US20190041408A1 - Immunoassay for the detection of procalcitonin - Google Patents

Immunoassay for the detection of procalcitonin Download PDF

Info

Publication number
US20190041408A1
US20190041408A1 US16/100,743 US201816100743A US2019041408A1 US 20190041408 A1 US20190041408 A1 US 20190041408A1 US 201816100743 A US201816100743 A US 201816100743A US 2019041408 A1 US2019041408 A1 US 2019041408A1
Authority
US
United States
Prior art keywords
procalcitonin
amino acid
acid residues
antibody
sequence spanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/100,743
Inventor
Joachim Struck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
BRAHMS GmbH
Original Assignee
Merck Patent GmbH
BRAHMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42184142&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190041408(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Merck Patent GmbH, BRAHMS GmbH filed Critical Merck Patent GmbH
Priority to US16/100,743 priority Critical patent/US20190041408A1/en
Publication of US20190041408A1 publication Critical patent/US20190041408A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/5753Calcitonin gene related peptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/585Calcitonins

Definitions

  • the present invention is in the field of clinical diagnostics. Particularly the present invention relates to the determination of the level of Procalcitonin (PCT) in a sample derived from a bodily fluid of a subject.
  • PCT Procalcitonin
  • PCT Procalcitonin
  • sepsis Assicot et al., Lancet 1993; 341:515-8; Muller et al., Crit Care Med 2000; 28:977-83; Harbarth et al., Am J Respir Crit Care Med 2001; 164:396-402; Becker et al., Crit Care Med 2008; 36:941-52; Becker et al, J Clin Endocrinol Metab 2004; 89:1512-25; Nobre et al., Am J Respir Crit Care Med 2008; 177:498-505; Christ-Crain et al., Lancet 2004; 363:600-7; Stolz et al., Chest 2007; 131:9-19; Christ-Crain et al, Am J Respir Crit Care Med 2006; 174:84-93; Briel et al., Arch Intern
  • Antigen-specific antibodies are a key tool for the development of immunoassays.
  • Several antibodies against PCT-derived peptides have been described, which have been used in immunoassays to detect PCT, but only few have been tested for their use in sandwich immunoassays to detect native PCT (Table 1).
  • Sandwich immunoassays employing antibodies against the calcitonin- and katacalcin moieties of PCT have been developed to measure PCT in human samples on a routine basis.
  • PCT concentrations excluding medullary thyroid carcinoma
  • PCT-derived fragments are present in the blood circulation of patients.
  • proteolytic cleavage just upstream from the calcitonin moiety of PCT has been discussed to occur (Muller, et al. Crit Care Med 2000; 28:977-83; Whang et al., J Clin Endocrinol Metab 1998; 83:3296-301), which would lead to two fragments (both ca. 6-7 kDa).
  • Immunoassays for PCT also have not been suitable to address the question of PCT-fragmentation, because either competitive assays involving a single antibody were used (Whang, et al. J Clin Endocrinol Metab 1998; 83:3296-301), or sandwich immunoassays involving two antibodies with epitopes located closely to each other in the C-terminal half of PCT and not covering a broad moiety of PCT were used (Morgenthaler et al., Clin Chem 2002; 48:788-90).
  • N-terminally intact PCT species were found to have different in vivo kinetics than PCT immunoreactivity which was detected with a sandwich immunoassay employing antibodies against the calcitonin- and katacalcin moieties of PCT. Additionally, these N-terminally intact PCT species were found to make up only ca. 10-20% of PCT immunoreactivity which was detected with a sandwich immunoassay employing antibodies against the calcitonin- and katacalcin moieties of PCT.
  • PCT1-116 is cleaved N-terminally by the action of DPP IV leading to PCT3-116 (Weglohner, et al. Peptides 2001; 22:2099-103; Wrenger et al., FEBS Lett 2000; 466:155-9), it is unclear, whether additionally or alternatively PCT1-116 can be cleaved at another site in the middle of the molecule.
  • an antibody having an epitope roughly upstream from the calcitonin moiety (precisely: upstream from position 53) of PCT which does not include the very N-terminus of PCT (i.e. position 1 of PCT1-116), in conjunction with an antibody having another epitope, for example an epitope downstream from position 53 (as for instance an epitope within the calcitonin- or katacalcin moiety of PCT), can be used in a sandwich immunoassay to detect native PCT in a patient sample comparably as a sandwich immunoassay employing antibodies having an epitope within the calcitonin moiety of PCT and an antibody with an epitope downstream of that, as for instance an antibody with an epitope within the katacalcin moiety of PCT.
  • the present invention is partially based on the surprising finding of the inventors that antibodies directed against epitopes contained in amino acid positions 2-52 of Procalcitonin are suitable for measuring PCT using sandwich immunoassays, since PCT is not cleaved in the middle of the molecule.
  • the present invention provides for an improved assay for the determination of PCT levels in samples of bodily fluids based on a novel combination of antibodies directed to PCT.
  • the present invention relates to an in vitro method for the detection of Procalcitonin or a fragment thereof of at least 20 amino acid residues in length in a biological sample derived from a bodily fluid obtained from a subject, comprising the steps of:
  • the antibody or functional fragment thereof which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, is a polyclonal or a monoclonal antibody.
  • the antibody or functional fragment thereof which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, is a monoclonal antibody.
  • the other antibody or functional fragment thereof is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin.
  • the at least two antibodies employed in the methods of the present invention preferably do not exhibit significant (that is >10%) cross-reactivities to the epitopes of the respective other antibody or antibodies.
  • An antibody directed against an epitope in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is specific for this epitope and exhibits thus no significant cross-reactivity with an epitope in the sequence spanning amino acid residues 53 to 116 of Procalcitonin and vice versa.
  • the antibodies of the present invention are specific for their epitope in PCT and show no significant cross-reactivity with other epitopes, particularly non-overlapping epitopes in this peptide.
  • the epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin. More preferably, the epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
  • the epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is preferably an epitope comprised in the sequence spanning amino acid residues 96 to 116 of Procalcitonin or an epitope comprised in the sequence spanning amino acid residues 60 to 91 of Procalcitonin.
  • the concentration of Procalcitonin or a fragment thereof in the sample is quantified.
  • the subject according to the present invention is a human or non-human animal, preferably a mammal, most preferably the subject is a human.
  • the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is a polyclonal or a monoclonal antibody.
  • the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is a monoclonal antibody.
  • the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is preferably an IgG or is derived from IgG.
  • the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is preferably an IgG or is derived from IgG.
  • the bodily fluid in the context of the method of the present invention is preferably selected from the group of blood, serum, plasma, cerebrospinal fluid, urine, saliva, sputum, and pleural effusions.
  • At least one of the at least two antibodies or functional fragments thereof is immobilized on a solid surface. More preferably, one of the at least two antibodies or functional fragments thereof is immobilized on a solid surface. It is preferred, that at least one of the other antibody or antibodies is labelled, preferably by covalent attachment of a chemiluminescent or fluorescent dye.
  • the antibody or functional fragment thereof that is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is immobilized on a solid surface.
  • the antibody or functional fragment thereof that is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is immobilized on a solid surface.
  • the present invention also pertains to an antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin.
  • the antibody or functional fragment thereof is directed against an epitope is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin. It is preferred that the antibody is monoclonal.
  • the antibody of the present invention may preferably be produced by genetic immunization.
  • monoclonal antibodies against PCT can be generated by genetic immunization, e.g. principally following the procedure set out in Costagliola et al., J Immunol 1998; 160:1458-65.
  • the PCT coding sequence can be cloned by standard procedures into a vector. Animal, e.g. mice, can then be injected with said vector. Injections may be repeated after e.g. 3 and 6 weeks. The animals are sacrificed e.g. after 18 weeks. Spleen cells of the sacrificed animals are then fused with SP2/0 myeloma cells to generate hybridoma cell lines which are then screened for their ability to secrete antibodies that would bind to immobilized recombinant human PCT.
  • the monoclonal antibody directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin according to the present invention may preferably be produced by a hybridoma cell line that is deposited at the DSMZ under accession number DSM ACC2993 or DSM ACC2996 or DSM ACC2997. These cell lines produce particular monoclonal antibodies directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin according to the invention.
  • the hybridoma cell line producing monoclonal antibody FX7A7 has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on Jun. 4, 2009 under accession number DSM ACC2997.
  • the hybridoma cell line producing monoclonal antibody FW5H6 has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on Jun. 4, 2009 under accession number DSM ACC2996.
  • the hybridoma cell line producing monoclonal antibody FX1G5 has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on Apr. 29, 2009 under accession number DSM ACC2993. All hybridoma cell lines have been produced according to the principles described herein above and in more detail in Example 1.
  • the present invention relates to a kit at least comprising
  • the first antibody of the kit is directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin, preferably against an epitope that is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
  • the first antibody is a monoclonal antibody. It is also preferred that the second antibody is a monoclonal antibody.
  • the second antibody is directed against an epitope comprised in the sequence spanning amino acid residues 60 to 91 of Procalcitonin or directed against an epitope comprised in the sequence spanning amino acid residues 96 to 116 of Procalcitonin.
  • the invention further relates to the use of a kit according to the present invention in a sandwich immunoassay format for the detection and or quantification of Procalcitonin or a fragment thereof in a biological sample from a bodily fluid.
  • a fragment at least comprises a sequence spanning the two epitopes against which the two antibodies are directed.
  • the present invention relates to the use of the method according to the present invention, the antibody according to the present invention or the kit according to the present invention for the determination of the presence or absence of Procalcitonin or a fragment thereof or for the quantification of Procalcitonin or a fragment thereof in a biological sample from a bodily fluid.
  • the method, antibody and kit are used for the diagnosis, prognosis, risk stratification, therapy monitoring, therapy guidance, or stratification for application of therapeutic measures of a disease or condition associated with elevated procalcitonin levels.
  • the disease or condition is preferably selected from the group of local bacterial infections (particularly in the airways and the lung), sepsis, severe sepsis, septic shock.
  • the disease or condition may also be selected from the group of non-infectious diseases including but not restricted to cardiovascular diseases (acute coronary syndrome, heart failure, coronary artery disease, atherosclerosis, stroke), cancer, diabetes, chronic gastrointestinal diseases, chronic renal diseases, hypertension, orthopaedic diseases including osteoporosis, and neurodegenerative diseases including Alzheimer's disease. All diseases or conditions mentioned above might or might not be associated with one or more co-morbidities.
  • the antibodies of the present invention have preferably affinities for their respective epitopes in the range of from 10 8 to 10 11 M ⁇ 1 , preferably above 10 9 M ⁇ 1 .
  • antibody generally comprises monoclonal and polyclonal antibodies and binding fragments thereof, in particular Fc-fragments as well as so called “single-chain-antibodies” (Bird R. E. et al. (1988) Science 242:423-6), chimeric, humanized, in particular CDR-grafted antibodies, and dia or tetrabodies (Holliger P. et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6444-8). Also comprised are immunoglobulin like proteins that are selected through techniques including, for example, phage display to specifically bind to the molecule of interest contained in a sample.
  • the term “specific binding” refers to antibodies raised against the molecule of interest or a fragment thereof.
  • An antibody is considered to be specific, if its affinity towards the molecule of interest or the aforementioned fragment thereof is at least preferably 50-fold higher, more preferably 100-fold higher, most preferably at least 1000-fold higher than towards other molecules comprised in a sample containing the molecule of interest. It is well known in the art how to make antibodies and to select antibodies with a given specificity. As stated herein above, monoclonal antibodies are preferred.
  • the preferred assays and detection methods according to the present invention comprise immunoassays in various formats such as for instance radioimmunoassay (RIA), chemiluminescence- and fluorescence-immunoassays, Enzyme-linked immunoassays (ELISA), Luminex-based bead arrays, protein microarray assays, and rapid test formats such as for instance immunochromatographic strip tests.
  • RIA radioimmunoassay
  • ELISA Enzyme-linked immunoassays
  • Luminex-based bead arrays Luminex-based bead arrays
  • protein microarray assays protein microarray assays
  • rapid test formats such as for instance immunochromatographic strip tests.
  • the assays can be homogenous or heterogeneous assays, competitive and non-competitive sandwich assays.
  • the assay is in the form of a sandwich assay, which is a non-competitive immunoassay, wherein PCT or a fragment thereof to be detected and/or quantified is bound to the first antibody and to the second antibody.
  • the first antibody may be bound to a solid phase, e.g. a bead, a surface of a well or other container, a chip or a strip
  • the second antibody is an antibody which is labeled, e.g. with a dye, with a radioisotope, or a reactive or catalytically active moiety.
  • the amount of labeled antibody bound to the analyte is then measured by an appropriate method.
  • the general composition and procedures involved with “sandwich assays” are well-established and known to the skilled person. ( The Immunoassay Handbook , Ed. David Wild, Elsevier LTD, Oxford; 3rd ed. (May 2005), ISBN-13: 978-0080445267; Hultschig C et al., Curr Opin Chem Biol. 2006 February; 10(1):4-10. PMID: 16376134), incorporated herein by reference).
  • the assay comprises the two antibodies according to the present invention which are both present as dispersions in a liquid reaction mixture, wherein a first labeling component is attached to the first antibody, wherein said first labeling component is part of a labeling system based on fluorescence- or chemiluminescence-quenching or amplification, and a second labeling component of said marking system is attached to the second antibody, so that upon binding of both antibodies to the analyte a measurable signal is generated that allows for the detection of the formed sandwich complexes in the solution comprising the sample.
  • said labeling system comprises rare earth cryptates or rare earth chelates in combination with a fluorescence dye or chemiluminescence dye, in particular a dye of the cyanine type.
  • fluorescence based assays comprise the use of dyes, which may for instance be selected from the group comprising FAM (5- or 6-carboxyfluorescein), VIC, NED, Fluorescein, Fluoresceinisothiocyanate (FITC), IRD-700/800, Cyanine dyes, such as CY3, CY5, CY3.5, CY5.5, Cy7, Xanthen, 6-Carboxy-2′,4′,7′,4,7-hexachlorofluorescein (HEX), TET, 6-Carboxy-4′,5′-dichloro-2′,7′-dimethodyfluorescein (JOE), N,N,N′,N′-Tetramethyl-6-carboxyrhodamine (TAMRA), 6-Carboxy-X-rhodamine (ROX), 5-Carboxyrhodamine-6G (R6G5), 6-carboxyrhodamine-6G (RG6), Rhodamine
  • chemiluminescence based assays comprise the use of dyes, based on the physical principles described for chemiluminescent materials in Kirk-Othmer, Encyclopedia of chemical technology, 4 th ed., executive editor, J. I. Kroschwitz; editor, M. Howe-Grant, John Wiley & Sons, 1993, vol. 15, p. 518-562, incorporated herein by reference, including citations on pages 551-562.
  • Preferred chemiluminescent dyes are acridiniumesters.
  • the invention also relates to the hybridoma cell lines deposited at the DSMZ under accession number DSM ACC2993, DSM ACC2996 and DSM ACC2997. These hybridoma cell lines produce the preferred antibodies of the present invention directed against the N-terminal epitopes particularly 21 to 40 and 25 to 37 of PCT and have been created as set out in Example 1.
  • SEQ ID NO: 1 (amino acid sequence of PCT): 1 APFRSALESS PADPATLSED EARLLLAALV QDYVQMKASE LEQEQEREGS 51 SLDSPRSKRC GNLSTCMLGT YTQDFNKFHT FPQTAIGVGA PGKKRDMSSD 101 LERDHRPHVS MPQNAN
  • FIG. 1 Schematic representation of assays (C, D and E) used in comparison to existing assays (A and B: B ⁇ R ⁇ A ⁇ H ⁇ M ⁇ S PCT LIA and B ⁇ R ⁇ A ⁇ H ⁇ M ⁇ S PCT sensitive LIA, respectively).
  • PCT with its calcitonin and katacalcin moieties is depicted, and antibodies with their epitopes are shown.
  • a and B One antibody is directed against the calcitonin moiety and the other antibody is directed against the katacalcin moiety of PCT;
  • C Assay, wherein one antibody is directed against an epitope in the sequence spanning amino acid residues 21-40 of PCT and the other antibody is directed against the katacalcin moiety of PCT.
  • D, E Assay, wherein one antibody is directed against an epitope in the sequence spanning amino acid residues 21-40 of PCT and the other antibody is directed against the calcitonin moiety of PCT.
  • FIG. 2 PCT immunoreactivity profiles of size-fractionated PCT containing sera. Fractions were measured in Assays A (designation as in FIG. 1 ), and measured values were related to the maximal measured value for each assay within each fractionation run. Shown are the means+standard error (SEM).
  • FIG. 3 PCT immunoreactivity profiles of size-fractionated PCT containing sera. Fractions were measured in Assays C and D (Panels A and B, respectively; designations as in FIG. 1 ), and measured values were related to the maximal measured value for each assay within each fractionation run. Shown are the means+standard error (SEM).
  • FIG. 4 Dose response curves for three PCT sandwich immunoassays. The assays were incubated for 30 minutes (panel A) or 2 hours (panel B).
  • PCT LIA and PCT LIA sens. correspond to B ⁇ R ⁇ A ⁇ H ⁇ M ⁇ S PCT LIA and B ⁇ R ⁇ A ⁇ H ⁇ M ⁇ S PCT sensitive LIA, respectively (designated A and B in FIG. 1 ).
  • FX1G5/anti-Calc. represents assay Assay E.
  • FIG. 5 Amino acid sequence of Procalcitonin (PCT) (SEQ ID NO:1)
  • Monoclonal antibodies against PCT were generated by genetic immunization following principally a described procedure (Costagliola et al., J Immunol 1998; 160:1458-65).
  • the PCT coding sequence was cloned by standard procedures in vector pcDNAIII (Invitrogen, Düsseldorf, Germany).
  • BALB/c mice were injected in the anterior tibialis muscle on day 0 with 100 mg of pcDNAIII-PCT in 25% sucrose. Injections were repeated 3 and 6 wk thereafter.
  • Blood samples were obtained from retro-ocular capillaries 8 and 11 wk after the initial immunization and at sacrifice, which was after 18 wk, when the spleens and thyroids were also removed.
  • Spleen cells were fused with SP2/0 myeloma cells to generate hybridoma cell lines.
  • Cell lines were screened for their ability to secrete antibodies that would bind to immobilized recombinant human PCT (InVivo GmbH, Hennigsdorf, Germany). With this approach, cell lines secreting monoclonal antibodies FX7A7 (produced by the hybridoma cell line deposited on Jun. 4, 2009 at the DSMZ under accession number DSM ACC2997), FW5H6 (produced by the hybridoma cell line deposited on Jun. 4, 2009 at the DSMZ under accession number DSM ACC2996) and FX1G5 (produced by the hybridoma cell line deposited on Apr. 29, 2009 at the DSMZ under accession number DSM ACC2993) were generated.
  • FX7A7 produced by the hybridoma cell line deposited on Jun. 4, 2009 at the DSMZ under accession number DSM ACC2997
  • FW5H6 produced by the hybridoma
  • the mapping of epitopes within PCT of the three monoclonal antibodies FX7A7, FW5H6 and FX1G5 was done on peptide microarrays by standard procedures (JPT GmbH, Berlin, Germany).
  • the peptide microarray was composed of 74 peptides displayed as overlapping peptide scans (format 13/11: 53 peptides; format 20/15: 21 peptides) and thus covering the entire PCT sequence on a glass surface.
  • the microarrays were pre-treated with blocking buffer (Pierce, Superblock; 2 h at room temperature) followed by washings with TBS buffer pH 8 and water (3 times each).
  • Each pre-treated microarray was scanned using Axon Genepix 4000B Scanner for background control (no signals could be detected).
  • Individual microarrays were incubated with antibodies in assay buffer (final concentration 60 ⁇ g/mL in Pierce Superblock buffer; total assay volume 350 ⁇ L, incubation time 3 h).
  • Microarrays were washed with TBS buffer pH 8 followed by an incubation with fluorescence labelled secondary antibody (anti-mouse-Dylight-647; Pierce 31015, 1 ⁇ g/mL, incubation time 45 min).
  • Sandwich immunoassays in the chemiluminesce-/coated tube format were set up as follows: Assay A: A commercially available sandwich assay for PCT was used (BRAHMS PCT LIA sensitive), which uses one antibody directed against the katacalcin moiety of PCT as solid phase, and one antibody directed against the calcitonin moiety of PCT as labeled antibody (BRAHMS AG, Hennigsdorf, Germany). Recombinant PCT in various concentrations is used as standards. For the comparison with Assay E (see below), incubation conditions were adapted to those described for Assay E; i.e. 50 ⁇ l sample and 200 ⁇ l labeled antibody solution were used and incubated in a one step reaction in test tubes for 30 minutes or 2 hours.
  • BRAHMS PCT LIA sandwich assay for PCT was used (BRAHMS PCT LIA), which uses one antibody directed against the katacalcin moiety of PCT as solid phase, and one monoclonal antibody directed against the calcitonin moiety of PCT as labeled antibody (BRAHMS AG, Hennigsdorf, Germany). Recombinant PCT in various concentrations is used as standards.
  • Assay E see below, incubation conditions were adapted to those described for Assay E; i.e. 50 ⁇ l sample and 200 ⁇ l labeled antibody solution were used and incubated in a one step reaction in test tubes for 30 minutes or 2 hours.
  • Labeling of antibody FX1G5 was done by standard procedures (EP 1488209, EP 1738178): The concentration of the purified antibody was adjusted to 1 g/L, and the antibody was labeled by incubation with the chemiluminescent label MACN-Acridinium-NHS-Ester (1 g/L; InVent GmbH, Hennigsdorf, Germany) in a 1:5 molar ratio for 20 min at room temperature. The reaction was stopped by addition of 1/10 volume of 50 mmol/L glycine for 10 min at room temperature. Labeled antibody was separated from free label by size-exclusion chromatography on a NAP-5 column (GE Healthcare, Freiburg, Germany) and a Bio-Sil® SEC-400-5 HPLC column (BIO-RAD).
  • Tubes coated with an anti-katacalcin antibody and standards were taken from the assay B.R.A.H.M.S PCT LIA sensitive (B.R.A.H.M.S AG, Hennigsdorf, Germany).
  • MACN labeled antibody FX1G5 was used as labeled antibody.
  • the assay buffer was 300 mmol/L potassium phosphate, pH 7.0, 100 mmol/L NaCl, 10 mmol/L EDTA, 0.9 g/L sodium azide, 5 g/L bovine serum albumin protease free (Sigma), 1 g/L nonspecfic bovine IgG, 1 g/L nonspecific sheep IgG, 1 g/L nonspecific mouse IgG and contained 2 ⁇ 10 6 relative light units (RLU) of MACN-labeled antibody per 200 ⁇ l. 100 ⁇ l standards or samples and 200 ⁇ l assay buffer containing the MACN-labeled antibody were pipetted in the coated tubes. Tubes were incubated 2 hours at 22° C. under agitation.
  • RLU relative light units
  • Tubes coated with an anti-calcitonin antibody were used.
  • Standards (recombinant PCT) were taken from the assay BRAHMS PCT LIA sensitive (BRAHMS AG, Hennigsdorf, Germany) MACN labeled antibody FX1G5 was used as labeled antibody.
  • the assay buffer was 300 mmol/L potassium phosphate, pH 7.0, 100 mmol/L NaCl, 10 mmol/L EDTA, 0.9 g/L sodium azide, 5 g/L bovine serum albumin protease free (Sigma), 1 g/L nonspecfic bovine IgG, 1 g/L nonspecific sheep IgG, 1 g/L nonspecific mouse IgG and contained 2 ⁇ 10 6 relative light units (RLU) of MACN-labeled antibody per 200 ⁇ l. 100 ⁇ l standards or samples and 200 ⁇ l assay buffer containing the MACN-labeled antibody were pipetted in the coated tubes. Tubes were incubated 2 hours at 22° C. under agitation.
  • RLU relative light units
  • Tubes coated with FX1G5 antibody were used.
  • Standards (recombinant PCT) and labeled polyclonal anti-Calcitonin antibody were taken from the assay BRAHMS PCT LIA sensitive (BRAHMS AG, Hennigsdorf, Germany) 50 ⁇ l standards or samples and 200 ⁇ l assay buffer containing the MACN-labeled antibody were pipetted in the coated tubes. Tubes were incubated for either 30 minutes or 2 hours at 22° C. under agitation.
  • Plasma samples from nine patients with elevated PCT concentrations were fractionated using a Bio-Sil® SEC-125-5 HPLC column (BIO-RAD) HPLC column.
  • the sample volume was 100
  • the running buffer was PBS pH 7.4.
  • the flow rate was 0.8 mL/min 0.4 mL fractions were collected measured in assays A, C, D.
  • Vitamin B12 (MW 1.3 kDa).
  • Recombinant PCT and preproADM 45-92 were resolved in standard matrix obtained from the assays BRAHMS PCT LIA sensitive and BRAHMS MR-proADM LIA (BRAHMS AG, Hennigsdorf, Germany), and their elution profile of the size fractionation HPLC was determined using these assays.
  • Vitamin B12 was diluted in running buffer and subjected to chromatography; absorption at 280 nm was recorded.
  • the apparent molecular weight of native PCT and the detectability with various sandwich immunoassays was assessed by fractionation of serum samples from patients with elevated native PCT concentrations (including sepsis patients) using size exclusion HPLC. Essentially the same immunoreactivity profile was observed, whether fractions were measured with assay A, C or D ( FIG. 1 ): The elution time of native PCT was indistinguishable from that of recombinant PCT (13 kDa) ( FIGS. 2 and 3 ). Virtually no PCT immunoreactivity corresponding to a molecular weight smaller than 13 kDa was detected by any of the three assays. Most notably, no PCT immunoreactivity corresponding to a molecular weight of ca.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Peptides Or Proteins (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The present invention relates to an in vitro method for the detection of Procalcitonin or a fragment thereof of at least 20 amino acid residues in length in a biological sample derived from a bodily fluid obtained from a subject, comprising the steps of: (i) contacting said sample with at least two antibodies or functional fragments thereof directed against different epitopes within Procalcitonin, and (ii) qualitatively or quantitatively detecting binding of said at least two antibodies to Procalcitonin or said fragment thereof, wherein binding indicates the presence or concentration of Procalcitonin or said fragment in said sample, wherein at least one antibody or functional fragment thereof is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin. The invention also pertains to antibodies directed against an N-terminal epitope of Procalcitonin and kits comprising antibodies directed against PCT.

Description

    FIELD OF THE INVENTION
  • The present invention is in the field of clinical diagnostics. Particularly the present invention relates to the determination of the level of Procalcitonin (PCT) in a sample derived from a bodily fluid of a subject.
  • BACKGROUND OF THE INVENTION
  • Procalcitonin (PCT) is known as a biomarker, that reflects the presence and severity of local and systemic bacterial infections, i.e. sepsis (Assicot et al., Lancet 1993; 341:515-8; Muller et al., Crit Care Med 2000; 28:977-83; Harbarth et al., Am J Respir Crit Care Med 2001; 164:396-402; Becker et al., Crit Care Med 2008; 36:941-52; Becker et al, J Clin Endocrinol Metab 2004; 89:1512-25; Nobre et al., Am J Respir Crit Care Med 2008; 177:498-505; Christ-Crain et al., Lancet 2004; 363:600-7; Stolz et al., Chest 2007; 131:9-19; Christ-Crain et al, Am J Respir Crit Care Med 2006; 174:84-93; Briel et al., Arch Intern Med 2008; 168:2000-7; discussion 7-8).
  • Antigen-specific antibodies are a key tool for the development of immunoassays. Several antibodies against PCT-derived peptides have been described, which have been used in immunoassays to detect PCT, but only few have been tested for their use in sandwich immunoassays to detect native PCT (Table 1). Sandwich immunoassays employing antibodies against the calcitonin- and katacalcin moieties of PCT have been developed to measure PCT in human samples on a routine basis.
  • For conditions associated with elevated PCT concentrations (excluding medullary thyroid carcinoma), especially bacterial infections and sepsis, it is believed that not only full-length PCT (ca. 13 kDa), but also PCT-derived fragments are present in the blood circulation of patients. Particularly, proteolytic cleavage just upstream from the calcitonin moiety of PCT has been discussed to occur (Muller, et al. Crit Care Med 2000; 28:977-83; Whang et al., J Clin Endocrinol Metab 1998; 83:3296-301), which would lead to two fragments (both ca. 6-7 kDa). However, experimental evidence on this is sparse: Circulating PCT has been isolated from sepsis patients by affinity chromatography using an antibody directed against the calcitonin moiety of PCT, and it has been concluded that PCT3-116 is the major circulating PCT species (Weglohner et al., Peptides 2001; 22:2099-103.). However, several selection steps were performed in this analysis, i.e. only peptides with a calcitonin-containing epitope were purified, and not all relevant fractions from the subsequent reversed-phase HPLC were analyzed Immunoassays for PCT also have not been suitable to address the question of PCT-fragmentation, because either competitive assays involving a single antibody were used (Whang, et al. J Clin Endocrinol Metab 1998; 83:3296-301), or sandwich immunoassays involving two antibodies with epitopes located closely to each other in the C-terminal half of PCT and not covering a broad moiety of PCT were used (Morgenthaler et al., Clin Chem 2002; 48:788-90).
  • Antibodies against the very N-terminus of PCT have been used in conjunction with an antibody against the katacalcin moiety of PCT in a sandwich assay to detect in samples of septic patients PCT species with an intact N-terminus (DE 10 2007 009 751). N-terminally intact PCT species were found to have different in vivo kinetics than PCT immunoreactivity which was detected with a sandwich immunoassay employing antibodies against the calcitonin- and katacalcin moieties of PCT. Additionally, these N-terminally intact PCT species were found to make up only ca. 10-20% of PCT immunoreactivity which was detected with a sandwich immunoassay employing antibodies against the calcitonin- and katacalcin moieties of PCT. It is not clear, however, at which site(s) between the very N-terminus of PCT and the calcitonin moiety proteolytic cleavage(s) occur(s), which lead(s) to the different concentrations of analytes observed. While it can be assumed that PCT1-116 is cleaved N-terminally by the action of DPP IV leading to PCT3-116 (Weglohner, et al. Peptides 2001; 22:2099-103; Wrenger et al., FEBS Lett 2000; 466:155-9), it is unclear, whether additionally or alternatively PCT1-116 can be cleaved at another site in the middle of the molecule.
  • Thus, it is unclear, whether an antibody having an epitope roughly upstream from the calcitonin moiety (precisely: upstream from position 53) of PCT, which does not include the very N-terminus of PCT (i.e. position 1 of PCT1-116), in conjunction with an antibody having another epitope, for example an epitope downstream from position 53 (as for instance an epitope within the calcitonin- or katacalcin moiety of PCT), can be used in a sandwich immunoassay to detect native PCT in a patient sample comparably as a sandwich immunoassay employing antibodies having an epitope within the calcitonin moiety of PCT and an antibody with an epitope downstream of that, as for instance an antibody with an epitope within the katacalcin moiety of PCT. Such sandwich immunoassay has been recently described using recombinant PCT as analyte, but recovery of native PCT from patient samples has not been evaluated, and the potential issue of PCT fragmentation has not even been discussed our speculated about (Kramer et al., Anal Bioanal Chem 2008; 392:727-36).
  • The present invention is partially based on the surprising finding of the inventors that antibodies directed against epitopes contained in amino acid positions 2-52 of Procalcitonin are suitable for measuring PCT using sandwich immunoassays, since PCT is not cleaved in the middle of the molecule.
  • DESCRIPTION OF THE INVENTION
  • The present invention provides for an improved assay for the determination of PCT levels in samples of bodily fluids based on a novel combination of antibodies directed to PCT.
  • Thus, the present invention relates to an in vitro method for the detection of Procalcitonin or a fragment thereof of at least 20 amino acid residues in length in a biological sample derived from a bodily fluid obtained from a subject, comprising the steps of:
      • a. contacting said sample with at least two antibodies or functional fragments thereof directed against different epitopes within Procalcitonin,
      • b. qualitatively or quantitatively detecting binding of said at least two antibodies to Procalcitonin or said fragment thereof, wherein binding indicates the presence or concentration of Procalcitonin or said fragment in said sample,
  • wherein at least one antibody or functional fragment thereof is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin.
  • In the context of the present invention, the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, is a polyclonal or a monoclonal antibody.
  • It is preferred in the context of the present invention that the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, is a monoclonal antibody.
  • Preferably the other antibody or functional fragment thereof is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin.
  • The at least two antibodies employed in the methods of the present invention preferably do not exhibit significant (that is >10%) cross-reactivities to the epitopes of the respective other antibody or antibodies. An antibody directed against an epitope in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is specific for this epitope and exhibits thus no significant cross-reactivity with an epitope in the sequence spanning amino acid residues 53 to 116 of Procalcitonin and vice versa. Hence, the antibodies of the present invention are specific for their epitope in PCT and show no significant cross-reactivity with other epitopes, particularly non-overlapping epitopes in this peptide.
  • Preferably herein, the epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin. More preferably, the epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
  • The epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is preferably an epitope comprised in the sequence spanning amino acid residues 96 to 116 of Procalcitonin or an epitope comprised in the sequence spanning amino acid residues 60 to 91 of Procalcitonin.
  • In a particular embodiment of the method of the present invention, the concentration of Procalcitonin or a fragment thereof in the sample is quantified.
  • Preferably, the subject according to the present invention is a human or non-human animal, preferably a mammal, most preferably the subject is a human.
  • In the context of the present invention, the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin, is a polyclonal or a monoclonal antibody. Preferably, the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin, is a monoclonal antibody.
  • The antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, is preferably an IgG or is derived from IgG. Similarly, the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin, is preferably an IgG or is derived from IgG.
  • The bodily fluid in the context of the method of the present invention is preferably selected from the group of blood, serum, plasma, cerebrospinal fluid, urine, saliva, sputum, and pleural effusions.
  • In a preferred embodiment of the method of the present invention, at least one of the at least two antibodies or functional fragments thereof is immobilized on a solid surface. More preferably, one of the at least two antibodies or functional fragments thereof is immobilized on a solid surface. It is preferred, that at least one of the other antibody or antibodies is labelled, preferably by covalent attachment of a chemiluminescent or fluorescent dye.
  • In a particular embodiment of the method, the antibody or functional fragment thereof that is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is immobilized on a solid surface. In another particular embodiment, the antibody or functional fragment thereof that is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is immobilized on a solid surface.
  • The present invention also pertains to an antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin.
  • Preferably, the antibody or functional fragment thereof is directed against an epitope is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin. It is preferred that the antibody is monoclonal.
  • The antibody of the present invention may preferably be produced by genetic immunization. Briefly, monoclonal antibodies against PCT can be generated by genetic immunization, e.g. principally following the procedure set out in Costagliola et al., J Immunol 1998; 160:1458-65. The PCT coding sequence can be cloned by standard procedures into a vector. Animal, e.g. mice, can then be injected with said vector. Injections may be repeated after e.g. 3 and 6 weeks. The animals are sacrificed e.g. after 18 weeks. Spleen cells of the sacrificed animals are then fused with SP2/0 myeloma cells to generate hybridoma cell lines which are then screened for their ability to secrete antibodies that would bind to immobilized recombinant human PCT.
  • The monoclonal antibody directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin according to the present invention may preferably be produced by a hybridoma cell line that is deposited at the DSMZ under accession number DSM ACC2993 or DSM ACC2996 or DSM ACC2997. These cell lines produce particular monoclonal antibodies directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin according to the invention. The hybridoma cell line producing monoclonal antibody FX7A7 has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on Jun. 4, 2009 under accession number DSM ACC2997. The hybridoma cell line producing monoclonal antibody FW5H6 has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on Jun. 4, 2009 under accession number DSM ACC2996. The hybridoma cell line producing monoclonal antibody FX1G5 has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on Apr. 29, 2009 under accession number DSM ACC2993. All hybridoma cell lines have been produced according to the principles described herein above and in more detail in Example 1.
  • In a further aspect, the present invention relates to a kit at least comprising
      • a. a first antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, and
      • b. a second antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin.
  • Preferably, the first antibody of the kit is directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin, preferably against an epitope that is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
  • It is preferred that the first antibody is a monoclonal antibody. It is also preferred that the second antibody is a monoclonal antibody.
  • In a preferred embodiment of the kit, the second antibody is directed against an epitope comprised in the sequence spanning amino acid residues 60 to 91 of Procalcitonin or directed against an epitope comprised in the sequence spanning amino acid residues 96 to 116 of Procalcitonin.
  • The invention further relates to the use of a kit according to the present invention in a sandwich immunoassay format for the detection and or quantification of Procalcitonin or a fragment thereof in a biological sample from a bodily fluid. Such a fragment at least comprises a sequence spanning the two epitopes against which the two antibodies are directed.
  • Furthermore, the present invention relates to the use of the method according to the present invention, the antibody according to the present invention or the kit according to the present invention for the determination of the presence or absence of Procalcitonin or a fragment thereof or for the quantification of Procalcitonin or a fragment thereof in a biological sample from a bodily fluid.
  • Preferably, the method, antibody and kit are used for the diagnosis, prognosis, risk stratification, therapy monitoring, therapy guidance, or stratification for application of therapeutic measures of a disease or condition associated with elevated procalcitonin levels.
  • The disease or condition is preferably selected from the group of local bacterial infections (particularly in the airways and the lung), sepsis, severe sepsis, septic shock. The disease or condition may also be selected from the group of non-infectious diseases including but not restricted to cardiovascular diseases (acute coronary syndrome, heart failure, coronary artery disease, atherosclerosis, stroke), cancer, diabetes, chronic gastrointestinal diseases, chronic renal diseases, hypertension, orthopaedic diseases including osteoporosis, and neurodegenerative diseases including Alzheimer's disease. All diseases or conditions mentioned above might or might not be associated with one or more co-morbidities.
  • The antibodies of the present invention have preferably affinities for their respective epitopes in the range of from 108 to 1011 M−1, preferably above 109M−1.
  • The term “antibody” generally comprises monoclonal and polyclonal antibodies and binding fragments thereof, in particular Fc-fragments as well as so called “single-chain-antibodies” (Bird R. E. et al. (1988) Science 242:423-6), chimeric, humanized, in particular CDR-grafted antibodies, and dia or tetrabodies (Holliger P. et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6444-8). Also comprised are immunoglobulin like proteins that are selected through techniques including, for example, phage display to specifically bind to the molecule of interest contained in a sample. In this context the term “specific binding” refers to antibodies raised against the molecule of interest or a fragment thereof. An antibody is considered to be specific, if its affinity towards the molecule of interest or the aforementioned fragment thereof is at least preferably 50-fold higher, more preferably 100-fold higher, most preferably at least 1000-fold higher than towards other molecules comprised in a sample containing the molecule of interest. It is well known in the art how to make antibodies and to select antibodies with a given specificity. As stated herein above, monoclonal antibodies are preferred.
  • The preferred assays and detection methods according to the present invention comprise immunoassays in various formats such as for instance radioimmunoassay (RIA), chemiluminescence- and fluorescence-immunoassays, Enzyme-linked immunoassays (ELISA), Luminex-based bead arrays, protein microarray assays, and rapid test formats such as for instance immunochromatographic strip tests.
  • The assays can be homogenous or heterogeneous assays, competitive and non-competitive sandwich assays. In a particularly preferred embodiment employing the two antibodies according to the present invention, the assay is in the form of a sandwich assay, which is a non-competitive immunoassay, wherein PCT or a fragment thereof to be detected and/or quantified is bound to the first antibody and to the second antibody. The first antibody may be bound to a solid phase, e.g. a bead, a surface of a well or other container, a chip or a strip, and the second antibody is an antibody which is labeled, e.g. with a dye, with a radioisotope, or a reactive or catalytically active moiety. The amount of labeled antibody bound to the analyte is then measured by an appropriate method. The general composition and procedures involved with “sandwich assays” are well-established and known to the skilled person. (The Immunoassay Handbook, Ed. David Wild, Elsevier LTD, Oxford; 3rd ed. (May 2005), ISBN-13: 978-0080445267; Hultschig C et al., Curr Opin Chem Biol. 2006 February; 10(1):4-10. PMID: 16376134), incorporated herein by reference).
  • In a particularly preferred embodiment the assay comprises the two antibodies according to the present invention which are both present as dispersions in a liquid reaction mixture, wherein a first labeling component is attached to the first antibody, wherein said first labeling component is part of a labeling system based on fluorescence- or chemiluminescence-quenching or amplification, and a second labeling component of said marking system is attached to the second antibody, so that upon binding of both antibodies to the analyte a measurable signal is generated that allows for the detection of the formed sandwich complexes in the solution comprising the sample.
  • Even more preferred, said labeling system comprises rare earth cryptates or rare earth chelates in combination with a fluorescence dye or chemiluminescence dye, in particular a dye of the cyanine type.
  • In the context of the present invention, fluorescence based assays comprise the use of dyes, which may for instance be selected from the group comprising FAM (5- or 6-carboxyfluorescein), VIC, NED, Fluorescein, Fluoresceinisothiocyanate (FITC), IRD-700/800, Cyanine dyes, auch as CY3, CY5, CY3.5, CY5.5, Cy7, Xanthen, 6-Carboxy-2′,4′,7′,4,7-hexachlorofluorescein (HEX), TET, 6-Carboxy-4′,5′-dichloro-2′,7′-dimethodyfluorescein (JOE), N,N,N′,N′-Tetramethyl-6-carboxyrhodamine (TAMRA), 6-Carboxy-X-rhodamine (ROX), 5-Carboxyrhodamine-6G (R6G5), 6-carboxyrhodamine-6G (RG6), Rhodamine, Rhodamine Green, Rhodamine Red, Rhodamine 110, BODIPY dyes, such as BODIPY TMR, Oregon Green, Coumarins such as Umbelliferone, Benzimides, such as Hoechst 33258; Phenanthridines, such as Texas Red, Yakima Yellow, Alexa Fluor, PET, Ethidiumbromide, Acridinium dyes, Carbazol dyes, Phenoxazine dyes, Porphyrine dyes, Polymethin dyes, and the like.
  • In the context of the present invention, chemiluminescence based assays comprise the use of dyes, based on the physical principles described for chemiluminescent materials in Kirk-Othmer, Encyclopedia of chemical technology, 4th ed., executive editor, J. I. Kroschwitz; editor, M. Howe-Grant, John Wiley & Sons, 1993, vol. 15, p. 518-562, incorporated herein by reference, including citations on pages 551-562. Preferred chemiluminescent dyes are acridiniumesters.
  • Finally, the invention also relates to the hybridoma cell lines deposited at the DSMZ under accession number DSM ACC2993, DSM ACC2996 and DSM ACC2997. These hybridoma cell lines produce the preferred antibodies of the present invention directed against the N-terminal epitopes particularly 21 to 40 and 25 to 37 of PCT and have been created as set out in Example 1.
  • Sequences
  • SEQ ID NO: 1 (amino acid sequence of PCT):
      1 APFRSALESS PADPATLSED EARLLLAALV QDYVQMKASE LEQEQEREGS
     51 SLDSPRSKRC GNLSTCMLGT YTQDFNKFHT FPQTAIGVGA PGKKRDMSSD
    101 LERDHRPHVS MPQNAN
  • DESCRIPTION OF DRAWINGS
  • FIG. 1: Schematic representation of assays (C, D and E) used in comparison to existing assays (A and B: B ⋅R⋅A⋅H⋅M⋅S PCT LIA and B ⋅R⋅A⋅H⋅M⋅S PCT sensitive LIA, respectively). PCT with its calcitonin and katacalcin moieties is depicted, and antibodies with their epitopes are shown. A and B: One antibody is directed against the calcitonin moiety and the other antibody is directed against the katacalcin moiety of PCT; C: Assay, wherein one antibody is directed against an epitope in the sequence spanning amino acid residues 21-40 of PCT and the other antibody is directed against the katacalcin moiety of PCT. D, E: Assay, wherein one antibody is directed against an epitope in the sequence spanning amino acid residues 21-40 of PCT and the other antibody is directed against the calcitonin moiety of PCT.
  • FIG. 2: PCT immunoreactivity profiles of size-fractionated PCT containing sera. Fractions were measured in Assays A (designation as in FIG. 1), and measured values were related to the maximal measured value for each assay within each fractionation run. Shown are the means+standard error (SEM).
  • FIG. 3: PCT immunoreactivity profiles of size-fractionated PCT containing sera. Fractions were measured in Assays C and D (Panels A and B, respectively; designations as in FIG. 1), and measured values were related to the maximal measured value for each assay within each fractionation run. Shown are the means+standard error (SEM).
  • FIG. 4: Dose response curves for three PCT sandwich immunoassays. The assays were incubated for 30 minutes (panel A) or 2 hours (panel B). PCT LIA and PCT LIA sens. correspond to B⋅R⋅A⋅H⋅M⋅S PCT LIA and B⋅R⋅A⋅H⋅M⋅S PCT sensitive LIA, respectively (designated A and B in FIG. 1). FX1G5/anti-Calc. represents assay Assay E.
  • FIG. 5: Amino acid sequence of Procalcitonin (PCT) (SEQ ID NO:1)
  • EXAMPLES Example 1
  • Material and Methods
  • A. Development of Monoclonal Antibodies
  • Monoclonal antibodies against PCT were generated by genetic immunization following principally a described procedure (Costagliola et al., J Immunol 1998; 160:1458-65). In brief, the PCT coding sequence was cloned by standard procedures in vector pcDNAIII (Invitrogen, Karlsruhe, Germany). BALB/c mice were injected in the anterior tibialis muscle on day 0 with 100 mg of pcDNAIII-PCT in 25% sucrose. Injections were repeated 3 and 6 wk thereafter. Blood samples were obtained from retro- ocular capillaries 8 and 11 wk after the initial immunization and at sacrifice, which was after 18 wk, when the spleens and thyroids were also removed. Spleen cells were fused with SP2/0 myeloma cells to generate hybridoma cell lines. Cell lines were screened for their ability to secrete antibodies that would bind to immobilized recombinant human PCT (InVivo GmbH, Hennigsdorf, Germany). With this approach, cell lines secreting monoclonal antibodies FX7A7 (produced by the hybridoma cell line deposited on Jun. 4, 2009 at the DSMZ under accession number DSM ACC2997), FW5H6 (produced by the hybridoma cell line deposited on Jun. 4, 2009 at the DSMZ under accession number DSM ACC2996) and FX1G5 (produced by the hybridoma cell line deposited on Apr. 29, 2009 at the DSMZ under accession number DSM ACC2993) were generated.
  • B. Epitope Mapping
  • The mapping of epitopes within PCT of the three monoclonal antibodies FX7A7, FW5H6 and FX1G5 was done on peptide microarrays by standard procedures (JPT GmbH, Berlin, Germany). The peptide microarray was composed of 74 peptides displayed as overlapping peptide scans (format 13/11: 53 peptides; format 20/15: 21 peptides) and thus covering the entire PCT sequence on a glass surface. The microarrays were pre-treated with blocking buffer (Pierce, Superblock; 2 h at room temperature) followed by washings with TBS buffer pH 8 and water (3 times each). Each pre-treated microarray was scanned using Axon Genepix 4000B Scanner for background control (no signals could be detected). Individual microarrays were incubated with antibodies in assay buffer (final concentration 60 μg/mL in Pierce Superblock buffer; total assay volume 350 μL, incubation time 3 h). Microarrays were washed with TBS buffer pH 8 followed by an incubation with fluorescence labelled secondary antibody (anti-mouse-Dylight-647; Pierce 31015, 1 μg/mL, incubation time 45 min). Control incubation with fluorescence labelled secondary antibody (anti-mouse-Dylight-647; Pierce 31015, 1 μg/mL, incubation time 45 min) were performed in parallel to the described experiment. Microarrays were scanned using Axon Genepix 4000B Scanner with appropriate wavelength settings. SPOT recognition software package ArrayPro was used for data analysis. Mean of signal intensities (corrected for local background) from 3 identical subarrays on each microarray image were used for data evaluation.
  • C. Immunoassays
  • Sandwich immunoassays in the chemiluminesce-/coated tube format were set up as follows: Assay A: A commercially available sandwich assay for PCT was used (BRAHMS PCT LIA sensitive), which uses one antibody directed against the katacalcin moiety of PCT as solid phase, and one antibody directed against the calcitonin moiety of PCT as labeled antibody (BRAHMS AG, Hennigsdorf, Germany). Recombinant PCT in various concentrations is used as standards. For the comparison with Assay E (see below), incubation conditions were adapted to those described for Assay E; i.e. 50 μl sample and 200 μl labeled antibody solution were used and incubated in a one step reaction in test tubes for 30 minutes or 2 hours.
  • Assay B:
  • A commercially available sandwich assay for PCT was used (BRAHMS PCT LIA), which uses one antibody directed against the katacalcin moiety of PCT as solid phase, and one monoclonal antibody directed against the calcitonin moiety of PCT as labeled antibody (BRAHMS AG, Hennigsdorf, Germany). Recombinant PCT in various concentrations is used as standards. For the comparison with Assay E (see below), incubation conditions were adapted to those described for Assay E; i.e. 50 μl sample and 200 μl labeled antibody solution were used and incubated in a one step reaction in test tubes for 30 minutes or 2 hours.
  • For the other assays, assay components were generated as follows:
  • Labeling of Antibodies
  • Labeling of antibody FX1G5 was done by standard procedures (EP 1488209, EP 1738178): The concentration of the purified antibody was adjusted to 1 g/L, and the antibody was labeled by incubation with the chemiluminescent label MACN-Acridinium-NHS-Ester (1 g/L; InVent GmbH, Hennigsdorf, Germany) in a 1:5 molar ratio for 20 min at room temperature. The reaction was stopped by addition of 1/10 volume of 50 mmol/L glycine for 10 min at room temperature. Labeled antibody was separated from free label by size-exclusion chromatography on a NAP-5 column (GE Healthcare, Freiburg, Germany) and a Bio-Sil® SEC-400-5 HPLC column (BIO-RAD).
  • Coating of Antibodies
  • Coating of a monoclonal antibody directed against the calcitonin moiety of PCT (BRAHMS AG, Hennigsdorf, Germany) was done by standard procedures (EP 1488209, EP 1738178): Polystyrene startubes (Greiner) were coated with purified antibody (per tube, 2 μg of antibody in 300 μL of 10 mmol/L Tris, 100 mmol/L NaCl, pH 7.8) overnight at 22° C. Tubes were then blocked with 10 mmol/L sodium phosphate (pH 6.5) containing 30 g/L Karion FP (Merck), 5 g/L bovine serum albumin protease free (Sigma) and lyophilized
  • With these components the following assays were set up:
  • Assay C:
  • Tubes coated with an anti-katacalcin antibody and standards (recombinant PCT) were taken from the assay B.R.A.H.M.S PCT LIA sensitive (B.R.A.H.M.S AG, Hennigsdorf, Germany). MACN labeled antibody FX1G5 was used as labeled antibody. The assay buffer was 300 mmol/L potassium phosphate, pH 7.0, 100 mmol/L NaCl, 10 mmol/L EDTA, 0.9 g/L sodium azide, 5 g/L bovine serum albumin protease free (Sigma), 1 g/L nonspecfic bovine IgG, 1 g/L nonspecific sheep IgG, 1 g/L nonspecific mouse IgG and contained 2×106 relative light units (RLU) of MACN-labeled antibody per 200 μl. 100 μl standards or samples and 200 μl assay buffer containing the MACN-labeled antibody were pipetted in the coated tubes. Tubes were incubated 2 hours at 22° C. under agitation. Then, the tubes were washed 5 times with 1 mL of B.R.A.H.M.S washing solution (B.R.A.H.M.S AG, Hennigsdorf, Germany) and bound chemiluminescence was measured for 1 s per tube with a LB952T luminometer (Berthold). Concentrations of samples were calculated using the Software MultiCalc (Spline Fit).
  • Assay D:
  • Tubes coated with an anti-calcitonin antibody were used. Standards (recombinant PCT) were taken from the assay BRAHMS PCT LIA sensitive (BRAHMS AG, Hennigsdorf, Germany) MACN labeled antibody FX1G5 was used as labeled antibody. The assay buffer was 300 mmol/L potassium phosphate, pH 7.0, 100 mmol/L NaCl, 10 mmol/L EDTA, 0.9 g/L sodium azide, 5 g/L bovine serum albumin protease free (Sigma), 1 g/L nonspecfic bovine IgG, 1 g/L nonspecific sheep IgG, 1 g/L nonspecific mouse IgG and contained 2×106 relative light units (RLU) of MACN-labeled antibody per 200 μl. 100 μl standards or samples and 200 μl assay buffer containing the MACN-labeled antibody were pipetted in the coated tubes. Tubes were incubated 2 hours at 22° C. under agitation. Then, the tubes were washed 5 times with 1 mL of B.R.A.H.M.S washing solution (B.R.A.H.M.S AG, Hennigsdorf, Germany) and bound chemiluminescence was measured for 1 s per tube with a LB952T luminometer (Berthold). Concentrations of samples were calculated using the Software MultiCalc (Spline Fit).
  • Assay E:
  • Tubes coated with FX1G5 antibody were used. Standards (recombinant PCT) and labeled polyclonal anti-Calcitonin antibody were taken from the assay BRAHMS PCT LIA sensitive (BRAHMS AG, Hennigsdorf, Germany) 50 μl standards or samples and 200 μl assay buffer containing the MACN-labeled antibody were pipetted in the coated tubes. Tubes were incubated for either 30 minutes or 2 hours at 22° C. under agitation. Then, the tubes were washed 5 times with 1 mL of B.R.A.H.M.S washing solution (B.R.A.H.M.S AG, Hennigsdorf, Germany) and bound chemiluminescence was measured for 1 s per tube with a LB952T luminometer (Berthold).
  • D. Size Exclusion Chromatography
  • Plasma samples from nine patients with elevated PCT concentrations (including patients with sepsis) were fractionated using a Bio-Sil® SEC-125-5 HPLC column (BIO-RAD) HPLC column. The sample volume was 100 The running buffer was PBS pH 7.4. The flow rate was 0.8 mL/min 0.4 mL fractions were collected measured in assays A, C, D. The following peptides were used as calibrators: recombinant PCT (MW=ca. 13 kDa; InVivo GmbH, Hennigsdorf, Germany), preproADM 45-92 (Sequence ELRMSS SYPTGLADVK AGPAQTLIRP QDMKGASRSP EDSSPDAARI RV; MW=5.1 kDa; JPT GmbH, Berlin, Germany), Vitamin B12 (MW 1.3 kDa). Recombinant PCT and preproADM 45-92 were resolved in standard matrix obtained from the assays BRAHMS PCT LIA sensitive and BRAHMS MR-proADM LIA (BRAHMS AG, Hennigsdorf, Germany), and their elution profile of the size fractionation HPLC was determined using these assays. Vitamin B12 was diluted in running buffer and subjected to chromatography; absorption at 280 nm was recorded.
  • E. Measurement of Samples
  • Thirty serum samples of patients with local bacterial infections, sepsis, septic shock were measured in assays A, C, D.
  • Results
  • Monoclonal Antibodies
  • Three mouse monoclonal antibodies were generated by genetic immunization employing the entire PCT coding sequence. The epitope mapping revealed similar, albeit not identical results for all three antibodies (Table 2). Antibodies FW5H6 and FX7A7 showed maximal binding to peptide EARLLLAALVQDYVQMKASE (pos. 21-40 within PCT), and for antibody FX1G5 maximum binding was observed on a peptide derived from the previous one, i.e. LLAALVQDYVQMK (pos. 25-37). Outside these regions, no other significant binding sites within the PCT sequence were identified for the three antibodies. The immunization method used here is only one example. Other methods are well known, which could be applied alternatively to generate antibodies against an epitope in the described regions, and more generally upstream from position 53, for instance chemically synthesized peptides conjugated to a carrier protein could be used as antigen.
  • Size Exclusion Chromatography
  • The apparent molecular weight of native PCT and the detectability with various sandwich immunoassays was assessed by fractionation of serum samples from patients with elevated native PCT concentrations (including sepsis patients) using size exclusion HPLC. Essentially the same immunoreactivity profile was observed, whether fractions were measured with assay A, C or D (FIG. 1): The elution time of native PCT was indistinguishable from that of recombinant PCT (13 kDa) (FIGS. 2 and 3). Virtually no PCT immunoreactivity corresponding to a molecular weight smaller than 13 kDa was detected by any of the three assays. Most notably, no PCT immunoreactivity corresponding to a molecular weight of ca. 6 kDa was detected by Assay A; this would have been expected, if the assumptions in the state of art were correct, that PCT can be split just upstream from the calcitonin moiety of PCT. These results demonstrate that, opposed to speculations in the state of the art, in patients with elevated PCT concentrations (excluding medullary thyroid carcinoma) PCT is not detectably cleaved in the middle of the molecule, and that sandwich immunoassays of the A, C or D-type detect the same antigen.
  • Measurement of Samples
  • Thirty serum samples of patients with local bacterial infections, sepsis, septic shock were measured in assays A, C, D. The Spearman correlation coefficients came out as follows: Assay A vs. C: r=0.9893; Assay A vs. D: r=0.9844. These ideal correlation coefficients derived from the measurement of a significant number of samples from patients having infections at various degrees of severity clearly confirm the results obtained by size exclusion chromatography so that one has to conclude generally that PCT, when elevated over normal (excluding medullary thyroid carcinoma), is not cleaved in the middle of the molecule.
  • Assay Characteristics
  • The use of one of the antibodies described in the present invention, FX1G5 having an epitope corresponding to positions 25-37 of PCT, in a sandwich assay employing an anti-Calcitonin antibody as second antibody (Assay E), was analyzed in comparison to state-of-art PCT assays, which utilize the same detection technology (coated tube/chemiluminescence label); i.e. BRAHMS PCT LIA sensitive (Assay A) and BRAHMS PCT LIA (Assay B). Surprisingly, Assay E exhibited considerably more dynamic dose-response-curves than both established assays, independent from the incubation time (FIG. 4).
  • TABLE 1
    Described anti-PCT antibodies and their use in immunoassays
    Immunogen Epitope
    (numbers refer (numbers refer tested in tested
    to amino  to amino sandwich with
    acid positions acid positions immuno- native
    Name Source in PCT 1-116) in PCT 1-116) assay PCT Reference
    anti- Sheep Calcitonin GTYTQDFNKFH; yes yes (Morgenthaler,
    Calcitonin 69-79 et al. Clin
    Chem
    2002;48:788-
    90)
    anti- mouse Katacalcin ERDHRPHVSM; yes yes (Morgenthaler,
    katacalcin 102-111 et al. Clin
    (QN05) Chem
    2002;48:788-
    90)
    PROC1 rat FRSALESSPADPATL n.d. yes no (Kramer, et al.
    3G3 SEDE; 3-20 Anal Bioanal
    Chem
    2008;392:727-
    36)
    PROC4 rat SDLERDHRPHV; 99- n.d. yes no (Kramer, et al.
    6C6 etc 109 Anal Bioanal
    Chem
    2008;392:727-
    36)
    R2B7 rabbit Amino-ProCT; n.d. no yes (Whang, et al. J
    antiserum 1-57 Clin
    Endocrinol
    Metab
    1998;83:3296-
    301)
    295/3H12 mouse APFRLSALESC; n.d. other than N- yes yes DE 10 2007
    etc. 1-9 terminal Alanin 009 751
    being required
    98-47/44 mouse DSPRSKRCGNLS; n.d. yes yes US 6451311
    53-64
    98-31/04 mouse VGAPGKKRDMSS; n.d. yes yes US 6451311
    88-99
    CT08 mouse Calcitonin TYTQDFN; 70- yes yes (Assicot, et al.
    76 Lancet
    1993;341:515-
    8; Ghillani et
    al, Cancer Res
    1989;49:6845-
    51)
    KC01 mouse Katacalcin DMSSDLERDHR; yes yes (Assicot, et al.
    96-106 Lancet
    1993;341:515-
    8; Ghillani, et
    al. Cancer Res
    1989;49:6845-
    51)
  • TABLE 2
    Epitope mapping results: Observed binding signals
    for the three antibodies to the shown peptides
    representing subsequences of the entire PCT
    sequence were related to the maximum binding
     obtained per antibody (B/Bmax).
    pep-
    tide
    # sequence FX1G5 FW5H6 FX7A7
     1 APFRSALESSPAD   0.0%   0.0%   0.0%
     2 FRSALESSPADPA   0.0%   0.0%   0.0%
     3 SALESSPADPATL   0.0%   0.0%   0.0%
     4 LESSPADPATLSE   0.0%   0.0%   0.0%
     5 SSPADPATLSEDE   0.0%   0.0%   0.0%
     6 PADPATLSEDEAR   0.0%   0.0%   0.0%
     7 DPATLSEDEARLL   0.0%   0.0%   0.0%
     8 ATLSEDEARLLLA   0.0%   0.1%   0.0%
     9 LSEDEARLLLAAL   3.0%   0.0%   0.0%
    10 EDEARLLLAALVQ   0.3%   0.0%   0.0%
    11 EARLLLAALVQDY   1.7%   0.0%   0.0%
    12 RLLLAALVQDYVQ  25.0%  57.3%   0.2%
    13 LLAALVQDYVQMK 100.0%  59.5%  62.7%
    14 AALVQDYVQMKAS  11.9%  14.7%   0.0%
    15 LVQDYVQMKASEL   0.0%   0.0%   0.0%
    16 QDYVQMKASELEQ   0.0%   0.0%   0.0%
    17 YVQMKASELEQEQ   0.0%   0.0%   0.0%
    18 QMKASELEQEQER   0.0%   0.0%   0.0%
    19 KASELEQEQEREG   0.0%   0.0%   0.0%
    20 SELEQEQEREGSS   0.0%   0.0%   0.0%
    21 LEQEQEREGSSLD   0.0%   0.1%   0.0%
    22 QEQEREGSSLDSP   0.0%   0.0%   0.0%
    23 QEREGSSLDSPRS   0.0%   0.0%   0.0%
    24 REGSSLDSPRSKR   0.0%   0.1%   0.0%
    25 GSSLDSPRSKRCG   0.0%   0.3%   0.1%
    26 SLDSPRSKRCGNL   0.0%   0.2%   0.3%
    27 DSPRSKRCGNLST   0.0%   0.0%   0.2%
    28 PRSKRCGNLSTCM   0.0%   0.0%   0.2%
    29 SKRCGNLSTCMLG   0.0%   0.0%   0.0%
    30 RCGNLSTCMLGTY   0.0%   0.0%   0.2%
    31 GNLSTCMLGTYTQ   0.1%   0.0%   0.0%
    32 LSTCMLGTYTQDF   0.0%   0.0%   0.0%
    33 TCMLGTYTQDFNK   0.0%   0.0%   0.0%
    34 MLGTYTQDFNKFH   0.0%   3.4%   0.0%
    35 GTYTQDFNKFHTF   0.0%   1.9%   0.0%
    36 YTQDFNKFHTFPQ   0.0%   0.1%   0.0%
    37 QDFNKFHTFPQTA   0.4%   0.0%   0.0%
    38 FNKFHTFPQTAIG   0.0%   0.1%   0.0%
    39 KFHTFPQTAIGVG   0.2%   0.0%   0.0%
    40 HTFPQTAIGVGAP   0.0%   0.0%   0.0%
    41 FPQTAIGVGAPGK   0.1%   0.0%   0.0%
    42 QTAIGVGAPGKKR   1.0%   0.1%   0.1%
    43 AIGVGAPGKKRDM   0.0%   0.0%   0.0%
    44 GVGAPGKKRDMSS   0.0%   0.0%   0.0%
    45 GAPGKKRDMSSDL   0.0%   0.6%   0.0%
    46 PGKKRDMSSDLER   0.0%   0.3%   0.1%
    47 KKRDMSSDLERDH   0.0%   0.0%   0.0%
    48 RDMSSDLERDHRP   0.0%   1.5%   0.0%
    49 MSSDLERDHRPHV   1.8%   1.5%   1.9%
    50 SDLERDHRPHVSM   0.4%   1.5%   0.9%
    51 LERDHRPHVSMPQ   1.3%   1.5%   2.8%
    52 RDHRPHVSMPQNA   0.0%   0.1%   0.2%
    53 DHRPHVSMPQNAN   0.0%   0.0%   0.0%
    54 APFRSALESSPADPATLSED   0.2%   0.0%   0.0%
    55 ALESSPADPATLSEDEARLL   0.3%   0.1%   0.0%
    56 PADPATLSEDEARLLLAALV   0.0%   0.0%   0.0%
    57 TLSEDEARLLLAALVQDYVQ  64.4%  64.7%  49.9%
    58 EARLLLAALVQDYVQMKASE  74.6% 100.0% 100.0%
    59 LAALVQDYVQMKASELEQEQ   2.8%   2.7%   0.1%
    60 QDYVQMKASELEQEQEREGS   0.7%   0.0%   0.1%
    61 MKASELEQEQEREGSSLDSP   0.6%   0.0%   0.1%
    62 LEQEQEREGSSLDSPRSKRC   0.0%   0.4%   0.1%
    63 EREGSSLDSPRSKRCGNLST   0.0%   0.2%   0.0%
    64 SLDSPRSKRCGNLSTCMLGT   0.5%   0.0%   0.0%
    65 RSKRCGNLSTCMLGTYTQDF   0.9%   0.2%   0.0%
    66 GNLSTCMLGTYTQDFNKFHT   0.0%   0.5%   0.0%
    67 CMLGTYTQDFNKFHTFPQTA   0.0%   0.1%   0.0%
    68 YTQDFNKFHTFPQTAIGVGA   0.0%   0.0%   0.0%
    69 NKFHTFPQTAIGVGAPGKKR   4.8%   0.3%   0.9%
    70 FPQTAIGVGAPGKKRDMSSD   0.0%   0.0%   0.0%
    71 IGVGAPGKKRDMSSDLERDH   0.0%   0.1%   0.0%
    72 PGKKRDMSSDLERDHRPHVS   0.7%   0.1%   2.3%
    73 DMSSDLERDHRPHVSMPQNA   0.2%   0.1%   0.3%
    74 MSSDLERDHRPHVSMPQNAN   0.3%   0.4%   0.2%

Claims (19)

1. In vitro method for the detection of Procalcitonin or a fragment thereof of at least 20 amino acid residues in length in a biological sample derived from a bodily fluid obtained from a subject, comprising the steps of:
a. contacting said sample with at least two antibodies or functional fragments thereof directed against different epitopes within Procalcitonin, and
b. qualitatively or quantitatively detecting binding of said at least two antibodies to Procalcitonin or said fragment thereof, wherein binding indicates the presence or concentration of Procalcitonin or said fragment in said sample,
wherein at least one antibody or functional fragment thereof is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin.
2. Method according to claim 1, wherein the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, is a monoclonal antibody.
3. The method according to claim 1, wherein one other antibody or functional fragment thereof is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin.
4. The method according claim 1, wherein the epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin is an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin.
5. The method according to claim 4, wherein the epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
6. The method according to claim 3, wherein the epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin is an epitope comprised in the sequence spanning amino acid residues 96 to 116 of Procalcitonin or an epitope comprised in the sequence spanning amino acid residues 60 to 91 of Procalcitonin.
7. The method according to claim 1, wherein the antibody or functional fragment thereof, which is directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin, is a monoclonal antibody.
8. Antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin.
9. Antibody or a functional fragment thereof according to claim 8, wherein the antibody or functional fragment thereof is directed against an epitope is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
10. Antibody according to claim 8, wherein the antibody is monoclonal.
11. Antibody according to claim 10, wherein the antibody is produced by a hybridoma cell line that is deposited at the DSMZ under accession number DSM ACC2993, DSM ACC2996 or DSM ACC2997.
12. Kit comprising at least
a. a first antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 2 to 52 of Procalcitonin, and
b. a second antibody or a functional fragment thereof directed against an epitope comprised in the sequence spanning amino acid residues 53 to 116 of Procalcitonin.
13. Kit according to claim 12, wherein the first antibody is directed against an epitope comprised in the sequence spanning amino acid residues 16 to 40 of Procalcitonin, preferably against an epitope that is selected from a group consisting of an epitope comprised in the sequence spanning amino acid residues 21 to 40 of Procalcitonin, an epitope comprised in the sequence spanning amino acid residues 16 to 35 of Procalcitonin and an epitope comprised in the sequence spanning amino acid residues 25 to 37 of Procalcitonin.
14. Kit according to claim 12, wherein the second antibody is directed against an epitope comprised in the sequence spanning amino acid residues 60 to 91 of Procalcitonin or directed against an epitope comprised in the sequence spanning amino acid residues 96 to 116 of Procalcitonin.
15. A method of performing a sandwich immunoassay for the detection and or quantification of Procalcitonin in a biological sample from a bodily fluid comprising employing a kit of claim 12.
16. The method according to claim 1 for the determination of the presence or absence of Procalcitonin or a fragment thereof or for the quantification of Procalcitonin or a fragment thereof in a biological sample from a bodily fluid.
17. The method according to claim 16 for the diagnosis, prognosis, risk stratification, therapy monitoring, therapy guidance, or stratification for application of therapeutic measures of a disease or condition associated with elevated Procalcitonin levels.
18. The method according to claim 17, wherein the disease or condition is selected from the group of local bacterial infections, sepsis, severe sepsis, septic shock, non-infectious disease including cardiovascular diseases (acute coronary syndrome, heart failure, coronary artery disease, atherosclerosis, stroke), cancer, diabetes, chronic gastrointestinal diseases, chronic renal diseases, hypertension, orthopaedic diseases including osteoporosis, and neurodegenerative diseases including Alzheimer's disease.
19. The hybridoma cell line deposited at the DSMZ under accession number DSM ACC2993, DSM ACC2996 or DSM ACC2997.
US16/100,743 2009-04-28 2018-08-10 Immunoassay for the detection of procalcitonin Abandoned US20190041408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/100,743 US20190041408A1 (en) 2009-04-28 2018-08-10 Immunoassay for the detection of procalcitonin

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP09158983.8 2009-04-28
EP09158983 2009-04-28
EP09165227.1 2009-07-10
EP09165227 2009-07-10
PCT/EP2010/055648 WO2010125076A1 (en) 2009-04-28 2010-04-27 Immunoassay for the detection of procalcitonin
US201213266594A 2012-01-27 2012-01-27
US15/412,648 US10048280B2 (en) 2009-04-28 2017-01-23 Immunoassay for the detection of procalcitonin
US16/100,743 US20190041408A1 (en) 2009-04-28 2018-08-10 Immunoassay for the detection of procalcitonin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/412,648 Continuation US10048280B2 (en) 2009-04-28 2017-01-23 Immunoassay for the detection of procalcitonin

Publications (1)

Publication Number Publication Date
US20190041408A1 true US20190041408A1 (en) 2019-02-07

Family

ID=42184142

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/266,594 Abandoned US20120122114A1 (en) 2009-04-28 2010-04-27 Immunoassay for the detection of procalcitonin
US15/412,648 Active US10048280B2 (en) 2009-04-28 2017-01-23 Immunoassay for the detection of procalcitonin
US16/100,743 Abandoned US20190041408A1 (en) 2009-04-28 2018-08-10 Immunoassay for the detection of procalcitonin

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/266,594 Abandoned US20120122114A1 (en) 2009-04-28 2010-04-27 Immunoassay for the detection of procalcitonin
US15/412,648 Active US10048280B2 (en) 2009-04-28 2017-01-23 Immunoassay for the detection of procalcitonin

Country Status (9)

Country Link
US (3) US20120122114A1 (en)
EP (1) EP2425259B1 (en)
JP (2) JP6009938B2 (en)
CN (1) CN102395887B (en)
DK (1) DK2425259T3 (en)
ES (1) ES2666332T3 (en)
HK (1) HK1167180A1 (en)
TR (1) TR201806292T4 (en)
WO (1) WO2010125076A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130046085A1 (en) * 2011-06-22 2013-02-21 Universidad De Sevilla Antibodies against n-procalcitonin
CN102759631B (en) * 2012-08-02 2016-05-11 南京诺尔曼生物技术有限公司 The latex enhancing immune of a kind of quantitative detection Procalcitonin PCT is than turbid kit
CN102928606B (en) * 2012-11-16 2015-10-07 武汉明德生物科技股份有限公司 The Procalcitonin quick detection kit of multispecific antibody mark
WO2014083232A1 (en) * 2012-11-30 2014-06-05 Servicio Andaluz De Salud Use of peptides or antibodies against n-procalcitonin for the treatment of pulmonary lesions
WO2015104443A1 (en) * 2014-01-08 2015-07-16 Servicio Andaluz De Salud N-procalcitonin-modulating agents for the prevention and treatment of neurodegenerative diseases
CN104792997B (en) * 2014-01-22 2017-07-11 天津汇滨生物科技有限公司 A kind of HCT's original immunity detection reagent and preparation method and application
DE102014106854A1 (en) 2014-05-15 2016-01-28 Odos Imaging Ltd. Imaging system and method for monitoring a field of view
CN104090109A (en) * 2014-07-25 2014-10-08 胡晓武 Colloidal gold immunochromatography test paper and colloidal gold immunochromatography test method for quickly detecting human blood procalcitonin
CN104745534B (en) * 2015-03-02 2018-06-22 南方医科大学 A kind of Procalcitonin monoclonal antibody hybridoma 2H4 and monoclonal antibody
CN111793132A (en) 2015-07-09 2020-10-20 南京诺尔曼生物技术有限公司 Monoclonal antibody of human procalcitonin and preparation method and application thereof
CN106841606B (en) * 2017-03-28 2019-03-05 广州瑞博奥生物科技有限公司 Detect colloidal gold immuno-chromatography test paper strip, the kit and preparation method thereof of PCT
JP7051096B2 (en) * 2018-05-30 2022-04-11 国立大学法人山口大学 Antibodies that specifically recognize bovine procalcitonin, their antigen-binding fragments, and their use.
CN108998421A (en) * 2018-07-31 2018-12-14 广东立诊得生物科技有限公司 Hybridoma cell strain A4-1B1 and its Procalcitonin monoclonal antibody and application of generation
CN109055318A (en) * 2018-07-31 2018-12-21 广东立诊得生物科技有限公司 Hybridoma cell strain A4-6A2 and its Procalcitonin monoclonal antibody and application of generation
CN109652382A (en) * 2018-12-12 2019-04-19 杭州华葵金配生物科技有限公司 A kind of application of Procalcitonin monoclonal antibody hybridoma cell strain and its monoclonal antibody
JP7205691B2 (en) * 2019-01-23 2023-01-17 ウシオ電機株式会社 Anti-canine procalcitonin antibody and test kit using the same
CN112986585A (en) * 2019-12-17 2021-06-18 上海奥普生物医药股份有限公司 Procalcitonin detection kit, preparation method and application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208479A (en) * 1977-07-14 1980-06-17 Syva Company Label modified immunoassays
DE4227454C1 (en) * 1992-08-19 1994-02-03 Henning Berlin Gmbh Process for early detection, for the detection of the severity as well as for the therapy-accompanying assessment of the course of sepsis as well as means for carrying out the process
US20070037158A1 (en) * 2003-09-18 2007-02-15 Garvan Institute Of Medical Research Methods of modulating bone growth, bone remodeling and adiposity
DE102005034174A1 (en) * 2005-07-21 2007-02-08 B.R.A.H.M.S Ag CSF in vitro diagnostic procedure for dementia and neuroinflammatory diseases
CN1800384A (en) * 2005-11-08 2006-07-12 浙江大学 Procalcitonin preparation method
CN101029897A (en) * 2007-02-09 2007-09-05 深圳市新产业生物医学工程有限公司 Calcitonin reagent unit and its testing method
DE102007009751A1 (en) * 2007-02-28 2008-09-04 B.R.A.H.M.S Aktiengesellschaft Diagnostic immunoassay for procalcitonin in a biological sample from a patient comprises selectively determining full-length procalcitonin 1-116
RU2342666C1 (en) * 2007-07-02 2008-12-27 Государственное образовательное учреждение высшего профессионального образования "Пермская государственная медицинская академия имени академика Е.А. Вагнера Федерального агентства по здравоохранению и социальному развитию" Method for gestosis degree determination
EP2020603A1 (en) * 2007-08-03 2009-02-04 BRAHMS Aktiengesellschaft Method for risk stratification in stable coronary artery disease

Also Published As

Publication number Publication date
US20170131297A1 (en) 2017-05-11
JP6100822B2 (en) 2017-03-22
HK1167180A1 (en) 2012-11-23
JP6009938B2 (en) 2016-10-19
US20120122114A1 (en) 2012-05-17
DK2425259T3 (en) 2018-04-30
ES2666332T3 (en) 2018-05-04
JP2012525568A (en) 2012-10-22
CN102395887B (en) 2015-04-08
JP2015163877A (en) 2015-09-10
US10048280B2 (en) 2018-08-14
EP2425259A1 (en) 2012-03-07
WO2010125076A1 (en) 2010-11-04
EP2425259B1 (en) 2018-02-28
TR201806292T4 (en) 2018-06-21
CN102395887A (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US10048280B2 (en) Immunoassay for the detection of procalcitonin
JP6336911B2 (en) Adrenomedullin assay and method for measuring mature adrenomedullin
US9664689B2 (en) Method for the selective detection and measurement of procalcitonin 1-116 and amino-terminal peptides of procalcitonin comprising amino acids 1 and 2 of procalcitonin 1-116
EP2542898B1 (en) Progastrin and liver pathologies
US11719697B2 (en) Immunoassay and antibodies for the detection of chromogranin A
EP2828282B1 (en) Biomarkers
US10954298B2 (en) Method of obtaining a binder to prepro-vasopressin or fragments thereof
US20120129187A1 (en) Diagnostical use of peroxiredoxin 4
EP2904398B1 (en) A method for predicting the risk of getting cancer in a female subject
KR20220145897A (en) Anti-adrenomedulin (ADM) antibody or anti-ADM antibody fragment or anti-ADM non-IG scaffold for use in the treatment or prevention of shock
EP4169946A1 (en) Antibodies binding specifically to nt-probnp and use thereof
EP3019875B1 (en) Augurin immunoassay
US20240125802A1 (en) Immunoassay for Detecting Eosinophilic Esophagitis
JP3778979B2 (en) Sandwich immunoassay for N-peptide

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION