US20190143059A1 - Systems and methods for ventilation of patients - Google Patents

Systems and methods for ventilation of patients Download PDF

Info

Publication number
US20190143059A1
US20190143059A1 US16/174,945 US201816174945A US2019143059A1 US 20190143059 A1 US20190143059 A1 US 20190143059A1 US 201816174945 A US201816174945 A US 201816174945A US 2019143059 A1 US2019143059 A1 US 2019143059A1
Authority
US
United States
Prior art keywords
patient
map
mechanical ventilator
pressure
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/174,945
Other versions
US11559643B2 (en
Inventor
Warren G. Sanborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US16/174,945 priority Critical patent/US11559643B2/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANBORN, WARREN G.
Publication of US20190143059A1 publication Critical patent/US20190143059A1/en
Application granted granted Critical
Publication of US11559643B2 publication Critical patent/US11559643B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/46Resistance or compliance of the lungs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/60Muscle strain, i.e. measured on the user

Definitions

  • VILI ventilator-induced lung injury
  • ARDS acute respiratory distress syndrome
  • Lung-protective ventilation strategies have been developed to reduce the incidence of VILI or the exacerbation of existing lung injury. These strategies include reducing the tidal volume (V T ), reducing the applied insufflation pressure ( ⁇ P), reducing end-inspiratory (peak inspiratory) pressure, and increasing positive end-expiratory pressure (PEEP), as a few examples.
  • These lung-protective strategies (sometimes referred to as LPV for lung protective ventilation) are intended to prevent VILI by reducing the extent of stretch applied to the lungs by the ventilator. LPV may reduce lung injury and reduce mortality for those patients at risk of lung injury on mechanical ventilation.
  • the remainder of this disclosure describes improvements in this field to deliver safe mechanical ventilation based on a unique characterization and visualization of the patient's respiratory status.
  • FIG. 1 illustrates a ventilatory mechanics map with a current patient status identified, according to an embodiment of the present disclosure.
  • FIG. 1A illustrates a ventilatory mechanics map including suggested boundary lines and alert messages, according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a dashboard view of a ventilatory mechanics map including a patient's current status and recent trend, and suggested boundary lines, according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient, according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a spontaneously breathing patient, according to an embodiment of the present disclosure.
  • FIG. 5 illustrates a view of a distending pressure bar, according to an embodiment of the present disclosure.
  • FIG. 6 is schematic diagram illustrating a ventilator ventilating a patient utilizing a respiratory mechanics dashboard, according to an embodiment of the present disclosure.
  • a mechanical ventilator includes a dashboard display that identifies a patient's current ventilatory status within a global or universal ventilatory mechanics map.
  • This dashboard display is dynamically updated with the patient's condition, and shows trends in the patient's ventilation over time.
  • the map identifies suggested safe and unsafe regions of ventilation, and the ventilator can display informational texts, trigger auditory and/or visual alarms, and transmit alarm communications in response to determining that the patient is approaching or has entered an unsafe region.
  • the dashboard view gives caregivers a tool for characterizing and tracking a patient's ventilatory status as it changes over time, so that the mechanical ventilation delivered to the patient can be maintained within a suggested safe zone. Safe ventilation can then be delivered by the ventilator, based on the condition and physiology of an individual patient, rather than based on more generic “lung protective” guidelines. Additionally, different individual patients can be tracked across the same universal map, so that physicians and other caregivers can use the same map as a global reference and context for all of their patients.
  • FIG. 1 An introduction to a ventilatory mechanics map 110 is shown in FIG. 1 .
  • This map 110 provides a visualization of ventilatory mechanics of human patients, normalized by their predicted body weight (as described in the next paragraph).
  • the map 110 is defined by distending pressure (Pdist or ⁇ P) on the x-axis, and normalized tidal volume (mL/kg) on the y-axis.
  • Distending pressure is the total pressure applied to the lungs during an inhalation, above the PEEP level (positive end-expiratory pressure).
  • Distending pressure is the difference in pressure between PEEP and end-inspiratory pressure. Distending pressure may also be referred to as “drive” pressure.
  • the distending pressure is the sum of the pressure applied by the ventilator (Paw, or airway pressure, or also called Pvent) and the pressure applied by the patient's own diaphragmatic efforts (Pmus, or muscle pressure). That is, Pdist equals Paw plus Pmus. If a patient is spontaneously breathing, then the Pmus value will be nonzero. If the patient is not spontaneously breathing (for example, the patient is sedated), then Pmus will be zero, and Pdist equals Paw.
  • Paw airway pressure, or also called Pvent
  • Pmus pressure applied by the patient's own diaphragmatic efforts
  • Normalized tidal volume is the volume of the breath (in mL), per kg of predicted body weight.
  • Predicted body weight is an adjusted weight based on a patient's gender and height, rather than an actual weight of the patient.
  • Predicted body weight (PBW, or sometimes referred to as ideal weight) has been found to be a good predictor of the patient's lung size.
  • PBW can be calculated from a patient's gender and height, as height correlates proportionately with PBW.
  • the map may be created based on other indicators of lung size or ideal weight.
  • dividing the tidal volume of a breath by PBW normalizes the tidal volume across all patient sizes, enabling patients of very different weights and lung sizes to be placed on the same map 110 .
  • Equation 1 The relationship between distending pressure Pdist (on the x-axis) and resulting (normalized) tidal volume VT of the breath (on the y-axis) can be modeled as a linear relationship, as follows in Equation 1:
  • C is the normalized compliance of the patient's respiratory system.
  • increasing the distending pressure (increasing along the x-axis) will produce a tidal volume that increases linearly along an upward line, the line having a slope of 1/C.
  • FIG. 1 Several such lines are drawn in FIG. 1 as exemplary compliance values. These lines radiate out from the origin as spokes 120 , 122 , and 124 a - h.
  • Spoke 124 a is associated with a compliance C of 0.30 (in mL/cmH2O/kg), spoke 124 b is 0.40, 124 c is 0.60, 124 d is 0.80, 124 e is 1.0, 124 f is 1.2, 124 g is 1.6, and 124 h is 2.0.
  • the boundary lines 120 and 122 represent compliance values of 0.20 and 3.33 respectively. These lines define the physiologic region 112 because compliance values below 0.20 and above 3.33 have not been documented in humans. However the chart is not limited to these specific boundary lines 120 and 122 , and can be created with different boundary lines defining different regions.
  • Compliance is a measure of the lung's ability to stretch or expand. A low compliance value indicates that the lungs are stiff, and difficult to stretch. A high compliance value indicates that the lungs expand easily, but may not have enough resistance to recoil during exhalation. A healthy compliance value (normalized by kg) is considered to be about 1.0 (in mL/cmH2O/kg), as indicated by the line 124 e.
  • the scales of the axes on the map 110 are chosen to span a range of breaths that are physiologically possible in human patients.
  • the x-axis ranges from zero (or a nonzero PEEP) to 100 cmH2O
  • the y-axis ranges from zero to 26 mL/kg. In other embodiments, these ranges can be changed to focus on different areas of breathing or ventilation.
  • the scales of the axes on the map 110 , the spoke lines 120 , 122 , and 124 a - h, and the boundaries of the physiologic region 112 were compiled through a thorough review of academic literature to compile pressure, volume, and compliance data from academic studies, research papers, and other publications.
  • the origin (the intersection of the axes) of the map 110 represents both the patient and ventilator at rest, except for the ventilator's delivery of PEEP. That is, the origin of the x-axis should be set at the value of PEEP (which could be zero or nonzero). At the origin, Pmus and Pvent are both zero, and thus tidal volume is also zero. The x-axis then shows the distending pressure above PEEP.
  • PEEP is the positive pressure remaining in the lungs at the end of exhalation (positive end-exhalation pressure). In mechanically ventilated patients, PEEP is typically greater than zero, so that some pressure is maintained to keep the lungs inflated and open.
  • the distending pressure along the x-axis is intended to show the amount of pressure that was needed to deliver the resulting tidal volume (on the y-axis). This is an incremental or additional pressure above PEEP, and thus, the x-axis can be set to begin at PEEP instead of at zero. Alternatively, the x-axis can be set to begin at zero, and PEEP can be subtracted from distending pressure, giving an x-axis value of Pdist minus PEEP. In this case, Equation 1 changes to:
  • the map 110 of FIG. 1 can be interpreted as outlining a pressure-volume space of respiratory activity in humans.
  • FIG. 1 includes a physiologic region 112 , and non-physiologic regions 114 and 116 .
  • the physiologic region 112 is a triangular region with linear boundaries 120 and 122 .
  • the physiologic region 112 begins at a normalized tidal volume of about 6 mL/kg. Below 6 mL/kg is the non-physiologic region 116 . This means that in human patients, a pressure of 30 cmH2O is not expected to deliver a tidal volume less than 6 mL/kg.
  • the distending pressure in the physiologic region 112 ranges from about 2 to 25 cmH2O. This means that in human patients, a tidal volume of 5 mL/kg is produced by distending pressures within a range of about 2 to 25 cmH2O.
  • the non-physiologic regions 114 and 116 are termed “non-physiologic” because the combinations of pressure and volume are not typically found in human patients.
  • an individual patient is plotted on the map 110 to provide a characterization of the patient's respiratory status.
  • a graphical marker such as circle 150 is placed at the location on the map 110 corresponding to the patient's most recent breath (or average of recent breaths).
  • FIG. 1 illustrates a single breath (or average of recent breaths) whose distending pressure was 15 cmH2O and a resulting tidal volume of 6 ml/kg. As indicated by the linear compliance spokes, the compliance indicated by this breath is about 0.40 (ml/cmH2O)/kg (along line 124 b ).
  • the map 110 is characterized by several different regions and boundaries.
  • the map 110 includes vertical lines 130 and 132 that indicate nominal and high pressure limits, respectively, for pressure control or pressure support ventilation.
  • Horizontal lines 134 , 136 , 138 , and 139 indicate tidal volume limits.
  • Line 134 indicates a threshold below which ventilation is likely inadequate; this lowest corner of the physiologic region 112 is identified as the inadequate ventilation region 140 . In this region, normalized tidal volume is so low that it is likely to be insufficient to meet the patient's needs for oxygenation and gas exchange.
  • Horizontal line 136 indicates a lower limit of suggested normalized tidal volume for mechanical ventilation of adult patients.
  • the region 142 between lines 134 and 136 is a region of marginal ventilation for adults, and potentially acceptable ventilation for neonatal patients. In this region, normalized tidal volumes are still potentially too low, but may be acceptable in marginal cases.
  • the horizontal line 138 indicates an upper limit of suggested normalized tidal volume for mechanical ventilation.
  • the region 144 bounded by compliance spoke 1.6, line 138 , line 130 , compliance spoke 0.20, and line 136 is the region 144 of preferred or normal ventilation. Most patients will receive adequate ventilation in this region.
  • horizontal line 139 indicates an upper limit for normalized tidal volume, and the region 146 below that line 139 is a cautionary region of likely over-pressure or over-volume. Above line 139 are normalized tidal volumes that should not be delivered to human patients, to avoid VILI.
  • the ventilatory mechanics map is presented as a dashboard view for display on a mechanical ventilator.
  • the dashboard view shows a patient's current (or recently-averaged) respiratory status, the patient's recent trend in respiratory status, and relevant regions of target ventilation for the patient.
  • FIG. 2 shows a dashboard view 200 including a respiratory mechanics map 210 .
  • An individual patient can be placed on the map 210 based on current or recently-averaged respiratory parameters, and the patient's movement around the map can be plotted or trended over time.
  • An embodiment of a display of patient status and trend is shown in FIG. 2 .
  • a patient's current status is shown by a visual marker such as the large circle 250 .
  • the patient's previous status is identified by smaller circles 252 a - b of diminishing sizes.
  • the current status 250 can be shown in other ways than increased size, such as by using a marker or icon that has a different shape than the trend shapes 252 a - b, blinks or flashes, or is displayed with a different font, outline, or color, or combinations of these options.
  • the trend-indicating markers can also be shown in a variety of different shapes, icons, colors, lines, or similar graphic elements.
  • the patient's trend shows an improving compliance C. That is, for a decreasing distending pressure (moving down from about 16 cmH2O to about 10 cmH2O from marker 252 b to 250 ), the patient is exhibiting increasing normalized tidal volume (moving up from about 6 to about 8 mL/kg).
  • the delivery of additional volume at the same or decreasing pressure is an indication of increasing compliance C.
  • the lungs are able to stretch further at the same pressure, resulting in a larger volume expansion.
  • a target region 248 has been shaded, to identify a preferred region of ventilation for this individual patient.
  • the target region 248 is shown as an example only, and regions with different shapes or sizes can be highlighted for different patients.
  • the region 248 a is bounded by an upper compliance spoke (at normalized compliance value of 1.6), an upper tidal volume limit (at 12 mL/kg) (labeled as boundary 238 ), an upper pressure limit (at 35 cmH2O), a lower compliance spoke (at a value of 0.20), a lower tidal volume limit (at 5 mL/kg), and a lower pressure limit (at 5 cmH2O).
  • This region 248 is a target area for ventilation of the current patient (the patient whose breaths are shown with markers 250 , 252 a, 252 b ). Region 248 was identified based the patient's physiologic condition and/or disease state, and associated upper and lower limits for tidal volume, distending pressure, and compliance, in order to ventilate the patient within these parameters. These boundaries may differ for other patients, based on their physiology, disease state, or other factors.
  • a mechanical ventilator triggers an alert or alarm based on a determination that the patient is approaching or has crossed a boundary on a dashboard 200 or a map 110 , 210 .
  • the normalized tidal volume being delivered to the patient is increasing, moving the patient's location 250 on the map upward toward the boundary 238 .
  • the ventilator can trigger an alert or alarm if the patient's location 250 reaches or crosses the boundary line 238 , or when the patient's location 250 moves within a proximity (such as a buffer distance) of the line 238 .
  • a proximity such as a buffer distance
  • the ventilator is programmed to sound an alarm when the patient's location 250 moves within 0.5 mL/kg (a buffer distance) of the line 238 .
  • the marker 250 can have a first color to indicate that compliance is increasing (such as a green color) or a second color to indicate that compliance is decreasing (such as a red color).
  • the marker could also include an up or down arrow to show recent trend at a glance. These visual cues can help display the patient's state or trend even before reaching a boundary or buffer.
  • the boundary lines that determine the safe areas of ventilation, or that are used for alarms or alerts can be adjusted by a user.
  • any of the boundary lines (such as lines 130 , 132 , 134 , 136 , 138 , and 139 in FIG. 1A , or any compliance spoke boundaries) can be moved, adjusted, or removed by a user based on a patient's current condition, procedure, or treatment.
  • the ventilator then adjusts its alerts or alarms accordingly, so that the alerts or alarms are triggered at the positions on the map desired by the user.
  • An alert or alarm may be any combination of audible, visual, graphic, textual, kinetic, or other messages that inform a clinician to attend to the ventilator and the patient.
  • a ventilator is programmed to adjust a setting in response to such an alert or alarm.
  • the ventilator can adjust a setting by one increment (moving a pressure or volume target down by an incremental amount, for example), while continuing to operate the alert or alarm. This empowers the ventilator to take an automatic step to address the potentially unsafe condition, without providing complete closed-loop control to the ventilator.
  • a ventilator reduces a calculated pressure target by a set amount (such as 5, 10, 15, or 20 cmH2O or other values) in response to an alarm triggered by the dashboard 200 or map 110 , 210 .
  • the map 110 , 210 is used in connection with a closed-loop ventilator system in which the ventilator adjusts settings automatically based on the patient's ventilatory status, and displays the patient's current, recently-averaged, and/or trending respiratory status on a dashboard display 200 such as on the map 210 , 110 .
  • a ventilator that is operated by a closed-loop control system can visually locate the patient on the map 110 , 210 , enabling the clinician to visualize the patient's ventilatory status and confirm the proper operation of the closed-loop controller to maintain the patient in a safe zone.
  • the processor that executes the program instructions for identifying the patient status and displaying it on the map 110 , 210 can be integrated as part of a closed-loop controller, or can be housed in a different system, such as part of the ventilator, the ventilator display, or a separate processor and display.
  • the dashboard 200 featuring the respiratory mechanics map 210 , 110 is a useful tool for a medical caregiver attending to a patient on a mechanical ventilator, and is advantageous in that the same map 210 , 110 can be used for all patients, regardless of gender, age, size, or medical condition.
  • caregivers can become familiar with one map of respiratory mechanics and can quickly identify when an individual patient is moving into an unsafe or problematic region on the map.
  • the map provides the caregiver with a single reference frame in which to evaluate most or all individual patients.
  • FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient.
  • the method includes delivering an inspiratory breath to a patient, at 301 .
  • the method includes measuring the pressure applied by the mechanical ventilator during the breath, at 302 .
  • the measured pressure can be an end-inspiratory pressure measured by the ventilator at the end of the breath, or a pressure target calculated by the ventilator for the breath.
  • the method also includes measuring the total tidal volume delivered by the ventilator to the patient during the breath, at 303 .
  • the method then includes normalizing the tidal volume, such as by dividing by PBW, at 304 .
  • the method includes filtering the pressure and tidal volume values, at 305 .
  • This step could encompass discarding measurements that are outliers, that appear to be non-physiological, that were disturbed (such as by the patient coughing), or fail quality or noise checks.
  • the filter could also or alternatively include adding the measured values to a running average, based on equal or non-equal weights (such as weighting new values more or less than the prior average). Many other methods for filtering measurements taken by a medical ventilator may be applied here.
  • the method includes placing a marker (such as circle 150 ) on the map 110 at the position corresponding to the filtered pressure and volume values.
  • the method of FIG. 3 contemplates plotting a patient's position based on pressure and volume. With those values and the map 110 , 210 , the patient's compliance C can be determined, by identifying the slope (or spoke 124 ) that crosses that position on the map. Knowledge of the patient's compliance C can be useful in assessing the patient's condition, as described above.
  • the method of FIG. 3 is particularly useful in sedated patients, where Pmus is zero (because the patient is not initiating or contributing to breaths), and thus distending pressure equals Pvent, which can be measured directly.
  • the patient's normalized compliance value C can be determined. This can be useful for particular types of patients (such as patients with ARDS), in order to evaluate improving or declining compliance.
  • Pdist (along the x-axis) can be difficult to measure, due to the contribution of Pmus by the patient.
  • Pmus is the pressure applied by the patient's diaphragmatic effort, and this pressure can be difficult to measure.
  • Existing methods for measuring Pmus include invasive use of balloon catheters, or manipulation of a delivered breath to add a pause at the end of inspiration.
  • the dashboard 200 with map 110 , 210 enables Pdist to be determined in actively breathing patients, even with Pmus is unknown. This can be done by measuring the tidal volume and obtaining a measurement or estimate of the patient's compliance C.
  • the patient's compliance C can be measured by applying an end-inspiratory hold during a proportional assist mode of ventilation, such as PAV+ ventilation from Medtronic (Boulder, Colo.).
  • Proportional assist ventilation is particularly well-suited for compliance measurements, as the flow of gas delivered by the ventilator during inspiration is driven by the patient's demand, and the ventilator ceases delivery of flow then the patient voluntarily ends the breath.
  • the ventilator is synchronized with the patient, and amplifies the patient's efforts to breathe.
  • the ventilator ends its delivery of gas when the patient ends his or her diaphragmatic activity, and at that moment at the end of inspiration, Pmus is zero.
  • the ventilator measures the end-inspiratory pressure. With that pressure measurement, and the tidal volume of that same breath, the ventilator can calculate the patient's compliance C according to Equations 1 or 2 above.
  • a method includes delivering an inspiratory breath to a spontaneously breathing patient, at 401 .
  • the method includes measuring the tidal volume delivered during the breath at 402 , and filtering and normalizing the tidal volume at 403 .
  • the method includes placing a marker (such as marker 250 ) on the map 110 , 210 based on the tidal volume and a measurement or estimate of the patient's compliance C.
  • the method includes determining total distending pressure Pdist, at 405 .
  • Total distending pressure can be determined from the x-axis value that corresponds to the position of the marker on the map. Thus, the total distending pressure can be determined even when the patient's contribution Pmus is unknown or not measured directly. Determining distending pressure is very valuable in actively breathing patients, where otherwise measuring Pvent without knowing the contribution of Pmus may result in an under-estimation of Pdist.
  • the method of FIG. 4 enables lung-protective strategies to be employed in spontaneously breathing patients based on distending pressure, taking into account both Pvent and Pmus, rather than addressing lung protective strategies through other values such as tidal volume.
  • total distending pressure Pdist is plotted in bar format as shown in FIG. 5 .
  • a display screen 500 includes a parameter display 580 , a waveform graphical display 582 , and a distending pressure bar 510 .
  • the bar 510 includes pressure values along a scale, such as values from 0 at the left end of the bar to 40, 50, 60, or 70 at the right end (in cmH2O). Different ranges of pressure values are highlighted along the bar to indicate safe and unsafe pressure for the patient's lungs. For example, as shown in FIG. 5 , a safe range 512 is indicated by brackets, shading, hatching, color, or other graphics, between values of 5 and 15 cmH2O.
  • the patient's current distending pressure is indicated by the marker 520 .
  • the marker 520 is positioned in the safe zone 512 , indicating that the total distending pressure that is being applied to the patient's lungs is within a safe range.
  • the ventilator can be programmed to trigger alarms based on a determination that the marker 520 is approaching or has crossed a boundary into an unsafe range.
  • FIG. 6 is a diagram illustrating an aspect of an exemplary ventilator 600 connected to a human patient 650 .
  • Ventilator 600 includes a pneumatic system 602 (also referred to as a pressure generating system 602 ) for circulating breathing gases to and from patient 650 via the ventilation tubing system 630 , which couples the patient 650 to the pneumatic system 602 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 680 .
  • invasive e.g., endotracheal tube, as shown
  • non-invasive e.g., nasal mask
  • Ventilation tubing system 630 may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 650 .
  • a fitting typically referred to as a “wye-fitting” 670 , may be provided to couple a patient interface 680 (as shown, an endotracheal tube) to an inspiratory limb 632 and an expiratory limb 634 of the ventilation tubing system 630 .
  • Pneumatic system 602 may be configured in a variety of ways.
  • pneumatic system 602 includes an expiratory module 608 coupled with the expiratory limb 134 and an inspiratory module 604 coupled with the inspiratory limb 632 .
  • Compressor 606 or other source(s) of pressurized gases e.g., air, oxygen, and/or helium
  • inspiratory module 604 and the expiratory module 608 are coupled with inspiratory module 604 and the expiratory module 608 to provide a gas source for ventilatory support via inspiratory limb 632 .
  • the inspiratory module 604 is configured to deliver gases to the patient 650 according to prescribed ventilatory settings. In some aspects, inspiratory module 604 is configured to provide ventilation according to various breath types, e.g., via volume-control, pressure-control, or via any other suitable breath types.
  • the expiratory module 608 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically, expiratory module 608 is associated with and/or controls an expiratory valve for releasing gases from the patient 650 .
  • the ventilator 600 may also include one or more sensors 607 communicatively coupled to ventilator 600 .
  • the sensors 607 may be located in the pneumatic system 602 , ventilation tubing system 630 , and/or on the patient 650 .
  • the aspect of FIG. 6 illustrates a sensor 607 in pneumatic system 602 .
  • Sensors 607 may communicate with various components of ventilator 600 , e.g., pneumatic system 602 , other sensors 607 , processor 616 , ventilatory mechanics map module 618 , and any other suitable components and/or modules.
  • a module as used herein refers to memory, one or more processors, storage, and/or other components of the type commonly found in command and control computing devices.
  • sensors 607 generate output and send this output to pneumatic system 602 , other sensors 607 , processor 616 , ventilatory mechanics map module 618 , and any other suitable components and/or modules.
  • Sensors 607 may employ any suitable sensory or derivative technique for monitoring one or more patient parameters or ventilator parameters associated with the ventilation of a patient 650 .
  • Sensors 607 may detect changes in patient parameters indicative of patient triggering, for example.
  • Sensors 607 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to the ventilator 600 . Further, sensors 607 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules of ventilator 600 .
  • sensors 607 may be coupled to the inspiratory and/or expiratory modules for detecting changes in, for example, circuit pressure and/or flow.
  • sensors 607 may be affixed to the ventilatory tubing or may be embedded in the tubing itself.
  • sensors 607 may be provided at or near the lungs (or diaphragm) for detecting a pressure in the lungs.
  • sensors 607 may be affixed or embedded in or near wye-fitting 670 and/or patient interface 680 .
  • any sensory device useful for monitoring changes in measurable parameters during ventilatory treatment may be employed in accordance with aspects described herein.
  • the pneumatic system 602 may include a variety of other components, including mixing modules, valves, tubing, accumulators, filters, etc.
  • Controller 610 is operatively coupled with pneumatic system 602 , signal measurement and acquisition systems, and an operator interface 620 that may enable an operator to interact with the ventilator 600 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).
  • the operator interface 620 of the ventilator 600 includes a display 622 communicatively coupled to ventilator 600 .
  • Display 622 provides various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician.
  • the display 622 is configured to include a graphical user interface (GUI).
  • GUI graphical user interface
  • the GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations.
  • other suitable means of communication with the ventilator 600 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device.
  • operator interface 620 may accept commands and input through display 622 .
  • Display 622 may also provide useful information in the form of various ventilatory data regarding the physical condition of a patient 650 .
  • the useful information may be derived by the ventilator 600 , based on data collected by a processor 616 , and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, or other suitable forms of graphic display.
  • patient data may be displayed on the GUI and/or display 622 .
  • patient data may be communicated to a remote monitoring system coupled via any suitable means to the ventilator 600 .
  • the display 622 may display one or more of a current patient effort, a percent support setting, a reduced percent support setting, an increased percent support setting, a notification of a reduced percent support setting, and a notification of a return to a set or desired percent support setting.
  • Controller 610 may include memory 612 , one or more processors 616 , storage 614 , and/or other components of the type commonly found in command and control computing devices. Controller 610 may further include an ventilatory mechanics map module 618 configured to deliver gases to the patient 650 according to prescribed breath types as illustrated in FIG. 6 . In alternative aspects, the ventilatory mechanics map module 618 may be located in other components of the ventilator 600 , such as the pressure generating system 602 (also known as the pneumatic system 602 ).
  • the memory 612 includes non-transitory, computer-readable storage media that stores and/or encodes software (such as computer executable instruction) that is executed by the processor 616 and which controls the operation of the ventilator 600 .
  • the memory 612 includes one or more solid-state storage devices such as flash memory chips.
  • the memory 612 may be mass storage connected to the processor 616 through a mass storage controller (not shown) and a communications bus (not shown).
  • computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
  • the controller includes a respiratory mechanics map module 618 that generates a respiratory mechanics map and/or dashboard view as described in detail throughout the above.
  • the systems and methods described here may be provided in the form of tangible and non-transitory machine-readable medium or media (such as a hard disk drive, hardware memory, etc.) having instructions recorded thereon for execution by a processor or computer.
  • the set of instructions may include various commands that instruct the computer or processor to perform specific operations such as the methods and processes of the various embodiments described here.
  • the set of instructions may be in the form of a software program or application.
  • the computer storage media may include volatile and non-volatile media, and removable and non-removable media, for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • the computer storage media may include, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic disk storage, or any other hardware medium which may be used to store desired information and that may be accessed by components of the system.
  • Components of the system may communicate with each other via wired or wireless communication.
  • the components may be separate from each other, or various combinations of components may be integrated together into a medical monitor or processor, or contained within a workstation with standard computer hardware (for example, processors, circuitry, logic circuits, memory, and the like).
  • the system may include processing devices such as microprocessors, microcontrollers, integrated circuits, control units, storage media, and other hardware.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A mechanical ventilator is provided that includes a dashboard display identifying a patient's current ventilatory status within a global or universal ventilatory mechanics map. This dashboard display is dynamically updated with the patient's condition, and shows trends in the patient's ventilation over time. The map identifies suggested safe and unsafe regions of ventilation for the patient, and the ventilator can display informational texts, trigger auditory and/or visual alarms, and transmit alarm communications in response to determining that the patient is approaching or has entered an unsafe region.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Serial No. 62/725,490, filed Aug. 31, 2018, and claims priority to U.S. Provisional Application Ser. No. 62/586,077, filed Nov. 14, 2017, the complete disclosures of which are hereby incorporated herein by reference in their entireties.
  • SUMMARY
  • Patients undergoing positive pressure mechanical ventilation are at risk of experiencing ventilator-induced lung injury (VILI). VILI can be caused by mechanical ventilation that applies excessive pressure or delivers excessive volume to the lungs, causing stress or strain to lung tissue. This excess stress or strain can be particularly severe in patients with fragile or underdeveloped lungs, such as very young or premature infants, or in patients with lung disease, such as acute respiratory distress syndrome (ARDS).
  • Lung-protective ventilation strategies have been developed to reduce the incidence of VILI or the exacerbation of existing lung injury. These strategies include reducing the tidal volume (VT), reducing the applied insufflation pressure (ΔP), reducing end-inspiratory (peak inspiratory) pressure, and increasing positive end-expiratory pressure (PEEP), as a few examples. These lung-protective strategies (sometimes referred to as LPV for lung protective ventilation) are intended to prevent VILI by reducing the extent of stretch applied to the lungs by the ventilator. LPV may reduce lung injury and reduce mortality for those patients at risk of lung injury on mechanical ventilation.
  • However, these strategies can overcompensate for the risk of VILI, and can deliver tidal volumes that are too low for some patients. The strategies are based on collected data and experiences across populations of patients, and they provide generic guidelines that are not tailored to an individual patient. They can also fail to account for the additional diaphragmatic efforts, and resulting pressure and volume, that occur with spontaneously breathing patients.
  • The remainder of this disclosure describes improvements in this field to deliver safe mechanical ventilation based on a unique characterization and visualization of the patient's respiratory status.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a ventilatory mechanics map with a current patient status identified, according to an embodiment of the present disclosure.
  • FIG. 1A illustrates a ventilatory mechanics map including suggested boundary lines and alert messages, according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a dashboard view of a ventilatory mechanics map including a patient's current status and recent trend, and suggested boundary lines, according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient, according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a spontaneously breathing patient, according to an embodiment of the present disclosure.
  • FIG. 5 illustrates a view of a distending pressure bar, according to an embodiment of the present disclosure.
  • FIG. 6 is schematic diagram illustrating a ventilator ventilating a patient utilizing a respiratory mechanics dashboard, according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The present disclosure relates to mechanical ventilation, and in particular to systems and methods for providing safe ventilation to individual patients. In an embodiment, a mechanical ventilator includes a dashboard display that identifies a patient's current ventilatory status within a global or universal ventilatory mechanics map. This dashboard display is dynamically updated with the patient's condition, and shows trends in the patient's ventilation over time. The map identifies suggested safe and unsafe regions of ventilation, and the ventilator can display informational texts, trigger auditory and/or visual alarms, and transmit alarm communications in response to determining that the patient is approaching or has entered an unsafe region. The dashboard view gives caregivers a tool for characterizing and tracking a patient's ventilatory status as it changes over time, so that the mechanical ventilation delivered to the patient can be maintained within a suggested safe zone. Safe ventilation can then be delivered by the ventilator, based on the condition and physiology of an individual patient, rather than based on more generic “lung protective” guidelines. Additionally, different individual patients can be tracked across the same universal map, so that physicians and other caregivers can use the same map as a global reference and context for all of their patients.
  • An introduction to a ventilatory mechanics map 110 is shown in FIG. 1. This map 110 provides a visualization of ventilatory mechanics of human patients, normalized by their predicted body weight (as described in the next paragraph). The map 110 is defined by distending pressure (Pdist or ΔP) on the x-axis, and normalized tidal volume (mL/kg) on the y-axis. Distending pressure is the total pressure applied to the lungs during an inhalation, above the PEEP level (positive end-expiratory pressure). Distending pressure is the difference in pressure between PEEP and end-inspiratory pressure. Distending pressure may also be referred to as “drive” pressure. During mechanical ventilation, the distending pressure is the sum of the pressure applied by the ventilator (Paw, or airway pressure, or also called Pvent) and the pressure applied by the patient's own diaphragmatic efforts (Pmus, or muscle pressure). That is, Pdist equals Paw plus Pmus. If a patient is spontaneously breathing, then the Pmus value will be nonzero. If the patient is not spontaneously breathing (for example, the patient is sedated), then Pmus will be zero, and Pdist equals Paw.
  • Normalized tidal volume is the volume of the breath (in mL), per kg of predicted body weight. Predicted body weight is an adjusted weight based on a patient's gender and height, rather than an actual weight of the patient. Predicted body weight (PBW, or sometimes referred to as ideal weight) has been found to be a good predictor of the patient's lung size. PBW can be calculated from a patient's gender and height, as height correlates proportionately with PBW. Though PBW is used in this example, the map may be created based on other indicators of lung size or ideal weight. On the y-axis of the map 110, dividing the tidal volume of a breath by PBW normalizes the tidal volume across all patient sizes, enabling patients of very different weights and lung sizes to be placed on the same map 110.
  • The relationship between distending pressure Pdist (on the x-axis) and resulting (normalized) tidal volume VT of the breath (on the y-axis) can be modeled as a linear relationship, as follows in Equation 1:

  • P dist =V T /C   Eq. 1
  • where C is the normalized compliance of the patient's respiratory system. In this model, for a given compliance value C, increasing the distending pressure (increasing along the x-axis) will produce a tidal volume that increases linearly along an upward line, the line having a slope of 1/C. Several such lines are drawn in FIG. 1 as exemplary compliance values. These lines radiate out from the origin as spokes 120, 122, and 124 a-h. Spoke 124 a is associated with a compliance C of 0.30 (in mL/cmH2O/kg), spoke 124 b is 0.40, 124 c is 0.60, 124 d is 0.80, 124 e is 1.0, 124 f is 1.2, 124 g is 1.6, and 124 h is 2.0. The boundary lines 120 and 122 represent compliance values of 0.20 and 3.33 respectively. These lines define the physiologic region 112 because compliance values below 0.20 and above 3.33 have not been documented in humans. However the chart is not limited to these specific boundary lines 120 and 122, and can be created with different boundary lines defining different regions.
  • Compliance is a measure of the lung's ability to stretch or expand. A low compliance value indicates that the lungs are stiff, and difficult to stretch. A high compliance value indicates that the lungs expand easily, but may not have enough resistance to recoil during exhalation. A healthy compliance value (normalized by kg) is considered to be about 1.0 (in mL/cmH2O/kg), as indicated by the line 124 e.
  • The scales of the axes on the map 110 are chosen to span a range of breaths that are physiologically possible in human patients. For example, in FIG. 1, the x-axis ranges from zero (or a nonzero PEEP) to 100 cmH2O, and the y-axis ranges from zero to 26 mL/kg. In other embodiments, these ranges can be changed to focus on different areas of breathing or ventilation. The scales of the axes on the map 110, the spoke lines 120, 122, and 124 a-h, and the boundaries of the physiologic region 112 were compiled through a thorough review of academic literature to compile pressure, volume, and compliance data from academic studies, research papers, and other publications.
  • The origin (the intersection of the axes) of the map 110 represents both the patient and ventilator at rest, except for the ventilator's delivery of PEEP. That is, the origin of the x-axis should be set at the value of PEEP (which could be zero or nonzero). At the origin, Pmus and Pvent are both zero, and thus tidal volume is also zero. The x-axis then shows the distending pressure above PEEP.
  • PEEP is the positive pressure remaining in the lungs at the end of exhalation (positive end-exhalation pressure). In mechanically ventilated patients, PEEP is typically greater than zero, so that some pressure is maintained to keep the lungs inflated and open. The distending pressure along the x-axis is intended to show the amount of pressure that was needed to deliver the resulting tidal volume (on the y-axis). This is an incremental or additional pressure above PEEP, and thus, the x-axis can be set to begin at PEEP instead of at zero. Alternatively, the x-axis can be set to begin at zero, and PEEP can be subtracted from distending pressure, giving an x-axis value of Pdist minus PEEP. In this case, Equation 1 changes to:

  • P dist−PEEP=V T /C   Eq. 2
  • The map 110 of FIG. 1 can be interpreted as outlining a pressure-volume space of respiratory activity in humans. In particular, FIG. 1 includes a physiologic region 112, and non-physiologic regions 114 and 116. The physiologic region 112 is a triangular region with linear boundaries 120 and 122. As an example, for a distending pressure of 30 cmH2O (above PEEP), the physiologic region 112 begins at a normalized tidal volume of about 6 mL/kg. Below 6 mL/kg is the non-physiologic region 116. This means that in human patients, a pressure of 30 cmH2O is not expected to deliver a tidal volume less than 6 mL/kg. As another example, for a tidal volume of 5 mL/kg, the distending pressure in the physiologic region 112 ranges from about 2 to 25 cmH2O. This means that in human patients, a tidal volume of 5 mL/kg is produced by distending pressures within a range of about 2 to 25 cmH2O. On the other sides of the boundary lines 120 and 122 are the non-physiologic regions 114 and 116. These are termed “non-physiologic” because the combinations of pressure and volume are not typically found in human patients.
  • In an embodiment, an individual patient is plotted on the map 110 to provide a characterization of the patient's respiratory status. For example, a graphical marker such as circle 150 is placed at the location on the map 110 corresponding to the patient's most recent breath (or average of recent breaths). Specifically, FIG. 1 illustrates a single breath (or average of recent breaths) whose distending pressure was 15 cmH2O and a resulting tidal volume of 6 ml/kg. As indicated by the linear compliance spokes, the compliance indicated by this breath is about 0.40 (ml/cmH2O)/kg (along line 124 b).
  • Horizontal and vertical limits can be imposed on the map to indicate boundaries of safe ventilation. For example, turning to FIG. 1A, the map 110 is characterized by several different regions and boundaries. The map 110 includes vertical lines 130 and 132 that indicate nominal and high pressure limits, respectively, for pressure control or pressure support ventilation. Horizontal lines 134, 136, 138, and 139 indicate tidal volume limits. Line 134 indicates a threshold below which ventilation is likely inadequate; this lowest corner of the physiologic region 112 is identified as the inadequate ventilation region 140. In this region, normalized tidal volume is so low that it is likely to be insufficient to meet the patient's needs for oxygenation and gas exchange. Horizontal line 136 indicates a lower limit of suggested normalized tidal volume for mechanical ventilation of adult patients. The region 142 between lines 134 and 136 is a region of marginal ventilation for adults, and potentially acceptable ventilation for neonatal patients. In this region, normalized tidal volumes are still potentially too low, but may be acceptable in marginal cases.
  • The horizontal line 138 indicates an upper limit of suggested normalized tidal volume for mechanical ventilation. The region 144 bounded by compliance spoke 1.6, line 138, line 130, compliance spoke 0.20, and line 136 is the region 144 of preferred or normal ventilation. Most patients will receive adequate ventilation in this region. Finally, horizontal line 139 indicates an upper limit for normalized tidal volume, and the region 146 below that line 139 is a cautionary region of likely over-pressure or over-volume. Above line 139 are normalized tidal volumes that should not be delivered to human patients, to avoid VILI.
  • In an embodiment, the ventilatory mechanics map is presented as a dashboard view for display on a mechanical ventilator. The dashboard view shows a patient's current (or recently-averaged) respiratory status, the patient's recent trend in respiratory status, and relevant regions of target ventilation for the patient. An example is shown in FIG. 2, which shows a dashboard view 200 including a respiratory mechanics map 210. An individual patient can be placed on the map 210 based on current or recently-averaged respiratory parameters, and the patient's movement around the map can be plotted or trended over time. An embodiment of a display of patient status and trend is shown in FIG. 2. In this embodiment, a patient's current status is shown by a visual marker such as the large circle 250. The patient's previous status is identified by smaller circles 252 a-b of diminishing sizes. The current status 250 can be shown in other ways than increased size, such as by using a marker or icon that has a different shape than the trend shapes 252 a-b, blinks or flashes, or is displayed with a different font, outline, or color, or combinations of these options. The trend-indicating markers can also be shown in a variety of different shapes, icons, colors, lines, or similar graphic elements.
  • In the example shown in FIG. 2, the patient's trend shows an improving compliance C. That is, for a decreasing distending pressure (moving down from about 16 cmH2O to about 10 cmH2O from marker 252 b to 250), the patient is exhibiting increasing normalized tidal volume (moving up from about 6 to about 8 mL/kg). The delivery of additional volume at the same or decreasing pressure is an indication of increasing compliance C. As compliance increases, the lungs are able to stretch further at the same pressure, resulting in a larger volume expansion.
  • In FIG. 2, a target region 248 has been shaded, to identify a preferred region of ventilation for this individual patient. The target region 248 is shown as an example only, and regions with different shapes or sizes can be highlighted for different patients. In FIG. 2, the region 248 a is bounded by an upper compliance spoke (at normalized compliance value of 1.6), an upper tidal volume limit (at 12 mL/kg) (labeled as boundary 238), an upper pressure limit (at 35 cmH2O), a lower compliance spoke (at a value of 0.20), a lower tidal volume limit (at 5 mL/kg), and a lower pressure limit (at 5 cmH2O). This region 248 is a target area for ventilation of the current patient (the patient whose breaths are shown with markers 250, 252 a, 252 b). Region 248 was identified based the patient's physiologic condition and/or disease state, and associated upper and lower limits for tidal volume, distending pressure, and compliance, in order to ventilate the patient within these parameters. These boundaries may differ for other patients, based on their physiology, disease state, or other factors.
  • In an embodiment, a mechanical ventilator triggers an alert or alarm based on a determination that the patient is approaching or has crossed a boundary on a dashboard 200 or a map 110, 210. For example, in the example shown in FIG. 2, the normalized tidal volume being delivered to the patient is increasing, moving the patient's location 250 on the map upward toward the boundary 238. The ventilator can trigger an alert or alarm if the patient's location 250 reaches or crosses the boundary line 238, or when the patient's location 250 moves within a proximity (such as a buffer distance) of the line 238. As an example, referring to FIG. 2, the ventilator is programmed to sound an alarm when the patient's location 250 moves within 0.5 mL/kg (a buffer distance) of the line 238. As an example, the marker 250 can have a first color to indicate that compliance is increasing (such as a green color) or a second color to indicate that compliance is decreasing (such as a red color). The marker could also include an up or down arrow to show recent trend at a glance. These visual cues can help display the patient's state or trend even before reaching a boundary or buffer.
  • In an embodiment, the boundary lines that determine the safe areas of ventilation, or that are used for alarms or alerts, can be adjusted by a user. For example, any of the boundary lines (such as lines 130, 132, 134, 136, 138, and 139 in FIG. 1A, or any compliance spoke boundaries) can be moved, adjusted, or removed by a user based on a patient's current condition, procedure, or treatment. The ventilator then adjusts its alerts or alarms accordingly, so that the alerts or alarms are triggered at the positions on the map desired by the user. An alert or alarm may be any combination of audible, visual, graphic, textual, kinetic, or other messages that inform a clinician to attend to the ventilator and the patient.
  • In an embodiment, a ventilator is programmed to adjust a setting in response to such an alert or alarm. For example, the ventilator can adjust a setting by one increment (moving a pressure or volume target down by an incremental amount, for example), while continuing to operate the alert or alarm. This empowers the ventilator to take an automatic step to address the potentially unsafe condition, without providing complete closed-loop control to the ventilator. In an embodiment, a ventilator reduces a calculated pressure target by a set amount (such as 5, 10, 15, or 20 cmH2O or other values) in response to an alarm triggered by the dashboard 200 or map 110, 210.
  • In another embodiment, the map 110, 210 is used in connection with a closed-loop ventilator system in which the ventilator adjusts settings automatically based on the patient's ventilatory status, and displays the patient's current, recently-averaged, and/or trending respiratory status on a dashboard display 200 such as on the map 210, 110. A ventilator that is operated by a closed-loop control system can visually locate the patient on the map 110, 210, enabling the clinician to visualize the patient's ventilatory status and confirm the proper operation of the closed-loop controller to maintain the patient in a safe zone. The processor that executes the program instructions for identifying the patient status and displaying it on the map 110, 210 can be integrated as part of a closed-loop controller, or can be housed in a different system, such as part of the ventilator, the ventilator display, or a separate processor and display.
  • The dashboard 200 featuring the respiratory mechanics map 210, 110 is a useful tool for a medical caregiver attending to a patient on a mechanical ventilator, and is advantageous in that the same map 210, 110 can be used for all patients, regardless of gender, age, size, or medical condition. As a result, caregivers can become familiar with one map of respiratory mechanics and can quickly identify when an individual patient is moving into an unsafe or problematic region on the map. The map provides the caregiver with a single reference frame in which to evaluate most or all individual patients.
  • FIG. 3 is a flowchart depicting a method of utilizing a respiratory mechanics map to deliver ventilation to a patient. According to an embodiment, the method includes delivering an inspiratory breath to a patient, at 301. The method includes measuring the pressure applied by the mechanical ventilator during the breath, at 302. The measured pressure can be an end-inspiratory pressure measured by the ventilator at the end of the breath, or a pressure target calculated by the ventilator for the breath. The method also includes measuring the total tidal volume delivered by the ventilator to the patient during the breath, at 303. The method then includes normalizing the tidal volume, such as by dividing by PBW, at 304. The method includes filtering the pressure and tidal volume values, at 305. This step could encompass discarding measurements that are outliers, that appear to be non-physiological, that were disturbed (such as by the patient coughing), or fail quality or noise checks. The filter could also or alternatively include adding the measured values to a running average, based on equal or non-equal weights (such as weighting new values more or less than the prior average). Many other methods for filtering measurements taken by a medical ventilator may be applied here. Finally, at 306, the method includes placing a marker (such as circle 150) on the map 110 at the position corresponding to the filtered pressure and volume values.
  • The method of FIG. 3 contemplates plotting a patient's position based on pressure and volume. With those values and the map 110, 210, the patient's compliance C can be determined, by identifying the slope (or spoke 124) that crosses that position on the map. Knowledge of the patient's compliance C can be useful in assessing the patient's condition, as described above. The method of FIG. 3 is particularly useful in sedated patients, where Pmus is zero (because the patient is not initiating or contributing to breaths), and thus distending pressure equals Pvent, which can be measured directly. When the patient is plotted on the map 110, 210, the patient's normalized compliance value C can be determined. This can be useful for particular types of patients (such as patients with ARDS), in order to evaluate improving or declining compliance.
  • However, with spontaneously breathing patients, distending pressure Pdist (along the x-axis) can be difficult to measure, due to the contribution of Pmus by the patient. Pmus is the pressure applied by the patient's diaphragmatic effort, and this pressure can be difficult to measure. Existing methods for measuring Pmus include invasive use of balloon catheters, or manipulation of a delivered breath to add a pause at the end of inspiration.
  • Notably, the dashboard 200 with map 110, 210 enables Pdist to be determined in actively breathing patients, even with Pmus is unknown. This can be done by measuring the tidal volume and obtaining a measurement or estimate of the patient's compliance C. The patient's compliance C can be measured by applying an end-inspiratory hold during a proportional assist mode of ventilation, such as PAV+ ventilation from Medtronic (Boulder, Colo.). Proportional assist ventilation is particularly well-suited for compliance measurements, as the flow of gas delivered by the ventilator during inspiration is driven by the patient's demand, and the ventilator ceases delivery of flow then the patient voluntarily ends the breath. The ventilator is synchronized with the patient, and amplifies the patient's efforts to breathe. As a result, the ventilator ends its delivery of gas when the patient ends his or her diaphragmatic activity, and at that moment at the end of inspiration, Pmus is zero. During a very brief end-inspiratory hold while Pmus is zero, the ventilator measures the end-inspiratory pressure. With that pressure measurement, and the tidal volume of that same breath, the ventilator can calculate the patient's compliance C according to Equations 1 or 2 above. For more information on this method, see U.S. Provisional Application No. 62/586,077, the contents of which area incorporated herein by reference.
  • With a measurement or estimate of the patient's compliance C, the patient can be located on the map 110, 210 following the method of FIG. 4, in an embodiment. According to this embodiment, a method includes delivering an inspiratory breath to a spontaneously breathing patient, at 401. The method includes measuring the tidal volume delivered during the breath at 402, and filtering and normalizing the tidal volume at 403. At 404, the method includes placing a marker (such as marker 250) on the map 110, 210 based on the tidal volume and a measurement or estimate of the patient's compliance C. Finally, the method includes determining total distending pressure Pdist, at 405. Total distending pressure can be determined from the x-axis value that corresponds to the position of the marker on the map. Thus, the total distending pressure can be determined even when the patient's contribution Pmus is unknown or not measured directly. Determining distending pressure is very valuable in actively breathing patients, where otherwise measuring Pvent without knowing the contribution of Pmus may result in an under-estimation of Pdist. The method of FIG. 4 enables lung-protective strategies to be employed in spontaneously breathing patients based on distending pressure, taking into account both Pvent and Pmus, rather than addressing lung protective strategies through other values such as tidal volume.
  • In an embodiment, total distending pressure Pdist is plotted in bar format as shown in FIG. 5. In the embodiment of FIG. 5, a display screen 500 includes a parameter display 580, a waveform graphical display 582, and a distending pressure bar 510. The bar 510 includes pressure values along a scale, such as values from 0 at the left end of the bar to 40, 50, 60, or 70 at the right end (in cmH2O). Different ranges of pressure values are highlighted along the bar to indicate safe and unsafe pressure for the patient's lungs. For example, as shown in FIG. 5, a safe range 512 is indicated by brackets, shading, hatching, color, or other graphics, between values of 5 and 15 cmH2O. To the left of the safe range 512 is an unsafe range 514 of underpressure (between 0 and 5 cmH2O), and to the right of the safe range is an unsafe range of 516 (between 15 and 20 cmH2O), followed to the right by an over-pressure limit 518 (set at 20 cmH2O). The patient's current distending pressure, as determined from the map 110, 210 (for example, by the method of FIG. 3 or 4) is indicated by the marker 520. In FIG. 5, the marker 520 is positioned in the safe zone 512, indicating that the total distending pressure that is being applied to the patient's lungs is within a safe range. The ventilator can be programmed to trigger alarms based on a determination that the marker 520 is approaching or has crossed a boundary into an unsafe range.
  • FIG. 6 is a diagram illustrating an aspect of an exemplary ventilator 600 connected to a human patient 650. Ventilator 600 includes a pneumatic system 602 (also referred to as a pressure generating system 602) for circulating breathing gases to and from patient 650 via the ventilation tubing system 630, which couples the patient 650 to the pneumatic system 602 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 680.
  • Ventilation tubing system 630 (or patient circuit 630) may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 650. In a two-limb aspect, a fitting, typically referred to as a “wye-fitting” 670, may be provided to couple a patient interface 680 (as shown, an endotracheal tube) to an inspiratory limb 632 and an expiratory limb 634 of the ventilation tubing system 630.
  • Pneumatic system 602 may be configured in a variety of ways. In the present example, pneumatic system 602 includes an expiratory module 608 coupled with the expiratory limb 134 and an inspiratory module 604 coupled with the inspiratory limb 632. Compressor 606 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 604 and the expiratory module 608 to provide a gas source for ventilatory support via inspiratory limb 632.
  • The inspiratory module 604 is configured to deliver gases to the patient 650 according to prescribed ventilatory settings. In some aspects, inspiratory module 604 is configured to provide ventilation according to various breath types, e.g., via volume-control, pressure-control, or via any other suitable breath types.
  • The expiratory module 608 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically, expiratory module 608 is associated with and/or controls an expiratory valve for releasing gases from the patient 650.
  • The ventilator 600 may also include one or more sensors 607 communicatively coupled to ventilator 600. The sensors 607 may be located in the pneumatic system 602, ventilation tubing system 630, and/or on the patient 650. The aspect of FIG. 6 illustrates a sensor 607 in pneumatic system 602.
  • Sensors 607 may communicate with various components of ventilator 600, e.g., pneumatic system 602, other sensors 607, processor 616, ventilatory mechanics map module 618, and any other suitable components and/or modules. A module as used herein refers to memory, one or more processors, storage, and/or other components of the type commonly found in command and control computing devices.
  • In one aspect, sensors 607 generate output and send this output to pneumatic system 602, other sensors 607, processor 616, ventilatory mechanics map module 618, and any other suitable components and/or modules. Sensors 607 may employ any suitable sensory or derivative technique for monitoring one or more patient parameters or ventilator parameters associated with the ventilation of a patient 650. Sensors 607 may detect changes in patient parameters indicative of patient triggering, for example. Sensors 607 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to the ventilator 600. Further, sensors 607 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules of ventilator 600. For example, sensors 607 may be coupled to the inspiratory and/or expiratory modules for detecting changes in, for example, circuit pressure and/or flow. In other examples, sensors 607 may be affixed to the ventilatory tubing or may be embedded in the tubing itself. According to some aspects, sensors 607 may be provided at or near the lungs (or diaphragm) for detecting a pressure in the lungs. Additionally or alternatively, sensors 607 may be affixed or embedded in or near wye-fitting 670 and/or patient interface 680. Indeed, any sensory device useful for monitoring changes in measurable parameters during ventilatory treatment may be employed in accordance with aspects described herein.
  • The pneumatic system 602 may include a variety of other components, including mixing modules, valves, tubing, accumulators, filters, etc. Controller 610 is operatively coupled with pneumatic system 602, signal measurement and acquisition systems, and an operator interface 620 that may enable an operator to interact with the ventilator 600 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).
  • In one aspect, the operator interface 620 of the ventilator 600 includes a display 622 communicatively coupled to ventilator 600. Display 622 provides various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician. In one aspect, the display 622 is configured to include a graphical user interface (GUI). The GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations. Alternatively, other suitable means of communication with the ventilator 600 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device. Thus, operator interface 620 may accept commands and input through display 622. Display 622 may also provide useful information in the form of various ventilatory data regarding the physical condition of a patient 650. The useful information may be derived by the ventilator 600, based on data collected by a processor 616, and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, or other suitable forms of graphic display. For example, patient data may be displayed on the GUI and/or display 622. Additionally or alternatively, patient data may be communicated to a remote monitoring system coupled via any suitable means to the ventilator 600. In one aspect, the display 622 may display one or more of a current patient effort, a percent support setting, a reduced percent support setting, an increased percent support setting, a notification of a reduced percent support setting, and a notification of a return to a set or desired percent support setting.
  • Controller 610 may include memory 612, one or more processors 616, storage 614, and/or other components of the type commonly found in command and control computing devices. Controller 610 may further include an ventilatory mechanics map module 618 configured to deliver gases to the patient 650 according to prescribed breath types as illustrated in FIG. 6. In alternative aspects, the ventilatory mechanics map module 618 may be located in other components of the ventilator 600, such as the pressure generating system 602 (also known as the pneumatic system 602).
  • The memory 612 includes non-transitory, computer-readable storage media that stores and/or encodes software (such as computer executable instruction) that is executed by the processor 616 and which controls the operation of the ventilator 600. In an aspect, the memory 612 includes one or more solid-state storage devices such as flash memory chips. In an alternative aspect, the memory 612 may be mass storage connected to the processor 616 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 616. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
  • In an embodiment, the controller includes a respiratory mechanics map module 618 that generates a respiratory mechanics map and/or dashboard view as described in detail throughout the above.
  • The systems and methods described here may be provided in the form of tangible and non-transitory machine-readable medium or media (such as a hard disk drive, hardware memory, etc.) having instructions recorded thereon for execution by a processor or computer. The set of instructions may include various commands that instruct the computer or processor to perform specific operations such as the methods and processes of the various embodiments described here. The set of instructions may be in the form of a software program or application. The computer storage media may include volatile and non-volatile media, and removable and non-removable media, for storage of information such as computer-readable instructions, data structures, program modules or other data. The computer storage media may include, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic disk storage, or any other hardware medium which may be used to store desired information and that may be accessed by components of the system. Components of the system may communicate with each other via wired or wireless communication. The components may be separate from each other, or various combinations of components may be integrated together into a medical monitor or processor, or contained within a workstation with standard computer hardware (for example, processors, circuitry, logic circuits, memory, and the like). The system may include processing devices such as microprocessors, microcontrollers, integrated circuits, control units, storage media, and other hardware.
  • Although exemplary embodiments have been described and illustrated, it should be understood that changes and modifications to these exemplary embodiments are also within the intended scope of this disclosure.

Claims (20)

What is claimed is:
1. A method for operating a positive pressure mechanical ventilator, comprising:
delivering, with a mechanical ventilator, an inspiration breath to a patient;
displaying, on a display screen of the mechanical ventilator, a dashboard comprising a ventilatory mechanics map having axes of tidal volume and distending pressure;
placing on the map a marker indicating a first location of first patient data from the inspiration breath or recently averaged breaths;
moving the marker on the map to a second location of second patient data from subsequent breaths delivered to the patient; and
displaying on the map a history of recent locations of the marker.
2. The method of claim 1, wherein the first patient data represents a tidal volume measurement and a distending pressure measurement taken during one of the inspiration breath or recently averaged breaths.
3. The method of claim 1, wherein the second patient data represents at least one tidal volume measurement and a distending pressure measurement taken during subsequent breaths.
4. The method of claim 1, wherein the map outlines a pressure-volume space of respiratory activity for the patient.
5. The method of claim 1, wherein the map identifies boundaries of safe ventilation for the patient.
6. The method of claim 5, further comprising:
triggering an alert or alarm when patient data crosses a boundary of safe ventilation.
7. The method of claim 5, wherein one or more boundaries of safe ventilation are adjustable by a user.
8. The method of claim 1, wherein the history of recent locations of the marker are indicative of at least one trend of respiratory activity for the patient.
9. The method of claim 1, wherein the map identifies a preferred region of ventilation for the patient.
10. The method of claim 9, wherein the preferred region of ventilation is determined based on one or more of:
a physiologic condition of the patient,
a disease state of the patient,
an upper tidal volume limit for the patient,
a lower tidal volume limit for the patient,
an upper distending pressure limit for the patient,
a lower distending pressure limit for the patient, or
a compliance for the patient.
11. A positive pressure mechanical ventilator, comprising:
a pneumatic system;
a display screen; and
a controller comprising at least one processor and at least one memory storing computer-executable instructions that when executed by the at least one processor cause the mechanical ventilator to:
deliver an inspiration breath to a patient;
display, on the display screen, a dashboard comprising a ventilatory mechanics map having axes of tidal volume and distending pressure;
place on the map a marker indicating a first location of first patient data from the inspiration breath or recently averaged breaths;
move the marker on the map to a second location of second patient data from subsequent breaths delivered to the patient; and
displaying on the map a history of recent locations of the marker.
12. The mechanical ventilator of claim 11, wherein the first patient data represents a tidal volume measurement and a distending pressure measurement taken during one of the inspiration breath or recently averaged breaths.
13. The mechanical ventilator of claim 11, wherein the second patient data represents at least one tidal volume measurement and a distending pressure measurement taken during subsequent breaths.
14. The mechanical ventilator of claim 11, wherein the map outlines a pressure-volume space of respiratory activity for the patient.
15. The mechanical ventilator of claim 11, wherein the map identifies boundaries of safe ventilation for the patient.
16. The mechanical ventilator of claim 15, the computer-executable instructions further causing the mechanical ventilator to:
trigger an alert or alarm when patient data crosses a boundary of safe ventilation.
17. The mechanical ventilator of claim 11, wherein the history of recent locations of the marker are indicative of at least one trend of respiratory activity for the patient.
18. The mechanical ventilator of claim 11, wherein the map identifies a preferred region of ventilation for the patient.
19. The mechanical ventilator of claim 18, wherein the preferred region of ventilation is determined based on one or more of:
a physiologic condition of the patient,
a disease state of the patient,
an upper tidal volume limit for the patient,
a lower tidal volume limit for the patient,
an upper distending pressure limit for the patient,
a lower distending pressure limit for the patient, or
a compliance for the patient.
20. A graphical user interface communicatively coupled to a controller of a positive pressure mechanical ventilator, the controller causing the graphical user interface to provide a dashboard, comprising:
providing a ventilatory mechanics map having axes of tidal volume and distending pressure;
receiving first patient data for at least one inspiration breath delivered to a patient by the mechanical ventilator;
placing on the map a marker indicating a first location of the first patient data;
receiving second patient data for at least one subsequent breath delivered to the patient by the mechanical ventilator;
moving the marker on the map to a second location of the second patient data; and
displaying on the map a history of recent locations of the marker.
US16/174,945 2017-11-14 2018-10-30 Systems and methods for ventilation of patients Active 2041-11-25 US11559643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/174,945 US11559643B2 (en) 2017-11-14 2018-10-30 Systems and methods for ventilation of patients

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762586077P 2017-11-14 2017-11-14
US201862725490P 2018-08-31 2018-08-31
US16/174,945 US11559643B2 (en) 2017-11-14 2018-10-30 Systems and methods for ventilation of patients

Publications (2)

Publication Number Publication Date
US20190143059A1 true US20190143059A1 (en) 2019-05-16
US11559643B2 US11559643B2 (en) 2023-01-24

Family

ID=64277936

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/174,945 Active 2041-11-25 US11559643B2 (en) 2017-11-14 2018-10-30 Systems and methods for ventilation of patients
US16/174,483 Active US10668239B2 (en) 2017-11-14 2018-10-30 Systems and methods for drive pressure spontaneous ventilation
US16/859,526 Active 2041-07-23 US11931509B2 (en) 2017-11-14 2020-04-27 Systems and methods for drive pressure spontaneous ventilation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/174,483 Active US10668239B2 (en) 2017-11-14 2018-10-30 Systems and methods for drive pressure spontaneous ventilation
US16/859,526 Active 2041-07-23 US11931509B2 (en) 2017-11-14 2020-04-27 Systems and methods for drive pressure spontaneous ventilation

Country Status (6)

Country Link
US (3) US11559643B2 (en)
EP (2) EP3656431B1 (en)
CN (1) CN110049799B (en)
AU (1) AU2018353928B2 (en)
CA (1) CA3046571C (en)
WO (1) WO2019099185A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668239B2 (en) 2017-11-14 2020-06-02 Covidien Lp Systems and methods for drive pressure spontaneous ventilation
WO2022039586A1 (en) 2020-08-19 2022-02-24 Rosano Garcia Julio Alberto Assisted breathing apparatus and method
US11426546B2 (en) * 2018-10-12 2022-08-30 Air Liquide Medical Systems Medical ventilation apparatus with selectors for selecting a patient category and compatible ventilation modes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US11478594B2 (en) 2018-05-14 2022-10-25 Covidien Lp Systems and methods for respiratory effort detection utilizing signal distortion
US11517691B2 (en) 2018-09-07 2022-12-06 Covidien Lp Methods and systems for high pressure controlled ventilation
US11752287B2 (en) 2018-10-03 2023-09-12 Covidien Lp Systems and methods for automatic cycling or cycling detection
CN111383764B (en) * 2020-02-25 2024-03-26 山东师范大学 Correlation detection system for mechanical ventilation driving pressure and ventilator related event
US20220096764A1 (en) * 2020-09-25 2022-03-31 Covidien Lp Synchronized high-flow system
DE102022107947A1 (en) * 2022-04-04 2023-10-05 Drägerwerk AG & Co. KGaA Medical system and procedures

Family Cites Families (511)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669108A (en) 1969-10-20 1972-06-13 Veriflo Corp Ventilator
US3908680A (en) 1973-10-12 1975-09-30 Flow Pharma Inc Methods for cleaning and bleaching plastic articles
US4044763A (en) 1975-07-07 1977-08-30 Bird F M Ventilator and method
US4141356A (en) * 1976-06-16 1979-02-27 Bourns, Inc. Respirator system and method
JPS568675U (en) 1979-06-27 1981-01-24
JPS5858927U (en) 1981-10-16 1983-04-21 三菱自動車工業株式会社 vehicle
US4448192A (en) 1982-03-05 1984-05-15 Hewlett Packard Company Medical ventilator device parametrically controlled for patient ventilation
US4821709A (en) 1983-08-01 1989-04-18 Sensormedics Corporation High frequency ventilator and method
US4655213A (en) 1983-10-06 1987-04-07 New York University Method and apparatus for the treatment of obstructive sleep apnea
US4527557A (en) 1984-11-01 1985-07-09 Bear Medical Systems, Inc. Medical ventilator system
US4805612A (en) 1985-09-13 1989-02-21 Sensormedics Corporation High frequency ventilation
US4637385A (en) 1986-01-13 1987-01-20 Tibor Rusz Pulmonary ventilator controller
US5150291A (en) 1986-03-31 1992-09-22 Puritan-Bennett Corporation Respiratory ventilation apparatus
US4773411A (en) 1986-05-08 1988-09-27 Downs John B Method and apparatus for ventilatory therapy
US4805613A (en) 1986-05-23 1989-02-21 Bird F M Ventilator which can be readily transported for emergency situations
US4752089A (en) 1987-01-29 1988-06-21 Puritan-Bennett Corporation Connector means providing fluid-tight but relatively rotatable joint
GB8704104D0 (en) 1987-02-21 1987-03-25 Manitoba University Of Respiratory system load apparatus
US4921642A (en) 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
US4986268A (en) 1988-04-06 1991-01-22 Tehrani Fleur T Method and apparatus for controlling an artificial respirator
US5325861A (en) 1989-04-12 1994-07-05 Puritan-Bennett Corporation Method and apparatus for measuring a parameter of a gas in isolation from gas pressure fluctuations
US5072737A (en) 1989-04-12 1991-12-17 Puritan-Bennett Corporation Method and apparatus for metabolic monitoring
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US4954799A (en) 1989-06-02 1990-09-04 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
GB8913085D0 (en) 1989-06-07 1989-07-26 Whitwam James G Improvements in or relating to medical ventilators
US5299568A (en) 1989-06-22 1994-04-05 Puritan-Bennett Corporation Method for controlling mixing and delivery of respiratory gas
US5148802B1 (en) 1989-09-22 1997-08-12 Respironics Inc Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders
USRE35295E (en) 1989-09-22 1996-07-16 Respironics, Inc. Sleep apnea treatment apparatus
US5239995A (en) 1989-09-22 1993-08-31 Respironics, Inc. Sleep apnea treatment apparatus
US5632269A (en) 1989-09-22 1997-05-27 Respironics Inc. Breathing gas delivery method and apparatus
US5165398A (en) 1989-12-08 1992-11-24 Bird F M Ventilator and oscillator for use therewith and method
US5161525A (en) 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
US5390666A (en) 1990-05-11 1995-02-21 Puritan-Bennett Corporation System and method for flow triggering of breath supported ventilation
US5237987A (en) 1990-06-07 1993-08-24 Infrasonics, Inc. Human lung ventilator system
US5407174A (en) 1990-08-31 1995-04-18 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
US5057822A (en) 1990-09-07 1991-10-15 Puritan-Bennett Corporation Medical gas alarm system
DE69131836T2 (en) 1990-09-19 2000-07-27 The University Of Melbourne, Parkville CONTROL CIRCUIT FOR MONITORING THE ARTERIAL CO 2 CONTENT
US5279549A (en) 1991-01-04 1994-01-18 Sherwood Medical Company Closed ventilation and suction catheter system
GB9103419D0 (en) 1991-02-19 1991-04-03 Univ Manitoba Piston-based ventilator design and operation
US5542415A (en) 1991-05-07 1996-08-06 Infrasonics, Inc. Apparatus and process for controlling the ventilation of the lungs of a patient
US5303698A (en) 1991-08-27 1994-04-19 The Boc Group, Inc. Medical ventilator
US6629527B1 (en) 1991-10-17 2003-10-07 Respironics, Inc. Sleep apnea treatment apparatus
US7013892B2 (en) 1991-11-01 2006-03-21 Ric Investments, Llc Sleep apnea treatment apparatus
US5271389A (en) 1992-02-12 1993-12-21 Puritan-Bennett Corporation Ventilator control system that generates, measures, compares, and corrects flow rates
US5385142A (en) 1992-04-17 1995-01-31 Infrasonics, Inc. Apnea-responsive ventilator system and method
US5333606A (en) 1992-04-24 1994-08-02 Sherwood Medical Company Method for using a respirator accessory access port and adaptor therefore
US5645048A (en) 1992-05-06 1997-07-08 The Kendall Company Patient ventilating apparatus with modular components
FR2692152B1 (en) 1992-06-15 1997-06-27 Pierre Medical Sa BREATHING AID, PARTICULARLY FOR TREATING SLEEP APNEA.
FR2695830B1 (en) 1992-09-18 1994-12-30 Pierre Medical Sa Breathing aid device.
US5353788A (en) 1992-09-21 1994-10-11 Miles Laughton E Cardio-respiratory control and monitoring system for determining CPAP pressure for apnea treatment
US5339807A (en) 1992-09-22 1994-08-23 Puritan-Bennett Corporation Exhalation valve stabilizing apparatus
US5357946A (en) 1992-10-19 1994-10-25 Sherwood Medical Company Ventilator manifold with accessory access port and adaptors therefore
US5517983A (en) 1992-12-09 1996-05-21 Puritan Bennett Corporation Compliance meter for respiratory therapy
US5368019A (en) 1992-12-16 1994-11-29 Puritan-Bennett Corporation System and method for operating a respirator compressor system under low voltage conditions
US5438980A (en) 1993-01-12 1995-08-08 Puritan-Bennett Corporation Inhalation/exhalation respiratory phase detection circuit
GB9302291D0 (en) 1993-02-05 1993-03-24 Univ Manitoba Method for improved control of airway pressure during mechanical ventilation
US6758217B1 (en) 1993-02-05 2004-07-06 University Of Manitoba Control of airway pressure during mechanical ventilation
US5443075A (en) 1993-03-01 1995-08-22 Puritan-Bennett Corporation Flow measuring apparatus
US5813399A (en) 1993-03-16 1998-09-29 Puritan Bennett Corporation System and method for closed loop airway pressure control during the inspiratory cycle of a breath in a patient ventilator using the exhalation valve as a microcomputer-controlled relief valve
US5398676A (en) 1993-09-30 1995-03-21 Press; Roman J. Portable emergency respirator
US5351522A (en) 1993-11-02 1994-10-04 Aequitron Medical, Inc. Gas sensor
EP2113196A3 (en) 1993-11-05 2009-12-23 ResMed Limited Control of CPAP treatment
US6675797B1 (en) 1993-11-05 2004-01-13 Resmed Limited Determination of patency of the airway
BR9304638A (en) 1993-12-06 1995-07-25 Intermed Equipamento Medico Ho Respiratory cycle control system
US5401135A (en) 1994-01-14 1995-03-28 Crow River Industries Foldable platform wheelchair lift with safety barrier
US6932084B2 (en) 1994-06-03 2005-08-23 Ric Investments, Inc. Method and apparatus for providing positive airway pressure to a patient
US5535738A (en) 1994-06-03 1996-07-16 Respironics, Inc. Method and apparatus for providing proportional positive airway pressure to treat sleep disordered breathing
US6105575A (en) 1994-06-03 2000-08-22 Respironics, Inc. Method and apparatus for providing positive airway pressure to a patient
US5794615A (en) 1994-06-03 1998-08-18 Respironics, Inc. Method and apparatus for providing proportional positive airway pressure to treat congestive heart failure
AU683753B2 (en) 1994-07-06 1997-11-20 Teijin Limited An apparatus for assisting in ventilating the lungs of a patient
US5524615A (en) 1994-09-08 1996-06-11 Puritan-Bennett Corporation Ventilator airway fluid collection system
US5596984A (en) 1994-09-12 1997-01-28 Puritan-Bennett Corporation Lung ventilator safety circuit
FR2724322A1 (en) 1994-09-12 1996-03-15 Pierre Medical Sa PRESSURE CONTROLLED BREATHING AID
US5531221A (en) 1994-09-12 1996-07-02 Puritan Bennett Corporation Double and single acting piston ventilators
US6866040B1 (en) 1994-09-12 2005-03-15 Nellcor Puritan Bennett France Developpement Pressure-controlled breathing aid
US5632270A (en) 1994-09-12 1997-05-27 Puritan-Bennett Corporation Method and apparatus for control of lung ventilator exhalation circuit
US5794986A (en) 1994-09-15 1998-08-18 Infrasonics, Inc. Semi-disposable ventilator breathing circuit tubing with releasable coupling
US5520071A (en) 1994-09-30 1996-05-28 Crow River Industries, Incorporated Steering wheel control attachment apparatus
WO1996011717A1 (en) 1994-10-14 1996-04-25 Bird Products Corporation Portable drag compressor powered mechanical ventilator
FI945649A0 (en) 1994-11-30 1994-11-30 Instrumentarium Oy Foerfarande och anordning Foer indentifiering av en koppling vid ventilation av en patient
US5672041A (en) 1994-12-22 1997-09-30 Crow River Industries, Inc. Collapsible, powered platform for lifting wheelchair
SE9500275L (en) 1995-01-26 1996-07-27 Siemens Elema Ab Method and apparatus for determining a transfer function for a connection system
JPH10500347A (en) 1995-02-08 1998-01-13 ピューリタン−ベネット・コーポレイション Gas mixing device for ventilator
WO1996024401A1 (en) 1995-02-09 1996-08-15 Puritan-Bennett Corporation Piston based ventilator
US5598838A (en) 1995-04-07 1997-02-04 Healthdyne Technologies, Inc. Pressure support ventilatory assist system
WO1996040337A1 (en) 1995-06-07 1996-12-19 Nellcor Puritan Bennett Incorporated Pressure control for constant minute volume
US5544674A (en) 1995-07-14 1996-08-13 Infrasonics, Inc. Gas mixing apparatus for respirator
US5513631A (en) 1995-07-21 1996-05-07 Infrasonics, Inc. Triggering of patient ventilator responsive to a precursor signal
US6000396A (en) 1995-08-17 1999-12-14 University Of Florida Hybrid microprocessor controlled ventilator unit
ES2170186T3 (en) 1995-10-13 2002-08-01 Siemens Elema Ab TRAQUEAL TUBE AND DEVICE FOR VENTILATION SYSTEMS.
US6135105A (en) 1995-10-20 2000-10-24 University Of Florida Lung classification scheme, a method of lung class identification and inspiratory waveform shapes
AUPN616795A0 (en) 1995-10-23 1995-11-16 Rescare Limited Ipap duration in bilevel cpap or assisted respiration treatment
SE9504311D0 (en) 1995-12-01 1995-12-01 Siemens Elema Ab Breathing apparatus
US6041777A (en) 1995-12-01 2000-03-28 Alliance Pharmaceutical Corp. Methods and apparatus for closed-circuit ventilation therapy
US6463930B2 (en) 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US5735267A (en) 1996-03-29 1998-04-07 Ohmeda Inc. Adaptive control system for a medical ventilator
US5762480A (en) 1996-04-16 1998-06-09 Adahan; Carmeli Reciprocating machine
US5692497A (en) 1996-05-16 1997-12-02 Children's Medical Center Corporation Microprocessor-controlled ventilator system and methods
US6725447B1 (en) 1996-05-31 2004-04-20 Nellcor Puritan Bennett Incorporated System and method for graphic creation of a medical logical module in the arden syntax file format
US5975081A (en) 1996-06-21 1999-11-02 Northrop Grumman Corporation Self-contained transportable life support system
SE9602913D0 (en) 1996-08-02 1996-08-02 Siemens Elema Ab Fan system and method of operating a fan system
US5752506A (en) 1996-08-21 1998-05-19 Bunnell Incorporated Ventilator system
US5694923A (en) 1996-08-30 1997-12-09 Respironics, Inc. Pressure control in a blower-based ventilator
SE9603249D0 (en) 1996-09-06 1996-09-06 Siemens Elema Ab Device for compensating flow resistance at fan / ventilator
AUPO247496A0 (en) 1996-09-23 1996-10-17 Resmed Limited Assisted ventilation to match patient respiratory need
US6371113B1 (en) 1996-10-10 2002-04-16 Datex-Ohmeda, Inc. Zero flow pause during volume ventilation
US5884622A (en) 1996-12-20 1999-03-23 University Of Manitoba Automatic determination of passive elastic and resistive properties of the respiratory system during assisted mechanical ventilation
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US5826575A (en) 1997-03-13 1998-10-27 Nellcor Puritan Bennett, Incorporated Exhalation condensate collection system for a patient ventilator
US5791339A (en) 1997-03-13 1998-08-11 Nellcor Puritan Bennettt Incorprated Spring piloted safety valve with jet venturi bias
US5771884A (en) 1997-03-14 1998-06-30 Nellcor Puritan Bennett Incorporated Magnetic exhalation valve with compensation for temperature and patient airway pressure induced changes to the magnetic field
US5881723A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated Ventilator breath display and graphic user interface
US5881717A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated System and method for adjustable disconnection sensitivity for disconnection and occlusion detection in a patient ventilator
US5865168A (en) 1997-03-14 1999-02-02 Nellcor Puritan Bennett Incorporated System and method for transient response and accuracy enhancement for sensors with known transfer characteristics
GB9709275D0 (en) 1997-05-07 1997-06-25 Hayek Zamir Fluid control valve and oscillator for producing a pressure waveform
US5829441A (en) 1997-06-24 1998-11-03 Nellcor Puritan Bennett Customizable dental device for snoring and sleep apnea treatment
US6325785B1 (en) 1997-08-14 2001-12-04 Sherwood Services Ag Sputum trap manifold with nested caps
US6135106A (en) 1997-08-22 2000-10-24 Nellcor Puritan-Bennett, Inc. CPAP pressure and flow transducer
US6123073A (en) 1997-10-01 2000-09-26 Nellcor Puritan Bennett Switch overlay in a piston ventilator
SE513980C2 (en) 1997-11-13 2000-12-04 Mincor Ab Method and apparatus for determining effective lung volume
US6076523A (en) 1998-01-15 2000-06-20 Nellcor Puritan Bennett Oxygen blending in a piston ventilator
US5918597A (en) 1998-01-15 1999-07-06 Nellcor Puritan Bennett Peep control in a piston ventilator
US6321748B1 (en) 1998-03-10 2001-11-27 Nellcor Puritan Bennett Closed loop control in a piston ventilator
US6196222B1 (en) 1998-03-10 2001-03-06 Instrumentarium Corporation Tracheal gas insufflation delivery system for respiration equipment
AUPP240198A0 (en) 1998-03-17 1998-04-09 Resmed Limited An apparatus for supplying breathable gas
US6142150A (en) 1998-03-24 2000-11-07 Nellcor Puritan-Bennett Compliance compensation in volume control ventilator
JP3945902B2 (en) 1998-03-31 2007-07-18 スズキ株式会社 Ventilator
SE9801175D0 (en) 1998-04-03 1998-04-03 Innotek Ab Method and apparatus for optimizing mechanical ventilation based on simulation of the ventilation process after studying the physiology of the respiratory organs
AUPP370198A0 (en) 1998-05-25 1998-06-18 Resmed Limited Control of the administration of continuous positive airway pressure treatment
CA2239673A1 (en) 1998-06-04 1999-12-04 Christer Sinderby Automatic adjustment of applied levels of ventilatory support and extrinsic peep by closed-loop control of neuro-ventilatory efficiency
US6047860A (en) 1998-06-12 2000-04-11 Sanders Technology, Inc. Container system for pressurized fluids
SE9802122D0 (en) 1998-06-15 1998-06-15 Siemens Elema Ab Volume determination method
US6631716B1 (en) 1998-07-17 2003-10-14 The Board Of Trustees Of The Leland Stanford Junior University Dynamic respiratory control
US6257234B1 (en) 1998-08-21 2001-07-10 Respironics, Inc. Apparatus and method for determining respiratory mechanics of a patient and for controlling a ventilator based thereon
SE9802827D0 (en) 1998-08-25 1998-08-25 Siemens Elema Ab ventilator
JP2000175886A (en) 1998-12-14 2000-06-27 Nippon Koden Corp Method and apparatus for processing ventilation data
WO2000041757A1 (en) 1999-01-15 2000-07-20 Resmed Limited Method and apparatus to counterbalance intrinsic positive end expiratory pressure
EP1148907B1 (en) 1999-01-29 2003-12-10 Siemens-Elema AB Non-invasive method for optimizing the respiration of atelectatic lungs
USRE40402E1 (en) 1999-01-29 2008-06-24 Maquet Critical Care Ab Non-invasive method for optimizing the respiration of atelectatic lungs
US6220245B1 (en) 1999-02-03 2001-04-24 Mallinckrodt Inc. Ventilator compressor system having improved dehumidification apparatus
FR2789593B1 (en) 1999-05-21 2008-08-22 Mallinckrodt Dev France APPARATUS FOR SUPPLYING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND METHODS OF CONTROLLING THE SAME
FR2789592A1 (en) 1999-02-12 2000-08-18 Mallinckrodt Dev France APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS
FR2789594A1 (en) 1999-05-21 2000-08-18 Nellcor Puritan Bennett France APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS
US6467477B1 (en) 1999-03-26 2002-10-22 Respironics, Inc. Breath-based control of a therapeutic treatment
US6273444B1 (en) 1999-03-31 2001-08-14 Mallinckrodt Inc. Apparatus for coupling wheelchairs to ventilator carts
US6240919B1 (en) 1999-06-07 2001-06-05 Macdonald John J. Method for providing respiratory airway support pressure
WO2000078380A1 (en) 1999-06-23 2000-12-28 Graham Cameron Grant Respiration assistor
DE60020842T2 (en) 1999-06-30 2006-05-18 University of Florida Research Foundation, Inc., Gainesville MONITORING SYSTEM FOR VENTILATOR
US20070000494A1 (en) 1999-06-30 2007-01-04 Banner Michael J Ventilator monitor system and method of using same
BR9903858B1 (en) 1999-08-05 2009-05-05 mini mechanical pneumatic pulmonary ventilator.
US6758216B1 (en) 1999-09-15 2004-07-06 Resmed Limited Ventilatory assistance using an external effort sensor
US6910480B1 (en) 1999-09-15 2005-06-28 Resmed Ltd. Patient-ventilator synchronization using dual phase sensors
DE60043362D1 (en) 1999-09-15 2009-12-31 Resmed Ltd Synchronization of a ventilation device by means of double-phase sensors
US6557554B1 (en) 1999-10-29 2003-05-06 Suzuki Motor Corporation High-frequency oscillation artificial respiration apparatus
US7516742B2 (en) 1999-11-24 2009-04-14 Cardinal Health 207, Inc. Method and apparatus for delivery of inhaled nitric oxide to spontaneous-breathing and mechanically-ventilated patients with intermittent dosing
SE9904645D0 (en) 1999-12-17 1999-12-17 Siemens Elema Ab High Frequency Oscillator Fan
DE19961253C1 (en) 1999-12-18 2001-01-18 Draeger Medizintech Gmbh Respiration apparatus has respiration pressure and respiration gas flow measured values used as setting parameters for new respiration pattern upon switching respiration pattern
JP3721912B2 (en) 2000-01-11 2005-11-30 スズキ株式会社 High frequency ventilator
SE0000206D0 (en) 2000-01-25 2000-01-25 Siemens Elema Ab High frequency oscillator fan
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
IL134742A0 (en) 2000-02-27 2001-04-30 Shusterman Taly Ambient pressure control ventilation apparatus and method
US6553992B1 (en) 2000-03-03 2003-04-29 Resmed Ltd. Adjustment of ventilator pressure-time profile to balance comfort and effectiveness
DE10014427A1 (en) 2000-03-24 2001-10-04 Weinmann G Geraete Med Method for controlling a ventilator and device for monitoring
US6532956B2 (en) 2000-03-30 2003-03-18 Respironics, Inc. Parameter variation for proportional assist ventilation or proportional positive airway pressure support devices
CA2407159C (en) 2000-04-26 2010-08-10 The University Of Manitoba Method and apparatus for determining respiratory system resistance during assisted ventilation
US6532960B1 (en) 2000-07-10 2003-03-18 Respironics, Inc. Automatic rise time adjustment for bi-level pressure support system
US6439229B1 (en) 2000-08-08 2002-08-27 Newport Medical Instruments, Inc. Pressure support ventilation control system and method
US6557553B1 (en) 2000-09-05 2003-05-06 Mallinckrodt, Inc. Adaptive inverse control of pressure based ventilation
JP4246365B2 (en) 2000-09-21 2009-04-02 日本特殊陶業株式会社 Oxygen concentrator, its control device, and recording medium
US6546930B1 (en) 2000-09-29 2003-04-15 Mallinckrodt Inc. Bi-level flow generator with manual standard leak adjustment
US6644310B1 (en) 2000-09-29 2003-11-11 Mallinckrodt Inc. Apparatus and method for providing a breathing gas employing a bi-level flow generator with an AC synchronous motor
US6626175B2 (en) 2000-10-06 2003-09-30 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism
US6718974B1 (en) 2000-10-06 2004-04-13 Mallinckrodt, Inc. CPAP humidifier having sliding access door
US6622726B1 (en) 2000-10-17 2003-09-23 Newport Medical Instruments, Inc. Breathing apparatus and method
US6357438B1 (en) 2000-10-19 2002-03-19 Mallinckrodt Inc. Implantable sensor for proportional assist ventilation
CA2424358A1 (en) 2000-10-19 2002-04-25 Mallinckrodt Inc. Ventilator with dual gas supply
DE10103810A1 (en) 2001-01-29 2002-08-01 Map Gmbh Device for supplying a breathing gas
US7040321B2 (en) 2001-03-30 2006-05-09 Microcuff Gmbh Method for controlling a ventilator, and system therefor
US6860858B2 (en) 2001-05-23 2005-03-01 Resmed Limited Ventilator patient synchronization
US7246618B2 (en) 2001-06-21 2007-07-24 Nader Maher Habashi Ventilation method and control of a ventilator based on same
WO2003008027A1 (en) 2001-07-19 2003-01-30 Resmed Ltd. Pressure support ventilation of patients
IL145461A (en) 2001-09-16 2006-09-05 Alyn Woldenberg Family Hospita Inexsufflator
US7938114B2 (en) 2001-10-12 2011-05-10 Ric Investments Llc Auto-titration bi-level pressure support system and method of using same
FR2832770B1 (en) 2001-11-27 2004-01-02 Mallinckrodt Dev France CENTRIFUGAL TURBINE FOR BREATHING ASSISTANCE DEVICES
US7032589B2 (en) 2002-01-23 2006-04-25 The Johns Hopkins University Portable ventilator
WO2003083767A2 (en) 2002-03-27 2003-10-09 Nellcor Puritan Bennett Incorporated Infrared touchframe system
US6968842B1 (en) 2002-04-03 2005-11-29 Ric Investments, Inc. Measurement of a fluid parameter in a pressure support system
DE10217762C1 (en) 2002-04-20 2003-04-10 Draeger Medical Ag Respiration gas supply control method for artificial respirator compares actual respiration path pressure with intial respiration path pressure for regulation of respiration gas supply parameter
AU2003280434A1 (en) 2002-06-27 2004-01-19 Yrt Limited Method and device for monitoring and improving patient-ventilator interaction
US8672858B2 (en) 2002-08-30 2014-03-18 University Of Florida Research Foundation, Inc. Method and apparatus for predicting work of breathing
BRPI0313823B8 (en) 2002-08-30 2021-06-22 Univ Florida method and apparatus for predicting the work of breathing
US7682312B2 (en) 2002-09-20 2010-03-23 Advanced Circulatory Systems, Inc. System for sensing, diagnosing and treating physiological conditions and methods
AU2003277435A1 (en) 2002-10-11 2004-05-04 The Regents Of The University Of California Bymixer apparatus and method for fast-response, adjustable measurement of mixed gas fractions in ventilation circuits
DE10248590B4 (en) 2002-10-17 2016-10-27 Resmed R&D Germany Gmbh Method and device for carrying out a signal-processing observation of a measurement signal associated with the respiratory activity of a person
US7708016B2 (en) 2002-11-12 2010-05-04 Inovo, Inc. Gas conserving regulator
GB2396426B (en) 2002-12-21 2005-08-24 Draeger Medical Ag Artificial respiration system
NZ750285A (en) 2003-02-21 2020-08-28 ResMed Pty Ltd Nasal assembly
US6954702B2 (en) 2003-02-21 2005-10-11 Ric Investments, Inc. Gas monitoring system and sidestream gas measurement system adapted to communicate with a mainstream gas measurement system
AU2003901042A0 (en) 2003-03-07 2003-03-20 Resmed Limited Back-up rate for a ventilator
WO2004080516A1 (en) 2003-03-14 2004-09-23 Yrt Limited Improved synchrony between end of ventilator cycles and end of patient efforts during assisted ventilation
WO2004084980A1 (en) 2003-03-24 2004-10-07 Weinmann Geräte für Medizin GmbH & Co. KG Method and device for detecting leaks in respiratory gas supply systems
WO2004096333A1 (en) 2003-04-22 2004-11-11 Medi-Physics, Inc. Mri/nmr-compatible, tidal volume control and measurement systems, methods, and devices for respiratory and hyperpolarized gas delivery
IL155955A0 (en) 2003-05-15 2003-12-23 Widemed Ltd Adaptive prediction of changes of physiological/pathological states using processing of biomedical signal
DE10337138A1 (en) 2003-08-11 2005-03-17 Freitag, Lutz, Dr. Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter
AU2003903139A0 (en) 2003-06-20 2003-07-03 Resmed Limited Breathable gas apparatus with humidifier
US7621270B2 (en) 2003-06-23 2009-11-24 Invacare Corp. System and method for providing a breathing gas
US7152598B2 (en) 2003-06-23 2006-12-26 Invacare Corporation System and method for providing a breathing gas
FR2858236B1 (en) 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
GB2404866B (en) * 2003-08-15 2008-02-27 Shahar Hayek Respiratory apparatus
US7678061B2 (en) 2003-09-18 2010-03-16 Cardiac Pacemakers, Inc. System and method for characterizing patient respiration
US7241269B2 (en) 2003-09-02 2007-07-10 Respiratory Management Technology Apparatus and method for delivery of an aerosol
US7725152B2 (en) 2003-09-12 2010-05-25 Textronics, Inc. Extended optical range system for monitoring motion of a member
EP1680166B1 (en) 2003-10-17 2019-09-18 ResMed Pty Ltd Apparatus for heart failure treatment
US7802571B2 (en) 2003-11-21 2010-09-28 Tehrani Fleur T Method and apparatus for controlling a ventilator
NZ567968A (en) 2003-12-29 2009-12-24 Resmed Ltd Mechanical ventilation in the presence of sleep disordered breathing
EP1701757B1 (en) 2004-01-07 2011-07-27 ResMed Limited Methods for providing expiratory pressure relief in positive airway pressure therapy
US7697990B2 (en) 2004-02-20 2010-04-13 Resmed Limited Method and apparatus for detection and treatment of respiratory disorder by implantable device
US8794236B2 (en) 2004-02-25 2014-08-05 Resmed Limited Cardiac monitoring and therapy using a device for providing pressure treatment of sleep disordered breathing
US7751894B1 (en) 2004-03-04 2010-07-06 Cardiac Pacemakers, Inc. Systems and methods for indicating aberrant behavior detected by an implanted medical device
US20050205093A1 (en) * 2004-03-16 2005-09-22 Jabour Ernest R Method and program for calulating ventilator weaning duration
WO2005089856A1 (en) 2004-03-18 2005-09-29 Helicor Inc. Methods and devices for relieving stress
JP5175090B2 (en) 2004-04-20 2013-04-03 ノバルティス アーゲー Submersible breathing system
US7267121B2 (en) 2004-04-20 2007-09-11 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
SE0401208D0 (en) 2004-05-10 2004-05-10 Breas Medical Ab Multilevel fan
US7841343B2 (en) 2004-06-04 2010-11-30 Inogen, Inc. Systems and methods for delivering therapeutic gas to patients
ITRM20040323A1 (en) 2004-06-30 2004-09-30 Cosmed Engineering S R L OXYGEN CONSUMPTION MEASURING DEVICE.
WO2006005433A1 (en) 2004-07-08 2006-01-19 Breas Medical Ab Energy trigger
US7690378B1 (en) 2004-07-21 2010-04-06 Pacesetter, Inc. Methods, systems and devices for monitoring respiratory disorders
FR2875138B1 (en) 2004-09-15 2008-07-11 Mallinckrodt Dev France Sa CONTROL METHOD FOR A HEATING HUMIDIFIER
US7487773B2 (en) 2004-09-24 2009-02-10 Nellcor Puritan Bennett Llc Gas flow control method in a blower based ventilation system
US7672720B2 (en) 2004-09-24 2010-03-02 Roger Lee Heath Resuscitation and life support system, method and apparatus
US7717110B2 (en) 2004-10-01 2010-05-18 Ric Investments, Llc Method and apparatus for treating Cheyne-Stokes respiration
WO2006037184A1 (en) 2004-10-06 2006-04-13 Resmed Limited Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing
EP1807139B1 (en) 2004-10-20 2019-11-27 ResMed Pty Ltd Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction
US7455717B2 (en) 2004-10-25 2008-11-25 Invacare Corporation Apparatus and method of providing concentrated product gas
WO2006050384A2 (en) 2004-11-01 2006-05-11 Salter Labs System and method for conserving oxygen delivery while maintaining saturation
US7428902B2 (en) 2004-12-15 2008-09-30 Newport Medical Instruments, Inc. Humidifier system for artificial respiration
US20060155336A1 (en) 2005-01-13 2006-07-13 Heath Roger L Medical resuscitation system and patient information module
DE102005010488A1 (en) 2005-03-04 2006-09-07 Map Medizin-Technologie Gmbh Apparatus for administering a breathing gas and method for adjusting at least temporarily alternating breathing gas pressures
US8528551B2 (en) 2005-06-14 2013-09-10 Resmed Limited Acclimatization therapy for first time users
US20070044799A1 (en) 2005-07-08 2007-03-01 Hete Bernie F Modular oxygen regulator system and respiratory treatment system
US20070045152A1 (en) 2005-08-01 2007-03-01 Resmed Limited Storage system for an apparatus that delivers breathable gas to a patient
US7731663B2 (en) 2005-09-16 2010-06-08 Cardiac Pacemakers, Inc. System and method for generating a trend parameter based on respiration rate distribution
CN101454041B (en) 2005-09-20 2012-12-12 呼吸科技公司 Systems, methods and apparatus for respiratory support of a patient
US20070077200A1 (en) 2005-09-30 2007-04-05 Baker Clark R Method and system for controlled maintenance of hypoxia for therapeutic or diagnostic purposes
US7305988B2 (en) 2005-12-22 2007-12-11 The General Electric Company Integrated ventilator nasal trigger and gas monitoring system
US20070227537A1 (en) 2005-12-02 2007-10-04 Nellcor Puritan Bennett Incorporated Systems and Methods for Facilitating Management of Respiratory Care
US7617824B2 (en) 2005-12-08 2009-11-17 Ric Investments, Llc Ventilator adaptable for use with either a dual-limb circuit or a single-limb circuit
WO2007102866A2 (en) 2005-12-08 2007-09-13 Ric Investments, Llc Ventilator adaptable for use with either a dual-limb or a single-limb circuit
US7662105B2 (en) 2005-12-14 2010-02-16 Cardiac Pacemakers, Inc. Systems and methods for determining respiration metrics
US7654802B2 (en) 2005-12-22 2010-02-02 Newport Medical Instruments, Inc. Reciprocating drive apparatus and method
JP5264506B2 (en) 2006-01-19 2013-08-14 マケット・クリティカル・ケア・アーベー Device for dynamically determining respiratory characteristics of spontaneously breathing patients receiving mechanical breathing assistance
US7694677B2 (en) 2006-01-26 2010-04-13 Nellcor Puritan Bennett Llc Noise suppression for an assisted breathing device
US7509957B2 (en) 2006-02-21 2009-03-31 Viasys Manufacturing, Inc. Hardware configuration for pressure driver
US7810497B2 (en) 2006-03-20 2010-10-12 Ric Investments, Llc Ventilatory control system
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7762252B2 (en) 2006-04-26 2010-07-27 Mine Safety Appliances Company Devices, systems and methods for operation of breathing apparatuses in multiple modes
US20070272241A1 (en) 2006-05-12 2007-11-29 Sanborn Warren G System and Method for Scheduling Pause Maneuvers Used for Estimating Elastance and/or Resistance During Breathing
US8920333B2 (en) 2006-05-12 2014-12-30 Yrt Limited Method and device for generating of a signal that reflects respiratory efforts in patients on ventilatory support
US7803117B2 (en) 2006-05-12 2010-09-28 Suunto Oy Method, device and computer program product for monitoring the physiological state of a person
US7369757B2 (en) 2006-05-24 2008-05-06 Nellcor Puritan Bennett Incorporated Systems and methods for regulating power in a medical device
US7460959B2 (en) 2006-06-02 2008-12-02 Nellcor Puritan Bennett Llc System and method for estimating oxygen concentration in a mixed gas experiencing pressure fluctuations
JP2009539468A (en) 2006-06-07 2009-11-19 ヴィアシス マニュファクチュアリング,インコーポレーテッド Adaptive high-frequency flow cut-off control system and control method in patient respiratory ventilation system
US7763097B2 (en) 2006-06-08 2010-07-27 University of Pittsburgh—of the Commonwealth System of Higher Education Devices, systems and methods for reducing the concentration of a chemical entity in fluids
US7691067B2 (en) 2006-06-14 2010-04-06 Advanced Brain Monitoring, Inc. Method for measuring central venous pressure or respiratory effort
US7678058B2 (en) 2006-06-22 2010-03-16 Cardiac Pacemakers, Inc. Apnea type determining apparatus and method
JP2008000436A (en) 2006-06-23 2008-01-10 Air Water Safety Service Inc Lung compliance estimation apparatus and estimation method and artificial respiratory apparatus provided with estimation apparatus
US9010327B2 (en) 2006-06-30 2015-04-21 Breas Medical Ab Energy relief control in a mechanical ventilator
US9027560B2 (en) 2006-07-10 2015-05-12 Loma Linda University Breathing gas delivery system and method
US20080011301A1 (en) 2006-07-12 2008-01-17 Yuancheng Qian Out flow resistance switching ventilator and its core methods
US7556038B2 (en) 2006-08-11 2009-07-07 Ric Investments, Llc Systems and methods for controlling breathing rate
US8322339B2 (en) 2006-09-01 2012-12-04 Nellcor Puritan Bennett Llc Method and system of detecting faults in a breathing assistance device
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US20080072896A1 (en) 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Multi-Level User Interface for a Breathing Assistance System
US20080072902A1 (en) 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Preset breath delivery therapies for a breathing assistance system
US8902568B2 (en) 2006-09-27 2014-12-02 Covidien Lp Power supply interface system for a breathing assistance system
US8210174B2 (en) 2006-09-29 2012-07-03 Nellcor Puritan Bennett Llc Systems and methods for providing noise leveling in a breathing assistance system
FR2906450B3 (en) 2006-09-29 2009-04-24 Nellcor Puritan Bennett Incorp SYSTEM AND METHOD FOR DETECTING RESPIRATORY EVENTS
FR2906474B3 (en) 2006-09-29 2009-01-09 Nellcor Puritan Bennett Incorp SYSTEM AND METHOD FOR CONTROLLING RESPIRATORY THERAPY BASED ON RESPIRATORY EVENTS
US7891354B2 (en) 2006-09-29 2011-02-22 Nellcor Puritan Bennett Llc Systems and methods for providing active noise control in a breathing assistance system
US7984714B2 (en) 2006-09-29 2011-07-26 Nellcor Puritan Bennett Llc Managing obstructive sleep apnea and/or snoring using local time released agents
US8210173B2 (en) 2006-09-29 2012-07-03 Nellcor Puritan Bennett Llc Breathing assistance system having integrated electrical conductors communicating data
US20080078390A1 (en) 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Providing predetermined groups of trending parameters for display in a breathing assistance system
WO2008058328A1 (en) 2006-11-13 2008-05-22 Resmed Ltd Systems, methods, and/or apparatuses for non-invasive monitoring of respiratory parameters in sleep disordered breathing
US8020558B2 (en) 2007-01-26 2011-09-20 Cs Medical, Inc. System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
US8789527B2 (en) 2007-02-12 2014-07-29 Ric Investments, Llc Pressure support system with automatic comfort feature modification
US8960193B2 (en) 2007-02-16 2015-02-24 General Electric Company Mobile medical ventilator
US20080216833A1 (en) 2007-03-07 2008-09-11 Pujol J Raymond Flow Sensing for Gas Delivery to a Patient
DE102009013205A1 (en) 2009-03-17 2010-09-23 Dolphys Technologies B.V. Jet ventilation catheter, in particular for the ventilation of a patient
EP1972274B1 (en) 2007-03-20 2015-12-30 Drägerwerk AG & Co. KGaA Method and apparatus for determining the resistance of the respiratory system of a patient
RU2523820C2 (en) 2007-05-30 2014-07-27 Джилберт Якобус КУЙПЕРС Improvements of electric drive devices for artificial lung ventilation
US20080295839A1 (en) 2007-06-01 2008-12-04 Habashi Nader M Ventilator Apparatus and System of Ventilation
KR100903172B1 (en) 2007-06-04 2009-06-17 충북대학교 산학협력단 Method for monitoring respiration in a wireless way and device for performing the same
US9743859B2 (en) 2007-06-15 2017-08-29 Cardiac Pacemakers, Inc. Daytime/nighttime respiration rate monitoring
EP2017586A1 (en) 2007-07-20 2009-01-21 Map-Medizintechnologie GmbH Monitor for CPAP/Ventilator apparatus
US8475340B2 (en) 2007-07-25 2013-07-02 Montefiore Medical Center Hypoxic conditioning in patients with exercise limiting conditions
US8235042B2 (en) 2007-08-31 2012-08-07 Wet Nose Technologies, Llc Exhalatory pressure device and system thereof
CN101380233B (en) 2007-09-05 2010-12-22 深圳迈瑞生物医疗电子股份有限公司 Breathing work real-time monitoring method and device based on breathing mechanics module
DE102007052897B4 (en) 2007-11-07 2013-02-21 Dräger Medical GmbH Method for automatically controlling a ventilation system and associated ventilation system
EP2211997B1 (en) 2007-11-20 2020-03-25 Avon Protection Systems, Inc. Modular powered air purifying respirator
DE102007062214C5 (en) 2007-12-21 2017-12-21 Drägerwerk AG & Co. KGaA Method for automatically controlling a respiratory system and associated ventilator
US20090171176A1 (en) 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US20090165795A1 (en) 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Method and apparatus for respiratory therapy
EP2244772B1 (en) 2008-01-11 2016-09-07 Koninklijke Philips N.V. Patient control of ventilation properties
US20090205663A1 (en) 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Configuring the operation of an alternating pressure ventilation mode
US20090205661A1 (en) 2008-02-20 2009-08-20 Nellcor Puritan Bennett Llc Systems and methods for extended volume range ventilation
US8307827B2 (en) 2008-03-10 2012-11-13 University Of Florida Research Foundation, Inc. Automated inspiratory muscle training for patients receiving mechanical ventilation
US9560994B2 (en) 2008-03-26 2017-02-07 Covidien Lp Pulse oximeter with adaptive power conservation
EP2363163A1 (en) 2008-03-27 2011-09-07 Nellcor Puritan Bennett LLC Device for controlled delivery of breathing gas to a patient using multiple ventilation parameters
WO2009120639A2 (en) 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Breathing assistance systems with lung recruitment maneuvers
US20090241953A1 (en) 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Ventilator with piston-cylinder and buffer volume
EP2106818B1 (en) 2008-03-31 2013-12-25 Nellcor Puritan Bennett Llc System for compensating for pressure drop in a breathing assistance system
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
EP2313138B1 (en) 2008-03-31 2018-09-12 Covidien LP System and method for determining ventilator leakage during stable periods within a breath
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US20090247853A1 (en) 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Non-Invasive Total Hemoglobin Measurement by Spectral Optical Coherence Tomography
US8792949B2 (en) 2008-03-31 2014-07-29 Covidien Lp Reducing nuisance alarms
US8425428B2 (en) 2008-03-31 2013-04-23 Covidien Lp Nitric oxide measurements in patients using flowfeedback
US20110023879A1 (en) 2008-03-31 2011-02-03 Nellcor Puritan Bennett Llc Ventilator Based On A Fluid Equivalent Of The "Digital To Analog Voltage" Concept
US20100152600A1 (en) 2008-04-03 2010-06-17 Kai Sensors, Inc. Non-contact physiologic motion sensors and methods for use
US8457706B2 (en) 2008-05-16 2013-06-04 Covidien Lp Estimation of a physiological parameter using a neural network
EP2320791B1 (en) 2008-06-06 2016-08-31 Covidien LP Systems for ventilation in proportion to patient effort
US20100011307A1 (en) 2008-07-08 2010-01-14 Nellcor Puritan Bennett Llc User interface for breathing assistance system
EP2356407A1 (en) 2008-09-04 2011-08-17 Nellcor Puritan Bennett LLC Inverse sawtooth pressure wave train purging in medical ventilators
US7893560B2 (en) 2008-09-12 2011-02-22 Nellcor Puritan Bennett Llc Low power isolation design for a multiple sourced power bus
US8551006B2 (en) 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US20100071695A1 (en) 2008-09-23 2010-03-25 Ron Thiessen Patient wye with flow transducer
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
US8342177B2 (en) 2008-09-24 2013-01-01 Covidien Lp Spill resistant humidifier for use in a breathing assistance system
US8794234B2 (en) 2008-09-25 2014-08-05 Covidien Lp Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators
US20100071696A1 (en) 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8113062B2 (en) 2008-09-30 2012-02-14 Nellcor Puritan Bennett Llc Tilt sensor for use with proximal flow sensing device
US8585412B2 (en) 2008-09-30 2013-11-19 Covidien Lp Configurable respiratory muscle pressure generator
US8302600B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Battery management for a breathing assistance system
US8652064B2 (en) 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
US8439032B2 (en) 2008-09-30 2013-05-14 Covidien Lp Wireless communications for a breathing assistance system
EP2349423B1 (en) 2008-10-24 2014-02-26 Hospitech Respiration Ltd. Ventilation system
US8347883B2 (en) * 2008-11-17 2013-01-08 Bird F M Manual controlled bi-phasic intrapulmonary percussive ventilation and methods
US8303276B2 (en) 2008-12-10 2012-11-06 Covidien Lp Pump and exhalation valve control for respirator apparatus
CN102307521B (en) 2008-12-10 2015-02-04 皇家飞利浦电子股份有限公司 Determining elastance and resistance
USD632796S1 (en) 2008-12-12 2011-02-15 Nellcor Puritan Bennett Llc Medical cart
USD632797S1 (en) 2008-12-12 2011-02-15 Nellcor Puritan Bennett Llc Medical cart
CA2741054C (en) 2008-12-12 2014-02-04 Nellcor Puritan Bennett Llc Medical ventilator cart
CN102355919B (en) 2009-01-15 2015-06-17 圣米高医院 Device for determining level of ventilatory assist to patient
US9675774B2 (en) 2009-04-02 2017-06-13 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space
CZ19690U1 (en) 2009-01-23 2009-06-08 Ceské vysoké ucení technické v Praze, Device for detecting diaphragm movement
US8428672B2 (en) 2009-01-29 2013-04-23 Impact Instrumentation, Inc. Medical ventilator with autonomous control of oxygenation
WO2010088543A1 (en) 2009-01-29 2010-08-05 Aylsworth Alonzo C Method and system for detecting mouth leak during application of positive airway pressure
US20100199991A1 (en) 2009-02-06 2010-08-12 Hartwell Medical Corporation Ventilatory support and resuscitation device and associated method
EP2405801B1 (en) 2009-02-18 2018-07-11 Nonin Medical, Inc Disposable oximeter device
US20100234750A1 (en) 2009-02-19 2010-09-16 Nexense Ltd. Apparatus and method for detecting breathing disorders
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8607796B2 (en) 2009-02-27 2013-12-17 Airway Technologies, Llc Apparatus and method for coupling an oral appliance to a gas delivery device
US20100218766A1 (en) 2009-02-27 2010-09-02 Nellcor Puritan Bennett Llc Customizable mandatory/spontaneous closed loop mode selection
US9164168B2 (en) 2009-03-20 2015-10-20 Wright State University Systems for detecting movement of a target
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US9186075B2 (en) 2009-03-24 2015-11-17 Covidien Lp Indicating the accuracy of a physiological parameter
JP5351583B2 (en) 2009-03-30 2013-11-27 日本光電工業株式会社 Respiratory waveform analyzer
US20100242961A1 (en) 2009-03-31 2010-09-30 Nellcor Puritan Bennett Llc Systems and methods for preventing water damage in a breathing assistance system
US8608656B2 (en) 2009-04-01 2013-12-17 Covidien Lp System and method for integrating clinical information to provide real-time alerts for improving patient outcomes
CA2697592C (en) 2009-04-08 2013-11-05 Anurag Sharma H K Adaptable demand dilution oxygen regulator for use in aircrafts
JP5639152B2 (en) * 2009-04-22 2014-12-10 レスメド・リミテッドResMedLimited Asynchronous detection
US8408203B2 (en) 2009-04-30 2013-04-02 General Electric Company System and methods for ventilating a patient
US20100288283A1 (en) 2009-05-15 2010-11-18 Nellcor Puritan Bennett Llc Dynamic adjustment of tube compensation factor based on internal changes in breathing tube
US20100300446A1 (en) 2009-05-26 2010-12-02 Nellcor Puritan Bennett Llc Systems and methods for protecting components of a breathing assistance system
DE102009023965A1 (en) 2009-06-05 2010-10-14 Drägerwerk AG & Co. KGaA Respiratory device for pressure-supporting ventilation of patient, has control and evaluation unit analyzing functional dependency of pressure and respiratory volume, where elastance or compliance is determined from rise of pressure
US8776790B2 (en) 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US8701665B2 (en) 2009-07-25 2014-04-22 Fleur T Tehrani Automatic control system for mechanical ventilation for active or passive subjects
US20110023878A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver
US20110029910A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Providing A Graphical User Interface For Delivering A Low Flow Recruitment Maneuver
US20110023880A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Multi-Breath, Low Flow Recruitment Maneuver
US20110023881A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Generating A Pressure Volume Loop Of A Low Flow Recruitment Maneuver
US8789529B2 (en) 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
US8596270B2 (en) 2009-08-20 2013-12-03 Covidien Lp Systems and methods for controlling a ventilator
US8960192B2 (en) 2009-09-01 2015-02-24 Koninklijke Philips N.V. System and method for quantifying lung compliance in a self-ventilating subject
CN102596028B (en) 2009-09-01 2015-04-22 皇家飞利浦电子股份有限公司 System and method for quantifying lung compliance in a self-ventilating subject
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US20110126832A1 (en) 2009-12-01 2011-06-02 Nellcor Puritan Bennett Llc Exhalation Valve Assembly
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434483B2 (en) 2009-12-03 2013-05-07 Covidien Lp Ventilator respiratory gas accumulator with sampling chamber
USD618356S1 (en) 2009-12-04 2010-06-22 Nellcor Puritan Bennett Llc Tank holder
US20110138311A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Display Of Respiratory Data On A Ventilator Graphical User Interface
US8482415B2 (en) 2009-12-04 2013-07-09 Covidien Lp Interactive multilevel alarm
USD649157S1 (en) 2009-12-04 2011-11-22 Nellcor Puritan Bennett Llc Ventilator display screen with a user interface
US20110138323A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Visual Indication Of Alarms On A Ventilator Graphical User Interface
USD638852S1 (en) 2009-12-04 2011-05-31 Nellcor Puritan Bennett Llc Ventilator display screen with an alarm icon
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
USD643535S1 (en) 2009-12-04 2011-08-16 Nellcor Puritan Bennett Llc Medical ventilator
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US20110132369A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Ventilation System With System Status Display
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US20110146681A1 (en) 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
US20110146683A1 (en) 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Sensor Model
EP2519151B1 (en) 2009-12-28 2018-05-16 University of Florida Research Foundation, Inc. System and method for assessing real time pulmonary mechanics
US8400290B2 (en) 2010-01-19 2013-03-19 Covidien Lp Nuisance alarm reduction method for therapeutic parameters
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US20110209702A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Proportional Solenoid Valve For Low Molecular Weight Gas Mixtures
US9302061B2 (en) 2010-02-26 2016-04-05 Covidien Lp Event-based delay detection and control of networked systems in medical ventilation
US20110209707A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Method And Apparatus For Oxygen Reprocessing Of Expiratory Gases In Mechanical Ventilation
US20110213215A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Spontaneous Breathing Trial Manager
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
US8539949B2 (en) 2010-04-27 2013-09-24 Covidien Lp Ventilation system with a two-point perspective view
USD645158S1 (en) 2010-04-27 2011-09-13 Nellcor Purtian Bennett LLC System status display
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
US8453643B2 (en) 2010-04-27 2013-06-04 Covidien Lp Ventilation system with system status display for configuration and program information
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
US20110271960A1 (en) 2010-05-07 2011-11-10 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt Regarding Auto-PEEP Detection During Volume Ventilation Of Triggering Patient
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
CN102905620B (en) 2010-05-17 2015-05-13 皇家飞利浦电子股份有限公司 System for estimating upper airway resistance and lung compliance employing induced central apneas
EP2397074B1 (en) 2010-06-19 2012-10-24 M Stenqvist AB A system and computer readable medium for determination of transpulmonary pressure in a patient connected to a breathing apparatus
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US9592356B2 (en) 2010-09-10 2017-03-14 Koninklijke Philips N.V. System and method for identifying breathing transitions
US20120060841A1 (en) 2010-09-15 2012-03-15 Newport Medical Instruments, Inc. Oxygen enrichment device for ventilator
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US20120090611A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Systems And Methods For Controlling An Amount Of Oxygen In Blood Of A Ventilator Patient
US20120096381A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment
US20140048072A1 (en) 2010-11-29 2014-02-20 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in compliance
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US8595639B2 (en) 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US20120136222A1 (en) 2010-11-30 2012-05-31 Nellcor Puritan Bennett Llc Methods And Systems For Monitoring A Ventilator Patient With A Capnograph
US20120167885A1 (en) 2010-12-29 2012-07-05 Nellcor Puritan Bennett Llc Systems And Methods For Ventilation To Obtain A Predetermined Patient Effort
US20120185792A1 (en) 2011-01-13 2012-07-19 Nellcor Puritan Bennett Llc Pictorial Representation Of Patient Condition Trending
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US20120216809A1 (en) 2011-02-27 2012-08-30 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt Regarding Detection Of Inadequate Flow During Ventilation
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US20120216811A1 (en) 2011-02-28 2012-08-30 Nellcor Puritan Bennett Llc Use of Multiple Spontaneous Breath Types To Promote Patient Ventilator Synchrony
US9038633B2 (en) * 2011-03-02 2015-05-26 Covidien Lp Ventilator-initiated prompt regarding high delivered tidal volume
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US20120272962A1 (en) 2011-04-29 2012-11-01 Nellcor Puritan Bennett Llc Methods and systems for managing a ventilator patient with a capnometer
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US20120304995A1 (en) 2011-05-31 2012-12-06 Nellcor Puritan Bennett Llc Previous Set Up Mode Parameter Retention
US20130000644A1 (en) 2011-06-30 2013-01-03 Nellcor Puritan Bennett Llc Systems and methods for providing ventilation based on patient need
US20130006133A1 (en) 2011-06-30 2013-01-03 Nellcor Puritan Bennett Llc Methods and systems for monitoring volumetric carbon dioxide
US20130006134A1 (en) 2011-06-30 2013-01-03 Nellcor Puritan Bennett Llc Methods and systems for monitoring volumetric carbon dioxide
US20130025596A1 (en) 2011-07-27 2013-01-31 Nellcor Puritan Bennett Llc Methods and systems for model-based transformed proportional assist ventilation
US20130025597A1 (en) 2011-07-29 2013-01-31 Nellcor Puritan Bennett Llc Methods and systems for monitoring a ventilated patient with an oximeter
US9895083B2 (en) 2011-08-25 2018-02-20 Koninklijke Philips N.V. Non-invasive ventilation measurement
US20130053717A1 (en) 2011-08-30 2013-02-28 Nellcor Puritan Bennett Llc Automatic ventilator challenge to induce spontaneous breathing efforts
US20130047989A1 (en) 2011-08-31 2013-02-28 Nellcor Puritan Bennett Llc Methods and systems for adjusting tidal volume during ventilation
US20130074844A1 (en) 2011-09-23 2013-03-28 Nellcor Puritan Bennett Llc Use of multiple breath types
US20130081536A1 (en) 2011-09-30 2013-04-04 Newport Medical Instruments, Inc. Pump piston assembly with acoustic dampening device
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US20130167843A1 (en) 2011-12-31 2013-07-04 Nellcor Puritan Bennett Llc Piezoelectric blower piloted valve
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
WO2013126417A1 (en) * 2012-02-20 2013-08-29 University Of Florida Research Foundation, Inc. Method and apparatus for predicting work of breathing
US20130220324A1 (en) 2012-02-29 2013-08-29 Nellcor Puritan Bennett Llc Systems and methods for providing oscillatory pressure control ventilation
SE1200155A1 (en) 2012-03-13 2013-09-14 Innotek Ab Apparatus for monitoring mechanical ventilation
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
US20140000606A1 (en) 2012-07-02 2014-01-02 Nellcor Puritan Bennett Llc Methods and systems for mimicking fluctuations in delivered flow and/or pressure during ventilation
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
DE102012215662A1 (en) 2012-09-04 2014-03-06 Hamilton Medical Ag System for the automated setting of a predetermined by a ventilator pressure
SE536642C2 (en) 2012-09-24 2014-04-22 Innotek Ab System for optimal mechanical ventilation
US9375542B2 (en) * 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US10293126B2 (en) 2012-12-18 2019-05-21 Koninklijke Philips N.V. Inspiratory pressure control in volume mode ventilation
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
US20140261409A1 (en) 2013-03-13 2014-09-18 Covidien Lp Systems and methods for ventilation with unreliable exhalation flow and/or exhalation pressure
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US20140261424A1 (en) 2013-03-13 2014-09-18 Covidien Lp Methods and systems for phase shifted pressure ventilation
US10165966B2 (en) 2013-03-14 2019-01-01 University Of Florida Research Foundation, Incorporated Methods and systems for monitoring resistance and work of breathing for ventilator-dependent patients
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
US20140373845A1 (en) 2013-06-25 2014-12-25 Covidien Lp Methods and systems for adaptive adjustment of ventilator settings
JP6487425B2 (en) 2013-06-28 2019-03-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Calculation of respiratory work based on noninvasive estimation of intrathoracic pressure and / or noninvasive estimation of intrathoracic pressure
JP6204086B2 (en) 2013-06-28 2017-09-27 日本光電工業株式会社 Respiratory state determination device
US20150034082A1 (en) 2013-08-05 2015-02-05 Covidien Lp Oxygenation-ventilation methods and systems
US10064583B2 (en) * 2013-08-07 2018-09-04 Covidien Lp Detection of expiratory airflow limitation in ventilated patient
US20150090258A1 (en) 2013-10-01 2015-04-02 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US20150090264A1 (en) 2013-10-02 2015-04-02 Covidien Lp Methods and systems for proportional assist ventilation
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
US9839760B2 (en) 2014-04-11 2017-12-12 Vyaire Medical Capital Llc Methods for controlling mechanical lung ventilation
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
WO2016140980A1 (en) 2015-03-02 2016-09-09 Covidien Lp Medical ventilator, method for replacing an oxygen sensor on a medical ventilator, and medical ventilator assembly
SE538864C2 (en) 2015-05-25 2017-01-10 The Lung Barometry Sweden AB Method System and Software for Protective Ventilation
WO2017055959A1 (en) 2015-09-29 2017-04-06 Koninklijke Philips N.V. Simultaneous estimation of respiratory mechanics and patient effort via parametric optimization
EP3364855B1 (en) 2015-10-19 2023-12-20 Koninklijke Philips N.V. Anomaly detection device and method for respiratory mechanics parameter estimation
US10765822B2 (en) 2016-04-18 2020-09-08 Covidien Lp Endotracheal tube extubation detection
AU2018353928B2 (en) 2017-11-14 2019-06-13 Covidien Lp Methods and systems for drive pressure spontaneous ventilation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668239B2 (en) 2017-11-14 2020-06-02 Covidien Lp Systems and methods for drive pressure spontaneous ventilation
US11931509B2 (en) 2017-11-14 2024-03-19 Covidien Lp Systems and methods for drive pressure spontaneous ventilation
US11426546B2 (en) * 2018-10-12 2022-08-30 Air Liquide Medical Systems Medical ventilation apparatus with selectors for selecting a patient category and compatible ventilation modes
WO2022039586A1 (en) 2020-08-19 2022-02-24 Rosano Garcia Julio Alberto Assisted breathing apparatus and method

Also Published As

Publication number Publication date
EP3656431B1 (en) 2021-03-31
AU2018353928A1 (en) 2019-05-30
US20200254202A1 (en) 2020-08-13
CA3046571C (en) 2021-01-19
US20190143058A1 (en) 2019-05-16
EP3656431A1 (en) 2020-05-27
CN110049799A (en) 2019-07-23
AU2018353928B2 (en) 2019-06-13
US10668239B2 (en) 2020-06-02
CN110049799B (en) 2022-04-26
US11931509B2 (en) 2024-03-19
EP3525857B1 (en) 2020-01-29
CA3046571A1 (en) 2019-05-23
EP3525857A1 (en) 2019-08-21
US11559643B2 (en) 2023-01-24
WO2019099185A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US11559643B2 (en) Systems and methods for ventilation of patients
US20120096381A1 (en) Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment
US8783250B2 (en) Methods and systems for transitory ventilation support
US9038633B2 (en) Ventilator-initiated prompt regarding high delivered tidal volume
US10350374B2 (en) Ventilator system and method
US8776792B2 (en) Methods and systems for volume-targeted minimum pressure-control ventilation
US8638200B2 (en) Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US20150090258A1 (en) Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US20130025596A1 (en) Methods and systems for model-based transformed proportional assist ventilation
US20140261424A1 (en) Methods and systems for phase shifted pressure ventilation
US9956365B2 (en) Lung ventilation apparatus
US10758693B2 (en) Method and system for adjusting a level of ventilatory assist to a patient
US20140235959A1 (en) Methods and algorithms for supervisory closed-loop determination of optimized scheduling of ventilator weaning trials
US20140150795A1 (en) System and method for detecting double triggering with remote monitoring
US20210393902A1 (en) One-touch ventilation mode
US11517691B2 (en) Methods and systems for high pressure controlled ventilation
US20150013674A1 (en) System and method for monitoring and reporting status of a ventilated patient
CN118435289A (en) System and method for ventilator management
CN117179733A (en) Electrical impedance data processing method and device and breathing machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANBORN, WARREN G.;REEL/FRAME:047357/0268

Effective date: 20181002

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE