US20190050052A1 - Hand worn interface device - Google Patents
Hand worn interface device Download PDFInfo
- Publication number
- US20190050052A1 US20190050052A1 US16/040,536 US201816040536A US2019050052A1 US 20190050052 A1 US20190050052 A1 US 20190050052A1 US 201816040536 A US201816040536 A US 201816040536A US 2019050052 A1 US2019050052 A1 US 2019050052A1
- Authority
- US
- United States
- Prior art keywords
- wearable device
- loops
- conductive
- substrate
- loop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2611—Measuring inductance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0346—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
Definitions
- the present invention relates to computer human interface devices, and more specifically to interface devices can be worn on and which interface with parts of the human body such as the hand. Such devices are useful in interacting with computer programs, such as interacting three dimensional representations of objects or data, or in the context of virtual reality, and in capturing body motion for later replay.
- resistive flex sensors incorporating partially conductive elastomeric materials to measure the flexion of hand joints. These devices have the disadvantage that the value measured depends on the joint angle in a nonlinear way, and also upon previous joint angles, that is to say they display hysteresis. These devices have the further disadvantage that the value measured changes with temperature. These devices have the further disadvantage that they consist of several components—electrodes, active elastomeric medium, and a flexible substrate, as well as wires to carry signals to and from supporting circuitry, resulting in a relatively high overall cost.
- FIG. 1 shows the general layout of conductive loops within or upon a hand worn embodiment of the device and their placement with respect to the joints of the hand.
- FIG. 2 shows a different view of the device, showing the placement of conductive loops around the joints of the thumb.
- FIG. 3 shows a view from the palmar surface of the device.
- FIG. 4 shows the conductive wires connecting the conductive loops with the electronics module.
- FIG. 5 shows the conductive loops and connecting wires that are associated with a single digit, connected to the electronics module.
- FIG. 6 shows a single conductive loop and it's associated connecting wires, connected to the electronics module.
- FIG. 7 shows the electronic circuit associated with each conductive loop.
- FIG. 8 shows one embodiment of the electronic circuit associated with each conductive loop.
- FIG. 9 shows a structure mounted on the device and embedded with tracking transceivers.
- FIG. 1 overview
- FIG. 2 thenar view
- FIG. 3 palmar view
- This embodiment of the device is worn on the hand but other embodiments may be worn on other parts of the body.
- a flexible, elastic substrate 101 is worn on the user's hand 110 .
- Said substrate 102 may be made from an elastomer such as silicone or polyurethane, or a woven elastic textile such as Lycra.
- Conductive loops 102 , 103 , 104 , 105 , 108 and 109 are mounted upon, woven into or embedded within said substrate 102 .
- the basic structure for each finger, formed by the set up loops 102 , 103 , 104 , 105 may be taken as being repeated for each digit as shown in the figure.
- the thumb is also provided with two additional loops 108 and 109 .
- the conductive loops 102 , 103 , 104 , 105 , 108 and 109 are made of metal wire such as copper which is of a thickness that they can bend repeatedly without breaking. In some embodiments the thickness of the copper wire is typically 0.1 mm.
- An electronics module 106 houses inductance measurement electronics, a processor, a wireless transmitter and a battery and is mounted onto the substrate 102 .
- Contacts (exemplified by 107 ) are provided as means to connect the device to an external power source in order to charge it's internal battery.
- Conductive loop 102 is positioned on top of the distal interphalangeal joint of the digit, and the measurement of it's inductance is used to calculate the angle of this joint.
- Conductive loop 103 is positioned on top of the proximal interphalangeal joint of the digit.
- Conductive loops 104 and 105 are positioned on top of the metacarpal phalangeal joint.
- Each conductive loop 102 , 103 , 104 , 105 , 108 , 109 consists of zigzag edges such that it can accomodate a stretching of the substrate.
- the associated conductive loop is stretched and the inductance is increased.
- the inductance is decreased.
- the electronics module 106 uses this inductance change to calculate the joint flexion.
- loops 104 and 105 are stretched or compressed.
- the electronics module 106 uses the difference in the change in the change in inductance of loops 104 and 105 to calculate the degree of adduction or abduction of the digit.
- loops 108 and 109 change inductance due to the twisting and bending motion imparted to the substrate between the thumb and the back of the hand. For this reason loops 108 and 109 are mounted close to the upper surface of the substrate, above the neutral axis of the material, to maximise this response.
- the thumb is provided with conductive loops 201 , 202 , 203 and 204 which correspond to finger loops 102 , 103 , 104 and 105 respectively.
- loop 202 is replaced by a loop pair 203 , 204 in order to measure adduction and abduction of the thumb metacarpal phalangeal joint.
- Loops 203 and 204 measure the thumb carpal metacarpal joint in the same way as described for the measurement of the finger metacarpal phalangeal joint using loops 104 and 105 .
- Magnets 302 are placed on the each of the fingertips close to conductive loops 301 .
- the electronics module 106 includes current drivers attached to the coil.
- the electronics module 106 can receive a command from an external computer to drive a current in the coil 301 , producing a force on the magnet 302 and creating a tactile feedback effect on the user's skin.
- the structure comprised of 301 and 302 can be replicated at other points of the skin surface in order to provide more detailed tactile feedback effects.
- Fasteners 303 for attaching the wearable device may be provided to allow sections of the wearable device to be split apart and joined together, in order to make it easier to put on and take off.
- FIG. 4 shows the zig-zag connecting wire pair 401 connecting the loop 102 with the electronics module 106 .
- the zig zag connecting wire pair is so shaped to accomodate stretch in the same way as the conductive coils 102 themselves. Every conducting coil discussed has a similar conducting wire pair connecting it to the electronics module 106 .
- the coils 102 , 103 , 104 , 105 , 108 and 109 and connecting wires 401 may have alternate patterns such as wavy arcs in alternate directions, rounded zig zags, rectangular side to side patterns, or helical structures in order to allow them to acommodate stretching of the underlying and embedding substrate material.
- FIG. 5 shows the detail of the layout of the coils for a single digit 102 , 103 , 104 , 105 and 301 and their associated conducting wire pairs 501 , 401 , 504 , 503 and 502 connecting each coil to the electronics module 106 . This arrangement is repeated for each digit of the hand.
- FIG. 6 shows a single coil in detail.
- Each coil discussed may consist of more than one turns of conductor. In one embodiment between three and five turns of inductor are used but other numbers of turns may be used without materially changing the invention.
- Each connecting wire pair 401 comprises a wire 601 and 602 such that the whole circuit runs in an unbroken circuit from the electronics module 106 , down the wire 601 , one or more times around the loop 102 , and back down the wire 602 to the electronics module.
- FIG. 7 shows the detail of a coil 102 connected to the electronics module 106 , which is comprised of a capacitor 705 , an amplifier 702 , a feedback loop 701 , a frequency counter 703 , and a processor/wireless transmitter 704 .
- the processor 704 has inputs 706 which are connected to the frequency counters associated with all the other coils in the system which require measurement.
- the basic arrangement comprising 705 , 702 , 702 , and 703 is repeated for each coil; only the circuit for coil 102 is shown here for clarity.
- the amplifier 702 , feedback loop 701 , and frequency counter 703 are implemented inside a field programmable gate array such as a Lattice ICE40LP1K integrated circuit.
- the amplifier 702 , feedback loop 701 and frequency counter 703 may be provided by an inductance to digital converter.
- the amplifier may be provided by one or more transistors or amplifier integrated circuits without materially changing the invention.
- the processor 704 which may be realised as a Nordic NRF52832 as well as other possible equivalent parts, includes a wireless transmitter, using for example the Bluetooth wireless transmission standard, which relays the measured joint angles to an external computer.
- a proprietary protocol such as Nordic Enhanced Shockburst may be used as an alternative without materially changing the invention.
- FIG. 8 shows an alternative embodiment of the electronics module 106 wherein a 4093 NAND Schmidt trigger is used to create the oscillator, and a capacitor 802 is placed differently to the capacitor 705 of FIG. 7 .
- FIG. 9 shows a tracking structure 901 mounted onto the electronics module 106 and electrically connected to the electronics module 106 via the electrical contacts 107 .
- the tracking structure 901 passes partially or fully around the wrist and houses multiple tracking modules 902 , for example implemented TS3633-CM1 provided by Triad Semiconductor. These receivers 902 provide the three dimensional position of the hand relative to an external frame of reference.
- the tracking modules 902 are realised as light emitting diodes and tracked by a camera external to the device, again for the purposes of 3 d tracking.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- User Interface Of Digital Computer (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/040,536 US20190050052A1 (en) | 2017-07-19 | 2018-07-19 | Hand worn interface device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762534413P | 2017-07-19 | 2017-07-19 | |
US201762535991P | 2017-07-24 | 2017-07-24 | |
US16/040,536 US20190050052A1 (en) | 2017-07-19 | 2018-07-19 | Hand worn interface device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190050052A1 true US20190050052A1 (en) | 2019-02-14 |
Family
ID=65015891
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/040,536 Abandoned US20190050052A1 (en) | 2017-07-19 | 2018-07-19 | Hand worn interface device |
US16/631,831 Active US11899838B2 (en) | 2017-07-19 | 2018-07-19 | Hand worn interface device integreating electronic sensors |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/631,831 Active US11899838B2 (en) | 2017-07-19 | 2018-07-19 | Hand worn interface device integreating electronic sensors |
Country Status (5)
Country | Link |
---|---|
US (2) | US20190050052A1 (de) |
EP (1) | EP3668336A4 (de) |
JP (1) | JP2020528633A (de) |
CN (1) | CN111417328A (de) |
WO (1) | WO2019018702A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10474236B1 (en) * | 2017-09-13 | 2019-11-12 | Facebook Technologies, Llc | Haptic device for variable bending resistance |
US10895446B2 (en) * | 2018-09-06 | 2021-01-19 | Microsoft Technology Licensing, Llc | Sensor-integrated disposable cover |
US20220136650A1 (en) * | 2019-03-05 | 2022-05-05 | Grasselli S.P.A. | Improved garment |
US11629818B2 (en) * | 2018-02-08 | 2023-04-18 | Alken Inc. | Safety system for machinery |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9076419B2 (en) | 2012-03-14 | 2015-07-07 | Bebop Sensors, Inc. | Multi-touch pad controller |
US10362989B2 (en) | 2014-06-09 | 2019-07-30 | Bebop Sensors, Inc. | Sensor system integrated with a glove |
US10884496B2 (en) * | 2018-07-05 | 2021-01-05 | Bebop Sensors, Inc. | One-size-fits-all data glove |
US11480481B2 (en) | 2019-03-13 | 2022-10-25 | Bebop Sensors, Inc. | Alignment mechanisms sensor systems employing piezoresistive materials |
EP3725256B1 (de) * | 2019-04-16 | 2023-08-30 | Stryker European Operations Limited | Verfolger für chirurgische navigation |
CN113483652A (zh) * | 2021-07-14 | 2021-10-08 | 东南大学 | 一种基于柔性天线的传感器阵列 |
KR102404705B1 (ko) * | 2021-12-15 | 2022-06-02 | 박준 | 장갑을 활용한 인공 미각 전달 방법 |
WO2024016681A1 (zh) * | 2022-07-22 | 2024-01-25 | 深圳市韶音科技有限公司 | 一种可穿戴设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256558A1 (en) * | 2008-02-07 | 2009-10-15 | Tokyo Seimitsu Co., Ltd | Film thickness measuring apparatus and film thickness measuring method |
US20110260963A1 (en) * | 2010-04-27 | 2011-10-27 | Gm Global Technology Operations, Inc. | Symbolic input via mid-air finger/thumb motions |
US9104271B1 (en) * | 2011-06-03 | 2015-08-11 | Richard Adams | Gloved human-machine interface |
US20170303853A1 (en) * | 2014-06-09 | 2017-10-26 | Bebop Sensors, Inc. | Sensor system integrated with a glove |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2416094A1 (fr) * | 1978-02-01 | 1979-08-31 | Zarudiansky Alain | Dispositif de manipulation a distance |
US5986643A (en) * | 1987-03-24 | 1999-11-16 | Sun Microsystems, Inc. | Tactile feedback mechanism for a data processing system |
US5930741A (en) | 1995-02-28 | 1999-07-27 | Virtual Technologies, Inc. | Accurate, rapid, reliable position sensing using multiple sensing technologies |
US6110130A (en) | 1997-04-21 | 2000-08-29 | Virtual Technologies, Inc. | Exoskeleton device for directly measuring fingertip position and inferring finger joint angle |
US6126373A (en) | 1997-12-19 | 2000-10-03 | Fanuc Usa Corporation | Method and apparatus for realtime remote robotics command |
US20070132722A1 (en) * | 2005-12-08 | 2007-06-14 | Electronics And Telecommunications Research Institute | Hand interface glove using miniaturized absolute position sensors and hand interface system using the same |
WO2010022882A2 (en) | 2008-08-25 | 2010-03-04 | Universität Zürich Prorektorat Mnw | Adjustable virtual reality system |
EP2389152A4 (de) | 2009-01-20 | 2016-05-11 | Univ Northeastern | Mehrbenutzer-smartglove für rehabilitation auf grundlage virtueller umgebungen |
EP2353505A1 (de) * | 2010-02-03 | 2011-08-10 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Verfahren, Klammer und System zum Messen der Biegung oder Kurvung eines menschlichen oder tierischen Körpers |
WO2013044226A2 (en) | 2011-09-24 | 2013-03-28 | President And Fellows Of Harvard College | Artificial skin and elastic strain sensor |
US9710060B2 (en) * | 2014-06-09 | 2017-07-18 | BeBop Senors, Inc. | Sensor system integrated with a glove |
DE102015111506A1 (de) * | 2014-10-11 | 2016-04-14 | Workaround UG (haftungsbeschränkt) | Arbeitskleidungseinheit, Armband, Verbindungsstück, Handschuh, Sensormodul sowie Verfahren zur Erfassung, Dokumentation, Analyse, Kontrolle und/oder Teachen von Prozessen |
CN110794960B (zh) * | 2014-12-08 | 2024-02-06 | 罗希特·塞思 | 可穿戴无线hmi装置 |
US9529433B2 (en) | 2014-12-30 | 2016-12-27 | Stmicroelectronics Pte Ltd | Flexible smart glove |
JP6447150B2 (ja) | 2015-01-14 | 2019-01-09 | 東洋紡株式会社 | 手袋型入力装置 |
US9612102B2 (en) * | 2015-04-17 | 2017-04-04 | Bend Labs, Inc | Compliant multi-region angular displacement and strain sensors |
EP3098691A1 (de) | 2015-05-29 | 2016-11-30 | Manus Machinae B.V. | Flexibler sensor und instrumentierter handschuh |
US10635457B2 (en) * | 2015-06-12 | 2020-04-28 | Tyrenn Co., Ltd. | Input device and UI configuration and execution method thereof |
WO2016205143A1 (en) | 2015-06-14 | 2016-12-22 | Sony Interactive Entertainment Inc. | Gloves that include haptic feedback for use with hmd systems |
US10197459B2 (en) | 2015-12-17 | 2019-02-05 | Facebook Technologies, Llc | Indexable strain sensor |
US10137362B2 (en) | 2016-05-04 | 2018-11-27 | Thomas F Buchanan, IV | Exo-tendon motion capture glove device with haptic grip response |
KR102070138B1 (ko) * | 2017-11-23 | 2020-01-28 | 주식회사 네오펙트 | 착용형 손 로봇 |
US10895446B2 (en) * | 2018-09-06 | 2021-01-19 | Microsoft Technology Licensing, Llc | Sensor-integrated disposable cover |
US10996754B2 (en) * | 2018-10-12 | 2021-05-04 | Aurora Flight Sciences Corporation | Manufacturing monitoring system |
-
2018
- 2018-07-19 WO PCT/US2018/042975 patent/WO2019018702A1/en unknown
- 2018-07-19 JP JP2020524729A patent/JP2020528633A/ja active Pending
- 2018-07-19 US US16/040,536 patent/US20190050052A1/en not_active Abandoned
- 2018-07-19 CN CN201880060833.3A patent/CN111417328A/zh active Pending
- 2018-07-19 EP EP18834630.8A patent/EP3668336A4/de active Pending
- 2018-07-19 US US16/631,831 patent/US11899838B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256558A1 (en) * | 2008-02-07 | 2009-10-15 | Tokyo Seimitsu Co., Ltd | Film thickness measuring apparatus and film thickness measuring method |
US20110260963A1 (en) * | 2010-04-27 | 2011-10-27 | Gm Global Technology Operations, Inc. | Symbolic input via mid-air finger/thumb motions |
US9104271B1 (en) * | 2011-06-03 | 2015-08-11 | Richard Adams | Gloved human-machine interface |
US20170303853A1 (en) * | 2014-06-09 | 2017-10-26 | Bebop Sensors, Inc. | Sensor system integrated with a glove |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10474236B1 (en) * | 2017-09-13 | 2019-11-12 | Facebook Technologies, Llc | Haptic device for variable bending resistance |
US11112868B1 (en) | 2017-09-13 | 2021-09-07 | Facebook Technologies, Llc | Haptic device for variable bending resistance |
US11629818B2 (en) * | 2018-02-08 | 2023-04-18 | Alken Inc. | Safety system for machinery |
US10895446B2 (en) * | 2018-09-06 | 2021-01-19 | Microsoft Technology Licensing, Llc | Sensor-integrated disposable cover |
US20220136650A1 (en) * | 2019-03-05 | 2022-05-05 | Grasselli S.P.A. | Improved garment |
Also Published As
Publication number | Publication date |
---|---|
WO2019018702A9 (en) | 2019-07-25 |
WO2019018702A1 (en) | 2019-01-24 |
CN111417328A (zh) | 2020-07-14 |
EP3668336A1 (de) | 2020-06-24 |
JP2020528633A (ja) | 2020-09-24 |
EP3668336A4 (de) | 2021-06-23 |
US20200150761A1 (en) | 2020-05-14 |
WO2019018702A4 (en) | 2019-03-14 |
US11899838B2 (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11899838B2 (en) | Hand worn interface device integreating electronic sensors | |
CN110413103B (zh) | 可伸展环设备 | |
Borghetti et al. | Sensorized glove for measuring hand finger flexion for rehabilitation purposes | |
US8519950B2 (en) | Input device | |
Saggio et al. | Resistive flex sensors: a survey | |
US20140334083A1 (en) | Systems, articles and methods for wearable electronic devices that accommodate different user forms | |
CN107278137A (zh) | 具有伸展传感器的可穿戴装置 | |
KR20180040506A (ko) | 얇은 전자기 햅틱 액추에이터 | |
US11177693B1 (en) | Wearable loops with embedded circuitry | |
Mehmood et al. | Body movement-based controlling through passive RFID integrated into clothing | |
CN216569907U (zh) | 可穿戴标签和具有可穿戴标签的系统 | |
CN210742890U (zh) | 一种智能穿戴式手指触元集信息设备 | |
Gupta et al. | All knitted and integrated soft wearable of high stretchability and sensitivity for continuous monitoring of human joint motion | |
US11803246B2 (en) | Systems and methods for recognizing gesture | |
US20060251854A1 (en) | Stretchable fabric switch | |
EP3883352A1 (de) | Schaltungssubstrat und verfahren zur herstellung des schaltungssubstrats | |
De Rossi et al. | Electroactive fabrics and wearable man-machine interfaces | |
US11395404B2 (en) | Wiring board and method for manufacturing the wiring board | |
Kirstein et al. | Wearable assistants for mobile health monitoring | |
CN118760358A (zh) | 一种摩擦电运动传感和惯性传感混合辅助vr追踪系统及方法 | |
Kirstein et al. | Context aware textiles for wearable health assistants | |
IT201800007012A1 (it) | Guanto Sensoriale con Sistema di recupero dell’energia | |
WO2022139627A1 (ru) | Датчик измерения углов сгиба | |
CN115904067A (zh) | 可穿戴设备 | |
KR20210087479A (ko) | 배선 기판 및 배선 기판의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |