US20190023629A1 - Pyrotechnic compositions - Google Patents

Pyrotechnic compositions Download PDF

Info

Publication number
US20190023629A1
US20190023629A1 US15/713,600 US201715713600A US2019023629A1 US 20190023629 A1 US20190023629 A1 US 20190023629A1 US 201715713600 A US201715713600 A US 201715713600A US 2019023629 A1 US2019023629 A1 US 2019023629A1
Authority
US
United States
Prior art keywords
fuel
metallocene
ferrocene
composition according
grams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/713,600
Inventor
Toni M. Whaley
Morris C. Buenemann, Jr.
George C. Mei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olin Corp
Original Assignee
Olin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Corp filed Critical Olin Corp
Priority to US15/713,600 priority Critical patent/US20190023629A1/en
Assigned to OLIN CORPORATION reassignment OLIN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEI, GEORGE C., BUENEMANN, MORRIS C., JR., WHALEY, TONI M.
Publication of US20190023629A1 publication Critical patent/US20190023629A1/en
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: OLIN CORPORATION
Assigned to OLIN CORPORATION reassignment OLIN CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/002Sensitisers or density reducing agents, foam stabilisers, crystal habit modifiers
    • C06B23/004Chemical sensitisers
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/02Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate
    • C06B31/12Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate with a nitrated organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/02Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B39/00Compositions containing free phosphorus or a binary compound of phosphorus, except with oxygen
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers

Definitions

  • the present disclosure relates to pyrotechnic compositions, such as priming mix compositions and propellant compositions, and in particular to low and no lead pyrotechnic compositions.
  • Pyrotechnic compositions such as priming mixes, detonating mixtures, propellants, initiators, and similar compositions usually include substances to increase their performances such as sensitivity, propagation, and smoothness of burning (for propellant compositions, meaning without self-extinguishing or transition into detonation).
  • substances to increase their performances such as sensitivity, propagation, and smoothness of burning (for propellant compositions, meaning without self-extinguishing or transition into detonation).
  • sensitivity, propagation, and smoothness of burning for propellant compositions, meaning without self-extinguishing or transition into detonation.
  • lead styphnate C 6 HN 3 O 8 Pb also known as lead 2,4,6-trinitroresorcinate. While lead styphnate is highly effective in these pyrotechnic compositions there are environmental and health and safety concerns over the presences of lead. Efforts have been made to reduce or eliminate lead styphnate without detracting from the performance of the pyrotechnic compositions in which it is used.
  • pyrotechnic compositions with satisfactory sensitivity and propagation with low levels or no levels (other than as inherent impurities) of lead, through the inclusion of a metallocene, and in particular ferrocene.
  • the pyrotechnic compositions according to the various embodiments of this invention generally include a fuel, an oxidizer, and metallocene, a burn modifier, in an amount effective to provide the desired sensitivity and propagation.
  • the metallocene is ferrocene, or a mixture of metallocenes including ferrocene.
  • pyrotechnic compositions designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, from non-detonative self-sustaining exothermic chemical reaction, generally without reliance on oxygen from external sources to sustain the reaction.
  • These compositions comprise flash powders, gunpowders, propellants, pyrotechnic initiators, gas generators, ejection charges, burst charges, smoke compositions, delay compositions; pyrotechnic heat sources, and flares.
  • pyrotechnic compositions according to the principles of this invention include at least a fuel, an oxidizer, and an amount of at least one metallocene effective to improve sensitivity of the composition. This metallocene preferably is or includes ferrocene.
  • a first embodiment pyrotechnic composition in accordance with the principles of this invention is a priming mix for example for a primer for a centerfire cartridge, and comprises a primary explosive, a propagation aid, an oxidizer, and a fuel.
  • the primary explosive can comprise between about 30% and about 60%, and more preferably between about 35% and about 50%, of at least one of KDNBF, dinol, and Tetrazene.
  • the propagation aid can comprise between about 10% and about 35%, and more preferably between about 10% and about 30%, of a metallocene. This metallocene is preferably Ferrocene.
  • the oxidizer can comprise between about 5% and about 40%, and more preferably of at least one nitrate, peroxide, or oxide.
  • the oxidizer is preferably at least one of Ba(NO 3 ) 2 , Sr(NO 3 ) 2 , KNO 3 .
  • the fuel can comprise between about 5% and about 25% of at least one of nitrocellulose or PETN as a reactive fuel, and at least one other fuel. This fuel is preferably at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
  • a second preferred embodiment of the pyrotechnic mix according to the principles of this invention also is a priming mix for example for a primer for a centerfire cartridge, similar to the priming mix of the first preferred embodiment.
  • the primary explosive comprises between about 30% and about 50%, and more preferably between about 35% and about 45%, KDNBF as a primary explosive;
  • the sensitizer comprises between about 2% and about 8% of Tetrazene as a sensitizer; between about 10% and about 30% of a metallocene, such as ferrocene, as a propagation aid; between about 5% and about 40% of an oxidizer, such as at least one of Sr(NO 3 ) 2 and KNO 3 ; and between about 5% and about 20% of a reactive fuel such as powder fines, such as SMP111, and/or PETN; and at least one other fuel, such as boron, aluminum, carbon, metal shavings, or metal sulfides.
  • a third preferred embodiment of the pyrotechnic mix of this invention is also a priming mix for example for a primer for a centerfire cartridge similar to the first and second embodiments, in which the primary explosive can comprise between about 35% and about 45% KDNBF; the sensitizer can comprise between about 3% and about 7% of Tetrazene; the propagation aid can comprise between about 12% and about 18% of Ferrocene; the oxidizer can comprise between about 25% and about 35% of Sr(NO 3 ) 2 as an oxidizer; the fuel can include between about 8% and about 12% of PETN, and preferably at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
  • KDNBF is preferred over dinol, which has a DSC peak decomposition temperature of around 160° C.
  • KDNBF's decomposition temperature is much higher, around 210° C.—in the similar range for nitrocellulose or PETN, used in leaded priming mixes.
  • the KDNBF/ferrocene based lead free primers of the preferred embodiments performed as good as or better than prior leaded priming mixes, while dinol-based priming mixes became non-functional.
  • KDNBF may not be as sensitive as lead styphnate.
  • the inventors have found that the sensitivity of a KDNBF mixture can be adjusted by including either a stronger reducing agent (fuel), or a stronger oxidizer, or both.
  • a strong reducing agent such as a metallocene like ferrocene
  • Ferrocene readily loses electrons, which are available to other oxidizers such as KDNBF, reducing the activation energy for the explosive reaction and thus increasing the mixture's sensitivity.
  • Red phosphorous like ferrocene, can also sensitize KDNBF based priming mixes, producing excellent mix sensitivity.
  • wet phosphorous can generate small amounts of highly toxic phosgene, which can be costly to mitigate, control or monitor phosgene, and dispose of red phosphorous in the production waste stream.
  • a fourth embodiment of the pyrotechnic composition according to the principles of this invention is a priming mix for a rim fire cartridge.
  • the rim fire priming mix comprises a primary explosive, a propagation aid, an oxidizer, a fuel, and a frictionator.
  • the primary explosive can comprise between 25-35% of KDNBF; an optional sensitizer can comprise between 3-7% Tetrazene; the propagation aid can comprise between 10-20% of Ferrocene; the oxidizer can include up to 30% of Sr(NO 3 ) 2 ; up to 25% reactive fuel such as propellant powder fines, and the frictionator can comprise of 30-45% glass shards or beads.
  • Examples of priming mixes according to the compositions in the Table were prepared by pre-weighing all of the ingredients and adding them in layers to a mixing bowl. A proper level of moisture was maintained to ensure safe handling of the mix. The layering separates oxidizers from fuels and the reactive components from the sensitizers. Additional moisture was added as necessary to maintain the final moisture content of the mixture at around 25%. The mixing was carried out remotely and closely monitored. After mixing, the thoroughly mixed and uniformed wet priming mix was removed from the mixing bowl, and pellets of a predetermined volume of the wet mix are made and charged into primer cups, followed by the installation of the anvils. Finally, the assembled primers are dried in an oven before tests.
  • Example Example Example 1 Example 2 Example 3 Example 4 5A 5B Example 6
  • Example 7 LF502 LF471 LF503 LF495 LF542 LF543 LF521 LF546
  • primers from each example were dried, they were subject to sensitivity test, a standard test which has been employed by the ammunition industry.
  • a primer or a primed shell case is installed into a steel die fitted with a firing pin.
  • a steel ball of fixed weight typically 1.92 oz. for center fire primers
  • the energy of firing pin is controlled.
  • a series of drop tests is performed.
  • a primer either fires or not.
  • the sensitivity of the primer is then quantified statistically by H bar where 50% of the primers will fire, and S, the standard deviation.
  • a sensitivity specification of a primer is based on the H and S system.
  • H+4S and H-2S must fit.
  • a typical sensitivity (H+4S; H-2S) bracket for pistol primer is (9.2′′; 2′′).
  • the KDNBF/ferrocene LF502 primer from Example 1 has (7.63; 4.8), Example 3 (9.0; 4.35); Example 4 (9.7; 3.82), Example 5A has (10.87; 3.65), Example 5B has (10.05; 4.75); Example 6 has (13.3; 3.70); and Example 7 has (14.88, 3.75).
  • the primers were also subjected to full ballistic tests. Results of such tests showed a total transparency by swapping the control (“leaded”) primer with the Exhibit 1 (LF502) primer.
  • LF502 Exhibit 1
  • ferrocene will work with any types of explosives containing a nitro, nitrate ester or nitroso group will work with ferrocene.
  • nitro, nitrate ester or nitroso group tends to grab electrons, beginning with the easiest source, in our case, ferrocene.
  • Such explosive could be dinol, or PETN, TNT, RDX, HMX, or any other suitable explosive.
  • Ferrocene could also work with other oxidizers in addition to strontium nitrate, such as nitrates, oxides, dioxides, and/or peroxides.
  • Example 4 (LF495) uses barium nitrate instead of strontium nitrate (9.64; 5.64). Barium is not as toxic as lead, and there is lead free ammunition which still contains barium, but still it is considered as heavy metal.
  • a composition of a priming mix is based upon practicality and governed by sensitivity of the mix, and by the ignition requirements.
  • the initiating explosive (dinol, lead styphnate, KDNBF, etc.) content usually has to be above some threshold to maintain adequate mix sensitivity. This percentage varies depending on the type of initiating explosive and the other ingredients. For most initiating explosives, the minimum percentage runs above 20%. Anything less, the mix will not have a required sensitivity.
  • Tetrazene is a sensitizer and only to be needed at a low level, typically 2-6%. Since tetrazene is a poor energy generator, too much of it reduces the mix performance.
  • PETN or nitrocellulose/nitroglycerin ensures the burn transition from initiating explosive to fuel/oxidizer mixture.
  • the explosive usually burns too fast to allow fuel/oxidizer mixture to catch on.
  • PETN or nitrocellulose/nitroglycerin is like kindling, they are easily ignited but burn slower. Typically, they are in the range from about 5% to about 10%, but can be higher.
  • the ingredients described above are fuel rich, meaning they have insufficient oxygen to burn all carbon to carbon dioxides. Furthermore, their combustion products are mostly gasses, which are not the most efficient form to transfer energy to a propellant bed. Adding fuel and oxidizer generates hot particles which physically touch propellant grains and causing them to ignite much more quickly. Also, they can affect the sensitivity of a mix to a large extent by being a strong fuel or a strong oxidizer.
  • the percentage of fuel and oxidizer varies greatly depending on their chemical composition and a mix's application. Fuel typically is presented at a smaller percentage as the energetics (explosives, PETN, nitrocellulose/nitroglycerin, etc.) in a mix are already fuel rich. As a result, fuel typically runs between 5 to 20%. Oxidizer will then take up the rest of the percentages and are usually at higher percentage, from 25 to 45%.

Abstract

A priming mix composition includes between about 30% and about 60% of at least one of KDNBF, dinol, and tetrazene as a primary explosive; between about 10% and about 35% of a metallocene as a propagation aid; between about 5% and about 40% of at least one nitrate, peroxide, or oxide, as an oxidizer; between about 5% and about 25% of at least one of nitrocellulose or PETN as a reactive fuel; and a fuel. The metallocene is preferable ferrocene.

Description

    CROSS-REFERENCED APPLICATION
  • This application claims priority to U.S. provisional application Ser. No. 62/404,624 filed on Oct. 5, 2016. The disclosure of the above-referenced application is incorporated herein by reference in its entirety.
  • FIELD
  • The present disclosure relates to pyrotechnic compositions, such as priming mix compositions and propellant compositions, and in particular to low and no lead pyrotechnic compositions.
  • BACKGROUND
  • This section provides background information related to the present disclosure which is not necessarily prior art.
  • Pyrotechnic compositions such as priming mixes, detonating mixtures, propellants, initiators, and similar compositions usually include substances to increase their performances such as sensitivity, propagation, and smoothness of burning (for propellant compositions, meaning without self-extinguishing or transition into detonation). For variety of reasons, private industries and the Government, for example, have tried to replace lead azide in detonating mix, to replace lead styphnate in priming mixes, and to find a black powder substitute. Thus far, the success has been limited or left with desires in terms of performance, safety, cost, etc. For priming composition, one common ingredient for this purpose is lead styphnate, C6HN3O8Pb also known as lead 2,4,6-trinitroresorcinate. While lead styphnate is highly effective in these pyrotechnic compositions there are environmental and health and safety concerns over the presences of lead. Efforts have been made to reduce or eliminate lead styphnate without detracting from the performance of the pyrotechnic compositions in which it is used.
  • For example, for decades, numerous efforts from the ammunition industry and the government have tried to replace lead styphnate based priming mixes and propellants with unleaded mixtures. These efforts included using nanoparticles (MIC or Meta Interstitial Composition) of fuel and oxidizer which later evolved into using fine particles of, in addition to fuel and oxidizer, less sensitive explosives such as RDX, HMX or PETN etc. However, among other things these nanoparticles are very reactive, creating both fire/explosion risks and health hazards in the production environment.
  • These efforts have also included the use of known and established lead-free initiating explosives such as dinol (diazodinitrophenol or DDNP) and KDNBF (potassium dinitrobenzofuroxane). However, dinol, although the main stay of lead-free priming mixes, is not as thermally stable as lead styphnate, and thus dinol is usually relegated to “training” rounds, as distinguished from “duty” rounds, because of possible degradation from uncontrolled heat conditions.
  • These efforts have also included using newer lead free initiating explosives such as KDNP, or derivatives of nitrotetrazoeles. However the performance of these “new” initiating explosives is not necessarily better than existing materials, especially regarding safety. While the reactivity hazards are easily assessed, the health hazards are much harder to evaluate. Furthermore manufacturing procedures often include the use of organic solvents which are costly and can have significant environmental impact.
  • SUMMARY
  • This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
  • Generally embodiments of this invention provide pyrotechnic compositions with satisfactory sensitivity and propagation with low levels or no levels (other than as inherent impurities) of lead, through the inclusion of a metallocene, and in particular ferrocene. The pyrotechnic compositions according to the various embodiments of this invention generally include a fuel, an oxidizer, and metallocene, a burn modifier, in an amount effective to provide the desired sensitivity and propagation. In the most preferred embodiments the metallocene is ferrocene, or a mixture of metallocenes including ferrocene.
  • Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
  • DETAILED DESCRIPTION
  • Example embodiments will now be described more fully.
  • Generally, embodiments of this invention provide pyrotechnic compositions designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, from non-detonative self-sustaining exothermic chemical reaction, generally without reliance on oxygen from external sources to sustain the reaction. These compositions comprise flash powders, gunpowders, propellants, pyrotechnic initiators, gas generators, ejection charges, burst charges, smoke compositions, delay compositions; pyrotechnic heat sources, and flares. Broadly, pyrotechnic compositions according to the principles of this invention include at least a fuel, an oxidizer, and an amount of at least one metallocene effective to improve sensitivity of the composition. This metallocene preferably is or includes ferrocene.
  • A first embodiment pyrotechnic composition in accordance with the principles of this invention is a priming mix for example for a primer for a centerfire cartridge, and comprises a primary explosive, a propagation aid, an oxidizer, and a fuel. In the preferred embodiment the primary explosive can comprise between about 30% and about 60%, and more preferably between about 35% and about 50%, of at least one of KDNBF, dinol, and Tetrazene. The propagation aid can comprise between about 10% and about 35%, and more preferably between about 10% and about 30%, of a metallocene. This metallocene is preferably Ferrocene. The oxidizer can comprise between about 5% and about 40%, and more preferably of at least one nitrate, peroxide, or oxide. The oxidizer is preferably at least one of Ba(NO3)2, Sr(NO3)2, KNO3. Finally the fuel can comprise between about 5% and about 25% of at least one of nitrocellulose or PETN as a reactive fuel, and at least one other fuel. This fuel is preferably at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
  • A second preferred embodiment of the pyrotechnic mix according to the principles of this invention also is a priming mix for example for a primer for a centerfire cartridge, similar to the priming mix of the first preferred embodiment. However, the primary explosive comprises between about 30% and about 50%, and more preferably between about 35% and about 45%, KDNBF as a primary explosive; the sensitizer comprises between about 2% and about 8% of Tetrazene as a sensitizer; between about 10% and about 30% of a metallocene, such as ferrocene, as a propagation aid; between about 5% and about 40% of an oxidizer, such as at least one of Sr(NO3)2 and KNO3; and between about 5% and about 20% of a reactive fuel such as powder fines, such as SMP111, and/or PETN; and at least one other fuel, such as boron, aluminum, carbon, metal shavings, or metal sulfides.
  • A third preferred embodiment of the pyrotechnic mix of this invention, is also a priming mix for example for a primer for a centerfire cartridge similar to the first and second embodiments, in which the primary explosive can comprise between about 35% and about 45% KDNBF; the sensitizer can comprise between about 3% and about 7% of Tetrazene; the propagation aid can comprise between about 12% and about 18% of Ferrocene; the oxidizer can comprise between about 25% and about 35% of Sr(NO3)2 as an oxidizer; the fuel can include between about 8% and about 12% of PETN, and preferably at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
  • The use of KDNBF is preferred over dinol, which has a DSC peak decomposition temperature of around 160° C. KDNBF's decomposition temperature is much higher, around 210° C.—in the similar range for nitrocellulose or PETN, used in leaded priming mixes. In comparative hot storage tests at 100° C. for up to three days, the KDNBF/ferrocene based lead free primers of the preferred embodiments performed as good as or better than prior leaded priming mixes, while dinol-based priming mixes became non-functional.
  • However, KDNBF may not be as sensitive as lead styphnate. The inventors have found that the sensitivity of a KDNBF mixture can be adjusted by including either a stronger reducing agent (fuel), or a stronger oxidizer, or both. In particular, the use of a strong reducing agent such as a metallocene like ferrocene, increases the sensitivity of KDNBF mixtures. Ferrocene readily loses electrons, which are available to other oxidizers such as KDNBF, reducing the activation energy for the explosive reaction and thus increasing the mixture's sensitivity.
  • While this effect has been demonstrated for ferrocene, the inventors believe that other ferrocene derivatives and even other metallocenes with similar reducing potential are also effective in increasing the sensitivity of KDNBF mixtures.
  • Red phosphorous, like ferrocene, can also sensitize KDNBF based priming mixes, producing excellent mix sensitivity. However, wet phosphorous can generate small amounts of highly toxic phosgene, which can be costly to mitigate, control or monitor phosgene, and dispose of red phosphorous in the production waste stream.
  • A fourth embodiment of the pyrotechnic composition according to the principles of this invention is a priming mix for a rim fire cartridge. The rim fire priming mix comprises a primary explosive, a propagation aid, an oxidizer, a fuel, and a frictionator. In the preferred embodiment the primary explosive can comprise between 25-35% of KDNBF; an optional sensitizer can comprise between 3-7% Tetrazene; the propagation aid can comprise between 10-20% of Ferrocene; the oxidizer can include up to 30% of Sr(NO3)2; up to 25% reactive fuel such as propellant powder fines, and the frictionator can comprise of 30-45% glass shards or beads.
  • Examples of priming mixes according to the compositions in the Table were prepared by pre-weighing all of the ingredients and adding them in layers to a mixing bowl. A proper level of moisture was maintained to ensure safe handling of the mix. The layering separates oxidizers from fuels and the reactive components from the sensitizers. Additional moisture was added as necessary to maintain the final moisture content of the mixture at around 25%. The mixing was carried out remotely and closely monitored. After mixing, the thoroughly mixed and uniformed wet priming mix was removed from the mixing bowl, and pellets of a predetermined volume of the wet mix are made and charged into primer cups, followed by the installation of the anvils. Finally, the assembled primers are dried in an oven before tests.
  • Example Example
    Example 1 Example 2 Example 3 Example 4 5A 5B Example 6 Example 7
    LF502 LF471 LF503 LF495 LF542 LF543 LF521 LF546
    Primary 280 net 280 net 280 net 280 net 210 net 420 net 200 grams 167
    Explosive grams of grams of wet grams of grams of grams of grams of of wet grams of
    wet KDNBF wet wet wet wet KDNBF wet
    KDNBF KDNBF KDNBF KDNBF KDNBF KDNBF
    Primary 35 net 35 net 35 net 35 net 35 net 35 net 34 grams 20 grams
    Explosive grams of grams of wet grams of grams of grams of grams of of wet of wet
    wet tetrazene wet wet wet wet tetrazene tetrazene
    tetrazene tetrazene tetrazene tetrazene tetrazene
    Propagation 105 70 grams of 105 105 105 70 grams 100 grams 100
    Aid/fuel grams of red grams of grams of grams of of of grams of
    ferrocene phosphorous ferrocene ferrocene ferrocene ferrocene ferrocene ferrocene
    Reactive 70 net 70 net 70 net 133 grams
    Fuel grams of grams of grams of of SMP
    PETN SMP111 SMP111 111
    Oxidizer 210 140 grams 210 210 280 140 167
    grams of of grams of grams of grams of grams of grams of
    strontium manganese strontium barium strontium strontium strontium
    nitrate dioxide and nitrate nitrate nitrate nitrate nitrate
    140 grams
    of potassium
    nitrate
    Fuel 35 grams
    of boron
    Frictionator 200 grams 213
    of glass grams of
    glass
    3.5 3.5 grams of 3.5 3.5 3.5 3.5
    grams of gum grams of grams of grams of grams of
    dry gum dry gum dry gum dry gum dry gum
  • After primers from each example were dried, they were subject to sensitivity test, a standard test which has been employed by the ammunition industry. To set up, a primer or a primed shell case is installed into a steel die fitted with a firing pin. A steel ball of fixed weight (typically 1.92 oz. for center fire primers) is dropped on to the firing pin, which in turn hits the primer. By varying the drop height of the ball, the energy of firing pin is controlled. A series of drop tests is performed. A primer either fires or not. The sensitivity of the primer is then quantified statistically by H bar where 50% of the primers will fire, and S, the standard deviation. A sensitivity specification of a primer is based on the H and S system. Typically, a specification gives a range where H+4S and H-2S must fit. A typical sensitivity (H+4S; H-2S) bracket for pistol primer is (9.2″; 2″). Against that, the KDNBF/ferrocene LF502 primer from Example 1 has (7.63; 4.8), Example 3 (9.0; 4.35); Example 4 (9.7; 3.82), Example 5A has (10.87; 3.65), Example 5B has (10.05; 4.75); Example 6 has (13.3; 3.70); and Example 7 has (14.88, 3.75).
  • In addition to the sensitivity test, the primers were also subjected to full ballistic tests. Results of such tests showed a total transparency by swapping the control (“leaded”) primer with the Exhibit 1 (LF502) primer. Thus the use of metallocenes, and in particular ferrocene can result in lead-free and substantially lead-free pyrotechnic compositions such as priming mixes with properties equaling or exceeding their leaded counter parts.
  • The inventors believe that ferrocene will work with any types of explosives containing a nitro, nitrate ester or nitroso group will work with ferrocene. During an (explosion) reaction, nitro, nitrate ester or nitroso group tends to grab electrons, beginning with the easiest source, in our case, ferrocene. Such explosive could be dinol, or PETN, TNT, RDX, HMX, or any other suitable explosive.
  • Ferrocene could also work with other oxidizers in addition to strontium nitrate, such as nitrates, oxides, dioxides, and/or peroxides.
  • The above mentioned (LF503) is an alternative of (LF502) of Example 1, which uses nitrocellulose instead of PETN. And in another Example, Example 4 (LF495) uses barium nitrate instead of strontium nitrate (9.64; 5.64). Barium is not as toxic as lead, and there is lead free ammunition which still contains barium, but still it is considered as heavy metal.
  • A composition of a priming mix is based upon practicality and governed by sensitivity of the mix, and by the ignition requirements. The initiating explosive (dinol, lead styphnate, KDNBF, etc.) content usually has to be above some threshold to maintain adequate mix sensitivity. This percentage varies depending on the type of initiating explosive and the other ingredients. For most initiating explosives, the minimum percentage runs above 20%. Anything less, the mix will not have a required sensitivity. Tetrazene is a sensitizer and only to be needed at a low level, typically 2-6%. Since tetrazene is a poor energy generator, too much of it reduces the mix performance.
  • PETN or nitrocellulose/nitroglycerin ensures the burn transition from initiating explosive to fuel/oxidizer mixture. The explosive usually burns too fast to allow fuel/oxidizer mixture to catch on. PETN or nitrocellulose/nitroglycerin is like kindling, they are easily ignited but burn slower. Typically, they are in the range from about 5% to about 10%, but can be higher.
  • The ingredients described above are fuel rich, meaning they have insufficient oxygen to burn all carbon to carbon dioxides. Furthermore, their combustion products are mostly gasses, which are not the most efficient form to transfer energy to a propellant bed. Adding fuel and oxidizer generates hot particles which physically touch propellant grains and causing them to ignite much more quickly. Also, they can affect the sensitivity of a mix to a large extent by being a strong fuel or a strong oxidizer. The percentage of fuel and oxidizer varies greatly depending on their chemical composition and a mix's application. Fuel typically is presented at a smaller percentage as the energetics (explosives, PETN, nitrocellulose/nitroglycerin, etc.) in a mix are already fuel rich. As a result, fuel typically runs between 5 to 20%. Oxidizer will then take up the rest of the percentages and are usually at higher percentage, from 25 to 45%.
  • The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims (17)

What is claimed is:
1. An improved pyrotechnic composition comprising a fuel and an oxidizer, the improvement comprising at least one metallocene in an amount effective to increase the sensitivity of the composition.
2. The improved pyrotechnic composition according to claim 1 wherein the at least one metallocene comprises ferrocene.
3. The improved pyrotechnic composition according to claim 1 wherein the least one metallocene is ferrocene.
4. An improved pyrotechnic mix in the form of a priming mix composition comprising
between about 30% and about 60% of at least one of KDNBF, dinol, and tetrazene as a primary explosive;
between about 10% and about 35% of a metallocene as a propagation aid;
between about 5% and about 40% of at least one nitrate, peroxide, or oxide, as an oxidizer;
between about 5% and about 25% of at least one of nitrocellulose or PETN as a reactive fuel; and
a fuel.
5. The priming mix composition according to claim 4 wherein the fuel is at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
6. The priming mix composition according to claim 5 wherein the metallocene is Ferrocene.
7. A priming mix composition comprising between about 30% and about 50% of at least one of KDNBF, dinol, and tetrazene as a primary explosive;
between about 10% and about 30% of metallocene as a propagation aid;
between about 5% and about 40% of at least one of Ba(NO3)2, Sr(NO3)2, KNO3 as an oxidizer;
between about 5% and about 25% of at least one of nitrocellulose or PETN as a reactive fuel; and
a fuel.
8. The priming mix composition according to claim 7 wherein the fuel is at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
9. The priming mix composition according to claim 8 wherein the metallocene is Ferrocene.
10. A priming mix composition comprising
between about 30% and about 50% KDNBF as a primary explosive;
between about 2% and about 8% of Tetrazene as a sensitizer
between about 10% and about 30% of a metallocene as a propagation aid;
between about 5% and about 40% of at least one of Sr(NO3)2 and KNO3 as an oxidizer;
between about 5% and about 20% of at least one of powder fines or PETN as a reactive fuel; and
a fuel.
11. The priming mix composition according to claim 10 wherein the fuel is at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
12. The priming mix composition according to claim 11 wherein the metallocene is Ferrocene.
13. The priming mix according to claim 10 wherein the powder fines comprise single based or double based propellant.
14. A priming mix composition comprising:
between about 35% and about 45% KDNBF as a primary explosive;
between about 3% and about 7% of Tetrazene as a sensitizer
between about 12% and about 18% of metallocene as a propagation aid;
between about 25% and about 35% of Sr(NO3)2 as an oxidizer; and
between about 8% and about 12% of PETN as a reactive fuel; and
a fuel.
15. The priming mix composition according to claim 14 wherein the fuel is at least one of boron, aluminum, carbon, metal shavings, or metal sulfides.
16. The priming mix composition according to claim 14 wherein the metallocene is Ferrocene.
17. The priming mix composition according to claim 14 that is substantially lead free.
US15/713,600 2016-10-05 2017-09-22 Pyrotechnic compositions Abandoned US20190023629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/713,600 US20190023629A1 (en) 2016-10-05 2017-09-22 Pyrotechnic compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662404624P 2016-10-05 2016-10-05
US15/713,600 US20190023629A1 (en) 2016-10-05 2017-09-22 Pyrotechnic compositions

Publications (1)

Publication Number Publication Date
US20190023629A1 true US20190023629A1 (en) 2019-01-24

Family

ID=62492198

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/713,600 Abandoned US20190023629A1 (en) 2016-10-05 2017-09-22 Pyrotechnic compositions

Country Status (3)

Country Link
US (1) US20190023629A1 (en)
EP (1) EP3523266A4 (en)
WO (1) WO2018106312A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963201A (en) * 1990-01-10 1990-10-16 Blount, Inc. Primer composition
US20050183805A1 (en) * 2004-01-23 2005-08-25 Pile Donald A. Priming mixtures for small arms
WO2016075159A1 (en) * 2014-11-10 2016-05-19 Ruag Ammotec Gmbh Thermal pre-ignition agent
US9409830B1 (en) * 2015-03-30 2016-08-09 The United States Of America As Represented By The Secretary Of The Army Non-toxic primer mix

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689331A (en) * 1964-02-28 1972-09-05 Us Army Nitrocellulose base compositions and method for making same
US3673015A (en) * 1969-05-23 1972-06-27 Us Army Explosive pyrotechnic complexes of ferrocene and inorganic nitrates
CH676389A5 (en) * 1987-07-29 1991-01-15 Eidgenoess Munitionsfab Thun
DE19616627A1 (en) * 1996-04-26 1997-11-06 Dynamit Nobel Ag Kindling mixtures
GB2329380B (en) * 1997-09-13 1999-08-18 Royal Ordnance Plc Priming composition
US6478903B1 (en) * 2000-10-06 2002-11-12 Ra Brands, Llc Non-toxic primer mix
US6878221B1 (en) * 2003-01-30 2005-04-12 Olin Corporation Lead-free nontoxic explosive mix
WO2012011897A1 (en) * 2010-07-20 2012-01-26 Olin Corporation Priming mix
US20180258007A1 (en) * 2014-12-23 2018-09-13 General Dynamics OTS - Canada, Inc. Tungsten oxide primer compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963201A (en) * 1990-01-10 1990-10-16 Blount, Inc. Primer composition
US20050183805A1 (en) * 2004-01-23 2005-08-25 Pile Donald A. Priming mixtures for small arms
WO2016075159A1 (en) * 2014-11-10 2016-05-19 Ruag Ammotec Gmbh Thermal pre-ignition agent
US20180127328A1 (en) * 2014-11-10 2018-05-10 Ruag Ammotec Gmbh Thermal pre-ignition agent
US9409830B1 (en) * 2015-03-30 2016-08-09 The United States Of America As Represented By The Secretary Of The Army Non-toxic primer mix

Also Published As

Publication number Publication date
WO2018106312A2 (en) 2018-06-14
WO2018106312A3 (en) 2018-07-12
EP3523266A2 (en) 2019-08-14
EP3523266A4 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
US8470107B2 (en) Non-toxic, heavy-metal free explosive percussion primers and methods of preparing the same
US8597445B2 (en) Bismuth oxide primer composition
US5417160A (en) Lead-free priming mixture for percussion primer
US8454770B1 (en) Non-toxic percussion primers and methods of preparing the same
US8454769B2 (en) Non-toxic percussion primers and methods of preparing the same
RU2415831C1 (en) Explosive composition with multifunctional action
US20190023629A1 (en) Pyrotechnic compositions
EP2602238A2 (en) Non-toxic percussion primers and methods of preparing the same
Bebie Manual of explosives military pyrotechnics and chemical warfare agents
WO2012011897A1 (en) Priming mix
US1878652A (en) Process of initial detonating explosive matter and for the manufacture of detonating caps in accordance therewith
US20110011502A1 (en) Priming mix
CA2668123C (en) Non-toxic percussion primers and methods of preparing the same
Fox Explosives and Class 1
CZ299395B6 (en) Environment-friendly igniting composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLIN CORPORATION, MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHALEY, TONI M.;BUENEMANN, MORRIS C., JR.;MEI, GEORGE C.;SIGNING DATES FROM 20161006 TO 20161012;REEL/FRAME:043711/0541

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNOR:OLIN CORPORATION;REEL/FRAME:053436/0262

Effective date: 20200806

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

AS Assignment

Owner name: OLIN CORPORATION, MISSOURI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:057016/0561

Effective date: 20210728

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION