US20190123566A1 - Schedule Impact Map - Google Patents
Schedule Impact Map Download PDFInfo
- Publication number
- US20190123566A1 US20190123566A1 US16/166,575 US201816166575A US2019123566A1 US 20190123566 A1 US20190123566 A1 US 20190123566A1 US 201816166575 A US201816166575 A US 201816166575A US 2019123566 A1 US2019123566 A1 US 2019123566A1
- Authority
- US
- United States
- Prior art keywords
- rooms
- date
- room
- milestone
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007689 inspection Methods 0.000 claims abstract description 124
- 230000000007 visual effect Effects 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000000694 effects Effects 0.000 claims description 21
- 238000009428 plumbing Methods 0.000 claims description 7
- 238000009432 framing Methods 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 238000004079 fireproofing Methods 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 description 16
- 238000010276 construction Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 238000004590 computer program Methods 0.000 description 9
- 239000003086 colorant Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000009435 building construction Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00016—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
- H02J13/00017—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00028—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
-
- H02J13/0086—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/008—Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H02J3/383—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H02J2003/003—
-
- H02J2003/007—
-
- H02J2003/146—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/50—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
- H02J2310/56—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
- H02J2310/62—The condition being non-electrical, e.g. temperature
- H02J2310/64—The condition being economic, e.g. tariff based load management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y02E10/563—
-
- Y02E10/566—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y02E40/72—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/12—Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
-
- Y04S20/224—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/124—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/10—Energy trading, including energy flowing from end-user application to grid
Definitions
- This disclosure relates generally to monitoring building construction.
- one innovative aspect of the subject matter described in this specification may be embodied in methods that include the actions of receiving an indication of a floor plan of a building project; receiving an indication of an inspection report, the inspection report associated with an inspection type; identifying a forecast date associated with each room in the floor plan, the forecast date indicating when an inspection type associated with the respective room is to be completed; for each room, determining how close each room's forecast date is to a present date, and if the room's forecast date is past the present date; generating a visual map of the floor plan; associating a color of each room in the floor plan based on the determining; and providing the visual map with the associated color of each room for display.
- Another aspect can be embodiment in methods that include the actions of receiving a selection of a floor of a building project, receiving a selection of an inspection type associated with the building project, receiving a selection of a forecast report, wherein the forecast report displays each room of the floor of the building project in a color indicating how close each room's assigned forecast date is to a present date, displaying a floor plan associated with the floor and inspection report, wherein the floor plan includes rooms that are each colored based on how close each room's assigned forecast date is to the present date.
- FIG. 1 illustrates a system for monitoring inspection.
- FIG. 2 illustrates a display view of a floor plan.
- FIG. 3 illustrates a display view of a floor plan.
- FIG. 4 illustrates a display of a floor plan.
- FIG. 5 illustrates a display of a key of a floor plan.
- FIG. 6 illustrates a flowchart of an example process.
- FIG. 7 illustrates an example user device including a browser.
- FIG. 8 is a diagram of an example computer device used to implement the system.
- a system will be described that provides indications of project milestones to users of the system who are using it in order to track status of building construction.
- the system is robust enough to enable the orchestration of complex professional organizations, streamlining their interactive processes in order to minimize task duration, down time and unnecessary delays.
- an inspection monitoring process provides real-time collaboration, process tracking, quality control timing, and status reporting associated with a construction project.
- the process can include reporting that allows a user to visually see how far out a project is from completion for each milestone.
- FIG. 1 illustrates an example of a networked system of devices, perhaps mobile devices such as mobile phones, tablets or computers.
- the devices may be networked over network 102 .
- Network 102 may be any network or combination of networks that can carry data communications.
- Such a network 102 may include, but is not limited to, a local area network, metropolitan area network, and/or wide area network such as the Internet.
- Network 102 can support protocols and technology including, but not limited to, World Wide Web (or simply the “Web”), protocols such as a Hypertext Transfer Protocol (“HTTP”) protocols, and/or services.
- Intermediate web servers, gateways, or other servers may be provided between components of the system shown in FIG. 1 , depending upon a particular application or environment.
- a user may operate a user interface on user device 110 to track forecast dates of milestones for a construction project.
- the milestone data, forecast data, and other data used to track forecast dates may be stored, accessed, distributed or modified using a system stored on and executed by server 120
- User device 110 may be coupled to server 120 over network 102 .
- Server 120 includes inspection system 104 , which may be used to provide information to user device 110 .
- Visual system 100 may be implemented on or implemented with one or more computing devices, such as user device 110 .
- Inspection system 104 allows users to be able to track the status of different phases of a construction process.
- System 104 allows visual fragnets to be created that shows on a visual display the different status of various parts of a project.
- a visual fragnet is an interactive floor plan of a level of a building. For example, visual fragnets can be created to show the status of an inspection for a particular milestone in a project. Visual fragnets can also be created to show forecast completion dates associated with various milestones in a project.
- Inspection system 104 first creates the maps that will be used by the system. These maps can be room-based maps, or they can be section based, area based, or equipment based. Inspection system 104 receives architectural drawings that are 2d or 3d, and converts these drawings to a 2D room based map. For example, if the construction project is for a hospital, each level of the hospital is associated with an architectural drawing. These maps are imported into inspection system 104 and they are then converted into 2D room based maps. These room-based maps are used by inspection system 104 to track various milestones associated with the project.
- Visual System 100 allows user to interact with Inspection system 104 through network 102 .
- Each construction project can be made up of various project milestones.
- Project milestones are parts of a construction project that in total make up the complete construction phase of the project.
- milestones can be Steel Erection, Fireproofing, Exterior Skin, In Wall Completion.
- the term “Milestone” is relative to the group that is using it.
- the framing subcontractor may consider “In Wall Framing” a milestone because it's their scope.
- the General contractor may view “In Wall Framing” as an Activity.
- a “Milestone” is a large phase of work comprised of smaller activities.
- “Milestones” can be Steel Erection, Fireproofing, In Wall Completion, Overhead Completion, etc. Each milestone has different activities associated with it. The activities are the different inspection request that make up a milestone like In Wall Framing, In Wall Plumbing, etc. Visual Fragnet reports can be run based on individual “Activities”.
- Milestones are set using standards by a general contractor or owner of a project. Milestone provides a sequence of inspection types that are organized and ordered to let the general contractor or owner know everything is done in a specific room or area prior to close-up.
- the in wall milestone can include the following inspection types: framing inspection, electrical, and mechanical inspection.
- a report such as a proximity report
- it will show how far out each room is for that inspection type and the same can be done for a milestone that includes more than one inspection type. Therefore when a report is run for a milestone that includes multiple inspections.
- the in-wall milestone may includes 3 or 4 different inspection types.
- the rooms can be colored based on an average date of how far out all the inspection types are together.
- each room can have multiple indications of different inspection types so each inspection type is colored in the room. For example, one room can include 3 colors, 1 color for each inspection.
- system 110 receives the updated status for each task.
- the room is marked for inspection in system 110 .
- An inspector then will inspect the room for a specific inspection type.
- the inspection type is tied to the milestone. For example, if the milestone is electrical, an electrical inspection of the room is performed.
- a status of “new” is automatically assigned when a subcontractor creates an inspection request. Status “open” is selected by the General Contractor when they believe the request is ready to go to the inspectors. A status of “closed” is assigned for completed rooms, or “issue” is assigned for rooms that have issues, or “rejected” is a status for those rooms not even close to being done.
- An inspection type of “not applicable” may be applied to some rooms. For example, some rooms wont have plumbing so those rooms for the inspection type plumbing are marked as not applicable.
- System 104 stores these statuses associated with each milestone.
- One room can be associated with many milestones.
- Inspection system 104 allows the users to assign a Forecast Complete date to a specific set of rooms for a project. Subsequently, depending on the map or visual fragnet report that is being used, the forecasted room will automatically update to a different color based on how far the forecasted date is from the current date. This allows the project managers or general contractors or other users to easily identify the areas in the building that require the most attention in order to meet the forecasted goal.
- the colorization of the rooms is standardized based on the report that is being run.
- reports that are based on colorizing the rooms by forecasted dates are colorized randomly. This is because it may not be clear how many different forecast are going to be used and are unable to decide which colors to use. It could happen that one floor plan will have 20 forecast dates for a single inspection type. Thus, the system assigns a random color to each date in that report.
- a building has different areas and each area can be made up of one or more rooms.
- a user for example a general contractor, pulls up map of the construction project on visual system 100 , selects an inspection type like framing, and then highlights all areas in a certain area and adds a forecast date to those rooms specific to inspection type. The user does this for all the different inspection types.
- Inspection system 104 receives an indication of each of these selections and stores them.
- System 104 stores the completion date associated with each room in the map. Therefore each room is associated with a completion date for each milestone.
- room A in a hospital floor plan may be associated with a completion date of Jun. 1, 2013 for its electrical inspection, and Jul. 1, 2013 for its mechanical inspection.
- the milestone is a combination of inspection types.
- a user can run a report such as a forecast and proximity report using system 104 .
- This map or visual fragnet provides the user with a special colorization sequence based on how close the forecast date is to the current date. This allows the user to quickly identify all the rooms that are near their forecasted date so that they can mobilize additional resources in order to meet their deadline. Additionally, once the room has been inspected and approved, it will show up in the “Closed” status to show that it is completed.
- the user using visual system 100 , can first select a floor of a building, then select an inspection type. For example, electrical inspection or plumbing inspection.
- a map is loaded by system 104 for the specific inspection type and the floor selected.
- the user can utilize a visual fragnet key that is displayed relative to the map to obtain the associated data and identify the number of rooms that are close to or past their forecast date. Furthermore, the ranges can be customized to meet the project needs and updated over time if desired.
- This colorized map or visual fragnet provides the user with a special colorization sequence showing the user exactly what rooms are assigned to which “Forecast Date” and which rooms have yet to be assigned.
- This colorized map or visual fragnet provides the user with a special colorization sequence based on the real time status of the rooms as well as a forecast date for the rooms that are not yet completed. The user can utilize this map to view a comprehensive visual representation of the current and expected future status of the work.
- Implementations of visual system 100 may be provided through a mobile application stored in computer-readable media of user device 110 and executed by one or more processors on the device.
- the application can display a user interface that is operated by the user.
- inspection system 104 may provide the functionality of future location system 100 .
- the functionality of systems 100 and 104 may be provided through a browser.
- FIG. 2 is an example floor based map.
- the user first selects an inspection type and a level or map.
- the map in FIG. 2 may be a map of a hospital floor. As shown, none of the rooms are shaded they are all one color.
- the blank drawing means that there are currently no rooms with an assigned forecast date for that specific inspection.
- the user will need to select the rooms, for example, rooms 202 , you wish to update and then click on the “Forecast Date” button located in the upper left corner of the map. This will assign a forecast date to those rooms for the specific inspection selected.
- a “Forecast Completion” screen appears. This screen provides the user with a list of all the rooms he/she has selected and will also show the user if those rooms have a “Custom Area” or a “Forecast Date” assigned to them.
- the visual fragnet or colorized map will automatically reload in order to show the change.
- the selected rooms 302 are now a different color which will signify something different depending on what report is being run. A user would have to look at the Key. Some colors are standardized and some colors are assigned randomly. Thus, one report may show the rooms in red, while another report may show them in purple. In this example, the rooms are colorized based on a proximity report which shows how far out each of the rooms are from a forecast date associated with an inspection type.
- FIG. 4 is a colorized map or visual fragnet showing forecast and proximity based on a report that was run.
- This colorized map or visual fragnet provides the user with a special colorization sequence based on how close the forecast date is to the current date. This allows the user to quickly identify all the rooms that are near their forecasted date so that they can mobilize additional resources in order to meet their deadline. Additionally, once the room has been inspected and approved, it will show up in the “Closed” status to show that it is completed.
- the user can utilize the key to obtain the associated data and identify the number of rooms that are close to or past their forecast date. It can be visually seen that the rooms do not all have the same color or shading, because each set is a different number of days away from their forecast date. For example the rooms 402 are a different shade or different color from rooms 404 . This means each set of rooms is associated with a different forecast date for the inspection type selected, and therefore the color on the floor plan will be different since the color correlates to the number of days out each room or set of rooms are from the forecast date associated with the rooms for that inspection type.
- the key is shown in FIG. 5 .
- the ranges can be customized to meet the project needs and updated over time if desired.
- the ranges in the FIG. 5 report can be changed depending on what the project wants. Some projects want to have ranges that are 10 days long and some want some that are 5 days long. ( FIG. 5 shows 15-day ranges. These ranges can be customized by the user.
- a general description 502 is given for each color. For example, one color is selected for rooms that are less than 30 days past their forecast date, another one is chosen for rooms 30 days plus until their forecast date. Rooms or areas can be associated with forecast dates that are in the past. Therefore, if a forecast date is before the current date the number of days out is a negative number, because the current date is past its inspection date. These rooms are associated with forecast dates in the past.
- a count 405 is also shown for the number of rooms that are associated with the number of days out.
- FIG. 6 illustrates a flowchart of an example process 600 .
- the process may be implemented by inspection system 104 or visual system 100 .
- an indication of a floor plan of a building project is received.
- inspection system 104 receives an indication of a floor plan of a building project is received.
- a building can include many different levels and a floor plan can be associated with each level.
- an indication of an inspection report is received.
- the inspection report can be associated with an inspection type.
- inspection system 104 receives an indication of an inspection report.
- An inspection type can be associated with a construction phase of the project. Examples of inspection types can include electrical, mechanical, plumbing, drywall etc.
- a forecast date associated with each room in the floor plan is identified.
- the forecast date can indicate when an inspection type associated with the respective room is to be completed.
- inspection system 104 identifies a forecast date associated with each room in the floor plan.
- the forecast date is set by the user. The user decides when they need the inspection type for the room completed.
- the user can for example, be a general contractor of a project.
- the forecast date can be a date in the future.
- the forecast date can be a number of days out from the current date.
- the user can set the forecast date of the electrical inspection as 30 days out from the current date instead of selecting an actual date.
- Inspection system 104 can calculate the date that 30 days would fall on.
- a visual map of the floor plan is generated.
- inspection system 104 generates the visual map of the floor plan.
- the visual map displays the rooms of the floor plan. Initially each room and each area in the floor plan can be a single color, for example, white. Each room is part of an area that is associated with a forecast date for each inspection type. An area can include one or more rooms. In one embodiment, each room is associated with a forecast date for each inspection type.
- a color is associated with each room in the floor plan based on the determining.
- inspection system 104 associated a color with each room in the floor plan based on the determining.
- Inspection 104 can associate a color for various ranges of dates. For example if a room is less than 5 days out from the forecast date, the color can be red, if a room is 30 days out from a forecast date the room can be green, if a room is 90 days out the room can be blue etc.
- inspection system 104 can use the same color but as the number of days get less, the color can become a darker version of one color.
- the color can be dark red, if a room is 30 days out from a forecast date the room can be a regular red color lighter than the dark red, if a room is 90 days out the room can be pink, so a lighter version of the range above this one.
- the visual map with the associated color of each room is provided for display.
- inspection system 104 provides for display the visual map with the associated colors.
- the map can include the range or ranges and the color associated with each.
- the map (or key) can include: less than 5 days and show a dark red color next to it, or show a regular red and show 30 days out, and show a pink and show more than 90 days out.
- the user can change the forecast dates of each inspection type. As the user changes the dates, the colors on the map will dynamically change. The forecast dates can be changed to be closer to the present date or farther from the present date. When a report is run for a specific inspection type, and the dates are changed, the user can see the new colors on the map based on how far out each room or area is now with the new forecast dates.
- a method can include receiving a selection of a floor of a building project.
- the selection can be received from a user device.
- a user may be using the user device and select a floor of a building project from a given number of floors.
- Each floor has a floor plan associated with it.
- the method can also include receiving a selection of an inspection type associated with the building project.
- the user can be presented with a number of different inspection types to choose. In one embodiment, the user can type in a specific inspection type.
- Inspection system 104 receives the selection of the floor and the inspection type.
- the method can further include receiving a selection of a forecast report, wherein the forecast report displays each room of the floor of the building project in a color indicating how close each room's assigned forecast date is to a present date.
- the method can further include displaying a floor plan associated with the floor and inspection report, wherein the floor plan includes rooms that are each colored based on how close each room's assigned forecast date is to the present date.
- Inspection system can determine if each room in the floor plan is associated with a forecast date for the selected inspection type. Then inspection system 104 can calculate how far out each forecast date is from the current date. Inspection system 104 can generate a floor plan of colored rooms based on how far out each room is. Each room can be associated with the inspection type selected and also be associated with its own forecast date as selected by a user, for example, the general contractor.
- the floor plan is displayed on a display device showing each room colored according to a map or a key displayed with the floor plan.
- the functionality of 100 and/or system 104 may be provided through a browser on computing devices, such as user device 110 .
- Inspection system 104 on server 120 may host the service and serve it to device 110 and any other computing devices.
- Any combination of implementations may provide, through a browser, the functionality represented by the example implementations of systems 100 and 104 shown in FIG. 1 and in the display views and flowchart of FIGS. 2-6 . Any stages shown in flowchart 600 that involve displaying content may be considered to provide the content for display in a browser.
- FIG. 7 shows user device 110 executing browser 702 .
- Browser 702 may be any commonly used browser, including any multi-threaded or multi-process browser.
- the functionality of visual system 100 can be provided through browser 702 . Future dates are received or displayed in browser 702 .
- FIGS. 1-6 may be provided through a browser executed on device 110 , server 120 or any other computing device.
- the web pages or application provided through the browser may be served from server 120 , device 110 , or any other computing device.
- Different windows or views may be shown through browser 702 .
- Different permissions or filters may be established based on the identity or roles of the individual logging into a website view.
- System 100 and 104 may be software, firmware, or hardware or any combination thereof in a computing device.
- a computing device can be any type of computing device having one or more processors.
- a computing device can be a computer, server, workstation, mobile device (e.g., a mobile phone, personal digital assistant, navigation device, tablet, laptop, or any other user carried device), game console, set-top box, kiosk, embedded system or other device having at least one processor and memory.
- a computing device may include a communication port or I/O device for communicating over wired or wireless communication link(s).
- Computing devices such as a monitor, all-in-one computer, smart phone, tablet computer, remote control, etc., may include a touch screen display that accepts user input via touching operations performed by a user's fingers or other instrument.
- a touch sensor grid may overlay the display area.
- the touch sensor grid contains many touch sensitive areas or cells that may be used to locate the area closest to the input of a user's touch.
- Example touch operations using a touch screen display may include (but are not limited to) pinching, finger (or other stylus or object) touches, finger releases, and finger slides. Finger slides may be circular or any other shape, direction or pattern.
- the touch screen display may include a screen or monitor that may render text and/or images.
- FIG. 8 is an example computer system 800 in which embodiments of the present invention, or portions thereof, may be implemented as computer-readable code.
- the components of systems 100 and 104 may be implemented in one or more computer systems 800 using hardware, software implemented with hardware, firmware, tangible computer-readable media having instructions stored thereon, or a combination thereof and may be implemented in one or more computer systems or other processing systems.
- Components in FIGS. 1-7 may be embodied in any combination of hardware and software.
- Computing devices such as devices 110 or server 120 may include one or more processors 802 , one or more non-volatile storage mediums 804 , one or more memory devices 806 , a communication infrastructure 808 , a display screen 810 and a communication interface 812 .
- Processors 802 may include any conventional or special purpose processor, including, but not limited to, digital signal processor (DSP), field programmable gate array (FPGA), application specific integrated circuit (ASIC), and multi-core processors.
- DSP digital signal processor
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- GPU 814 is a specialized processor that executes instructions and programs, selected for complex graphics and mathematical operations, in parallel.
- Non-volatile storage 804 may include one or more of a hard disk drive, flash memory, and like devices that may store computer program instructions and data on computer-readable media.
- One or more of non-volatile storage device 904 may be a removable storage device.
- Memory devices 806 may include one or more volatile memory devices such as but not limited to, random access memory.
- Communication infrastructure 808 may include one or more device interconnection buses such as Ethernet, Peripheral Component Interconnect (PCI), and the like.
- PCI Peripheral Component Interconnect
- computer instructions are executed using one or more processors 802 and can be stored in non-volatile storage medium 804 or memory devices 806 .
- Display screen 810 allows results of the computer operations to be displayed to a user or an application developer.
- Communication interface 812 allows software and data to be transferred between computer system 800 and external devices.
- Communication interface 812 may include a modem, a network interface (such as an Ethernet card), a communications port, a PCMCIA slot and card, or the like.
- Software and data transferred via communication interface 812 may be in the form of signals, which may be electronic, electromagnetic, optical, or other signals capable of being received by communication interface 812 . These signals may be provided to communication interface 812 via a communications path.
- the communications path carries signals and may be implemented using wire or cable, fiber optics, a phone line, a cellular phone link, an RF link or other communications channels.
- Embodiments also may be directed to computer program products comprising software stored on any computer-useable medium.
- Such software when executed in one or more data processing device, causes a data processing device(s) to operate as described herein.
- Embodiments of the invention employ any computer-useable or readable medium.
- Examples of computer-useable mediums include, but are not limited to, primary storage devices (e.g., any type of random access memory), secondary storage devices (e.g., hard drives, floppy disks, CD ROMS, ZIP disks, tapes, magnetic storage devices, and optical storage devices, MEMS, nanotechnological storage device, etc.).
- Embodiments of the invention and all of the functional operations described in this specification may be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them.
- Embodiments of the invention may be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
- the computer readable medium may be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them.
- data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
- the apparatus may include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
- a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus.
- a computer program (also known as a program, software, software application, script, or code) may be written in any form of programming language, including compiled or interpreted languages, and it may be deployed in any form, including as a stand alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
- a computer program does not necessarily correspond to a file in a file system.
- a program may be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code).
- a computer program may be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
- the processes and logic flows described in this specification may be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
- the processes and logic flows may also be performed by, and apparatus may also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
- FPGA field programmable gate array
- ASIC application specific integrated circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 14/920,810, filed on Oct. 22, 2015, which is a continuation of U.S. patent application Ser. No. 13/802,213, filed Mar. 13, 2013, both of which are hereby incorporated by reference herein in their entirety as if set forth herein.
- This disclosure relates generally to monitoring building construction.
- During construction of large complex construction projects, integrated comprehensive collaborative Quality Control processes are required to support regulatory agencies, owner construction oversight, and general contractor oversight and subcontractor operations. In order to efficiently manage the construction process the general contractor and owner ideally would have up-to-the-minute status of every subcontractor, construction element, room and inspection. When information such as inspection, issue data and punch list data is delayed, the schedule impacts and associated costs accumulate.
- In general, one innovative aspect of the subject matter described in this specification may be embodied in methods that include the actions of receiving an indication of a floor plan of a building project; receiving an indication of an inspection report, the inspection report associated with an inspection type; identifying a forecast date associated with each room in the floor plan, the forecast date indicating when an inspection type associated with the respective room is to be completed; for each room, determining how close each room's forecast date is to a present date, and if the room's forecast date is past the present date; generating a visual map of the floor plan; associating a color of each room in the floor plan based on the determining; and providing the visual map with the associated color of each room for display.
- Another aspect can be embodiment in methods that include the actions of receiving a selection of a floor of a building project, receiving a selection of an inspection type associated with the building project, receiving a selection of a forecast report, wherein the forecast report displays each room of the floor of the building project in a color indicating how close each room's assigned forecast date is to a present date, displaying a floor plan associated with the floor and inspection report, wherein the floor plan includes rooms that are each colored based on how close each room's assigned forecast date is to the present date.
- Other embodiments of these aspects include corresponding systems, apparatus, and computer-readable medium storing software comprising instructions executable by one or more computers, which cause the computers to perform the actions of the methods.
- Further embodiments, features, and advantages, as well as the structure and operation of the various embodiments are described in detail below with reference to accompanying drawings.
- Embodiments are described with reference to the accompanying drawings. In the drawings, like reference numbers may indicate identical or functionally similar elements.
-
FIG. 1 illustrates a system for monitoring inspection. -
FIG. 2 illustrates a display view of a floor plan. -
FIG. 3 illustrates a display view of a floor plan. -
FIG. 4 illustrates a display of a floor plan. -
FIG. 5 illustrates a display of a key of a floor plan. -
FIG. 6 illustrates a flowchart of an example process. -
FIG. 7 illustrates an example user device including a browser. -
FIG. 8 is a diagram of an example computer device used to implement the system. - A system will be described that provides indications of project milestones to users of the system who are using it in order to track status of building construction. The system is robust enough to enable the orchestration of complex professional organizations, streamlining their interactive processes in order to minimize task duration, down time and unnecessary delays.
- In one implementation, an inspection monitoring process is provided that provides real-time collaboration, process tracking, quality control timing, and status reporting associated with a construction project. The process can include reporting that allows a user to visually see how far out a project is from completion for each milestone.
-
FIG. 1 illustrates an example of a networked system of devices, perhaps mobile devices such as mobile phones, tablets or computers. The devices may be networked overnetwork 102. Network 102 may be any network or combination of networks that can carry data communications. Such anetwork 102 may include, but is not limited to, a local area network, metropolitan area network, and/or wide area network such as the Internet. Network 102 can support protocols and technology including, but not limited to, World Wide Web (or simply the “Web”), protocols such as a Hypertext Transfer Protocol (“HTTP”) protocols, and/or services. Intermediate web servers, gateways, or other servers may be provided between components of the system shown inFIG. 1 , depending upon a particular application or environment. - A user may operate a user interface on user device 110 to track forecast dates of milestones for a construction project. The milestone data, forecast data, and other data used to track forecast dates may be stored, accessed, distributed or modified using a system stored on and executed by
server 120 - User device 110 may be coupled to
server 120 overnetwork 102.Server 120 includesinspection system 104, which may be used to provide information to user device 110. -
Visual system 100 may be implemented on or implemented with one or more computing devices, such as user device 110. -
Inspection system 104 allows users to be able to track the status of different phases of a construction process.System 104 allows visual fragnets to be created that shows on a visual display the different status of various parts of a project. A visual fragnet is an interactive floor plan of a level of a building. For example, visual fragnets can be created to show the status of an inspection for a particular milestone in a project. Visual fragnets can also be created to show forecast completion dates associated with various milestones in a project. -
Inspection system 104 first creates the maps that will be used by the system. These maps can be room-based maps, or they can be section based, area based, or equipment based.Inspection system 104 receives architectural drawings that are 2d or 3d, and converts these drawings to a 2D room based map. For example, if the construction project is for a hospital, each level of the hospital is associated with an architectural drawing. These maps are imported intoinspection system 104 and they are then converted into 2D room based maps. These room-based maps are used byinspection system 104 to track various milestones associated with the project. - Visual System 100 allows user to interact with
Inspection system 104 throughnetwork 102. - Each construction project can be made up of various project milestones. Project milestones are parts of a construction project that in total make up the complete construction phase of the project. For example, milestones can be Steel Erection, Fireproofing, Exterior Skin, In Wall Completion. The term “Milestone” is relative to the group that is using it. For example, the framing subcontractor may consider “In Wall Framing” a milestone because it's their scope. On the other hand, the General contractor may view “In Wall Framing” as an Activity. For the purposes of the proximity report showing how far out the forecast date is, a “Milestone” is a large phase of work comprised of smaller activities. “Milestones” can be Steel Erection, Fireproofing, In Wall Completion, Overhead Completion, etc. Each milestone has different activities associated with it. The activities are the different inspection request that make up a milestone like In Wall Framing, In Wall Plumbing, etc. Visual Fragnet reports can be run based on individual “Activities”.
- Milestones are set using standards by a general contractor or owner of a project. Milestone provides a sequence of inspection types that are organized and ordered to let the general contractor or owner know everything is done in a specific room or area prior to close-up. For example, the in wall milestone can include the following inspection types: framing inspection, electrical, and mechanical inspection.
- In one embodiment, when a report such as a proximity report is run, it will show how far out each room is for that inspection type and the same can be done for a milestone that includes more than one inspection type. Therefore when a report is run for a milestone that includes multiple inspections. For example the in-wall milestone may includes 3 or 4 different inspection types. The rooms can be colored based on an average date of how far out all the inspection types are together. In another embodiment, each room can have multiple indications of different inspection types so each inspection type is colored in the room. For example, one room can include 3 colors, 1 color for each inspection.
- Once a project is underway, various subcontractors will work on various rooms to complete different tasks associated with a milestone. As each task or activity is completed, system 110 receives the updated status for each task. When every task associated with a milestone is completed, the room is marked for inspection in system 110. An inspector then will inspect the room for a specific inspection type. The inspection type is tied to the milestone. For example, if the milestone is electrical, an electrical inspection of the room is performed.
- A status of “new” is automatically assigned when a subcontractor creates an inspection request. Status “open” is selected by the General Contractor when they believe the request is ready to go to the inspectors. A status of “closed” is assigned for completed rooms, or “issue” is assigned for rooms that have issues, or “rejected” is a status for those rooms not even close to being done. An inspection type of “not applicable” may be applied to some rooms. For example, some rooms wont have plumbing so those rooms for the inspection type plumbing are marked as not applicable.
-
System 104 stores these statuses associated with each milestone. One room can be associated with many milestones. -
Inspection system 104 allows the users to assign a Forecast Complete date to a specific set of rooms for a project. Subsequently, depending on the map or visual fragnet report that is being used, the forecasted room will automatically update to a different color based on how far the forecasted date is from the current date. This allows the project managers or general contractors or other users to easily identify the areas in the building that require the most attention in order to meet the forecasted goal. - In one embodiment the colorization of the rooms is standardized based on the report that is being run. However, reports that are based on colorizing the rooms by forecasted dates are colorized randomly. This is because it may not be clear how many different forecast are going to be used and are unable to decide which colors to use. It could happen that one floor plan will have 20 forecast dates for a single inspection type. Thus, the system assigns a random color to each date in that report.
- A building has different areas and each area can be made up of one or more rooms. A user, for example a general contractor, pulls up map of the construction project on
visual system 100, selects an inspection type like framing, and then highlights all areas in a certain area and adds a forecast date to those rooms specific to inspection type. The user does this for all the different inspection types.Inspection system 104 receives an indication of each of these selections and stores them. -
System 104 stores the completion date associated with each room in the map. Therefore each room is associated with a completion date for each milestone. For example, room A in a hospital floor plan may be associated with a completion date of Jun. 1, 2013 for its electrical inspection, and Jul. 1, 2013 for its mechanical inspection. The milestone is a combination of inspection types. In this scenario, we have a different date for electrical and a different date for mechanical. What this means is that in the milestone for the row with room X, it will display one date for the electrical column and a different date for the mechanical column. - A user can run a report such as a forecast and proximity
report using system 104. This map or visual fragnet provides the user with a special colorization sequence based on how close the forecast date is to the current date. This allows the user to quickly identify all the rooms that are near their forecasted date so that they can mobilize additional resources in order to meet their deadline. Additionally, once the room has been inspected and approved, it will show up in the “Closed” status to show that it is completed. - The user, using
visual system 100, can first select a floor of a building, then select an inspection type. For example, electrical inspection or plumbing inspection. A map is loaded bysystem 104 for the specific inspection type and the floor selected. - Once the visual fragnet has finished loading, the user can utilize a visual fragnet key that is displayed relative to the map to obtain the associated data and identify the number of rooms that are close to or past their forecast date. Furthermore, the ranges can be customized to meet the project needs and updated over time if desired.
- This colorized map or visual fragnet provides the user with a special colorization sequence showing the user exactly what rooms are assigned to which “Forecast Date” and which rooms have yet to be assigned.
- This colorized map or visual fragnet provides the user with a special colorization sequence based on the real time status of the rooms as well as a forecast date for the rooms that are not yet completed. The user can utilize this map to view a comprehensive visual representation of the current and expected future status of the work.
- Implementations of
visual system 100 may be provided through a mobile application stored in computer-readable media of user device 110 and executed by one or more processors on the device. The application can display a user interface that is operated by the user. In some implementations,inspection system 104 may provide the functionality offuture location system 100. On other implementations, the functionality ofsystems -
FIG. 2 is an example floor based map. The user first selects an inspection type and a level or map. The map inFIG. 2 may be a map of a hospital floor. As shown, none of the rooms are shaded they are all one color. The blank drawing means that there are currently no rooms with an assigned forecast date for that specific inspection. In order to assign a forecast date, the user will need to select the rooms, for example,rooms 202, you wish to update and then click on the “Forecast Date” button located in the upper left corner of the map. This will assign a forecast date to those rooms for the specific inspection selected. Once the user clicks on the “Forecast Date” button, a “Forecast Completion” screen appears. This screen provides the user with a list of all the rooms he/she has selected and will also show the user if those rooms have a “Custom Area” or a “Forecast Date” assigned to them. - Having assigned a date to your selected rooms, the visual fragnet or colorized map will automatically reload in order to show the change. As shown in
FIG. 3 , the selectedrooms 302 are now a different color which will signify something different depending on what report is being run. A user would have to look at the Key. Some colors are standardized and some colors are assigned randomly. Thus, one report may show the rooms in red, while another report may show them in purple. In this example, the rooms are colorized based on a proximity report which shows how far out each of the rooms are from a forecast date associated with an inspection type. -
FIG. 4 is a colorized map or visual fragnet showing forecast and proximity based on a report that was run. This colorized map or visual fragnet provides the user with a special colorization sequence based on how close the forecast date is to the current date. This allows the user to quickly identify all the rooms that are near their forecasted date so that they can mobilize additional resources in order to meet their deadline. Additionally, once the room has been inspected and approved, it will show up in the “Closed” status to show that it is completed. - Once the visual fragnet has finished loading, the user can utilize the key to obtain the associated data and identify the number of rooms that are close to or past their forecast date. It can be visually seen that the rooms do not all have the same color or shading, because each set is a different number of days away from their forecast date. For example the
rooms 402 are a different shade or different color fromrooms 404. This means each set of rooms is associated with a different forecast date for the inspection type selected, and therefore the color on the floor plan will be different since the color correlates to the number of days out each room or set of rooms are from the forecast date associated with the rooms for that inspection type. - The key is shown in
FIG. 5 . Furthermore, the ranges can be customized to meet the project needs and updated over time if desired. The ranges in theFIG. 5 report can be changed depending on what the project wants. Some projects want to have ranges that are 10 days long and some want some that are 5 days long. (FIG. 5 shows 15-day ranges. These ranges can be customized by the user. Ageneral description 502 is given for each color. For example, one color is selected for rooms that are less than 30 days past their forecast date, another one is chosen forrooms 30 days plus until their forecast date. Rooms or areas can be associated with forecast dates that are in the past. Therefore, if a forecast date is before the current date the number of days out is a negative number, because the current date is past its inspection date. These rooms are associated with forecast dates in the past. - In one embodiment, a count 405 is also shown for the number of rooms that are associated with the number of days out.
-
FIG. 6 illustrates a flowchart of anexample process 600. The process may be implemented byinspection system 104 orvisual system 100. - At
stage 610, an indication of a floor plan of a building project is received. For example,inspection system 104 receives an indication of a floor plan of a building project is received. A building can include many different levels and a floor plan can be associated with each level. - At
stage 620, an indication of an inspection report is received. The inspection report can be associated with an inspection type. For example,inspection system 104 receives an indication of an inspection report. An inspection type can be associated with a construction phase of the project. Examples of inspection types can include electrical, mechanical, plumbing, drywall etc. - At
stage 630, a forecast date associated with each room in the floor plan is identified. The forecast date can indicate when an inspection type associated with the respective room is to be completed. For example,inspection system 104 identifies a forecast date associated with each room in the floor plan. The forecast date is set by the user. The user decides when they need the inspection type for the room completed. The user, can for example, be a general contractor of a project. The forecast date can be a date in the future. In one embodiment, the forecast date can be a number of days out from the current date. For example, the user can set the forecast date of the electrical inspection as 30 days out from the current date instead of selecting an actual date.Inspection system 104 can calculate the date that 30 days would fall on. - At
stage 640, for each room, a determination is made of how close each room's forecast date is to a present date, and if the room's forecast date is past the present date. For example,inspection system 104 determines how close each room's forecast date is to a present date, and if the room's forecast date is past the present date.Inspection system 104 can compare the current date to the forecast date of the inspection type. The number of days in between the two dates can be calculated andinspection system 104 can determine how many days out each forecast date is for a specific inspection type. For example, if the current date is Mar. 12, 2013, and the electrical inspection has a forecast date of Jul. 12, 2013,inspection system 104 can calculate that the electrical inspection is 120 days out. - At
stage 650, a visual map of the floor plan is generated. For example,inspection system 104 generates the visual map of the floor plan. The visual map displays the rooms of the floor plan. Initially each room and each area in the floor plan can be a single color, for example, white. Each room is part of an area that is associated with a forecast date for each inspection type. An area can include one or more rooms. In one embodiment, each room is associated with a forecast date for each inspection type. - At
stage 660, a color is associated with each room in the floor plan based on the determining. For example,inspection system 104 associated a color with each room in the floor plan based on the determining.Inspection 104 can associate a color for various ranges of dates. For example if a room is less than 5 days out from the forecast date, the color can be red, if a room is 30 days out from a forecast date the room can be green, if a room is 90 days out the room can be blue etc. - In one embodiment,
inspection system 104 can use the same color but as the number of days get less, the color can become a darker version of one color. In the same example as above, if a room is less than 5 days out from the forecast date, the color can be dark red, if a room is 30 days out from a forecast date the room can be a regular red color lighter than the dark red, if a room is 90 days out the room can be pink, so a lighter version of the range above this one. - At
stage 670, the visual map with the associated color of each room is provided for display. For example,inspection system 104 provides for display the visual map with the associated colors. The map can include the range or ranges and the color associated with each. For example, the map (or key) can include: less than 5 days and show a dark red color next to it, or show a regular red and show 30 days out, and show a pink and show more than 90 days out. - In one embodiment, the user can change the forecast dates of each inspection type. As the user changes the dates, the colors on the map will dynamically change. The forecast dates can be changed to be closer to the present date or farther from the present date. When a report is run for a specific inspection type, and the dates are changed, the user can see the new colors on the map based on how far out each room or area is now with the new forecast dates.
- In one embodiment, a method can include receiving a selection of a floor of a building project. The selection can be received from a user device. A user may be using the user device and select a floor of a building project from a given number of floors. Each floor has a floor plan associated with it.
- The method can also include receiving a selection of an inspection type associated with the building project. The user can be presented with a number of different inspection types to choose. In one embodiment, the user can type in a specific inspection type.
Inspection system 104 receives the selection of the floor and the inspection type. - The method can further include receiving a selection of a forecast report, wherein the forecast report displays each room of the floor of the building project in a color indicating how close each room's assigned forecast date is to a present date.
- The method can further include displaying a floor plan associated with the floor and inspection report, wherein the floor plan includes rooms that are each colored based on how close each room's assigned forecast date is to the present date. Inspection system can determine if each room in the floor plan is associated with a forecast date for the selected inspection type. Then
inspection system 104 can calculate how far out each forecast date is from the current date.Inspection system 104 can generate a floor plan of colored rooms based on how far out each room is. Each room can be associated with the inspection type selected and also be associated with its own forecast date as selected by a user, for example, the general contractor. The floor plan is displayed on a display device showing each room colored according to a map or a key displayed with the floor plan. - In an embodiment, the functionality of 100 and/or
system 104 may be provided through a browser on computing devices, such as user device 110.Inspection system 104 onserver 120 may host the service and serve it to device 110 and any other computing devices. Any combination of implementations may provide, through a browser, the functionality represented by the example implementations ofsystems FIG. 1 and in the display views and flowchart ofFIGS. 2-6 . Any stages shown inflowchart 600 that involve displaying content may be considered to provide the content for display in a browser. - For example,
FIG. 7 shows user device 110 executing browser 702. Browser 702 may be any commonly used browser, including any multi-threaded or multi-process browser. In an embodiment, the functionality ofvisual system 100 can be provided through browser 702. Future dates are received or displayed in browser 702. - The functionality of any of the components or flowcharts shown in
FIGS. 1-6 may be provided through a browser executed on device 110,server 120 or any other computing device. The web pages or application provided through the browser may be served fromserver 120, device 110, or any other computing device. Different windows or views may be shown through browser 702. Different permissions or filters may be established based on the identity or roles of the individual logging into a website view. -
System - Computing devices such as a monitor, all-in-one computer, smart phone, tablet computer, remote control, etc., may include a touch screen display that accepts user input via touching operations performed by a user's fingers or other instrument. For example purposes, a touch sensor grid may overlay the display area. The touch sensor grid contains many touch sensitive areas or cells that may be used to locate the area closest to the input of a user's touch.
- Example touch operations using a touch screen display may include (but are not limited to) pinching, finger (or other stylus or object) touches, finger releases, and finger slides. Finger slides may be circular or any other shape, direction or pattern. The touch screen display may include a screen or monitor that may render text and/or images.
-
FIG. 8 is anexample computer system 800 in which embodiments of the present invention, or portions thereof, may be implemented as computer-readable code. For example, the components ofsystems more computer systems 800 using hardware, software implemented with hardware, firmware, tangible computer-readable media having instructions stored thereon, or a combination thereof and may be implemented in one or more computer systems or other processing systems. Components inFIGS. 1-7 may be embodied in any combination of hardware and software. - Computing devices, such as devices 110 or
server 120, may include one ormore processors 802, one or morenon-volatile storage mediums 804, one ormore memory devices 806, acommunication infrastructure 808, adisplay screen 810 and acommunication interface 812. -
Processors 802 may include any conventional or special purpose processor, including, but not limited to, digital signal processor (DSP), field programmable gate array (FPGA), application specific integrated circuit (ASIC), and multi-core processors. -
GPU 814 is a specialized processor that executes instructions and programs, selected for complex graphics and mathematical operations, in parallel. -
Non-volatile storage 804 may include one or more of a hard disk drive, flash memory, and like devices that may store computer program instructions and data on computer-readable media. One or more of non-volatile storage device 904 may be a removable storage device. -
Memory devices 806 may include one or more volatile memory devices such as but not limited to, random access memory.Communication infrastructure 808 may include one or more device interconnection buses such as Ethernet, Peripheral Component Interconnect (PCI), and the like. - Typically, computer instructions are executed using one or
more processors 802 and can be stored innon-volatile storage medium 804 ormemory devices 806. -
Display screen 810 allows results of the computer operations to be displayed to a user or an application developer. -
Communication interface 812 allows software and data to be transferred betweencomputer system 800 and external devices.Communication interface 812 may include a modem, a network interface (such as an Ethernet card), a communications port, a PCMCIA slot and card, or the like. Software and data transferred viacommunication interface 812 may be in the form of signals, which may be electronic, electromagnetic, optical, or other signals capable of being received bycommunication interface 812. These signals may be provided tocommunication interface 812 via a communications path. The communications path carries signals and may be implemented using wire or cable, fiber optics, a phone line, a cellular phone link, an RF link or other communications channels. - Embodiments also may be directed to computer program products comprising software stored on any computer-useable medium. Such software, when executed in one or more data processing device, causes a data processing device(s) to operate as described herein.
- Embodiments of the invention employ any computer-useable or readable medium. Examples of computer-useable mediums include, but are not limited to, primary storage devices (e.g., any type of random access memory), secondary storage devices (e.g., hard drives, floppy disks, CD ROMS, ZIP disks, tapes, magnetic storage devices, and optical storage devices, MEMS, nanotechnological storage device, etc.).
- Embodiments of the invention and all of the functional operations described in this specification may be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments of the invention may be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium may be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus may include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus.
- A computer program (also known as a program, software, software application, script, or code) may be written in any form of programming language, including compiled or interpreted languages, and it may be deployed in any form, including as a stand alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program may be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program may be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
- The processes and logic flows described in this specification may be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows may also be performed by, and apparatus may also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
- The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein.
- The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments or any actual software code with the specialized control of hardware to implement such embodiments, but should be defined only in accordance with the following claims and their equivalents.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/166,575 US20190123566A1 (en) | 2013-03-13 | 2018-10-22 | Schedule Impact Map |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/802,213 US9202390B2 (en) | 2013-03-13 | 2013-03-13 | Schedule impact map |
US201562239233P | 2015-10-08 | 2015-10-08 | |
US201562239231P | 2015-10-08 | 2015-10-08 | |
US201562239245P | 2015-10-08 | 2015-10-08 | |
US201562239246P | 2015-10-08 | 2015-10-08 | |
US201562239249P | 2015-10-08 | 2015-10-08 | |
US201562239131P | 2015-10-08 | 2015-10-08 | |
US14/920,810 US9454742B2 (en) | 2013-03-13 | 2015-10-22 | Schedule impact map |
US15/247,885 US10418833B2 (en) | 2015-10-08 | 2016-08-25 | Electrical energy storage system with cascaded frequency response optimization |
US16/166,575 US20190123566A1 (en) | 2013-03-13 | 2018-10-22 | Schedule Impact Map |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/247,885 Continuation US10418833B2 (en) | 2013-03-13 | 2016-08-25 | Electrical energy storage system with cascaded frequency response optimization |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190123566A1 true US20190123566A1 (en) | 2019-04-25 |
Family
ID=57206409
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/247,885 Active 2037-03-21 US10418833B2 (en) | 2013-03-13 | 2016-08-25 | Electrical energy storage system with cascaded frequency response optimization |
US16/166,575 Abandoned US20190123566A1 (en) | 2013-03-13 | 2018-10-22 | Schedule Impact Map |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/247,885 Active 2037-03-21 US10418833B2 (en) | 2013-03-13 | 2016-08-25 | Electrical energy storage system with cascaded frequency response optimization |
Country Status (4)
Country | Link |
---|---|
US (2) | US10418833B2 (en) |
EP (1) | EP3360224A1 (en) |
AU (1) | AU2016334371A1 (en) |
WO (1) | WO2017062910A1 (en) |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8874477B2 (en) | 2005-10-04 | 2014-10-28 | Steven Mark Hoffberg | Multifactorial optimization system and method |
US9201121B2 (en) | 2010-12-06 | 2015-12-01 | Texas Instruments Incorporated | System and method for sensing battery capacity |
WO2013105087A1 (en) * | 2012-01-12 | 2013-07-18 | Lncon Systems Ltd. | Chiller control |
US10418833B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with cascaded frequency response optimization |
WO2016179321A1 (en) | 2015-05-04 | 2016-11-10 | Johnson Controls Technology Company | User control device with housing containing angled circuit boards |
CN107771265A (en) | 2015-05-04 | 2018-03-06 | 江森自控科技公司 | Touch thermostat is installed using transparent screen technology |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US20170074536A1 (en) | 2015-09-11 | 2017-03-16 | Johnson Controls Technology Company | Thermostat with near field communication features |
US10283968B2 (en) | 2015-10-08 | 2019-05-07 | Con Edison Battery Storage, Llc | Power control system with power setpoint adjustment based on POI power limits |
US10742055B2 (en) | 2015-10-08 | 2020-08-11 | Con Edison Battery Storage, Llc | Renewable energy system with simultaneous ramp rate control and frequency regulation |
US10190793B2 (en) | 2015-10-08 | 2019-01-29 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities |
US10389136B2 (en) | 2015-10-08 | 2019-08-20 | Con Edison Battery Storage, Llc | Photovoltaic energy system with value function optimization |
US10564610B2 (en) | 2015-10-08 | 2020-02-18 | Con Edison Battery Storage, Llc | Photovoltaic energy system with preemptive ramp rate control |
US10700541B2 (en) | 2015-10-08 | 2020-06-30 | Con Edison Battery Storage, Llc | Power control system with battery power setpoint optimization using one-step-ahead prediction |
US10197632B2 (en) | 2015-10-08 | 2019-02-05 | Taurus Des, Llc | Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal |
US10418832B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
US10222083B2 (en) | 2015-10-08 | 2019-03-05 | Johnson Controls Technology Company | Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs |
US11210617B2 (en) | 2015-10-08 | 2021-12-28 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs |
US10250039B2 (en) | 2015-10-08 | 2019-04-02 | Con Edison Battery Storage, Llc | Energy storage controller with battery life model |
US10655881B2 (en) | 2015-10-28 | 2020-05-19 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10180673B2 (en) | 2015-10-28 | 2019-01-15 | Johnson Controls Technology Company | Multi-function thermostat with emergency direction features |
US11277893B2 (en) | 2015-10-28 | 2022-03-15 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
US10318266B2 (en) | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
US11181875B2 (en) | 2016-01-22 | 2021-11-23 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for monitoring and controlling a central plant |
US10941951B2 (en) | 2016-07-27 | 2021-03-09 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
US10436851B2 (en) | 2016-07-29 | 2019-10-08 | Con Edison Battery Storage, Llc | Electrical energy storage system with battery resistance estimation |
US10949777B2 (en) | 2017-06-07 | 2021-03-16 | Johnson Controls Technology Company | Building energy optimization system with economic load demand response (ELDR) optimization |
US11238547B2 (en) | 2017-01-12 | 2022-02-01 | Johnson Controls Tyco IP Holdings LLP | Building energy cost optimization system with asset sizing |
US10282796B2 (en) | 2017-01-12 | 2019-05-07 | Johnson Controls Technology Company | Building energy storage system with multiple demand charge cost optimization |
US11010846B2 (en) | 2017-01-12 | 2021-05-18 | Johnson Controls Technology Company | Building energy storage system with multiple demand charge cost optimization |
US11061424B2 (en) | 2017-01-12 | 2021-07-13 | Johnson Controls Technology Company | Building energy storage system with peak load contribution and stochastic cost optimization |
US10324483B2 (en) | 2017-01-12 | 2019-06-18 | Johnson Controls Technology Company | Building energy storage system with peak load contribution cost optimization |
US11487277B2 (en) | 2017-05-25 | 2022-11-01 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system for building equipment |
US11900287B2 (en) | 2017-05-25 | 2024-02-13 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system with budgetary constraints |
US11847617B2 (en) | 2017-02-07 | 2023-12-19 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system with financial analysis functionality |
US10423138B2 (en) | 2017-03-06 | 2019-09-24 | Con Edison Battery Storage, Llc | Building energy storage system with planning tool |
US10706375B2 (en) | 2017-03-29 | 2020-07-07 | Johnson Controls Technology Company | Central plant with asset allocator |
WO2018191688A2 (en) | 2017-04-14 | 2018-10-18 | Johnson Controls Techology Company | Thermostat with exhaust fan control for air quality and humidity control |
US10845083B2 (en) | 2017-04-25 | 2020-11-24 | Johnson Controls Technology Company | Predictive building control system with neural network based constraint generation |
US11371739B2 (en) | 2017-04-25 | 2022-06-28 | Johnson Controls Technology Company | Predictive building control system with neural network based comfort prediction |
US11675322B2 (en) | 2017-04-25 | 2023-06-13 | Johnson Controls Technology Company | Predictive building control system with discomfort threshold adjustment |
WO2018200861A1 (en) | 2017-04-27 | 2018-11-01 | Johnson Controls Technology Company | Building energy system with stochastic model predictive control |
US11120411B2 (en) | 2017-05-25 | 2021-09-14 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system with incentive incorporation |
US11416955B2 (en) | 2017-05-25 | 2022-08-16 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system with integrated measurement and verification functionality |
US11409274B2 (en) | 2017-05-25 | 2022-08-09 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system for performing maintenance as soon as economically viable |
US11747800B2 (en) | 2017-05-25 | 2023-09-05 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance system with automatic service work order generation |
US11636429B2 (en) | 2017-05-25 | 2023-04-25 | Johnson Controls Tyco IP Holdings LLP | Model predictive maintenance systems and methods with automatic parts resupply |
US10732584B2 (en) | 2017-06-07 | 2020-08-04 | Johnson Controls Technology Company | Building energy optimization system with automated and dynamic economic load demand response (ELDR) optimization |
US11271769B2 (en) | 2019-11-14 | 2022-03-08 | Johnson Controls Tyco IP Holdings LLP | Central plant control system with asset allocation override |
US11022947B2 (en) | 2017-06-07 | 2021-06-01 | Johnson Controls Technology Company | Building energy optimization system with economic load demand response (ELDR) optimization and ELDR user interfaces |
US11616367B2 (en) | 2017-07-17 | 2023-03-28 | Johnson Controls Technology Company | Energy storage system with virtual device manager |
US11379935B2 (en) | 2017-08-25 | 2022-07-05 | Johnson Controls Tyco IP Holdings LLP | Central plant control system with equipment maintenance evaluation |
US10809705B2 (en) | 2017-09-01 | 2020-10-20 | Johnson Controls Technology Company | Central plant control system with automatic optimization formulation |
US11209184B2 (en) | 2018-01-12 | 2021-12-28 | Johnson Controls Tyco IP Holdings LLP | Control system for central energy facility with distributed energy storage |
US10678227B2 (en) | 2018-03-15 | 2020-06-09 | Johnson Controls Technology Company | Central plant control system with plug and play EMPC |
US11068821B2 (en) | 2018-03-29 | 2021-07-20 | Johnson Controls Technology Company | Building energy optimization system with capacity market program (CMP) participation |
AU2019245431A1 (en) | 2018-03-31 | 2020-10-22 | Tyco Fire & Security Gmbh | Central plant optimization planning tool with advanced user interface |
DE102018205112A1 (en) | 2018-04-05 | 2019-10-10 | Bayerische Motoren Werke Aktiengesellschaft | Method for operating an electrical energy store for a control power supply |
US11549709B2 (en) | 2018-06-29 | 2023-01-10 | Johnson Controls Tyco IP Holdings LLP | Quantitative monthly visual indicator to determine data availability for utility rates |
US11159022B2 (en) | 2018-08-28 | 2021-10-26 | Johnson Controls Tyco IP Holdings LLP | Building energy optimization system with a dynamically trained load prediction model |
US11163271B2 (en) | 2018-08-28 | 2021-11-02 | Johnson Controls Technology Company | Cloud based building energy optimization system with a dynamically trained load prediction model |
US10797511B2 (en) | 2018-09-28 | 2020-10-06 | Johnson Controls Technology Company | Photovoltaic energy system with stationary energy storage control and power factor correction |
US10673380B2 (en) | 2018-09-28 | 2020-06-02 | Johnson Controls Technology Company | Photovoltaic energy system with stationary energy storage control |
US11276125B2 (en) | 2018-10-18 | 2022-03-15 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for assessing economic feasibility of an energy plant |
US11960261B2 (en) | 2019-07-12 | 2024-04-16 | Johnson Controls Tyco IP Holdings LLP | HVAC system with sustainability and emissions controls |
US12007732B2 (en) | 2019-07-12 | 2024-06-11 | Johnson Controls Tyco IP Holdings LLP | HVAC system with building infection control |
US10928784B2 (en) | 2018-11-01 | 2021-02-23 | Johnson Controls Technology Company | Central plant optimization system with streamlined data linkage of design and operational data |
US11288754B2 (en) | 2018-12-18 | 2022-03-29 | Johnson Controls Tyco IP Holdings LLP | Cost optimization of a central energy facility with block-and-index rate structure |
US11164126B2 (en) | 2018-12-18 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Cost optimization of a central energy facility with block-and-index rate structure |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US11761660B2 (en) | 2019-01-30 | 2023-09-19 | Johnson Controls Tyco IP Holdings LLP | Building control system with feedback and feedforward total energy flow compensation |
US10955800B2 (en) | 2019-05-17 | 2021-03-23 | Johnson Controls Technology Company | Central plant control system, method, and controller with multi-level granular and non-granular asset allocation |
US11392095B2 (en) | 2019-05-31 | 2022-07-19 | Johnson Controls Tyco IP Holdings LLP | Building control system with central plant model generation |
US11281198B2 (en) | 2019-05-31 | 2022-03-22 | Johnson Controls Tyco IP Holdings LLP | Central plant optimization with optimization modification |
US11274842B2 (en) | 2019-07-12 | 2022-03-15 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for optimizing ventilation, filtration, and conditioning schemes for buildings |
US11714393B2 (en) | 2019-07-12 | 2023-08-01 | Johnson Controls Tyco IP Holdings LLP | Building control system with load curtailment optimization |
US11385605B2 (en) | 2019-11-12 | 2022-07-12 | Johnson Controls Tyco IP Holdings LLP | Building control system with features for operating under intermittent connectivity to a cloud computation system |
US11953871B2 (en) | 2019-11-19 | 2024-04-09 | Johnson Controls Tyco IP Holdings LLP | Building control system with automatic control problem formulation using building information model |
US11445024B2 (en) | 2019-11-26 | 2022-09-13 | Johnson Controls Tyco IP Holdings LLP | Building control system with smart edge devices having embedded model predictive control |
US11281173B2 (en) | 2019-12-04 | 2022-03-22 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for maintaining occupant comfort for various environmental conditions |
US11530833B2 (en) | 2019-12-18 | 2022-12-20 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for controlling and predicting heat load disturbances |
US20230411966A1 (en) * | 2020-03-26 | 2023-12-21 | Vestas Wind Systems A/S | A method for improved power ramping in a hybrid power plant |
US11416796B2 (en) | 2020-04-28 | 2022-08-16 | Johnson Controls Tyco IP Holdings LLP | Control system for generating and distributing energy resources and operating building equipment accounting for resource provider contraints |
US12105487B2 (en) | 2021-12-06 | 2024-10-01 | Tyco Fire & Security Gmbh | Control system for building equipment with optimization search reduction based on equipment models and parameters |
US12099350B2 (en) | 2022-03-04 | 2024-09-24 | Tyco Fire & Security Gmbh | Central plant with automatic subplant models |
US20230344226A1 (en) * | 2022-04-21 | 2023-10-26 | GE Grid GmbH | Systems and methods for power setpoint control for hybrid power generation facilities |
Family Cites Families (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4349869A (en) | 1979-10-01 | 1982-09-14 | Shell Oil Company | Dynamic matrix control method |
US4616308A (en) | 1983-11-15 | 1986-10-07 | Shell Oil Company | Dynamic process control |
US5442544A (en) | 1990-01-26 | 1995-08-15 | Honeywell Inc. | Single input single output rate optimal controller |
ATE143509T1 (en) | 1990-06-21 | 1996-10-15 | Honeywell Inc | VARIABLE HORIZON BASED ADAPTIVE CONTROL WITH MEANS OF MINIMIZING OPERATING COSTS |
US5347446A (en) | 1991-02-08 | 1994-09-13 | Kabushiki Kaisha Toshiba | Model predictive control apparatus |
US5351184A (en) | 1993-01-26 | 1994-09-27 | Honeywell Inc. | Method of multivariable predictive control utilizing range control |
US5408406A (en) | 1993-10-07 | 1995-04-18 | Honeywell Inc. | Neural net based disturbance predictor for model predictive control |
US5519605A (en) | 1994-10-24 | 1996-05-21 | Olin Corporation | Model predictive control apparatus and method |
US5572420A (en) | 1995-04-03 | 1996-11-05 | Honeywell Inc. | Method of optimal controller design for multivariable predictive control utilizing range control |
US5933345A (en) | 1996-05-06 | 1999-08-03 | Pavilion Technologies, Inc. | Method and apparatus for dynamic and steady state modeling over a desired path between two end points |
US6278899B1 (en) | 1996-05-06 | 2001-08-21 | Pavilion Technologies, Inc. | Method for on-line optimization of a plant |
US7610108B2 (en) | 1996-05-06 | 2009-10-27 | Rockwell Automation Technologies, Inc. | Method and apparatus for attenuating error in dynamic and steady-state processes for prediction, control, and optimization |
US6122555A (en) | 1997-05-05 | 2000-09-19 | Honeywell International Inc. | System and methods for globally optimizing a process facility |
US6055483A (en) | 1997-05-05 | 2000-04-25 | Honeywell, Inc. | Systems and methods using bridge models to globally optimize a process facility |
US5867384A (en) | 1997-07-08 | 1999-02-02 | Johnson Services Company | Feedback controller |
US6347254B1 (en) | 1998-12-31 | 2002-02-12 | Honeywell Inc | Process facility control systems using an efficient prediction form and methods of operating the same |
US20040095237A1 (en) | 1999-01-09 | 2004-05-20 | Chen Kimball C. | Electronic message delivery system utilizable in the monitoring and control of remote equipment and method of same |
US6459939B1 (en) | 1999-06-29 | 2002-10-01 | Alan J. Hugo | Performance assessment of model predictive controllers |
JP2004129314A (en) | 2000-03-17 | 2004-04-22 | Soichi Sato | Cogeneration system equipped with capacitor device |
AU2001286433A1 (en) | 2000-08-11 | 2002-02-25 | Nisource Energy Technologies | Energy management system and methods for the optimization of distributed generation |
CN1650505A (en) | 2000-10-10 | 2005-08-03 | 美国电力公司 | A power load-leveling system and packet electrical storage |
US7376472B2 (en) | 2002-09-11 | 2008-05-20 | Fisher-Rosemount Systems, Inc. | Integrated model predictive control and optimization within a process control system |
US7050863B2 (en) | 2002-09-11 | 2006-05-23 | Fisher-Rosemount Systems, Inc. | Integrated model predictive control and optimization within a process control system |
US7328074B2 (en) | 2002-12-02 | 2008-02-05 | United Technologies Corporation | Real-time quadratic programming for control of dynamical systems |
US7152023B2 (en) | 2003-02-14 | 2006-12-19 | United Technologies Corporation | System and method of accelerated active set search for quadratic programming in real-time model predictive control |
US6983889B2 (en) | 2003-03-21 | 2006-01-10 | Home Comfort Zones, Inc. | Forced-air zone climate control system for existing residential houses |
US6807510B1 (en) | 2003-05-05 | 2004-10-19 | Honeywell Acsa Inc. | Model predictive controller for coordinated cross direction and machine direction control |
US7272454B2 (en) | 2003-06-05 | 2007-09-18 | Fisher-Rosemount Systems, Inc. | Multiple-input/multiple-output control blocks with non-linear predictive capabilities |
US7197485B2 (en) | 2003-07-16 | 2007-03-27 | United Technologies Corporation | Square root method for computationally efficient model predictive control |
US7664573B2 (en) | 2003-09-26 | 2010-02-16 | Siemens Industry, Inc. | Integrated building environment data system |
US7113890B2 (en) | 2003-10-16 | 2006-09-26 | Abb Inc. | Method and apparatus for detecting faults in steam generator system components and other continuous processes |
EP1553470B1 (en) | 2004-01-09 | 2008-12-31 | Abb Research Ltd. | Process control system |
WO2005077038A2 (en) | 2004-02-06 | 2005-08-25 | Wisconsin Alumni Research Foundation | Siso model predictive controller |
US7203554B2 (en) | 2004-03-16 | 2007-04-10 | United Technologies Corporation | Model predictive controller with life extending control |
JP2005339241A (en) | 2004-05-27 | 2005-12-08 | Nissan Motor Co Ltd | Model prediction controller, and vehicular recommended manipulated variable generating device |
US7591135B2 (en) | 2004-12-29 | 2009-09-22 | Honeywell International Inc. | Method and system for using a measure of fueling rate in the air side control of an engine |
US7275374B2 (en) | 2004-12-29 | 2007-10-02 | Honeywell International Inc. | Coordinated multivariable control of fuel and air in engines |
US7165399B2 (en) | 2004-12-29 | 2007-01-23 | Honeywell International Inc. | Method and system for using a measure of fueling rate in the air side control of an engine |
US7328577B2 (en) | 2004-12-29 | 2008-02-12 | Honeywell International Inc. | Multivariable control for an engine |
DE102005006410A1 (en) | 2005-02-11 | 2006-08-17 | Siemens Ag | Method for optimizing the operation of several compressor units and apparatus for this purpose |
GB0511361D0 (en) * | 2005-06-03 | 2005-07-13 | Responsiveload Ltd | Grid responsive control device |
US7894943B2 (en) | 2005-06-30 | 2011-02-22 | Sloup Charles J | Real-time global optimization of building setpoints and sequence of operation |
US7389773B2 (en) | 2005-08-18 | 2008-06-24 | Honeywell International Inc. | Emissions sensors for fuel control in engines |
US7451004B2 (en) | 2005-09-30 | 2008-11-11 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
US8874477B2 (en) * | 2005-10-04 | 2014-10-28 | Steven Mark Hoffberg | Multifactorial optimization system and method |
US7667443B2 (en) * | 2005-10-11 | 2010-02-23 | Active-Semi, Inc. | System and method for near zero light-load supply current in switching regulator |
US7650195B2 (en) | 2005-10-27 | 2010-01-19 | Honeywell Asca Inc. | Automated tuning of large-scale multivariable model predictive controllers for spatially-distributed processes |
JP2009516490A (en) | 2005-11-14 | 2009-04-16 | センパ パワー システムズ リミテッド | Facility energy management system |
US7376471B2 (en) | 2006-02-21 | 2008-05-20 | United Technologies Corporation | System and method for exploiting a good starting guess for binding constraints in quadratic programming with an infeasible and inconsistent starting guess for the solution |
US7454253B2 (en) | 2006-03-30 | 2008-11-18 | Honeywell Asca Inc. | Fast performance prediction of multivariable model predictive controller for paper machine cross-directional processes |
US7496413B2 (en) | 2006-05-03 | 2009-02-24 | Honeywell Asca Inc. | Apparatus and method for coordinating controllers to control a paper machine or other machine |
DE102006023458B4 (en) | 2006-05-18 | 2008-03-06 | Siemens Ag | Position control method for one axis |
US7577483B2 (en) | 2006-05-25 | 2009-08-18 | Honeywell Asca Inc. | Automatic tuning method for multivariable model predictive controllers |
US8005575B2 (en) | 2006-06-01 | 2011-08-23 | General Electric Company | Methods and apparatus for model predictive control in a real time controller |
US7844352B2 (en) | 2006-10-20 | 2010-11-30 | Lehigh University | Iterative matrix processor based implementation of real-time model predictive control |
US7826909B2 (en) | 2006-12-11 | 2010-11-02 | Fakhruddin T Attarwala | Dynamic model predictive control |
US7987005B2 (en) | 2006-12-19 | 2011-07-26 | Chevron U.S.A. Inc. | System, method and program for dynamic control and optimization of a process having manipulated and controlled variables |
US7827813B2 (en) | 2007-01-30 | 2010-11-09 | Johnson Controls Technology Company | Adaptive real-time optimization control |
US9148019B2 (en) * | 2010-12-06 | 2015-09-29 | Sandia Corporation | Computing architecture for autonomous microgrids |
US8032235B2 (en) | 2007-06-28 | 2011-10-04 | Rockwell Automation Technologies, Inc. | Model predictive control system and method for reduction of steady state error |
US8060258B2 (en) | 2007-06-28 | 2011-11-15 | Honeywell International Inc. | Multivariable process controller and methodology for controlling catalyzed chemical reaction to form phthalic anhydride and other functionalized aromatics |
US20090094173A1 (en) | 2007-10-05 | 2009-04-09 | Adaptive Logic Control, Llc | Intelligent Power Unit, and Applications Thereof |
US8073659B2 (en) | 2007-11-13 | 2011-12-06 | Honeywell International Inc. | Decomposition of nonlinear dynamics using multiple model approach and gap metric analysis |
US20100017045A1 (en) | 2007-11-30 | 2010-01-21 | Johnson Controls Technology Company | Electrical demand response using energy storage in vehicles and buildings |
FR2925530B1 (en) | 2007-12-21 | 2010-08-27 | Siemens Vai Metals Tech Sas | INSTALLATION AND METHOD FOR CONTINUOUS STRIPPING OF STEEL BANDS |
GB2490267B (en) | 2008-01-31 | 2013-01-16 | Fisher Rosemount Systems Inc | Robust adaptive model predictive controller with tuning to compensate for model mismatch |
US7987145B2 (en) | 2008-03-19 | 2011-07-26 | Honeywell Internationa | Target trajectory generator for predictive control of nonlinear systems using extended Kalman filter |
US8126575B2 (en) | 2008-03-26 | 2012-02-28 | Fakhruddin T Attarwala | Universal model predictive controller |
US8078291B2 (en) | 2008-04-04 | 2011-12-13 | Honeywell International Inc. | Methods and systems for the design and implementation of optimal multivariable model predictive controllers for fast-sampling constrained dynamic systems |
US8036758B2 (en) | 2008-04-07 | 2011-10-11 | Honeywell International Inc. | System and method for continuous supply chain control and optimization using stochastic calculus of variations approach |
EP2110551B2 (en) | 2008-04-15 | 2019-02-27 | Siemens Aktiengesellschaft | Method and apparatus for prediction-based wind turbine control |
US7949416B2 (en) | 2008-05-06 | 2011-05-24 | United Technologies Corporation | Multivariable control system |
US20090313083A1 (en) | 2008-06-13 | 2009-12-17 | Honeywell International Inc. | Renewable energy calculator |
US8600571B2 (en) | 2008-06-19 | 2013-12-03 | Honeywell International Inc. | Energy optimization system |
US8046089B2 (en) | 2008-06-20 | 2011-10-25 | Honeywell International Inc. | Apparatus and method for model predictive control (MPC) of a nonlinear process |
US8060290B2 (en) | 2008-07-17 | 2011-11-15 | Honeywell International Inc. | Configurable automotive controller |
US8901411B2 (en) | 2008-08-27 | 2014-12-02 | General Electric Company | System and method for controlling ramp rate of solar photovoltaic system |
US7930045B2 (en) | 2008-10-07 | 2011-04-19 | Emerson Process Management Power & Water Solutions, Inc. | Two-stage model predictive control technique |
US9002761B2 (en) | 2008-10-08 | 2015-04-07 | Rey Montalvo | Method and system for automatically adapting end user power usage |
US7839027B2 (en) | 2008-10-09 | 2010-11-23 | The Aes Corporation | Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid |
US8121818B2 (en) | 2008-11-10 | 2012-02-21 | Mitek Analytics Llc | Method and system for diagnostics of apparatus |
WO2010057250A1 (en) | 2008-11-19 | 2010-05-27 | Solar Systems Pty Ltd | Method and apparatus for managing power output of an electrical power generation system |
US8442698B2 (en) * | 2009-01-30 | 2013-05-14 | Board Of Regents, The University Of Texas System | Methods and apparatus for design and control of multi-port power electronic interface for renewable energy sources |
GB2479315B (en) | 2009-02-02 | 2014-12-10 | Fisher Rosemount Systems Inc | Model predictive controller with tunable integral component to compensate for model mismatch |
US20100198420A1 (en) | 2009-02-03 | 2010-08-05 | Optisolar, Inc. | Dynamic management of power production in a power system subject to weather-related factors |
US8295989B2 (en) | 2009-02-03 | 2012-10-23 | ETM Electromatic, Inc. | Local power tracking for dynamic power management in weather-sensitive power systems |
EP2396513A4 (en) | 2009-02-13 | 2018-03-07 | First Solar, Inc | Photovoltaic power plant output |
US9134353B2 (en) * | 2009-02-26 | 2015-09-15 | Distributed Energy Management Inc. | Comfort-driven optimization of electric grid utilization |
US8457796B2 (en) | 2009-03-11 | 2013-06-04 | Deepinder Singh Thind | Predictive conditioning in occupancy zones |
US8145329B2 (en) | 2009-06-02 | 2012-03-27 | Honeywell International Inc. | Method and system for combining feedback and feedforward in model predictive control |
US20110016610A1 (en) | 2009-07-27 | 2011-01-27 | Steven Wieder | Sweatband with absorbent bamboo inner layer and related method of use |
WO2011017323A1 (en) | 2009-08-05 | 2011-02-10 | First Solar, Inc. | Cloud tracking |
US8180493B1 (en) | 2009-09-04 | 2012-05-15 | Paul Ira Laskow | Method and apparatus for effecting temperature difference in a respective zone |
US9760067B2 (en) | 2009-09-10 | 2017-09-12 | Honeywell International Inc. | System and method for predicting future disturbances in model predictive control applications |
US8396572B2 (en) | 2009-09-11 | 2013-03-12 | Siemens Corporation | System and method for energy plant optimization using mixed integer-linear programming |
US9475359B2 (en) | 2009-10-06 | 2016-10-25 | Johnson Controls Technology Company | Systems and methods for displaying a hierarchical set of building management system information |
US8892264B2 (en) | 2009-10-23 | 2014-11-18 | Viridity Energy, Inc. | Methods, apparatus and systems for managing energy assets |
US9159108B2 (en) | 2009-10-23 | 2015-10-13 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets |
US8457802B1 (en) | 2009-10-23 | 2013-06-04 | Viridity Energy, Inc. | System and method for energy management |
US8473079B2 (en) | 2009-11-25 | 2013-06-25 | Honeywell International Inc. | Fast algorithm for model predictive control |
RU2523191C2 (en) | 2009-12-31 | 2014-07-20 | Абб Рисерч Лтд | Method and control system for power plant load planning |
US8326466B2 (en) | 2010-01-22 | 2012-12-04 | Honeywell International Inc. | HVAC control with utility time of day pricing support |
US8914158B2 (en) | 2010-03-11 | 2014-12-16 | Aes Corporation, The | Regulation of contribution of secondary energy sources to power grid |
US9223301B2 (en) | 2010-04-19 | 2015-12-29 | Honeywell International Inc. | Active cloud point controller for refining applications and related method |
ES2777887T3 (en) | 2010-05-03 | 2020-08-06 | Siemens Gamesa Renewable Energy As | System for exchanging electrical energy between a battery and an electrical network and the respective procedure |
JP2013529051A (en) | 2010-05-07 | 2013-07-11 | アドバンスド エナージィ インダストリーズ,インコーポレイテッド | Photovoltaic power generation prediction system and method |
US8504175B2 (en) | 2010-06-02 | 2013-08-06 | Honeywell International Inc. | Using model predictive control to optimize variable trajectories and system control |
US9335748B2 (en) | 2010-07-09 | 2016-05-10 | Emerson Process Management Power & Water Solutions, Inc. | Energy management system |
US8945094B2 (en) | 2010-09-08 | 2015-02-03 | Honeywell International Inc. | Apparatus and method for medication delivery using single input-single output (SISO) model predictive control |
US9342060B2 (en) | 2010-09-14 | 2016-05-17 | United Technologies Corporation | Adaptive control for a gas turbine engine |
US20120083930A1 (en) | 2010-09-30 | 2012-04-05 | Robert Bosch Gmbh | Adaptive load management: a system for incorporating customer electrical demand information for demand and supply side energy management |
US20120109620A1 (en) | 2010-11-01 | 2012-05-03 | Honeywell International Inc. | Apparatus and method for model predictive control (mpc) using approximate window-based estimators |
GB201019061D0 (en) | 2010-11-11 | 2010-12-29 | The Technology Partnership Plc | System and method for controlling an electricity supply |
US20120130555A1 (en) | 2010-11-23 | 2012-05-24 | Howard Jelinek | Hybrid energy cube |
JP5807201B2 (en) | 2010-12-28 | 2015-11-10 | パナソニックIpマネジメント株式会社 | Power control device |
US8903554B2 (en) | 2011-02-22 | 2014-12-02 | The Board Of Trustees Of The Leland Stanford Junior University | Energy plant design and operation |
US9244444B2 (en) | 2011-03-07 | 2016-01-26 | Callida Energy Llc | Systems and methods for optimizing energy and resource management for building systems |
JP5899640B2 (en) | 2011-03-30 | 2016-04-06 | ソニー株式会社 | Power management apparatus, power management method, and power management system |
US10122178B2 (en) | 2011-04-15 | 2018-11-06 | Deka Products Limited Partnership | Modular power conversion system |
US8452461B2 (en) * | 2011-05-10 | 2013-05-28 | First Solar, Inc | Control system for photovoltaic power plant |
US9559520B2 (en) | 2011-06-20 | 2017-01-31 | The Aes Corporation | Hybrid electric generating power plant that uses a combination of real-time generation facilities and energy storage system |
US9059604B2 (en) | 2011-06-27 | 2015-06-16 | Sunpower Corporation | Methods and apparatus for controlling operation of photovoltaic power plants |
US9077204B2 (en) * | 2011-07-20 | 2015-07-07 | Inventus Holdings, Llc | Dispatchable renewable energy generation, control and storage facility |
JP5777965B2 (en) | 2011-07-22 | 2015-09-16 | 京セラ株式会社 | Fault diagnosis method, grid interconnection device, and control device |
JP5802463B2 (en) | 2011-07-22 | 2015-10-28 | 株式会社東芝 | Electric quantity adjusting device, electric quantity adjusting method, electric quantity adjusting program, and power supply system |
CN102411395B (en) * | 2011-08-08 | 2014-02-05 | 东南大学 | Dynamic voltage-regulating system based on on-chip monitoring and voltage forecasting |
US9325193B2 (en) * | 2011-08-15 | 2016-04-26 | Shawn P. Kelly | Apparatus and method for accurate energy device state-of-charge (SoC) monitoring and control using real-time state-of-health (SoH) data |
US8990284B2 (en) * | 2011-09-02 | 2015-03-24 | Avatekh, Inc. | Method and apparatus for signal filtering and for improving properties of electronic devices |
EP2756470A1 (en) | 2011-09-17 | 2014-07-23 | Narayam, Amit | Load forecasting from individual customer to system level |
JP2014233096A (en) | 2011-09-27 | 2014-12-11 | 三洋電機株式会社 | Charge and discharge system |
US8843238B2 (en) | 2011-09-30 | 2014-09-23 | Johnson Controls Technology Company | Systems and methods for controlling energy use in a building management system using energy budgets |
JP5877346B2 (en) | 2011-10-24 | 2016-03-08 | パナソニックIpマネジメント株式会社 | Load control device, program, load control system |
US8718850B2 (en) | 2011-11-30 | 2014-05-06 | Nec Laboratories America, Inc. | Systems and methods for using electric vehicles as mobile energy storage |
WO2013086411A1 (en) * | 2011-12-09 | 2013-06-13 | The Aes Corporation | Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid |
JP5806132B2 (en) | 2012-01-23 | 2015-11-10 | 京セラ株式会社 | Power generation amount prediction device, power generation amount prediction correction method, and natural energy power generation system |
US9218035B2 (en) * | 2012-02-10 | 2015-12-22 | University Of Florida Research Foundation, Inc. | Renewable energy control systems and methods |
CN102566435B (en) | 2012-02-17 | 2013-10-02 | 冶金自动化研究设计院 | Performance prediction and fault alarm method for photovoltaic power station |
WO2013132872A1 (en) | 2012-03-08 | 2013-09-12 | パナソニック株式会社 | Frequency control method |
US9720478B2 (en) | 2012-03-19 | 2017-08-01 | Panasonic Intellectual Property Management Co., Ltd. | Storage battery monitoring method, storage battery monitoring system, and storage battery system |
KR20150004376A (en) * | 2012-04-12 | 2015-01-12 | 이스트 펜 매뉴팩츄어링 컴퍼니 | Management of battery capacity |
US9002532B2 (en) | 2012-06-26 | 2015-04-07 | Johnson Controls Technology Company | Systems and methods for controlling a chiller plant for a building |
WO2014016727A2 (en) | 2012-07-23 | 2014-01-30 | Brightsource Industries (Israel) Ltd. | Method and apparatus for operating a solar energy system including monitoring of cloud shading |
US8849715B2 (en) * | 2012-10-24 | 2014-09-30 | Causam Energy, Inc. | System, method, and apparatus for settlement for participation in an electric power grid |
US20140037909A1 (en) | 2012-08-01 | 2014-02-06 | Massachusetts Institute Of Technology | Actuation and Control of Stamp Deformation in Microcontact Printing |
US9406094B2 (en) | 2012-08-14 | 2016-08-02 | Stem Inc. | Method and apparatus for delivering power using external data |
EP2894748A4 (en) | 2012-09-06 | 2015-08-05 | Panasonic Ip Man Co Ltd | Demand response method and demand response control device |
CN102891495B (en) | 2012-09-18 | 2016-01-20 | 中国电力科学研究院 | A kind of battery energy storage system participates in primary frequency regulation of power network optimal control method |
US8600561B1 (en) | 2012-09-30 | 2013-12-03 | Nest Labs, Inc. | Radiant heating controls and methods for an environmental control system |
US9122274B2 (en) * | 2012-10-10 | 2015-09-01 | Siemens Aktiengesellschaft | Test system for determining a frequency response of a virtual power plant |
US9620979B2 (en) | 2012-11-13 | 2017-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Storage battery control apparatus, storage battery control method, and storage battery system |
US20140152009A1 (en) * | 2012-11-30 | 2014-06-05 | United Technologies Corporation | Complementary power and frequency control for power generating equipment |
US9698610B2 (en) | 2012-12-14 | 2017-07-04 | Panasonic Corporation | Charge and discharge control method, charge and discharge control system, and charge and discharge control apparatus |
US9061599B2 (en) | 2013-01-11 | 2015-06-23 | Johnson Controls Technology Company | System and method for optimizing the storing of vehicular energy |
JP2014166009A (en) | 2013-02-22 | 2014-09-08 | Toshiba Corp | Photovoltaic power generation system, and control method and control program for photovoltaic power generation system |
US9299107B2 (en) | 2013-03-13 | 2016-03-29 | Convergent Energy + Power | System and method for managing the charging and discharging of an energy storage device |
US9235657B1 (en) | 2013-03-13 | 2016-01-12 | Johnson Controls Technology Company | System identification and model development |
US10418833B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with cascaded frequency response optimization |
US10079317B2 (en) | 2013-07-15 | 2018-09-18 | Constantine Gonatas | Device for smoothing fluctuations in renewable energy power production cause by dynamic environmental conditions |
JP6459967B2 (en) | 2013-08-08 | 2019-01-30 | パナソニック株式会社 | Power system stabilization method, power system stabilization system, and power supply device |
US9722426B2 (en) | 2013-09-26 | 2017-08-01 | Wellhead Electric Company, Inc. | Hybrid energy system and method |
US20150094870A1 (en) | 2013-10-02 | 2015-04-02 | Enphase Energy, Inc. | Method and apparatus for controlling power based on predicted weather events |
WO2015061360A1 (en) | 2013-10-21 | 2015-04-30 | Stc. Unm | Systems and methods for distributing power using photovoltaic resources and a shifting battery system |
WO2015061271A1 (en) * | 2013-10-22 | 2015-04-30 | University Of Florida Research Foundation, Inc. | Low-frequency ancillary power grid services |
US9846886B2 (en) | 2013-11-07 | 2017-12-19 | Palo Alto Research Center Incorporated | Strategic modeling for economic optimization of grid-tied energy assets |
WO2015139061A1 (en) | 2014-03-14 | 2015-09-17 | Power Analytics Corporation | Ramp rate control system and methods using energy storage devices |
US9682637B2 (en) | 2014-04-04 | 2017-06-20 | Toyota Jidosha Kabushiki Kaisha | Charging management based on demand response events |
US10286801B2 (en) | 2014-08-18 | 2019-05-14 | Toyota Jidosha Kabushiki Kaisha | Charge system to improve battery operational life |
US9811064B2 (en) | 2015-04-27 | 2017-11-07 | Solarcity Corporation | Energy generation (EG) system generating failsafe level of energy in case of communication failure |
US9941700B2 (en) | 2014-12-30 | 2018-04-10 | Eaton Intelligent Power Limited | Utility scale renewable energy system controls for ramp-rate, voltage, and frequency management |
US9991716B2 (en) | 2015-02-26 | 2018-06-05 | General Electric Company | Delivery of multiple grid services with energy storage system |
US20170060113A1 (en) | 2015-08-24 | 2017-03-02 | Robert A. Kaucic | Controlling a dispatch operation of an energy storage system |
US10061279B2 (en) | 2015-09-29 | 2018-08-28 | International Business Machines Corporation | Multi-objective scheduling for on/off equipment |
US10222083B2 (en) * | 2015-10-08 | 2019-03-05 | Johnson Controls Technology Company | Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs |
US10418832B2 (en) * | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
-
2016
- 2016-08-25 US US15/247,885 patent/US10418833B2/en active Active
- 2016-10-07 WO PCT/US2016/056183 patent/WO2017062910A1/en unknown
- 2016-10-07 AU AU2016334371A patent/AU2016334371A1/en not_active Abandoned
- 2016-10-07 EP EP16787648.1A patent/EP3360224A1/en not_active Withdrawn
-
2018
- 2018-10-22 US US16/166,575 patent/US20190123566A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20170104345A1 (en) | 2017-04-13 |
EP3360224A1 (en) | 2018-08-15 |
WO2017062910A1 (en) | 2017-04-13 |
US10418833B2 (en) | 2019-09-17 |
AU2016334371A1 (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190123566A1 (en) | Schedule Impact Map | |
Boktor et al. | State of practice of building information modeling in the mechanical construction industry | |
Ahadzie et al. | Competencies required of project managers at the design phase of mass house building projects | |
Greasley | Using business‐process simulation within a business‐process reengineering approach | |
Khan et al. | Managing information complexity using system dynamics on construction projects | |
US20120316930A1 (en) | Integrated system and methods for tracking and reporting construction, completion, and inspection status | |
EP3035189A1 (en) | Automated approach for integrating automated function library functions and algorithms in predictive analytics | |
US11138216B2 (en) | Automatically invoked unified visualization interface | |
Minelli et al. | Land degradation neutrality and the UNCCD: from political vision to measurable targets | |
US20170004437A1 (en) | Systems, apparatus and methods for generating and displaying a schedule impact map | |
Jalo et al. | How can collaborative augmented reality support operative work in the facility management industry? | |
US11201906B2 (en) | Providing instructions during remote viewing of a user interface | |
Khelifi et al. | A Mobile Device Software to Improve Construction Sites Communications" MoSIC" | |
US20160224940A1 (en) | Word Cloud Analysis System | |
US10140583B2 (en) | Schedule impact map | |
Ginters et al. | Sociotechnical aspects of policy simulation | |
Albuquerque et al. | Towards a participatory methodology for community data generation to analyse urban health inequalities: a multi-country case study | |
Ezzeddine et al. | CCC_implementing the construction control room on a fast-paced project: the case study of the Beirut port explosion | |
EP1967994A1 (en) | A system for capturing project information over a network | |
US20160328219A1 (en) | Mobile application development collaboration system | |
US20160224926A1 (en) | Task Management System | |
Ghosh | Distributed task scheduling and human resource distribution in industrial service solution production: a simulation application | |
Kenley | CME Forum: A response to “Construction flow index: A metric of production flow quality in construction” | |
Boxer et al. | Analyzing the Architectures of Software-Intensive Ecosystems | |
US12072788B2 (en) | Intelligent accessibility testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: HEALTHCARE TECHNICAL SERVICES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLEMENSON, WILLIAM;REEL/FRAME:049634/0148 Effective date: 20190430 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |