |
US5791339A (en) | 1997-03-13 | 1998-08-11 | Nellcor Puritan Bennettt Incorprated | Spring piloted safety valve with jet venturi bias |
US5771884A (en) | 1997-03-14 | 1998-06-30 | Nellcor Puritan Bennett Incorporated | Magnetic exhalation valve with compensation for temperature and patient airway pressure induced changes to the magnetic field |
US5881723A (en) | 1997-03-14 | 1999-03-16 | Nellcor Puritan Bennett Incorporated | Ventilator breath display and graphic user interface |
US5881717A (en) | 1997-03-14 | 1999-03-16 | Nellcor Puritan Bennett Incorporated | System and method for adjustable disconnection sensitivity for disconnection and occlusion detection in a patient ventilator |
US5865168A (en) | 1997-03-14 | 1999-02-02 | Nellcor Puritan Bennett Incorporated | System and method for transient response and accuracy enhancement for sensors with known transfer characteristics |
GB9709275D0 (en) | 1997-05-07 | 1997-06-25 | Hayek Zamir | Fluid control valve and oscillator for producing a pressure waveform |
US5829441A (en) | 1997-06-24 | 1998-11-03 | Nellcor Puritan Bennett | Customizable dental device for snoring and sleep apnea treatment |
US6325785B1 (en) | 1997-08-14 | 2001-12-04 | Sherwood Services Ag | Sputum trap manifold with nested caps |
US6135106A (en) | 1997-08-22 | 2000-10-24 | Nellcor Puritan-Bennett, Inc. | CPAP pressure and flow transducer |
US6123073A (en) | 1997-10-01 | 2000-09-26 | Nellcor Puritan Bennett | Switch overlay in a piston ventilator |
SE513980C2 (en) | 1997-11-13 | 2000-12-04 | Mincor Ab | Method and apparatus for determining effective lung volume |
US6076523A (en) | 1998-01-15 | 2000-06-20 | Nellcor Puritan Bennett | Oxygen blending in a piston ventilator |
US5918597A (en) | 1998-01-15 | 1999-07-06 | Nellcor Puritan Bennett | Peep control in a piston ventilator |
US6321748B1 (en) | 1998-03-10 | 2001-11-27 | Nellcor Puritan Bennett | Closed loop control in a piston ventilator |
US6196222B1 (en) | 1998-03-10 | 2001-03-06 | Instrumentarium Corporation | Tracheal gas insufflation delivery system for respiration equipment |
AUPP240198A0 (en) | 1998-03-17 | 1998-04-09 | Resmed Limited | An apparatus for supplying breathable gas |
US6142150A (en) | 1998-03-24 | 2000-11-07 | Nellcor Puritan-Bennett | Compliance compensation in volume control ventilator |
JP3945902B2 (en) | 1998-03-31 | 2007-07-18 | スズキ株式会社 | Ventilator |
SE9801175D0 (en) | 1998-04-03 | 1998-04-03 | Innotek Ab | Method and apparatus for optimizing mechanical ventilation based on simulation of the ventilation process after studying the physiology of the respiratory organs |
AUPP370198A0 (en) | 1998-05-25 | 1998-06-18 | Resmed Limited | Control of the administration of continuous positive airway pressure treatment |
CA2239673A1 (en) | 1998-06-04 | 1999-12-04 | Christer Sinderby | Automatic adjustment of applied levels of ventilatory support and extrinsic peep by closed-loop control of neuro-ventilatory efficiency |
US6047860A (en) | 1998-06-12 | 2000-04-11 | Sanders Technology, Inc. | Container system for pressurized fluids |
SE9802122D0 (en) | 1998-06-15 | 1998-06-15 | Siemens Elema Ab | Volume determination method |
US6631716B1 (en) | 1998-07-17 | 2003-10-14 | The Board Of Trustees Of The Leland Stanford Junior University | Dynamic respiratory control |
US6257234B1 (en) | 1998-08-21 | 2001-07-10 | Respironics, Inc. | Apparatus and method for determining respiratory mechanics of a patient and for controlling a ventilator based thereon |
SE9802827D0 (en) | 1998-08-25 | 1998-08-25 | Siemens Elema Ab | ventilator |
JP2000175886A (en) | 1998-12-14 | 2000-06-27 | Nippon Koden Corp | Method and apparatus for processing ventilation data |
WO2000041757A1 (en) | 1999-01-15 | 2000-07-20 | Resmed Limited | Method and apparatus to counterbalance intrinsic positive end expiratory pressure |
EP1148907B1 (en) | 1999-01-29 | 2003-12-10 | Siemens-Elema AB | Non-invasive method for optimizing the respiration of atelectatic lungs |
USRE40402E1 (en) | 1999-01-29 | 2008-06-24 | Maquet Critical Care Ab | Non-invasive method for optimizing the respiration of atelectatic lungs |
US6220245B1 (en) | 1999-02-03 | 2001-04-24 | Mallinckrodt Inc. | Ventilator compressor system having improved dehumidification apparatus |
FR2789593B1 (en) | 1999-05-21 | 2008-08-22 | Mallinckrodt Dev France | APPARATUS FOR SUPPLYING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND METHODS OF CONTROLLING THE SAME |
FR2789592A1 (en) | 1999-02-12 | 2000-08-18 | Mallinckrodt Dev France | APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS |
FR2789594A1 (en) | 1999-05-21 | 2000-08-18 | Nellcor Puritan Bennett France | APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS |
US6467477B1 (en) | 1999-03-26 | 2002-10-22 | Respironics, Inc. | Breath-based control of a therapeutic treatment |
US6273444B1 (en) | 1999-03-31 | 2001-08-14 | Mallinckrodt Inc. | Apparatus for coupling wheelchairs to ventilator carts |
US6240919B1 (en) | 1999-06-07 | 2001-06-05 | Macdonald John J. | Method for providing respiratory airway support pressure |
WO2000078380A1 (en) | 1999-06-23 | 2000-12-28 | Graham Cameron Grant | Respiration assistor |
DE60020842T2 (en) | 1999-06-30 | 2006-05-18 | University of Florida Research Foundation, Inc., Gainesville | MONITORING SYSTEM FOR VENTILATOR |
US20070000494A1 (en) | 1999-06-30 | 2007-01-04 | Banner Michael J | Ventilator monitor system and method of using same |
BR9903858B1 (en) | 1999-08-05 | 2009-05-05 | mini mechanical pneumatic pulmonary ventilator. | |
US6758216B1 (en) | 1999-09-15 | 2004-07-06 | Resmed Limited | Ventilatory assistance using an external effort sensor |
US6910480B1 (en) | 1999-09-15 | 2005-06-28 | Resmed Ltd. | Patient-ventilator synchronization using dual phase sensors |
DE60043362D1 (en) | 1999-09-15 | 2009-12-31 | Resmed Ltd | Synchronization of a ventilation device by means of double-phase sensors |
US6557554B1 (en) | 1999-10-29 | 2003-05-06 | Suzuki Motor Corporation | High-frequency oscillation artificial respiration apparatus |
US7516742B2 (en) | 1999-11-24 | 2009-04-14 | Cardinal Health 207, Inc. | Method and apparatus for delivery of inhaled nitric oxide to spontaneous-breathing and mechanically-ventilated patients with intermittent dosing |
SE9904645D0 (en) | 1999-12-17 | 1999-12-17 | Siemens Elema Ab | High Frequency Oscillator Fan |
DE19961253C1 (en) | 1999-12-18 | 2001-01-18 | Draeger Medizintech Gmbh | Respiration apparatus has respiration pressure and respiration gas flow measured values used as setting parameters for new respiration pattern upon switching respiration pattern |
JP3721912B2 (en) | 2000-01-11 | 2005-11-30 | スズキ株式会社 | High frequency ventilator |
SE0000206D0 (en) | 2000-01-25 | 2000-01-25 | Siemens Elema Ab | High frequency oscillator fan |
US6629934B2 (en) | 2000-02-02 | 2003-10-07 | Healthetech, Inc. | Indirect calorimeter for medical applications |
IL134742A0 (en) | 2000-02-27 | 2001-04-30 | Shusterman Taly | Ambient pressure control ventilation apparatus and method |
US6553992B1 (en) | 2000-03-03 | 2003-04-29 | Resmed Ltd. | Adjustment of ventilator pressure-time profile to balance comfort and effectiveness |
DE10014427A1 (en) | 2000-03-24 | 2001-10-04 | Weinmann G Geraete Med | Method for controlling a ventilator and device for monitoring |
US6532956B2 (en) | 2000-03-30 | 2003-03-18 | Respironics, Inc. | Parameter variation for proportional assist ventilation or proportional positive airway pressure support devices |
CA2407159C (en) | 2000-04-26 | 2010-08-10 | The University Of Manitoba | Method and apparatus for determining respiratory system resistance during assisted ventilation |
US6532960B1 (en) | 2000-07-10 | 2003-03-18 | Respironics, Inc. | Automatic rise time adjustment for bi-level pressure support system |
US6439229B1 (en) | 2000-08-08 | 2002-08-27 | Newport Medical Instruments, Inc. | Pressure support ventilation control system and method |
US6557553B1 (en) | 2000-09-05 | 2003-05-06 | Mallinckrodt, Inc. | Adaptive inverse control of pressure based ventilation |
JP4246365B2 (en) | 2000-09-21 | 2009-04-02 | 日本特殊陶業株式会社 | Oxygen concentrator, its control device, and recording medium |
US6546930B1 (en) | 2000-09-29 | 2003-04-15 | Mallinckrodt Inc. | Bi-level flow generator with manual standard leak adjustment |
US6644310B1 (en) | 2000-09-29 | 2003-11-11 | Mallinckrodt Inc. | Apparatus and method for providing a breathing gas employing a bi-level flow generator with an AC synchronous motor |
US6626175B2 (en) | 2000-10-06 | 2003-09-30 | Respironics, Inc. | Medical ventilator triggering and cycling method and mechanism |
US6718974B1 (en) | 2000-10-06 | 2004-04-13 | Mallinckrodt, Inc. | CPAP humidifier having sliding access door |
US6622726B1 (en) | 2000-10-17 | 2003-09-23 | Newport Medical Instruments, Inc. | Breathing apparatus and method |
US6357438B1 (en) | 2000-10-19 | 2002-03-19 | Mallinckrodt Inc. | Implantable sensor for proportional assist ventilation |
CA2424358A1 (en) | 2000-10-19 | 2002-04-25 | Mallinckrodt Inc. | Ventilator with dual gas supply |
DE10103810A1 (en) | 2001-01-29 | 2002-08-01 | Map Gmbh | Device for supplying a breathing gas |
US7040321B2 (en) | 2001-03-30 | 2006-05-09 | Microcuff Gmbh | Method for controlling a ventilator, and system therefor |
US6860858B2 (en) | 2001-05-23 | 2005-03-01 | Resmed Limited | Ventilator patient synchronization |
US7246618B2 (en) | 2001-06-21 | 2007-07-24 | Nader Maher Habashi | Ventilation method and control of a ventilator based on same |
WO2003008027A1 (en) | 2001-07-19 | 2003-01-30 | Resmed Ltd. | Pressure support ventilation of patients |
IL145461A (en) | 2001-09-16 | 2006-09-05 | Alyn Woldenberg Family Hospita | Inexsufflator |
US7938114B2 (en) | 2001-10-12 | 2011-05-10 | Ric Investments Llc | Auto-titration bi-level pressure support system and method of using same |
FR2832770B1 (en) | 2001-11-27 | 2004-01-02 | Mallinckrodt Dev France | CENTRIFUGAL TURBINE FOR BREATHING ASSISTANCE DEVICES |
US7032589B2 (en) | 2002-01-23 | 2006-04-25 | The Johns Hopkins University | Portable ventilator |
WO2003083767A2 (en) | 2002-03-27 | 2003-10-09 | Nellcor Puritan Bennett Incorporated | Infrared touchframe system |
US6968842B1 (en) | 2002-04-03 | 2005-11-29 | Ric Investments, Inc. | Measurement of a fluid parameter in a pressure support system |
DE10217762C1 (en) | 2002-04-20 | 2003-04-10 | Draeger Medical Ag | Respiration gas supply control method for artificial respirator compares actual respiration path pressure with intial respiration path pressure for regulation of respiration gas supply parameter |
AU2003280434A1 (en) | 2002-06-27 | 2004-01-19 | Yrt Limited | Method and device for monitoring and improving patient-ventilator interaction |
US8672858B2 (en) | 2002-08-30 | 2014-03-18 | University Of Florida Research Foundation, Inc. | Method and apparatus for predicting work of breathing |
BRPI0313823B8 (en) | 2002-08-30 | 2021-06-22 | Univ Florida | method and apparatus for predicting the work of breathing |
US7682312B2 (en) | 2002-09-20 | 2010-03-23 | Advanced Circulatory Systems, Inc. | System for sensing, diagnosing and treating physiological conditions and methods |
AU2003277435A1 (en) | 2002-10-11 | 2004-05-04 | The Regents Of The University Of California | Bymixer apparatus and method for fast-response, adjustable measurement of mixed gas fractions in ventilation circuits |
DE10248590B4 (en) | 2002-10-17 | 2016-10-27 | Resmed R&D Germany Gmbh | Method and device for carrying out a signal-processing observation of a measurement signal associated with the respiratory activity of a person |
US7708016B2 (en) | 2002-11-12 | 2010-05-04 | Inovo, Inc. | Gas conserving regulator |
GB2396426B (en) | 2002-12-21 | 2005-08-24 | Draeger Medical Ag | Artificial respiration system |
NZ750285A (en) | 2003-02-21 | 2020-08-28 | ResMed Pty Ltd | Nasal assembly |
US6954702B2 (en) | 2003-02-21 | 2005-10-11 | Ric Investments, Inc. | Gas monitoring system and sidestream gas measurement system adapted to communicate with a mainstream gas measurement system |
AU2003901042A0 (en) | 2003-03-07 | 2003-03-20 | Resmed Limited | Back-up rate for a ventilator |
WO2004080516A1 (en) | 2003-03-14 | 2004-09-23 | Yrt Limited | Improved synchrony between end of ventilator cycles and end of patient efforts during assisted ventilation |
WO2004084980A1 (en) | 2003-03-24 | 2004-10-07 | Weinmann Geräte für Medizin GmbH & Co. KG | Method and device for detecting leaks in respiratory gas supply systems |
WO2004096333A1 (en) | 2003-04-22 | 2004-11-11 | Medi-Physics, Inc. | Mri/nmr-compatible, tidal volume control and measurement systems, methods, and devices for respiratory and hyperpolarized gas delivery |
IL155955A0 (en) | 2003-05-15 | 2003-12-23 | Widemed Ltd | Adaptive prediction of changes of physiological/pathological states using processing of biomedical signal |
DE10337138A1 (en) | 2003-08-11 | 2005-03-17 | Freitag, Lutz, Dr. | Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter |
AU2003903139A0 (en) | 2003-06-20 | 2003-07-03 | Resmed Limited | Breathable gas apparatus with humidifier |
US7621270B2 (en) | 2003-06-23 | 2009-11-24 | Invacare Corp. | System and method for providing a breathing gas |
US7152598B2 (en) | 2003-06-23 | 2006-12-26 | Invacare Corporation | System and method for providing a breathing gas |
FR2858236B1 (en) | 2003-07-29 | 2006-04-28 | Airox | DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME |
GB2404866B (en) * | 2003-08-15 | 2008-02-27 | Shahar Hayek | Respiratory apparatus |
US7678061B2 (en) | 2003-09-18 | 2010-03-16 | Cardiac Pacemakers, Inc. | System and method for characterizing patient respiration |
US7241269B2 (en) | 2003-09-02 | 2007-07-10 | Respiratory Management Technology | Apparatus and method for delivery of an aerosol |
US7725152B2 (en) | 2003-09-12 | 2010-05-25 | Textronics, Inc. | Extended optical range system for monitoring motion of a member |
EP1680166B1 (en) | 2003-10-17 | 2019-09-18 | ResMed Pty Ltd | Apparatus for heart failure treatment |
US7802571B2 (en) | 2003-11-21 | 2010-09-28 | Tehrani Fleur T | Method and apparatus for controlling a ventilator |
NZ567968A (en) | 2003-12-29 | 2009-12-24 | Resmed Ltd | Mechanical ventilation in the presence of sleep disordered breathing |
EP1701757B1 (en) | 2004-01-07 | 2011-07-27 | ResMed Limited | Methods for providing expiratory pressure relief in positive airway pressure therapy |
US7697990B2 (en) | 2004-02-20 | 2010-04-13 | Resmed Limited | Method and apparatus for detection and treatment of respiratory disorder by implantable device |
US8794236B2 (en) | 2004-02-25 | 2014-08-05 | Resmed Limited | Cardiac monitoring and therapy using a device for providing pressure treatment of sleep disordered breathing |
US7751894B1 (en) | 2004-03-04 | 2010-07-06 | Cardiac Pacemakers, Inc. | Systems and methods for indicating aberrant behavior detected by an implanted medical device |
US20050205093A1 (en) * | 2004-03-16 | 2005-09-22 | Jabour Ernest R | Method and program for calulating ventilator weaning duration |
WO2005089856A1 (en) | 2004-03-18 | 2005-09-29 | Helicor Inc. | Methods and devices for relieving stress |
JP5175090B2 (en) | 2004-04-20 | 2013-04-03 | ノバルティス アーゲー | Submersible breathing system |
US7267121B2 (en) | 2004-04-20 | 2007-09-11 | Aerogen, Inc. | Aerosol delivery apparatus and method for pressure-assisted breathing systems |
SE0401208D0 (en) | 2004-05-10 | 2004-05-10 | Breas Medical Ab | Multilevel fan |
US7841343B2 (en) | 2004-06-04 | 2010-11-30 | Inogen, Inc. | Systems and methods for delivering therapeutic gas to patients |
ITRM20040323A1 (en) | 2004-06-30 | 2004-09-30 | Cosmed Engineering S R L | OXYGEN CONSUMPTION MEASURING DEVICE. |
WO2006005433A1 (en) | 2004-07-08 | 2006-01-19 | Breas Medical Ab | Energy trigger |
US7690378B1 (en) | 2004-07-21 | 2010-04-06 | Pacesetter, Inc. | Methods, systems and devices for monitoring respiratory disorders |
FR2875138B1 (en) | 2004-09-15 | 2008-07-11 | Mallinckrodt Dev France Sa | CONTROL METHOD FOR A HEATING HUMIDIFIER |
US7487773B2 (en) | 2004-09-24 | 2009-02-10 | Nellcor Puritan Bennett Llc | Gas flow control method in a blower based ventilation system |
US7672720B2 (en) | 2004-09-24 | 2010-03-02 | Roger Lee Heath | Resuscitation and life support system, method and apparatus |
US7717110B2 (en) | 2004-10-01 | 2010-05-18 | Ric Investments, Llc | Method and apparatus for treating Cheyne-Stokes respiration |
WO2006037184A1 (en) | 2004-10-06 | 2006-04-13 | Resmed Limited | Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing |
EP1807139B1 (en) | 2004-10-20 | 2019-11-27 | ResMed Pty Ltd | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
US7455717B2 (en) | 2004-10-25 | 2008-11-25 | Invacare Corporation | Apparatus and method of providing concentrated product gas |
WO2006050384A2 (en) | 2004-11-01 | 2006-05-11 | Salter Labs | System and method for conserving oxygen delivery while maintaining saturation |
US7428902B2 (en) | 2004-12-15 | 2008-09-30 | Newport Medical Instruments, Inc. | Humidifier system for artificial respiration |
US20060155336A1 (en) | 2005-01-13 | 2006-07-13 | Heath Roger L | Medical resuscitation system and patient information module |
DE102005010488A1 (en) | 2005-03-04 | 2006-09-07 | Map Medizin-Technologie Gmbh | Apparatus for administering a breathing gas and method for adjusting at least temporarily alternating breathing gas pressures |
US8528551B2 (en) | 2005-06-14 | 2013-09-10 | Resmed Limited | Acclimatization therapy for first time users |
US20070044799A1 (en) | 2005-07-08 | 2007-03-01 | Hete Bernie F | Modular oxygen regulator system and respiratory treatment system |
US20070045152A1 (en) | 2005-08-01 | 2007-03-01 | Resmed Limited | Storage system for an apparatus that delivers breathable gas to a patient |
US7731663B2 (en) | 2005-09-16 | 2010-06-08 | Cardiac Pacemakers, Inc. | System and method for generating a trend parameter based on respiration rate distribution |
CN101454041B (en) | 2005-09-20 | 2012-12-12 | 呼吸科技公司 | Systems, methods and apparatus for respiratory support of a patient |
US20070077200A1 (en) | 2005-09-30 | 2007-04-05 | Baker Clark R | Method and system for controlled maintenance of hypoxia for therapeutic or diagnostic purposes |
US7305988B2 (en) | 2005-12-22 | 2007-12-11 | The General Electric Company | Integrated ventilator nasal trigger and gas monitoring system |
US20070227537A1 (en) | 2005-12-02 | 2007-10-04 | Nellcor Puritan Bennett Incorporated | Systems and Methods for Facilitating Management of Respiratory Care |
US7617824B2 (en) | 2005-12-08 | 2009-11-17 | Ric Investments, Llc | Ventilator adaptable for use with either a dual-limb circuit or a single-limb circuit |
WO2007102866A2 (en) | 2005-12-08 | 2007-09-13 | Ric Investments, Llc | Ventilator adaptable for use with either a dual-limb or a single-limb circuit |
US7662105B2 (en) | 2005-12-14 | 2010-02-16 | Cardiac Pacemakers, Inc. | Systems and methods for determining respiration metrics |
US7654802B2 (en) | 2005-12-22 | 2010-02-02 | Newport Medical Instruments, Inc. | Reciprocating drive apparatus and method |
JP5264506B2 (en) | 2006-01-19 | 2013-08-14 | マケット・クリティカル・ケア・アーベー | Device for dynamically determining respiratory characteristics of spontaneously breathing patients receiving mechanical breathing assistance |
US7694677B2 (en) | 2006-01-26 | 2010-04-13 | Nellcor Puritan Bennett Llc | Noise suppression for an assisted breathing device |
US7509957B2 (en) | 2006-02-21 | 2009-03-31 | Viasys Manufacturing, Inc. | Hardware configuration for pressure driver |
US7810497B2 (en) | 2006-03-20 | 2010-10-12 | Ric Investments, Llc | Ventilatory control system |
US8021310B2 (en) | 2006-04-21 | 2011-09-20 | Nellcor Puritan Bennett Llc | Work of breathing display for a ventilation system |
US7762252B2 (en) | 2006-04-26 | 2010-07-27 | Mine Safety Appliances Company | Devices, systems and methods for operation of breathing apparatuses in multiple modes |
US20070272241A1 (en) | 2006-05-12 | 2007-11-29 | Sanborn Warren G | System and Method for Scheduling Pause Maneuvers Used for Estimating Elastance and/or Resistance During Breathing |
US8920333B2 (en) | 2006-05-12 | 2014-12-30 | Yrt Limited | Method and device for generating of a signal that reflects respiratory efforts in patients on ventilatory support |
US7803117B2 (en) | 2006-05-12 | 2010-09-28 | Suunto Oy | Method, device and computer program product for monitoring the physiological state of a person |
US7369757B2 (en) | 2006-05-24 | 2008-05-06 | Nellcor Puritan Bennett Incorporated | Systems and methods for regulating power in a medical device |
US7460959B2 (en) | 2006-06-02 | 2008-12-02 | Nellcor Puritan Bennett Llc | System and method for estimating oxygen concentration in a mixed gas experiencing pressure fluctuations |
JP2009539468A (en) | 2006-06-07 | 2009-11-19 | ヴィアシス マニュファクチュアリング,インコーポレーテッド | Adaptive high-frequency flow cut-off control system and control method in patient respiratory ventilation system |
US7763097B2 (en) | 2006-06-08 | 2010-07-27 | University of Pittsburgh—of the Commonwealth System of Higher Education | Devices, systems and methods for reducing the concentration of a chemical entity in fluids |
US7691067B2 (en) | 2006-06-14 | 2010-04-06 | Advanced Brain Monitoring, Inc. | Method for measuring central venous pressure or respiratory effort |
US7678058B2 (en) | 2006-06-22 | 2010-03-16 | Cardiac Pacemakers, Inc. | Apnea type determining apparatus and method |
JP2008000436A (en) | 2006-06-23 | 2008-01-10 | Air Water Safety Service Inc | Lung compliance estimation apparatus and estimation method and artificial respiratory apparatus provided with estimation apparatus |
US9010327B2 (en) | 2006-06-30 | 2015-04-21 | Breas Medical Ab | Energy relief control in a mechanical ventilator |
US9027560B2 (en) | 2006-07-10 | 2015-05-12 | Loma Linda University | Breathing gas delivery system and method |
US20080011301A1 (en) | 2006-07-12 | 2008-01-17 | Yuancheng Qian | Out flow resistance switching ventilator and its core methods |
US7556038B2 (en) | 2006-08-11 | 2009-07-07 | Ric Investments, Llc | Systems and methods for controlling breathing rate |
US8322339B2 (en) | 2006-09-01 | 2012-12-04 | Nellcor Puritan Bennett Llc | Method and system of detecting faults in a breathing assistance device |
US7784461B2 (en) | 2006-09-26 | 2010-08-31 | Nellcor Puritan Bennett Llc | Three-dimensional waveform display for a breathing assistance system |
US20080072896A1 (en) | 2006-09-27 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Multi-Level User Interface for a Breathing Assistance System |
US20080072902A1 (en) | 2006-09-27 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Preset breath delivery therapies for a breathing assistance system |
US8902568B2 (en) | 2006-09-27 | 2014-12-02 | Covidien Lp | Power supply interface system for a breathing assistance system |
US8210174B2 (en) | 2006-09-29 | 2012-07-03 | Nellcor Puritan Bennett Llc | Systems and methods for providing noise leveling in a breathing assistance system |
FR2906450B3 (en) | 2006-09-29 | 2009-04-24 | Nellcor Puritan Bennett Incorp | SYSTEM AND METHOD FOR DETECTING RESPIRATORY EVENTS |
FR2906474B3 (en) | 2006-09-29 | 2009-01-09 | Nellcor Puritan Bennett Incorp | SYSTEM AND METHOD FOR CONTROLLING RESPIRATORY THERAPY BASED ON RESPIRATORY EVENTS |
US7891354B2 (en) | 2006-09-29 | 2011-02-22 | Nellcor Puritan Bennett Llc | Systems and methods for providing active noise control in a breathing assistance system |
US7984714B2 (en) | 2006-09-29 | 2011-07-26 | Nellcor Puritan Bennett Llc | Managing obstructive sleep apnea and/or snoring using local time released agents |
US8210173B2 (en) | 2006-09-29 | 2012-07-03 | Nellcor Puritan Bennett Llc | Breathing assistance system having integrated electrical conductors communicating data |
US20080078390A1 (en) | 2006-09-29 | 2008-04-03 | Nellcor Puritan Bennett Incorporated | Providing predetermined groups of trending parameters for display in a breathing assistance system |
WO2008058328A1 (en) | 2006-11-13 | 2008-05-22 | Resmed Ltd | Systems, methods, and/or apparatuses for non-invasive monitoring of respiratory parameters in sleep disordered breathing |
US8020558B2 (en) | 2007-01-26 | 2011-09-20 | Cs Medical, Inc. | System for providing flow-targeted ventilation synchronized to a patient's breathing cycle |
US8789527B2 (en) | 2007-02-12 | 2014-07-29 | Ric Investments, Llc | Pressure support system with automatic comfort feature modification |
US8960193B2 (en) | 2007-02-16 | 2015-02-24 | General Electric Company | Mobile medical ventilator |
US20080216833A1 (en) | 2007-03-07 | 2008-09-11 | Pujol J Raymond | Flow Sensing for Gas Delivery to a Patient |
DE102009013205A1 (en) | 2009-03-17 | 2010-09-23 | Dolphys Technologies B.V. | Jet ventilation catheter, in particular for the ventilation of a patient |
EP1972274B1 (en) | 2007-03-20 | 2015-12-30 | Drägerwerk AG & Co. KGaA | Method and apparatus for determining the resistance of the respiratory system of a patient |
RU2523820C2 (en) | 2007-05-30 | 2014-07-27 | Джилберт Якобус КУЙПЕРС | Improvements of electric drive devices for artificial lung ventilation |
US20080295839A1 (en) | 2007-06-01 | 2008-12-04 | Habashi Nader M | Ventilator Apparatus and System of Ventilation |
KR100903172B1 (en) | 2007-06-04 | 2009-06-17 | 충북대학교 산학협력단 | Method for monitoring respiration in a wireless way and device for performing the same |
US9743859B2 (en) | 2007-06-15 | 2017-08-29 | Cardiac Pacemakers, Inc. | Daytime/nighttime respiration rate monitoring |
EP2017586A1 (en) | 2007-07-20 | 2009-01-21 | Map-Medizintechnologie GmbH | Monitor for CPAP/Ventilator apparatus |
US8475340B2 (en) | 2007-07-25 | 2013-07-02 | Montefiore Medical Center | Hypoxic conditioning in patients with exercise limiting conditions |
US8235042B2 (en) | 2007-08-31 | 2012-08-07 | Wet Nose Technologies, Llc | Exhalatory pressure device and system thereof |
CN101380233B (en) | 2007-09-05 | 2010-12-22 | 深圳迈瑞生物医疗电子股份有限公司 | Breathing work real-time monitoring method and device based on breathing mechanics module |
DE102007052897B4 (en) | 2007-11-07 | 2013-02-21 | Dräger Medical GmbH | Method for automatically controlling a ventilation system and associated ventilation system |
EP2211997B1 (en) | 2007-11-20 | 2020-03-25 | Avon Protection Systems, Inc. | Modular powered air purifying respirator |
DE102007062214C5 (en) | 2007-12-21 | 2017-12-21 | Drägerwerk AG & Co. KGaA | Method for automatically controlling a respiratory system and associated ventilator |
US20090171176A1 (en) | 2007-12-28 | 2009-07-02 | Nellcor Puritan Bennett Llc | Snapshot Sensor |
US20090165795A1 (en) | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Method and apparatus for respiratory therapy |
EP2244772B1 (en) | 2008-01-11 | 2016-09-07 | Koninklijke Philips N.V. | Patient control of ventilation properties |
US20090205663A1 (en) | 2008-02-19 | 2009-08-20 | Nellcor Puritan Bennett Llc | Configuring the operation of an alternating pressure ventilation mode |
US20090205661A1 (en) | 2008-02-20 | 2009-08-20 | Nellcor Puritan Bennett Llc | Systems and methods for extended volume range ventilation |
US8307827B2 (en) | 2008-03-10 | 2012-11-13 | University Of Florida Research Foundation, Inc. | Automated inspiratory muscle training for patients receiving mechanical ventilation |
US9560994B2 (en) | 2008-03-26 | 2017-02-07 | Covidien Lp | Pulse oximeter with adaptive power conservation |
EP2363163A1 (en) | 2008-03-27 | 2011-09-07 | Nellcor Puritan Bennett LLC | Device for controlled delivery of breathing gas to a patient using multiple ventilation parameters |
WO2009120639A2 (en) | 2008-03-27 | 2009-10-01 | Nellcor Puritan Bennett Llc | Breathing assistance systems with lung recruitment maneuvers |
US20090241953A1 (en) | 2008-03-31 | 2009-10-01 | Nellcor Puritan Bennett Llc | Ventilator with piston-cylinder and buffer volume |
EP2106818B1 (en) | 2008-03-31 | 2013-12-25 | Nellcor Puritan Bennett Llc | System for compensating for pressure drop in a breathing assistance system |
US8746248B2 (en) | 2008-03-31 | 2014-06-10 | Covidien Lp | Determination of patient circuit disconnect in leak-compensated ventilatory support |
EP2313138B1 (en) | 2008-03-31 | 2018-09-12 | Covidien LP | System and method for determining ventilator leakage during stable periods within a breath |
US8272380B2 (en) | 2008-03-31 | 2012-09-25 | Nellcor Puritan Bennett, Llc | Leak-compensated pressure triggering in medical ventilators |
US8267085B2 (en) | 2009-03-20 | 2012-09-18 | Nellcor Puritan Bennett Llc | Leak-compensated proportional assist ventilation |
US20090247853A1 (en) | 2008-03-31 | 2009-10-01 | Nellcor Puritan Bennett Llc | Non-Invasive Total Hemoglobin Measurement by Spectral Optical Coherence Tomography |
US8792949B2 (en) | 2008-03-31 | 2014-07-29 | Covidien Lp | Reducing nuisance alarms |
US8425428B2 (en) | 2008-03-31 | 2013-04-23 | Covidien Lp | Nitric oxide measurements in patients using flowfeedback |
US20110023879A1 (en) | 2008-03-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Ventilator Based On A Fluid Equivalent Of The "Digital To Analog Voltage" Concept |
US20100152600A1 (en) | 2008-04-03 | 2010-06-17 | Kai Sensors, Inc. | Non-contact physiologic motion sensors and methods for use |
US8457706B2 (en) | 2008-05-16 | 2013-06-04 | Covidien Lp | Estimation of a physiological parameter using a neural network |
EP2320791B1 (en) | 2008-06-06 | 2016-08-31 | Covidien LP | Systems for ventilation in proportion to patient effort |
US20100011307A1 (en) | 2008-07-08 | 2010-01-14 | Nellcor Puritan Bennett Llc | User interface for breathing assistance system |
EP2356407A1 (en) | 2008-09-04 | 2011-08-17 | Nellcor Puritan Bennett LLC | Inverse sawtooth pressure wave train purging in medical ventilators |
US7893560B2 (en) | 2008-09-12 | 2011-02-22 | Nellcor Puritan Bennett Llc | Low power isolation design for a multiple sourced power bus |
US8551006B2 (en) | 2008-09-17 | 2013-10-08 | Covidien Lp | Method for determining hemodynamic effects |
US20100071695A1 (en) | 2008-09-23 | 2010-03-25 | Ron Thiessen | Patient wye with flow transducer |
US8424520B2 (en) | 2008-09-23 | 2013-04-23 | Covidien Lp | Safe standby mode for ventilator |
US8342177B2 (en) | 2008-09-24 | 2013-01-01 | Covidien Lp | Spill resistant humidifier for use in a breathing assistance system |
US8794234B2 (en) | 2008-09-25 | 2014-08-05 | Covidien Lp | Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators |
US20100071696A1 (en) | 2008-09-25 | 2010-03-25 | Nellcor Puritan Bennett Llc | Model-predictive online identification of patient respiratory effort dynamics in medical ventilators |
US8181648B2 (en) | 2008-09-26 | 2012-05-22 | Nellcor Puritan Bennett Llc | Systems and methods for managing pressure in a breathing assistance system |
US8302602B2 (en) | 2008-09-30 | 2012-11-06 | Nellcor Puritan Bennett Llc | Breathing assistance system with multiple pressure sensors |
US8393323B2 (en) | 2008-09-30 | 2013-03-12 | Covidien Lp | Supplemental gas safety system for a breathing assistance system |
US8113062B2 (en) | 2008-09-30 | 2012-02-14 | Nellcor Puritan Bennett Llc | Tilt sensor for use with proximal flow sensing device |
US8585412B2 (en) | 2008-09-30 | 2013-11-19 | Covidien Lp | Configurable respiratory muscle pressure generator |
US8302600B2 (en) | 2008-09-30 | 2012-11-06 | Nellcor Puritan Bennett Llc | Battery management for a breathing assistance system |
US8652064B2 (en) | 2008-09-30 | 2014-02-18 | Covidien Lp | Sampling circuit for measuring analytes |
US8439032B2 (en) | 2008-09-30 | 2013-05-14 | Covidien Lp | Wireless communications for a breathing assistance system |
EP2349423B1 (en) | 2008-10-24 | 2014-02-26 | Hospitech Respiration Ltd. | Ventilation system |
US8347883B2 (en) * | 2008-11-17 | 2013-01-08 | Bird F M | Manual controlled bi-phasic intrapulmonary percussive ventilation and methods |
US8303276B2 (en) | 2008-12-10 | 2012-11-06 | Covidien Lp | Pump and exhalation valve control for respirator apparatus |
CN102307521B (en) | 2008-12-10 | 2015-02-04 | 皇家飞利浦电子股份有限公司 | Determining elastance and resistance |
USD632796S1 (en) | 2008-12-12 | 2011-02-15 | Nellcor Puritan Bennett Llc | Medical cart |
USD632797S1 (en) | 2008-12-12 | 2011-02-15 | Nellcor Puritan Bennett Llc | Medical cart |
CA2741054C (en) | 2008-12-12 | 2014-02-04 | Nellcor Puritan Bennett Llc | Medical ventilator cart |
CN102355919B (en) | 2009-01-15 | 2015-06-17 | 圣米高医院 | Device for determining level of ventilatory assist to patient |
US9675774B2 (en) | 2009-04-02 | 2017-06-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space |
CZ19690U1 (en) | 2009-01-23 | 2009-06-08 | Ceské vysoké ucení technické v Praze, | Device for detecting diaphragm movement |
US8428672B2 (en) | 2009-01-29 | 2013-04-23 | Impact Instrumentation, Inc. | Medical ventilator with autonomous control of oxygenation |
WO2010088543A1 (en) | 2009-01-29 | 2010-08-05 | Aylsworth Alonzo C | Method and system for detecting mouth leak during application of positive airway pressure |
US20100199991A1 (en) | 2009-02-06 | 2010-08-12 | Hartwell Medical Corporation | Ventilatory support and resuscitation device and associated method |
EP2405801B1 (en) | 2009-02-18 | 2018-07-11 | Nonin Medical, Inc | Disposable oximeter device |
US20100234750A1 (en) | 2009-02-19 | 2010-09-16 | Nexense Ltd. | Apparatus and method for detecting breathing disorders |
US8434479B2 (en) | 2009-02-27 | 2013-05-07 | Covidien Lp | Flow rate compensation for transient thermal response of hot-wire anemometers |
US8424521B2 (en) | 2009-02-27 | 2013-04-23 | Covidien Lp | Leak-compensated respiratory mechanics estimation in medical ventilators |
US8607796B2 (en) | 2009-02-27 | 2013-12-17 | Airway Technologies, Llc | Apparatus and method for coupling an oral appliance to a gas delivery device |
US20100218766A1 (en) | 2009-02-27 | 2010-09-02 | Nellcor Puritan Bennett Llc | Customizable mandatory/spontaneous closed loop mode selection |
US9164168B2 (en) | 2009-03-20 | 2015-10-20 | Wright State University | Systems for detecting movement of a target |
US8418691B2 (en) | 2009-03-20 | 2013-04-16 | Covidien Lp | Leak-compensated pressure regulated volume control ventilation |
US9186075B2 (en) | 2009-03-24 | 2015-11-17 | Covidien Lp | Indicating the accuracy of a physiological parameter |
JP5351583B2 (en) | 2009-03-30 | 2013-11-27 | 日本光電工業株式会社 | Respiratory waveform analyzer |
US20100242961A1 (en) | 2009-03-31 | 2010-09-30 | Nellcor Puritan Bennett Llc | Systems and methods for preventing water damage in a breathing assistance system |
US8608656B2 (en) | 2009-04-01 | 2013-12-17 | Covidien Lp | System and method for integrating clinical information to provide real-time alerts for improving patient outcomes |
CA2697592C (en) | 2009-04-08 | 2013-11-05 | Anurag Sharma H K | Adaptable demand dilution oxygen regulator for use in aircrafts |
JP5639152B2 (en) * | 2009-04-22 | 2014-12-10 | レスメド・リミテッドResMedLimited | Asynchronous detection |
US8408203B2 (en) | 2009-04-30 | 2013-04-02 | General Electric Company | System and methods for ventilating a patient |
US20100288283A1 (en) | 2009-05-15 | 2010-11-18 | Nellcor Puritan Bennett Llc | Dynamic adjustment of tube compensation factor based on internal changes in breathing tube |
US20100300446A1 (en) | 2009-05-26 | 2010-12-02 | Nellcor Puritan Bennett Llc | Systems and methods for protecting components of a breathing assistance system |
DE102009023965A1 (en) | 2009-06-05 | 2010-10-14 | Drägerwerk AG & Co. KGaA | Respiratory device for pressure-supporting ventilation of patient, has control and evaluation unit analyzing functional dependency of pressure and respiratory volume, where elastance or compliance is determined from rise of pressure |
US8776790B2 (en) | 2009-07-16 | 2014-07-15 | Covidien Lp | Wireless, gas flow-powered sensor system for a breathing assistance system |
US8701665B2 (en) | 2009-07-25 | 2014-04-22 | Fleur T Tehrani | Automatic control system for mechanical ventilation for active or passive subjects |
US20110023878A1 (en) | 2009-07-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver |
US20110029910A1 (en) | 2009-07-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Method And System For Providing A Graphical User Interface For Delivering A Low Flow Recruitment Maneuver |
US20110023880A1 (en) | 2009-07-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Method And System For Delivering A Multi-Breath, Low Flow Recruitment Maneuver |
US20110023881A1 (en) | 2009-07-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Method And System For Generating A Pressure Volume Loop Of A Low Flow Recruitment Maneuver |
US8789529B2 (en) | 2009-08-20 | 2014-07-29 | Covidien Lp | Method for ventilation |
US8596270B2 (en) | 2009-08-20 | 2013-12-03 | Covidien Lp | Systems and methods for controlling a ventilator |
US8960192B2 (en) | 2009-09-01 | 2015-02-24 | Koninklijke Philips N.V. | System and method for quantifying lung compliance in a self-ventilating subject |
CN102596028B (en) | 2009-09-01 | 2015-04-22 | 皇家飞利浦电子股份有限公司 | System and method for quantifying lung compliance in a self-ventilating subject |
US8469031B2 (en) | 2009-12-01 | 2013-06-25 | Covidien Lp | Exhalation valve assembly with integrated filter |
US8439036B2 (en) | 2009-12-01 | 2013-05-14 | Covidien Lp | Exhalation valve assembly with integral flow sensor |
US8439037B2 (en) | 2009-12-01 | 2013-05-14 | Covidien Lp | Exhalation valve assembly with integrated filter and flow sensor |
US20110126832A1 (en) | 2009-12-01 | 2011-06-02 | Nellcor Puritan Bennett Llc | Exhalation Valve Assembly |
US8469030B2 (en) | 2009-12-01 | 2013-06-25 | Covidien Lp | Exhalation valve assembly with selectable contagious/non-contagious latch |
US8421465B2 (en) | 2009-12-02 | 2013-04-16 | Covidien Lp | Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation |
US8434483B2 (en) | 2009-12-03 | 2013-05-07 | Covidien Lp | Ventilator respiratory gas accumulator with sampling chamber |
USD618356S1 (en) | 2009-12-04 | 2010-06-22 | Nellcor Puritan Bennett Llc | Tank holder |
US20110138311A1 (en) | 2009-12-04 | 2011-06-09 | Nellcor Puritan Bennett Llc | Display Of Respiratory Data On A Ventilator Graphical User Interface |
US8482415B2 (en) | 2009-12-04 | 2013-07-09 | Covidien Lp | Interactive multilevel alarm |
USD649157S1 (en) | 2009-12-04 | 2011-11-22 | Nellcor Puritan Bennett Llc | Ventilator display screen with a user interface |
US20110138323A1 (en) | 2009-12-04 | 2011-06-09 | Nellcor Puritan Bennett Llc | Visual Indication Of Alarms On A Ventilator Graphical User Interface |
USD638852S1 (en) | 2009-12-04 | 2011-05-31 | Nellcor Puritan Bennett Llc | Ventilator display screen with an alarm icon |
US9119925B2 (en) | 2009-12-04 | 2015-09-01 | Covidien Lp | Quick initiation of respiratory support via a ventilator user interface |
USD643535S1 (en) | 2009-12-04 | 2011-08-16 | Nellcor Puritan Bennett Llc | Medical ventilator |
US8335992B2 (en) | 2009-12-04 | 2012-12-18 | Nellcor Puritan Bennett Llc | Visual indication of settings changes on a ventilator graphical user interface |
US20110132369A1 (en) | 2009-12-04 | 2011-06-09 | Nellcor Puritan Bennett Llc | Ventilation System With System Status Display |
US8924878B2 (en) | 2009-12-04 | 2014-12-30 | Covidien Lp | Display and access to settings on a ventilator graphical user interface |
US8499252B2 (en) | 2009-12-18 | 2013-07-30 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US9262588B2 (en) | 2009-12-18 | 2016-02-16 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US20110146681A1 (en) | 2009-12-21 | 2011-06-23 | Nellcor Puritan Bennett Llc | Adaptive Flow Sensor Model |
US20110146683A1 (en) | 2009-12-21 | 2011-06-23 | Nellcor Puritan Bennett Llc | Sensor Model |
EP2519151B1 (en) | 2009-12-28 | 2018-05-16 | University of Florida Research Foundation, Inc. | System and method for assessing real time pulmonary mechanics |
US8400290B2 (en) | 2010-01-19 | 2013-03-19 | Covidien Lp | Nuisance alarm reduction method for therapeutic parameters |
US8707952B2 (en) | 2010-02-10 | 2014-04-29 | Covidien Lp | Leak determination in a breathing assistance system |
US20110209702A1 (en) | 2010-02-26 | 2011-09-01 | Nellcor Puritan Bennett Llc | Proportional Solenoid Valve For Low Molecular Weight Gas Mixtures |
US9302061B2 (en) | 2010-02-26 | 2016-04-05 | Covidien Lp | Event-based delay detection and control of networked systems in medical ventilation |
US20110209707A1 (en) | 2010-02-26 | 2011-09-01 | Nellcor Puritan Bennett Llc | Method And Apparatus For Oxygen Reprocessing Of Expiratory Gases In Mechanical Ventilation |
US20110213215A1 (en) | 2010-02-26 | 2011-09-01 | Nellcor Puritan Bennett Llc | Spontaneous Breathing Trial Manager |
USD655405S1 (en) | 2010-04-27 | 2012-03-06 | Nellcor Puritan Bennett Llc | Filter and valve body for an exhalation module |
USD653749S1 (en) | 2010-04-27 | 2012-02-07 | Nellcor Puritan Bennett Llc | Exhalation module filter body |
US8539949B2 (en) | 2010-04-27 | 2013-09-24 | Covidien Lp | Ventilation system with a two-point perspective view |
USD645158S1 (en) | 2010-04-27 | 2011-09-13 | Nellcor Purtian Bennett LLC | System status display |
US8511306B2 (en) | 2010-04-27 | 2013-08-20 | Covidien Lp | Ventilation system with system status display for maintenance and service information |
US8453643B2 (en) | 2010-04-27 | 2013-06-04 | Covidien Lp | Ventilation system with system status display for configuration and program information |
USD655809S1 (en) | 2010-04-27 | 2012-03-13 | Nellcor Puritan Bennett Llc | Valve body with integral flow meter for an exhalation module |
US20110271960A1 (en) | 2010-05-07 | 2011-11-10 | Nellcor Puritan Bennett Llc | Ventilator-Initiated Prompt Regarding Auto-PEEP Detection During Volume Ventilation Of Triggering Patient |
US8638200B2 (en) | 2010-05-07 | 2014-01-28 | Covidien Lp | Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient |
CN102905620B (en) | 2010-05-17 | 2015-05-13 | 皇家飞利浦电子股份有限公司 | System for estimating upper airway resistance and lung compliance employing induced central apneas |
EP2397074B1 (en) | 2010-06-19 | 2012-10-24 | M Stenqvist AB | A system and computer readable medium for determination of transpulmonary pressure in a patient connected to a breathing apparatus |
US8607788B2 (en) | 2010-06-30 | 2013-12-17 | Covidien Lp | Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component |
US8607789B2 (en) | 2010-06-30 | 2013-12-17 | Covidien Lp | Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component |
US8607791B2 (en) | 2010-06-30 | 2013-12-17 | Covidien Lp | Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation |
US8607790B2 (en) | 2010-06-30 | 2013-12-17 | Covidien Lp | Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component |
US8676285B2 (en) | 2010-07-28 | 2014-03-18 | Covidien Lp | Methods for validating patient identity |
US9592356B2 (en) | 2010-09-10 | 2017-03-14 | Koninklijke Philips N.V. | System and method for identifying breathing transitions |
US20120060841A1 (en) | 2010-09-15 | 2012-03-15 | Newport Medical Instruments, Inc. | Oxygen enrichment device for ventilator |
US8554298B2 (en) | 2010-09-21 | 2013-10-08 | Cividien LP | Medical ventilator with integrated oximeter data |
US20120090611A1 (en) | 2010-10-13 | 2012-04-19 | Nellcor Puritan Bennett Llc | Systems And Methods For Controlling An Amount Of Oxygen In Blood Of A Ventilator Patient |
US20120096381A1 (en) | 2010-10-13 | 2012-04-19 | Nellcor Puritan Bennett Llc | Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment |
US20140048072A1 (en) | 2010-11-29 | 2014-02-20 | Covidien Lp | Ventilator-initiated prompt regarding detection of fluctuations in compliance |
US8757153B2 (en) | 2010-11-29 | 2014-06-24 | Covidien Lp | Ventilator-initiated prompt regarding detection of double triggering during ventilation |
US8757152B2 (en) | 2010-11-29 | 2014-06-24 | Covidien Lp | Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type |
US8595639B2 (en) | 2010-11-29 | 2013-11-26 | Covidien Lp | Ventilator-initiated prompt regarding detection of fluctuations in resistance |
US20120136222A1 (en) | 2010-11-30 | 2012-05-31 | Nellcor Puritan Bennett Llc | Methods And Systems For Monitoring A Ventilator Patient With A Capnograph |
US20120167885A1 (en) | 2010-12-29 | 2012-07-05 | Nellcor Puritan Bennett Llc | Systems And Methods For Ventilation To Obtain A Predetermined Patient Effort |
US20120185792A1 (en) | 2011-01-13 | 2012-07-19 | Nellcor Puritan Bennett Llc | Pictorial Representation Of Patient Condition Trending |
US8676529B2 (en) | 2011-01-31 | 2014-03-18 | Covidien Lp | Systems and methods for simulation and software testing |
US8788236B2 (en) | 2011-01-31 | 2014-07-22 | Covidien Lp | Systems and methods for medical device testing |
US20120216809A1 (en) | 2011-02-27 | 2012-08-30 | Nellcor Puritan Bennett Llc | Ventilator-Initiated Prompt Regarding Detection Of Inadequate Flow During Ventilation |
US8783250B2 (en) | 2011-02-27 | 2014-07-22 | Covidien Lp | Methods and systems for transitory ventilation support |
US20120216811A1 (en) | 2011-02-28 | 2012-08-30 | Nellcor Puritan Bennett Llc | Use of Multiple Spontaneous Breath Types To Promote Patient Ventilator Synchrony |
US9038633B2 (en) * | 2011-03-02 | 2015-05-26 | Covidien Lp | Ventilator-initiated prompt regarding high delivered tidal volume |
US8714154B2 (en) | 2011-03-30 | 2014-05-06 | Covidien Lp | Systems and methods for automatic adjustment of ventilator settings |
US8776792B2 (en) | 2011-04-29 | 2014-07-15 | Covidien Lp | Methods and systems for volume-targeted minimum pressure-control ventilation |
US20120272962A1 (en) | 2011-04-29 | 2012-11-01 | Nellcor Puritan Bennett Llc | Methods and systems for managing a ventilator patient with a capnometer |
US9629971B2 (en) | 2011-04-29 | 2017-04-25 | Covidien Lp | Methods and systems for exhalation control and trajectory optimization |
US20120304995A1 (en) | 2011-05-31 | 2012-12-06 | Nellcor Puritan Bennett Llc | Previous Set Up Mode Parameter Retention |
US20130000644A1 (en) | 2011-06-30 | 2013-01-03 | Nellcor Puritan Bennett Llc | Systems and methods for providing ventilation based on patient need |
US20130006133A1 (en) | 2011-06-30 | 2013-01-03 | Nellcor Puritan Bennett Llc | Methods and systems for monitoring volumetric carbon dioxide |
US20130006134A1 (en) | 2011-06-30 | 2013-01-03 | Nellcor Puritan Bennett Llc | Methods and systems for monitoring volumetric carbon dioxide |
US20130025596A1 (en) | 2011-07-27 | 2013-01-31 | Nellcor Puritan Bennett Llc | Methods and systems for model-based transformed proportional assist ventilation |
US20130025597A1 (en) | 2011-07-29 | 2013-01-31 | Nellcor Puritan Bennett Llc | Methods and systems for monitoring a ventilated patient with an oximeter |
US9895083B2 (en) | 2011-08-25 | 2018-02-20 | Koninklijke Philips N.V. | Non-invasive ventilation measurement |
US20130053717A1 (en) | 2011-08-30 | 2013-02-28 | Nellcor Puritan Bennett Llc | Automatic ventilator challenge to induce spontaneous breathing efforts |
US20130047989A1 (en) | 2011-08-31 | 2013-02-28 | Nellcor Puritan Bennett Llc | Methods and systems for adjusting tidal volume during ventilation |
US20130074844A1 (en) | 2011-09-23 | 2013-03-28 | Nellcor Puritan Bennett Llc | Use of multiple breath types |
US20130081536A1 (en) | 2011-09-30 | 2013-04-04 | Newport Medical Instruments, Inc. | Pump piston assembly with acoustic dampening device |
US9089657B2 (en) | 2011-10-31 | 2015-07-28 | Covidien Lp | Methods and systems for gating user initiated increases in oxygen concentration during ventilation |
US9364624B2 (en) | 2011-12-07 | 2016-06-14 | Covidien Lp | Methods and systems for adaptive base flow |
US9498589B2 (en) | 2011-12-31 | 2016-11-22 | Covidien Lp | Methods and systems for adaptive base flow and leak compensation |
US20130167843A1 (en) | 2011-12-31 | 2013-07-04 | Nellcor Puritan Bennett Llc | Piezoelectric blower piloted valve |
US9022031B2 (en) | 2012-01-31 | 2015-05-05 | Covidien Lp | Using estimated carinal pressure for feedback control of carinal pressure during ventilation |
WO2013126417A1 (en) * | 2012-02-20 | 2013-08-29 | University Of Florida Research Foundation, Inc. | Method and apparatus for predicting work of breathing |
US20130220324A1 (en) | 2012-02-29 | 2013-08-29 | Nellcor Puritan Bennett Llc | Systems and methods for providing oscillatory pressure control ventilation |
SE1200155A1 (en) | 2012-03-13 | 2013-09-14 | Innotek Ab | Apparatus for monitoring mechanical ventilation |
US9327089B2 (en) | 2012-03-30 | 2016-05-03 | Covidien Lp | Methods and systems for compensation of tubing related loss effects |
US8844526B2 (en) | 2012-03-30 | 2014-09-30 | Covidien Lp | Methods and systems for triggering with unknown base flow |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US9144658B2 (en) | 2012-04-30 | 2015-09-29 | Covidien Lp | Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control |
US20140000606A1 (en) | 2012-07-02 | 2014-01-02 | Nellcor Puritan Bennett Llc | Methods and systems for mimicking fluctuations in delivered flow and/or pressure during ventilation |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
DE102012215662A1 (en) | 2012-09-04 | 2014-03-06 | Hamilton Medical Ag | System for the automated setting of a predetermined by a ventilator pressure |
SE536642C2 (en) | 2012-09-24 | 2014-04-22 | Innotek Ab | System for optimal mechanical ventilation |
US9375542B2 (en) * | 2012-11-08 | 2016-06-28 | Covidien Lp | Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation |
US10293126B2 (en) | 2012-12-18 | 2019-05-21 | Koninklijke Philips N.V. | Inspiratory pressure control in volume mode ventilation |
US9289573B2 (en) | 2012-12-28 | 2016-03-22 | Covidien Lp | Ventilator pressure oscillation filter |
US9492629B2 (en) | 2013-02-14 | 2016-11-15 | Covidien Lp | Methods and systems for ventilation with unknown exhalation flow and exhalation pressure |
USD731049S1 (en) | 2013-03-05 | 2015-06-02 | Covidien Lp | EVQ housing of an exhalation module |
USD731048S1 (en) | 2013-03-08 | 2015-06-02 | Covidien Lp | EVQ diaphragm of an exhalation module |
USD692556S1 (en) | 2013-03-08 | 2013-10-29 | Covidien Lp | Expiratory filter body of an exhalation module |
USD693001S1 (en) | 2013-03-08 | 2013-11-05 | Covidien Lp | Neonate expiratory filter assembly of an exhalation module |
USD701601S1 (en) | 2013-03-08 | 2014-03-25 | Covidien Lp | Condensate vial of an exhalation module |
USD744095S1 (en) | 2013-03-08 | 2015-11-24 | Covidien Lp | Exhalation module EVQ internal flow sensor |
USD731065S1 (en) | 2013-03-08 | 2015-06-02 | Covidien Lp | EVQ pressure sensor filter of an exhalation module |
USD736905S1 (en) | 2013-03-08 | 2015-08-18 | Covidien Lp | Exhalation module EVQ housing |
US9358355B2 (en) | 2013-03-11 | 2016-06-07 | Covidien Lp | Methods and systems for managing a patient move |
US20140261409A1 (en) | 2013-03-13 | 2014-09-18 | Covidien Lp | Systems and methods for ventilation with unreliable exhalation flow and/or exhalation pressure |
US9981096B2 (en) | 2013-03-13 | 2018-05-29 | Covidien Lp | Methods and systems for triggering with unknown inspiratory flow |
US20140261424A1 (en) | 2013-03-13 | 2014-09-18 | Covidien Lp | Methods and systems for phase shifted pressure ventilation |
US10165966B2 (en) | 2013-03-14 | 2019-01-01 | University Of Florida Research Foundation, Incorporated | Methods and systems for monitoring resistance and work of breathing for ventilator-dependent patients |
US9950135B2 (en) | 2013-03-15 | 2018-04-24 | Covidien Lp | Maintaining an exhalation valve sensor assembly |
US20140373845A1 (en) | 2013-06-25 | 2014-12-25 | Covidien Lp | Methods and systems for adaptive adjustment of ventilator settings |
JP6487425B2 (en) | 2013-06-28 | 2019-03-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Calculation of respiratory work based on noninvasive estimation of intrathoracic pressure and / or noninvasive estimation of intrathoracic pressure |
JP6204086B2 (en) | 2013-06-28 | 2017-09-27 | 日本光電工業株式会社 | Respiratory state determination device |
US20150034082A1 (en) | 2013-08-05 | 2015-02-05 | Covidien Lp | Oxygenation-ventilation methods and systems |
US10064583B2 (en) * | 2013-08-07 | 2018-09-04 | Covidien Lp | Detection of expiratory airflow limitation in ventilated patient |
US20150090258A1 (en) | 2013-10-01 | 2015-04-02 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
US20150090264A1 (en) | 2013-10-02 | 2015-04-02 | Covidien Lp | Methods and systems for proportional assist ventilation |
US9675771B2 (en) | 2013-10-18 | 2017-06-13 | Covidien Lp | Methods and systems for leak estimation |
US9839760B2 (en) | 2014-04-11 | 2017-12-12 | Vyaire Medical Capital Llc | Methods for controlling mechanical lung ventilation |
US9808591B2 (en) | 2014-08-15 | 2017-11-07 | Covidien Lp | Methods and systems for breath delivery synchronization |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
US9925346B2 (en) | 2015-01-20 | 2018-03-27 | Covidien Lp | Systems and methods for ventilation with unknown exhalation flow |
WO2016140980A1 (en) | 2015-03-02 | 2016-09-09 | Covidien Lp | Medical ventilator, method for replacing an oxygen sensor on a medical ventilator, and medical ventilator assembly |
SE538864C2 (en) | 2015-05-25 | 2017-01-10 | The Lung Barometry Sweden AB | Method System and Software for Protective Ventilation |
WO2017055959A1 (en) | 2015-09-29 | 2017-04-06 | Koninklijke Philips N.V. | Simultaneous estimation of respiratory mechanics and patient effort via parametric optimization |
EP3364855B1 (en) | 2015-10-19 | 2023-12-20 | Koninklijke Philips N.V. | Anomaly detection device and method for respiratory mechanics parameter estimation |
US10765822B2 (en) | 2016-04-18 | 2020-09-08 | Covidien Lp | Endotracheal tube extubation detection |
AU2018353928B2 (en) | 2017-11-14 | 2019-06-13 | Covidien Lp | Methods and systems for drive pressure spontaneous ventilation |
-
2018
- 2018-10-30 AU AU2018353928A patent/AU2018353928B2/en active Active
- 2018-10-30 US US16/174,945 patent/US11559643B2/en active Active
- 2018-10-30 CN CN201880004211.9A patent/CN110049799B/en active Active
- 2018-10-30 CA CA3046571A patent/CA3046571C/en active Active
- 2018-10-30 US US16/174,483 patent/US10668239B2/en active Active
- 2018-10-30 EP EP20152304.0A patent/EP3656431B1/en active Active
- 2018-10-30 EP EP18801252.0A patent/EP3525857B1/en active Active
- 2018-10-30 WO PCT/US2018/058226 patent/WO2019099185A1/en unknown
-
2020
- 2020-04-27 US US16/859,526 patent/US11931509B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10668239B2 (en) | 2017-11-14 | 2020-06-02 | Covidien Lp | Systems and methods for drive pressure spontaneous ventilation |
US11931509B2 (en) | 2017-11-14 | 2024-03-19 | Covidien Lp | Systems and methods for drive pressure spontaneous ventilation |
US11426546B2 (en) * | 2018-10-12 | 2022-08-30 | Air Liquide Medical Systems | Medical ventilation apparatus with selectors for selecting a patient category and compatible ventilation modes |
WO2022039586A1 (en) | 2020-08-19 | 2022-02-24 | Rosano Garcia Julio Alberto | Assisted breathing apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
EP3656431B1 (en) | 2021-03-31 |
AU2018353928A1 (en) | 2019-05-30 |
US20200254202A1 (en) | 2020-08-13 |
CA3046571C (en) | 2021-01-19 |
US20190143058A1 (en) | 2019-05-16 |
EP3656431A1 (en) | 2020-05-27 |
CN110049799A (en) | 2019-07-23 |
AU2018353928B2 (en) | 2019-06-13 |
US10668239B2 (en) | 2020-06-02 |
CN110049799B (en) | 2022-04-26 |
US11931509B2 (en) | 2024-03-19 |
EP3525857B1 (en) | 2020-01-29 |
CA3046571A1 (en) | 2019-05-23 |
EP3525857A1 (en) | 2019-08-21 |
US11559643B2 (en) | 2023-01-24 |
WO2019099185A1 (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11559643B2 (en) | Systems and methods for ventilation of patients | |
US20120096381A1 (en) | Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment | |
US8783250B2 (en) | Methods and systems for transitory ventilation support | |
US9038633B2 (en) | Ventilator-initiated prompt regarding high delivered tidal volume | |
US10350374B2 (en) | Ventilator system and method | |
US8776792B2 (en) | Methods and systems for volume-targeted minimum pressure-control ventilation | |
US8638200B2 (en) | Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient | |
US20150090258A1 (en) | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation | |
US20130025596A1 (en) | Methods and systems for model-based transformed proportional assist ventilation | |
US20140261424A1 (en) | Methods and systems for phase shifted pressure ventilation | |
US9956365B2 (en) | Lung ventilation apparatus | |
US10758693B2 (en) | Method and system for adjusting a level of ventilatory assist to a patient | |
US20140235959A1 (en) | Methods and algorithms for supervisory closed-loop determination of optimized scheduling of ventilator weaning trials | |
US20140150795A1 (en) | System and method for detecting double triggering with remote monitoring | |
US20210393902A1 (en) | One-touch ventilation mode | |
US11517691B2 (en) | Methods and systems for high pressure controlled ventilation | |
US20150013674A1 (en) | System and method for monitoring and reporting status of a ventilated patient | |
CN118435289A (en) | System and method for ventilator management | |
CN117179733A (en) | Electrical impedance data processing method and device and breathing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANBORN, WARREN G.;REEL/FRAME:047357/0268 Effective date: 20181002 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |