US20190063744A1 - Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process - Google Patents

Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process Download PDF

Info

Publication number
US20190063744A1
US20190063744A1 US16/169,870 US201816169870A US2019063744A1 US 20190063744 A1 US20190063744 A1 US 20190063744A1 US 201816169870 A US201816169870 A US 201816169870A US 2019063744 A1 US2019063744 A1 US 2019063744A1
Authority
US
United States
Prior art keywords
waste gas
water
reaction chamber
capturing
sintered product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/169,870
Inventor
Wu-Yu Fong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orient Service Co Ltd
Original Assignee
Orient Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orient Service Co Ltd filed Critical Orient Service Co Ltd
Priority to US16/169,870 priority Critical patent/US20190063744A1/en
Publication of US20190063744A1 publication Critical patent/US20190063744A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/08Arrangements of devices for treating smoke or fumes of heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2027Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a device of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process, especially to one which captures a sintering reaction product after sintering a waste gas in a semiconductor manufacturing process, and to a waste gas product capturing device for applying the method.
  • an exhaust gas generated in a semiconductor manufacturing process contains SiH 4 , H 2 SiCl 2 (DCS), WF 6 , BF 3 , NF 3 , F 2 , etc., wherein the harmful fluorides (PerFluorinated Compounds, PFC), such as, NF 3 and F 2 , are discharged to the atmosphere, they cause environmental pollution, even the greenhouse effect. Most seriously, it results in a serious impact on global warming, and it is necessary to process the exhaust gases to convert them into harmless gases or products.
  • the harmful fluorides PerFluorinated Compounds, PFC
  • the widely used semiconductor waste gas treatment equipment is used for converting or processing the exhaust gas into a harmless gas or product.
  • the well-known semiconductor processing equipment are equipped with an exhaust gas reaction chamber into which the exhaust gas generated in the semiconductor manufacturing process is input and is sintered (i.e. the sintering reaction) in the reaction chamber by using a high temperature flame or a high temperature provided by a hot rod.
  • the harmful fluoride gases such as, NF 3 and F 2 , and other fluoride gases are decomposed into harmless fluoride ions so as to achieve the purpose of purifying the exhaust gas.
  • the SiO 2 powders, the WO 2 powders, and the BO 2 powders are extremely fine, and F 2 gas small molecules are tiny, the exhaust gas washing program used in the known semiconductor processing equipment cannot be used to sufficiently capture the products by its water column or water droplets.
  • a purification efficiency of the exhaust gas in the semiconductor manufacturing process is poor, and the costs of the purification of exhaust gas in the treatment equipment and process are increased. Therefore the process is needed to be improved.
  • the main object of the present invention is to solve problems saying that a semiconductor exhaust gas is processed by a high temperature sintering treatment, the generated SiO 2 powders, the WO 2 powders or the BO 2 powders are extremely fine, the F 2 gas is small molecules, and it is not easy to capture them during a rear stage water washing program.
  • the present invention provides a method of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process, comprising the steps of:
  • the waste gas is carried out the sintering reaction by contacting with a flame, and the waste gas reaction end is a flame vent.
  • the waste gas is carried out the sintering reaction by contacting with a hot rod, and the waste gas reaction end is a circumference of the hot rod.
  • a water wall is preferably formed around a tank wall of the reaction chamber, and the aerosolised water molecules are diffusion distributed between a bottom edge of a waste gas reaction end and the water wall.
  • the aerosolised water molecules are preferably supplied to the bottom edge of the waste gas reaction end via a plurality of water columns spaced apart at a circumferential distance.
  • a nozzle is preferably formed at each terminal of the plurality of water columns, and regarding the bottom edge of the waste gas reaction end it is a gap formed between the nozzle and the waste gas reaction end.
  • the product comprises a SiO 2 powder, a WO 2 powder, a BO 2 powder and a F 2 gas.
  • the present invention further provides a device for capturing a sintered product according to the method, comprising:
  • the waste gas introducing pipe and the heater are respectively disposed on the cover and inserted into the reaction chamber.
  • the heater is a flame heater for forming a flame vent at the waste gas reaction end to provide a flame for sintering the waste gas from the waste gas introducing pipe.
  • the heater is a hot rod for sintering the waste gas from the waste gas introducing pipe at the waste gas reaction end.
  • a water wall is formed around a tank wall of the reaction chamber, and the aerosolised water molecules are diffusion distributed between a bottom edge of a waste gas reaction end and the water wall.
  • a water driver is fluidly connected to the inlet pipe of the ring-shaped water disk, and the water driver comprises an aerosol generator of water molecules.
  • the plurality of nozzles are formed at bottom of the water columns and regarding the bottom edge of the waste gas reaction end it is a gap formed between the nozzle and the waste gas reaction end.
  • a water passage for fluidly connecting between the inlet pipe and the plurality of nozzles of the water columns is formed in the ring-shaped water disk.
  • the product comprises a SiO 2 powder, a WO 2 powder, a BO 2 powder and a F 2 gas.
  • FIG. 1 is a schematic diagram illustrating the method of the present invention to capture
  • FIG. 2 is a structural diagram of the capturing device of the present invention
  • FIG. 3 is a cross-sectional view of a water disk of the capturing device of the present invention.
  • FIG. 4 is a cross-sectional view along a line A-A of the FIG. 3 of the present invention.
  • FIG. 5 is a schematic diagram of the operation of the capturing device of the FIG. 2 ;
  • FIG. 6 is a cross-sectional diagram showing a configuration of the capturing device mounted on the semiconductor exhaust gas treatment tank.
  • FIG. 1 discloses a schematic diagram of a method of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process provided in the first embodiment of the present invention described in a semiconductor process apparatus having a waste gas treatment tank 20 .
  • a reaction chamber 21 at a front side is formed in the waste gas treatment tank 20 .
  • the waste gas 11 generated from a semiconductor manufacturing process is guided to move into the reaction chamber 21 at a front side.
  • the waste gas 11 is processed by sintering using a high temperature 12 from a flame or a hot rod at a waste gas reaction end of the reaction chamber 21 .
  • the reaction products such as, the SiO 2 powders, the WO 2 powders, the BO 2 powders or the F 2 gas, are generated in the reaction chamber 21 .
  • the waste gas reaction end 26 means flame vents.
  • the waste gas reaction end 26 means space around the hot rod.
  • the aerosolised water molecules 13 enter into the reaction chamber 21 of the waste gas treatment tank 20 so that the aerosolised water molecules 13 are diffusion distributed between the bottom edge of the waste gas reaction end in the reaction chamber 21 and the tank wall surrounding the reaction chamber 21 so as to capture the sintered products after the sintering reaction of the waste gas 11 . Furthermore, a gap between the waste gas reaction end and its bottom edge should be maintained so that the aerosolised water molecules 13 run away from the waste gas reaction end in order to avoid the aerosolised water molecules to reduce the temperature of the waste gas reaction end, thereby affecting the sintering effect of the waste gas 11 .
  • the products containing the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas are generated in the high temperature sintering process.
  • the following chemical equations (1) to (4) are respectively disclosed to be the ones when the products which are the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas react with the aerosolised water molecules 13 .
  • the aerosolised water molecules 13 are tiny and are distributed in the form of diffusion in the reaction chamber 21 so as to effectively capture the products, such as, the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas.
  • the use of aerosolised water molecules 13 can accelerate the dissolution rate of the F 2 gas to be dissolved in water in order to facilitate the rear stage washing and scrubbing of the capturing program.
  • the generated non-toxic gases are discharged to the outside (the waste gas treatment tank of the rear stage washing process, it is not a non-appeal or improvement issue of the present invention, and it will not recited repeatedly herewith).
  • FIGS. 2 to 4 disclose a second preferable embodiment of the present invention providing the implementation details of a device for capturing a sintered product.
  • FIG. 2 discloses a configuration diagram of the capturing device of the present invention.
  • FIG. 3 discloses a cross-sectional diagram of the water disk 30 .
  • FIG. 4 discloses another cross-sectional view of the water disk 30 .
  • an introducing pipe 23 of the semiconductor manufacturing process waste gas 11 is disposed.
  • An outlet 231 is formed at the introducing pipe 23 of the reaction chamber 21 .
  • the introducing pipe 23 is fluidly connected to the reaction chamber 21 of the front stage processing via the outlet 231 .
  • the semiconductor manufacturing process waste gas 11 is guided and moved into the reaction chamber 21 by the introducing pipe 23 .
  • a cover 24 is disposed at a top of the waste gas treatment tank 20 .
  • the introducing pipe 23 is mounted on the cover 24 .
  • the waste gas 11 is guided and moved into the reaction chamber 21 from the top of the waste gas treatment tank 20 by the introducing pipe 23 .
  • a heater 25 implanted in the reaction chamber 21 is disposed in the waste gas treatment tank 20 .
  • the heater 25 spaced from and in association with the introducing pipe 23 of the semiconductor manufacturing process waste gas 11 is mounted on the cover 24 .
  • the outlet 231 of the introduction pipe 23 is directed toward the position of the heater 25 .
  • the area where the waste gas 11 injected from the introducing pipe 23 contacts with the heater 25 is defined as a waste gas reaction end 26 .
  • the waste gas 11 is sintered by using a high temperature provided by the heater 25 at the waste gas reaction end 26 so as to produce the products, such as, the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas.
  • the heater 25 may be a flame heater.
  • a flame vent of the flame heater is the so-called waste gas reaction end 26 .
  • the heater 25 may be a hot rod. The thing surrounding the hot rod is the waste gas reaction end 26 .
  • An annular water disk 30 is disposed between the cover 24 and the waste gas treatment tank 20 .
  • An inlet pipe 31 located outside of the reaction chamber 21 is formed at the annular water disk 30 .
  • a plurality of nozzles 32 surrounding and annularly spaced apart in the reaction chamber 21 are formed.
  • a plurality of water passages 33 located in the annular water disk 30 are formed for fluidly connecting between the inlet pipe 31 and the nozzles 32 so that the aerosolised water molecules 13 can move from the inlet pipe 31 to the water passages 33 and can be sprayed in the reaction chamber 21 .
  • a plurality of water columns 34 protruding from ring-shaped water disk 30 and spaced apart at a circumferential distance, the plurality of nozzles 32 are formed at bottom of the water columns.
  • the water passage 33 is fluidly connected to the inlet pipe 31 and the nozzles 32 via the water columns 34 .
  • the nozzles 32 are located at a bottom edge 261 of the waste gas reaction end 26 so that the aerosolised water molecules 13 are diffusion distributed between the bottom edge 261 of the waste gas reaction end 26 and the tank wall 22 around the reaction chamber 21 .
  • the bottom edge 261 of the waste gas reaction end 26 it is a gap H formed between the nozzle 32 and the waste gas reaction end 26 .
  • the gap H is used for moving the aerosolised water molecules 13 away from the waste gas reaction end 26 so that the aerosolised water molecules 13 sprayed from the nozzle 32 can avoid to reduce the temperature of the waste gas reaction end 26 , thereby affecting the effect of sintering the waste gas 11 .
  • FIG. 2 illustrating a water wall 27 is formed around the tank wall 22 of the reaction chamber 21 .
  • the barrier of the water wall 27 can preventing the products, such as, the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas, generated after the high temperature sintering process in the reaction chamber 21 from adherence to the tank wall 22 around the reaction chamber 21 .
  • the aerosolised water molecules 13 are diffusion distributed between the bottom edge 261 of the waste gas reaction end 26 and the water wall 27 .
  • FIG. 2 illustrating at the annular water disc 30 of the inlet pipe 31 a water driver 40 is externally connected.
  • the water driver 40 comprises an aerosol generator 41 which can mix the water from the water driver 40 with the air to form the aerosolised water molecules 13 . Then, the aerosolised water molecules 13 are injected into the reaction chamber 21 via the inlet pipe 31 .
  • FIGS. 5 and 6 illustrating that the waste gas 11 moves into the reaction chamber 21 at the front stage of waste gas treatment tank 20 .
  • the waste gas 11 is sintered to react at the waste gas reaction end 26 of the heater 25 so that the products, such as, the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas, are generated after the high temperature sintering process in the reaction chamber 21 .
  • the products such as, the SiO 2 powders, the WO 2 powders, the BO 2 powders and the F 2 gas
  • the SiO 2 powders, the WO 2 powders and the BO 2 powders combined with the aerosolised water molecules 13 to make their tiny particle become smaller and to accelerate the dissolution rate of F 2 gas dissolved in water by using the aerosolised water molecules 13 for facilitating the rear stage washing program to capture and scrub.
  • the component 28 is a washing tower and the component 29 is an exhaust orifice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

A device of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process includes: a cover disposed at a top of a reaction chamber formed on a waste gas treatment tank; a waste gas introducing pipe and a heater respectively disposed in the reaction chamber, a waste gas reaction end being formed at the heater in the reaction chamber corresponding to an outlet of the waste gas introducing pipe; a ring-shaped water disk disposed between the cover and the waste gas treatment tank, an inlet pipe located outside of the reaction chamber being formed on the ring-shaped water disk; and a plurality of nozzles spaced apart at a circumferential distance distributed in the reaction chamber.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional application of U.S. patent application Ser. No. 15/271,174, filed on Sep. 20, 2016, and entitled “METHOD OF CAPTURING SINTERED PRODUCT AFTER SINTERING WASTE GAS IN SEMICONDUCTOR MANUFACTURING PROCESS”. The entire disclosures of the above application are all incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a device of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process, especially to one which captures a sintering reaction product after sintering a waste gas in a semiconductor manufacturing process, and to a waste gas product capturing device for applying the method.
  • BACKGROUND OF THE INVENTION
  • It is known that an exhaust gas generated in a semiconductor manufacturing process contains SiH4, H2SiCl2 (DCS), WF6, BF3, NF3, F2, etc., wherein the harmful fluorides (PerFluorinated Compounds, PFC), such as, NF3 and F2, are discharged to the atmosphere, they cause environmental pollution, even the greenhouse effect. Most seriously, it results in a serious impact on global warming, and it is necessary to process the exhaust gases to convert them into harmless gases or products.
  • The widely used semiconductor waste gas treatment equipment is used for converting or processing the exhaust gas into a harmless gas or product. In general, the well-known semiconductor processing equipment are equipped with an exhaust gas reaction chamber into which the exhaust gas generated in the semiconductor manufacturing process is input and is sintered (i.e. the sintering reaction) in the reaction chamber by using a high temperature flame or a high temperature provided by a hot rod. In particular by means of high temperature sintering reaction, the harmful fluoride gases, such as, NF3 and F2, and other fluoride gases are decomposed into harmless fluoride ions so as to achieve the purpose of purifying the exhaust gas.
  • It is known that after the high-temperature sintering process, SiO2 powders, WO2 powders, and BO2 powders and F2 gas product will be generated in the reaction chamber. The product is usually subject to rear stage washing program (scrubber) when it is captured and scrubbed in order to be filtered and screened after the above-mentioned product can be deposited in water.
  • Since in the resultant products, the SiO2 powders, the WO2 powders, and the BO2 powders are extremely fine, and F2 gas small molecules are tiny, the exhaust gas washing program used in the known semiconductor processing equipment cannot be used to sufficiently capture the products by its water column or water droplets. Thus, a purification efficiency of the exhaust gas in the semiconductor manufacturing process is poor, and the costs of the purification of exhaust gas in the treatment equipment and process are increased. Therefore the process is needed to be improved.
  • SUMMARY
  • In view of this, the main object of the present invention is to solve problems saying that a semiconductor exhaust gas is processed by a high temperature sintering treatment, the generated SiO2 powders, the WO2 powders or the BO2 powders are extremely fine, the F2 gas is small molecules, and it is not easy to capture them during a rear stage water washing program.
  • In order to achieve the above object and solve the problems, the present invention provides a method of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process, comprising the steps of:
      • providing aerosolised water molecules to be entered into a reaction chamber of a waste gas treatment tank; and
      • capturing a product generated after a sintering reaction of the waste gas by diffusion distributing of the aerosolised water molecules,
        wherein, the aerosolised water molecules are diffusion distributed between a bottom edge of a waste gas reaction end in the reaction chamber and a tank wall surrounding the reaction chamber.
  • According to the above method, in a specific embodiment of the present invention preferably the waste gas is carried out the sintering reaction by contacting with a flame, and the waste gas reaction end is a flame vent.
  • According to the present invention, preferably the waste gas is carried out the sintering reaction by contacting with a hot rod, and the waste gas reaction end is a circumference of the hot rod.
  • According to the present invention, a water wall is preferably formed around a tank wall of the reaction chamber, and the aerosolised water molecules are diffusion distributed between a bottom edge of a waste gas reaction end and the water wall.
  • According to the present invention, the aerosolised water molecules are preferably supplied to the bottom edge of the waste gas reaction end via a plurality of water columns spaced apart at a circumferential distance.
  • According to the present invention, a nozzle is preferably formed at each terminal of the plurality of water columns, and regarding the bottom edge of the waste gas reaction end it is a gap formed between the nozzle and the waste gas reaction end.
  • According to the present invention, preferably the product comprises a SiO2 powder, a WO2 powder, a BO2 powder and a F2 gas.
  • According to the present invention, the present invention further provides a device for capturing a sintered product according to the method, comprising:
      • a cover disposed at a top of a reaction chamber formed on a waste gas treatment tank;
      • a waste gas introducing pipe and a heater respectively disposed in the reaction chamber, a waste gas reaction end being formed at the heater in the reaction chamber corresponding to an outlet of the waste gas introducing pipe;
      • a ring-shaped water disk disposed between the cover and the waste gas treatment tank, an inlet pipe located outside of the reaction chamber being formed on the ring-shaped water disk; and
      • a plurality of nozzles spaced apart at a circumferential distance distributed in the reaction chamber,
      • wherein the plurality of nozzles are disposed between the waste gas reaction end and a tank wall around the reaction chamber.
  • According to the above device, in a further embodiment of the present invention, preferably the waste gas introducing pipe and the heater are respectively disposed on the cover and inserted into the reaction chamber.
  • According to the present invention, preferably the heater is a flame heater for forming a flame vent at the waste gas reaction end to provide a flame for sintering the waste gas from the waste gas introducing pipe.
  • According to the present invention, preferably the heater is a hot rod for sintering the waste gas from the waste gas introducing pipe at the waste gas reaction end.
  • According to the present invention, preferably a water wall is formed around a tank wall of the reaction chamber, and the aerosolised water molecules are diffusion distributed between a bottom edge of a waste gas reaction end and the water wall.
  • According to the present invention, preferably a water driver is fluidly connected to the inlet pipe of the ring-shaped water disk, and the water driver comprises an aerosol generator of water molecules.
  • According to the present invention, preferably a plurality of water columns protruding from ring-shaped water disk and spaced apart at a circumferential distance, the plurality of nozzles are formed at bottom of the water columns and regarding the bottom edge of the waste gas reaction end it is a gap formed between the nozzle and the waste gas reaction end.
  • According to the present invention, preferably a water passage for fluidly connecting between the inlet pipe and the plurality of nozzles of the water columns is formed in the ring-shaped water disk.
  • According to the present invention, preferably the product comprises a SiO2 powder, a WO2 powder, a BO2 powder and a F2 gas.
  • According to the above-described method and device, technical effects of the present invention are that collision of the aerosolised water molecules with the SiO2 powders, the WO2 powders, the BO2 powders results in very tiny particles. The use of aerosolised water molecules will result in acceleration of the F2 gas to be dissolved in high dissolution rate in water in order to facilitate subsequent stage washing program to capture and to scrub.
  • Furthermore, please refer to the following examples and drawings to demonstrate the embodiments of the invention in details.
  • BRIEF DESCRIPTION
  • FIG. 1 is a schematic diagram illustrating the method of the present invention to capture;
  • FIG. 2 is a structural diagram of the capturing device of the present invention;
  • FIG. 3 is a cross-sectional view of a water disk of the capturing device of the present invention;
  • FIG. 4 is a cross-sectional view along a line A-A of the FIG. 3 of the present invention;
  • FIG. 5 is a schematic diagram of the operation of the capturing device of the FIG. 2;
  • FIG. 6 is a cross-sectional diagram showing a configuration of the capturing device mounted on the semiconductor exhaust gas treatment tank.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Please refer to FIG. 1 which discloses a schematic diagram of a method of capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process provided in the first embodiment of the present invention described in a semiconductor process apparatus having a waste gas treatment tank 20. A reaction chamber 21 at a front side is formed in the waste gas treatment tank 20. The waste gas 11 generated from a semiconductor manufacturing process is guided to move into the reaction chamber 21 at a front side. The waste gas 11 is processed by sintering using a high temperature 12 from a flame or a hot rod at a waste gas reaction end of the reaction chamber 21. After the waste gas 11 is processed by sintering using the high temperature 12, the reaction products, such as, the SiO2 powders, the WO2 powders, the BO2 powders or the F2 gas, are generated in the reaction chamber 21. When the waste gas 11 contacts with the flame to be processed by sintering reaction, the waste gas reaction end 26 means flame vents. When the waste gas is in contact with the hot rod to carry out the sintering reaction, the waste gas reaction end 26 means space around the hot rod.
  • In the present invention, the aerosolised water molecules 13 enter into the reaction chamber 21 of the waste gas treatment tank 20 so that the aerosolised water molecules 13 are diffusion distributed between the bottom edge of the waste gas reaction end in the reaction chamber 21 and the tank wall surrounding the reaction chamber 21 so as to capture the sintered products after the sintering reaction of the waste gas 11. Furthermore, a gap between the waste gas reaction end and its bottom edge should be maintained so that the aerosolised water molecules 13 run away from the waste gas reaction end in order to avoid the aerosolised water molecules to reduce the temperature of the waste gas reaction end, thereby affecting the sintering effect of the waste gas 11.
  • From the foregoing, the products containing the SiO2 powders, the WO2 powders, the BO2 powders and the F2 gas are generated in the high temperature sintering process. The following chemical equations (1) to (4) are respectively disclosed to be the ones when the products which are the SiO2 powders, the WO2 powders, the BO2 powders and the F2 gas react with the aerosolised water molecules 13.
  • The following chemical equation (1) is disclosed to be one when the reaction product is SiO2:

  • SiO2+H2O—→H2SiO3  chemical equation (1)
  • The following chemical equation (2) is disclosed to be one when the reaction product is WO3:

  • WO3+H2O—→H2WO4  chemical equation (2)
  • The following chemical equation (3) is disclosed to be one when the reaction product of B2O3:

  • B2O3+3H2O—→2H3BO3  chemical equation (3)
  • The following chemical equation (4) is disclosed to be one when the reaction product of F2:

  • 2F2+2H2O—→4HF+O2  chemical equation (4)
  • In the preferred embodiment, because the aerosolised water molecules 13 are tiny and are distributed in the form of diffusion in the reaction chamber 21 so as to effectively capture the products, such as, the SiO2 powders, the WO2 powders, the BO2 powders and the F2 gas. In addition to the use of aerosolized water molecules 13 to collide with the SiO2 powders, the WO2 powders or the BO2 powders and to become larger to make them subtle, the use of aerosolised water molecules 13 can accelerate the dissolution rate of the F2 gas to be dissolved in water in order to facilitate the rear stage washing and scrubbing of the capturing program. Thus the generated non-toxic gases are discharged to the outside (the waste gas treatment tank of the rear stage washing process, it is not a non-appeal or improvement issue of the present invention, and it will not recited repeatedly herewith).
  • In order to implement the method, please refer to the FIGS. 2 to 4 which disclose a second preferable embodiment of the present invention providing the implementation details of a device for capturing a sintered product. FIG. 2 discloses a configuration diagram of the capturing device of the present invention. FIG. 3 discloses a cross-sectional diagram of the water disk 30. FIG. 4 discloses another cross-sectional view of the water disk 30.
  • In the implementation of the embodiment, an introducing pipe 23 of the semiconductor manufacturing process waste gas 11 is disposed. An outlet 231 is formed at the introducing pipe 23 of the reaction chamber 21. The introducing pipe 23 is fluidly connected to the reaction chamber 21 of the front stage processing via the outlet 231. The semiconductor manufacturing process waste gas 11 is guided and moved into the reaction chamber 21 by the introducing pipe 23. In more details, a cover 24 is disposed at a top of the waste gas treatment tank 20. The introducing pipe 23 is mounted on the cover 24. The waste gas 11 is guided and moved into the reaction chamber 21 from the top of the waste gas treatment tank 20 by the introducing pipe 23.
  • A heater 25 implanted in the reaction chamber 21 is disposed in the waste gas treatment tank 20. In implementation, the heater 25 spaced from and in association with the introducing pipe 23 of the semiconductor manufacturing process waste gas 11 is mounted on the cover 24. Moreover, the outlet 231 of the introduction pipe 23 is directed toward the position of the heater 25. The area where the waste gas 11 injected from the introducing pipe 23 contacts with the heater 25 is defined as a waste gas reaction end 26. The waste gas 11 is sintered by using a high temperature provided by the heater 25 at the waste gas reaction end 26 so as to produce the products, such as, the SiO2 powders, the WO2 powders, the BO2 powders and the F2 gas. In real implementation, the heater 25 may be a flame heater. A flame vent of the flame heater is the so-called waste gas reaction end 26. Alternatively the heater 25 may be a hot rod. The thing surrounding the hot rod is the waste gas reaction end 26.
  • An annular water disk 30 is disposed between the cover 24 and the waste gas treatment tank 20. An inlet pipe 31 located outside of the reaction chamber 21 is formed at the annular water disk 30. A plurality of nozzles 32 surrounding and annularly spaced apart in the reaction chamber 21 are formed. A plurality of water passages 33 located in the annular water disk 30 are formed for fluidly connecting between the inlet pipe 31 and the nozzles 32 so that the aerosolised water molecules 13 can move from the inlet pipe 31 to the water passages 33 and can be sprayed in the reaction chamber 21.
  • In specific embodiments, a plurality of water columns 34 protruding from ring-shaped water disk 30 and spaced apart at a circumferential distance, the plurality of nozzles 32 are formed at bottom of the water columns. The water passage 33 is fluidly connected to the inlet pipe 31 and the nozzles 32 via the water columns 34. By means of the water columns 34, the nozzles 32 are located at a bottom edge 261 of the waste gas reaction end 26 so that the aerosolised water molecules 13 are diffusion distributed between the bottom edge 261 of the waste gas reaction end 26 and the tank wall 22 around the reaction chamber 21. Regarding the bottom edge 261 of the waste gas reaction end 26 it is a gap H formed between the nozzle 32 and the waste gas reaction end 26. The gap H is used for moving the aerosolised water molecules 13 away from the waste gas reaction end 26 so that the aerosolised water molecules 13 sprayed from the nozzle 32 can avoid to reduce the temperature of the waste gas reaction end 26, thereby affecting the effect of sintering the waste gas 11.
  • Please refer to FIG. 2 illustrating a water wall 27 is formed around the tank wall 22 of the reaction chamber 21. The barrier of the water wall 27 can preventing the products, such as, the SiO2 powders, the WO2 powders, the BO2 powders and the F2 gas, generated after the high temperature sintering process in the reaction chamber 21 from adherence to the tank wall 22 around the reaction chamber 21. The aerosolised water molecules 13 are diffusion distributed between the bottom edge 261 of the waste gas reaction end 26 and the water wall 27.
  • Please refer to FIG. 2 illustrating at the annular water disc 30 of the inlet pipe 31 a water driver 40 is externally connected. The water driver 40 comprises an aerosol generator 41 which can mix the water from the water driver 40 with the air to form the aerosolised water molecules 13. Then, the aerosolised water molecules 13 are injected into the reaction chamber 21 via the inlet pipe 31.
  • Please refer to FIGS. 5 and 6 illustrating that the waste gas 11 moves into the reaction chamber 21 at the front stage of waste gas treatment tank 20. By using the high temperature provided by the heater 25, the waste gas 11 is sintered to react at the waste gas reaction end 26 of the heater 25 so that the products, such as, the SiO2 powders, the WO2 powders, the BO2 powders and the F2 gas, are generated after the high temperature sintering process in the reaction chamber 21. When an air flow in the reaction chamber 21 pushes the products to move to the bottom edge 261 of the waste gas reaction end 26, the products collide with the aerosolised water molecules 13 sprayed from the nozzle 32. Thus, the SiO2 powders, the WO2 powders and the BO2 powders combined with the aerosolised water molecules 13 to make their tiny particle become smaller and to accelerate the dissolution rate of F2 gas dissolved in water by using the aerosolised water molecules 13 for facilitating the rear stage washing program to capture and scrub. The component 28 is a washing tower and the component 29 is an exhaust orifice.
  • Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that any other possible modifications and variations can be made without departing from the scope of the invention as hereinafter claimed.

Claims (9)

We claim:
1. A device for capturing a sintered product after sintering a waste gas in a semiconductor manufacturing process, comprising:
a cover disposed at a top of a reaction chamber formed on a waste gas treatment tank;
a waste gas introducing pipe and a heater respectively disposed in the reaction chamber, a waste gas reaction end being formed at the heater in the reaction chamber corresponding to an outlet of the waste gas introducing pipe;
a ring-shaped water disk disposed between the cover and the waste gas treatment tank, an inlet pipe located outside of the reaction chamber being formed on the ring-shaped water disk; and
a plurality of nozzles spaced apart at a circumferential distance distributed in the reaction chamber,
wherein the plurality of nozzles are disposed between the waste gas reaction end and a tank wall around the reaction chamber.
2. The device for capturing a sintered product according to claim 1, wherein the waste gas introducing pipe and the heater are respectively disposed on the cover and inserted into the reaction chamber.
3. The device for capturing a sintered product according to claim 1, wherein the heater is a flame heater for forming a flame vent at the waste gas reaction end to provide a flame for sintering the waste gas from the waste gas introducing pipe.
4. The device for capturing a sintered product according to claim 1, wherein the heater is a hot rod for sintering the waste gas from the waste gas introducing pipe at the waste gas reaction end.
5. The device for capturing a sintered product according to claim 1, wherein a water wall is formed around a tank wall of the reaction chamber, and the aerosolised water molecules are diffusion distributed between a bottom edge of a waste gas reaction end and the water wall.
6. The device for capturing a sintered product according to claim 1, wherein a water driver is fluidly connected to the inlet pipe of the ring-shaped water disk, and the water driver comprises an aerosol generator of water molecules.
7. The device for capturing a sintered product according to claim 1, wherein a plurality of water columns protruding from ring-shaped water disk and spaced apart at a circumferential distance, the plurality of nozzles are formed at bottom of the water columns and regarding the bottom edge of the waste gas reaction end it is a gap formed between the nozzle and the waste gas reaction end.
8. The device for capturing a sintered product according to claim 1, wherein a water passage for fluidly connecting between the inlet pipe and the plurality of nozzles of the water columns is formed in the ring-shaped water disk.
9. The device for capturing a sintered product according to claim 1, wherein the product comprises a SiO2 powder, a WO2 powder, a BO2 powder and a F2 gas.
US16/169,870 2016-07-18 2018-10-24 Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process Abandoned US20190063744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/169,870 US20190063744A1 (en) 2016-07-18 2018-10-24 Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW105122615 2016-07-18
TW105122615A TWI637780B (en) 2016-07-18 2016-07-18 Method and device for capturing products after sintering reaction of semiconductor process exhaust gas
US15/271,174 US10422528B2 (en) 2016-07-18 2016-09-20 Method of capturing sintered product after sintering waste gas in semiconductor manufacturing process
US16/169,870 US20190063744A1 (en) 2016-07-18 2018-10-24 Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/271,174 Division US10422528B2 (en) 2016-07-18 2016-09-20 Method of capturing sintered product after sintering waste gas in semiconductor manufacturing process

Publications (1)

Publication Number Publication Date
US20190063744A1 true US20190063744A1 (en) 2019-02-28

Family

ID=60940710

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/271,174 Expired - Fee Related US10422528B2 (en) 2016-07-18 2016-09-20 Method of capturing sintered product after sintering waste gas in semiconductor manufacturing process
US16/169,870 Abandoned US20190063744A1 (en) 2016-07-18 2018-10-24 Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/271,174 Expired - Fee Related US10422528B2 (en) 2016-07-18 2016-09-20 Method of capturing sintered product after sintering waste gas in semiconductor manufacturing process

Country Status (3)

Country Link
US (2) US10422528B2 (en)
CN (1) CN107626173A (en)
TW (1) TWI637780B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667061B (en) * 2018-08-15 2019-08-01 東服企業股份有限公司 Exhaust gas introduction device
CN112827341B (en) * 2020-12-25 2022-05-17 北京京仪自动化装备技术股份有限公司 Waste gas treatment system of semiconductor process and waste gas treatment method thereof
CN113041810B (en) * 2020-12-30 2022-08-30 北京京仪自动化装备技术股份有限公司 Exhaust gas treatment system
TWI814594B (en) * 2022-09-30 2023-09-01 銳澤實業股份有限公司 Filtration device and method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO790649L (en) * 1978-02-27 1979-08-28 Smit Ovens Nijmegen Bv FACILITIES FOR THE generation of inert combustion gases
US5955037A (en) * 1996-12-31 1999-09-21 Atmi Ecosys Corporation Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
US6423284B1 (en) * 1999-10-18 2002-07-23 Advanced Technology Materials, Inc. Fluorine abatement using steam injection in oxidation treatment of semiconductor manufacturing effluent gases
TW482038U (en) * 2001-06-26 2002-04-01 Orient Service Co Ltd Semiconductor exhaust treatment device capable of preventing dirt and erosion
US7972582B2 (en) * 2001-12-04 2011-07-05 Ebara Corporation Method and apparatus for treating exhaust gas
KR100623368B1 (en) * 2005-09-02 2006-09-12 크린시스템스코리아(주) Direct burn-wet scrubber for semiconductor manufacture equipment
TWM423583U (en) * 2011-10-06 2012-03-01 Orient Service Co Ltd Oxygenation and heat supply apparatus for purifying waste gas from semiconductor process
TWM520410U (en) * 2015-11-26 2016-04-21 Orient Service Co Ltd Purification device for fluoride in semiconductor process exhaust gas
TWM530691U (en) * 2016-07-18 2016-10-21 Orient Service Co Ltd Device of capturing product after exhaust gas sintering reaction of semiconductor process

Also Published As

Publication number Publication date
CN107626173A (en) 2018-01-26
TW201803639A (en) 2018-02-01
US20180017254A1 (en) 2018-01-18
TWI637780B (en) 2018-10-11
US10422528B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
US20190063744A1 (en) Device of capturing sintered product after sintering waste gas in semiconductor manufacturing process
JP2002543957A (en) Exhaust gas flow treatment system with practical utility for oxidation treatment of semiconductor manufacturing exhaust gas
CN109821373A (en) A kind of plasma emission-control equipment and method
JP2009540126A (en) Method and apparatus for removing fluorine from a gas stream
TWI230094B (en) Method for exhaust treatment of perfluoro compounds
CN108043183A (en) A kind of equipment for treating industrial waste gas
CN103055693B (en) Flue gas cleaning tower and flue gas cleaning method thereof
CN102512894A (en) Spray-method setting machine waste gas and dust cleaning device and method thereof
CN105561768B (en) The device of arsenic is reclaimed from Flue Gas of Nonferrous Smelting
CN101445852A (en) Converter gas wet cooling and dedusting method
CN104353335B (en) Plasma desulfurization, denitration and dust removing device
CN110090538A (en) A kind of oxyradical wet process of FGD method of denitration
TWM530691U (en) Device of capturing product after exhaust gas sintering reaction of semiconductor process
TWI599395B (en) Method and device for purifying fluoride in semiconductor process exhaust gas
WO2002002210A1 (en) Water-ammonia mixture sprayer and exhaust gas desulfurizer using the same
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN103657375A (en) Method and system for removing trace SO2 in tail gas by gas phase oxidation
CN104896488B (en) A kind of system processing waste gas generated by burning garbage
CN205586816U (en) Low concentration organic waste gas purifying makes up equipment
CN103816778A (en) Synergic removal method for multiphase contaminant in sintering flue gas
KR101609361B1 (en) Metal surface treatment of hazardous gas and dust generated during removal device
CN104056547A (en) Apparatus And Method For Treating Perfluorocompounds
CN203432460U (en) Dirt cleaning device of air preheater
CN2633410Y (en) Full fluoride waste gas plasma processing device
CN206853441U (en) A kind of smoke processing system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE