US20190072643A1 - Directional radar transmitting and receiving devices - Google Patents

Directional radar transmitting and receiving devices Download PDF

Info

Publication number
US20190072643A1
US20190072643A1 US16/119,662 US201816119662A US2019072643A1 US 20190072643 A1 US20190072643 A1 US 20190072643A1 US 201816119662 A US201816119662 A US 201816119662A US 2019072643 A1 US2019072643 A1 US 2019072643A1
Authority
US
United States
Prior art keywords
wire
circuit board
sensor circuit
face
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/119,662
Inventor
Bo Gao
Xiao Xiong Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardenia Ind Ltd
Original Assignee
Gardenia Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721111845.3U external-priority patent/CN207263917U/en
Priority claimed from CN201710875131.8A external-priority patent/CN107765223B/en
Application filed by Gardenia Ind Ltd filed Critical Gardenia Ind Ltd
Assigned to GARDENIA INDUSTRIAL LIMITED reassignment GARDENIA INDUSTRIAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAO, BO, LIU, XIAO XIONG
Publication of US20190072643A1 publication Critical patent/US20190072643A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • Conventional radar transmitting and receiving devices utilize non-directional or omnidirectional transmitting.
  • conventional radar is susceptible to errors, such as false triggering and false operation, especially when such conventional radar transmitting and receiving techniques are used to trigger a switch to control electrical appliances.
  • two adjacent rooms that were both equipped with switches that utilize non-directional or omnidirectional radar transmitting often both light up when someone enters just one of the rooms. This is because when the radar detector in one room senses the person entering the room and triggers the switch to activate the light, the radar detector in the next room would also be triggered falsely, thus activating the light in the next room, causing the next room to be illuminated, even though there was no motion in the next room.
  • comparative directional radar transmitting and receiving devices are not sufficiently robust when transmitting and receiving signals. Thus, the use of the comparative available switch controls that utilize directional radar transmitting and receiving is limited due to these technical issues.
  • aspects of embodiments of the present invention relate to a directional radar transmitting and receiving device that transmits and receives radar signals, avoids false triggering, and provides stability and adapts to different environments.
  • the directional radar transmitting and receiving device includes a sensor circuit board.
  • the sensor circuit board includes an integrated microwave oscillator with a first wire mounted on a first face of the sensor circuit board.
  • the first wire may be configured to operate as an integrated transmitting antenna configured to transmit a high-frequency microwave signal.
  • the sensor circuit board includes a second wire mounted on the first face of the sensor circuit board.
  • the second wire may be configured to operate as an integrated receiving antenna configured to receive a frequency-shifted signal, which is a reflection of the high-frequency microwave signal transmitted by the integrated transmitting antenna.
  • the device further includes a main control board.
  • the main control board is mounted facing a second face of the sensor circuit board which is opposite the first face of the sensor circuit board, the main control board being configured to supply the high-frequency microwave signal to the first wire and to process the frequency-shifted signal received by the second wire.
  • the sensor circuit board is provided with a plurality of first recesses distributed at intervals along the first wire. In some aspects, a plurality of first pillars is embedded in the plurality of first recesses, where the first wire electrically connects the first pillars. In some embodiments, the sensor circuit board is provided with a plurality of second recesses distributed at intervals along the second wire. In some embodiments, a plurality of second pillars is embedded in the second recesses, where the second wire electrically connects the second pillars.
  • the first wire is laid along the edge of the sensor circuit board. In some aspects, the first wire is laid along the edge of the sensor circuit board to form a closed loop. In some embodiments, the first wire is in a shape of a frame.
  • the second wire is located in the middle of the sensor circuit board. In some embodiments, the second wire is surrounded by the first wire to form a closed loop. In some embodiments, the second wire is in an S-shaped layout. In some embodiments, the second wire is in a U-shaped layout.
  • the device includes a shielding board that is mounted facing the second face of the sensor circuit board, In some aspects, the shielding board is configured to direct the high-frequency microwave signal transmitted by the transmitting antenna and to direct the reflected frequency-shifted signal to the receiving antenna.
  • the main control board includes a power supply circuit, a signal amplifier, a main control chip and a switch.
  • FIG. 1 is a plan view of a radar transmitting and receiving device according to one embodiment of the present invention.
  • FIG. 2 is a sectional view of the radar transmitting and receiving device of FIG. 1 along the line B-B.
  • FIG. 3 is a sectional view of the radar transmitting and receiving device of FIG. 1 along the line C-C.
  • FIG. 4 is an exploded view of a radar transmitting and receiving device according to one embodiment of the present invention.
  • FIG. 5 is a perspective view of transmitting antenna and receiving antenna portions of a radar transmitting and receiving device according to one embodiment of the present invention.
  • FIG. 6 is a circuit block diagram of a sensor circuit board according to one embodiment of the present invention.
  • FIG. 7 is a circuit block diagram of a main control board according to one embodiment of the present invention.
  • the device includes a sensor circuit board integrated with a microwave oscillator, a transmitting antenna and a receiving antenna.
  • the sensor circuit board includes a first copper wire and a second copper wire as transmitting antenna and receiving antenna, respectively.
  • the transmitting antenna transmits a high-frequency microwave signal, while the receiving antenna receives the frequency-shifted reflection of the transmitted microwave signal.
  • a shielding board is mounted on or facing one face of the sensor circuit board, wherein the shielding board and the transmitting antenna/receiving antenna are on the two faces (e.g., opposite faces, such as the top and bottom faces with respect to the orientation shown in FIG. 4 , although embodiments of the present invention are not limited to any particular orientation of the structure—for example, if the structure were rotated such that the planes extended in a vertical direction, the faces may be referred to left and right faces, furthermore, the top and bottom faces may also be referred to as the top and bottom sides) of the sensor circuit board.
  • the shielding board is made of metal and directs the transmitting antenna to make directional the transmitting of high-frequency microwave signals, and directs the receiving antenna to make directional the receiving of the frequency-shifted signal reflected back.
  • the sensor circuit board is provided with a plurality of first recesses (e.g., indentations) distributed at intervals along the first copper wire of the transmitting antenna.
  • a plurality of first copper pillars (or electrically conductive protrusions) are embedded in the first recesses.
  • the first copper wire electrically connects these first copper pillars so that the first copper wire and these first copper pillars are combined to improve the high-frequency microwave signal transmitting of the transmitting antenna.
  • the sensor circuit board is provided with a plurality of second recesses distributed at intervals along the second copper wire of the receiving antenna.
  • a plurality of second copper pillars (or electrically conductive protrusions) are embedded in the second recesses.
  • the second copper wire electrically connects these second copper pillars so that the second copper wire and these second copper pillars are combined to make the receiving antenna have a strengthened receiving of the frequency-shifted signal reflected back.
  • a first copper wire that is being used as the transmitting antenna is laid along the edge of the sensor circuit board to form a closed loop, wherein the first copper wire is in a shape of frame or rectangle.
  • the second copper wire of the receiving antenna is in an S-shaped layout or in a U-shaped layout, located in the middle of the sensor circuit board, wherein the second copper wire is surrounded by the first copper wire forming a closed loop.
  • a main control board is mounted facing the second face of the sensor circuit board, and the main control board and the sensor circuit board are located facing the same face of the shielding board.
  • a non-conductive film is mounted on a face of the shielding board facing the main control board, and, in some embodiments, the non-conductive film contacts the main control board.
  • the main control board is arranged with a power supply circuit, a signal amplifying circuit, a main control chip (e.g., a microcontroller) and a switch circuit.
  • the directional radar transmitting and receiving device includes a sensor circuit board 1 integrated with a microwave oscillator 8 , a transmitting antenna 9 , and a receiving antenna 10 .
  • a first copper wire 2 and a second copper wire 3 are laid on the sensor circuit board 1 and used as the transmitting antenna 9 and the receiving antenna 10 respectively.
  • the transmitting antenna 9 is configured to transmit a high-frequency microwave signal into an environment (e.g., a room), while the receiving antenna 10 receives the high-frequency microwave signal as reflected back from the environment.
  • a shielding board 4 is mounted facing one face of the sensor circuit board 1 .
  • the shielding board 4 and the transmitting antenna/receiving antenna are on the two (e.g., opposite) faces of the sensor circuit board 1 (e.g., the top and bottom faces or top and bottom sides, with respect to the orientation shown in FIG. 4 , although embodiments of the present invention are not limited to any particular orientation of the structure—for example, if the structure were rotated such that the planes extended in a vertical direction, the faces may be referred to left and right faces), wherein the shielding board 4 includes metal and directs the transmitting antenna 9 to transmit directional high-frequency microwave signals (e.g., by reflecting signals emitted by the transmitting antenna 9 ).
  • the transmitting antenna and receiving antenna are on a first face of the sensor circuit board and the shielding board 4 faces a second face of the sensor circuit board, the second face being opposite the first face.
  • the shielding board 4 directs the receiving antenna 10 to receive the frequency-shifted signals that are reflected back.
  • a first copper wire 2 and a second copper wire 3 are laid on the sensor circuit board 1 (e.g., the first face of the sensor circuit board) and used as the transmitting antenna 9 and the receiving antenna 10 respectively.
  • the transmitting antenna 9 transmits the high-frequency microwave signal, while the receiving antenna 10 receives the frequency-shifted signal reflected back by the transmitted microwave.
  • a shielding board 4 is mounted on one face of the sensor circuit board 1 .
  • the shielding board 4 and the first copper wire 2 and the second copper wire 3 are on the two opposite faces of the sensor circuit board 1 .
  • the first copper wire 2 and the second copper wire 3 are used as the transmitting antenna 9 and the receiving antenna 10 respectively.
  • the shielding board 4 directs the signals emitted by the transmitting antenna 9 to form directional high-frequency microwave signals (e.g., a directional antenna pattern).
  • the shielding board 4 reflects high-frequency microwave signals to create a directional receiving antenna, improving or optimizing the use of directional transmitting and directional receiving of radar signals, reducing or avoiding false triggering, improving stability, and adapting to many kinds of application environments.
  • the sensor circuit board 1 is provided with a plurality of first recesses 11 distributed at intervals along a first copper wire 2 of the transmitting antenna 9 (e.g., along the edges of the board, where the first copper wire 2 is disposed).
  • a plurality of first copper pillars 5 is embedded in the first recesses 11 .
  • the first copper wire 2 electrically connects these first copper pillars 5 so that the first copper wire 2 and these first copper pillars 5 are combined to improve the high-frequency microwave signal transmitting efficiency of the transmitting antenna 9 .
  • the sensor circuit board 1 as described above is further provided with a plurality of second recesses 12 distributed at intervals along a second copper wire 3 of the receiving antenna 10 (e.g., in a central portion of the sensor circuit board 1 , where the second copper wire 3 is disposed).
  • a plurality of second copper pillars 6 is embedded in the second recesses 12 , wherein the second copper wire 3 electrically connects these second copper pillars 6 .
  • the second copper wire 3 and the second copper pillars 6 are combined so that the receiving antenna 10 has a strengthened receiving of the frequency-shifted signal reflected back.
  • the length of the transmitting antenna 9 at the edge of the sensor circuit board 1 may be elongated to broaden the transmitting antenna coverage.
  • the length of the S-shaped (or U-shaped) receiving antenna 10 is extended to increase its sensitivity and coverage.
  • a protruded first copper wire 5 and a protruded second copper wire 6 are arranged on the transmitting antenna at the edge of the sensor circuit board 1 and on the S-shaped (or U-shaped) receiving antenna 10 respectively to provide robust transmitting and receiving signals.
  • a main control board 7 is mounted on one face of the shielding board 4 , where the main control board 7 faces the second face of the sensor circuit board 1 (e.g., the face opposite the face on which the first copper wire 2 and the second copper wire 3 are located).
  • the shielding board 4 may be made of metal and may include a non-conductive film mounted on a face of the shielding board facing (e.g., in contact with) the main control board 7 .
  • the main control board 7 is between the shielding board 4 and the sensor circuit board 1 .
  • the shielding board 4 is between the main circuit board 7 and the sensor circuit board 1 .
  • the sensor circuit board 1 is provided with a plurality of second recesses 12 distributed at intervals along the second copper wire 3 of the receiving antenna 10 .
  • a plurality of second copper pillars 6 are embedded in the second recesses 12 .
  • a second copper wire 3 electrically connects the second copper pillars 6 so that the second copper wire 3 and the second copper pillars 6 are combined to improve the sensitivity of the receiving antenna in detecting the frequency-shifted signals that are reflected back (e.g., from the environment, such as a room).
  • a first copper wire 2 used as the transmitting antenna 9 is laid along the edge of the sensor circuit board 1 to form a closed loop.
  • the second copper wire 3 is in a shape of a frame or border.
  • the second copper wire 3 of the receiving antenna 10 is located in the middle of the sensor circuit board 1 (e.g., in a central portion of the sensor circuit board 1 , away from the edges).
  • the second copper wire 3 is surrounded by first copper wire 2 forming a closed loop, and the second copper wire 3 is in a S-shaped layout or in a U-shaped layout. This arrangement results in stronger transmitting signals and increased sensitivity when receiving radar signals.
  • a main control board 7 is mounted on one face of the shielding board 4 , with a non-conductive film of the shielding board 4 facing the main control board.
  • the main control board 7 and the sensor circuit board 1 face (or are on) the same face (or side) of the shielding board 4 .
  • a power supply circuit 15 a signal amplifying circuit 16 , a main control chip 17 and a switch circuit 19 are arranged on the main control board 7 .
  • the signal amplifying circuit 16 is configured to amplify an output signal from the sensor circuit board 1 (e.g., from the receiving antenna 10 ).
  • the amplified signal is supplied to the main control chip 17 , which is configured to control the switch circuit 19 based on the output signal from the sensor circuit board 1 (e.g., to close or connect a switch of the switch circuit 19 when the frequency shifted signal is detected and to open or disconnect the switch when the frequency shifted signal is no longer detected).
  • the switch 19 is closed, power is supplied to one or more load appliances 18 , e.g., from AC mains.
  • a high-frequency microwave signal of about 5.8 GHz is transmitted by the microwave oscillator of the sensor circuit board 1 and is transmitted out into an environment (e.g., a room) by the transmitting antenna 9 (a combination of first copper wire 2 and first copper pillars 5 ) distributed around the sensor circuit board 1 (e.g., located at the edges of the sensor circuit board).
  • the S-shaped (or U-shaped) receiving antenna 10 receives the frequency-shifted signal reflection of the transmitted microwave due to triggering events, such as the movement of humans, cars and other large objects in the environment.
  • the signal is output to the signal amplifying circuit and then is connected to the main control chip for analysis.
  • the main control board 7 controls the operation of the switch circuit, so as to control the turning on of the load appliances.

Abstract

A device for directional radar transmitting and receiving includes a sensor circuit board, including: an integrated microwave oscillator; a first wire mounted on a first face of the sensor circuit board, the first wire being configured to transmit a high-frequency microwave signal, and a second wire mounted on the first face of the sensor circuit board, the second wire being configured to receive a frequency-shifted signal, wherein the frequency-shifted signal is a reflection of the high-frequency microwave signal transmitted by the integrated transmitting antenna; and a main control board mounted facing a second face of the sensor circuit board, the second face of the sensor circuit board being opposite the first face of the sensor circuit board, the main control board being configured to supply the high-frequency microwave signal to the first wire and to process the frequency-shifted signal received by the second wire.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims priority to Chinese Utility Model Patent Application No. 201721111845.3, filed on Sep. 1, 2017 in the State Intellectual Property Office of the People's Republic of China and Chinese Patent Application No. 201710875131.8, filed on Sep. 25, 2017 in the State Intellectual Property Office of the People's Republic of China, the disclosures of which are hereby incorporated by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • Conventional radar transmitting and receiving devices utilize non-directional or omnidirectional transmitting. However, conventional radar is susceptible to errors, such as false triggering and false operation, especially when such conventional radar transmitting and receiving techniques are used to trigger a switch to control electrical appliances. For example, in the context of controlling lights, two adjacent rooms that were both equipped with switches that utilize non-directional or omnidirectional radar transmitting often both light up when someone enters just one of the rooms. This is because when the radar detector in one room senses the person entering the room and triggers the switch to activate the light, the radar detector in the next room would also be triggered falsely, thus activating the light in the next room, causing the next room to be illuminated, even though there was no motion in the next room. Additionally, comparative directional radar transmitting and receiving devices are not sufficiently robust when transmitting and receiving signals. Thus, the use of the comparative available switch controls that utilize directional radar transmitting and receiving is limited due to these technical issues.
  • SUMMARY OF THE INVENTION
  • Aspects of embodiments of the present invention relate to a directional radar transmitting and receiving device that transmits and receives radar signals, avoids false triggering, and provides stability and adapts to different environments.
  • In some embodiments, the directional radar transmitting and receiving device includes a sensor circuit board. In some aspects, the sensor circuit board includes an integrated microwave oscillator with a first wire mounted on a first face of the sensor circuit board. The first wire may be configured to operate as an integrated transmitting antenna configured to transmit a high-frequency microwave signal. In some embodiments, the sensor circuit board includes a second wire mounted on the first face of the sensor circuit board. The second wire may be configured to operate as an integrated receiving antenna configured to receive a frequency-shifted signal, which is a reflection of the high-frequency microwave signal transmitted by the integrated transmitting antenna. In some embodiments, the device further includes a main control board. In some aspects, the main control board is mounted facing a second face of the sensor circuit board which is opposite the first face of the sensor circuit board, the main control board being configured to supply the high-frequency microwave signal to the first wire and to process the frequency-shifted signal received by the second wire.
  • In some embodiments, the sensor circuit board is provided with a plurality of first recesses distributed at intervals along the first wire. In some aspects, a plurality of first pillars is embedded in the plurality of first recesses, where the first wire electrically connects the first pillars. In some embodiments, the sensor circuit board is provided with a plurality of second recesses distributed at intervals along the second wire. In some embodiments, a plurality of second pillars is embedded in the second recesses, where the second wire electrically connects the second pillars.
  • In some embodiments, the first wire is laid along the edge of the sensor circuit board. In some aspects, the first wire is laid along the edge of the sensor circuit board to form a closed loop. In some embodiments, the first wire is in a shape of a frame.
  • In some embodiments, the second wire is located in the middle of the sensor circuit board. In some embodiments, the second wire is surrounded by the first wire to form a closed loop. In some embodiments, the second wire is in an S-shaped layout. In some embodiments, the second wire is in a U-shaped layout.
  • In some embodiments, the device includes a shielding board that is mounted facing the second face of the sensor circuit board, In some aspects, the shielding board is configured to direct the high-frequency microwave signal transmitted by the transmitting antenna and to direct the reflected frequency-shifted signal to the receiving antenna.
  • In some embodiments, the main control board includes a power supply circuit, a signal amplifier, a main control chip and a switch.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a radar transmitting and receiving device according to one embodiment of the present invention.
  • FIG. 2 is a sectional view of the radar transmitting and receiving device of FIG. 1 along the line B-B.
  • FIG. 3 is a sectional view of the radar transmitting and receiving device of FIG. 1 along the line C-C.
  • FIG. 4 is an exploded view of a radar transmitting and receiving device according to one embodiment of the present invention.
  • FIG. 5 is a perspective view of transmitting antenna and receiving antenna portions of a radar transmitting and receiving device according to one embodiment of the present invention.
  • FIG. 6 is a circuit block diagram of a sensor circuit board according to one embodiment of the present invention.
  • FIG. 7 is a circuit block diagram of a main control board according to one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Aspects of embodiments of the present invention relate to a directional radar transmitting and receiving device that transmits and receives radar signals, reduces or avoids false triggering, and provides stable operation that adapts to different environments. In some embodiments, the device includes a sensor circuit board integrated with a microwave oscillator, a transmitting antenna and a receiving antenna. The sensor circuit board includes a first copper wire and a second copper wire as transmitting antenna and receiving antenna, respectively. The transmitting antenna transmits a high-frequency microwave signal, while the receiving antenna receives the frequency-shifted reflection of the transmitted microwave signal. In some aspects, a shielding board is mounted on or facing one face of the sensor circuit board, wherein the shielding board and the transmitting antenna/receiving antenna are on the two faces (e.g., opposite faces, such as the top and bottom faces with respect to the orientation shown in FIG. 4, although embodiments of the present invention are not limited to any particular orientation of the structure—for example, if the structure were rotated such that the planes extended in a vertical direction, the faces may be referred to left and right faces, furthermore, the top and bottom faces may also be referred to as the top and bottom sides) of the sensor circuit board. In some embodiments, the shielding board is made of metal and directs the transmitting antenna to make directional the transmitting of high-frequency microwave signals, and directs the receiving antenna to make directional the receiving of the frequency-shifted signal reflected back.
  • In some embodiments, the sensor circuit board is provided with a plurality of first recesses (e.g., indentations) distributed at intervals along the first copper wire of the transmitting antenna. A plurality of first copper pillars (or electrically conductive protrusions) are embedded in the first recesses. The first copper wire electrically connects these first copper pillars so that the first copper wire and these first copper pillars are combined to improve the high-frequency microwave signal transmitting of the transmitting antenna.
  • In some embodiments, the sensor circuit board is provided with a plurality of second recesses distributed at intervals along the second copper wire of the receiving antenna. A plurality of second copper pillars (or electrically conductive protrusions) are embedded in the second recesses. The second copper wire electrically connects these second copper pillars so that the second copper wire and these second copper pillars are combined to make the receiving antenna have a strengthened receiving of the frequency-shifted signal reflected back.
  • In some embodiments, a first copper wire that is being used as the transmitting antenna is laid along the edge of the sensor circuit board to form a closed loop, wherein the first copper wire is in a shape of frame or rectangle. In some embodiments, the second copper wire of the receiving antenna is in an S-shaped layout or in a U-shaped layout, located in the middle of the sensor circuit board, wherein the second copper wire is surrounded by the first copper wire forming a closed loop.
  • In some embodiments, a main control board is mounted facing the second face of the sensor circuit board, and the main control board and the sensor circuit board are located facing the same face of the shielding board. In some embodiments, a non-conductive film is mounted on a face of the shielding board facing the main control board, and, in some embodiments, the non-conductive film contacts the main control board. In one embodiment, the main control board is arranged with a power supply circuit, a signal amplifying circuit, a main control chip (e.g., a microcontroller) and a switch circuit.
  • Aspects of embodiments of the present invention relate to technical solutions and improvements that make a directional radar transmitting and receiving device more reliable. Aspects of the present invention will be described in more detail using the following examples, which may describe more than one relevant embodiment falling within the scope of the present invention.
  • In one embodiment, as shown in FIGS. 1, 2, 3, 4, 5, 6 and 7, the directional radar transmitting and receiving device includes a sensor circuit board 1 integrated with a microwave oscillator 8, a transmitting antenna 9, and a receiving antenna 10. A first copper wire 2 and a second copper wire 3 are laid on the sensor circuit board 1 and used as the transmitting antenna 9 and the receiving antenna 10 respectively. The transmitting antenna 9 is configured to transmit a high-frequency microwave signal into an environment (e.g., a room), while the receiving antenna 10 receives the high-frequency microwave signal as reflected back from the environment. In some aspects, a shielding board 4 is mounted facing one face of the sensor circuit board 1. The shielding board 4 and the transmitting antenna/receiving antenna are on the two (e.g., opposite) faces of the sensor circuit board 1 (e.g., the top and bottom faces or top and bottom sides, with respect to the orientation shown in FIG. 4, although embodiments of the present invention are not limited to any particular orientation of the structure—for example, if the structure were rotated such that the planes extended in a vertical direction, the faces may be referred to left and right faces), wherein the shielding board 4 includes metal and directs the transmitting antenna 9 to transmit directional high-frequency microwave signals (e.g., by reflecting signals emitted by the transmitting antenna 9). (For example, the transmitting antenna and receiving antenna are on a first face of the sensor circuit board and the shielding board 4 faces a second face of the sensor circuit board, the second face being opposite the first face.) Additionally, the shielding board 4 directs the receiving antenna 10 to receive the frequency-shifted signals that are reflected back.
  • In some embodiments, a first copper wire 2 and a second copper wire 3 are laid on the sensor circuit board 1 (e.g., the first face of the sensor circuit board) and used as the transmitting antenna 9 and the receiving antenna 10 respectively. The transmitting antenna 9 transmits the high-frequency microwave signal, while the receiving antenna 10 receives the frequency-shifted signal reflected back by the transmitted microwave. A shielding board 4 is mounted on one face of the sensor circuit board 1. The shielding board 4 and the first copper wire 2 and the second copper wire 3 are on the two opposite faces of the sensor circuit board 1. The first copper wire 2 and the second copper wire 3 are used as the transmitting antenna 9 and the receiving antenna 10 respectively. During operation, the shielding board 4 directs the signals emitted by the transmitting antenna 9 to form directional high-frequency microwave signals (e.g., a directional antenna pattern). The shielding board 4 reflects high-frequency microwave signals to create a directional receiving antenna, improving or optimizing the use of directional transmitting and directional receiving of radar signals, reducing or avoiding false triggering, improving stability, and adapting to many kinds of application environments.
  • In some embodiments, the sensor circuit board 1 is provided with a plurality of first recesses 11 distributed at intervals along a first copper wire 2 of the transmitting antenna 9 (e.g., along the edges of the board, where the first copper wire 2 is disposed). A plurality of first copper pillars 5 is embedded in the first recesses 11. The first copper wire 2 electrically connects these first copper pillars 5 so that the first copper wire 2 and these first copper pillars 5 are combined to improve the high-frequency microwave signal transmitting efficiency of the transmitting antenna 9. In some embodiments, the sensor circuit board 1 as described above is further provided with a plurality of second recesses 12 distributed at intervals along a second copper wire 3 of the receiving antenna 10 (e.g., in a central portion of the sensor circuit board 1, where the second copper wire 3 is disposed). A plurality of second copper pillars 6 is embedded in the second recesses 12, wherein the second copper wire 3 electrically connects these second copper pillars 6. The second copper wire 3 and the second copper pillars 6 are combined so that the receiving antenna 10 has a strengthened receiving of the frequency-shifted signal reflected back.
  • In some embodiments, the length of the transmitting antenna 9 at the edge of the sensor circuit board 1 may be elongated to broaden the transmitting antenna coverage. In some aspects, the length of the S-shaped (or U-shaped) receiving antenna 10 is extended to increase its sensitivity and coverage. In some embodiments, a protruded first copper wire 5 and a protruded second copper wire 6 are arranged on the transmitting antenna at the edge of the sensor circuit board 1 and on the S-shaped (or U-shaped) receiving antenna 10 respectively to provide robust transmitting and receiving signals.
  • In some embodiments, a main control board 7 is mounted on one face of the shielding board 4, where the main control board 7 faces the second face of the sensor circuit board 1 (e.g., the face opposite the face on which the first copper wire 2 and the second copper wire 3 are located). The shielding board 4 may be made of metal and may include a non-conductive film mounted on a face of the shielding board facing (e.g., in contact with) the main control board 7. In some embodiments of the present invention, the main control board 7 is between the shielding board 4 and the sensor circuit board 1. In some embodiments of the present invention, the shielding board 4 is between the main circuit board 7 and the sensor circuit board 1.
  • In some embodiments, the sensor circuit board 1 is provided with a plurality of second recesses 12 distributed at intervals along the second copper wire 3 of the receiving antenna 10. A plurality of second copper pillars 6 are embedded in the second recesses 12. A second copper wire 3 electrically connects the second copper pillars 6 so that the second copper wire 3 and the second copper pillars 6 are combined to improve the sensitivity of the receiving antenna in detecting the frequency-shifted signals that are reflected back (e.g., from the environment, such as a room).
  • In some embodiments, a first copper wire 2 used as the transmitting antenna 9 is laid along the edge of the sensor circuit board 1 to form a closed loop. The second copper wire 3 is in a shape of a frame or border. The second copper wire 3 of the receiving antenna 10 is located in the middle of the sensor circuit board 1 (e.g., in a central portion of the sensor circuit board 1, away from the edges). The second copper wire 3 is surrounded by first copper wire 2 forming a closed loop, and the second copper wire 3 is in a S-shaped layout or in a U-shaped layout. This arrangement results in stronger transmitting signals and increased sensitivity when receiving radar signals. In some embodiments, a main control board 7 is mounted on one face of the shielding board 4, with a non-conductive film of the shielding board 4 facing the main control board. The main control board 7 and the sensor circuit board 1 face (or are on) the same face (or side) of the shielding board 4. As shown in FIG. 7, a power supply circuit 15, a signal amplifying circuit 16, a main control chip 17 and a switch circuit 19 are arranged on the main control board 7. The signal amplifying circuit 16 is configured to amplify an output signal from the sensor circuit board 1 (e.g., from the receiving antenna 10). The amplified signal is supplied to the main control chip 17, which is configured to control the switch circuit 19 based on the output signal from the sensor circuit board 1 (e.g., to close or connect a switch of the switch circuit 19 when the frequency shifted signal is detected and to open or disconnect the switch when the frequency shifted signal is no longer detected). When the switch 19 is closed, power is supplied to one or more load appliances 18, e.g., from AC mains.
  • In some embodiments, during operation, a high-frequency microwave signal of about 5.8 GHz is transmitted by the microwave oscillator of the sensor circuit board 1 and is transmitted out into an environment (e.g., a room) by the transmitting antenna 9 (a combination of first copper wire 2 and first copper pillars 5) distributed around the sensor circuit board 1 (e.g., located at the edges of the sensor circuit board). The S-shaped (or U-shaped) receiving antenna 10 (a combination of the second copper wire 3 and the second copper pillars 6) receives the frequency-shifted signal reflection of the transmitted microwave due to triggering events, such as the movement of humans, cars and other large objects in the environment. Through frequency mixing and wave detection and other operations applied to the signal, the signal is output to the signal amplifying circuit and then is connected to the main control chip for analysis. The main control board 7 controls the operation of the switch circuit, so as to control the turning on of the load appliances.
  • Finally, it should be noted that the foregoing embodiment is merely intended for describing the technical solution of embodiments of the present invention, but embodiments of the present invention are not limited thereto. Although aspects of embodiments of the present invention are described in detail with reference to the foregoing example embodiments, it should be understood by those of ordinary skill in the art that the technical solution described with reference to the foregoing example embodiments may be modified or equivalent replacements may be made to some of the technical features therein. It will also be apparent to the skilled artisan that the embodiments described above are specific examples of a single broader invention that may have greater scope than any of the singular descriptions without departing from the spirit and scope of the present invention.

Claims (11)

What is claimed is:
1. A device for directional radar transmitting and receiving comprising:
a sensor circuit board, the sensor circuit board comprising:
an integrated microwave oscillator;
a first wire mounted on a first face of the sensor circuit board, the first wire operating as an integrated transmitting antenna configured to transmit a high-frequency microwave signal; and
a second wire mounted on the first face of the sensor circuit board, the second wire operating as an integrated receiving antenna configured to receive a frequency-shifted signal, wherein the frequency-shifted signal is a reflection of the high-frequency microwave signal transmitted by the integrated transmitting antenna; and
a main control board mounted facing a second face of the sensor circuit board, wherein the second face of the sensor circuit board is opposite the first face of the sensor circuit board, the main control board being configured to supply the high-frequency microwave signal to the first wire and to process the frequency-shifted signal received by the second wire.
2. The device of claim 1, wherein the sensor circuit board has a plurality of first recesses distributed at intervals along the first wire,
wherein a plurality of first electrically conductive pillars are embedded in the first recesses, and
wherein the first wire electrically connects the first electrically conductive pillars.
3. The device of claim 1, wherein the sensor circuit board has a plurality of second recesses distributed at intervals along the second wire,
wherein a plurality of second electrically conductive pillars are embedded in the plurality of second recesses, and
wherein the second wire electrically connects the second electrically conductive pillars.
4. The device of claim 1, wherein the first wire is laid along the edge of the sensor circuit board.
5. The device of claim 4, wherein the first wire is laid along the edge of the sensor circuit board to form a closed loop.
6. The device of claim 5, wherein the first wire is in a shape of a frame.
7. The device of claim 5, wherein the second wire is located in the middle of the sensor circuit board, wherein the second wire is surrounded by the first wire to form a closed loop.
8. The device of claim 7, wherein the second wire is in an S-shaped layout.
9. The device of claim 7, wherein the second wire is in a U-shaped layout.
10. The device of claim 1, further comprising a shielding board mounted facing the second face of the sensor circuit board, the shielding board being configured to direct the high-frequency microwave signal transmitted by the transmitting antenna and to direct the reflected frequency-shifted signal to the receiving antenna.
11. The device of claim 1, wherein the main control board comprises:
a power supply circuit;
a signal amplifier;
a main control chip; and
a switch.
US16/119,662 2017-09-01 2018-08-31 Directional radar transmitting and receiving devices Abandoned US20190072643A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721111845.3 2017-09-01
CN201721111845.3U CN207263917U (en) 2017-09-01 2017-09-01 Beam radar transmitter-receiver device
CN201710875131.8 2017-09-25
CN201710875131.8A CN107765223B (en) 2017-09-25 2017-09-25 Directional radar transmitting and receiving system

Publications (1)

Publication Number Publication Date
US20190072643A1 true US20190072643A1 (en) 2019-03-07

Family

ID=65517942

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/119,644 Active 2039-04-17 US10928484B2 (en) 2017-09-01 2018-08-31 Directional radar transmitting and receiving system
US16/119,662 Abandoned US20190072643A1 (en) 2017-09-01 2018-08-31 Directional radar transmitting and receiving devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/119,644 Active 2039-04-17 US10928484B2 (en) 2017-09-01 2018-08-31 Directional radar transmitting and receiving system

Country Status (1)

Country Link
US (2) US10928484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289493B (en) * 2019-07-20 2024-03-29 深圳市全智芯科技有限公司 Wiring structure of microwave induction radar antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060220952A1 (en) * 2005-03-30 2006-10-05 Denso Corporation Electric wave transmitting/receiving module and imaging sensor having electric wave transmitting/receiving module
US20130147657A1 (en) * 2011-12-09 2013-06-13 Mando Corporation Radar apparatus and method of assembling the same
US20160072167A1 (en) * 2013-04-15 2016-03-10 Panasonic Intellectual Property Management Co., Ltd. Electromagnetic resonant coupler and high-frequency transmission device
US20180026374A1 (en) * 2016-07-25 2018-01-25 Innolux Corporation Antenna device
US20180175113A1 (en) * 2016-12-16 2018-06-21 Sumitomo Electric Industries, Ltd. Semiconductor device and manufacturing method of semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE500804C2 (en) * 1992-02-20 1994-09-05 Wlodzimierz Cwejman Device for controlling electric motors
JP2658900B2 (en) * 1994-09-30 1997-09-30 日本電気株式会社 Pulse power supply
JP5292925B2 (en) * 2008-05-30 2013-09-18 富士通株式会社 Semiconductor integrated circuit, control method therefor, and information processing apparatus
CN107110965B (en) * 2014-10-31 2021-02-09 西门子瑞士有限公司 Method, digital tool, device and system for detecting movement of an object
US10939379B2 (en) * 2016-11-14 2021-03-02 Analog Devices Global Wake-up wireless sensor nodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060220952A1 (en) * 2005-03-30 2006-10-05 Denso Corporation Electric wave transmitting/receiving module and imaging sensor having electric wave transmitting/receiving module
US20130147657A1 (en) * 2011-12-09 2013-06-13 Mando Corporation Radar apparatus and method of assembling the same
US20160072167A1 (en) * 2013-04-15 2016-03-10 Panasonic Intellectual Property Management Co., Ltd. Electromagnetic resonant coupler and high-frequency transmission device
US20180026374A1 (en) * 2016-07-25 2018-01-25 Innolux Corporation Antenna device
US20180175113A1 (en) * 2016-12-16 2018-06-21 Sumitomo Electric Industries, Ltd. Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
US10928484B2 (en) 2021-02-23
US20190072642A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI495398B (en) Lighting device with microwave detection function
US20190072643A1 (en) Directional radar transmitting and receiving devices
CN111522002A (en) Intelligent switch radar system
US10203407B2 (en) Illumination device and detection method thereof
CN104297806A (en) Microwave sensing module
CN102043147A (en) Microwave sensor
JP4304642B1 (en) Radio wave sensor
CN111796527A (en) Intelligent control system based on millimeter wave radar
US10859672B2 (en) Directional radar transmitting and receiving sensor board
JP2009236659A (en) Radio-wave sensor
JP5671787B2 (en) Radio wave sensor
JP5212903B2 (en) Radio wave sensor
CN111129755A (en) Beam shaping method
CN204101746U (en) Microwave induced module
CN212623068U (en) Intelligent switch radar system
CN214505765U (en) Large-beam-angle microwave detector and lamp with same
CN217880050U (en) Microwave induction control circuit, device and water purifier
TWI685147B (en) Antenna system
CN212781710U (en) Intelligent control system based on millimeter wave radar
TWI678684B (en) Distance detection system and distance detection apparatus
JP5515452B2 (en) Detector
JP5047059B2 (en) Antenna device and load control system using the same
JP4978806B2 (en) Microstrip antenna
JP2009237854A (en) Touch panel device
JP2010060356A (en) Radio wave sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: GARDENIA INDUSTRIAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAO, BO;LIU, XIAO XIONG;REEL/FRAME:046940/0990

Effective date: 20180823

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION