US20190062591A1 - Articles Subject to Ice Formation Comprising a Repellent Surface Comprising a Siloxane Material - Google Patents

Articles Subject to Ice Formation Comprising a Repellent Surface Comprising a Siloxane Material Download PDF

Info

Publication number
US20190062591A1
US20190062591A1 US16/080,047 US201716080047A US2019062591A1 US 20190062591 A1 US20190062591 A1 US 20190062591A1 US 201716080047 A US201716080047 A US 201716080047A US 2019062591 A1 US2019062591 A1 US 2019062591A1
Authority
US
United States
Prior art keywords
article
repellent surface
siloxane material
siloxane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/080,047
Other versions
US10907070B2 (en
Inventor
Adam J. Meuler
Cheryl L.S. Elsbernd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US16/080,047 priority Critical patent/US10907070B2/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEULER, ADAM J., ELSBERND, CHERYL L.S.
Publication of US20190062591A1 publication Critical patent/US20190062591A1/en
Application granted granted Critical
Publication of US10907070B2 publication Critical patent/US10907070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • Articles subject to ice formation during normal use comprising a repellent surface such that the receding contact angle of the surface with water ranges from 90 degrees to 135 degrees wherein the repellent surface comprises a siloxane material.
  • the repellent surface further comprises a non-fluorinated organic polymeric binder.
  • the repellent surface comprises a thermally processable polymer and a siloxane material melt additive.
  • Also described are methods of making an article comprising providing an article subject to ice formation during normal use; and providing a liquid repellent surface, as described herein, on at least a portion of the article.
  • FIG. 2 is cross-sectional view of another embodiment of an article comprising a repellent surface
  • ice includes any form of frozen water including frost, freezing rain, sleet and snow.
  • Representative articles include sign faces, signal transmission lines (e.g., telephone and electrical cables), satellite dishes, antennas, wind turbine blades, automobiles, railroad cars, aircraft, watercraft, navigation equipment, heat pumps and exchangers or components thereof, ice manufacturing facilities and articles including ice-cube trays and other “ice maker” components; commercial and residential refrigerators and freezers; cryogenic and supercomputer storage facilities; buildings, transportation signs, roofing, dams (especially near a lock), oil drilling platforms, outdoor sporting equipment; recreational vehicles such as snowmobiles, and snow removal equipment.
  • signal transmission lines e.g., telephone and electrical cables
  • satellite dishes e.g., antennas, wind turbine blades, automobiles, railroad cars, aircraft, watercraft, navigation equipment, heat pumps and exchangers or components thereof
  • ice manufacturing facilities and articles including ice-cube trays and other “ice maker” components
  • commercial and residential refrigerators and freezers e.g., cryogenic and supercomputer storage facilities
  • buildings, transportation signs, roofing, dams (especially near a lock) e.
  • a heat exchanger is an article used to transfer heat between one or more fluids.
  • the fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment.
  • the classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air.
  • Types of heat exchangers include: shell and tube heat exchanger, plate heat exchangers, plate and shell heat exchanger, adiabatic wheel heat exchanger, plate fin heat exchanger, pillow plate heat exchanger, fluid heat exchanger, waste heat recovery units, dynamic scraped surface heat exchanger, phase-change heat exchangers, direct contact heat exchangers, microchannel heat exchangers.
  • heat exchangers One of the widest uses of heat exchangers is for air conditioning of buildings and vehicles. This class of heat exchangers is commonly called air coils, or just coils due to their often-serpentine internal tubing. Liquid-to-air, or air-to-liquid HVAC (i.e. heating, ventilation and air conditioning) coils are typically of modified crossflow arrangement. In vehicles, heat coils are often called heater cores.
  • the common fluids are water, a water-glycol solution, steam, or a refrigerant.
  • hot water and steam are the most common, and this heated fluid is supplied by boilers, for example.
  • chilled water and refrigerant are most common. Chilled water is supplied from a chiller that is potentially located very far away, but refrigerant must come from a nearby condensing unit.
  • the cooling coil is the evaporator in the vapor-compression refrigeration cycle. HVAC coils that use this direct-expansion of refrigerants are commonly called DX coils.
  • Some DX coils are “microchannel” type.
  • HVAC coils On the air side of HVAC coils a significant difference exists between those used for heating, and those for cooling. Air that is cooled often has moisture condensing out of it, except with extremely dry air flows. Heating some air increases that airflow's capacity to hold water. Thus, heating coils need not consider moisture condensation on their air-side. However, cooling coils are designed and selected to handle latent (moisture) as well as the adequate (cooling) loads. The water that is removed is called condensate.
  • article 200 comprises substrate 210 comprising a (e.g. liquid) repellent surface layer (e.g. layer) 251 that comprises a (e.g. non-fluorinated) organic polymeric binder and a silane or siloxane material.
  • the concentration of siloxane material at the outer exposed surface 253 is typically higher than the concentration of siloxane material within the (e.g. non-fluorinated) organic polymeric binder layer 251 proximate substrate 210 .
  • the (e.g. liquid) repellent surface layer can be provided by coating substrate 210 with a coating composition comprising an organic solvent, a (e.g. non-fluorinated) organic polymeric binder, and a siloxane material; as will subsequently be described.
  • article 300 comprises substrate 310 comprising a (e.g. liquid) repellent surface (e.g. layer) 353 that comprises a siloxane material.
  • concentration of siloxane material at the outer exposed surface (e.g. layer) 353 is typically higher than the concentration of siloxane material proximate the center of the substrate 310 .
  • the (e.g. liquid) repellent surface 353 can be provided by including a siloxane material, such as a siloxane compound, as a melt additive in a polymeric material that is thermally processed to form substrate 310 into a component or a surface layer thereof.
  • the repellent surface repels ice and typically also repels liquids such as water, aqueous solutions and mixtures including paint.
  • the inclusion of the repellent surface can aid in the removal of ice accumulation from the repellent surface.
  • the inclusion of the repellent surface may reduce the force required to remove the ice from the repellent surface.
  • the article may be capable of repeatedly releasing ice from the repellent surface.
  • the inclusion of the repellent coating may reduce or prevent ice build-up on the repellent surface.
  • the repellent coating or surface may also reduce the time required to remove ice which has formed on a substrate when the substrate is thawed/defrosted.
  • the outer exposed surface 253 is preferably (e.g. ice, liquid) repellent such that the advancing and/or receding contact angle of the surface with water is least 90, 95, 100, 105, 110, or 115 degrees.
  • the advancing and/or receding contact angle is typically no greater than 135, 134, 133, 132, 131 or 130 degrees and in some embodiments, no greater than 129, 128, 127, 126, 125, 124, 123, 122, 121, or 120 degrees.
  • the difference between the advancing and/or receding contact angle with water of the (e.g. ice, liquid) repellent surface layer can be at least 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 degrees.
  • the difference between the advancing and receding contact angle with water of the surface layer is no greater than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 degree.
  • the tilt angle needed to slide or roll off a (e.g. water) droplet from a planar surface increases.
  • deionized water is utilized when determining contact angles with water.
  • the outer exposed surface 253 exhibits a contact angle in the ranges just described after soaking in water for 24 hours at room temperature (25° C.).
  • the contact angle of the (e.g. ice, liquid) repellent surface can also be evaluated with other liquids instead of water such as a solution of 10% by weight 2-n-butoxyethanol and 90% by weight deionized water.
  • the advancing contact angle with such 2-n-butoxyethanol solution is at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 degrees and in some embodiments at least 75 or 80 degrees.
  • the receding contact angle with such 2-n-butoxyethanol solution is at least 40, 45, 50, 55, 60, 65, or 70 degrees. In some embodiments, the advancing and/or receding contact angle of the (e.g. ice, liquid) repellent surface with such 2-n-butoxyethanol solution is no greater than 100, 95, 90, 85, 80, or 75 degrees.
  • the surface layer is not a lubricant impregnated surface. Rather the outer exposed surface is predominantly a solid (e.g. ice, liquid) repellent material. In this embodiment, less than 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 4, 3, 2, 1, 0.5, 0.1, 0.005, 0.001% of the surface area is a liquid lubricant. Rather, at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5%, or greater of the outer exposed surface is a solid repellent material, as described herein. Thus, a liquid (e.g. water, oil, paint) or solid (e.g. ice) that is being repelled comes in contact with and is repelled by the solid repellent material.
  • a liquid e.g. water, oil, paint
  • solid e.g. ice
  • the repellent material is generally a solid at the use temperature of the coated substrate or article, which can be as low as ⁇ 60° F. or ⁇ 80° F., yet more typically ranges from ⁇ 40° F. to 120° F.
  • the typical use temperature may be at least ⁇ 20° F., ⁇ 10° F., 0° F., or 10° F.
  • the repellent material is a solid at room temperature (e.g. 25° C.) and temperatures ranging from 40° F. (4.44° C.) to 130° F. (54.4° C.).
  • the repellent material has a melting temperature (peak endotherm as measured by DSC) of greater than 25° C. and also typically greater than 130° F. (54.4° C.).
  • the repellent material has a melting temperature no greater than 200° C.
  • a single solid repellent material is utilized.
  • the coating composition may contain a mixture of solid repellent materials.
  • the repellent material has no solubility or only trace solubility with water, e.g., a solubility of 0.01 g/l or 0.001 g/l or less.
  • the (e.g. liquid, ice) repellent surface layer comprises a siloxane material and a (e.g. non-fluorinated) organic polymeric binder.
  • a major amount of non-fluorinated polymeric binder is combined with a sufficient amount of siloxane material that provides the desired ice and liquid repellency properties, as previously described.
  • the amount of siloxane material is at least about 0.005, 0.10, 0.25, 0.5, 1.5, 2.0, or 2.5 wt.-% and in some embodiments, at least about 3.0, 3.5, 4.0, 4.5, or 5 wt.-%.
  • the amount of siloxane material is typically no greater than 50, 45, 40, 35, 30, 25, 20, or 15 wt.-% of the sum of the siloxane material and (e.g., non-fluorinated) polymeric binder.
  • the (e.g. liquid, ice) repellent surface comprises a siloxane (e.g. PDMS) material.
  • the siloxane (e.g. PDMS) material is a solid rather than a liquid (e.g. lubricant) at 25° C. and at temperatures ranging from 40° F. (4.44° C.) to 130° F. (54.4° C.).
  • the siloxane (e.g. PDMS) material is free of fluorinated groups and thus free of fluorine atoms.
  • a predominantly siloxane (e.g. PDMS) material may further comprise one or more fluorinated groups.
  • a fluorochemical material e.g. such as described in 77291US002 and 77291US004; incorporated herein by reference
  • a siloxane material e.g. PDMS
  • a major amount of non-fluorinated polymeric binder or thermally processible polymer is combined with a sufficient amount of siloxane (e.g. PDMS) material that provides the desired repellency properties, as previously described.
  • siloxane e.g. PDMS
  • the silicone material is a compound, oligomer or polymer having a polysiloxane backbone and more typically a polydimethylsiloxane backbone.
  • the polysiloxane backbone may further comprise other pendent groups, such as hydrocarbon (e.g. preferably alkyl) groups.
  • the silicone material typically does not comprise vinyl groups or other polymerizable group that would results in the silicone material forming a crosslinked network.
  • the siloxane (e.g. PDMS) material (e.g. oligomer or polymer) comprises at least 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95 wt.-% polydimethylsiloxane backbone.
  • the siloxane (e.g. PDMS) material may further comprise pendent longer chain hydrocarbon (e.g. preferably alkyl) groups in an amount of at least 5, 10, 15, 20, 25, 30, or 35 wt-% of the siloxane (e.g. PDMS) material.
  • the siloxane (e.g. PDMS) oligomer may have a number average molecular weight (Mn) of at least 1500 or 2000 g/mole as measured by Gel Permeation Chromatography using polystyrene standards.
  • the siloxane oligomer typically has a molecular weight (Mn) no greater than 10,000, 9000, 8000, or 7000 g/mole.
  • the siloxane (e.g. PDMS) polymer typically has a molecular weight (Mn) greater than 10,000; 15,000; or 20,000 g/mole. In some embodiments, the molecular weight of the siloxane oligomer is no greater than 100,000; 75,000; or 50,000 g/mole.
  • the siloxane (e.g. PDMS) material comprises pendent longer chain hydrocarbon (e.g. preferably alkyl) groups wherein the longer chain hydrocarbon (e.g. preferably alkyl) groups average at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms.
  • the siloxane (e.g. PDMS) material comprises pendent longer chain hydrocarbon (e.g. preferably alkyl) groups wherein the longer chain hydrocarbon (e.g. preferably alkyl) groups average greater than 20 carbons atoms such as at least 25, 30, 35, or 40.
  • the pendent longer chain hydrocarbon (e.g. preferably alkyl) groups typically average no greater than 75, 70, 65, 60, or 50 carbon atoms.
  • the siloxane (e.g. PDMS) material may be characterized as an alkyl dimethicone.
  • the alkyl dimethicone comprises at least one linear, branched, or cyclic alkyl group averaging at least 8, 10, or 12 carbon atoms such as lauryl dimethicone, depicted as follows:
  • the alkyl dimethicone comprises at least one linear, branched, or cyclic alkyl group averaging at least 14, 16, or 18 carbon atoms such as cetyl dimethicone and stearyl dimethicone.
  • These material are characterized by having a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a pendent (e.g. linear) alkyl group.
  • a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a pendent (e.g. linear) alkyl group.
  • Preferred alkyl dimethicones typically have the structure:
  • the sum of (a+b+c) is between about 100 and 1000, for example between about 200 and 500 or between about 300 and 400; the ratio of a to the sum of (b+c) is about 99.9:0.1 to 80:20, or about 99:1 to 85:15, or about 99:1 to 90:10, or about 99:1 to 92:8, or about 98:2 to 93:7 or about or about 98:2 to 94:6;
  • R 1 is a linear, branched, or cyclic alkyl group having between 20 and 50 carbon atoms, for example about 22 to 46 carbon atoms, or about 24 to 40 carbon atoms;
  • R 2 is a linear, branched, or cyclic alkyl or alkaryl group having between 2 and 16 carbons, for example about 4 to 16, or about 5 to 12, or about 6, to 10, or about 8 carbon atoms; and the structure is a random, block, or blocky structure.
  • the ratio of a to (b+c) in conjunction with the number of carbons in the R 1 and R 2 groups result in an alkyl dimethicones having greater than about 50 wt % dimethyl siloxane (a) units, or in embodiments greater than about 60 wt % dimethyl siloxane units.
  • c is 0.
  • the sum of (a+b+c) is about 300 to 400 and the ratio of a to the sum of (b+c) is about 98:2 to 94:6.
  • the alkyl dimethicone is a blend of two or more species thereof, wherein the species differ in terms of the sum of (a+b+c), the ratio of a to the sum of (b+c), the value of c, or in two or more such parameters.
  • the alkyl dimethicone is a random structure.
  • R 1 is a linear alkyl group.
  • R 2 is a linear alkyl group.
  • the alkyl dimethicone materials of Formula V are characterized by having a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a plurality of pendent (e.g. linear) alkyl groups.
  • a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a plurality of pendent (e.g. linear) alkyl groups.
  • alkyl dimethicones are generally preferably linear structures, it will be understood by those of skill that such structures as synthesized or purchased can include an (e.g. small) amount of branching. Such branching, using terminology understood by those of skill, is referred to as “T” and “Q” functionality. In any of the embodiments herein, a substantially linear alkyl dimethicone structure can contain an amount of T branching, Q branching, or both.
  • the siloxane (e.g. alkyl dimethicone) material has a melting temperature (peak endotherm as can be measured by DSC) of at least 140 or 150° F. ranging up to 170, 175, or 180° F.
  • the compounds described herein are not fluoroalkyl silsesquioxane materials having the chemical formula [RSiO 3/2 ] n , wherein R comprises a fluoroalkyl or other fluorinated organic group.
  • organic polymeric binders can be utilized. Although fluorinated organic polymeric binders can also be utilized, fluorinated organic polymeric binders are typically considerably more expensive than non-fluorinated binders. Further, non-fluorinated organic polymeric binders can exhibit better adhesion to non-fluorinated polymeric, metal, or other substrates.
  • Suitable non-fluorinated binders include for example polystyrene, atactic polystyrene, acrylic (i.e. poly(meth)acrylate), polyester, polyurethane (including polyester type thermoplastic polyurethanes “TPU”), polyolefin (e.g. polyethylene), and polyvinyl chloride.
  • Many of the polymeric materials that a substrate can be thermally processed from, as will subsequently be described, can be used as the non-fluorinated organic polymeric binder of the organic solvent coating composition.
  • the non-fluorinated organic polymeric binder is a different material than the polymeric material of the substrate.
  • the organic polymeric binder typically has a receding contact angle with water of less than 90, 80, or 70 degrees.
  • the binder is typically not a silicone material.
  • the (e.g. non-fluorinated) organic polymeric binder is a film-grade resin, having a relatively high molecular weight. Film-grade resins can be more durable and less soluble in the liquid/solid (e.g. water, oil, paint, ice) being repelled.
  • the (e.g. non-fluorinated) organic polymeric binder can be a lower molecular weight film-forming resin. Film-forming resins can be more compliant and less likely to affect the mechanical properties of the substrate. Viscosity and melt flow index are indicative of the molecular weight. Mixtures of (e.g. non-fluorinated) organic polymeric binders can also be used.
  • the film-grade (e.g. non-fluorinated) organic polymeric binder typically has a melt flow index of at least 1, 1.5, 2, 2.5, 3, 4, or 5 g/10 min at 200° C./5 kg ranging up to 20, 25, or 30 g/10 min at 200° C./5 kg.
  • the melt flow index can be determined according to ASTM D-1238.
  • the tensile strength of the (e.g. non-fluorinated) organic polymeric binder is typically at least 40, 45, 50, 55, or 60 MPa.
  • the (e.g. non-fluorinated) organic polymeric binder can have a low elongation at break of less than 10% or 5%.
  • the tensile and elongation properties can be measured according to ASTM D-638.
  • the (e.g. non-fluorinated) organic polymeric binders have a lower molecular weight and lower tensile strength than film-grade polymers.
  • the melt viscosity of the (e.g. non-fluorinated) organic polymeric binders (as measured by ASTM D-1084-88) at 400° F. (204° C.) ranges from about 50,000 to 100,000 cps.
  • non-fluorinated organic polymeric binder is typically at least about 1000, 2000, 3000, 4000, or 5000 g/mole ranging up to 10,000; 25,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000, or 500,000 g/mole.
  • the (e.g. non-flourinated) organic polymeric binder has a tensile strength of at least 5, 10, or 15 MPa ranging up to 25, 30, or 35 MPa.
  • the (e.g. non-fluorinated) organic polymeric binder has a tensile strength of at least 40, 45, or 50 MPa ranging up to 75 or 100 MPa.
  • non-fluorinated organic polymeric binder has an elongation at break ranging up to 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000% or higher.
  • the (e.g. non-fluorinated) organic polymeric binder has a Shore A hardness of at least 50, 60, 70, or 80 ranging up to 100.
  • the (e.g. non-fluorinated) organic polymeric binder is selected such that it is compliant at the use temperature of the coated substrate or article.
  • the (e.g. non-fluorinated) organic polymeric binder has a glass transition temperature (Tg) as can be measured by DSC of less than 0° C. or 32° F.
  • Tg glass transition temperature
  • non-fluorinated organic polymeric binder has a glass transition temperature (Tg) of less than 20° F., 10° F., 0° F., ⁇ 10° F., ⁇ 20° F., ⁇ 30° F., ⁇ 40° F., ⁇ 50° F., ⁇ 60° F., ⁇ 70° F., or ⁇ 80° F.
  • Tg glass transition temperature
  • the (Tg) of many (e.g. non-fluorinated) organic polymeric binder is at least ⁇ 130° C.
  • the repellency is retained after surface abrasion testing (according to the test method described in the examples).
  • the liquid (e.g. paint) repellency may diminish to some extent, yet remains highly repellent after surface abrasion testing.
  • the repellency is retained after soaking the repellent surface in water (according to the test method described in the examples).
  • the repellency is retained after repeatedly forming and removing ice from the liquid repellent surface.
  • the non-fluorinated organic polymeric binder does not form a chemical (e.g. covalent) bond with the siloxane material as this may hinder the migration of the siloxane material to the outermost surface layer.
  • the (e.g. non-fluorinated) organic polymeric binder is not curable, such as in the case of alkyd resins.
  • alkyd resin is a polyester modified by the addition of fatty acids and other components, derived from polyols and a dicarboxylic acid or carboxylic acid anhydride. Alkyds are the most common resin or “binder” of most commercial “oil-based” paints and coatings.
  • compositions comprising a siloxane material and a (e.g., non-fluorinated organic) polymeric binder can be dissolved, suspended, or dispersed in a variety of organic solvents to form a coating composition suitable for use in coating the compositions onto a substrate.
  • the organic solvent coating compositions typically contain at least about 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% organic solvent or greater, based on the total weight of the coating composition.
  • the coating compositions typically contain at least about 0.01%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15% or greater solids of the (e.g.
  • non-fluorinated organic polymeric binder and siloxane material based on the total weight of the coating composition.
  • the coating composition can be provided with an even higher amount of solids, e.g. 20, 30, 40, or 50 wt.-% solids.
  • Suitable organic solvents include for example alcohols, esters, glycol ethers, amides, ketones, hydrocarbons, chlorohydrocarbons, hydrofluorocarbons, hydrofluoroethers, chlorocarbons, and mixtures thereof.
  • the coating composition may contain one or more additives provided the inclusion of such does not detract from the (e.g. liquid, ice) repellent properties.
  • the coating compositions can be applied to a substrate or article by standard methods such as, for example, spraying, padding, dipping, roll coating, brushing, or exhaustion (optionally followed by the drying of the treated substrate to remove any remaining water or organic solvent).
  • the substrate can be in the form of sheet articles that can be subsequently thermally formed into a substrate or component.
  • knife-coating or bar-coating may be used to ensure uniform coating of the substrate.
  • the moisture content of the organic coating composition is preferably less than 1000, 500, 250, 100, 50 ppm.
  • the coating composition is applied to the substrate at a low relative humidity, e.g. of less than 40%, 30% or 20% at 25° C.
  • the coating compositions can be applied in an amount sufficient to achieve the desired repellency properties. Coatings as thin as 250, 300, 350, 400, 450, or 500 nm ranging up to 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5 microns can provide the desired repellency. However, thicker coatings (e.g., up to about 10, 15, 20 microns or more) can also be used. Thicker coatings can be obtained by applying to the substrate a single thicker layer of a coating composition that contains a relatively high solids concentration. Thicker coatings can also be obtained by applying successive layers to the substrate.
  • the siloxane material can be combined with a thermally processible (e.g. thermoplastic) polymer and then melt processed into an article, substrate thereof, or surface layer thereof.
  • a thermally processible e.g. thermoplastic
  • the siloxane material typically migrates to the surface forming a surface layer with a high concentration of siloxane material relative to the total amount of siloxane material and thermally processible polymer.
  • the amount of siloxane material melt additive is at least about 0.05, 0.1, 0.25, 0.5, 1.5, 2.0 or 2.5 wt.-% and in some embodiments, at least about 3.0, 3.5, 4.0, 4.5 or 5 wt.-%.
  • the amount of siloxane material is typically no greater than 25, 20, 15, or 10 wt.-% of the sum of the siloxane material melt additive and thermally processible polymer.
  • the siloxane material can be, for example, mixed with pelletized, granular, powdered or other forms of the thermally processible polymer and then melt processed by known methods such as, for example, molding or melt extrusion.
  • the siloxane material can be mixed directly with the polymer or it can be mixed with the polymer in the form of a “master batch” (concentrate) of the siloxane material in the polymer.
  • an organic solution of the siloxane material can be mixed with powdered or pelletized polymer, followed by drying (to remove solvent) and then melt processing.
  • the siloxane composition can be added to the polymer melt to form a mixture or injected into a molten polymer stream to form a blend immediately prior to extrusion or molding into articles.
  • the melt processible (e.g. thermoplastic) polymer is a polyolefin, polyester, polyamide, polyurethane, or polyacrylate.
  • the siloxane melt additives are generally a solid at room temperature (e.g. 25° C.) and at the use temperature of the article as previously described.
  • the siloxane material and thermally processible polymer are selected such that the siloxane material is typically molten at the melt processing temperature of the mixture.
  • the siloxane material has a melt temperature no greater than 200, 190, 180, 170, or 160° C.
  • Extrusion can be used to form polymeric films.
  • a film forming polymer is simultaneously melted and mixed as it is conveyed through the extruder by a rotating screw or screws and then is forced out through a slot or flat die, for example, where the film is quenched by a variety of techniques known to those skilled in the art.
  • the films optionally are oriented prior to quenching by drawing or stretching the film at elevated temperatures.
  • Adhesive can optionally be coated or laminated onto one side of the extruded film in order to apply and adhere the (liquid, ice) repellent film onto a substrate.
  • Molded articles are produced by pressing or by injecting molten polymer from a melt extruder as described above into a mold where the polymer solidifies.
  • Typical melt forming techniques include injection molding, blow molding, compression molding and extrusion, and are well known to those skilled in the art.
  • the molded article is then ejected from the mold and optionally heat-treated to effect migration of the polymer additives to the surface of the article.
  • an annealing step can be carried out to enhance the development of repellent characteristics.
  • the annealing step typically is conducted below or above the melt temperature of the polymer for a sufficient period of time.
  • the annealing step can be optional.
  • the (e.g. liquid, ice) repellent coating composition can be provided on a wide variety of organic or inorganic substrates.
  • Suitable polymeric materials for substrates include, but are not limited to, polyesters (e.g., polyethylene terephthalate or polybutylene terephthalate), polycarbonates, acrylonitrile butadiene styrene (ABS) copolymers, poly(meth)acrylates (e.g., polymethylmethacrylate, or copolymers of various (meth)acrylates), polystyrenes, polysulfones, polyether sulfones, epoxy polymers (e.g., homopolymers or epoxy addition polymers with polydiamines or polydithiols), polyolefins (e.g., polyethylene and copolymers thereof or polypropylene and copolymers thereof), polyvinyl chlorides, polyurethanes, fluorinated polymers, cellulosic materials, derivatives thereof, and the like.
  • polyesters e.g., polyethylene terephthalate or polybutylene terephthalate
  • the polymeric substrate can be transparent.
  • transparent means transmitting at least 85 percent, at least 90 percent, or at least 95 percent of incident light in the visible spectrum (wavelengths in the range of 400 to 700 nanometers). Transparent substrates may be colored or colorless.
  • Suitable inorganic substrates include metals and siliceous materials such as glass.
  • Suitable metals include pure metals, metal alloys, metal oxides, and other metal compounds. Examples of metals include, but are not limited to, chromium, iron, aluminum, silver, gold, copper, nickel, zinc, cobalt, tin, steel (e.g., stainless steel or carbon steel), brass, oxides thereof, alloys thereof, and mixtures thereof.
  • the coating composition can be used to impart or enhance (e.g. ice, aqueous liquid and/or oil) repellency of a variety of substrates and articles.
  • ice includes any form of frozen water as previously described.
  • aqueous means a liquid medium that contains at least 50, 55, 60, 65, or 70 wt-% of water.
  • the liquid medium may contain a higher amount of water such as at least 75, 80, 85, 90, 95, 96, 97, 98, 99, or 100 wt-% water.
  • the liquid medium may comprise a mixture of water and one or more water-soluble organic cosolvent(s), in amounts such that the aqueous liquid medium forms a single phase.
  • water-soluble organic cosolvents include for example methanol, ethanol, isopropanol, 2-methoxyethanol, (2-methoxymethylethoxy)propanol, 3-methoxypropanol, 1-methoxy-2-propanol, 2-butoxyethanol, ethylene glycol, ethylene glycol mono-2-ethylhexylether, tetrahydrofuran, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, tetraethylene glycol di(2-ethylhexoate), 2-ethylhexylbenzoate, and ketone or ester solvents.
  • the amount of organic cosolvent does not exceed 50 wt-% of the total liquids of the coating composition. In some embodiments, the amount of organic cosolvent does not exceed 45, 40, 35, 30, 25, 20, 15, 10 or 5 wt-% organic cosolvent.
  • aqueous includes (e.g. distilled) water as well as water-based solutions and dispersions such as paint.
  • ⁇ adv Advancing ( ⁇ adv ) and receding ( ⁇ rec ) angles were measured as the test liquid (e.g. water or hexadecane) was supplied via a syringe into or out of sessile droplets (drop volume ⁇ 5 ⁇ L ). Measurements were taken at 2 different spots on each surface, and the reported measurements are the averages of the four values for each sample (a left-side and right-side measurement for each drop).
  • a hole is punched into the side wall near the bottom of a cuvette (having a 1 cm ⁇ 1 cm cross-section and a height of 4.4 cm).
  • the cuvette is inverted such that its opening is placed in contact with the test surface, and a rubber band is wrapped around the cuvette to ensure constant contact with the substrate.
  • This setup is placed in an environmental chamber at ⁇ 20° C. for ⁇ 30 min, and 1 mL of water at 0° C. is injected through the hole into the cuvette.
  • the water comes into contact with the test substrate and a column of ice encased in the cuvette forms when the sample is held at ⁇ 20° C. for 15-20 hours.
  • the rubber band is carefully removed and the iced sample is mounted onto the test apparatus.
  • the force required to detach the ice columns from the test substrates was measured by propelling the force probe into the side of the column at a velocity of 2.6′′/minute.
  • the probe was located ⁇ 1 mm above the substrate to minimize torque on the ice
  • a siloxane melt additive (alkyl dimethicone) was synthesized as described in Example 14 of U.S. Pat. No. 9,187,678.
  • the alkyl dimethicone was compounded into NA217000 LDPE (Lyondell Basell, Houston, Tex.) at a loading of 15 wt % using a 25 mm twin screw extruder held at 190° C.
  • the alkyl dimethicone was delivered to the extruder as a liquid at 120° C. by means of a heated gear pump and transfer line.
  • the masterbatch melt was extruded through a stranding die into a chilled water bath and pelletized at a rate of 13.6 Kg/hour.
  • This 3 wt % alkyl dimethicone mixture was extrusion coated sequentially onto both sides of 2 mil thick PET film (primed on both sides, 3M Company) using the following procedure.
  • the pellet blend was fed, via a single feed hopper, at a rate of 20 lbs/hr into an extruder and die operating at a temperature of 500° F.
  • the composite extrudate exited the drop die opening and traveled approximately 10 cm to a nip where the composite was contacted with the primed PET and solidified through a two roll nip equipped with a rubber and a steel roller.
  • the alkyl dimethicone/LDPE layer contacted a smooth chilled steel roll which was used to accelerate the solidification of the layers.
  • the line speed was 50 ft/min, yielding an extruded layer thickness of 1 mil.
  • the final film construction consisted of a 2 mil thick PET film sandwiched between 1 mil thick layers comprising 3 wt % alkyl dimethicone in LDPE.
  • a sample of sufficient size (e.g., 6 cm by 2 cm) was prepared and mounted on a Taber Abraser (Taber Industries 5750 Linear Abraser).
  • a crockmeter square (AATC Crockmeter Square from Testfabrics, Inc.) was attached to the abraser head by means of a rubber band. No additional weights were placed on top of the abraser head. The cycle speed was set to 15 cycles/min, and each substrate was subjected to 2 abrasion cycles (or in otherwords that abraser head passed back and forth twice).
  • the ice adhesion of EX 1 was evaluated according to the Cuvette method previously described.
  • the ice adhesion was 143 kPa with a standard deviation of 21.

Abstract

Articles subject to ice formation during normal use, are described comprising a repellent surface such that the receding contact angle of the surface with water ranges from (90) degrees to (135) degrees wherein the repellent surface comprises a siloxane material. In one embodiment, the repellent surface further comprises a non-fluorinated organic polymeric binder. In another embodiment, the repellent surface comprises a thermally processable polymer and a siloxane material melt additive. Also described are methods of making an article comprising providing an article subject to ice formation during normal use; and providing a liquid repellent surface, as described herein, on at least a portion of the article.

Description

    SUMMARY
  • Articles subject to ice formation during normal use, are described comprising a repellent surface such that the receding contact angle of the surface with water ranges from 90 degrees to 135 degrees wherein the repellent surface comprises a siloxane material.
  • In one embodiment, the repellent surface further comprises a non-fluorinated organic polymeric binder. In another embodiment, the repellent surface comprises a thermally processable polymer and a siloxane material melt additive.
  • Also described are methods of making an article comprising providing an article subject to ice formation during normal use; and providing a liquid repellent surface, as described herein, on at least a portion of the article.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is cross-sectional view of an embodied substrate comprising a repellent surface layer.
  • FIG. 2 is cross-sectional view of another embodiment of an article comprising a repellent surface;
  • DETAILED DESCRIPTION
  • Presently described are articles or components thereof that are subject to ice formation during their normal use. The term “ice” includes any form of frozen water including frost, freezing rain, sleet and snow.
  • Representative articles include sign faces, signal transmission lines (e.g., telephone and electrical cables), satellite dishes, antennas, wind turbine blades, automobiles, railroad cars, aircraft, watercraft, navigation equipment, heat pumps and exchangers or components thereof, ice manufacturing facilities and articles including ice-cube trays and other “ice maker” components; commercial and residential refrigerators and freezers; cryogenic and supercomputer storage facilities; buildings, transportation signs, roofing, dams (especially near a lock), oil drilling platforms, outdoor sporting equipment; recreational vehicles such as snowmobiles, and snow removal equipment.
  • A heat exchanger is an article used to transfer heat between one or more fluids. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air.
  • Types of heat exchangers include: shell and tube heat exchanger, plate heat exchangers, plate and shell heat exchanger, adiabatic wheel heat exchanger, plate fin heat exchanger, pillow plate heat exchanger, fluid heat exchanger, waste heat recovery units, dynamic scraped surface heat exchanger, phase-change heat exchangers, direct contact heat exchangers, microchannel heat exchangers.
  • One of the widest uses of heat exchangers is for air conditioning of buildings and vehicles. This class of heat exchangers is commonly called air coils, or just coils due to their often-serpentine internal tubing. Liquid-to-air, or air-to-liquid HVAC (i.e. heating, ventilation and air conditioning) coils are typically of modified crossflow arrangement. In vehicles, heat coils are often called heater cores.
  • On the liquid side of these heat exchangers, the common fluids are water, a water-glycol solution, steam, or a refrigerant. For heating coils, hot water and steam are the most common, and this heated fluid is supplied by boilers, for example. For cooling coils, chilled water and refrigerant are most common. Chilled water is supplied from a chiller that is potentially located very far away, but refrigerant must come from a nearby condensing unit. When a refrigerant is used, the cooling coil is the evaporator in the vapor-compression refrigeration cycle. HVAC coils that use this direct-expansion of refrigerants are commonly called DX coils. Some DX coils are “microchannel” type.
  • On the air side of HVAC coils a significant difference exists between those used for heating, and those for cooling. Air that is cooled often has moisture condensing out of it, except with extremely dry air flows. Heating some air increases that airflow's capacity to hold water. Thus, heating coils need not consider moisture condensation on their air-side. However, cooling coils are designed and selected to handle latent (moisture) as well as the adequate (cooling) loads. The water that is removed is called condensate.
  • With reference to FIG. 1, article 200 comprises substrate 210 comprising a (e.g. liquid) repellent surface layer (e.g. layer) 251 that comprises a (e.g. non-fluorinated) organic polymeric binder and a silane or siloxane material. The concentration of siloxane material at the outer exposed surface 253 is typically higher than the concentration of siloxane material within the (e.g. non-fluorinated) organic polymeric binder layer 251 proximate substrate 210. The (e.g. liquid) repellent surface layer can be provided by coating substrate 210 with a coating composition comprising an organic solvent, a (e.g. non-fluorinated) organic polymeric binder, and a siloxane material; as will subsequently be described.
  • With reference to FIG. 2, article 300 comprises substrate 310 comprising a (e.g. liquid) repellent surface (e.g. layer) 353 that comprises a siloxane material. The concentration of siloxane material at the outer exposed surface (e.g. layer) 353 is typically higher than the concentration of siloxane material proximate the center of the substrate 310. In one embodiment, the (e.g. liquid) repellent surface 353 can be provided by including a siloxane material, such as a siloxane compound, as a melt additive in a polymeric material that is thermally processed to form substrate 310 into a component or a surface layer thereof.
  • The repellent surface repels ice and typically also repels liquids such as water, aqueous solutions and mixtures including paint.
  • In some embodiments, the inclusion of the repellent surface can aid in the removal of ice accumulation from the repellent surface. For example, the inclusion of the repellent surface may reduce the force required to remove the ice from the repellent surface. Further, the article may be capable of repeatedly releasing ice from the repellent surface.
  • In other embodiments, the inclusion of the repellent coating may reduce or prevent ice build-up on the repellent surface. The repellent coating or surface may also reduce the time required to remove ice which has formed on a substrate when the substrate is thawed/defrosted.
  • The outer exposed surface 253 is preferably (e.g. ice, liquid) repellent such that the advancing and/or receding contact angle of the surface with water is least 90, 95, 100, 105, 110, or 115 degrees. The advancing and/or receding contact angle is typically no greater than 135, 134, 133, 132, 131 or 130 degrees and in some embodiments, no greater than 129, 128, 127, 126, 125, 124, 123, 122, 121, or 120 degrees. The difference between the advancing and/or receding contact angle with water of the (e.g. ice, liquid) repellent surface layer can be at least 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 degrees. In some embodiments, the difference between the advancing and receding contact angle with water of the surface layer is no greater than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 degree. As the difference between the advancing and receding contact angle with water increases, the tilt angle needed to slide or roll off a (e.g. water) droplet from a planar surface increases. One of ordinary skill appreciates that deionized water is utilized when determining contact angles with water.
  • In some embodiments, the outer exposed surface 253 exhibits a contact angle in the ranges just described after soaking in water for 24 hours at room temperature (25° C.). The contact angle of the (e.g. ice, liquid) repellent surface can also be evaluated with other liquids instead of water such as a solution of 10% by weight 2-n-butoxyethanol and 90% by weight deionized water. In some embodiments, the advancing contact angle with such 2-n-butoxyethanol solution is at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 degrees and in some embodiments at least 75 or 80 degrees. In some embodiments, the receding contact angle with such 2-n-butoxyethanol solution is at least 40, 45, 50, 55, 60, 65, or 70 degrees. In some embodiments, the advancing and/or receding contact angle of the (e.g. ice, liquid) repellent surface with such 2-n-butoxyethanol solution is no greater than 100, 95, 90, 85, 80, or 75 degrees.
  • The surface layer is not a lubricant impregnated surface. Rather the outer exposed surface is predominantly a solid (e.g. ice, liquid) repellent material. In this embodiment, less than 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 4, 3, 2, 1, 0.5, 0.1, 0.005, 0.001% of the surface area is a liquid lubricant. Rather, at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5%, or greater of the outer exposed surface is a solid repellent material, as described herein. Thus, a liquid (e.g. water, oil, paint) or solid (e.g. ice) that is being repelled comes in contact with and is repelled by the solid repellent material.
  • The repellent material is generally a solid at the use temperature of the coated substrate or article, which can be as low as −60° F. or −80° F., yet more typically ranges from −40° F. to 120° F. For outdoor usage in moderate climates, the typical use temperature may be at least −20° F., −10° F., 0° F., or 10° F. In typical embodiments, the repellent material is a solid at room temperature (e.g. 25° C.) and temperatures ranging from 40° F. (4.44° C.) to 130° F. (54.4° C.). In typical embodiments the repellent material has a melting temperature (peak endotherm as measured by DSC) of greater than 25° C. and also typically greater than 130° F. (54.4° C.). In some embodiments, the repellent material has a melting temperature no greater than 200° C. In typical embodiments, a single solid repellent material is utilized. However, the coating composition may contain a mixture of solid repellent materials.
  • The repellent material has no solubility or only trace solubility with water, e.g., a solubility of 0.01 g/l or 0.001 g/l or less.
  • The (e.g. liquid, ice) repellent surface layer comprises a siloxane material and a (e.g. non-fluorinated) organic polymeric binder. In typical embodiments, a major amount of non-fluorinated polymeric binder is combined with a sufficient amount of siloxane material that provides the desired ice and liquid repellency properties, as previously described.
  • In typical embodiments, the amount of siloxane material is at least about 0.005, 0.10, 0.25, 0.5, 1.5, 2.0, or 2.5 wt.-% and in some embodiments, at least about 3.0, 3.5, 4.0, 4.5, or 5 wt.-%.
  • The amount of siloxane material is typically no greater than 50, 45, 40, 35, 30, 25, 20, or 15 wt.-% of the sum of the siloxane material and (e.g., non-fluorinated) polymeric binder.
  • The (e.g. liquid, ice) repellent surface comprises a siloxane (e.g. PDMS) material. In some embodiments, the siloxane (e.g. PDMS) material is a solid rather than a liquid (e.g. lubricant) at 25° C. and at temperatures ranging from 40° F. (4.44° C.) to 130° F. (54.4° C.). In typical embodiments the siloxane (e.g. PDMS) material is free of fluorinated groups and thus free of fluorine atoms. In other embodiments, a predominantly siloxane (e.g. PDMS) material may further comprise one or more fluorinated groups. Further, a combination of a fluorochemical material (e.g. such as described in 77291US002 and 77291US004; incorporated herein by reference) and a siloxane (e.g. PDMS) material can be utilized.
  • In some embodiments, a major amount of non-fluorinated polymeric binder or thermally processible polymer is combined with a sufficient amount of siloxane (e.g. PDMS) material that provides the desired repellency properties, as previously described.
  • In some embodiments, the silicone material is a compound, oligomer or polymer having a polysiloxane backbone and more typically a polydimethylsiloxane backbone. The polysiloxane backbone may further comprise other pendent groups, such as hydrocarbon (e.g. preferably alkyl) groups. The silicone material typically does not comprise vinyl groups or other polymerizable group that would results in the silicone material forming a crosslinked network.
  • In some embodiments, the siloxane (e.g. PDMS) material (e.g. oligomer or polymer) comprises at least 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95 wt.-% polydimethylsiloxane backbone. The siloxane (e.g. PDMS) material may further comprise pendent longer chain hydrocarbon (e.g. preferably alkyl) groups in an amount of at least 5, 10, 15, 20, 25, 30, or 35 wt-% of the siloxane (e.g. PDMS) material.
  • The siloxane (e.g. PDMS) oligomer may have a number average molecular weight (Mn) of at least 1500 or 2000 g/mole as measured by Gel Permeation Chromatography using polystyrene standards. The siloxane oligomer typically has a molecular weight (Mn) no greater than 10,000, 9000, 8000, or 7000 g/mole. The siloxane (e.g. PDMS) polymer typically has a molecular weight (Mn) greater than 10,000; 15,000; or 20,000 g/mole. In some embodiments, the molecular weight of the siloxane oligomer is no greater than 100,000; 75,000; or 50,000 g/mole.
  • In some embodiments, the siloxane (e.g. PDMS) material comprises pendent longer chain hydrocarbon (e.g. preferably alkyl) groups wherein the longer chain hydrocarbon (e.g. preferably alkyl) groups average at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms. In some embodiments, the siloxane (e.g. PDMS) material comprises pendent longer chain hydrocarbon (e.g. preferably alkyl) groups wherein the longer chain hydrocarbon (e.g. preferably alkyl) groups average greater than 20 carbons atoms such as at least 25, 30, 35, or 40. The pendent longer chain hydrocarbon (e.g. preferably alkyl) groups typically average no greater than 75, 70, 65, 60, or 50 carbon atoms.
  • In some embodiments, the siloxane (e.g. PDMS) material may be characterized as an alkyl dimethicone. The alkyl dimethicone comprises at least one linear, branched, or cyclic alkyl group averaging at least 8, 10, or 12 carbon atoms such as lauryl dimethicone, depicted as follows:
  • Figure US20190062591A1-20190228-C00001
  • In some embodiments, the alkyl dimethicone comprises at least one linear, branched, or cyclic alkyl group averaging at least 14, 16, or 18 carbon atoms such as cetyl dimethicone and stearyl dimethicone.
  • These material are characterized by having a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a pendent (e.g. linear) alkyl group.
  • Preferred alkyl dimethicones typically have the structure:
  • Figure US20190062591A1-20190228-C00002
  • wherein the sum of (a+b+c) is between about 100 and 1000, for example between about 200 and 500 or between about 300 and 400; the ratio of a to the sum of (b+c) is about 99.9:0.1 to 80:20, or about 99:1 to 85:15, or about 99:1 to 90:10, or about 99:1 to 92:8, or about 98:2 to 93:7 or about or about 98:2 to 94:6; R1 is a linear, branched, or cyclic alkyl group having between 20 and 50 carbon atoms, for example about 22 to 46 carbon atoms, or about 24 to 40 carbon atoms; R2 is a linear, branched, or cyclic alkyl or alkaryl group having between 2 and 16 carbons, for example about 4 to 16, or about 5 to 12, or about 6, to 10, or about 8 carbon atoms; and the structure is a random, block, or blocky structure. In some embodiments, the ratio of a to (b+c) in conjunction with the number of carbons in the R1 and R2 groups result in an alkyl dimethicones having greater than about 50 wt % dimethyl siloxane (a) units, or in embodiments greater than about 60 wt % dimethyl siloxane units. In some embodiments, c is 0. In some embodiments, the sum of (a+b+c) is about 300 to 400 and the ratio of a to the sum of (b+c) is about 98:2 to 94:6. In embodiments, the alkyl dimethicone is a blend of two or more species thereof, wherein the species differ in terms of the sum of (a+b+c), the ratio of a to the sum of (b+c), the value of c, or in two or more such parameters. In some embodiments, the alkyl dimethicone is a random structure. In some embodiments, R1 is a linear alkyl group. In some embodiments, R2 is a linear alkyl group.
  • The alkyl dimethicone materials of Formula V are characterized by having a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a plurality of pendent (e.g. linear) alkyl groups.
  • Methods of synthesizing dimethicone are known in the art. See for example U.S. Pat. No. 9,187,678; incorporated herein by reference.
  • While the structure of alkyl dimethicones are generally preferably linear structures, it will be understood by those of skill that such structures as synthesized or purchased can include an (e.g. small) amount of branching. Such branching, using terminology understood by those of skill, is referred to as “T” and “Q” functionality. In any of the embodiments herein, a substantially linear alkyl dimethicone structure can contain an amount of T branching, Q branching, or both.
  • In some embodiments, the siloxane (e.g. alkyl dimethicone) material has a melting temperature (peak endotherm as can be measured by DSC) of at least 140 or 150° F. ranging up to 170, 175, or 180° F.
  • The compounds described herein are not fluoroalkyl silsesquioxane materials having the chemical formula [RSiO3/2]n, wherein R comprises a fluoroalkyl or other fluorinated organic group.
  • Various organic polymeric binders can be utilized. Although fluorinated organic polymeric binders can also be utilized, fluorinated organic polymeric binders are typically considerably more expensive than non-fluorinated binders. Further, non-fluorinated organic polymeric binders can exhibit better adhesion to non-fluorinated polymeric, metal, or other substrates.
  • Suitable non-fluorinated binders include for example polystyrene, atactic polystyrene, acrylic (i.e. poly(meth)acrylate), polyester, polyurethane (including polyester type thermoplastic polyurethanes “TPU”), polyolefin (e.g. polyethylene), and polyvinyl chloride. Many of the polymeric materials that a substrate can be thermally processed from, as will subsequently be described, can be used as the non-fluorinated organic polymeric binder of the organic solvent coating composition. However, in typical embodiments, the non-fluorinated organic polymeric binder is a different material than the polymeric material of the substrate. In some embodiments, the organic polymeric binder typically has a receding contact angle with water of less than 90, 80, or 70 degrees. Thus, the binder is typically not a silicone material.
  • In some embodiments, the (e.g. non-fluorinated) organic polymeric binder is a film-grade resin, having a relatively high molecular weight. Film-grade resins can be more durable and less soluble in the liquid/solid (e.g. water, oil, paint, ice) being repelled. In other embodiments, the (e.g. non-fluorinated) organic polymeric binder can be a lower molecular weight film-forming resin. Film-forming resins can be more compliant and less likely to affect the mechanical properties of the substrate. Viscosity and melt flow index are indicative of the molecular weight. Mixtures of (e.g. non-fluorinated) organic polymeric binders can also be used.
  • In some embodiments, the film-grade (e.g. non-fluorinated) organic polymeric binder typically has a melt flow index of at least 1, 1.5, 2, 2.5, 3, 4, or 5 g/10 min at 200° C./5 kg ranging up to 20, 25, or 30 g/10 min at 200° C./5 kg. The melt flow index can be determined according to ASTM D-1238. The tensile strength of the (e.g. non-fluorinated) organic polymeric binder is typically at least 40, 45, 50, 55, or 60 MPa. Further, the (e.g. non-fluorinated) organic polymeric binder can have a low elongation at break of less than 10% or 5%. The tensile and elongation properties can be measured according to ASTM D-638.
  • In other embodiments, the (e.g. non-fluorinated) organic polymeric binders have a lower molecular weight and lower tensile strength than film-grade polymers. In one embodiment, the melt viscosity of the (e.g. non-fluorinated) organic polymeric binders (as measured by ASTM D-1084-88) at 400° F. (204° C.) ranges from about 50,000 to 100,000 cps. In another embodiment, the molecular weight (Mw) of the (e.g. non-fluorinated) organic polymeric binder is typically at least about 1000, 2000, 3000, 4000, or 5000 g/mole ranging up to 10,000; 25,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000, or 500,000 g/mole. In some embodiments, the (e.g. non-flourinated) organic polymeric binder has a tensile strength of at least 5, 10, or 15 MPa ranging up to 25, 30, or 35 MPa. In other embodiments, the (e.g. non-fluorinated) organic polymeric binder has a tensile strength of at least 40, 45, or 50 MPa ranging up to 75 or 100 MPa. In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has an elongation at break ranging up to 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000% or higher. In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has a Shore A hardness of at least 50, 60, 70, or 80 ranging up to 100.
  • In some embodiments, the (e.g. non-fluorinated) organic polymeric binder is selected such that it is compliant at the use temperature of the coated substrate or article. In this embodiment, the (e.g. non-fluorinated) organic polymeric binder has a glass transition temperature (Tg) as can be measured by DSC of less than 0° C. or 32° F. In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has a glass transition temperature (Tg) of less than 20° F., 10° F., 0° F., −10° F., −20° F., −30° F., −40° F., −50° F., −60° F., −70° F., or −80° F. The (Tg) of many (e.g. non-fluorinated) organic polymeric binder is at least −130° C.
  • The selection of (e.g. non-fluorinated) organic polymeric binder contributes to the durability of the repellent surface. In some embodiments, the repellency is retained after surface abrasion testing (according to the test method described in the examples). In some embodiments, the liquid (e.g. paint) repellency may diminish to some extent, yet remains highly repellent after surface abrasion testing. Thus, after surface abrasion testing the contact angles or ice adhesion meets the criteria previously described. In other embodiments, the repellency is retained after soaking the repellent surface in water (according to the test method described in the examples). In yet other embodiments, the repellency is retained after repeatedly forming and removing ice from the liquid repellent surface.
  • In typical embodiments, the non-fluorinated organic polymeric binder does not form a chemical (e.g. covalent) bond with the siloxane material as this may hinder the migration of the siloxane material to the outermost surface layer.
  • In some embodiments, the (e.g. non-fluorinated) organic polymeric binder is not curable, such as in the case of alkyd resins. An alkyd resin is a polyester modified by the addition of fatty acids and other components, derived from polyols and a dicarboxylic acid or carboxylic acid anhydride. Alkyds are the most common resin or “binder” of most commercial “oil-based” paints and coatings.
  • The compositions comprising a siloxane material and a (e.g., non-fluorinated organic) polymeric binder can be dissolved, suspended, or dispersed in a variety of organic solvents to form a coating composition suitable for use in coating the compositions onto a substrate. The organic solvent coating compositions typically contain at least about 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% organic solvent or greater, based on the total weight of the coating composition. The coating compositions typically contain at least about 0.01%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15% or greater solids of the (e.g. non-fluorinated organic) polymeric binder and siloxane material, based on the total weight of the coating composition. However, the coating composition can be provided with an even higher amount of solids, e.g. 20, 30, 40, or 50 wt.-% solids. Suitable organic solvents include for example alcohols, esters, glycol ethers, amides, ketones, hydrocarbons, chlorohydrocarbons, hydrofluorocarbons, hydrofluoroethers, chlorocarbons, and mixtures thereof.
  • The coating composition may contain one or more additives provided the inclusion of such does not detract from the (e.g. liquid, ice) repellent properties.
  • The coating compositions can be applied to a substrate or article by standard methods such as, for example, spraying, padding, dipping, roll coating, brushing, or exhaustion (optionally followed by the drying of the treated substrate to remove any remaining water or organic solvent). The substrate can be in the form of sheet articles that can be subsequently thermally formed into a substrate or component. When coating flat substrates of appropriate size, knife-coating or bar-coating may be used to ensure uniform coating of the substrate.
  • The moisture content of the organic coating composition is preferably less than 1000, 500, 250, 100, 50 ppm. In some embodiments, the coating composition is applied to the substrate at a low relative humidity, e.g. of less than 40%, 30% or 20% at 25° C.
  • The coating compositions can be applied in an amount sufficient to achieve the desired repellency properties. Coatings as thin as 250, 300, 350, 400, 450, or 500 nm ranging up to 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5 microns can provide the desired repellency. However, thicker coatings (e.g., up to about 10, 15, 20 microns or more) can also be used. Thicker coatings can be obtained by applying to the substrate a single thicker layer of a coating composition that contains a relatively high solids concentration. Thicker coatings can also be obtained by applying successive layers to the substrate.
  • In another embodiment, the siloxane material can be combined with a thermally processible (e.g. thermoplastic) polymer and then melt processed into an article, substrate thereof, or surface layer thereof. In this embodiment, the siloxane material typically migrates to the surface forming a surface layer with a high concentration of siloxane material relative to the total amount of siloxane material and thermally processible polymer.
  • In typical embodiments, the amount of siloxane material melt additive is at least about 0.05, 0.1, 0.25, 0.5, 1.5, 2.0 or 2.5 wt.-% and in some embodiments, at least about 3.0, 3.5, 4.0, 4.5 or 5 wt.-%. The amount of siloxane material is typically no greater than 25, 20, 15, or 10 wt.-% of the sum of the siloxane material melt additive and thermally processible polymer.
  • To form a polymer blend by melt processing, the siloxane material can be, for example, mixed with pelletized, granular, powdered or other forms of the thermally processible polymer and then melt processed by known methods such as, for example, molding or melt extrusion. The siloxane material can be mixed directly with the polymer or it can be mixed with the polymer in the form of a “master batch” (concentrate) of the siloxane material in the polymer. If desired, an organic solution of the siloxane material can be mixed with powdered or pelletized polymer, followed by drying (to remove solvent) and then melt processing. Alternatively, the siloxane composition can be added to the polymer melt to form a mixture or injected into a molten polymer stream to form a blend immediately prior to extrusion or molding into articles.
  • In some embodiments, the melt processible (e.g. thermoplastic) polymer is a polyolefin, polyester, polyamide, polyurethane, or polyacrylate.
  • The siloxane melt additives are generally a solid at room temperature (e.g. 25° C.) and at the use temperature of the article as previously described. The siloxane material and thermally processible polymer are selected such that the siloxane material is typically molten at the melt processing temperature of the mixture. In some embodiments, the siloxane material has a melt temperature no greater than 200, 190, 180, 170, or 160° C.
  • Extrusion can be used to form polymeric films. In film applications, a film forming polymer is simultaneously melted and mixed as it is conveyed through the extruder by a rotating screw or screws and then is forced out through a slot or flat die, for example, where the film is quenched by a variety of techniques known to those skilled in the art. The films optionally are oriented prior to quenching by drawing or stretching the film at elevated temperatures. Adhesive can optionally be coated or laminated onto one side of the extruded film in order to apply and adhere the (liquid, ice) repellent film onto a substrate.
  • Molded articles are produced by pressing or by injecting molten polymer from a melt extruder as described above into a mold where the polymer solidifies. Typical melt forming techniques include injection molding, blow molding, compression molding and extrusion, and are well known to those skilled in the art. The molded article is then ejected from the mold and optionally heat-treated to effect migration of the polymer additives to the surface of the article.
  • After melt processing, an annealing step can be carried out to enhance the development of repellent characteristics. The annealing step typically is conducted below or above the melt temperature of the polymer for a sufficient period of time. The annealing step can be optional.
  • The (e.g. liquid, ice) repellent coating composition can be provided on a wide variety of organic or inorganic substrates.
  • Suitable polymeric materials for substrates include, but are not limited to, polyesters (e.g., polyethylene terephthalate or polybutylene terephthalate), polycarbonates, acrylonitrile butadiene styrene (ABS) copolymers, poly(meth)acrylates (e.g., polymethylmethacrylate, or copolymers of various (meth)acrylates), polystyrenes, polysulfones, polyether sulfones, epoxy polymers (e.g., homopolymers or epoxy addition polymers with polydiamines or polydithiols), polyolefins (e.g., polyethylene and copolymers thereof or polypropylene and copolymers thereof), polyvinyl chlorides, polyurethanes, fluorinated polymers, cellulosic materials, derivatives thereof, and the like. In some embodiments, where increased transmissivity is desired, the polymeric substrate can be transparent. The term “transparent” means transmitting at least 85 percent, at least 90 percent, or at least 95 percent of incident light in the visible spectrum (wavelengths in the range of 400 to 700 nanometers). Transparent substrates may be colored or colorless.
  • Suitable inorganic substrates include metals and siliceous materials such as glass. Suitable metals include pure metals, metal alloys, metal oxides, and other metal compounds. Examples of metals include, but are not limited to, chromium, iron, aluminum, silver, gold, copper, nickel, zinc, cobalt, tin, steel (e.g., stainless steel or carbon steel), brass, oxides thereof, alloys thereof, and mixtures thereof.
  • The coating composition can be used to impart or enhance (e.g. ice, aqueous liquid and/or oil) repellency of a variety of substrates and articles. The term “ice” includes any form of frozen water as previously described.
  • The term “aqueous” means a liquid medium that contains at least 50, 55, 60, 65, or 70 wt-% of water. The liquid medium may contain a higher amount of water such as at least 75, 80, 85, 90, 95, 96, 97, 98, 99, or 100 wt-% water. The liquid medium may comprise a mixture of water and one or more water-soluble organic cosolvent(s), in amounts such that the aqueous liquid medium forms a single phase. Examples of water-soluble organic cosolvents include for example methanol, ethanol, isopropanol, 2-methoxyethanol, (2-methoxymethylethoxy)propanol, 3-methoxypropanol, 1-methoxy-2-propanol, 2-butoxyethanol, ethylene glycol, ethylene glycol mono-2-ethylhexylether, tetrahydrofuran, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, tetraethylene glycol di(2-ethylhexoate), 2-ethylhexylbenzoate, and ketone or ester solvents. The amount of organic cosolvent does not exceed 50 wt-% of the total liquids of the coating composition. In some embodiments, the amount of organic cosolvent does not exceed 45, 40, 35, 30, 25, 20, 15, 10 or 5 wt-% organic cosolvent. Thus, the term aqueous includes (e.g. distilled) water as well as water-based solutions and dispersions such as paint.
  • Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. These examples are for illustrative purposes only and are not meant to be limiting on the scope of the appended claims.
  • METHODS Method for Contact Angle Measurements
  • Water and hexadecane contact angles were measured using a Ramé-Hart goniometer (Ramé-Hart Instrument Co., Succasunna, N.J.). Advancing (θadv) and receding (θrec) angles were measured as the test liquid (e.g. water or hexadecane) was supplied via a syringe into or out of sessile droplets (drop volume ˜5 μL ). Measurements were taken at 2 different spots on each surface, and the reported measurements are the averages of the four values for each sample (a left-side and right-side measurement for each drop).
  • Ice Adhesion Cuvette Method
  • A hole is punched into the side wall near the bottom of a cuvette (having a 1 cm×1 cm cross-section and a height of 4.4 cm). The cuvette is inverted such that its opening is placed in contact with the test surface, and a rubber band is wrapped around the cuvette to ensure constant contact with the substrate. This setup is placed in an environmental chamber at −20° C. for ˜30 min, and 1 mL of water at 0° C. is injected through the hole into the cuvette. The water comes into contact with the test substrate and a column of ice encased in the cuvette forms when the sample is held at −20° C. for 15-20 hours. The rubber band is carefully removed and the iced sample is mounted onto the test apparatus. The force required to detach the ice columns from the test substrates was measured by propelling the force probe into the side of the column at a velocity of 2.6″/minute. The probe was located ˜1 mm above the substrate to minimize torque on the ice columns.
  • EXAMPLE 1 (EX1) Preparation of Film with Siloxane Melt Additive
  • A siloxane melt additive (alkyl dimethicone) was synthesized as described in Example 14 of U.S. Pat. No. 9,187,678. The alkyl dimethicone was compounded into NA217000 LDPE (Lyondell Basell, Houston, Tex.) at a loading of 15 wt % using a 25 mm twin screw extruder held at 190° C. The alkyl dimethicone was delivered to the extruder as a liquid at 120° C. by means of a heated gear pump and transfer line. The masterbatch melt was extruded through a stranding die into a chilled water bath and pelletized at a rate of 13.6 Kg/hour. These 15 wt % alkyl dimethicone masterbatch pellets were then admixed with NA217000 LDPE pellets at a ratio which yielded a pellet mixture comprising 3 wt % alkyl dimethicone in LDPE.
  • This 3 wt % alkyl dimethicone mixture was extrusion coated sequentially onto both sides of 2 mil thick PET film (primed on both sides, 3M Company) using the following procedure. The pellet blend was fed, via a single feed hopper, at a rate of 20 lbs/hr into an extruder and die operating at a temperature of 500° F. The composite extrudate exited the drop die opening and traveled approximately 10 cm to a nip where the composite was contacted with the primed PET and solidified through a two roll nip equipped with a rubber and a steel roller. The alkyl dimethicone/LDPE layer contacted a smooth chilled steel roll which was used to accelerate the solidification of the layers. The line speed was 50 ft/min, yielding an extruded layer thickness of 1 mil. The final film construction consisted of a 2 mil thick PET film sandwiched between 1 mil thick layers comprising 3 wt % alkyl dimethicone in LDPE.
  • The contact angles of EX1 were determined in the same manner as previously described. The results were as follows:
  • 10% (by wt.) aqueous
    Water Contact 2-n-butoxyethanol
    Angles Contact Angles
    CAH CAH
    Example θadv θrec adv − θrec) θadv θrec adv − θrec)
    EX1 112 97 15 56 47 9
  • Surface Abrasion Test
  • A sample of sufficient size (e.g., 6 cm by 2 cm) was prepared and mounted on a Taber Abraser (Taber Industries 5750 Linear Abraser). A crockmeter square (AATC Crockmeter Square from Testfabrics, Inc.) was attached to the abraser head by means of a rubber band. No additional weights were placed on top of the abraser head. The cycle speed was set to 15 cycles/min, and each substrate was subjected to 2 abrasion cycles (or in otherwords that abraser head passed back and forth twice).
  • Contact angles with a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water were tested after being subjected to this surface abrasion.
  • 10% (by wt.) aqueous
    2-n-butoxyethanol
    Contact Angles
    After Abrasion
    CAH
    Example θadv θrec adv − θrec)
    EX1 53 45 8
  • The repellency of EX1 after abrasion was also evaluated by measuring the contact angles with water as previously described. The results were as follows:
  • Water Contact Angles
    After Abrasion
    CAH
    Example θadv θrec adv − θrec)
    EX1 109 99 10
  • The ice adhesion of EX 1 was evaluated according to the Cuvette method previously described. The ice adhesion was 143 kPa with a standard deviation of 21.

Claims (22)

1. An article subject to ice formation during normal use comprising a repellent surface such that the receding contact angle of the surface with water ranges from 90 degrees to 135 degrees wherein the repellent surface comprises a siloxane material.
2. The article of claim 1 wherein the siloxane material has a molecular weight of at least 1500 g/mole and no greater than 100,000 g/mole.
3. The article of claim 1 wherein the siloxane material has a melt temperature of no greater than 200° C.
4. The article of claim 1 wherein the repellent surface further comprises a non-fluorinated organic polymeric binder.
5. The article of claim 1 wherein the repellent surface comprises a siloxane material comprising terminal silane groups and pendent hydrocarbon groups.
6. The article of claim 5 wherein the siloxane material comprises at least one hydrocarbon groups averaging at least 8 carbon atoms.
7. The article of claim 6 wherein the hydrocarbon moiety is a saturated alkylene moiety.
8. The article of claim 4 wherein the non-fluorinated polymeric binder is selected from polystyrene, acrylic, polyester, polyurethane, polyolefin, and polyvinyl chloride.
9. The article of claim 1 wherein the repellent surface exhibits a difference between the advancing contact angle and receding contact angle with water of less than 20 degrees.
10. The article of claim 1 wherein the repellent surface exhibits a receding contact angle with water of at least 90 degrees after soaking in water for 24 hours.
11. The article of claim 1 wherein the repellent surface exhibits a receding contact angle with a 10% by weight aqueous solution of 2-n-butoxyethanol of at least 40 degrees.
12. The article of claim 1 wherein the repellent surface exhibits a receding contact with water of at least 90 degrees after 2 abrasion cycles at 15 cycles/minutes with a Taber Linear Abraser.
13. The article of claim 1 wherein the siloxane material is not a fluoroalkyl silsesquioxane.
14. (canceled)
15. The article of claim 1 wherein the article comprises the repellent surface disposed on a substrate.
16. (canceled)
17. The article of claim 16 wherein the inorganic substrate is a metal substrate.
18. The article of claim 1 wherein the article is a heat exchanger.
19. The article of claim 1 wherein the repellent surface reduces the force of ice adhesion in comparison to the same article without the repellent surface.
20. A method of making an article comprising;
providing an article subject to ice formation during normal use;
providing a liquid repellent surface according to any of the embodiments of claims 1-19 on at least a portion of the article.
21. The method of claim 20 wherein the repellent surface is provided by coating the article with a composition comprising an organic solvent, a siloxane material and a non-fluorinated polymeric binder; and removing the organic solvent.
22. The method of claim 20 wherein the repellent surface is provided by forming the article or a surface layer thereof from a melt processible polymer further comprising a siloxane materia
US16/080,047 2016-04-26 2017-04-25 Articles subject to ice formation comprising a repellent surface comprising a siloxane material Active US10907070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/080,047 US10907070B2 (en) 2016-04-26 2017-04-25 Articles subject to ice formation comprising a repellent surface comprising a siloxane material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662327799P 2016-04-26 2016-04-26
US16/080,047 US10907070B2 (en) 2016-04-26 2017-04-25 Articles subject to ice formation comprising a repellent surface comprising a siloxane material
PCT/US2017/029240 WO2017189475A1 (en) 2016-04-26 2017-04-25 Articles subject to ice formation comprising a repellent surface comprising a siloxane material

Publications (2)

Publication Number Publication Date
US20190062591A1 true US20190062591A1 (en) 2019-02-28
US10907070B2 US10907070B2 (en) 2021-02-02

Family

ID=60160058

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/080,047 Active US10907070B2 (en) 2016-04-26 2017-04-25 Articles subject to ice formation comprising a repellent surface comprising a siloxane material

Country Status (4)

Country Link
US (1) US10907070B2 (en)
EP (1) EP3448944A4 (en)
CN (1) CN109071992A (en)
WO (1) WO2017189475A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231828A1 (en) * 2019-05-10 2020-11-19 Blade Dynamics Limited Longitudinal edge extension
WO2022197757A1 (en) * 2021-03-17 2022-09-22 Spotless Materials Inc. Repellent coating formulation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073494B (en) 2014-10-28 2019-10-01 3M创新有限公司 Spraying administration system component and method including liquid repellent surface
EP3368618B1 (en) 2015-10-28 2020-11-25 3M Innovative Properties Company Articles subject to ice formation comprising a repellent surface
MX2018005131A (en) 2015-10-28 2018-05-07 3M Innovative Properties Co Spray application system components comprising a repellent surface & methods.
CN109071992A (en) 2016-04-26 2018-12-21 3M创新有限公司 The product for being subjected to ice formation including the repellency surface comprising silicone compositions
EP3560822A1 (en) 2018-04-26 2019-10-30 3M Innovative Properties Company Anti-icing stack
WO2021026303A1 (en) * 2019-08-07 2021-02-11 Rohm And Haas Company Pvc composition, polymer composite article formed therewith, and method of preparing same

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2504482A (en) 1949-06-17 1950-04-18 Premo Pharmaceutical Lab Inc Drain-clear container for aqueous-vehicle liquid pharmaceutical preparations
US2688568A (en) 1950-10-02 1954-09-07 Pfizer & Co C Process of producing drain-clear containers
US2622598A (en) 1951-03-08 1952-12-23 Premo Pharmaceutical Lab Inc Drain-clear container for aqueous liquid pharmaceutical preparations
US2803656A (en) 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbonsulfonamidoalkanols and sulfates thereof
US3372125A (en) 1965-11-15 1968-03-05 Peter Strong & Company Inc Denture cleanser
US3746196A (en) 1971-01-29 1973-07-17 Green Cross Corp Coated plastic container for liquid medicine
US3759874A (en) 1971-08-30 1973-09-18 Fmc Corp Fluorinated polyurethanes as soil release agents
US3787351A (en) 1972-02-28 1974-01-22 Minnesota Mining & Mfg Use of soluble fluoroaliphatic oligomers in resin composite articles
US4209610A (en) 1975-06-30 1980-06-24 Frank Mares Partially fluorinated esters or amide/esters of benzene polycarboxylic acids, and dyeable pet and nylon fibers incorporating the same and process of making such fibers
US4508916A (en) 1979-04-11 1985-04-02 Minnesota Mining And Manufacturing Company Curable substituted urethane acrylates
JPS56154860A (en) 1980-04-30 1981-11-30 Fujitsu Ltd Detection system for frequency difference signal
US4301208A (en) 1980-09-04 1981-11-17 The United States Of America As Represented By The Secretary Of The Army Method for reducing the adhesion of ice to the walls of navigation locks
US4472466A (en) 1982-03-08 1984-09-18 American Hoechst Corporation Soil repellent fluorinated esters of multi-ring anhydride systems
JPS6123656A (en) 1984-07-11 1986-02-01 Kansai Paint Co Ltd Anti-icing organic coating composition
US5213743A (en) 1986-06-24 1993-05-25 Goyo Paper Working Co., Ltd. Method of manufacturing release paper
US5221497A (en) 1988-03-16 1993-06-22 Nissan Chemical Industries, Ltd. Elongated-shaped silica sol and method for preparing the same
JP2631224B2 (en) 1988-04-27 1997-07-16 関西ペイント株式会社 Anti-icing paint composition
JP2505536B2 (en) 1988-06-10 1996-06-12 積水化学工業株式会社 Water / oil repellent and water / oil repellent composition
US5169900A (en) 1988-08-05 1992-12-08 Du Pont Canada Inc. Polyolefin coatings and films having release characteristics
US5187015A (en) * 1989-02-17 1993-02-16 Minnesota Mining And Manufacturing Company Ice release composition, article and method
JPH0341160A (en) 1989-07-07 1991-02-21 Kao Corp Thermoplastic resin composition of excellent liquid repellency
JP2770547B2 (en) 1990-04-23 1998-07-02 三菱マテリアル株式会社 Fluorine-containing diester type compound and method for producing the same
JPH07119403B2 (en) 1990-10-15 1995-12-20 日東化学株式会社 Protective water repellent for automobile coatings
FI93649C (en) 1990-10-29 1995-05-10 Neste Oy Polymer product acting as a release liner for surfaces with pressure sensitive adhesives to be attached to it
JPH04270649A (en) 1991-02-26 1992-09-28 Toray Ind Inc Release film
US5459188A (en) 1991-04-11 1995-10-17 Peach State Labs, Inc. Soil resistant fibers
US5350795A (en) 1991-07-10 1994-09-27 Minnesota Mining And Manufacturing Company Aqueous oil and water repellent compositions which cure at ambient temperature
US5157139A (en) 1991-10-03 1992-10-20 Dow Corning Corporation Inorganic acid catalysed silylation reactions
JP3306454B2 (en) 1991-10-14 2002-07-24 大阪瓦斯株式会社 Anti-icing and anti-icing paint composition
CA2121494A1 (en) 1991-11-12 1993-05-27 Richard John Grant Fluoroaliphatic dimer acid derivatives and use thereof
US5267693A (en) 1992-02-12 1993-12-07 Dickey Barry A Spray gun non-stick paint connector block
JPH05331407A (en) 1992-06-03 1993-12-14 Kanto Auto Works Ltd Chipping-resistant coating composition excellent in deicing and anti-icing
JPH05338087A (en) 1992-06-08 1993-12-21 Dainippon Printing Co Ltd Release sheet and manufacture thereof
JPH06316548A (en) 1993-03-12 1994-11-15 Idemitsu Petrochem Co Ltd Perfluorocarboxylic ester, water repellent containing the same and production of the ester
JP3435653B2 (en) 1993-05-14 2003-08-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Anhydride-epoxy coating composition modified with fluoropolymer
US5476901A (en) 1993-06-24 1995-12-19 The Procter & Gamble Company Siloxane modified polyolefin copolymers
US6150020A (en) 1993-09-23 2000-11-21 Bba Nonwovens Simpsonville, Inc. Articles exhibiting improved hydrophobicity
CA2143277C (en) 1994-04-19 2000-05-16 Michael J. Kosmyna Hand held paint spray gun with top mounted paint cup
US5560544A (en) 1994-07-01 1996-10-01 The Procter & Gamble Company Anti-clogging atomizer nozzle
US5708068A (en) 1995-01-16 1998-01-13 Union Carbide Chemicals & Plastics Technology Corporation Aircraft deicing/anti-icing fluids thickened by associative polymers
US5674592A (en) 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
US5728469A (en) 1995-06-06 1998-03-17 Avery Dennison Corporation Block copolymer release surface for pressure sensitive adhesives
US5618903A (en) 1995-06-06 1997-04-08 Shell Oil Company Anionically polymerized block copolymers of ethylene and cyclic siloxane monomers
DE69624923T2 (en) 1995-08-11 2003-08-21 Daikin Ind Ltd ORGANIC FLUORINE POLYMERS CONTAINING SILICON AND THEIR USE
US5637657A (en) 1995-09-18 1997-06-10 E. I. Du Pont De Nemours And Company Surface coating compositions containing fluoroalkyl esters of unsaturated fatty acids
US5859126A (en) 1995-09-18 1999-01-12 E. I. Du Pont De Nemours And Company Coatings containing fluorinated esters
US5798402A (en) 1995-12-21 1998-08-25 E. I. Du Pont De Nemours And Company Fluorinated sulfone melt additives for thermoplastic polymers
US5681963A (en) 1995-12-21 1997-10-28 E. I. Du Pont De Nemours And Company Fluorinated melt additives for thermoplastic polymers
TW426712B (en) 1995-12-21 2001-03-21 Du Pont Fluorinated diester melt additives for thermoplastic polymers and their uses
TW376397B (en) 1995-12-21 1999-12-11 Du Pont Fluorinated ester melt additives for thermoplastic fibers
US6258758B1 (en) 1996-04-26 2001-07-10 Platinum Research Organization Llc Catalyzed surface composition altering and surface coating formulations and methods
US5670573A (en) 1996-08-07 1997-09-23 E. I. Du Pont De Nemours And Company Coatings containing fluorinated esters
EP0825241B1 (en) 1996-08-16 2003-03-26 Nippon Telegraph And Telephone Corporation Water repellent coating composition, method for preparing the same, and coating films and coated articles using the same
US6465107B1 (en) 1996-09-13 2002-10-15 Dupont Canada Inc. Silicone-containing polyolefin film
US5747392A (en) 1996-11-19 1998-05-05 Hi-Tex, Inc. Stain resistant, water repellant, interpenetrating polymer network coating-treated textile fabric
CN1142830C (en) 1997-01-24 2004-03-24 美国3M公司 Apparatus for spraying liquids, and disposable containers and liners suitable for use therewith
WO1998043886A2 (en) 1997-03-31 1998-10-08 The Procter & Gamble Company Package providing good drainage to viscous contents
US6013715A (en) 1997-04-22 2000-01-11 Dow Corning Corporation Thermoplastic silicone elastomers
DE19730245B4 (en) 1997-07-15 2007-08-30 W.L. Gore & Associates Gmbh Coating material, coated material and method of making the same
US6127485A (en) 1997-07-28 2000-10-03 3M Innovative Properties Company High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers
KR100588281B1 (en) 1997-09-24 2006-09-22 아사히 가라스 가부시키가이샤 Fluorine-containing resin composition
US5914384A (en) 1997-11-21 1999-06-22 E. I. Du Pont De Nemours And Company Coating compositions containing a highly fluorinated hydroxyl containing additive
WO1999063022A1 (en) 1998-06-04 1999-12-09 Nippon Sheet Glass Co., Ltd. Process for producing article coated with water-repellent film, article coated with water-repellent film, and liquid composition for water-repellent film coating
JP2000087014A (en) 1998-09-11 2000-03-28 Asahi Glass Co Ltd Water- and oil-repellent agent composition
EP1088867A1 (en) 1999-09-30 2001-04-04 Ciba Spezialitätenchemie Pfersee GmbH Compositions for the oil-and water repulsive finishing of textile materials
US6664318B1 (en) 1999-12-20 2003-12-16 3M Innovative Properties Company Encapsulant compositions with thermal shock resistance
DE10004132B4 (en) 2000-01-31 2007-02-01 Few Chemicals Gmbh Coating composition for the production of dirt-repellent layers and two-component system and their use
CN1274661C (en) 2000-02-29 2006-09-13 旭硝子株式会社 Fluorine compounds and water and oil-repellant compositions
US6586522B1 (en) 2000-06-12 2003-07-01 3M Innovative Properties Company Water- and oil-repellent composition
JP2002053792A (en) 2000-08-08 2002-02-19 Toto Ltd Water-absorbing coating composition
US6485709B2 (en) 2001-01-23 2002-11-26 Addent Inc. Dental bleaching gel composition, activator system and method for activating a dental bleaching gel
US6753380B2 (en) 2001-03-09 2004-06-22 3M Innovative Properties Company Water-and oil-repellency imparting ester oligomers comprising perfluoroalkyl moieties
US6803109B2 (en) 2001-03-09 2004-10-12 3M Innovative Properties Company Water-and oil-repellency imparting urethane oligomers comprising perfluoroalkyl moieties
US6649272B2 (en) 2001-11-08 2003-11-18 3M Innovative Properties Company Coating composition comprising fluorochemical polyether silane polycondensate and use thereof
US6797795B2 (en) 2002-06-07 2004-09-28 The Boeing Company Polysiloxane(amide-ureide) anti-ice coating
US7041727B2 (en) 2002-06-25 2006-05-09 3M Innovative Properties Company Latex paint compositions and coatings
DE10239071A1 (en) 2002-08-26 2004-03-11 Basf Ag Process for the production of surfaces on which liquids do not adhere
AU2003901735A0 (en) 2003-04-11 2003-05-01 Unisearch Limited Durable superhydrophobic coating
EP1493761A1 (en) 2003-07-02 2005-01-05 3M Innovative Properties Company Fluoropolymer of fluorinated short chain acrylates or methacrylates and oil- and water repellent compositions based thereon
CN100577757C (en) 2003-07-22 2010-01-06 佳能株式会社 Liquid-repellency coating composition and have a high alkali-proof coating
US20050016489A1 (en) 2003-07-23 2005-01-27 Endicott Mark Thomas Method of producing coated engine components
DE10335761A1 (en) 2003-08-05 2005-03-03 Goldschmidt Ag Use of organomodified siloxanes for surface modification of polyolefins
US7652115B2 (en) 2003-09-08 2010-01-26 3M Innovative Properties Company Fluorinated polyether isocyanate derived silane compositions
US7803894B2 (en) 2003-12-05 2010-09-28 3M Innovatie Properties Company Coating compositions with perfluoropolyetherisocyanate derived silane and alkoxysilanes
US20050145134A1 (en) 2003-12-30 2005-07-07 Petrin Jason T. Latex paint compositions and coatings
EP1709089B1 (en) 2003-12-31 2008-03-05 3M Innovative Properties Company Water-and oil-repellent fluoroacrylates
ITMI20040106A1 (en) 2004-01-27 2004-04-27 Solvay Solexis Spa POLIURETANI
JP3848334B2 (en) 2004-04-14 2006-11-22 富士重工業株式会社 Mixed paint and method for producing the same
US7101618B2 (en) 2004-05-07 2006-09-05 3M Innovative Properties Company Article comprising fluorochemical surface layer
CA2565046A1 (en) 2004-05-25 2005-12-08 Ciba Specialty Chemicals Holding Inc. Perfluorinated esters, polyester, ethers and carbonates
US7399807B2 (en) 2004-07-09 2008-07-15 Unitex Chemical Corporation Hydrophobic, oleophobic and alcohol-resistant fluorochemical additive
US9027635B2 (en) 2004-08-24 2015-05-12 Waters Technologies Corporation Heat exchange surface including a hydrophobic coating layer
DE102004053384A1 (en) 2004-11-02 2006-05-04 Degussa Ag Liquid, viscous agent based on an organofunctional silane system for the production of weather-resistant protective coatings to prevent contamination of surfaces
US7396866B2 (en) 2004-12-15 2008-07-08 3M Innovative Properties Company Fluorochemical diesters as repellent polymer melt additives
US20060142530A1 (en) 2004-12-28 2006-06-29 Moore George G Water- and oil-repellent fluorourethanes and fluoroureas
JP2006256282A (en) 2005-03-18 2006-09-28 Fuji Xerox Co Ltd Liquid droplet discharge head, its manufacturing method, and liquid droplet discharge apparatus
US20060216524A1 (en) 2005-03-23 2006-09-28 3M Innovative Properties Company Perfluoropolyether urethane additives having (meth)acryl groups and hard coats
US20060248656A1 (en) 2005-05-06 2006-11-09 Invista North America S.A.R.L. New process of making permanent acid stain resistance for a lightly dyed polyamide carpet
JP4239999B2 (en) * 2005-05-11 2009-03-18 セイコーエプソン株式会社 Film pattern forming method, film pattern, device, electro-optical device, and electronic apparatus
US20060281861A1 (en) 2005-06-13 2006-12-14 Putnam John W Erosion resistant anti-icing coatings
FR2887891B1 (en) 2005-07-01 2007-09-21 Commissariat Energie Atomique POLYSILOXANE - BASED MATERIAL WITH LOW HYSTERESIS AND METHOD OF DEPOSITING SUCH MATERIAL.
US7375698B2 (en) 2005-12-02 2008-05-20 Andrew Corporation Hydrophobic feed window
US20070212491A1 (en) 2006-03-08 2007-09-13 Yen Jessica C Fluorochemical and lecithin additive for coatings
JP4761057B2 (en) 2006-05-01 2011-08-31 信越化学工業株式会社 SUBSTRATE HAVING COMPOSITE HARD COAT LAYER WITH ANTIFOIDING COATING AGENT FIXED TO HARD COATING LAYER
CN105779276A (en) 2007-02-26 2016-07-20 干细胞技术公司 Method of reducing curvature in a meniscus of liquid medium
US7857905B2 (en) 2007-03-05 2010-12-28 Momentive Performance Materials Inc. Flexible thermal cure silicone hardcoats
JP4218729B2 (en) 2007-03-15 2009-02-04 東洋製罐株式会社 Polyethylene container for non-oil content
US10202711B2 (en) 2007-05-09 2019-02-12 Massachusetts Institute Of Technology Tunable surface
JP4803827B2 (en) 2007-06-04 2011-10-26 日東電工株式会社 Release liner and pressure-sensitive adhesive sheet comprising the liner
US8993116B2 (en) 2007-06-08 2015-03-31 3M Innovative Properties Company Blends of fluoroalkyl-containing ester oligomers with polydicarbodiimide(S)
US20080306238A1 (en) 2007-06-08 2008-12-11 3M Innovative Properties Company Water- and oil-repellency imparting ester oligomers comprising perfluoroalkyl moieties
US7897666B1 (en) 2007-06-15 2011-03-01 Daniel Berg Release liner
EP2203537A4 (en) 2007-09-14 2014-03-26 3M Innovative Properties Co Composition and method for imparting increased water repellency to substrates and substrates treated with same
US7740479B2 (en) 2007-10-03 2010-06-22 Ultradent Products, Inc. Activating brush tip applicators for dental bleaching compositions
US20090203276A1 (en) 2008-02-13 2009-08-13 Goulston Technologies, Inc. Polymer additive for providing an alcohol repellency for polypropylene nonwoven medical barrier fabrics
CN101579672A (en) 2008-05-16 2009-11-18 3M创新有限公司 Silicon dioxide coating for improving hydrophilicity/transmittivity
US20090294724A1 (en) 2008-05-27 2009-12-03 Appealing Products, Inc. Anti-icing material and surface treatments
CN102119197A (en) 2008-06-30 2011-07-06 Stc.Unm公司 A superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine
US20100035039A1 (en) 2008-08-07 2010-02-11 3M Innovative Properties Company Acicular silica coating for enhanced hydrophilicity/transmittivity
US20130224478A1 (en) 2008-08-07 2013-08-29 3M Innovative Properties Company Acicular silica coating for enhanced hydrophilicity/transmittivity
US9108880B2 (en) 2008-08-18 2015-08-18 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
CN101358106B (en) 2008-09-25 2011-05-04 武汉工程大学 Anti-icing nano composite paint and application
ITBO20080666A1 (en) 2008-11-03 2010-05-04 Marchesini Group Spa FEEDING DEVICE FOR CORRESPONDING ITEMS OF A HOLLOWED TAPE
JP2012509937A (en) 2008-11-25 2012-04-26 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated ether urethane and method of use thereof
US9197678B2 (en) 2008-12-11 2015-11-24 Skype Method and system for data transmission
JP5861101B2 (en) * 2009-02-24 2016-02-16 パナソニックIpマネジメント株式会社 Painted
US20100314575A1 (en) 2009-06-16 2010-12-16 Di Gao Anti-icing superhydrophobic coatings
JP5586110B2 (en) 2009-09-23 2014-09-10 ランズバーグ・インダストリー株式会社 Cleaning method of paint cartridge and paint bag for electrostatic coating machine
NL2005657A (en) 2009-12-03 2011-06-06 Asml Netherlands Bv A lithographic apparatus and a method of forming a lyophobic coating on a surface.
CA2789947A1 (en) * 2010-02-22 2011-08-25 Itw Ccip Holdings Llc Windshield treatment and wiper blade combination
US20110207038A1 (en) 2010-02-24 2011-08-25 Xerox Corporation Slippery surface imaging members
US20110305738A1 (en) 2010-06-09 2011-12-15 Ladizinsky Daniel A Oxygenating Oral Compositions
US9260629B2 (en) * 2010-09-02 2016-02-16 United Technologies Corporation Hydrophobic coating for coated article
US8497021B2 (en) 2010-10-08 2013-07-30 Ut-Battelle, Llc Superoleophilic particles and coatings and methods of making the same
US9085019B2 (en) 2010-10-28 2015-07-21 3M Innovative Properties Company Superhydrophobic films
CN102031057B (en) 2010-11-09 2012-07-18 上海康达新能源材料有限公司 Anti-icing and abrasion-resistant coating suitable for blades of wind driven generator
JP5950925B2 (en) 2010-11-10 2016-07-13 スリーエム イノベイティブ プロパティズ カンパニー Hydrophobic fluorinated coating
CN103649240B (en) 2011-01-19 2016-09-14 哈佛学院院长等 There is high-voltage stability, optical transparence and the smooth surface of selfreparing feature
WO2012121858A1 (en) 2011-03-09 2012-09-13 3M Innovative Properties Company Antireflective film comprising large particle size fumed silica
WO2012138992A2 (en) 2011-04-06 2012-10-11 The Trustees Of The University Of Pennsylvania Design and manufacture of hydrophobic surfaces
CN102964974A (en) 2011-04-25 2013-03-13 陶氏环球技术有限公司 Moisture-curable antifouling coating composition
WO2012173803A1 (en) 2011-06-15 2012-12-20 3M Innovative Properties Company Hydrophobic hydrocarbon coatings
US10119035B2 (en) 2011-07-26 2018-11-06 Virginia Commonwealth University Abhesive coatings
JP5575712B2 (en) 2011-08-01 2014-08-20 理研ビタミン株式会社 Polypropylene resin composition, polyolefin resin composition containing the composition, and molded article thereof
AU2011374899A1 (en) 2011-08-05 2014-02-20 Massachusetts Institute Of Technology Devices incorporating a liquid - impregnated surface
CN102321415A (en) 2011-08-11 2012-01-18 天津大学 Fluorine-silicon acrylic resin nano composite anti-icing coating and preparation method thereof
WO2013115868A2 (en) 2011-11-04 2013-08-08 President And Fellows Of Harvard College Dynamic and switchable slippery surfaces
US9182175B2 (en) 2011-12-01 2015-11-10 The Boeing Company Anti-icing heat exchanger
CN103998414B (en) 2011-12-15 2016-01-20 旭硝子株式会社 Liquid-repellant compound, polymkeric substance, composition, article and manufacture method thereof
EP2607397A1 (en) 2011-12-21 2013-06-26 Clariant International Ltd. Fluorochemical composition and use thereof
US9650518B2 (en) 2012-01-06 2017-05-16 Massachusetts Institute Of Technology Liquid repellent surfaces
JP5968469B2 (en) 2012-02-27 2016-08-10 スリーエム イノベイティブ プロパティズ カンパニー Basic composition comprising inorganic oxide nanoparticles and organic base, coated substrate, article, and method
KR20140148435A (en) 2012-03-23 2014-12-31 메사추세츠 인스티튜트 오브 테크놀로지 Self-lubricating surfaces for food packaging and processing equipment
WO2013141953A2 (en) 2012-03-23 2013-09-26 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
JP6148058B2 (en) 2012-04-06 2017-06-14 日東電工株式会社 Breathable sheet with oil repellency
CN104321191B (en) 2012-05-15 2016-06-15 3M创新有限公司 Polyurethane-base protective coating for rotor blade
EA201491958A1 (en) 2012-05-24 2015-05-29 Массачусетс Инститьют Оф Текнолоджи DEVICE WITH CONTAINING LIQUID WATER SURFACE
EP2867316A2 (en) 2012-06-27 2015-05-06 3M Innovative Properties Company Moisture-curable polysiloxane coating composition
WO2014012080A1 (en) 2012-07-12 2014-01-16 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
EP2872575A2 (en) 2012-07-13 2015-05-20 President and Fellows of Harvard College Structured flexible supports and films for liquid-infused omniphobic surfaces
EP2873630B1 (en) 2012-07-13 2018-04-04 Toyo Seikan Group Holdings, Ltd. Packaging container with excellent content slipperiness
EP2872573A1 (en) 2012-07-13 2015-05-20 President and Fellows of Harvard College Multifunctional repellent materials
WO2014012039A1 (en) 2012-07-13 2014-01-16 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces having improved stability
US20140066687A1 (en) 2012-08-29 2014-03-06 Source Production & Equipment Co., Inc. Radiation therapy of protruding and/or conformable organs
WO2014035742A2 (en) 2012-08-30 2014-03-06 The Trustees Of The University Of Pennsylvania Sprayable superhydrophobic coatings
EP2716680A1 (en) 2012-10-04 2014-04-09 Basf Se Fluorinated polymerizable compound
LU92082B1 (en) 2012-10-10 2014-04-11 Ct De Rech Public Gabriel Lippmann Method for manufacturing a superhydrophobic surface
MX2015006238A (en) 2012-11-19 2015-12-03 Massachusetts Inst Technology Apparatus and methods employing liquid-impregnated surfaces.
US20140178611A1 (en) 2012-11-19 2014-06-26 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
EP2922895B1 (en) 2012-11-20 2017-04-19 3M Innovative Properties Company Block copolymer comprising polyorganosiloxane block and polyolefin block
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating
CN105073587B (en) * 2013-01-10 2018-01-09 干细胞技术公司 Meniscus reduces component
US20140287243A1 (en) 2013-03-06 2014-09-25 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Superhydrophobic coatings
US10385181B2 (en) 2013-03-13 2019-08-20 President And Fellows Of Harvard College Solidifiable composition for preparaton of liquid-infused slippery surfaces and methods of applying
NL2010504C2 (en) 2013-03-22 2014-09-24 Estuary Holding B V Use of ice-phobic coatings.
US20140311940A1 (en) 2013-04-17 2014-10-23 Jonathan Braveman Closeable silicon container
US9187678B2 (en) 2013-07-29 2015-11-17 3M Innovative Properties Company Release films via solventless extrusion processes
US9775972B2 (en) 2013-07-30 2017-10-03 Becton, Dickinson And Company Interlocking needle hub and catheter hub actuator to increase rigidity of IV catheter assembly
RU2547754C2 (en) 2013-08-16 2015-04-10 Игорь Леонидович Радченко Polymer powder composition for superhydrophobic coating and method of obtaining superhydrophobic coating
US20160296985A1 (en) 2013-11-18 2016-10-13 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and associated methods
JP6537240B2 (en) 2013-12-27 2019-07-03 スリーエム イノベイティブ プロパティズ カンパニー Coating tool
CN106029556B (en) 2014-04-09 2019-06-18 美国陶氏有机硅公司 Hydrophobic product
US10493488B2 (en) 2014-04-18 2019-12-03 The University of Masachusetts Methods and formulations for durable superhydrophic, self-cleaning, and superhydrophobic polymer coatings and objects having coatings thereon
EP3152273A4 (en) * 2014-06-06 2017-11-29 Government of The United States as Represented by the Secretary of the Air Force Surface coatings, treatments, and methods for removal of mineral scale by self-release
US20170283316A1 (en) 2014-10-28 2017-10-05 3M Innovative Properties Company Repellent coatings comprising sintered particles and lubricant, articles & method
CN107073494B (en) 2014-10-28 2019-10-01 3M创新有限公司 Spraying administration system component and method including liquid repellent surface
CA2987433A1 (en) * 2015-04-27 2016-11-03 The Regents Of The University Of Michigan Durable icephobic surfaces
EP3368618B1 (en) 2015-10-28 2020-11-25 3M Innovative Properties Company Articles subject to ice formation comprising a repellent surface
MX2018005131A (en) 2015-10-28 2018-05-07 3M Innovative Properties Co Spray application system components comprising a repellent surface & methods.
US20180298209A1 (en) 2015-10-28 2018-10-18 3M Innovative Properties Company Solvent-based repellent coating compositions and coated substrates
CN109071994A (en) 2016-04-26 2018-12-21 3M创新有限公司 The product for being subjected to ice formation including the rejection surface comprising fluorochemical materials
CN109071992A (en) 2016-04-26 2018-12-21 3M创新有限公司 The product for being subjected to ice formation including the repellency surface comprising silicone compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231828A1 (en) * 2019-05-10 2020-11-19 Blade Dynamics Limited Longitudinal edge extension
WO2022197757A1 (en) * 2021-03-17 2022-09-22 Spotless Materials Inc. Repellent coating formulation

Also Published As

Publication number Publication date
EP3448944A1 (en) 2019-03-06
WO2017189475A1 (en) 2017-11-02
EP3448944A4 (en) 2019-11-13
CN109071992A (en) 2018-12-21
US10907070B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
US10907070B2 (en) Articles subject to ice formation comprising a repellent surface comprising a siloxane material
US11136464B2 (en) Articles subject to ice formation comprising a repellent surface
Yu et al. Highly stable amphiphilic organogel with exceptional anti-icing performance
US20190382590A1 (en) Articles subject to ice formation comprising a repellent surface comprising a fluorochemical material
Wei et al. Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces
RU2547754C2 (en) Polymer powder composition for superhydrophobic coating and method of obtaining superhydrophobic coating
EP0754738B1 (en) Water repellent composition, fluorocarbon polymer coating composition and coating film therefrom
Zhang et al. Delaying frost formation by controlling surface chemistry of carbon nanotube-coated steel surfaces
US20100314575A1 (en) Anti-icing superhydrophobic coatings
Cheng et al. Photothermal slippery surface showing rapid self-repairing and exceptional anti-icing/deicing property
KR20200044985A (en) Devices incorporating a liquid-impregnated surface
Ng et al. Formation of icephobic surface with micron-scaled hydrophobic heterogeneity on polyurethane aerospace coating
WO2011142137A1 (en) Aluminum fin material for heat exchanger
Zheng et al. Ice-shedding polymer coatings with high hardness but low ice adhesion
Moriya et al. A superrepellent coating with dynamic fluorine chains for frosting suppression: effects of polarity, coalescence and ice nucleation free energy barrier
Yildirim Erbil Use of liquid ad (ab) sorbing surfaces for anti-icing applications
Li et al. Smart controlling on the bi-stable state of bio-inspired multifunctional coatings for anti-/de-icing applications
US11015063B2 (en) Anti-icing coatings
US11945916B2 (en) Oleogel based on fatty acid amide-containing polymer and preparation method therefor
Becher-Nienhaus et al. Robust Polyurethane Coatings with Lightly Cross-Linked Surfaces for Ice Shedding
WO2018123978A1 (en) Surface treatment agent
Wang et al. Uniformly Hybrid Surface Containing Adjustable Hydrophobic/Hydrophilic Components Obtained by Programmed Strain for Synergistic Anti-Icing
JP4179281B2 (en) Easily ice-slipping surface structure
US20210147693A1 (en) Hydrogen-Bonding Surfaces for Ice Mitigation
JP7337686B2 (en) Anti-icing agent and structure coated with it

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEULER, ADAM J.;ELSBERND, CHERYL L.S.;SIGNING DATES FROM 20180716 TO 20180719;REEL/FRAME:046706/0900

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction