US20190118188A1 - Apparatus to accelerate non-liquid materials in a spiraling forward direction - Google Patents

Apparatus to accelerate non-liquid materials in a spiraling forward direction Download PDF

Info

Publication number
US20190118188A1
US20190118188A1 US16/153,434 US201816153434A US2019118188A1 US 20190118188 A1 US20190118188 A1 US 20190118188A1 US 201816153434 A US201816153434 A US 201816153434A US 2019118188 A1 US2019118188 A1 US 2019118188A1
Authority
US
United States
Prior art keywords
high velocity
materials
slurry
accelerator
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/153,434
Inventor
James Harrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stitech Industries Inc
Original Assignee
Stitech Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stitech Industries Inc filed Critical Stitech Industries Inc
Priority to US16/153,434 priority Critical patent/US20190118188A1/en
Assigned to STITECH INDUSTRIES INC. reassignment STITECH INDUSTRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRISON, JAMES
Publication of US20190118188A1 publication Critical patent/US20190118188A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0012Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
    • B02C19/005Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) the materials to be pulverised being disintegrated by collision of, or friction between, the material particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/065Jet mills of the opposed-jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/068Jet mills of the fluidised-bed type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/68Washing granular, powdered or lumpy materials; Wet separating by water impulse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/045Separation of insoluble materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0211Solvent extraction of solids in combination with an electric or magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0253Fluidised bed of solid materials
    • B01D11/0257Fluidised bed of solid materials using mixing mechanisms, e.g. stirrers, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0419Solvent extraction of solutions which are liquid in combination with an electric or magnetic field or with vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C2003/003Shapes or dimensions of vortex chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to an apparatus and method to rapidly accelerate a non-liquid material in a forward direction.
  • a system to focus forward momentum of a specific or number of specific materials which may be in a gaseous or solid state, increase the velocity of a specific material or a number of specific materials which accelerate independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • the incoming velocity of the material may rapidly decelerate due to the laws of conservation of energy.
  • the value proposition of the present invention can be explained as follows:
  • a method to focus forward momentum of a specific or number of specific materials which may be in a gaseous or solid state, increase the velocity of a specific material or a number of specific materials which accelerate independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • the system and methods are operated as a batch process. According to another preferred embodiment of the present invention, the system and methods are operated as a continuous flow-through process.
  • a method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials, said method comprising the steps of:
  • the step of entraining the expanded slurry further comprises imparting a concentric movement to the entrained slurry towards the outlet port of the high velocity accelerator.
  • the imparting a concentric movement to the entrained slurry is performed by injecting the fluid through the injection ports at angle offset from a straight line between the outlet port and an injection port.
  • a method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials which accelerates independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • a method to accelerate the velocity of a solid material comprising the steps of:
  • the slurry is prepared using a solvent selected from the group consisting of: water, low boiling solvents, and combinations thereof.
  • a solvent selected from the group consisting of: water, low boiling solvents, and combinations thereof.
  • the slurry is prepared using a water as a solvent.
  • said focal point is a shared focal point with a second high velocity accelerator performing substantially the same function from another position.
  • said focal point is a shared focal point with a second high velocity accelerator performing substantially the same function from the opposite direction.
  • This preferably accelerates independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • said plurality of injection ports positioned along the periphery of the internal wall of the internal chamber at a position close to the back wall are adapted to inject at a high rate of displacement a fluid which, in operation, will create a vortex inside the chamber thereby entraining said material towards the outlet port.
  • the injection can preferably also imparting a concentric movement to the entrained slurry towards the outlet port of the high velocity accelerator.
  • imparting a concentric movement to the entrained slurry is performed by injecting the fluid through the injection ports at angle offset from a straight line between the outlet port and an injection port.
  • the method to focus forward momentum of a material allows at least one of the following: increase the velocity of a specific material or a number of specific materials which accelerate independently of other materials; separate solids and/or gaseous materials from gaseous or solid materials; cause the abrasive collision of materials; and impart work energy on a surface to cause directional motion of a body.
  • the system may comprise further comprise additional optional apparatus which may overcome efficiency losses in processing materials in the described manner and for the described purposes, where the inflow of material composition characteristics may not be consistent and/or where the feed rate, feed pressure and/or feed velocity are not consistent, but where there may be a requirement of the materials which may be processed by the apparatus to continue to be reasonably consistent to the intent of the user.
  • FIG. 1 is a schematic of a system set-up of the method according to a preferred embodiment of the present invention
  • FIG. 2 shows the various material flows in a cross-section view of a dual high velocity accelerators according to a preferred embodiment of the present invention
  • FIGS. 3 a , 3 b , 3 c and 3 d are schematic depictions of four other preferred embodiments of the high velocity accelerator apparatus according to the present invention.
  • FIG. 4 shows a schematic describing the physical changes in the state of certain materials resulting from the use of the apparatus according to a preferred embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a high velocity accelerator according to a preferred embodiment of the present invention.
  • FIG. 6 shows a potential use of the apparatus according to a preferred embodiment of the present invention for the purposes of describing the physical changes in the state of certain materials resulting from the apparatus.
  • FIG. 7 illustrates a cross-section of a dual high velocity accelerators according to a preferred embodiment of the present invention.
  • the effectiveness of the process using the apparatus is not dependent on the introduction or use of chemical aids or surfactants, although there may be applications where chemical use is desired to modify a specific intended result.
  • the system is configured to incorporate the introduction of chemicals as required or desired by the user.
  • the apparatus comprises one or more additional device including but not limited to:
  • the system promotes mechanically-induced chemical reactions which assist in the separation of various materials from each other. These chemical reactions may be naturally occurring by mechanical induction and do not produce any substantial negative or by-product based residual effect at any point in the process, or by the end of the process.
  • Variations of embodiments of the invention process can be applied to any number of applications and associated industries.
  • the configuration of the apparatus can vary to include supportive or additional user required classification and or treatment of materials.
  • the system and methods are operated as a batch process or a continuous flow-through process. According to another preferred embodiment of the present invention, the system and methods are operated as a continuous flow-through process.
  • the apparatus can be scaled to suit a required application capacity as defined by the user and has the capacity to operate with no change in effectiveness of process at efficiency ranges of 10% to 100%.
  • the use of the apparatus can be incorporated at any number of process volume rates and may be incorporated in a permanently located process in any applicable application. According to a preferred embodiment of the present invention, the use of the apparatus can be incorporated at any number of process volume rates and be incorporated in a mobile or semi-mobile process in any applicable application.
  • the user may be required to comprise a system of a consecutive series of apparatuses to accomplish the desired outcome of the process to ensure the efficiency of each component of the desired result of the process.
  • the apparatus comprises a system to transport material to the apparatus, and the transport of materials may require specific and/or minimum and maximum physical characteristics.
  • the physical characteristics may include, but not be limited to:
  • the process results require specific physical characteristics of the apparatus, including but not limited to:
  • the total energy of the process is the sum of the energy of the inflowing suspended material plus the energy imparted by the creation of high velocity energy streams.
  • the energy of the material leaving the apparatus may be the total sum of the energy of the materials entering the apparatus but less the amount of energy that is lost due to a number of actions undergone in the apparatus which include but are not limited to; expansion loss, thermal transfer loss and friction
  • the user may adjust a single or a number of physical characteristics of the material which may eliminate and/or reduce the adverse effect of the process as a result of unattainable requirements of another physical characteristic.
  • a person skilled in the art has the knowledge to determine requirements for physical characteristics of the material and if required physical characteristics for the process may be unattainable as well as the knowledge to determine which physical characteristics of the material may eliminate or reduce other unattainable physical characteristics.
  • materials meeting the minimum and/or maximum physical characteristic allowance for variation, which are transported to the high velocity accelerator may, enter such and, immediately rapidly expand.
  • a non-solid material entering the apparatus and rapidly expanding may lose unrecoverable pressure due to the laws of expansion.
  • the incoming pressure of the material may not increase in pressure as is normally required by the laws of conservation of energy.
  • the incoming material may be imparted with an area of lower pressure which may cause the materials to further expand outwards and further reduce forward velocity while simultaneously reducing in pressure of non-solid materials which may result from an implied constricted flow area as described in FIG. 6 .
  • the center line of the internal chamber ( 1 ) is illustrated. Also, depicted are the maximum vacuum zone ( 2 ), the low-pressure zone ( 3 ), the zone of maximum compression on outflow ( 4 ), the material expansion and deceleration zone ( 5 ).
  • the forward motion of the solid material is illustrated as reference character ( 6 )
  • the shockwaves moving out from the point of maximum compression at outflow are illustrated by reference character ( 7 )
  • the flow of light gaseous and vapor material 8
  • the high turbulence transitions phase state zone 9
  • material flow eddy currents 10
  • material velocity at plane 11
  • conical plane of rotational axis are also illustrated in this figure.
  • High velocity accelerator HVA also referred to as the STERN reactor system
  • a material slurry enters the STERN reactor system (HVA), which induces a state which reduces effects of gravity and friction and generates a highly turbulent flow state of the suspension while simultaneously applying energy to create shear forces and vacuum states which act on the various components of the suspension, which encourages rapid separation of the various components of the suspension.
  • HVA STERN reactor system
  • HVA Entry of material into the HVA during operation results in a pressure drop and rapid increase in the velocity of the suspension equally to the medium as a singular mass, but imparts specific and different actions to the individual medium components.
  • the HVA outputs a high-energy material flow, which assists in maintaining separation as it passes to a subsequent separator or settlement treatment system.
  • the HVA may separate individual materials from each other and flow them forward as a bulk mass however, individual material components will flow as individual masses and at different velocities within the bulk mass.
  • the variation of velocities may be dependent on the temperature, pressure and specific densities of each of the individual materials.
  • FIG. 5 illustrates a lengthwise cross-sectional view of the apparatus according to a preferred embodiment of the present invention.
  • the material inflow pipe ( 501 ) is in fluid operational connection with the apparatus' internal apparatus chamber ( 502 ).
  • the size and configuration of the internal apparatus chamber ( 502 ) is determined by the intended application.
  • There is a pressurized fluid chamber ( 503 ) which is in operational fluid connection with the internal chamber ( 502 ).
  • a gas or air inlet ( 505 ) is located in fluid operational connection to the internal apparatus chamber and is used depending on the needs and requirements of the application.
  • the outflow pipe ( 507 ) is in fluid operational connection with the internal chamber ( 502 ).
  • an eddy current or magnetic apparatus may be located at the inflow section ( 508 ) of the apparatus.
  • an eddy current or magnetic apparatus may be located at the outflow section ( 509 ) of the apparatus.
  • the jets ( 508 ) are aimed along the conical inner surface to create high velocity streams which collide at the apex ( 509 ) of the HVA.
  • the jets may be aimed slightly tangentially so that the high velocity streams spiral along the inner surface, creating a central vortex in the chamber.
  • a low-pressure zone is created in the central volume of the internal chamber of the HVA.
  • Vacuum states may form areas of space within the apparatus which may be void of liquid and/or solid materials such as in areas like, the core of the conical flow and/or in the area above the jet stream and between the jet stream an inner conical surface of the apparatus, as depicted in FIGS. 4 and 5 .
  • the particles in suspension will collide with each other, particularly at the apex ( 9 ) of the vortex where the particles will have concentrated, as shown schematically in FIG. 4 .
  • the collisions occur with sufficient energy to fracture weaker state particles. All particles will undergo surface rounding, increasing the sphericity of the individual particles and the compressive strength of the bulk mass. Individual particles will undergo directional changes, rotational velocity and momentum changes as they accelerate, collide and are compressed in the vortex.
  • components with higher density will concentrate in the center of the vortex, while lighter density components will migrate to the outer zones.
  • Materials that may vaporize in the apparatus process may condense at points of the process where there is an increase in pressure to a point where the state of vacuum is no longer sufficient to maintain the material in a vaporized state.
  • the increase in pressure may be sufficient to cause all vaporized liquids to condense.
  • materials that vaporize into a gaseous state may not condense as pressure increases.
  • the conclusion is specific to specific physical characteristics and properties of some materials.
  • the action will generate an effect commonly referred to by persons skilled in the art, as a “water hammer”.
  • the term “water hammer” is not intended to describe an effect specific to water and may describe different materials condensing. Notwithstanding any theory, it is believed the effect of “water hammer”, occurring at points where there may be a rapid compression and deceleration of materials, may produce either supersonic and/or subsonic shockwaves as depicted in FIG. 6 .
  • the process can generate material velocities which are supersonic.
  • the total sum of the energy of the process may be imparted on the material in a forward direction.
  • shockwaves will impart forces on the material consistent with energy disbursement laws and impart forces in both, a forward direction, and away from the condensed material.
  • the forces imparting on the material may transport the materials forward in a spiral motion.
  • materials in the process which remain in a vaporized state may expand outwardly.
  • materials in the process which are liquid and emulsified with dissolved air and/or other gaseous may expand outwardly at a rate consistent with the laws of expanding fluids and fluids with dissolved air and/or gases.
  • Solid materials in the materials which are condensed may have forces imparted onto the materials which propel the material forward in a spiral motion and at a velocity which may not be consistent with liquid or vapor components of the material as described in FIG. 4 .
  • Material components which may be able to disburse imparted forces may not propel forward at velocities consistent with materials which may not disburse imparted forces at the same values.
  • materials which are propelled forward at lower velocities than other materials will be imparted by centripetal forces to a greater degree than materials with more forward velocity such as solid materials. Materials moving forward at lower velocities and imparted by centripetal forces to a greater degree may continue to expand outwardly and rapidly decrease in forward velocity.
  • the inlet pipe ( 501 ) leads to an inlet transition zone where the internal diameter of the reactor increases and liquid and/or semi liquid states begin to vaporize and, in some cases, to completely vaporize. It is understood that the inlet pipe may protrude into the reactor chamber according to an embodiment of the present invention, without departing from the person skilled in the art's understanding that the back wall surrounds the inlet port.
  • the material may have the required amount of energy imparted on a substance or body to cause displacement through a conserved level of work power and the imparted work power may be sufficient to propel and/or move a body or object in a forward direction, and/or propel and/or move the apparatus in the opposite direction of the material leaving the apparatus.
  • the HVA does not create cyclonic separation.
  • denser material is accelerated by centrifugal force to the periphery, while lighter material collects in the center.
  • the centrifugal forces are overcome and concentrate the denser materials towards the center of the flow and the center of the apex due to an internal vacuum state.
  • the materials will experience a rapid deceleration, followed by rapid acceleration towards the apex, as the material is sucked into the vortex by the outer low-pressure region created by the high velocity water jets.
  • the reduced pressure may reduce the friction of the layered flow, producing a highly unstable but directional flow pattern characteristic of a cavitational flow profile.
  • material flow patterns may be manipulated with the introduction of an electric and/or magnetic fields generated at the inlet of the chamber with an electromagnet and a rotating ferrous plate. These electric or magnetic fields may encourage a more parallel flow conducive of laminar flow and/or segregation of ferrous materials in the material.
  • the total energy of the system in the HVA is the sum of the energy of the inflowing suspended material plus the energy imparted by the creation of high velocity water streams.
  • the energy results in a significantly increased velocity of the suspended material, as well as an increase in energy of the solid particles carried in the flowing liquid carrier.
  • the significant energy of the system results in physical actions on the suspended material which results in separation of liquids clinging to the surface of the particles, degasification of liquids, particle size reduction and rounding to due fracturing and abrasive collisions, as may be seen schematically in FIG. 4 .
  • shockwaves may impart forces on the material consistent with energy disbursement laws and impart forces in both, a forward direction, and away from the condensed material.
  • the forces imparting on the material may transport the materials forward in a spiral motion at a velocity which is greater than before being processed through the apparatus.
  • Materials in the process which may be liquid and emulsified with dissolved air and/or other gaseous may expand outwardly at a rate consistent with the laws of expanding fluids and fluids with dissolved air and/or gases in open atmosphere and/or into an area of containment which is larger than the outflow opening of the apparatus.
  • Solid materials present in the slurry which may be condensed may be imparted by forces which propel the solid material forward in a spiral motion and at a velocity which may not be consistent with other components comprising of the material as described in FIG. 4 .
  • Material components which may be able to disburse imparted forces may not propel forward at velocities consistent with materials which may not disburse imparted forces at the same values.
  • Materials moving forward at lower velocities and imparted by centripetal forces to a greater degree may continue to expand outwardly and rapidly decrease in forward velocity while simultaneously loosing pressure.
  • the material may have the required amount of energy imparting on a solid material on a surface or opposing solid material may cause the solid materials to break into smaller sizes and/or collide with a surface in an abrasive manner.
  • a material which is transported to the apparatus may accelerate from 0.05 m/s to 461 m/s in a horizontal distance along the rotational axis of a conical flow stream and cause a rapid pressure depression which may create a vacuum state.
  • Outflow characteristic of the materials considered in one embodiment of the invention may provide benefits to the user and provide opportunities for effective a solid material component to separate or be freed from other solid material components as described in FIG. 2 and FIG. 4 .
  • the conical form of the rotational axis may be established at specific angles of decline and compounded angles of decline and may create a low-pressure stream along a rotational axis of the conical plane.
  • the specific angles, rotational distance, rotational axis, velocity, pressure, material type, material temperature and material volume flow rate of injector material may be determined by a person skilled in the art to provide the energy required to impart the desired process result with consideration to the process material physical characteristics and properties.
  • references in the specification to “one embodiment”, “an embodiment”, etc., indicate that the embodiment described may include a particular aspect, feature, structure, or characteristic, but not every embodiment necessarily includes that aspect, feature, structure, or characteristic. Moreover, such phrases may, but do not necessarily, refer to the same embodiment referred to in other portions of the specification. Further, when a particular aspect, feature, structure, or characteristic is described in connection with an embodiment, it is within the knowledge of one skilled in the art to combine, affect or connect such aspect, feature, structure, or characteristic with other embodiments, whether or not such connection or combination is explicitly described. In other words, any element or feature may be combined with any other element or feature in different embodiments, unless there is an obvious or inherent incompatibility between the two, or it is specifically excluded.
  • ranges recited herein also encompass any and all possible sub-ranges and combinations of sub-ranges thereof, as well as the individual values making up the range, particularly integer values.
  • a recited range e.g., weight percent or carbon groups
  • Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, or tenths. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc.

Abstract

A method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials, said method comprising the steps of: introducing a slurry of material into a high velocity accelerator, where said high velocity accelerator is adapted to impart an increase in the velocity of the materials introduced therein; expanding the volume of the slurry introduced into the high velocity accelerator without diminishing the velocity of the material; entraining said expanded slurry through injection of a liquid at high velocity towards an outlet port located in the high velocity accelerator; and focusing the entrained slurry onto a pre-determined point located proximate the outlet port of the high velocity accelerator.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 62/569,280, filed on Oct. 6, 2017, the disclosure of which is hereby incorporated by reference in its entirety for all purposes.
  • FIELD OF THE INVENTION
  • This invention relates to an apparatus and method to rapidly accelerate a non-liquid material in a forward direction.
  • BACKGROUND OF THE INVENTION
  • There may be numerous processes which may require the rapid acceleration of non-liquid materials for numerous purposes as may be required by the user of the apparatus.
  • It may be beneficial to the user to accelerate materials in a manner that is efficient and/or for an apparatus to process materials at various flow volume rates without being required to recalibrate and/or to require different systems for different volume flow rates.
  • It may be beneficial for a user to separate certain gases, vapors and/or air from other gases, vapors and/or air and/or the blend or infuse gases, vapors and/or air with other gases, vapors and/or air. It may be beneficial to a user to remove solid materials from gases, air and/or vapors and/or to add gases, air or vapors to solids. In some instances, it may be beneficial to blend solid materials.
  • It may be beneficial to impart forces on, and/or cause abrasive collisions of, solid materials such as aggregate materials which may smooth, round or remove jagged or protruding edges of a solid surface or body.
  • It may be beneficial to impart forces on a material which may cause the material to move forward at a higher velocity with a greater level of forward velocity than may be efficiently obtainable by other means or methods.
  • It may be beneficial to impart forces of one solid material on a second solid material in an opposing direction and to generate a desired amount of work potential with the intent to create an abrasive collision of the first and second material which may cause the imposing solid materials to break apart into smaller sized solid materials.
  • Therefore, there is a need in the art for a method and system for an apparatus that can accelerate a non-liquid material in a forward direction where the method and system is versatile in application, can control the reaction outcome and can operate at a wide range of volume flow rates and material densities, temperatures, pressures and velocities. There is also a need in the art for a method and system that may provide the opportunity to achieve one or more than one desired action discussed above in a single step or with a reduced number of steps.
  • BRIEF SUMMARY OF THE INVENTION
  • According to a first aspect of the present invention, there is provided a system to focus forward momentum of a specific or number of specific materials which may be in a gaseous or solid state, increase the velocity of a specific material or a number of specific materials which accelerate independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • The incoming velocity of the material may rapidly decelerate due to the laws of conservation of energy. The value proposition of the present invention can be explained as follows:
      • If a material is moving forward at a constant rate over a horizontal distance but is travelling in a spiral that is decreasing in diameter to an apex then the material is moving faster;
      • Velocity translates to ft/bs of force;
      • Ft/lbs of force in acceleration is key to colliding impact;
      • The spiraling evenly displaces airflow and reduces drag thereby conserving energy to be converted to velocity similar to rifling;
      • Whether it is cold air with a % of moisture or an inert expanding gas when the air or gas exits the reactor it will rapidly expand and cool reducing its velocity and the cooling will reduce mass which assists in relieving pressure in addition to natural pressure loss in expansion; and
      • Gaseous or air materials will move slower and not impede the solid materials which can be collided with itself or the surface of a body and assist to focus energy of solids to a smaller area with less blow out or dispersing of energy of the sand.
  • According to another aspect of the present invention, there is provided a method to focus forward momentum of a specific or number of specific materials which may be in a gaseous or solid state, increase the velocity of a specific material or a number of specific materials which accelerate independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • According to a preferred embodiment of the present invention, the system and methods are operated as a batch process. According to another preferred embodiment of the present invention, the system and methods are operated as a continuous flow-through process.
  • According to another aspect of the present invention, there is provided a method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials, said method comprising the steps of:
      • introducing a slurry of material into a high velocity accelerator, where said high velocity accelerator is adapted to impart an increase in the velocity on the materials introduced therein;
      • expanding the volume of the slurry introduced into the high velocity accelerator without diminishing the velocity of the material;
      • entraining said expanded slurry through injection of a liquid at high velocity towards an outlet port located in the high velocity accelerator; and
      • focusing the entrained slurry onto a pre-determined point located proximate the outlet port of the high velocity accelerator.
  • Preferably, the step of entraining the expanded slurry further comprises imparting a concentric movement to the entrained slurry towards the outlet port of the high velocity accelerator.
  • Preferably, the imparting a concentric movement to the entrained slurry is performed by injecting the fluid through the injection ports at angle offset from a straight line between the outlet port and an injection port.
  • According to another aspect of the present invention, there is provided a method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials which accelerates independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • According to another aspect of the present invention, there is provided a method to accelerate the velocity of a solid material, said method comprising the steps of:
      • introducing a slurry of comprising at least one type of solid material into a high velocity accelerator, where said high velocity accelerator is adapted to impart an increase in the velocity on the materials introduced therein;
      • expanding the volume of the slurry introduced into the high velocity accelerator without diminishing the velocity of the material;
      • entraining said expanded slurry through injection of a liquid at high velocity towards an outlet port located in the high velocity accelerator; and
      • focusing the entrained slurry onto a pre-determined point located proximate the outlet port of the high velocity accelerator.
  • According to a preferred embodiment of the present invention, the high velocity
      • accelerator comprises:
      • an internal chamber;
      • a material inlet port;
      • a material outlet port;
      • a back wall surrounding the inlet port; an internal wall having a first end connected to the back wall and a second opposite end tapering to the outlet port, the first end being located proximate the inlet port and the second end being located proximate the outlet port;
      • a plurality of injection ports positioned along the periphery of the internal wall proximate the first end;
        wherein said inlet port having a diameter smaller than the diameter of the internal chamber, and the injection ports are adapted to inject at a high rate of displacement a gas which, in operation, will create a vortex inside the internal chamber thereby entraining said material towards the outlet port.
  • Preferably, the slurry is prepared using a solvent selected from the group consisting of: water, low boiling solvents, and combinations thereof. Preferably, the slurry is prepared using a water as a solvent.
  • Preferably, said focal point is a shared focal point with a second high velocity accelerator performing substantially the same function from another position.
  • Preferably, said focal point is a shared focal point with a second high velocity accelerator performing substantially the same function from the opposite direction.
  • This preferably accelerates independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
  • Wherein said plurality of injection ports positioned along the periphery of the internal wall of the internal chamber at a position close to the back wall are adapted to inject at a high rate of displacement a fluid which, in operation, will create a vortex inside the chamber thereby entraining said material towards the outlet port. The injection can preferably also imparting a concentric movement to the entrained slurry towards the outlet port of the high velocity accelerator. Preferably, imparting a concentric movement to the entrained slurry is performed by injecting the fluid through the injection ports at angle offset from a straight line between the outlet port and an injection port.
  • Preferably, the method to focus forward momentum of a material allows at least one of the following: increase the velocity of a specific material or a number of specific materials which accelerate independently of other materials; separate solids and/or gaseous materials from gaseous or solid materials; cause the abrasive collision of materials; and impart work energy on a surface to cause directional motion of a body.
  • According to a preferred embodiment of the present invention, the system may comprise further comprise additional optional apparatus which may overcome efficiency losses in processing materials in the described manner and for the described purposes, where the inflow of material composition characteristics may not be consistent and/or where the feed rate, feed pressure and/or feed velocity are not consistent, but where there may be a requirement of the materials which may be processed by the apparatus to continue to be reasonably consistent to the intent of the user.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following drawings form part of the specification and are included to further demonstrate certain embodiments or various aspects of the invention. In some instances, embodiments of the invention can be best understood by referring to the accompanying drawings in combination with the detailed description presented herein. The description and accompanying drawings may highlight a certain specific example, or a certain aspect of the invention. However, one skilled in the art will understand that portions of the example or aspect may be used in combination with other examples or aspects of the invention.
  • FIG. 1 is a schematic of a system set-up of the method according to a preferred embodiment of the present invention;
  • FIG. 2 shows the various material flows in a cross-section view of a dual high velocity accelerators according to a preferred embodiment of the present invention;
  • FIGS. 3a, 3b, 3c and 3d are schematic depictions of four other preferred embodiments of the high velocity accelerator apparatus according to the present invention;
  • FIG. 4 shows a schematic describing the physical changes in the state of certain materials resulting from the use of the apparatus according to a preferred embodiment of the present invention;
  • FIG. 5 is a cross-sectional view of a high velocity accelerator according to a preferred embodiment of the present invention;
  • FIG. 6 shows a potential use of the apparatus according to a preferred embodiment of the present invention for the purposes of describing the physical changes in the state of certain materials resulting from the apparatus; and
  • FIG. 7 illustrates a cross-section of a dual high velocity accelerators according to a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to a preferred embodiment of the present invention, the effectiveness of the process using the apparatus is not dependent on the introduction or use of chemical aids or surfactants, although there may be applications where chemical use is desired to modify a specific intended result.
  • According to a preferred embodiment of the present invention, the system is configured to incorporate the introduction of chemicals as required or desired by the user.
  • According to a preferred embodiment of the present invention, the apparatus comprises one or more additional device including but not limited to:
      • a) eddy current generators used to confine specific materials at the inflow or outflow points of the invention;
      • b) magnetic generators to impart magnetic forces on martials at the inflow or outflow points of the invention; and
      • c) additions to remove moisture vapor from the invention internal chamber.
  • According to a preferred embodiment of the present invention, the system promotes mechanically-induced chemical reactions which assist in the separation of various materials from each other. These chemical reactions may be naturally occurring by mechanical induction and do not produce any substantial negative or by-product based residual effect at any point in the process, or by the end of the process.
  • Variations of embodiments of the invention process can be applied to any number of applications and associated industries.
  • According to a preferred embodiment of the present invention, the configuration of the apparatus can vary to include supportive or additional user required classification and or treatment of materials.
  • According to a preferred embodiment of the present invention, the system and methods are operated as a batch process or a continuous flow-through process. According to another preferred embodiment of the present invention, the system and methods are operated as a continuous flow-through process.
  • According to a preferred embodiment of the present invention, the apparatus can be scaled to suit a required application capacity as defined by the user and has the capacity to operate with no change in effectiveness of process at efficiency ranges of 10% to 100%.
  • According to a preferred embodiment of the present invention, the use of the apparatus can be incorporated at any number of process volume rates and may be incorporated in a permanently located process in any applicable application. According to a preferred embodiment of the present invention, the use of the apparatus can be incorporated at any number of process volume rates and be incorporated in a mobile or semi-mobile process in any applicable application.
  • According to a preferred embodiment of the present invention, one can vaporize a specific percent of a specific liquid and/or a number of liquids, or to vaporize all of a specific liquid or all liquids having a vaporization temperature below a certain level and cause a solid material to flow in suspended state within a vapor which may cause a solid to become infused and/or saturated by a liquid or number of liquids.
  • According to a preferred embodiment of the present invention, one can implement systems and/or methods to minimize the volume of air as related to the volume of other material to prevent an adverse effect on the process, or prevent the desired result of the process.
  • According to a preferred embodiment of the present invention, the user may be required to comprise a system of a consecutive series of apparatuses to accomplish the desired outcome of the process to ensure the efficiency of each component of the desired result of the process.
  • According to a preferred embodiment of the present invention, the apparatus comprises a system to transport material to the apparatus, and the transport of materials may require specific and/or minimum and maximum physical characteristics. The physical characteristics may include, but not be limited to:
      • material density;
      • pressure of material at the apparatus inlet;
      • velocity of the material at the apparatus inlet;
      • volume feed rate of material to the apparatus;
      • temperature of the material mass at the apparatus inlet;
      • percent of entrained and/or dissolved air in the material at the apparatus inlet;
      • viscosity of the material at the apparatus inlet;
      • percent of water comprising a material flow volume at the inlet of the apparatus;
      • a minimum or maximum pressure of the inlet of the injectors of the apparatus;
      • a minimum or maximum temperature at the inlet of the injectors of the apparatus; and
      • a minimum or maximum volume flow rate at the inlet of the injectors of the apparatus.
  • According to a preferred embodiment of the present invention, the process results require specific physical characteristics of the apparatus, including but not limited to:
      • a) a minimum or maximum outflow opening size of the apparatus;
      • b) a minimum or maximum inflow opening size of the apparatus; and/or
      • c) a minimum or maximum internal conical chamber size with specific diameters, horizontal length and/or internal volume.
  • The total energy of the process is the sum of the energy of the inflowing suspended material plus the energy imparted by the creation of high velocity energy streams.
  • The energy of the material leaving the apparatus may be the total sum of the energy of the materials entering the apparatus but less the amount of energy that is lost due to a number of actions undergone in the apparatus which include but are not limited to; expansion loss, thermal transfer loss and friction
  • According to a preferred embodiment of the present invention, the user may adjust a single or a number of physical characteristics of the material which may eliminate and/or reduce the adverse effect of the process as a result of unattainable requirements of another physical characteristic.
  • A person skilled in the art has the knowledge to determine requirements for physical characteristics of the material and if required physical characteristics for the process may be unattainable as well as the knowledge to determine which physical characteristics of the material may eliminate or reduce other unattainable physical characteristics.
  • According to a preferred embodiment of the present invention, materials meeting the minimum and/or maximum physical characteristic allowance for variation, which are transported to the high velocity accelerator may, enter such and, immediately rapidly expand.
  • A non-solid material entering the apparatus and rapidly expanding may lose unrecoverable pressure due to the laws of expansion.
  • The incoming pressure of the material may not increase in pressure as is normally required by the laws of conservation of energy. The incoming material may be imparted with an area of lower pressure which may cause the materials to further expand outwards and further reduce forward velocity while simultaneously reducing in pressure of non-solid materials which may result from an implied constricted flow area as described in FIG. 6. In FIG. 6, the center line of the internal chamber (1) is illustrated. Also, depicted are the maximum vacuum zone (2), the low-pressure zone (3), the zone of maximum compression on outflow (4), the material expansion and deceleration zone (5). The forward motion of the solid material is illustrated as reference character (6), the shockwaves moving out from the point of maximum compression at outflow are illustrated by reference character (7), the flow of light gaseous and vapor material (8), the high turbulence transitions phase state zone (9), material flow eddy currents (10), material velocity at plane (11) and the conical plane of rotational axis are also illustrated in this figure.
  • High velocity accelerator HVA (also referred to as the STERN reactor system)
  • In an implementation of the apparatus according to a preferred embodiment of the present invention as part of a process, a material slurry enters the STERN reactor system (HVA), which induces a state which reduces effects of gravity and friction and generates a highly turbulent flow state of the suspension while simultaneously applying energy to create shear forces and vacuum states which act on the various components of the suspension, which encourages rapid separation of the various components of the suspension.
  • Entry of material into the HVA during operation results in a pressure drop and rapid increase in the velocity of the suspension equally to the medium as a singular mass, but imparts specific and different actions to the individual medium components. As a result, the HVA outputs a high-energy material flow, which assists in maintaining separation as it passes to a subsequent separator or settlement treatment system.
  • The HVA may separate individual materials from each other and flow them forward as a bulk mass however, individual material components will flow as individual masses and at different velocities within the bulk mass. The variation of velocities may be dependent on the temperature, pressure and specific densities of each of the individual materials.
  • FIG. 5 illustrates a lengthwise cross-sectional view of the apparatus according to a preferred embodiment of the present invention. The material inflow pipe (501) is in fluid operational connection with the apparatus' internal apparatus chamber (502). The size and configuration of the internal apparatus chamber (502) is determined by the intended application. There is a pressurized fluid chamber (503) which is in operational fluid connection with the internal chamber (502). There is also an inlet (504) for the pressurized fluid chamber (503), the fittings of which are also determined by the requirements of the intended application. There are high pressure seals (506) found around the internal chamber (502). A gas or air inlet (505) is located in fluid operational connection to the internal apparatus chamber and is used depending on the needs and requirements of the application. The outflow pipe (507) is in fluid operational connection with the internal chamber (502). According to a preferred embodiment, an eddy current or magnetic apparatus may be located at the inflow section (508) of the apparatus. According to another preferred embodiment, an eddy current or magnetic apparatus may be located at the outflow section (509) of the apparatus. The jets (508) are aimed along the conical inner surface to create high velocity streams which collide at the apex (509) of the HVA. In one embodiment, the jets may be aimed slightly tangentially so that the high velocity streams spiral along the inner surface, creating a central vortex in the chamber. By operation of the venturi principle, a low-pressure zone is created in the central volume of the internal chamber of the HVA.
  • Vacuum states may form areas of space within the apparatus which may be void of liquid and/or solid materials such as in areas like, the core of the conical flow and/or in the area above the jet stream and between the jet stream an inner conical surface of the apparatus, as depicted in FIGS. 4 and 5. As a result of the high energy cavitation forces imparted to the system by the high velocity water streams, the particles in suspension will collide with each other, particularly at the apex (9) of the vortex where the particles will have concentrated, as shown schematically in FIG. 4. The collisions occur with sufficient energy to fracture weaker state particles. All particles will undergo surface rounding, increasing the sphericity of the individual particles and the compressive strength of the bulk mass. Individual particles will undergo directional changes, rotational velocity and momentum changes as they accelerate, collide and are compressed in the vortex.
  • As the solid particles are buffeted in the vortex, contaminants, which adhere to the particles' surfaces, are dislodged. As such, contaminants will typically be less dense, they will migrate outwards and move with the liquid mass. Clay particles such as bentonite or other porous and or adherent type contaminants are also dislodged and flow freely in the liquid mass. Slag type materials are also dislodged but may become entrapped in the flow of other solids and can be separated, if desired, in secondary treatments.
  • Generally, components with higher density will concentrate in the center of the vortex, while lighter density components will migrate to the outer zones. Materials that may vaporize in the apparatus process may condense at points of the process where there is an increase in pressure to a point where the state of vacuum is no longer sufficient to maintain the material in a vaporized state.
  • According to a preferred embodiment of the present invention, at some points in the process of using the apparatus the increase in pressure may be sufficient to cause all vaporized liquids to condense. In some cases, materials that vaporize into a gaseous state may not condense as pressure increases. Notwithstanding any theory the conclusion is specific to specific physical characteristics and properties of some materials. At a point where vaporized materials condense, the action will generate an effect commonly referred to by persons skilled in the art, as a “water hammer”. The term “water hammer” is not intended to describe an effect specific to water and may describe different materials condensing. Notwithstanding any theory, it is believed the effect of “water hammer”, occurring at points where there may be a rapid compression and deceleration of materials, may produce either supersonic and/or subsonic shockwaves as depicted in FIG. 6.
  • According to a preferred embodiment of the present invention, the process can generate material velocities which are supersonic.
  • According to a preferred embodiment of the present invention, at a point where all materials in the apparatus process are condensed to a maximum density and at a point where the material is condensed in to the smallest flow area of the process, the total sum of the energy of the process may be imparted on the material in a forward direction. Simultaneously, shockwaves will impart forces on the material consistent with energy disbursement laws and impart forces in both, a forward direction, and away from the condensed material.
  • According to a preferred embodiment of the present invention, where the material is condensed to a maximum density within the process, is the outflow point of the material from the apparatus, the forces imparting on the material may transport the materials forward in a spiral motion. Preferably, materials in the process which remain in a vaporized state may expand outwardly. Preferably also, materials in the process which are liquid and emulsified with dissolved air and/or other gaseous may expand outwardly at a rate consistent with the laws of expanding fluids and fluids with dissolved air and/or gases.
  • Solid materials in the materials which are condensed may have forces imparted onto the materials which propel the material forward in a spiral motion and at a velocity which may not be consistent with liquid or vapor components of the material as described in FIG. 4. Material components which may be able to disburse imparted forces may not propel forward at velocities consistent with materials which may not disburse imparted forces at the same values. Notwithstanding any theory, it is believed materials which are propelled forward at lower velocities than other materials will be imparted by centripetal forces to a greater degree than materials with more forward velocity such as solid materials. Materials moving forward at lower velocities and imparted by centripetal forces to a greater degree may continue to expand outwardly and rapidly decrease in forward velocity.
  • According to the preferred embodiment illustrated in FIG. 5, the inlet pipe (501) leads to an inlet transition zone where the internal diameter of the reactor increases and liquid and/or semi liquid states begin to vaporize and, in some cases, to completely vaporize. It is understood that the inlet pipe may protrude into the reactor chamber according to an embodiment of the present invention, without departing from the person skilled in the art's understanding that the back wall surrounds the inlet port.
  • As illustrated in FIG. 4, when the suspension enters the inlet transition zone, it rapidly decelerates with a resultant increase in pressure and coinciding loss of pressure due to expansion of liquid materials. It is then very rapidly accelerated by the action of the high velocity water streams towards the apex (411). Thus, the suspended material is displaced into the apex by the action of the high velocity streams. Shear forces are focused at the apex (411) of the vortex and act on the solids which are concentrated there. The inventors surmise that, at an ideal point of maximum material compression or at an ideal point of expansion of the material after the point of maximum material compression, the material may have the required amount of energy imparted on a substance or body to cause displacement through a conserved level of work power and the imparted work power may be sufficient to propel and/or move a body or object in a forward direction, and/or propel and/or move the apparatus in the opposite direction of the material leaving the apparatus.
  • The HVA does not create cyclonic separation. In fact, in conventional cyclonic separation, denser material is accelerated by centrifugal force to the periphery, while lighter material collects in the center. In the HVA, the centrifugal forces are overcome and concentrate the denser materials towards the center of the flow and the center of the apex due to an internal vacuum state. Immediately upon entering the HVA chamber, the materials will experience a rapid deceleration, followed by rapid acceleration towards the apex, as the material is sucked into the vortex by the outer low-pressure region created by the high velocity water jets. Upon entry into the lower pressure area of the reaction chamber, the reduced pressure may reduce the friction of the layered flow, producing a highly unstable but directional flow pattern characteristic of a cavitational flow profile.
  • According to a preferred embodiment of the present invention, material flow patterns may be manipulated with the introduction of an electric and/or magnetic fields generated at the inlet of the chamber with an electromagnet and a rotating ferrous plate. These electric or magnetic fields may encourage a more parallel flow conducive of laminar flow and/or segregation of ferrous materials in the material.
  • The total energy of the system in the HVA is the sum of the energy of the inflowing suspended material plus the energy imparted by the creation of high velocity water streams. The energy results in a significantly increased velocity of the suspended material, as well as an increase in energy of the solid particles carried in the flowing liquid carrier. Without restriction to a theory, it is believed that the significant energy of the system results in physical actions on the suspended material which results in separation of liquids clinging to the surface of the particles, degasification of liquids, particle size reduction and rounding to due fracturing and abrasive collisions, as may be seen schematically in FIG. 4.
  • Notwithstanding any theory, it is believed the effect of “water hammer”, occurring at points where there may be a rapid compression and deceleration of materials, may produce either supersonic and/or subsonic shockwaves as depicted in FIG. 6.
  • At a point where all materials in the apparatus process may be condensed to a maximum density and at a point where the material is condensed in to the smallest flow area of the process, the total sum of the energy of the process may be imparted on the material in a forward direction. Simultaneously, shockwaves may impart forces on the material consistent with energy disbursement laws and impart forces in both, a forward direction, and away from the condensed material.
  • In an embodiment of the invention where the material is condensed to a maximum density within the process, is the outflow point of the material from the apparatus, the forces imparting on the material may transport the materials forward in a spiral motion at a velocity which is greater than before being processed through the apparatus.
  • Materials in the process which vapors, gaseous or air may expand outwardly in open atmosphere and/or into an area of containment which is larger than the outflow opening of the apparatus.
  • Materials in the process which may be liquid and emulsified with dissolved air and/or other gaseous may expand outwardly at a rate consistent with the laws of expanding fluids and fluids with dissolved air and/or gases in open atmosphere and/or into an area of containment which is larger than the outflow opening of the apparatus.
  • Solid materials present in the slurry which may be condensed may be imparted by forces which propel the solid material forward in a spiral motion and at a velocity which may not be consistent with other components comprising of the material as described in FIG. 4.
  • Material components which may be able to disburse imparted forces may not propel forward at velocities consistent with materials which may not disburse imparted forces at the same values.
  • Notwithstanding any theory, it is believed materials which may be propelled forward at lower velocities than other materials may be imparted by centripetal forces to a greater degree than materials with more forward velocity and/or solid materials.
  • Materials moving forward at lower velocities and imparted by centripetal forces to a greater degree may continue to expand outwardly and rapidly decrease in forward velocity while simultaneously loosing pressure.
  • It is believed by the inventor, at an ideal point of maximum material compression or at an ideal point of expansion of the material after the point of maximum material compression, the material may have the required amount of energy imparting on a solid material on a surface or opposing solid material may cause the solid materials to break into smaller sizes and/or collide with a surface in an abrasive manner.
  • In one embodiment of the invention, a material which is transported to the apparatus may accelerate from 0.05 m/s to 461 m/s in a horizontal distance along the rotational axis of a conical flow stream and cause a rapid pressure depression which may create a vacuum state.
  • Outflow characteristic of the materials considered in one embodiment of the invention may provide benefits to the user and provide opportunities for effective a solid material component to separate or be freed from other solid material components as described in FIG. 2 and FIG. 4.
  • According to a preferred embodiment of the present invention, the conical form of the rotational axis may be established at specific angles of decline and compounded angles of decline and may create a low-pressure stream along a rotational axis of the conical plane.
  • According to a preferred embodiment of the present invention, the specific angles, rotational distance, rotational axis, velocity, pressure, material type, material temperature and material volume flow rate of injector material, may be determined by a person skilled in the art to provide the energy required to impart the desired process result with consideration to the process material physical characteristics and properties.
  • Definitions and Interpretation
  • The description of the present invention has been presented for purposes of illustration and description, but it is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations may be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Embodiments were chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as may be suited to the particular use contemplated. To the extent that the following description is of a specific embodiment or a particular use of the invention, it is intended to be illustrative only, and not limiting of the claimed invention.
  • The corresponding structures, materials, acts, and equivalents of all means or steps plus function elements in the claims appended to this specification may be intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed.
  • References in the specification to “one embodiment”, “an embodiment”, etc., indicate that the embodiment described may include a particular aspect, feature, structure, or characteristic, but not every embodiment necessarily includes that aspect, feature, structure, or characteristic. Moreover, such phrases may, but do not necessarily, refer to the same embodiment referred to in other portions of the specification. Further, when a particular aspect, feature, structure, or characteristic is described in connection with an embodiment, it is within the knowledge of one skilled in the art to combine, affect or connect such aspect, feature, structure, or characteristic with other embodiments, whether or not such connection or combination is explicitly described. In other words, any element or feature may be combined with any other element or feature in different embodiments, unless there is an obvious or inherent incompatibility between the two, or it is specifically excluded.
  • It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for the use of exclusive terminology, such as “solely,” “only,” and the like, in connection with the recitation of claim elements or use of a “negative” limitation. The terms “preferably,” “preferred,” “prefer,” “optionally,” “may,” and similar terms are used to indicate that an item, condition or step being referred to is an optional (not required) feature of the invention.
  • The singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. The term “and/or” means any one of the items, any combination of the items, or all of the items with which this term is associated.
  • As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges recited herein also encompass any and all possible sub-ranges and combinations of sub-ranges thereof, as well as the individual values making up the range, particularly integer values. A recited range (e.g., weight percent or carbon groups) includes each specific value, integer, decimal, or identity within the range. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, or tenths. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc.
  • As will also be understood by one skilled in the art, all language such as “up to”, “at least”, “greater than”, “less than”, “more than”, “or more”, and the like, include the number recited, and such terms refer to ranges that can be subsequently broken down into sub-ranges as discussed above. In the same manner, all ratios recited herein also include all sub-ratios falling within the broader ratio.

Claims (10)

What is claimed is:
1. A method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials, said method comprising the steps of:
introducing a slurry of material into a high velocity accelerator, where said high velocity accelerator is adapted to impart an increase in the velocity on the materials introduced therein;
expanding the volume of the slurry introduced into the high velocity accelerator without diminishing the velocity of the material;
entraining said expanded slurry through injection of a liquid at high velocity towards an outlet port located in the high velocity accelerator; and
focusing the entrained slurry onto a pre-determined point located proximate the outlet port of the high velocity accelerator.
2. The method according to claim 1, wherein the step of entraining the expanded slurry further comprises imparting a concentric movement to the entrained slurry towards the outlet port of the high velocity accelerator.
3. The method according to claim 2, wherein the imparting a concentric movement to the entrained slurry is performed by injecting the fluid through the injection ports at angle offset from a straight line between the outlet port and an injection port.
4. A method to focus forward momentum of a material increase the velocity of a specific material or a number of specific materials which accelerates independently of other materials, separate solids and/or gaseous materials from gaseous or solid materials, cause the abrasive collision of materials, impart work energy on a surface to cause directional motion of a body.
5. A method to accelerate the velocity of a solid material, said method comprising the steps of:
introducing a slurry of comprising at least one type of solid material into a high velocity accelerator, where said high velocity accelerator is adapted to impart an increase in the velocity on the materials introduced therein;
expanding the volume of the slurry introduced into the high velocity accelerator without diminishing the velocity of the material;
entraining said expanded slurry through injection of a liquid at high velocity towards an outlet port located in the high velocity accelerator; and
focusing the entrained slurry onto a pre-determined point located proximate the outlet port of the high velocity accelerator.
6. The method according to claim 1, wherein the high velocity accelerator comprises:
an internal chamber;
a material inlet port;
a material outlet port;
a back wall surrounding the inlet port; an internal wall having a first end connected to the back wall and a second opposite end tapering to the outlet port, the first end being located proximate the inlet port and the second end being located proximate the outlet port;
a plurality of injection ports positioned along the periphery of the internal wall proximate the first end;
wherein said inlet port having a diameter smaller than the diameter of the internal chamber, and the injection ports are adapted to inject at a high rate of displacement a gas which, in operation, will create a vortex inside the internal chamber thereby entraining said material towards the outlet port.
7. The method according to claim 1, wherein the slurry is prepared using a solvent selected from the group consisting of: water, low boiling solvents, and combinations thereof.
8. The method according to claim 1, wherein the slurry is prepared using a water as a solvent.
9. The method according to claim 7, wherein said focal point is a shared focal point with a second high velocity accelerator performing substantially the same function from another position.
10. The method according to claim 7, wherein said focal point is a shared focal point with a second high velocity accelerator performing substantially the same function from the opposite direction.
US16/153,434 2017-10-06 2018-10-05 Apparatus to accelerate non-liquid materials in a spiraling forward direction Abandoned US20190118188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/153,434 US20190118188A1 (en) 2017-10-06 2018-10-05 Apparatus to accelerate non-liquid materials in a spiraling forward direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762569280P 2017-10-06 2017-10-06
US16/153,434 US20190118188A1 (en) 2017-10-06 2018-10-05 Apparatus to accelerate non-liquid materials in a spiraling forward direction

Publications (1)

Publication Number Publication Date
US20190118188A1 true US20190118188A1 (en) 2019-04-25

Family

ID=65992250

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/153,419 Abandoned US20190105661A1 (en) 2017-10-06 2018-10-05 Apparatus for the controlled rapid expansion and acceleration of an aqueous solution
US16/153,434 Abandoned US20190118188A1 (en) 2017-10-06 2018-10-05 Apparatus to accelerate non-liquid materials in a spiraling forward direction
US16/153,444 Abandoned US20190105662A1 (en) 2017-10-06 2018-10-05 System for pulverization of solid materials and/or separation of dissimilar solid materials
US16/153,439 Active 2039-07-02 US11198133B2 (en) 2017-10-06 2018-10-05 System for separation of viscous materials from solids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/153,419 Abandoned US20190105661A1 (en) 2017-10-06 2018-10-05 Apparatus for the controlled rapid expansion and acceleration of an aqueous solution

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/153,444 Abandoned US20190105662A1 (en) 2017-10-06 2018-10-05 System for pulverization of solid materials and/or separation of dissimilar solid materials
US16/153,439 Active 2039-07-02 US11198133B2 (en) 2017-10-06 2018-10-05 System for separation of viscous materials from solids

Country Status (5)

Country Link
US (4) US20190105661A1 (en)
EP (2) EP3692265A4 (en)
AU (1) AU2018344176A1 (en)
CA (3) CA3020032A1 (en)
WO (4) WO2019068168A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198133B2 (en) * 2017-10-06 2021-12-14 Stitech Industries Inc System for separation of viscous materials from solids

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114015A (en) * 2019-01-09 2021-09-17 씨티엘 에너지 아이엔씨. Method and system of jet milling
CN111167578B (en) * 2020-02-28 2020-10-13 江苏仁康蛋业有限公司 Be used for kibbling fluid energy mill of eggshell
CN111790682B (en) * 2020-06-30 2022-06-28 鹰潭拓新机电股份有限公司 Mould part belt cleaning device
CN113680101B (en) * 2021-08-25 2022-09-27 延边大学 Efficient extraction device and process for flower of Hibiscus manihot (Linn.) Merr serving as food and medicine homologous plant
CN114100804B (en) * 2021-11-30 2022-08-26 黑龙江中医药大学 Be used for adjustable fineness grinder of traditional chinese medicine pharmacy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316222A (en) * 1989-08-30 1994-05-31 Canon Kabushiki Kaisha Collision type gas current pulverizer and method for pulverizing powders
US6283833B1 (en) * 1997-07-11 2001-09-04 Flow International Corporation Method and apparatus for producing a high-velocity particle stream
US20120037736A1 (en) * 2004-07-09 2012-02-16 Sunrex Kogyo Co., Ltd. Jet mill

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2846150A (en) * 1955-09-29 1958-08-05 Texaco Development Corp Fluid energy grinding
GB1356573A (en) * 1970-06-05 1974-06-12 Agfa Gevaert Removal of dissolved products from a precipitate
US4186772A (en) * 1977-05-31 1980-02-05 Handleman Avrom Ringle Eductor-mixer system
US5695130A (en) * 1992-07-01 1997-12-09 Csendes; Ernest Method and apparatus for the dry grinding of solids
US6082548A (en) * 1996-09-13 2000-07-04 Chemtech Analysis Inc. Mobile soil treatment apparatus and method
US6024227A (en) * 1997-08-04 2000-02-15 Ahlstrom Machinery Inc. Tramp material removal from pulp feed systems
US6712215B2 (en) * 2000-07-28 2004-03-30 Adolf Frederik Scheybeler Method and apparatus for recovery of lost diluent in oil sands extraction tailings
MXPA04000122A (en) * 2001-06-25 2005-06-06 Dwain E Morse System and method for removing contaminants from liquid.
JP2004216258A (en) * 2003-01-14 2004-08-05 Hitachi Constr Mach Co Ltd Treatment system for oil-contaminated soil, treatment device and treatment method
US7416671B2 (en) * 2004-07-21 2008-08-26 Rj Oil Sands Inc. Separation and recovery of bitumen oil from tar sands
DE102007017318B4 (en) * 2007-04-11 2014-07-31 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Method for hydrodynamically focusing a fluid flow and arrangement
DE102008015042A1 (en) * 2008-03-14 2009-09-17 Dürr Ecoclean GmbH Device and method for deburring and / or cleaning a workpiece immersed in a liquid medium
CA2736760C (en) * 2008-09-25 2018-10-30 Sno Tek P/L Flat jet fluid nozzles with adjustable droplet size including fixed or variable spray angle
PE20130762A1 (en) * 2009-11-11 2013-06-27 Basf Se PROCEDURE FOR CONCENTRATING COMPONENTS SEPARATED BY MAGNETIC VIA OF MINERAL SUSPENSIONS AND FOR EXPULSING SUCH COMPONENTS FROM A MAGNETIC SEPARATOR WITH FEW LOSSES
US8646705B2 (en) * 2011-09-15 2014-02-11 Ablation Technologies, Llc Devices, systems, and methods for processing heterogeneous materials
EP2581021B1 (en) * 2011-10-12 2019-10-02 Black & Decker Inc. Cyclonic separation apparatus
WO2014017208A1 (en) * 2012-07-24 2014-01-30 学校法人福岡大学 Fluid transportation device and fluid transportation method
US9618263B2 (en) * 2012-12-14 2017-04-11 Flash Rockwell Technologies, Llc Non-thermal drying systems with vacuum throttle flash generators and processing vessels
US9868595B1 (en) * 2013-05-20 2018-01-16 James A. Scruggs Vortex effect production device and method of improved transport of materials through a tube, pipe, and/or cylinder structure
JP5712322B1 (en) * 2013-12-25 2015-05-07 中越パルプ工業株式会社 Nano refined product manufacturing apparatus, nano refined product manufacturing method
LU92916B1 (en) * 2015-12-17 2017-07-13 Wurth Paul Sa Grinding and drying plant
US10717088B2 (en) * 2016-02-22 2020-07-21 Oleksandr Galaka Multifunctional hydrodynamic vortex reactor
AU2018344176A1 (en) * 2017-10-06 2020-05-21 Stitech Industries Inc. Apparatus to accelerate non-liquid materials in a spiraling forward direction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316222A (en) * 1989-08-30 1994-05-31 Canon Kabushiki Kaisha Collision type gas current pulverizer and method for pulverizing powders
US6283833B1 (en) * 1997-07-11 2001-09-04 Flow International Corporation Method and apparatus for producing a high-velocity particle stream
US20120037736A1 (en) * 2004-07-09 2012-02-16 Sunrex Kogyo Co., Ltd. Jet mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198133B2 (en) * 2017-10-06 2021-12-14 Stitech Industries Inc System for separation of viscous materials from solids

Also Published As

Publication number Publication date
CA3020021A1 (en) 2019-04-06
CA3020032A1 (en) 2019-04-06
EP3692266A1 (en) 2020-08-12
AU2018344176A1 (en) 2020-05-21
CA3020025A1 (en) 2019-04-06
EP3692266A4 (en) 2021-08-18
US11198133B2 (en) 2021-12-14
WO2019068170A1 (en) 2019-04-11
US20190105662A1 (en) 2019-04-11
US20190105661A1 (en) 2019-04-11
WO2019068171A1 (en) 2019-04-11
EP3692265A4 (en) 2021-08-18
EP3692265A1 (en) 2020-08-12
US20190105664A1 (en) 2019-04-11
WO2019068169A1 (en) 2019-04-11
WO2019068168A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US20190118188A1 (en) Apparatus to accelerate non-liquid materials in a spiraling forward direction
US7897121B1 (en) Hughes molecular mixer and catalytic reactor
CA2654511C (en) Cyclonic liquid degassing separator and method for degassing a fluid mixture
WO2018100553A1 (en) Apparatus and method for producing and dispersing nano-sized structures
JP2017525565A5 (en)
TW201228939A (en) Thermal desalination using breaking jet flash vaporisation
US6544347B2 (en) Methods for using a ring-vortex
CA3020029A1 (en) Apparatus for the controlled rapid expansion and acceleration of an aqueous solution
US8388814B2 (en) Method and apparatus for the treatment of dispersed material
Altam et al. Trends in Supersonic Separator design development
CN111344067B (en) Multi-blade ultrasonic gas nozzle for liquid bubbling
CN108176198B (en) Waste gas-absorption liquid premixed multi-tangential jet absorption device and method
New et al. Cross-stream radial fluid injection into a round jet
Yan et al. Study on Evaporating Characteristics of a Coaxial Two Impinging‐Stream Concentrator
Gonçalves et al. Study of the Influence of the Underflow Diameter on the Separation Process of an Optimized Hydrocyclone for Concentration Purposes
Ahmed et al. Numerical simulation of abrasive water jet for different taper inlet angles
RU2033264C1 (en) Jet mill
Klimov et al. Dispersed phase breakup at emulsion boiling
CN115708969A (en) Dissolved gas removing device and method
Yang Gas-liquid mass transfer in rotating perforated-disc contactors
Li et al. Research on the optimization design of supersonic swirling separator

Legal Events

Date Code Title Description
AS Assignment

Owner name: STITECH INDUSTRIES INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARRISON, JAMES;REEL/FRAME:047870/0967

Effective date: 20181218

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION