US20190131433A1 - Dual-curvature cavity for epitaxial semiconductor growth - Google Patents

Dual-curvature cavity for epitaxial semiconductor growth Download PDF

Info

Publication number
US20190131433A1
US20190131433A1 US15/795,879 US201715795879A US2019131433A1 US 20190131433 A1 US20190131433 A1 US 20190131433A1 US 201715795879 A US201715795879 A US 201715795879A US 2019131433 A1 US2019131433 A1 US 2019131433A1
Authority
US
United States
Prior art keywords
cavity
semiconductor fin
etching process
effect transistor
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/795,879
Other versions
US10297675B1 (en
Inventor
Alina Vinslava
Hsien-Ching Lo
Yongjun Shi
Jianwei PENG
Jianghu Yan
Yi Qi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries US Inc
Original Assignee
GlobalFoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalFoundries Inc filed Critical GlobalFoundries Inc
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VINSLAVA, ALINA, LO, HSIEN-CHING, PENG, JIANWEI, QI, Yi, SHI, YONGJUN, YAN, JIANGHU
Priority to US15/795,879 priority Critical patent/US10297675B1/en
Priority to TW107117053A priority patent/TWI684215B/en
Priority to CN201811254286.0A priority patent/CN109727871A/en
Priority to US16/276,045 priority patent/US20190181243A1/en
Publication of US20190131433A1 publication Critical patent/US20190131433A1/en
Publication of US10297675B1 publication Critical patent/US10297675B1/en
Application granted granted Critical
Assigned to GLOBALFOUNDRIES U.S. INC. reassignment GLOBALFOUNDRIES U.S. INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES INC.
Assigned to GLOBALFOUNDRIES U.S. INC. reassignment GLOBALFOUNDRIES U.S. INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Definitions

  • the present invention relates to semiconductor device fabrication and integrated circuits and, more specifically, to structures for a field-effect transistor and methods of forming a field-effect transistor.
  • Device structures for a field-effect transistor generally include a body region, a source and a drain defined in the body region, and a gate structure configured to apply a control voltage that switches carrier flow in a channel formed in the body region. When a control voltage that is greater than a designated threshold voltage is applied, carrier flow occurs in the channel between the source and drain to produce a device output current.
  • Epitaxial semiconductor films may be used to modify the performance of field-effect transistors.
  • an epitaxial semiconductor film can be used to increase the carrier mobility by inducing stresses in the channel.
  • hole mobility can be enhanced by applying a compressive stress to the channel.
  • the compressive stress may be applied by forming an epitaxial semiconductor material, such as silicon-germanium, at the opposite sides of the channel.
  • electron mobility can be enhanced by applying a tensile stress to the channel.
  • the tensile stress may be applied by forming an epitaxial semiconductor material, such as silicon doped with carbon, at the opposite sides of the channel.
  • the volume of the epitaxial semiconductor material contained in the stressors may be directly linked to device performance and yield.
  • the stress imparted to the channel increases with increasing volume, which optimizes mobility.
  • Increasing the volume may also reduce the source and drain resistance, and may also provide a consistent contact landing area in certain situations.
  • a method for forming a field-effect transistor.
  • a gate structure is formed that overlaps with a channel region in a semiconductor fin.
  • the semiconductor fin is etched with a first etching process to form a first cavity extending into the semiconductor fin adjacent to the channel region.
  • the semiconductor fin is etched with a second etching process to form a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity.
  • a structure for forming a field-effect transistor.
  • the structure includes a semiconductor fin with a channel region, a first cavity, and a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity.
  • the structure further includes a gate structure that overlaps with the channel region adjacent to the first cavity, and a source/drain region with a first section in the first cavity and a second section in the second cavity.
  • FIG. 1 is a cross-sectional view of a structure for a field-effect transistor at an initial fabrication stage of a processing method in accordance with embodiments of the invention.
  • FIG. 1A is a cross-sectional view of the structure of FIG. 1 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 2 is a cross-sectional view of the structure of FIG. 1 at a subsequent fabrication stage of the processing method.
  • FIG. 2A is a cross-sectional view of the structure of FIG. 2 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 3 is a cross-sectional view of the structure of FIG. 2 at a subsequent fabrication stage of the processing method.
  • FIG. 3A is a cross-sectional view of the structure of FIG. 3 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 4 is a cross-sectional view of the structure of FIG. 3 at a subsequent fabrication stage of the processing method.
  • FIG. 4A is a cross-sectional view of the structure of FIG. 4 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 5 is a cross-sectional view of a structure implemented in connection with a single diffusion break in accordance with alternative embodiments of the invention.
  • gate structures 14 are arranged on a top surface 12 of a semiconductor fin 10 and overlap with respective channel regions 11 in the semiconductor fin 10 at spaced apart locations.
  • the gate structures 14 may also be located on trench isolation 13 adjacent to the semiconductor fin 10 .
  • the semiconductor fin 10 is composed of a single crystal semiconductor material and, in an embodiment, the semiconductor fin 10 may be composed of single-crystal silicon.
  • the semiconductor fin 10 may be formed by patterning a substrate or an epitaxial layer grown on a substrate using a sidewall imaging transfer (SIT) process, self-aligned double patterning (SADP), or self-aligned quadruple patterning (SAQP).
  • SIT sidewall imaging transfer
  • SADP self-aligned double patterning
  • SAQP self-aligned quadruple patterning
  • Each gate structure 14 includes a gate electrode 15 and a gate dielectric 17 interposed between the gate electrode 15 and the semiconductor fin 10 .
  • the gate electrode 15 may be composed of polycrystalline silicon (i.e., polysilicon), or may include one or more barrier metal layers, work function metal layers, and/or fill metal layers composed of conductors, such as metals (e.g., tungsten (W)) and/or metal nitrides or carbides (e.g., titanium nitride (TiN) and titanium aluminum carbide (TiAlC)).
  • the gate dielectric 17 may be composed of a dielectric material, such as silicon dioxide (SiO 2 ) or a high-k dielectric material like hafnium oxide (HfO 2 ).
  • the gate structures 14 may be functional gate structures or, in the alternative, may be sacrificial gate structures that are subsequently removed and replaced by functional gate structures in a replacement metal gate process.
  • sacrificial gate structure refers to a placeholder structure for a functional gate structure to be subsequently formed.
  • functional gate structure refers to a permanent gate structure used to control output current (i.e., flow of carriers in the channel) of a field-effect transistor.
  • the sidewall spacers 18 are positioned on the top surface 12 of the semiconductor fin 10 at locations adjacent to the vertical sidewalls of each gate structure 14 .
  • the sidewall spacers 18 may be composed of a dielectric material, such as silicon nitride (Si 3 N 4 ), deposited as a conformal layer by atomic layer deposition (ALD) and etched with a directional etching process, such as reactive ion etching (RIE).
  • the conformal layer used to form the sidewall spacers 18 may be a protect layer that is applied over the semiconductor fin 10 and gate structures 14 while processing field-effect transistors of the complementary type.
  • the sidewall spacers 19 are also positioned on the sidewalls of the semiconductor fin 10 .
  • the sidewall spacers 19 may be composed of a dielectric material, such as silicon nitride (Si 3 N 4 ), deposited as a conformal layer by ALD and etched with a directional etching process, such as reactive ion etching (RIE).
  • RIE reactive ion etching
  • the sidewall spacers 18 and the sidewall spacers 19 may be concurrently formed.
  • the gate structures 14 and sidewall spacers 18 cover respective areas on the top and side surfaces of the semiconductor fin 10 .
  • the gate structures 14 may also be arranged to overlap with shallow trench isolation (not shown) surrounding the semiconductor fin 10 .
  • An area between the gate structures 14 and their sidewall spacers 18 on the top surface 10 and the side surfaces of the semiconductor fin 10 is exposed.
  • a cap 20 is arranged on the top surface of the gate electrode 15 of each gate structure 14 and in a space arranged laterally between the sidewall spacers 18 .
  • the caps 20 may be composed of a dielectric material, such as silicon nitride (Si 3 N 4 ), deposited by chemical vapor deposition (CVD).
  • a section of the semiconductor fin 10 arranged between the gate structures 14 is removed over the exposed area to form a trench or cavity 22 that penetrates in a vertical direction to a given depth into the semiconductor fin 10 .
  • Additional sections of the semiconductor fin 10 may be removed between the sidewall spacers 18 to form a fin cavity 21 , as diagrammatically shown by the dashed lines in FIG. 2A .
  • the cavities 21 , 22 may be formed using an isotropic etching process with a suitable etch chemistry. The etching processes forming the cavities 21 , 22 may concurrently and partially remove the sidewall spacers 19 from the semiconductor fin 10 , as best shown in FIG. 2A .
  • the cavity 22 has a sidewall 24 with a given curvature that imparts a ball shape to the cavity 22 .
  • the entrance to the cavity 22 at the top surface 12 of the semiconductor fin 10 may have a width dimension, w 0 , equal to the distance between the sidewall spacers 18 .
  • the sidewall 24 curves outwardly beneath the sidewall spacers 18 to a width dimension slightly larger than the width dimension, w 0 , due to undercutting during the anisotropic etching process.
  • the cavity 22 therefore undercuts the sidewall spacers 18 .
  • a trench or cavity 26 is formed that is superimposed on the cavity 22 .
  • the cavity 26 may be formed using a reactive ion etching (RIE) process with a suitable etch chemistry, such as a RIE process using carbon tetrafluoride (CH 4 ) as a source gas to generate the reactive ions.
  • RIE reactive ion etching
  • CH 4 carbon tetrafluoride
  • the etching process is a dry anisotropic etch that is directional, and is self-aligned by the sidewall spacers 18 on the gate structures 14 .
  • the result is that the width dimension of the cavity 26 is related to, and typically slightly less than, the distance between the sidewall spacers 18 .
  • the cavity 26 is volumetrically smaller than the cavity 22 , and the cavity 26 defines a tip that effectively deepens the central section of the cavity 22 . Due to the anisotropy of the etch and the self-alignment, the portions of the sidewall 24 of the cavity 22 beneath the sidewall spacers 18 retain the original curvature and are not modified when the cavity 26 is formed. In addition, the self-alignment during the anisotropic etching process and the isotropy of the isotropic etching process result in the cavity 26 being symmetrical about, and centered relative to, the cavity 22 about a plane 25 .
  • the cavity 26 has a sidewall 28 with a curvature that differs from the curvature of the sidewall 24 of cavity 22 .
  • the curvature of the sidewall 28 is less than the curvature of the sidewall 24 .
  • the cavity 26 is shaped as a partial circle in cross-section having a given arc length related to its radius of curvature.
  • the etching processes forming the cavity 26 may concurrently remove the remainder of the sidewall spacers 19 from the semiconductor fin 10 , as best shown in FIG. 3A .
  • the composite shape of the cavities 22 , 26 and, in particular, the addition of the cavity 26 promotes the complete removal of the sidewall spacers 19 .
  • an embedded source/drain region 30 is formed in the cavities 22 , 26 and may complete the formation of a multi-gate fin-type field-effect transistor (FinFET) 36 .
  • the embedded source/drain region 30 is comprised of epitaxial semiconductor material that is grown in the cavities 22 , 26 and adopts the shape of the cavities 22 , 26 inside the fin 10 .
  • the embedded source/drain region 30 includes a section 32 that is located in the cavity 22 in the semiconductor fin 10 and a section 34 that is located in the cavity 26 in the semiconductor fin 10 .
  • the section 32 of the embedded source/drain region 30 is arranged between the section 34 of the embedded source/drain region 30 and the top surface 12 of the semiconductor fin 10 .
  • the epitaxial semiconductor material of the source/drain region 30 adopts a faceted shape at its exterior surface, as best shown in FIG. 4A .
  • An epitaxial growth process may be used to deposit the epitaxial semiconductor material, such as silicon germanium (SiGe) or carbon-doped silicon (Si:C), to form the embedded source/drain region 30 , and may include in situ doping during growth to impart a given conductivity type to the grown semiconductor material.
  • the embedded source/drain region 30 may be formed by a selective epitaxial growth process in which semiconductor material nucleates for epitaxial growth on semiconductor surfaces, but does not nucleate for epitaxial growth from insulator surfaces.
  • source/drain region means a doped region of semiconductor material that can function as either a source or a drain of a field-effect transistor.
  • the semiconductor material of the embedded source/drain region 30 may be doped with a p-type dopant selected from Group III of the Periodic Table (e.g., boron (B)) that provides p-type conductivity.
  • a p-type dopant selected from Group III of the Periodic Table e.g., boron (B)
  • the semiconductor material of the embedded source/drain region 30 may be doped with an n-type dopant selected from Group V of the Periodic Table (e.g., phosphorus (P) or arsenic (As)) that provides n-type conductivity.
  • the embedded source/drain region 30 may be strained and incorporate internal stress through control over the conditions and parameters characterizing the epitaxial growth process.
  • the embedded source/drain region 30 may operate as an embedded stressor that transfer stress to the channel regions 11 of the semiconductor fin 10 such that the channel regions 11 are placed under stain, which may increase carrier mobility during device operation. If the embedded source/drain region 30 is composed of Si:C, tensile strain may be produced in the channel regions 11 , which may be appropriate for an n-type field-effect transistor. If the embedded source/drain region 30 is composed of SiGe, compressive strain may be produced in the channel regions 11 , which may be appropriate for a p-type field-effect transistor.
  • the introduction of the additional cavity 26 may be implemented in connection with a single diffusion break (SBD) in which only a single dummy gate is located between active regions, in contrast to the embodiments of FIGS. 1-4 illustrating implementation with a double diffusion break (DDB).
  • a shallow trench isolation region 38 may be formed adjacent to the fin 10 . The etching processes forming the cavities 22 , 26 etches the semiconductor material of the semiconductor fin 10 selective to the dielectric material of the shallow trench isolation region 38 .
  • the term “selective” in reference to a material removal process denotes that, with an appropriate etchant choice, the material removal rate (i.e., etch rate) for the targeted material is greater than the removal rate for at least another material exposed to the material removal process.
  • the epitaxial semiconductor material used to form the embedded source/drain region 30 does not nucleate from the dielectric material of the shallow trench isolation region 38 , which modifies the shape of the embedded source/drain region 30 .
  • the formation of the cavities 22 , 26 with two distinct etching processes decouples the formation of the cavity 26 from the formation of the cavity 22 .
  • the introduction of the cavity 26 by the anisotropic etching process increases the volume of the epitaxial semiconductor material contained in the embedded source/drain region 30 .
  • the increased volume of the source/drain region 30 from the addition of the section 34 may be linked to device performance of the FinFET 36 by sufficient surface area for effective implants as well as consistent contact landing in a SDB area.
  • the increased volume of the source/drain region 30 from the addition of the section 34 may increase the stress transferred to the channel of the FinFET 36 , which may further increase carrier mobility, and may reduce the electrical resistance of the source/drain region 30 , each of which may boost device performance.
  • the etching processes forming the cavities 22 , 26 inside the fin 10 concurrently pull down the sidewall spacers 19 .
  • Complete removal of the sidewall spacers 19 which is promoted by the additional cavity 26 , optimizes the volume of semiconductor material in the source/drain region 30 by increasing the surface area of the growth seed provided by the fin 10 .
  • Merely increasing the volume of cavity 22 would also increase the cavity depth, but degrades the faceting of the epitaxial semiconductor material, particularly in a SDB area, leading to increased leakage and a reduced yield due to difficulties in contacting the source/drain region 30 .
  • the addition of the cavity 26 is achieved without changing the profile or shape of the cavity 22 , which ensures that the faceting of the epitaxial semiconductor material is not degraded while also increasing the volume of the epitaxial semiconductor material.
  • the height of the intercept between the source/drain region 30 and the shallow trench isolation region 38 is also increased so that the facet plane is elevated.
  • the methods as described above are used in the fabrication of integrated circuit chips.
  • the resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (e.g., as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form.
  • the chip is mounted in a single chip package (e.g., a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (e.g., a ceramic carrier that has either or both surface interconnections or buried interconnections).
  • the chip may be integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either an intermediate product or an end product.
  • references herein to terms such as “vertical”, “horizontal”, etc. are made by way of example, and not by way of limitation, to establish a frame of reference.
  • the term “horizontal” as used herein is defined as a plane parallel to a conventional plane of a semiconductor substrate, regardless of its actual three-dimensional spatial orientation.
  • the terms “vertical” and “normal” refer to a direction perpendicular to the horizontal, as just defined.
  • the term “lateral” refers to a direction within the horizontal plane. Terms such as “above” and “below” are used to indicate positioning of elements or structures relative to each other as opposed to relative elevation.
  • a feature “connected” or “coupled” to or with another element may be directly connected or coupled to the other element or, instead, one or more intervening elements may be present.
  • a feature may be “directly connected” or “directly coupled” to another element if intervening elements are absent.
  • a feature may be “indirectly connected” or “indirectly coupled” to another element if at least one intervening element is present.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Methods of forming a field-effect transistor and structures for a field-effect transistor. A gate structure is formed that overlaps with a channel region in a semiconductor fin. The semiconductor fin is etched with a first etching process to form a first cavity extending into the semiconductor fin adjacent to the channel region. The semiconductor fin is etched with a second etching process to form a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity.

Description

    BACKGROUND
  • The present invention relates to semiconductor device fabrication and integrated circuits and, more specifically, to structures for a field-effect transistor and methods of forming a field-effect transistor.
  • Device structures for a field-effect transistor generally include a body region, a source and a drain defined in the body region, and a gate structure configured to apply a control voltage that switches carrier flow in a channel formed in the body region. When a control voltage that is greater than a designated threshold voltage is applied, carrier flow occurs in the channel between the source and drain to produce a device output current.
  • Epitaxial semiconductor films may be used to modify the performance of field-effect transistors. For example, an epitaxial semiconductor film can be used to increase the carrier mobility by inducing stresses in the channel. In a p-channel field-effect transistor, hole mobility can be enhanced by applying a compressive stress to the channel. The compressive stress may be applied by forming an epitaxial semiconductor material, such as silicon-germanium, at the opposite sides of the channel. Similarly, in an n-channel field-effect transistor, electron mobility can be enhanced by applying a tensile stress to the channel. The tensile stress may be applied by forming an epitaxial semiconductor material, such as silicon doped with carbon, at the opposite sides of the channel. These stressors may also operate as portions of source and drain regions of the field-effect transistor, and may function as a dopant supply for other portions of the source and drain regions.
  • The volume of the epitaxial semiconductor material contained in the stressors may be directly linked to device performance and yield. The stress imparted to the channel increases with increasing volume, which optimizes mobility. Increasing the volume may also reduce the source and drain resistance, and may also provide a consistent contact landing area in certain situations.
  • Accordingly, improved structures for a field-effect transistor and methods of forming a field-effect transistor are needed.
  • SUMMARY
  • In an embodiment of the invention, a method is provided for forming a field-effect transistor. A gate structure is formed that overlaps with a channel region in a semiconductor fin. The semiconductor fin is etched with a first etching process to form a first cavity extending into the semiconductor fin adjacent to the channel region. The semiconductor fin is etched with a second etching process to form a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity.
  • In an embodiment of the invention, a structure is provided for forming a field-effect transistor. The structure includes a semiconductor fin with a channel region, a first cavity, and a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity. The structure further includes a gate structure that overlaps with the channel region adjacent to the first cavity, and a source/drain region with a first section in the first cavity and a second section in the second cavity.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments of the invention and, together with a general description given above and the detailed description given below, serve to explain the embodiments of the invention.
  • FIG. 1 is a cross-sectional view of a structure for a field-effect transistor at an initial fabrication stage of a processing method in accordance with embodiments of the invention.
  • FIG. 1A is a cross-sectional view of the structure of FIG. 1 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 2 is a cross-sectional view of the structure of FIG. 1 at a subsequent fabrication stage of the processing method.
  • FIG. 2A is a cross-sectional view of the structure of FIG. 2 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 3 is a cross-sectional view of the structure of FIG. 2 at a subsequent fabrication stage of the processing method.
  • FIG. 3A is a cross-sectional view of the structure of FIG. 3 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 4 is a cross-sectional view of the structure of FIG. 3 at a subsequent fabrication stage of the processing method.
  • FIG. 4A is a cross-sectional view of the structure of FIG. 4 from a perspective parallel to the length of the semiconductor fin and at a location between the gate structures.
  • FIG. 5 is a cross-sectional view of a structure implemented in connection with a single diffusion break in accordance with alternative embodiments of the invention.
  • DETAILED DESCRIPTION
  • With reference to FIGS. 1, 1A and in accordance with embodiments of the invention, gate structures 14 are arranged on a top surface 12 of a semiconductor fin 10 and overlap with respective channel regions 11 in the semiconductor fin 10 at spaced apart locations. The gate structures 14 may also be located on trench isolation 13 adjacent to the semiconductor fin 10. The semiconductor fin 10 is composed of a single crystal semiconductor material and, in an embodiment, the semiconductor fin 10 may be composed of single-crystal silicon. The semiconductor fin 10 may be formed by patterning a substrate or an epitaxial layer grown on a substrate using a sidewall imaging transfer (SIT) process, self-aligned double patterning (SADP), or self-aligned quadruple patterning (SAQP).
  • Each gate structure 14 includes a gate electrode 15 and a gate dielectric 17 interposed between the gate electrode 15 and the semiconductor fin 10. The gate electrode 15 may be composed of polycrystalline silicon (i.e., polysilicon), or may include one or more barrier metal layers, work function metal layers, and/or fill metal layers composed of conductors, such as metals (e.g., tungsten (W)) and/or metal nitrides or carbides (e.g., titanium nitride (TiN) and titanium aluminum carbide (TiAlC)). The gate dielectric 17 may be composed of a dielectric material, such as silicon dioxide (SiO2) or a high-k dielectric material like hafnium oxide (HfO2). The gate structures 14 may be functional gate structures or, in the alternative, may be sacrificial gate structures that are subsequently removed and replaced by functional gate structures in a replacement metal gate process. The term “sacrificial gate structure” as used herein refers to a placeholder structure for a functional gate structure to be subsequently formed. The term “functional gate structure” as used herein refers to a permanent gate structure used to control output current (i.e., flow of carriers in the channel) of a field-effect transistor.
  • Sidewall spacers 18 are positioned on the top surface 12 of the semiconductor fin 10 at locations adjacent to the vertical sidewalls of each gate structure 14. The sidewall spacers 18 may be composed of a dielectric material, such as silicon nitride (Si3N4), deposited as a conformal layer by atomic layer deposition (ALD) and etched with a directional etching process, such as reactive ion etching (RIE). The conformal layer used to form the sidewall spacers 18 may be a protect layer that is applied over the semiconductor fin 10 and gate structures 14 while processing field-effect transistors of the complementary type.
  • Sidewall spacers 19 are also positioned on the sidewalls of the semiconductor fin 10. The sidewall spacers 19 may be composed of a dielectric material, such as silicon nitride (Si3N4), deposited as a conformal layer by ALD and etched with a directional etching process, such as reactive ion etching (RIE). In an embodiment, the sidewall spacers 18 and the sidewall spacers 19 may be concurrently formed.
  • The gate structures 14 and sidewall spacers 18 cover respective areas on the top and side surfaces of the semiconductor fin 10. The gate structures 14 may also be arranged to overlap with shallow trench isolation (not shown) surrounding the semiconductor fin 10. An area between the gate structures 14 and their sidewall spacers 18 on the top surface 10 and the side surfaces of the semiconductor fin 10 is exposed.
  • A cap 20 is arranged on the top surface of the gate electrode 15 of each gate structure 14 and in a space arranged laterally between the sidewall spacers 18. The caps 20 may be composed of a dielectric material, such as silicon nitride (Si3N4), deposited by chemical vapor deposition (CVD).
  • With reference to FIGS. 2, 2A in which like reference numerals refer to like features in FIGS. 1, 1A and at a subsequent fabrication stage of the processing method, a section of the semiconductor fin 10 arranged between the gate structures 14 is removed over the exposed area to form a trench or cavity 22 that penetrates in a vertical direction to a given depth into the semiconductor fin 10. Additional sections of the semiconductor fin 10 may be removed between the sidewall spacers 18 to form a fin cavity 21, as diagrammatically shown by the dashed lines in FIG. 2A. The cavities 21, 22 may be formed using an isotropic etching process with a suitable etch chemistry. The etching processes forming the cavities 21, 22 may concurrently and partially remove the sidewall spacers 19 from the semiconductor fin 10, as best shown in FIG. 2A.
  • The cavity 22 has a sidewall 24 with a given curvature that imparts a ball shape to the cavity 22. The entrance to the cavity 22 at the top surface 12 of the semiconductor fin 10 may have a width dimension, w0, equal to the distance between the sidewall spacers 18. The sidewall 24 curves outwardly beneath the sidewall spacers 18 to a width dimension slightly larger than the width dimension, w0, due to undercutting during the anisotropic etching process. The cavity 22 therefore undercuts the sidewall spacers 18.
  • With reference to FIGS. 3, 3A in which like reference numerals refer to like features in FIGS. 2, 2A and at a subsequent fabrication stage of the processing method, a trench or cavity 26 is formed that is superimposed on the cavity 22. The cavity 26 may be formed using a reactive ion etching (RIE) process with a suitable etch chemistry, such as a RIE process using carbon tetrafluoride (CH4) as a source gas to generate the reactive ions. The etching process is a dry anisotropic etch that is directional, and is self-aligned by the sidewall spacers 18 on the gate structures 14. The result is that the width dimension of the cavity 26 is related to, and typically slightly less than, the distance between the sidewall spacers 18.
  • The cavity 26 is volumetrically smaller than the cavity 22, and the cavity 26 defines a tip that effectively deepens the central section of the cavity 22. Due to the anisotropy of the etch and the self-alignment, the portions of the sidewall 24 of the cavity 22 beneath the sidewall spacers 18 retain the original curvature and are not modified when the cavity 26 is formed. In addition, the self-alignment during the anisotropic etching process and the isotropy of the isotropic etching process result in the cavity 26 being symmetrical about, and centered relative to, the cavity 22 about a plane 25.
  • The cavity 26 has a sidewall 28 with a curvature that differs from the curvature of the sidewall 24 of cavity 22. In particular, the curvature of the sidewall 28 is less than the curvature of the sidewall 24. The cavity 26 is shaped as a partial circle in cross-section having a given arc length related to its radius of curvature.
  • The etching processes forming the cavity 26 may concurrently remove the remainder of the sidewall spacers 19 from the semiconductor fin 10, as best shown in FIG. 3A. The composite shape of the cavities 22, 26 and, in particular, the addition of the cavity 26 promotes the complete removal of the sidewall spacers 19.
  • With reference to FIGS. 4, 4A in which like reference numerals refer to like features in FIGS. 3, 3A and at a subsequent fabrication stage of the processing method, an embedded source/drain region 30 is formed in the cavities 22, 26 and may complete the formation of a multi-gate fin-type field-effect transistor (FinFET) 36. The embedded source/drain region 30 is comprised of epitaxial semiconductor material that is grown in the cavities 22, 26 and adopts the shape of the cavities 22, 26 inside the fin 10. In particular, the embedded source/drain region 30 includes a section 32 that is located in the cavity 22 in the semiconductor fin 10 and a section 34 that is located in the cavity 26 in the semiconductor fin 10. The section 32 of the embedded source/drain region 30 is arranged between the section 34 of the embedded source/drain region 30 and the top surface 12 of the semiconductor fin 10. Outside of the cavities 22, 26 in the fin 10, the epitaxial semiconductor material of the source/drain region 30 adopts a faceted shape at its exterior surface, as best shown in FIG. 4A.
  • An epitaxial growth process may be used to deposit the epitaxial semiconductor material, such as silicon germanium (SiGe) or carbon-doped silicon (Si:C), to form the embedded source/drain region 30, and may include in situ doping during growth to impart a given conductivity type to the grown semiconductor material. In an embodiment, the embedded source/drain region 30 may be formed by a selective epitaxial growth process in which semiconductor material nucleates for epitaxial growth on semiconductor surfaces, but does not nucleate for epitaxial growth from insulator surfaces. As used herein, the term “source/drain region” means a doped region of semiconductor material that can function as either a source or a drain of a field-effect transistor. For a p-type field-effect transistor, the semiconductor material of the embedded source/drain region 30 may be doped with a p-type dopant selected from Group III of the Periodic Table (e.g., boron (B)) that provides p-type conductivity. For an n-type field-effect transistor, the semiconductor material of the embedded source/drain region 30 may be doped with an n-type dopant selected from Group V of the Periodic Table (e.g., phosphorus (P) or arsenic (As)) that provides n-type conductivity.
  • The embedded source/drain region 30 may be strained and incorporate internal stress through control over the conditions and parameters characterizing the epitaxial growth process. The embedded source/drain region 30 may operate as an embedded stressor that transfer stress to the channel regions 11 of the semiconductor fin 10 such that the channel regions 11 are placed under stain, which may increase carrier mobility during device operation. If the embedded source/drain region 30 is composed of Si:C, tensile strain may be produced in the channel regions 11, which may be appropriate for an n-type field-effect transistor. If the embedded source/drain region 30 is composed of SiGe, compressive strain may be produced in the channel regions 11, which may be appropriate for a p-type field-effect transistor.
  • With reference to FIG. 5 in which like reference numerals refer to like features in FIG. 4 and in accordance with alternative embodiments, the introduction of the additional cavity 26 may be implemented in connection with a single diffusion break (SBD) in which only a single dummy gate is located between active regions, in contrast to the embodiments of FIGS. 1-4 illustrating implementation with a double diffusion break (DDB). To that end, a shallow trench isolation region 38 may be formed adjacent to the fin 10. The etching processes forming the cavities 22, 26 etches the semiconductor material of the semiconductor fin 10 selective to the dielectric material of the shallow trench isolation region 38. As used herein, the term “selective” in reference to a material removal process (e.g., etching) denotes that, with an appropriate etchant choice, the material removal rate (i.e., etch rate) for the targeted material is greater than the removal rate for at least another material exposed to the material removal process. The epitaxial semiconductor material used to form the embedded source/drain region 30 does not nucleate from the dielectric material of the shallow trench isolation region 38, which modifies the shape of the embedded source/drain region 30.
  • The formation of the cavities 22, 26 with two distinct etching processes decouples the formation of the cavity 26 from the formation of the cavity 22. The introduction of the cavity 26 by the anisotropic etching process increases the volume of the epitaxial semiconductor material contained in the embedded source/drain region 30. The increased volume of the source/drain region 30 from the addition of the section 34 may be linked to device performance of the FinFET 36 by sufficient surface area for effective implants as well as consistent contact landing in a SDB area. The increased volume of the source/drain region 30 from the addition of the section 34 may increase the stress transferred to the channel of the FinFET 36, which may further increase carrier mobility, and may reduce the electrical resistance of the source/drain region 30, each of which may boost device performance.
  • The etching processes forming the cavities 22, 26 inside the fin 10 concurrently pull down the sidewall spacers 19. Complete removal of the sidewall spacers 19, which is promoted by the additional cavity 26, optimizes the volume of semiconductor material in the source/drain region 30 by increasing the surface area of the growth seed provided by the fin 10. Merely increasing the volume of cavity 22 would also increase the cavity depth, but degrades the faceting of the epitaxial semiconductor material, particularly in a SDB area, leading to increased leakage and a reduced yield due to difficulties in contacting the source/drain region 30. The addition of the cavity 26 is achieved without changing the profile or shape of the cavity 22, which ensures that the faceting of the epitaxial semiconductor material is not degraded while also increasing the volume of the epitaxial semiconductor material. The height of the intercept between the source/drain region 30 and the shallow trench isolation region 38 is also increased so that the facet plane is elevated.
  • The methods as described above are used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (e.g., as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case, the chip is mounted in a single chip package (e.g., a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (e.g., a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case, the chip may be integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either an intermediate product or an end product.
  • References herein to terms such as “vertical”, “horizontal”, etc. are made by way of example, and not by way of limitation, to establish a frame of reference. The term “horizontal” as used herein is defined as a plane parallel to a conventional plane of a semiconductor substrate, regardless of its actual three-dimensional spatial orientation. The terms “vertical” and “normal” refer to a direction perpendicular to the horizontal, as just defined. The term “lateral” refers to a direction within the horizontal plane. Terms such as “above” and “below” are used to indicate positioning of elements or structures relative to each other as opposed to relative elevation.
  • A feature “connected” or “coupled” to or with another element may be directly connected or coupled to the other element or, instead, one or more intervening elements may be present. A feature may be “directly connected” or “directly coupled” to another element if intervening elements are absent. A feature may be “indirectly connected” or “indirectly coupled” to another element if at least one intervening element is present.
  • The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.

Claims (15)

1. A method for forming a field-effect transistor, the method comprising:
forming a gate structure that overlaps with a channel region in a semiconductor fin;
forming a sidewall spacer on the semiconductor fin adjacent to the channel region;
etching the semiconductor fin with a first etching process to form a first cavity extending into the semiconductor fin adjacent to the gate structure;
removing a first portion of the sidewall spacer from the semiconductor fin with the first etching process to leave a second portion that is not removed;
etching the semiconductor fin with a second etching process to form a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity; and
removing the second portion of the sidewall spacer from the semiconductor fin with the second etching process.
2. The method of claim 1 wherein the first cavity is formed before forming the second cavity.
3. The method of claim 1 wherein the semiconductor fin is composed of silicon, and the second etching process is an anisotropic etching process.
4. The method of claim 3 wherein the first etching process is an isotropic etching process.
5. (canceled)
6. The method of claim 1 wherein the first cavity extends from a top surface of the semiconductor fin to a first depth, and the first cavity is arranged between the second cavity and the top surface of the semiconductor fin.
7. The method of claim 6 wherein the second cavity is centered relative to the first cavity.
8. The method of claim 1 further comprising:
epitaxially growing an embedded source/drain region having a first section in the first cavity and a second section in the second cavity.
9. The method of claim 8 wherein the semiconductor fin is composed of silicon, and the embedded source/drain region includes internal stress that is transferred to the channel region in the semiconductor fin.
10. The method of claim 9 wherein the embedded source/drain region is composed of silicon-germanium, the field-effect transistor is a p-type field-effect transistor, and the embedded source/drain region transfers compressive strain to the channel region.
11. The method of claim 9 wherein the embedded source/drain region is composed of carbon-doped silicon, the field-effect transistor is an n-type field-effect transistor, and the embedded source/drain region transfers tensile strain to the channel region.
12. A method for forming a field-effect transistor, the method comprising:
forming a gate structure that overlaps with a channel region in a semiconductor fin;
etching the semiconductor fin with a first etching process to form a first cavity extending into the semiconductor fin adjacent to the gate structure; and
etching the semiconductor fin with a second etching process to form a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity,
wherein the first cavity has a curved sidewall, the second cavity has a curved sidewall with a smaller radius of curvature than the curved sidewall of the first cavity, and the curved sidewall of the second cavity intersects the curved sidewall of the first cavity.
13. The method of claim 1 wherein the gate structure includes a gate electrode, and further comprising:
forming a sidewall spacer on the gate electrode,
wherein the first cavity undercuts the sidewall spacer on the gate electrode.
14. The method of claim 13 wherein the second etching process is self-aligned by the sidewall spacer on the gate electrode, and the second etching process is anisotropic.
15-20. (canceled)
US15/795,879 2017-10-27 2017-10-27 Dual-curvature cavity for epitaxial semiconductor growth Active US10297675B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/795,879 US10297675B1 (en) 2017-10-27 2017-10-27 Dual-curvature cavity for epitaxial semiconductor growth
TW107117053A TWI684215B (en) 2017-10-27 2018-05-18 Dual-curvature cavity for epitaxial semiconductor growth
CN201811254286.0A CN109727871A (en) 2017-10-27 2018-10-26 Double curve degree cavity for epitaxial semiconductor growth
US16/276,045 US20190181243A1 (en) 2017-10-27 2019-02-14 Dual-curvature cavity for epitaxial semiconductor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/795,879 US10297675B1 (en) 2017-10-27 2017-10-27 Dual-curvature cavity for epitaxial semiconductor growth

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/276,045 Division US20190181243A1 (en) 2017-10-27 2019-02-14 Dual-curvature cavity for epitaxial semiconductor growth

Publications (2)

Publication Number Publication Date
US20190131433A1 true US20190131433A1 (en) 2019-05-02
US10297675B1 US10297675B1 (en) 2019-05-21

Family

ID=66243508

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/795,879 Active US10297675B1 (en) 2017-10-27 2017-10-27 Dual-curvature cavity for epitaxial semiconductor growth
US16/276,045 Abandoned US20190181243A1 (en) 2017-10-27 2019-02-14 Dual-curvature cavity for epitaxial semiconductor growth

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/276,045 Abandoned US20190181243A1 (en) 2017-10-27 2019-02-14 Dual-curvature cavity for epitaxial semiconductor growth

Country Status (3)

Country Link
US (2) US10297675B1 (en)
CN (1) CN109727871A (en)
TW (1) TWI684215B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489062B2 (en) * 2019-05-31 2022-11-01 Taiwan Semiconductor Manufacturing Co., Ltd Optimized proximity profile for strained source/drain feature and method of fabricating thereof
US20230050300A1 (en) * 2019-05-31 2023-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Optimized Proximity Profile for Strained Source/Drain Feature and Method of Fabricating Thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107696B1 (en) 2019-10-29 2021-08-31 Xilinx, Inc. Implantation for etch stop liner
US11133417B1 (en) * 2020-03-16 2021-09-28 Globalfoundries U.S. Inc. Transistors with a sectioned epitaxial semiconductor layer
US11374002B2 (en) * 2020-07-24 2022-06-28 Globalfoundries U.S. Inc. Transistors with hybrid source/drain regions
KR20220090672A (en) 2020-12-22 2022-06-30 삼성전자주식회사 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170011057A1 (en) * 2013-12-06 2017-01-12 International Business Machines Corporation Files having unallocated portions within content addressable storage

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881635B1 (en) 2004-03-23 2005-04-19 International Business Machines Corporation Strained silicon NMOS devices with embedded source/drain
US7335959B2 (en) * 2005-01-06 2008-02-26 Intel Corporation Device with stepped source/drain region profile
US8410539B2 (en) 2006-02-14 2013-04-02 Stmicroelectronics (Crolles 2) Sas MOS transistor with a settable threshold
US8138053B2 (en) 2007-01-09 2012-03-20 International Business Machines Corporation Method of forming source and drain of field-effect-transistor and structure thereof
JP2010003916A (en) 2008-06-20 2010-01-07 Elpida Memory Inc Semiconductor device and method of manufacturing the same
US8313999B2 (en) * 2009-12-23 2012-11-20 Intel Corporation Multi-gate semiconductor device with self-aligned epitaxial source and drain
KR101668097B1 (en) * 2010-03-12 2016-10-24 삼성전자주식회사 Semiconductor dievices having a field effect transistor and methods of forming the same
US8796759B2 (en) 2010-07-15 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US20120205716A1 (en) 2011-02-16 2012-08-16 International Business Machines Corporation Epitaxially Grown Extension Regions for Scaled CMOS Devices
US8946064B2 (en) 2011-06-16 2015-02-03 International Business Machines Corporation Transistor with buried silicon germanium for improved proximity control and optimized recess shape
CN103632973B (en) 2012-08-23 2017-01-25 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US8927352B2 (en) * 2013-03-08 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Channel epitaxial regrowth flow (CRF)
US9640531B1 (en) 2014-01-28 2017-05-02 Monolithic 3D Inc. Semiconductor device, structure and methods
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US9293534B2 (en) * 2014-03-21 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US9093298B2 (en) * 2013-08-22 2015-07-28 Texas Instruments Incorporated Silicide formation due to improved SiGe faceting
US9093275B2 (en) * 2013-10-22 2015-07-28 International Business Machines Corporation Multi-height multi-composition semiconductor fins
US9246003B2 (en) 2013-11-19 2016-01-26 Globalfoundries Inc. FINFET structures with fins recessed beneath the gate
US9287398B2 (en) * 2014-02-14 2016-03-15 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor strain-inducing scheme
KR102170856B1 (en) * 2014-02-19 2020-10-29 삼성전자주식회사 Semiconductor device and method for fabricating the same
TWI637514B (en) * 2015-04-24 2018-10-01 聯華電子股份有限公司 Semiconductor structure and manufacturing method thereof
US10164096B2 (en) * 2015-08-21 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US9722079B2 (en) * 2015-10-15 2017-08-01 Taiwan Semiconductor Manufacturing Co., Ltd. Fin-type field effect transistor structure and manufacturing method thereof
US10276715B2 (en) 2016-02-25 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
US10141443B2 (en) * 2016-03-24 2018-11-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices FinFET devices with optimized strained-sourece-drain recess profiles and methods of forming the same
CN107403835B (en) * 2016-05-19 2021-12-14 联芯集成电路制造(厦门)有限公司 Semiconductor device and manufacturing process thereof
US10056465B2 (en) 2016-06-20 2018-08-21 Semiconductor Manufacturing International (Shanghai) Corporation Transistor device and fabrication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170011057A1 (en) * 2013-12-06 2017-01-12 International Business Machines Corporation Files having unallocated portions within content addressable storage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489062B2 (en) * 2019-05-31 2022-11-01 Taiwan Semiconductor Manufacturing Co., Ltd Optimized proximity profile for strained source/drain feature and method of fabricating thereof
US20230050300A1 (en) * 2019-05-31 2023-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Optimized Proximity Profile for Strained Source/Drain Feature and Method of Fabricating Thereof
US11824102B2 (en) * 2019-05-31 2023-11-21 Taiwan Semiconductor Manufacturing Co., Ltd Optimized proximity profile for strained source/drain feature and method of fabricating thereof
US20230387259A1 (en) * 2019-05-31 2023-11-30 Taiwan Semiconductor Manufacturing Co., Ltd. Optimized Proximity Profile for Strained Source/Drain Feature and Method of Fabricating Thereof

Also Published As

Publication number Publication date
CN109727871A (en) 2019-05-07
US20190181243A1 (en) 2019-06-13
US10297675B1 (en) 2019-05-21
TW201917785A (en) 2019-05-01
TWI684215B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
US11502186B2 (en) FinFET device having a channel defined in a diamond-like shape semiconductor structure
US10297675B1 (en) Dual-curvature cavity for epitaxial semiconductor growth
US12051752B2 (en) Embedded source or drain region of transistor with downward tapered region under facet region
US10868175B2 (en) Method for manufacturing semiconductor structure
KR100763542B1 (en) Method of manufacturing semiconductor device having multiple channels mos transistor
KR101802715B1 (en) Semiconductor device and manufacturing method thereof
US9472470B2 (en) Methods of forming FinFET with wide unmerged source drain EPI
CN110299358B (en) Semiconductor device including fin field effect transistor and method of manufacturing the same
KR100612420B1 (en) Semiconductor device and method for forming the same
US10763328B2 (en) Epitaxial semiconductor material grown with enhanced local isotropy
US8563385B2 (en) Field effect transistor device with raised active regions
US20190027370A1 (en) Shaped cavity for epitaxial semiconductor growth
US10355104B2 (en) Single-curvature cavity for semiconductor epitaxy
US11374002B2 (en) Transistors with hybrid source/drain regions

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VINSLAVA, ALINA;LO, HSIEN-CHING;SHI, YONGJUN;AND OTHERS;SIGNING DATES FROM 20171002 TO 20171005;REEL/FRAME:043971/0539

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:054633/0001

Effective date: 20201022

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001

Effective date: 20201117

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4