US20190063336A1 - Air shutoff swing gate valve - Google Patents

Air shutoff swing gate valve Download PDF

Info

Publication number
US20190063336A1
US20190063336A1 US16/173,019 US201816173019A US2019063336A1 US 20190063336 A1 US20190063336 A1 US 20190063336A1 US 201816173019 A US201816173019 A US 201816173019A US 2019063336 A1 US2019063336 A1 US 2019063336A1
Authority
US
United States
Prior art keywords
valve
swing gate
rocker arm
shaft
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/173,019
Inventor
Kamyar Molavi
Ken McClymonds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amot Controls LLC
Original Assignee
Amot Controls LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amot Controls LLC filed Critical Amot Controls LLC
Priority to US16/173,019 priority Critical patent/US20190063336A1/en
Assigned to AMOT CONTROLS CORP. reassignment AMOT CONTROLS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEN MCCLYMONDS, MOLAVI, KAMYAR
Publication of US20190063336A1 publication Critical patent/US20190063336A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/12Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit
    • F02D9/14Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit the members being slidable transversely of conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/04Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by mechanical control linkages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/003Actuating devices; Operating means; Releasing devices operated without a stable intermediate position, e.g. with snap action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/56Mechanical actuating means without stable intermediate position, e.g. with snap action
    • F16K31/563Mechanical actuating means without stable intermediate position, e.g. with snap action for rotating or pivoting valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator

Definitions

  • the present invention relates to an air shutoff valve, for example, to prevent uncontrolled runaway of the engine.
  • Diesel engines in the presence of combustible gases in the atmosphere, occasionally enter a runaway condition in which the engine, without a proper device to mitigate this problem, can enter an uncontrolled acceleration. In this condition, the engine experiences overspeed and, if not stopped, the engine can reach speeds that can result in destruction and/or catastrophic engine failure, and personal injury.
  • causes of runaway including, for example, a faulty engine governor, engine overheating or the ingestion of unregulated hydrocarbons into the combustion chamber through the intake air.
  • Such hydrocarbons may be from an external source such as airborne gas, or from the engine itself due to a malfunction such as failure of turbocharger oil seals.
  • a conventional way to stop a diesel engine is to stop the flow of fuel to the combustion chamber.
  • an alternate method must be employed to stop a diesel engine in the event of runaway.
  • the most common method, used for many years, involves blocking the air supply to the combustion chamber of the engine. Once deprived of oxygen, the runaway ceases. Accordingly, safety valves which cut off the air supply to the engine have been developed to shut off the engine in such a situation.
  • shut-off valve placed in the air intake to the engine employs a swing gate valve that is spring biased to be in a closed position that blocks air supply to the combustion chamber.
  • the spring loaded valve is held in an open position by a trip mechanism that is manually cocked to hold the valve in the open position.
  • a solenoid or by other appropriate device may be used to trip the trip mechanism to close the valve.
  • the open position there is an unobstructed air supply to the engine.
  • the device Upon runaway, the device is engaged (or disengaged), and the valve snaps into its closed position, thus cutting off the air supply to the combustion chamber, thereby starving the engine of oxygen such that the engine stalls.
  • An air shutoff swing gate valve for an engine includes a valve body having an air passage where the air passage is for supplying air to an engine.
  • the valve includes a valve swing gate that is pivotable on a swing arm that is pivotally disposed adjacent to the valve body.
  • the swing gate is pivotable adjacent to the air passage from an open position, wherein the swing gate is positioned adjacent to the air passage to provide for free flow of air through the air passage, to a closed position, wherein the swing gate is positioned within the air passage to substantially close off the air passage.
  • the valve further includes an actuation assembly having an actuation housing and a trigger assembly.
  • the actuation housing may be integral to the valve body.
  • the actuation housing is disposed on the valve body.
  • a pivotable shaft is provided having a longitudinal axis.
  • the shaft extends from the actuation assembly to the swing arm.
  • the swing arm is disposed on the shaft such that rotation of the shaft about its longitudinal axis causes rotation of the swing arm to move the swing gate between its open and closed positions.
  • a reset handle is disposed on the shaft. Rotation of the reset handle rotates the shaft and causes the swing gate to move from its closed position to its open position.
  • a spring such as a torsion spring, rotationally biases the shaft about its longitudinal axis to urge the swing gate toward its closed position.
  • the trigger assembly is for securing the shaft such that the swing gate is held in its open position and is also for triggering the shaft to rotate due to biasing from the spring.
  • the trigger assembly and biasing spring cause the swing gate to move from the open position to the closed position.
  • the trigger assembly includes an actuator disposed at a first end of the actuation housing.
  • the actuator has an actuator shaft.
  • a pivotable cam is disposed in the actuation housing and disposed on the pivotable shaft such that rotation of the pivotable cam causes rotation of the pivotable shaft.
  • the cam has a sear point and a cam contact surface.
  • a trigger rocker arm is disposed in the actuation housing where the trigger rocker arm has a first end pivotally attached to actuator shaft of the actuator, a second end pivotally attached to a second end of the actuation housing, and a curved cam surface adjacent to the second end of the trigger rocker arm.
  • the curved cam surface has a notch to receive the sear point of the cam.
  • the cam surface is for contacting the cam contact surface such that rotational movement of the reset handle against the bias of the spring causes the cam contact surface of the pivotable cam to follow the curved cam surface of the trigger rocker arm to cause the rocker arm to rotate about its second end to a position when the sear point is received in the notch.
  • Actuation of the actuator to cause movement of the actuator shaft causes the first end of the rocker arm to move such that the rocker arm pivots about the second end of the rocker arm away from the cam such that the sear point of the cam is released from notch of the rocker arm.
  • the spring then causes the pivotable shaft to rotate about its longitudinal axis to move the swing gate to its closed position.
  • the actuator may be, for example, mechanical, electro-mechanical, hydraulic, pneumatic, piezo, or a solenoid.
  • a switch may be provided that is connected to a display that indicates when the swing gate is in its open and closed positions. The switch may be adjacent to the cam wherein rotation of the cam activates and deactivates the switch.
  • a manual override device may be provided to provide for manual tripping of the swing gate.
  • the manual override device may include an override device shaft slidably disposed in an aperture in the actuator housing adjacent to the actuator.
  • the override device shaft is substantially parallel to an axis of movement of the actuator shaft.
  • the override device shaft has a first end and a second end. The first end is disposed outside the actuator housing and has a handle for manual movement of the override device shaft through the aperture.
  • the second end is disposed adjacent to the first end of the rocker arm, such that manual movement of the override device shaft causes substantially identical movement of the rocker arm as the movement caused by the actuator shaft.
  • This manual override can also be applied to the second embodiment described below.
  • a second preferred embodiment of the air shutoff swing gate valve of the present invention is also provided.
  • This embodiment is directed to a valve that includes a valve body, a valve swing gate, an actuation assembly, a pivotable shaft, a reset handle and a spring as described above with respect to the first embodiment.
  • the trigger assembly is somewhat different.
  • an actuator is disposed at a first end of the actuation housing, the actuator having an actuator shaft.
  • a pivotable cam is disposed in the actuation housing adjacent to a second end of the actuation housing and disposed on the pivotable shaft such that rotation of the pivotable cam causes rotation of the pivotable shaft.
  • the cam has a notch and a cam surface.
  • a trigger rocker arm is disposed in the actuation housing.
  • the trigger rocker arm has a first end pivotally attached to actuator shaft of the actuator, a central portion pivotally attached to the actuation housing between the pivotable cam and the actuator, and a sear point and a cam contact surface at a second end of the trigger rocker arm.
  • the sear point is for receipt in the notch of the cam.
  • the cam surface of the cam is for contacting the cam contact surface of the trigger rocker arm. Rotational movement of the reset handle against the bias of the spring causes the cam contact surface of the trigger rocker arm to follow the cam surface of the cam to cause the rocker arm to rotate about its central portion to a position until the sear point is received in the notch.
  • Actuation of the actuator to cause movement of the actuator shaft causes the first end of the rocker arm to move such that the rocker arm pivots about the central portion of the rocker arm to cause the second end of the trigger rocker arm to rotate away from the notch such that the sear point of the trigger rocker arm is released from notch of the cam.
  • the spring causes the shaft to rotate about its longitudinal axis to move the swing gate to its closed position.
  • the actuator may be, for example, mechanical, electro-mechanical, hydraulic, pneumatic, piezo, or a solenoid.
  • a switch may be provided that is connected to a display that indicates when the swing gate is in its open and closed positions. The switch may be adjacent to the cam wherein rotation of the cam activates and deactivates the switch.
  • a manual override device may be provided for manual tripping of the swing gate.
  • the manual override device may include an override device shaft slidably disposed in an aperture in the actuator housing adjacent to the actuator.
  • the override device shaft is coaxial with the actuator shaft and has a first end and a second end. The first end is disposed outside the actuator housing and has a handle for manual movement of the override device shaft through the aperture.
  • the second end is disposed on the actuator shaft such that manual movement of the override device shaft causes substantially identical movement of the rocker arm as the movement caused by the actuator shaft.
  • FIG. 1 is a side, elevation view of an air shutoff swing gate valve for an engine in accordance with a first preferred embodiment of the present invention
  • FIG. 2 is a simplified, cross-sectional view of the air shutoff swing valve of FIG. 1 , taken substantially along lines II-II of FIG. 1 ;
  • FIG. 3 is a partial, isometric view of an actuation mechanism of the air shutoff swing gate valve for an engine of FIG. 1 , shown with its cover removed for clarity;
  • FIG. 4 is a rear, elevation view of the air shutoff swing gate valve for an engine of FIG. 1 , shown with the valve in its open position;
  • FIG. 5 is a front, elevation view of the actuation mechanism of the air shutoff swing gate valve for an engine of FIG. 1 , shown with the valve in its open position, shown with its cover removed for clarity;
  • FIG. 6 is a rear, elevation view of the air shutoff swing gate valve for an engine of FIG. 1 , shown with the valve in its closed position;
  • FIG. 7 is a front, elevation view of the actuation mechanism of the air shutoff swing gate valve for an engine of FIG. 1 , shown with the valve in its closed position, shown with its cover removed for clarity;
  • FIG. 8 is a side, elevation view of an air shutoff swing gate valve for an engine in accordance with a second preferred embodiment of the present invention.
  • FIG. 9 is a rear, isometric view of the air shutoff swing gate valve for an engine of FIG. 8 , shown with the valve in its closed position;
  • FIG. 10 is a rear, isometric view of the air shutoff swing gate valve for an engine of FIG. 8 , shown with the valve in its open position;
  • FIG. 11 is an isometric view of an actuation mechanism of the air shutoff swing gate valve of FIG. 8 ;
  • FIG. 12 is a front isometric view of the actuation mechanism of FIG. 11 , shown set for the valve to be in an open position, shown with its cover removed for clarity, and
  • FIG. 13 is a front isometric view of the actuation mechanism of FIG. 11 , shown set for the valve to be in a closed position, shown with its cover removed for clarity.
  • First and second preferred embodiments are provided.
  • the present invention is directed to a swing gate valve design for use as an emergency diesel engine air shutoff swing gate valve.
  • the embodiments are designed to operate over a wide range of on-engine intake air temperatures, ranging from about ⁇ 40 degrees F. ( ⁇ 40 degrees C.) to about +600 degrees F. (+316 degrees C.), and elevated pressures (about 4 bar gauge) associated with, for example, post-turbocharger, pre-intercooler installation.
  • the valves provide a complete engine stop by providing an airtight shut-off to the intake manifold, achieved by use of a gate, which is attached to an actuating mechanism by an arm.
  • the swing gate valves are designed to be assembled as part of an intake manifold, for use as an emergency diesel engine air intake shutoff valve.
  • the basic concept of the valve is that it has a manually latched gate held in the open (i.e., run) position by an actuation mechanism.
  • the open position is defined as the gate being generally outside the intake airflow, allowing the free passage of intake air into the engine.
  • the latched valve remains in the open position until such time as the valve is tripped, whereby the gate swings under the action of a spring into the closed position, blocking the air flow passage, and creating a generally airtight seal with the valve body.
  • the restriction created by the closed valve fully throttles the engine, resulting in engine shutdown.
  • the design is similar to an existing design by AMOT/RODA DEACO, such as Models 2190 and 2102 , with enhancements for use over wider temperatures and pressures and with an improved, enclosed trigger mechanism.
  • the trigger housing is sealed against both the environment and the charge air pressure.
  • the gate is preferably made from bronze.
  • the gate is preferably loosely attached to the arm. There is substantially no possibility of fasteners working loose and entering the intake air stream of the engine.
  • the gate is assembled to the gate arm via a pin, which is contained in place to ensure that it does not work loose.
  • Two seals are preferably used to prevent the charge air from leaking to the atmosphere or into the trigger housing as the shaft protrudes from the valve housing.
  • the actuation assembly including the trigger assembly, is contained within a separate housing to the valve body.
  • the trigger mechanism contains a cam and trigger arm that latch together when the gate is in the open position.
  • the actuation assembly moving parts are connected to the gate via a linkage mechanism, which allows for manufacturing tolerances and ensures the gate is properly oriented in the open or closed position.
  • electric actuation is preferably used. That is, preferably, an electronic solenoid provides the actuation force.
  • the trigger mechanism is tripped when the solenoid coil is energized and provides the actuation means to the actuator trigger mechanism.
  • the valve is tripped to the closed position, when the solenoid is energized.
  • an air cylinder can be utilized as part of a pneumatic actuator to provide the tripping force.
  • the mechanism is tripped and the spring provides the force to rotate the gate into the closed position once the cam and trigger arm are unlatched.
  • the trigger mechanism also preferably incorporates a manual override button to manually trip the valve. The manual override button is present regardless of actuation type.
  • a pneumatic actuator is preferably used which is an air cylinder and piston assembly.
  • This actuator provides the actuation means to the actuator trigger mechanism.
  • the valve is tripped to the closed position when the air cylinder is pressurized.
  • the valve trips upon loss of air pressure.
  • an electric solenoid can be utilized to provide the tripping force.
  • the mechanism is tripped and a spring provides the force to rotate the gate into the closed position. Once the cam and trigger arm are unlatched.
  • the trigger mechanism also incorporates a manual override button to manually trip the valve. The manual override button is present regardless of actuation type.
  • the air shutoff swing gate valve of the present invention is designed to be assembled as part of the intake manifold of diesel engine.
  • the basic concept of the valve is that it utilizes a manually latched gate held in the open (or run) position by an actuation trigger mechanism.
  • the open or run position means that the swing gate allows for free passage of intake air into the engine.
  • the latched valve remains in the open position until such time as the valve is tripped, whereby the swing gate rotates, under the action of a spring, creating an airtight seal with the valve body.
  • the restriction created by the closed disc fully throttles the engine, resulting in an engine shut down.
  • FIGS. 1-7 an air shutoff swing gate valve 10 for an engine in accordance with a first preferred embodiment of the present invention.
  • the air shutoff swing gate valve 10 generally includes a valve body 12 , a valve swing gate 14 , an actuation assembly 16 , a pivotable shaft 18 , a reset handle 20 , and a spring 22 (for example, a torsion spring, as shown).
  • the valve body 12 has an air passage 24 therein for supplying air to an engine to which the air shutoff valve 10 is attached.
  • the swing gate 14 is pivotable on a swing arm 26 that is pivotally disposed.
  • the swing gate 14 is pivotable from an open position (see FIG. 4 ) wherein the swing gate 14 is positioned adjacent to the air passage 24 to provide for free flow of air through the air passage 24 , to a closed position (see FIG. 6 ) wherein the swing gate 14 is positioned within the air passage 24 to substantially close off the air passage 24 .
  • the actuation assembly 16 includes an actuation housing 28 and a trigger assembly 30 .
  • the actuation housing 28 is preferably disposed on the valve body 12 by fasteners 32 (e.g. the threaded holes shown in combination with screws).
  • the pivotable shaft 18 has a longitudinal axis A (see FIG. 1 ) and extends from the actuation assembly 16 at least to the swing arm 26 .
  • the swing arm 26 is disposed on the shaft 18 such that rotation of the shaft 18 about its longitudinal axis A causes rotation of the swing arm 26 to move the swing gate 14 between its open (see FIG. 4 ) and closed positions (see FIG. 6 ).
  • the reset handle 20 is disposed on the shaft 18 such that rotation of the reset handle 20 to rotate the shaft 18 causes the swing gate 14 to move from its closed position to its open position.
  • the spring 22 rotationally biases the shaft 18 about its longitudinal axis A to urge the swing gate 14 toward its closed position.
  • the trigger assembly 30 is for securing shaft 18 such that the swing gate 14 is held in its open position (see FIG. 4 ) and for triggering the shaft 18 to rotate due to biasing from the spring 22 to cause the swing gate 14 to move from the open position to the closed position.
  • the trigger assembly 30 generally includes an actuator 36 (preferably linear), a pivotable cam 38 , and a trigger rocker arm 40 (see FIGS. 3, 5 and 7 ).
  • the actuator 36 is disposed at a first end 42 of the actuation housing 28 and has an actuator shaft 44 .
  • the pivotable cam 38 is disposed in the actuation housing 28 and is disposed on the pivotable shaft 18 such that rotation of the pivotable cam 38 causes rotation of the pivotable shaft 18 .
  • the pivotable cam 38 also has a sear point 46 and a cam contact surface 48 .
  • the trigger rocker arm 40 is disposed in the actuation housing 28 and has a first end 50 pivotally attached to actuator shaft 44 of the actuator 36 , a second end 52 pivotally attached to a second end 54 of the actuation housing 28 , and a curved cam surface 56 adjacent to the second end 52 of the trigger rocker arm 40 .
  • the curved cam surface 56 has a notch 58 (best seen in FIG. 7 ) to receive the sear point 46 of the cam 38 .
  • the cam surface 56 of the trigger rocker arm 40 is for contacting the cam contact surface 48 of the cam 38 such that rotational movement of the reset handle 20 against the bias of the spring 22 causes the cam contact surface 48 of the pivotable cam 38 to follow the cam surface 56 of the trigger rocker arm 40 to cause the rocker arm 40 to rotate about its second end 52 to a position when the sear point 46 is received in the notch 58 . See FIGS. 1, 2, 4 and 6 .
  • Actuation of the actuator 36 to cause (preferably, but not limited to, linear) movement of the actuator shaft 44 causes the first end 50 of the rocker arm 40 to move such that the rocker arm 40 pivots about the second end 52 of the rocker arm 40 away from the cam 38 such that the sear point 46 of the cam 38 is released from notch 58 of the rocker arm 40 , thereby allowing the spring 22 to cause the pivotable shaft 18 to rotate about its longitudinal axis to move the swing gate to its closed position.
  • the actuator 36 may be of substantially any type. It is preferably a linear actuator, but any actuator or solenoid or similar device that provides an appropriate movement of the rocker arm 40 is considered to be within the scope of the present invention.
  • any actuator or solenoid or similar device that provides an appropriate movement of the rocker arm 40 is considered to be within the scope of the present invention.
  • mechanical, electro-mechanical, solenoid, hydraulic, pneumatic, and piezo actuators could all work appropriately.
  • a switch 60 may be provided that is connected to a display to indicate when the swing gate 14 is in its open and closed positions.
  • the switch 60 may be, for example, adjacent to the cam 38 wherein rotation of the cam 38 activates and deactivates the switch 60 .
  • the switch 60 may be, for example, an electro-magnetic switch, a mechanical switch or Hall-effect switch.
  • a manual override device 62 may be provided to trip the trigger assembly 30 to manually cause the swing gate 14 to move to the closed position to block air to the engine.
  • the manual override device 62 includes an override device shaft 64 slidably disposed in an aperture in the actuator housing 28 adjacent to the actuator 36 .
  • the override device shaft 64 is substantially parallel to an axis of movement of the actuator shaft 44 .
  • the override device shaft 64 has a first end 68 and a second end 70 .
  • the first end 68 is disposed outside the actuator housing 28 and has a handle 72 for manual movement of the override device shaft 64 through the aperture.
  • the second end 70 is disposed adjacent to the first end 50 of the rocker arm 40 such that manual movement of the override device shaft 64 causes substantially identical movement of the rocker arm 40 as the movement caused by the actuator shaft 44 .
  • the manual override device 62 may be biased by a spring 74 to a position where it does not contact the rocker arm 40 .
  • the air shutoff swing gate valve 110 for an engine in accordance with a second preferred embodiment of the present invention.
  • the air shutoff swing gate valve 110 generally includes a valve body 112 , a valve swing gate 114 , an actuation assembly 116 , a pivotable shaft 118 , a reset handle 120 , and a spring 122 .
  • the valve body 112 has an air passage 124 therein for supplying air to an engine to which the air shutoff valve 110 is attached.
  • the swing gate 114 is pivotable on a swing arm 126 that is pivotally disposed adjacent to the valve body 112 .
  • the swing gate 14 is pivotable from an open position (see FIG. 10 ) wherein the swing gate 114 is positioned adjacent to the air passage 124 to provide for free flow of air through the air passage 124 , to a closed position (see FIG. 9 ) wherein the swing gate 114 is positioned within the air passage 124 to substantially close off the air passage 124 .
  • the actuation assembly 116 includes an actuation housing 128 and a trigger assembly 130 .
  • the actuation housing 128 is preferably disposed on the valve body 112 by fasteners 132 .
  • a pivotable shaft 118 has a longitudinal axis B (see FIG. 11 ) and extends from the actuation assembly 116 at least to the swing arm 126 .
  • the swing arm 126 is disposed on the shaft 118 such that rotation of the shaft 118 about its longitudinal axis B causes rotation of the swing arm 126 to move the swing gate 114 between its open (see FIG. 10 ) and closed positions (see FIG. 9 ).
  • the reset handle 120 is disposed on the shaft 118 such that rotation of the reset handle 120 to rotate the shaft 118 causes the swing gate 114 to move from its closed position to its open position.
  • the spring 122 rotationally biases the shaft 118 about its longitudinal axis B to urge the swing gate 114 toward its closed position (see FIG. 9 ).
  • the trigger assembly 130 is for securing shaft 118 such that the swing gate 114 is held in its open position (see FIG. 10 ) and for triggering the shaft 118 to rotate due to biasing from the spring 122 to cause the swing gate 114 to move from the open position to the closed position (see FIG. 9 ).
  • the trigger assembly 130 generally includes an actuator 136 (preferably linear), a pivotable cam 138 , and a trigger rocker arm 140 .
  • the actuator 136 is disposed at a first end 142 of the actuation housing 128 and has an actuator shaft 144 .
  • the pivotable cam 138 is disposed in the actuation housing 128 and is disposed on the pivotable shaft 118 such that rotation of the pivotable cam 138 causes rotation of the pivotable shaft 118 .
  • the pivotable cam 138 also has a notch 158 and a cam surface 156 .
  • the trigger rocker arm 140 is disposed in the actuation housing 128 and has a first end 150 pivotally attached to actuator shaft 144 of the actuator 136 .
  • the trigger rocker arm 140 also has a central portion 147 pivotally attached to the actuation housing 128 between the pivotable cam 138 and the actuator 136 .
  • the trigger rocker arm has the sear point 146 and the cam contact surface 148 at its second end 152 .
  • the sear point 146 is for receipt in the notch 158 of the cam 138 .
  • the cam surface 156 of the pivotable cam 138 is for contacting the cam contact surface 148 of the trigger rocker arm 140 such that manual rotational movement of the reset handle 120 against the bias of the spring 122 causes the cam contact surface 148 of the trigger rocker arm 140 to follow the cam surface 156 of the pivotable cam 138 to cause the rocker arm 140 to rotate about its central portion 147 to a position until the sear point 146 is received and held in the notch 158 .
  • Actuation of the actuator 136 to cause linear movement of the actuator shaft 144 causes the first end 150 of the rocker arm 140 to move such that the rocker arm 140 pivots about the central portion 147 of the rocker arm 140 to cause the second end 152 of the rocker arm 140 to rotate away from the notch 158 such that the sear point 146 of the trigger rocker arm 140 is released from notch 158 of the cam 138 , wherein the spring 122 causes the shaft 118 to rotate about its longitudinal axis B to move the swing gate 114 to its closed position.
  • the actuator 136 may be of substantially any type. It is preferably a linear actuator, but any actuator or solenoid or similar device that provides an appropriate movement of the rocker arm 140 is considered to be within the scope of the present invention.
  • any actuator or solenoid or similar device that provides an appropriate movement of the rocker arm 140 is considered to be within the scope of the present invention.
  • mechanical, electro-mechanical, hydraulic, pneumatic, and piezo actuators could all work appropriately.
  • a switch 160 may be provided that is connected to a display to indicate when the swing gate 114 is in its open and closed positions.
  • the switch 160 may be adjacent to the cam 138 wherein rotation of the cam 138 activates and deactivates the switch 160 .
  • the switch 160 may be, for example, an electromagnetic switch, a mechanical switch, or Hall-effect switch.
  • a manual override device 162 may be provided to trip the trigger assembly 130 to provide for manual tripping of the swing gate 114 to move it to the closed position to block air to the engine.
  • the manual override device 162 includes an override device shaft 164 slidably disposed in an aperture in the actuator housing 128 adjacent to the actuator 136 .
  • the override device shaft 164 is coaxial with the actuator shaft 144 .
  • the override device shaft 164 has a first end 168 and a second end 170 .
  • the first end 168 is disposed outside the actuator housing 128 and has a handle 172 (or button or any portion available to manually grip) for manual movement of the override device shaft 164 through the aperture.
  • the second end 170 is disposed on the actuator shaft 144 such that manual movement of the override device shaft 144 causes substantially identical movement of the rocker arm 140 as the movement caused by the actuator shaft 144 .
  • valve body 12 , 112 is aluminum, but any suitable material may be used.
  • Marmon flanges may be used to connect the valve 10 to the engine, however, any suitable flange may be used.
  • the gate is manufactured from bronze alloy.
  • the present invention operates in either “hard installations,” such as integral with aluminum piping, or “soft installations,” such as along rubber hoses.
  • “hard installations” such as integral with aluminum piping
  • “soft installations” such as along rubber hoses.

Abstract

An air shutoff valve includes a passage for supplying air, a swing gate, a shaft attached to a reset handle, and a spring to urge the gate toward its closed position. A trigger assembly secures the shaft and gate in the open position and includes an actuator, a cam, and a rocker arm. A cam surface of the arm has a notch to receive a sear point of the cam. Movement of the handle against the spring causes the cam contact surface of the cam to follow the cam surface to cause the arm to rotate such that the sear point is received in the notch. Actuating the actuator causes the arm to pivot away from the cam such that the sear point is released from the notch, wherein the spring causes the shaft to move the gate to its closed position.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/042,954 filed on Feb. 12, 2016, which is a continuation of U.S. patent application Ser. No. 13/236,020 filed on Sep. 19, 2011. The contents of the above-identified applications are hereby incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to an air shutoff valve, for example, to prevent uncontrolled runaway of the engine. Diesel engines, in the presence of combustible gases in the atmosphere, occasionally enter a runaway condition in which the engine, without a proper device to mitigate this problem, can enter an uncontrolled acceleration. In this condition, the engine experiences overspeed and, if not stopped, the engine can reach speeds that can result in destruction and/or catastrophic engine failure, and personal injury. There are a number of causes of runaway including, for example, a faulty engine governor, engine overheating or the ingestion of unregulated hydrocarbons into the combustion chamber through the intake air. Such hydrocarbons may be from an external source such as airborne gas, or from the engine itself due to a malfunction such as failure of turbocharger oil seals.
  • A conventional way to stop a diesel engine is to stop the flow of fuel to the combustion chamber. However, an alternate method must be employed to stop a diesel engine in the event of runaway. The most common method, used for many years, involves blocking the air supply to the combustion chamber of the engine. Once deprived of oxygen, the runaway ceases. Accordingly, safety valves which cut off the air supply to the engine have been developed to shut off the engine in such a situation.
  • One type of shut-off valve placed in the air intake to the engine employs a swing gate valve that is spring biased to be in a closed position that blocks air supply to the combustion chamber. The spring loaded valve is held in an open position by a trip mechanism that is manually cocked to hold the valve in the open position. A solenoid or by other appropriate device may be used to trip the trip mechanism to close the valve. When in the open position, there is an unobstructed air supply to the engine. Upon runaway, the device is engaged (or disengaged), and the valve snaps into its closed position, thus cutting off the air supply to the combustion chamber, thereby starving the engine of oxygen such that the engine stalls.
  • Shutoff valves used in the past were susceptible to damage from high vibration loads and excessively high temperatures. The present invention provides improvements to past designs and provides a valve capable of experiencing higher vibration and temperature.
  • All references cited herein are incorporated herein by reference in their entireties.
  • BRIEF SUMMARY OF THE INVENTION
  • An air shutoff swing gate valve for an engine is provided that includes a valve body having an air passage where the air passage is for supplying air to an engine. The valve includes a valve swing gate that is pivotable on a swing arm that is pivotally disposed adjacent to the valve body. The swing gate is pivotable adjacent to the air passage from an open position, wherein the swing gate is positioned adjacent to the air passage to provide for free flow of air through the air passage, to a closed position, wherein the swing gate is positioned within the air passage to substantially close off the air passage. The valve further includes an actuation assembly having an actuation housing and a trigger assembly. The actuation housing may be integral to the valve body. The actuation housing is disposed on the valve body. A pivotable shaft is provided having a longitudinal axis. The shaft extends from the actuation assembly to the swing arm. The swing arm is disposed on the shaft such that rotation of the shaft about its longitudinal axis causes rotation of the swing arm to move the swing gate between its open and closed positions. A reset handle is disposed on the shaft. Rotation of the reset handle rotates the shaft and causes the swing gate to move from its closed position to its open position. A spring, such as a torsion spring, rotationally biases the shaft about its longitudinal axis to urge the swing gate toward its closed position.
  • The trigger assembly is for securing the shaft such that the swing gate is held in its open position and is also for triggering the shaft to rotate due to biasing from the spring. The trigger assembly and biasing spring cause the swing gate to move from the open position to the closed position. The trigger assembly includes an actuator disposed at a first end of the actuation housing. The actuator has an actuator shaft. A pivotable cam is disposed in the actuation housing and disposed on the pivotable shaft such that rotation of the pivotable cam causes rotation of the pivotable shaft. The cam has a sear point and a cam contact surface. A trigger rocker arm is disposed in the actuation housing where the trigger rocker arm has a first end pivotally attached to actuator shaft of the actuator, a second end pivotally attached to a second end of the actuation housing, and a curved cam surface adjacent to the second end of the trigger rocker arm. The curved cam surface has a notch to receive the sear point of the cam. The cam surface is for contacting the cam contact surface such that rotational movement of the reset handle against the bias of the spring causes the cam contact surface of the pivotable cam to follow the curved cam surface of the trigger rocker arm to cause the rocker arm to rotate about its second end to a position when the sear point is received in the notch.
  • Actuation of the actuator to cause movement of the actuator shaft causes the first end of the rocker arm to move such that the rocker arm pivots about the second end of the rocker arm away from the cam such that the sear point of the cam is released from notch of the rocker arm. The spring then causes the pivotable shaft to rotate about its longitudinal axis to move the swing gate to its closed position.
  • The actuator may be, for example, mechanical, electro-mechanical, hydraulic, pneumatic, piezo, or a solenoid. A switch may be provided that is connected to a display that indicates when the swing gate is in its open and closed positions. The switch may be adjacent to the cam wherein rotation of the cam activates and deactivates the switch.
  • Optionally, a manual override device may be provided to provide for manual tripping of the swing gate. The manual override device may include an override device shaft slidably disposed in an aperture in the actuator housing adjacent to the actuator. The override device shaft is substantially parallel to an axis of movement of the actuator shaft. The override device shaft has a first end and a second end. The first end is disposed outside the actuator housing and has a handle for manual movement of the override device shaft through the aperture. The second end is disposed adjacent to the first end of the rocker arm, such that manual movement of the override device shaft causes substantially identical movement of the rocker arm as the movement caused by the actuator shaft. This manual override can also be applied to the second embodiment described below.
  • A second preferred embodiment of the air shutoff swing gate valve of the present invention is also provided. This embodiment is directed to a valve that includes a valve body, a valve swing gate, an actuation assembly, a pivotable shaft, a reset handle and a spring as described above with respect to the first embodiment. However, in this second embodiment, the trigger assembly is somewhat different. Here, an actuator is disposed at a first end of the actuation housing, the actuator having an actuator shaft. A pivotable cam is disposed in the actuation housing adjacent to a second end of the actuation housing and disposed on the pivotable shaft such that rotation of the pivotable cam causes rotation of the pivotable shaft. The cam has a notch and a cam surface. A trigger rocker arm is disposed in the actuation housing. The trigger rocker arm has a first end pivotally attached to actuator shaft of the actuator, a central portion pivotally attached to the actuation housing between the pivotable cam and the actuator, and a sear point and a cam contact surface at a second end of the trigger rocker arm. The sear point is for receipt in the notch of the cam. The cam surface of the cam is for contacting the cam contact surface of the trigger rocker arm. Rotational movement of the reset handle against the bias of the spring causes the cam contact surface of the trigger rocker arm to follow the cam surface of the cam to cause the rocker arm to rotate about its central portion to a position until the sear point is received in the notch. Actuation of the actuator to cause movement of the actuator shaft causes the first end of the rocker arm to move such that the rocker arm pivots about the central portion of the rocker arm to cause the second end of the trigger rocker arm to rotate away from the notch such that the sear point of the trigger rocker arm is released from notch of the cam. The spring causes the shaft to rotate about its longitudinal axis to move the swing gate to its closed position.
  • The actuator may be, for example, mechanical, electro-mechanical, hydraulic, pneumatic, piezo, or a solenoid. A switch may be provided that is connected to a display that indicates when the swing gate is in its open and closed positions. The switch may be adjacent to the cam wherein rotation of the cam activates and deactivates the switch.
  • In this second embodiment, a manual override device may be provided for manual tripping of the swing gate. The manual override device may include an override device shaft slidably disposed in an aperture in the actuator housing adjacent to the actuator. The override device shaft is coaxial with the actuator shaft and has a first end and a second end. The first end is disposed outside the actuator housing and has a handle for manual movement of the override device shaft through the aperture. The second end is disposed on the actuator shaft such that manual movement of the override device shaft causes substantially identical movement of the rocker arm as the movement caused by the actuator shaft. This manual override can also be applied to the first embodiment described above.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:
  • FIG. 1 is a side, elevation view of an air shutoff swing gate valve for an engine in accordance with a first preferred embodiment of the present invention;
  • FIG. 2 is a simplified, cross-sectional view of the air shutoff swing valve of FIG. 1, taken substantially along lines II-II of FIG. 1;
  • FIG. 3 is a partial, isometric view of an actuation mechanism of the air shutoff swing gate valve for an engine of FIG. 1, shown with its cover removed for clarity;
  • FIG. 4 is a rear, elevation view of the air shutoff swing gate valve for an engine of FIG. 1, shown with the valve in its open position;
  • FIG. 5 is a front, elevation view of the actuation mechanism of the air shutoff swing gate valve for an engine of FIG. 1, shown with the valve in its open position, shown with its cover removed for clarity;
  • FIG. 6 is a rear, elevation view of the air shutoff swing gate valve for an engine of FIG. 1, shown with the valve in its closed position;
  • FIG. 7 is a front, elevation view of the actuation mechanism of the air shutoff swing gate valve for an engine of FIG. 1, shown with the valve in its closed position, shown with its cover removed for clarity;
  • FIG. 8 is a side, elevation view of an air shutoff swing gate valve for an engine in accordance with a second preferred embodiment of the present invention;
  • FIG. 9 is a rear, isometric view of the air shutoff swing gate valve for an engine of FIG. 8, shown with the valve in its closed position;
  • FIG. 10 is a rear, isometric view of the air shutoff swing gate valve for an engine of FIG. 8, shown with the valve in its open position;
  • FIG. 11 is an isometric view of an actuation mechanism of the air shutoff swing gate valve of FIG. 8;
  • FIG. 12 is a front isometric view of the actuation mechanism of FIG. 11, shown set for the valve to be in an open position, shown with its cover removed for clarity, and
  • FIG. 13 is a front isometric view of the actuation mechanism of FIG. 11, shown set for the valve to be in a closed position, shown with its cover removed for clarity.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention will be illustrated in more detail with reference to the following embodiments, but it should be understood that the present invention is not deemed to be limited thereto.
  • First and second preferred embodiments are provided. With respect to both embodiments, the present invention is directed to a swing gate valve design for use as an emergency diesel engine air shutoff swing gate valve. The embodiments are designed to operate over a wide range of on-engine intake air temperatures, ranging from about −40 degrees F. (−40 degrees C.) to about +600 degrees F. (+316 degrees C.), and elevated pressures (about 4 bar gauge) associated with, for example, post-turbocharger, pre-intercooler installation.
  • The valves provide a complete engine stop by providing an airtight shut-off to the intake manifold, achieved by use of a gate, which is attached to an actuating mechanism by an arm.
  • The swing gate valves are designed to be assembled as part of an intake manifold, for use as an emergency diesel engine air intake shutoff valve. The basic concept of the valve is that it has a manually latched gate held in the open (i.e., run) position by an actuation mechanism. The open position is defined as the gate being generally outside the intake airflow, allowing the free passage of intake air into the engine. The latched valve remains in the open position until such time as the valve is tripped, whereby the gate swings under the action of a spring into the closed position, blocking the air flow passage, and creating a generally airtight seal with the valve body. The restriction created by the closed valve fully throttles the engine, resulting in engine shutdown.
  • The design is similar to an existing design by AMOT/RODA DEACO, such as Models 2190 and 2102, with enhancements for use over wider temperatures and pressures and with an improved, enclosed trigger mechanism. The trigger housing is sealed against both the environment and the charge air pressure.
  • The gate is preferably made from bronze. The gate is preferably loosely attached to the arm. There is substantially no possibility of fasteners working loose and entering the intake air stream of the engine. The gate is assembled to the gate arm via a pin, which is contained in place to ensure that it does not work loose.
  • Two seals are preferably used to prevent the charge air from leaking to the atmosphere or into the trigger housing as the shaft protrudes from the valve housing.
  • The actuation assembly, including the trigger assembly, is contained within a separate housing to the valve body. The trigger mechanism contains a cam and trigger arm that latch together when the gate is in the open position. The actuation assembly moving parts are connected to the gate via a linkage mechanism, which allows for manufacturing tolerances and ensures the gate is properly oriented in the open or closed position.
  • With respect to the first embodiment of the present valve, electric actuation is preferably used. That is, preferably, an electronic solenoid provides the actuation force. The trigger mechanism is tripped when the solenoid coil is energized and provides the actuation means to the actuator trigger mechanism. In this configuration, the valve is tripped to the closed position, when the solenoid is energized. In an alternate design the valve can trip upon loss of charge air pressure. Further, an air cylinder can be utilized as part of a pneumatic actuator to provide the tripping force. In any case, the mechanism is tripped and the spring provides the force to rotate the gate into the closed position once the cam and trigger arm are unlatched. The trigger mechanism also preferably incorporates a manual override button to manually trip the valve. The manual override button is present regardless of actuation type.
  • With respect to the second embodiment of the present valve, a pneumatic actuator is preferably used which is an air cylinder and piston assembly. This actuator provides the actuation means to the actuator trigger mechanism. In this configuration, the valve is tripped to the closed position when the air cylinder is pressurized. In an alternate design, the valve trips upon loss of air pressure. Alternatively, an electric solenoid can be utilized to provide the tripping force. In any case, the mechanism is tripped and a spring provides the force to rotate the gate into the closed position. Once the cam and trigger arm are unlatched. The trigger mechanism also incorporates a manual override button to manually trip the valve. The manual override button is present regardless of actuation type.
  • Various means of installing the air shutoff swing gate valve in place are possible, such as hump hoses or flanges (bolted, Marmon claims, etc.) by machining the appropriate geometry on the end connections of the appropriate body casting.
  • Both embodiments of the present invention solve numerous problems, including, but not limited to, the following:
      • the valve is designed to operate over a wide range of on-engine intake air temperatures, ranging from −40 degrees F. (−40 degrees C.) to about +600 degrees F. (+316 degrees C.) and elevated pressures (up to 4 bar gauge) associated with, for example, post turbocharger, pre-intercooler installation;
      • the valve is designed to operate under the airflow rates for standard pipe sizes without any obstructions in the flow since the gate is outside the flowing air while the engine is in operation;
      • the trigger housing and valve body are sealed, utilizing gaskets and elastomeric seals;
      • the trigger mechanism requires a low actuation force to trip, thereby requiring only small pneumatic pressures, or small electric solenoid forces. This results in reduced valve weight and minimal envelope dimensions;
      • the use of a gate and arm that are loosely assembled together prevents the possibility of components working loose and entering the engine through the intake air stream;
      • use of stainless steel components allows the valve to be used in corrosive environments;
      • balance in system forces avoids the gate bouncing open on actuation, permitting undesired air flow to the engine;
      • the valve achieves a fully closed position in less than 1 second from receipt of a trip signal;
      • the design of the gate and shaft assembly parts to the valve body allows for no presence of vibration of the gate in the intake air stream, thereby minimizing the turbulence generation and resulting in stable engine operation; and
      • a vibration free reset handle and stop device allow for long lifetime, even in “hard” installations, with no hose connections.
  • The air shutoff swing gate valve of the present invention is designed to be assembled as part of the intake manifold of diesel engine. The basic concept of the valve is that it utilizes a manually latched gate held in the open (or run) position by an actuation trigger mechanism. The open or run position means that the swing gate allows for free passage of intake air into the engine. The latched valve remains in the open position until such time as the valve is tripped, whereby the swing gate rotates, under the action of a spring, creating an airtight seal with the valve body. The restriction created by the closed disc fully throttles the engine, resulting in an engine shut down.
  • Referring now to the drawing figures, wherein like part numbers refer to like elements throughout the several views, there is shown in FIGS. 1-7 an air shutoff swing gate valve 10 for an engine in accordance with a first preferred embodiment of the present invention. The air shutoff swing gate valve 10 generally includes a valve body 12, a valve swing gate 14, an actuation assembly 16, a pivotable shaft 18, a reset handle 20, and a spring 22 (for example, a torsion spring, as shown).
  • The valve body 12 has an air passage 24 therein for supplying air to an engine to which the air shutoff valve 10 is attached. The swing gate 14 is pivotable on a swing arm 26 that is pivotally disposed. The swing gate 14 is pivotable from an open position (see FIG. 4) wherein the swing gate 14 is positioned adjacent to the air passage 24 to provide for free flow of air through the air passage 24, to a closed position (see FIG. 6) wherein the swing gate 14 is positioned within the air passage 24 to substantially close off the air passage 24. The actuation assembly 16 includes an actuation housing 28 and a trigger assembly 30. The actuation housing 28 is preferably disposed on the valve body 12 by fasteners 32 (e.g. the threaded holes shown in combination with screws).
  • The pivotable shaft 18 has a longitudinal axis A (see FIG. 1) and extends from the actuation assembly 16 at least to the swing arm 26. The swing arm 26 is disposed on the shaft 18 such that rotation of the shaft 18 about its longitudinal axis A causes rotation of the swing arm 26 to move the swing gate 14 between its open (see FIG. 4) and closed positions (see FIG. 6). The reset handle 20 is disposed on the shaft 18 such that rotation of the reset handle 20 to rotate the shaft 18 causes the swing gate 14 to move from its closed position to its open position. The spring 22 rotationally biases the shaft 18 about its longitudinal axis A to urge the swing gate 14 toward its closed position.
  • The trigger assembly 30 is for securing shaft 18 such that the swing gate 14 is held in its open position (see FIG. 4) and for triggering the shaft 18 to rotate due to biasing from the spring 22 to cause the swing gate 14 to move from the open position to the closed position. The trigger assembly 30 generally includes an actuator 36 (preferably linear), a pivotable cam 38, and a trigger rocker arm 40 (see FIGS. 3, 5 and 7). The actuator 36 is disposed at a first end 42 of the actuation housing 28 and has an actuator shaft 44. The pivotable cam 38 is disposed in the actuation housing 28 and is disposed on the pivotable shaft 18 such that rotation of the pivotable cam 38 causes rotation of the pivotable shaft 18. The pivotable cam 38 also has a sear point 46 and a cam contact surface 48. The trigger rocker arm 40 is disposed in the actuation housing 28 and has a first end 50 pivotally attached to actuator shaft 44 of the actuator 36, a second end 52 pivotally attached to a second end 54 of the actuation housing 28, and a curved cam surface 56 adjacent to the second end 52 of the trigger rocker arm 40. The curved cam surface 56 has a notch 58 (best seen in FIG. 7) to receive the sear point 46 of the cam 38. The cam surface 56 of the trigger rocker arm 40 is for contacting the cam contact surface 48 of the cam 38 such that rotational movement of the reset handle 20 against the bias of the spring 22 causes the cam contact surface 48 of the pivotable cam 38 to follow the cam surface 56 of the trigger rocker arm 40 to cause the rocker arm 40 to rotate about its second end 52 to a position when the sear point 46 is received in the notch 58. See FIGS. 1, 2, 4 and 6.
  • Actuation of the actuator 36 to cause (preferably, but not limited to, linear) movement of the actuator shaft 44 causes the first end 50 of the rocker arm 40 to move such that the rocker arm 40 pivots about the second end 52 of the rocker arm 40 away from the cam 38 such that the sear point 46 of the cam 38 is released from notch 58 of the rocker arm 40, thereby allowing the spring 22 to cause the pivotable shaft 18 to rotate about its longitudinal axis to move the swing gate to its closed position.
  • The actuator 36 may be of substantially any type. It is preferably a linear actuator, but any actuator or solenoid or similar device that provides an appropriate movement of the rocker arm 40 is considered to be within the scope of the present invention. For example, mechanical, electro-mechanical, solenoid, hydraulic, pneumatic, and piezo actuators could all work appropriately.
  • A switch 60 may be provided that is connected to a display to indicate when the swing gate 14 is in its open and closed positions. The switch 60 may be, for example, adjacent to the cam 38 wherein rotation of the cam 38 activates and deactivates the switch 60. The switch 60 may be, for example, an electro-magnetic switch, a mechanical switch or Hall-effect switch.
  • A manual override device 62 may be provided to trip the trigger assembly 30 to manually cause the swing gate 14 to move to the closed position to block air to the engine. The manual override device 62 includes an override device shaft 64 slidably disposed in an aperture in the actuator housing 28 adjacent to the actuator 36. The override device shaft 64 is substantially parallel to an axis of movement of the actuator shaft 44. The override device shaft 64 has a first end 68 and a second end 70. The first end 68 is disposed outside the actuator housing 28 and has a handle 72 for manual movement of the override device shaft 64 through the aperture. The second end 70 is disposed adjacent to the first end 50 of the rocker arm 40 such that manual movement of the override device shaft 64 causes substantially identical movement of the rocker arm 40 as the movement caused by the actuator shaft 44. The manual override device 62 may be biased by a spring 74 to a position where it does not contact the rocker arm 40.
  • There is shown in FIGS. 8-13 an air shutoff swing gate valve 110 for an engine in accordance with a second preferred embodiment of the present invention. The air shutoff swing gate valve 110 generally includes a valve body 112, a valve swing gate 114, an actuation assembly 116, a pivotable shaft 118, a reset handle 120, and a spring 122.
  • The valve body 112 has an air passage 124 therein for supplying air to an engine to which the air shutoff valve 110 is attached. The swing gate 114 is pivotable on a swing arm 126 that is pivotally disposed adjacent to the valve body 112. The swing gate 14 is pivotable from an open position (see FIG. 10) wherein the swing gate 114 is positioned adjacent to the air passage 124 to provide for free flow of air through the air passage 124, to a closed position (see FIG. 9) wherein the swing gate 114 is positioned within the air passage 124 to substantially close off the air passage 124. The actuation assembly 116 includes an actuation housing 128 and a trigger assembly 130. The actuation housing 128 is preferably disposed on the valve body 112 by fasteners 132.
  • A pivotable shaft 118 has a longitudinal axis B (see FIG. 11) and extends from the actuation assembly 116 at least to the swing arm 126. The swing arm 126 is disposed on the shaft 118 such that rotation of the shaft 118 about its longitudinal axis B causes rotation of the swing arm 126 to move the swing gate 114 between its open (see FIG. 10) and closed positions (see FIG. 9). The reset handle 120 is disposed on the shaft 118 such that rotation of the reset handle 120 to rotate the shaft 118 causes the swing gate 114 to move from its closed position to its open position. The spring 122 rotationally biases the shaft 118 about its longitudinal axis B to urge the swing gate 114 toward its closed position (see FIG. 9).
  • The trigger assembly 130 is for securing shaft 118 such that the swing gate 114 is held in its open position (see FIG. 10) and for triggering the shaft 118 to rotate due to biasing from the spring 122 to cause the swing gate 114 to move from the open position to the closed position (see FIG. 9). As can best be seen in FIGS. 12 and 13, the trigger assembly 130 generally includes an actuator 136 (preferably linear), a pivotable cam 138, and a trigger rocker arm 140. The actuator 136 is disposed at a first end 142 of the actuation housing 128 and has an actuator shaft 144. The pivotable cam 138 is disposed in the actuation housing 128 and is disposed on the pivotable shaft 118 such that rotation of the pivotable cam 138 causes rotation of the pivotable shaft 118. The pivotable cam 138 also has a notch 158 and a cam surface 156. The trigger rocker arm 140 is disposed in the actuation housing 128 and has a first end 150 pivotally attached to actuator shaft 144 of the actuator 136. The trigger rocker arm 140 also has a central portion 147 pivotally attached to the actuation housing 128 between the pivotable cam 138 and the actuator 136. Finally, the trigger rocker arm has the sear point 146 and the cam contact surface 148 at its second end 152. The sear point 146 is for receipt in the notch 158 of the cam 138. The cam surface 156 of the pivotable cam 138 is for contacting the cam contact surface 148 of the trigger rocker arm 140 such that manual rotational movement of the reset handle 120 against the bias of the spring 122 causes the cam contact surface 148 of the trigger rocker arm 140 to follow the cam surface 156 of the pivotable cam 138 to cause the rocker arm 140 to rotate about its central portion 147 to a position until the sear point 146 is received and held in the notch 158.
  • Actuation of the actuator 136 to cause linear movement of the actuator shaft 144 causes the first end 150 of the rocker arm 140 to move such that the rocker arm 140 pivots about the central portion 147 of the rocker arm 140 to cause the second end 152 of the rocker arm 140 to rotate away from the notch 158 such that the sear point 146 of the trigger rocker arm 140 is released from notch 158 of the cam 138, wherein the spring 122 causes the shaft 118 to rotate about its longitudinal axis B to move the swing gate 114 to its closed position.
  • Again, the actuator 136 may be of substantially any type. It is preferably a linear actuator, but any actuator or solenoid or similar device that provides an appropriate movement of the rocker arm 140 is considered to be within the scope of the present invention. For example, mechanical, electro-mechanical, hydraulic, pneumatic, and piezo actuators could all work appropriately.
  • A switch 160 may be provided that is connected to a display to indicate when the swing gate 114 is in its open and closed positions. The switch 160 may be adjacent to the cam 138 wherein rotation of the cam 138 activates and deactivates the switch 160. The switch 160 may be, for example, an electromagnetic switch, a mechanical switch, or Hall-effect switch.
  • A manual override device 162 may be provided to trip the trigger assembly 130 to provide for manual tripping of the swing gate 114 to move it to the closed position to block air to the engine. The manual override device 162 includes an override device shaft 164 slidably disposed in an aperture in the actuator housing 128 adjacent to the actuator 136. The override device shaft 164 is coaxial with the actuator shaft 144. The override device shaft 164 has a first end 168 and a second end 170. The first end 168 is disposed outside the actuator housing 128 and has a handle 172 (or button or any portion available to manually grip) for manual movement of the override device shaft 164 through the aperture. The second end 170 is disposed on the actuator shaft 144 such that manual movement of the override device shaft 144 causes substantially identical movement of the rocker arm 140 as the movement caused by the actuator shaft 144.
  • With respect to both embodiments, preferably, the valve body 12, 112 is aluminum, but any suitable material may be used. Preferably, Marmon flanges may be used to connect the valve 10 to the engine, however, any suitable flange may be used. Preferably, the gate is manufactured from bronze alloy.
  • The present invention operates in either “hard installations,” such as integral with aluminum piping, or “soft installations,” such as along rubber hoses. Each of the improvements described herein helps the valve to operate in high vibration and temperature environments.
  • While the present invention has been described primarily with respect to an engine, such as a diesel engine, the present invention is not intended to be limited only to engines. It is intended to apply to substantially any application where a cutoff valve could be used, even including, for example, a water cutoff supply.
  • While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

Claims (20)

1. An air shutoff swing gate valve, comprising:
a valve body having an air passage;
a valve swing gate, pivotable on a swing arm that is disposed adjacent to the valve body, wherein the valve swing gate is pivotable from an open position in which the valve swing gate is located outside the air passage to allow for flow of air through the air passage, to a closed position in which the valve swing gate is positioned within the air passage to substantially close off the air passage;
a first shaft having a longitudinal axis that extends generally perpendicular to the swing arm, wherein the swing arm is disposed on the first shaft such that rotation of the first shaft about the longitudinal axis causes rotation of the swing arm to move the swing gate between the open and closed positions;
a spring coupled to the first shaft to bias the swing arm toward the closed position; and
an actuation housing thermally isolated from the valve body,
wherein the actuation housing includes:
a trigger assembly that comprises:
an actuator having an actuator shaft;
a rocker arm pivotally coupled to the actuation housing and to the actuator shaft, such that linear movement of the actuator shaft causes a corresponding rotation of the rocker arm, and
a cam coupled to one end of the first shaft such that rotation of the first shaft causes rotation of the cam,
wherein one of the rocker arm or cam includes a notch for engaging the other of the rocker arm or cam to secure the valve swing gate in the open position.
2. The air shutoff swing gate valve of claim 1, wherein the air shutoff swing gate valve is coupled to an engine,
wherein the rocker arm includes a length such that a small displacement of the actuator shaft causes a relatively larger displacement of the rocker arm to:
provide a latching leverage associated with keeping the valve swing gate in the open position, and
provide a de-latching leverage in response to actuation of the actuator to move the valve swing gate to the closed position.
3. The air shutoff swing gate of claim 1, wherein the actuation housing is not part of the valve body and is thermally isolated from the valve body via a seal to protect the trigger assembly from temperature extremes caused by air flow through the valve body and from the environment.
4. The air shutoff swing gate valve of claim 1, wherein the rocker arm includes a first end coupled to the actuator shaft, a second end coupled within the actuation housing, and a curved surface located between the first and second ends and adjacent the second end,
wherein the cam is configured to contact the curved surface of the rocker arm when the cam rotates.
5. The air shutoff swing gate valve of claim 4, wherein the actuator shaft displaces the first end of the rocker arm linearly in response to tripping of the air shutoff swing gate valve.
6. The air shutoff swing gate valve of claim 4, wherein the actuator, cam and rocker arm are configured to:
maintain a first position of the rocker arm to achieve the open position of the valve swing gate against the biasing from the spring; and
establish, in response to an actuation force applied to the actuator shaft, a second position of the rocker arm to relieve the biasing from the spring to achieve the closed position of the valve swing gate.
7. The air shutoff swing gate valve of claim 4, wherein the curved surface of the rocker arm includes the notch to receive a sear point of the cam to lock the valve swing gate in the open position.
8. The air shutoff swing gate valve of claim 7, further comprising:
a reset handle coupled to the first shaft, wherein the reset handle is movable to cause the sear point to move along the rocker arm and into the notch.
9. The air shutoff swing gate valve of claim 1, wherein the actuator is mechanical, electro-mechanical, hydraulic, pneumatic, or piezo.
10. The air shutoff swing gate valve of claim 1, wherein the actuator is an electric solenoid.
11. The air shutoff swing gate valve of claim 1, wherein the spring comprises a torsion spring concentrically aligned with the longitudinal axis.
12. A valve, comprising:
a valve body having an air passage;
a valve swing gate, pivotable on a swing arm that is disposed adjacent to the valve body, wherein the valve swing gate is moveable from an open position in which the valve swing gate is located outside the air passage to allow for flow of air through the air passage, to a closed position in which the valve swing gate is positioned to substantially close the air passage;
a first shaft having a longitudinal axis that extends generally perpendicular to the swing arm, wherein the swing arm is disposed on the first shaft and rotation of the first shaft about the longitudinal axis causes rotation of the swing arm to move the swing gate between the open and closed positions; and
an actuation housing thermally isolated from the valve body,
wherein the actuation housing comprises:
a trigger assembly configured to secure the swing gate in the open position and to trigger the first shaft to rotate to move from the open position to the closed position, wherein the trigger assembly comprises:
an actuator having an actuator shaft configured to be displaced in response to triggering of the actuator,
a rocker arm pivotally coupled to the actuator housing and to the actuator shaft, such that linear movement of the actuator shaft causes a corresponding rotation of the rocker arm, and
a cam coupled to one end of the first shaft such that rotation of the first shaft causes rotation of the cam,
wherein one of the rocker arm or cam includes a notch for engaging the other of the rocker arm or cam to secure the valve swing gate in the open position.
13. The valve of claim 12, wherein the valve is coupled to an engine,
wherein the rocker arm includes a length such that a small displacement of the actuator shaft causes a relatively larger displacement of the rocker arm to:
provide a latching leverage associated with keeping the valve swing gate in the open position, and
provide a de-latching leverage in response to actuation of the actuator to move the valve swing gate to the closed position.
14. The valve of claim 12, wherein the actuation housing is not part of the valve body and is thermally isolated from the valve body via at least one seal to protect the trigger assembly from temperature extremes caused by air flow through the valve body and from the environment.
15. The valve of claim 12, wherein the rocker arm includes a first end coupled to the actuator shaft, and
wherein the cam is configured to contact a surface of the rocker arm when the cam rotates.
16. The valve of claim 15, wherein the actuator shaft displaces the first end of the rocker arm linearly in response to triggering of the actuator.
17. The valve of claim 15, wherein the actuator, cam and rocker arm are configured to:
maintain a first position of the rocker arm to achieve the open position of the valve swing gate against biasing from a spring; and
establish, in response to an actuation force applied to the actuator shaft, a second position of the rocker arm to relieve the biasing from the spring to achieve the closed position of the valve swing gate.
18. The valve of claim 15, wherein the surface of the rocker arm includes the notch to receive a sear point of the cam to lock the valve swing gate in the open position.
19. The valve of claim 18, further comprising:
a reset handle coupled to the first shaft, wherein the reset handle is movable to cause the sear point to move along the rocker arm and into the notch.
20. The valve of claim 12, wherein the actuator is mechanical, electro-mechanical, hydraulic, pneumatic, or piezo.
US16/173,019 2011-09-19 2018-10-29 Air shutoff swing gate valve Abandoned US20190063336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/173,019 US20190063336A1 (en) 2011-09-19 2018-10-29 Air shutoff swing gate valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/236,020 US20130068972A1 (en) 2011-09-19 2011-09-19 Air shutoff swing gate valve
US15/042,954 US10113489B2 (en) 2011-09-19 2016-02-12 Air shutoff swing gate valve
US16/173,019 US20190063336A1 (en) 2011-09-19 2018-10-29 Air shutoff swing gate valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/042,954 Continuation US10113489B2 (en) 2011-09-19 2016-02-12 Air shutoff swing gate valve

Publications (1)

Publication Number Publication Date
US20190063336A1 true US20190063336A1 (en) 2019-02-28

Family

ID=47879764

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/236,020 Abandoned US20130068972A1 (en) 2011-09-19 2011-09-19 Air shutoff swing gate valve
US14/531,355 Abandoned US20150047722A1 (en) 2011-09-19 2014-11-03 Air shutoff swing gate valve
US15/042,954 Active 2032-01-14 US10113489B2 (en) 2011-09-19 2016-02-12 Air shutoff swing gate valve
US16/173,019 Abandoned US20190063336A1 (en) 2011-09-19 2018-10-29 Air shutoff swing gate valve

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/236,020 Abandoned US20130068972A1 (en) 2011-09-19 2011-09-19 Air shutoff swing gate valve
US14/531,355 Abandoned US20150047722A1 (en) 2011-09-19 2014-11-03 Air shutoff swing gate valve
US15/042,954 Active 2032-01-14 US10113489B2 (en) 2011-09-19 2016-02-12 Air shutoff swing gate valve

Country Status (5)

Country Link
US (4) US20130068972A1 (en)
EP (1) EP2758649B1 (en)
CA (1) CA2876075C (en)
ES (1) ES2711647T3 (en)
WO (1) WO2013043567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426070A (en) * 2020-11-06 2021-03-02 常宁超喜欢食品有限公司 Drain valve for food processing machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743330B2 (en) 2002-05-17 2004-06-01 Illinois Tool Works Inc. Method and apparatus for forming slider end stops on zipper
US20130068972A1 (en) * 2011-09-19 2013-03-21 Amot Controls Corp. Air shutoff swing gate valve
WO2014009965A1 (en) * 2012-07-09 2014-01-16 Amrish Chopra Fail-safe actuating system
CN103867743B (en) * 2014-02-13 2016-05-18 慈溪市凯迪电子有限公司 A kind of mechanical type timing valve
US20170045002A1 (en) * 2014-05-22 2017-02-16 Ming Fei Chen Engine Air Shut-off Valve
US10612687B2 (en) * 2018-03-29 2020-04-07 Caterpillar Inc. Shutoff valve assembly and sensing subsystem for detecting state of same
CN111207236B (en) * 2018-11-21 2021-11-23 松下家电(中国)有限公司 Drain valve device, washing machine and valve core pull rod swing angle adjusting method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US641117A (en) * 1899-08-25 1900-01-09 John James Kaye Stopping device for engines.
US1897000A (en) * 1930-10-01 1933-02-07 Foster Wheeler Corp Closure operating mechanism
US2382720A (en) * 1942-09-17 1945-08-14 David W Hopkins Solenoid trip butterfly valve
US2469831A (en) * 1945-02-07 1949-05-10 Leroy M Lewis Deluge valve
US2716999A (en) * 1950-05-01 1955-09-06 Parker Appliance Co Nozzle and associated devices for fueling and defueling tanks
US3056393A (en) * 1961-12-05 1962-10-02 Stewart & Stevenson Serv Inc Safety shutdown apparatus
US3115951A (en) * 1961-04-17 1963-12-31 Elton B Fox Pressure responsive safetry control for internal combustion engines
US4537386A (en) * 1982-09-03 1985-08-27 Bralorne Resources Limited Engine shutdown valve
US4546954A (en) * 1982-06-21 1985-10-15 Bodnar Ronald J Engine air cut-off valve
US5255891A (en) * 1991-04-29 1993-10-26 Eaton Corporation Electrically operated by-pass water valve
US6206337B1 (en) * 1999-12-08 2001-03-27 Gaston Veillet, Jr. Automatic flood control ball valve
US10113489B2 (en) * 2011-09-19 2018-10-30 Amot Controls Corp. Air shutoff swing gate valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429650A (en) * 1972-07-29 1976-03-24 Nat Vulcan Eng Insurance Group Valves
JPH024942U (en) * 1988-06-24 1990-01-12
KR100695889B1 (en) 2004-10-11 2007-03-19 삼성전자주식회사 Capacitor having reaction preventing layer and methods of forming the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US641117A (en) * 1899-08-25 1900-01-09 John James Kaye Stopping device for engines.
US1897000A (en) * 1930-10-01 1933-02-07 Foster Wheeler Corp Closure operating mechanism
US2382720A (en) * 1942-09-17 1945-08-14 David W Hopkins Solenoid trip butterfly valve
US2469831A (en) * 1945-02-07 1949-05-10 Leroy M Lewis Deluge valve
US2716999A (en) * 1950-05-01 1955-09-06 Parker Appliance Co Nozzle and associated devices for fueling and defueling tanks
US3115951A (en) * 1961-04-17 1963-12-31 Elton B Fox Pressure responsive safetry control for internal combustion engines
US3056393A (en) * 1961-12-05 1962-10-02 Stewart & Stevenson Serv Inc Safety shutdown apparatus
US4546954A (en) * 1982-06-21 1985-10-15 Bodnar Ronald J Engine air cut-off valve
US4537386A (en) * 1982-09-03 1985-08-27 Bralorne Resources Limited Engine shutdown valve
US5255891A (en) * 1991-04-29 1993-10-26 Eaton Corporation Electrically operated by-pass water valve
US6206337B1 (en) * 1999-12-08 2001-03-27 Gaston Veillet, Jr. Automatic flood control ball valve
US10113489B2 (en) * 2011-09-19 2018-10-30 Amot Controls Corp. Air shutoff swing gate valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426070A (en) * 2020-11-06 2021-03-02 常宁超喜欢食品有限公司 Drain valve for food processing machine
CN112426070B (en) * 2020-11-06 2022-02-11 常宁超喜欢食品有限公司 Drain valve for food processing machine

Also Published As

Publication number Publication date
EP2758649A1 (en) 2014-07-30
WO2013043567A1 (en) 2013-03-28
US10113489B2 (en) 2018-10-30
US20130068972A1 (en) 2013-03-21
EP2758649A4 (en) 2015-04-01
CA2876075C (en) 2019-10-15
US20160177843A1 (en) 2016-06-23
US20150047722A1 (en) 2015-02-19
EP2758649B1 (en) 2018-11-21
CA2876075A1 (en) 2013-03-28
ES2711647T3 (en) 2019-05-06

Similar Documents

Publication Publication Date Title
US20190063336A1 (en) Air shutoff swing gate valve
US4098085A (en) Flow control valves
EP2321508B1 (en) Butterfly valve for turbocharger systems
US8899257B2 (en) Disc assembly for a valve and method of making the same
US20130068984A1 (en) Air shutoff swing gate valve
US9611947B2 (en) Valve assembly and method of controlling flow of fluid
CA2453593C (en) Pressure relief exhaust brake
EP3118436B1 (en) Bleed valves for gas turbine engines
US6273053B1 (en) Engine shutdown valves
US10041420B2 (en) Valve assembly and valve system including same
US20160024998A1 (en) A compact rotary wastegate valve
US20130168588A1 (en) Pressure relief venting for a valve disk seal
US6273059B1 (en) Decelerator device mounted in the exhaust gas circuit of a vehicle equipped with a combustion engine
CN103168191B (en) Pneumatic control emergency shutdown valve
JP2004506157A (en) Excess flow valve
CN110529264B (en) Air stop valve
CA2299929C (en) Engine shutdown valves
US11428325B2 (en) Rotatable valve and actuator
RU2597738C2 (en) Control cylinder for motor brake-decelerator with devices for generation of elastic recovery
US20030056754A1 (en) Engine shutdown valve
GB2110794A (en) Safety valve
US10077711B2 (en) Pneumatic actuator having a pressure relief window
US997681A (en) Combined throttle and automatic stop-valve.
KR101294446B1 (en) waste gate valve device
EP2808514A1 (en) Compressor Bypass Valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMOT CONTROLS CORP., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOLAVI, KAMYAR;KEN MCCLYMONDS;REEL/FRAME:047337/0259

Effective date: 20110919

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION