US20190022116A1 - N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto - Google Patents

N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto Download PDF

Info

Publication number
US20190022116A1
US20190022116A1 US15/537,087 US201515537087A US2019022116A1 US 20190022116 A1 US20190022116 A1 US 20190022116A1 US 201515537087 A US201515537087 A US 201515537087A US 2019022116 A1 US2019022116 A1 US 2019022116A1
Authority
US
United States
Prior art keywords
alkyl
amino
aryl
alkoxy
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/537,087
Inventor
George R. Painter
David Guthrie
Gregory R. BLUEMLING
Michael G. Natchus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emory University
Original Assignee
Emory University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56151433&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190022116(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Emory University filed Critical Emory University
Priority to US15/537,087 priority Critical patent/US20190022116A1/en
Assigned to EMORY UNIVERSITY reassignment EMORY UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUTHRIE, DAVID B., BLUEMLING, GREGORY R., NATCHUS, MICHAEL G., PAINTER, GEORGE R.
Assigned to EMORY UNIVERSITY reassignment EMORY UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLUEMLING, GREGORY R., GUTHRIE, DAVID B., NATCHUS, MICHAEL G., PAINTER, GEORGE R.
Publication of US20190022116A1 publication Critical patent/US20190022116A1/en
Assigned to DEFENSE THREAT REDUCTION AGENCY, US DOD reassignment DEFENSE THREAT REDUCTION AGENCY, US DOD CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: EMORY UNIVERSITY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/11Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids containing cyclic phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This disclosure relates to N4-hydroxycytidine nucleoside derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to the treatment and prophylaxis of viral infections.
  • the causative agents for Eastern, Western, and Venezuelan Equine Encephalitis (EEE, WEE and VEE, respectively) and Chikungunya fever (CHIK) are vector-borne viruses (family Togaviridae, genus Alphavirus) that can be transmitted to humans through mosquito bites.
  • the equine encephalitis viruses are CDC Category B pathogens, and the CHIK virus is Category C.
  • CHIK virus is Category C.
  • This disclosure relates to N4-hydroxycytidine and derivatives, pharmaceutical compositions, and uses related thereto.
  • the disclosure relates to a compound having formula I,
  • the disclosure contemplates derivatives of compounds disclosed herein such as those containing one or more, the same or different, substituents.
  • the disclosure contemplates pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound disclosed herein.
  • the pharmaceutical composition is in the form of a tablet, capsule, pill, or aqueous buffer, such as a saline or phosphate buffer.
  • the pharmaceutical composition comprises a compound disclosed herein and a propellant.
  • the propellant is an aerosolizing propellant is compressed air, ethanol, nitrogen, carbon dioxide, nitrous oxide, hydrofluoroalkanes (HFAs), 1,1,1,2,-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane or combinations thereof.
  • the disclosure contemplates a pressurized or unpressurized container comprising a compound or pharmaceutical composition as described herein.
  • the container is a manual pump spray, inhaler, meter-dosed inhaler, dry powder inhaler, nebulizer, vibrating mesh nebulizer, jet nebulizer, or ultrasonic wave nebulizer.
  • the disclosure relates to methods of treating or preventing a viral infection comprising administering an effective amount of a compound or pharmaceutical composition disclosed herein to a subject in need thereof.
  • the viral infection is an alphavirus or coronaviruses and flavivirus. In certain embodiments, the viral infection is an orthomyxoviridae or paramyxoviridae. In certain embodiments, the viral infection is selected from MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Ross River virus, Powassan virus, Barmah Forest virus and Chikungunya virus.
  • the compound or pharmaceutical composition is administered orally, intravenously, or through the lungs.
  • the disclosure relates to the use of a compound as described herein in the production of a medicament for the treatment of or prevention of a viral infection.
  • the disclosure relates to method of making compounds disclosed herein by mixing starting materials and reagents disclosed herein under conditions such that the compounds are formed.
  • FIG. 1 illustrates the preparation of ⁇ -D-N-hydroxycytidine.
  • a TBSCl, DMAP, DIPEA, DCM;
  • b (2,4,6-iPr)PhSO 2 Cl, DIPEA, DMAP, DCM;
  • c NH 2 OH—HCl, DIPEA, DCM;
  • F— source e. aq NH 2 OH, AcOH, 50° C.
  • FIG. 2 illustrates certain embodiments of the disclosure.
  • FIG. 3 illustrates certain embodiments of the disclosure.
  • FIG. 4 shows EIDD-01931 mean plasma concentrations and pharmacokinetic parameters from mice dosed with EIDD-01931
  • FIG. 5 shows EIDD-01931 nucleoside accumulation in mouse organs
  • FIG. 6 shows EIDD-01931 triphosphate accumulation in mouse organs
  • FIG. 7 shows reduction in footpad swelling in CHIKV challenged mice treat with EIDD-01931
  • FIG. 8 shows reduction of CHIKV RNA copies by PCR in CHIKV challenged mice treated with EIDD-01931
  • Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
  • a pharmaceutical agent which may be in the form of a salt or prodrug, is administered in methods disclosed herein that is specified by a weight. This refers to the weight of the recited compound. If in the form of a salt or prodrug, then the weight is the molar equivalent of the corresponding salt or prodrug.
  • Subject refers any animal, preferably a human patient, livestock, or domestic pet.
  • the terms “prevent” and “preventing” include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity of the disease is reduced.
  • the terms “treat” and “treating” are not limited to the case where the subject (e.g. patient) is cured and the disease is eradicated. Rather, embodiments, of the present disclosure also contemplate treatment that merely reduces symptoms, and/or delays disease progression.
  • the term “combination with” when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.
  • alkyl means a noncyclic straight chain or branched, unsaturated or saturated hydrocarbon such as those containing from 1 to 10 carbon atoms.
  • a “higher alkyl” refers to unsaturated or saturated hydrocarbon having 6 or more carbon atoms.
  • a “C 6 -C 16 ” refers to an alkyl containing 6 to 16 carbon atoms.
  • a “C 6 -C 22 ” refers to an alkyl containing 6 to 22 carbon atoms.
  • saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-septyl, n-octyl, n-nonyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like.
  • Unsaturated alkyls contain at least one double or triple bond between adjacent carbon atoms (referred to as an “alkenyl” or “alkynyl”, respectively).
  • Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like; while representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, and the like.
  • Non-aromatic mono or polycyclic alkyls are referred to herein as “carbocycles” or “carbocyclyl” groups.
  • Representative saturated carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated carbocycles include cyclopentenyl and cyclohexenyl, and the like.
  • Heterocarbocycles or heterocarbocyclyl groups are carbocycles which contain from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur which may be saturated or unsaturated (but not aromatic), monocyclic or polycyclic, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized.
  • Heterocarbocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
  • aryl refers to aromatic homocyclic (i.e., hydrocarbon) mono-, bi- or tricyclic ring-containing groups preferably having 6 to 12 members such as phenyl, naphthyl and biphenyl. Phenyl is a preferred aryl group.
  • substituted aryl refers to aryl groups substituted with one or more groups, preferably selected from alkyl, substituted alkyl, alkenyl (optionally substituted), aryl (optionally substituted), heterocyclo (optionally substituted), halo, hydroxy, alkoxy (optionally substituted), aryloxy (optionally substituted), alkanoyl (optionally substituted), aroyl, (optionally substituted), alkylester (optionally substituted), arylester (optionally substituted), cyano, nitro, amino, substituted amino, amido, lactam, urea, urethane, sulfonyl, and, the like, where optionally one or more pair of substituents together with the atoms to which they are bonded form a 3 to 7 member ring.
  • heteroaryl or “heteroaromatic” refers an aromatic heterocarbocycle having 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom, including both mono- and polycyclic ring systems.
  • Polycyclic ring systems may, but are not required to, contain one or more non-aromatic rings, as long as one of the rings is aromatic.
  • heteroaryls are furyl, benzofuranyl, thiophenyl, benzothiophenyl, pyrrolyl, indolyl, isoindolyl, azaindolyl, pyridyl, quinolinyl, isoquinolinyl, oxazolyl, isooxazolyl, benzoxazolyl, pyrazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, and quinazolinyl. It is contemplated that the use of the term “heteroaryl” includes N-alkylated derivatives such as a 1-methylimidazol-5-yl substituent.
  • heterocycle or “heterocyclyl” refers to mono- and polycyclic ring systems having 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom.
  • the mono- and polycyclic ring systems may be aromatic, non-aromatic or mixtures of aromatic and non-aromatic rings.
  • Heterocycle includes heterocarbocycles, heteroaryls, and the like.
  • Alkylthio refers to an alkyl group as defined above with the indicated number of carbon atoms attached through a sulfur bridge.
  • An example of an alkylthio is methylthio, (i.e., —S—CH 3 ).
  • Alkoxy refers to an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge.
  • alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy.
  • Preferred alkoxy groups are methoxy, ethoxy, n-propoxy, propoxy, n-butoxy, s-butoxy, t-butoxy.
  • Alkylamino refers an alkyl group as defined above with the indicated number of carbon atoms attached through an amino bridge.
  • An example of an alkylamino is methylamino, (i.e., —NH—CH 3 ).
  • Alkanoyl refers to an alkyl as defined above with the indicated number of carbon atoms attached through a carbonyl bride (i.e., —(C ⁇ O)alkyl).
  • Alkylsulfonyl refers to an alkyl as defined above with the indicated number of carbon atoms attached through a sulfonyl bridge (i.e., —S( ⁇ O) 2 alkyl) such as mesyl and the like, and “Arylsulfonyl” refers to an aryl attached through a sulfonyl bridge (i.e., —S( ⁇ O) 2 aryl).
  • Alkylsulfamoyl refers to an alkyl as defined above with the indicated number of carbon atoms attached through a sulfamoyl bridge (i.e., —NHS( ⁇ O) 2 alkyl), and an “Arylsulfamoyl” refers to an alkyl attached through a sulfamoyl bridge (i.e., —NHS( ⁇ O) 2 aryl).
  • Alkylsulfinyl refers to an alkyl as defined above with the indicated number of carbon atoms attached through a sulfinyl bridge (i.e. —S( ⁇ O)alkyl).
  • cycloalkyl and cycloalkenyl refer to mono-, bi-, or tri homocyclic ring groups of 3 to 15 carbon atoms which are, respectively, fully saturated and partially unsaturated.
  • cycloalkenyl includes bi- and tricyclic ring systems that are not aromatic as a whole, but contain aromatic portions (e.g., fluorene, tetrahydronapthalene, dihydroindene, and the like).
  • the rings of multi-ring cycloalkyl groups may be either fused, bridged and/or joined through one or more spiro unions.
  • substituted cycloalkyl and “substituted cycloalkenyl” refer, respectively, to cycloalkyl and cycloalkenyl groups substituted with one or more groups, preferably selected from aryl, substituted aryl, heterocyclo, substituted heterocyclo, carbocyclo, substituted carbocyclo, halo, hydroxy, alkoxy (optionally substituted), aryloxy (optionally substituted), alkylester (optionally substituted), arylester (optionally substituted), alkanoyl (optionally substituted), aryol (optionally substituted), cyano, nitro, amino, substituted amino, amido, lactam, urea, urethane, sulfonyl, and the like.
  • halogen and “halo” refer to fluorine, chlorine, bromine, and iodine.
  • substituted refers to a molecule wherein at least one hydrogen atom is replaced with a substituent. When substituted, one or more of the groups are “substituents.” The molecule may be multiply substituted. In the case of an oxo substituent (“ ⁇ O”), two hydrogen atoms are replaced.
  • Example substituents within this context may include halogen, hydroxy, alkyl, alkoxy, nitro, cyano, oxo, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —NRaRb, —NRaC( ⁇ O)Rb, —NRaC( ⁇ O)NRaNRb, —NRaC( ⁇ O)ORb, —NRaSO 2 Rb, —C( ⁇ O)Ra, —C( ⁇ O)ORa, —C( ⁇ O)NRaRb, —OC( ⁇ O)NRaRb, —ORa, —SRa, —SORa, —S( ⁇ O) 2 Ra, —OS( ⁇ O) 2 Ra and —S( ⁇ O) 2 ORa.
  • Ra and Rb in this context may be the same or different and independently hydrogen, halogen hydroxyl, alkyl, alkoxy, alkyl, amino, alkylamino, dialkylamino, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl.
  • the disclosure relates to a compound of Formula I,
  • Q is O, —O(C ⁇ O)—, —O(C ⁇ O)Lipid, —O(C ⁇ O)V—, NH, or NR 7 ;
  • V is O, NH, NR 7 , S, CH 2 , or CHR 7 ;
  • W is CH 2 , NH, S or O
  • X is CH 2 , CHMe, CMe 2 , CHF, CF 2 , or CD 2 ;
  • Y is N or CR′′
  • Z is N or CR′′
  • each R′′ is independently selected from H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • alkyl halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R 1 is optionally substituted with one or more, the same or different, R 20 ;
  • Y 1 is O or S
  • Y 2 is OH, OR 12 , OAlkyl, or BH 3 ⁇ M + ;
  • Y 3 is OH or BH 3 ⁇ M + ;
  • R 2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R 2 is optionally substituted with one or more, the same or different, R 20 ;
  • R 3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 3 is optionally substituted with one or more, the same or different, R 20 ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • R 6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 6 is optionally substituted with one or more, the same or different, R 20 ;
  • each R 7 is independently selected from absent, hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R 7 is optionally substituted with one or more, the same or different, R 20 ;
  • R 8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 8 is optionally substituted with one or more, the same or different, R 20 ;
  • R 9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 9 is optionally substituted with one or more, the same or different, R 20 ;
  • R 10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 10 is optionally substituted with one or more, the same or different, R 20 ;
  • R 11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 11 is optionally substituted with one or more, the same or different, R 20 ;
  • R 12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R 12 is optionally substituted with one or more, the same or different, R 20 ;
  • R 13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 20 ;
  • R 14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 14 is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • Lipid as used herein, is a C 6-22 alkyl, alkoxy, polyethylene glycol, or aryl substituted with an alkyl group.
  • the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids.
  • the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids.
  • the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur.
  • the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur.
  • the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that is optionally substituted.
  • the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that is optionally substituted.
  • the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur that is optionally substituted.
  • the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur that is also optionally substituted.
  • the lipid is hexadecyloxypropyl.
  • the lipid is 2-aminohexadecyloxypropyl.
  • the lipid is 2-aminoarachidyl.
  • the lipid is 2-benzyloxyhexadecyloxypropyl.
  • the lipid is lauryl, myristyl, palmityl, stearyl, arachidyl, behenyl, or lignoceryl.
  • the lipid is a sphingolipid having the formula:
  • R 8 of the sphingolipid is hydrogen, alkyl, C( ⁇ O)R 12 , C( ⁇ O)OR 12 , or C( ⁇ O)NHR 12 ;
  • R 9 of the sphingolipid is hydrogen, fluoro, OR 12 , OC( ⁇ O)R 12 , OC( ⁇ O)OR 12 , or OC( ⁇ O)NHR 12 ;
  • R 10 of the sphingolipid is a saturated or unsaturated alkyl chain of greater than 6 and less than 22 carbons optionally substituted with one or more halogen or hydroxy or a structure of the following formula:
  • n 8 to 14 or less than or equal to 8 to less than or equal to 14
  • o is 9 to 15 or less than or equal to 9 to less than or equal to 15
  • the total or m and n is 8 to 14 or less than or equal to 8 to less than or equal to 14
  • the total of m and o is 9 to 15 or less than or equal to 9 to less than or equal to 15;
  • n is 4 to 10 or less than or equal to 4 to less than or equal to 10
  • o is 5 to 11 or less than or equal to 5 to less than or equal to 11
  • the total of m and n is 4 to 10 or less than or equal to 4 to less than or equal to 10
  • the total of m and o is 5 to 11 or less than or equal to 5 to less than or equal to 11;
  • n 6 to 12 or n is less than or equal to 6 to less than or equal to 12, the total of m and n is 6 to 12 or n is less than or equal to 6 to less than or equal to 12;
  • R 11 of the sphingolipid is OR 12 , OC( ⁇ O)R 12 , OC( ⁇ O)OR 12 , or OC( ⁇ O)NHR 12 ;
  • R 12 of the sphingolipid is hydrogen, a branched or strait chain C 1-12 alkyl, C 13-22 alkyl, cycloalkyl, or aryl selected from benzyl or phenyl, wherein the aryl is optionally substituted with one or more, the same or different R 13 ;
  • R 13 of the sphingolipid is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, eth
  • R 12 of the sphingolipid is H, alkyl, methyl, ethyl, propyl, n-butyl, branched alkyl, isopropyl, 2-butyl, 1-ethylpropyl, 1-propylbutyl, cycloalkyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, benzyl, phenyl, monosubstituted phenyl, disubstituted phenyl, trisubstituted phenyl, or saturated or unsaturated C12-C19 long chain alkyl.
  • the sphingolipid has the formula:
  • R 8 of the sphingolipid is hydrogen, hydroxy, fluoro, OR 12 , OC( ⁇ O)R 12 , OC( ⁇ O)OR 12 , or OC( ⁇ O)NHR 12 ;
  • R 9 of the sphingolipid is hydrogen, hydroxy, fluoro, OR 12 , OC( ⁇ O)R 12 , OC( ⁇ O)OR 12 , or OC( ⁇ O)NHR 12 ;
  • R 10 of the sphingolipid is a saturated or unsaturated alkyl chain of greater than 6 and less than 22 carbons optionally substituted with one or more halogens or a structure of the following formula:
  • n 8 to 14 or less than or equal to 8 to less than or equal to 14, the total or m and n is 8 to 14 or less than or equal to 8 to less than or equal to 14;
  • R 12 of the sphingolipid is hydrogen, a branched or strait chain C 1-12 alkyl, C 13-22 alkyl, cycloalkyl, or aryl selected from benzyl or phenyl, wherein the aryl is optionally substituted with one or more, the same or different R 13 ;
  • R 13 of the sphingolipid is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, eth
  • R 12 of the sphingolipid is H, alkyl, methyl, ethyl, propyl, n-butyl, branched alkyl, isopropyl, 2-butyl, 1-ethylpropyl, 1-propylbutyl, cycloalkyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, benzyl, phenyl, monosubstituted phenyl, disubstituted phenyl, trisubstituted phenyl, or saturated or unsaturated C 12 -C 19 long chain alkyl.
  • Suitable sphingolipids include, but are not limited to, sphingosine, ceramide, or sphingomyelin, or 2-aminoalkyl optionally substituted with one or more substituents.
  • Suitable sphingolipids include, but are not limited to, 2-aminooctadecane-3,5-diol; (2S,3S,5S)-2-aminooctadecane-3,5-diol; (2S,3R,5S)-2-aminooctadecane-3,5-diol; 2-(methylamino)octadecane-3,5-diol; (2S,3R,5S)-2-(methylamino)octadecane-3,5-diol; 2-(dimethylamino)octadecane-3,5-diol; (2R,3S,5S)-2-(dimethylamino)octadecane-3,5-diol; 1-(pyrrolidin-2-yl)hexadecane-1,3-diol; (1S,3S)-1-((S)-pyrroli
  • Q is O
  • each R 7 is independently selected from hydrogen, —(C ⁇ O)O(C 6 -C 16 )alkyl or —(C ⁇ O)O(C 6 -C 22 )alkyl.
  • R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • R 8 is hydrogen, hydroxy, or benzyloxy.
  • R 9 is higher alkyl, (C 6 -C 16 )alkyl or (C 6 -C 22 )alkyl.
  • R 9 is tert-butyl or isobutyl.
  • W is O
  • Z is H.
  • R 1 is hydrogen, monophosphate, diphosphate, triphospate,
  • R 8 is hydrogen, hydroxy, or benzyloxy.
  • R 9 is higher alkyl, (C 6 -C 16 )alkyl or (C 6 -C 22 )alkyl.
  • R 10 is isopropyl.
  • R 11 is methyl
  • R 12 is phenyl
  • R 13 is hydrogen
  • R 14 is hydrogen
  • R 2 is hydrogen
  • R 3 is hydroxy
  • R 4 is hydrogen, hydroxy, alkyl, halogen, or fluoro.
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, methyl, ethynyl, or allenyl.
  • R 6 is hydrogen
  • each R 7 is independently selected from hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)Salkyl, —(C ⁇ O)O(C 6 -C 16 )alkyl, —(C ⁇ O)(C 6 -C 16 ) alkyl, —(C ⁇ O)NH(C 6 -C 16 )alkyl, or —(C ⁇ O)S(C 6 -C 16 )alkyl.
  • the compound is selected from:
  • the disclosure relates to a compound of formula I having formula IA,
  • X is CH 2 , CHMe, CMe 2 , CHF, CF 2 , or CD 2 ;
  • Y is H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • alkyl halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R 1 is optionally substituted with one or more, the same or different, R 20 ;
  • Y 1 is O or S
  • Y 2 is OH, OR 12 , OAlkyl, or BH 3 ⁇ M + ;
  • Y 3 is OH or BH 3 ⁇ M + ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • Each R 7 is independently selected from hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R 7 is optionally substituted with one or more, the same or different, R 20 ;
  • R 8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 8 is optionally substituted with one or more, the same or different, R 20 ;
  • R 9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 9 is optionally substituted with one or more, the same or different, R 20 ;
  • R 10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 10 is optionally substituted with one or more, the same or different, R 20 ;
  • R 11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 11 is optionally substituted with one or more, the same or different, R 20 ;
  • R 12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R 12 is optionally substituted with one or more, the same or different, R 20 ;
  • R 13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 20 ;
  • R 14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 14 is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • the disclosure relates to a compound of formula I has formula IB,
  • V is absent, O, NH, NR 15 , S, CH 2 , or CHR 15 ;
  • X is CH 2 , CHMe, CMe 2 , CHF, CF 2 , or CD 2 ;
  • Y is H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • alkyl halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R 1 is optionally substituted with one or more, the same or different, R 20 ;
  • Y 1 is O or S
  • Y 2 is OH, OR 12 , OAlkyl, or BH 3 ⁇ M + ;
  • Y 3 is OH or BH 3 ⁇ M + ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • R 8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 8 is optionally substituted with one or more, the same or different, R 20 ;
  • R 9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 9 is optionally substituted with one or more, the same or different, R 20 ;
  • R 10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 10 is optionally substituted with one or more, the same or different, R 20 ;
  • R 11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 11 is optionally substituted with one or more, the same or different, R 20 ;
  • R 12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R 12 is optionally substituted with one or more, the same or different, R 20 ;
  • R 13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 20 ;
  • R 14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 14 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15 is hydrogen, Lipid, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 15 is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • the disclosure relates to a compound of formula I having formula IC,
  • X is CH 2 , CHMe, CMe 2 , CHF, CF 2 , or CD 2 ;
  • Y is H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • alkyl halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R 1 is optionally substituted with one or more, the same or different, R 20 ;
  • Y 1 is O or S
  • Y 2 is OH, OR 12 , OAlkyl, or BH 3 ⁇ M + ;
  • Y 3 is OH or BH 3 ⁇ M + ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • R 8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 8 is optionally substituted with one or more, the same or different, R 20 ;
  • R 9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 9 is optionally substituted with one or more, the same or different, R 20 ;
  • R 10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 10 is optionally substituted with one or more, the same or different, R 20 ;
  • R 11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 11 is optionally substituted with one or more, the same or different, R 20 ;
  • R 12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R 12 is optionally substituted with one or more, the same or different, R 20 ;
  • R 13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 20 ;
  • R 14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 14 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15 is hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 15 is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • the disclosure relates to a compound of formula I having formula ID,
  • W is CH 2 , NH, S or O
  • X is CH 2 , CHMe, CMe 2 , CHF, CF 2 , or CD 2 ;
  • Y is N or CR′′
  • Z is N or CR′′
  • each R′′ is independently selected from is H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • alkyl halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R 1 is optionally substituted with one or more, the same or different, R 20 ;
  • Y 1 is O or S
  • Y 2 is OH, OR 12 , OAlkyl, or BH 3 ⁇ M + ;
  • Y 3 is OH or BH 3 ⁇ M + ;
  • R 2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R 2 is optionally substituted with one or more, the same or different, R 20 ;
  • R 3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 3 is optionally substituted with one or more, the same or different, R 20 ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • R 6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 6 is optionally substituted with one or more, the same or different, R 20 ;
  • R 8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 8 is optionally substituted with one or more, the same or different, R 20 ;
  • R 9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 9 is optionally substituted with one or more, the same or different, R 20 ;
  • R 10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 10 is optionally substituted with one or more, the same or different, R 20 ;
  • R 11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 11 is optionally substituted with one or more, the same or different, R 20 ;
  • R 12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R 12 is optionally substituted with one or more, the same or different, R 20 ;
  • R 13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 20 ;
  • R 14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 14 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15 is hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 15 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15′ is hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R 7 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15 and R 15′ can form a ring that is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • the disclosure relates to a compound of formula I having formula IE,
  • Q is O, —O(C ⁇ O)—, —O(C ⁇ O)Lipid, —O(C ⁇ O)V—, NH, or NR 7 ;
  • V is O, NH, NR 7 , S, CH 2 , or CHR 7 ;
  • W is CH 2 , NH, S or O
  • X is CH 2 , CHMe, CMe 2 , CHF, CF 2 , or CD 2 ;
  • Y is N or CR′′
  • Z is N or CR′′
  • each R′′ is independently selected from is H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R 2 is optionally substituted with one or more, the same or different, R 20 ;
  • R 3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 3 is optionally substituted with one or more, the same or different, R 20 ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • R 6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 6 is optionally substituted with one or more, the same or different, R 20 ;
  • each R 7 is independently selected from absent, hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R 7 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15 is hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 15 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15′ is hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R 7 is optionally substituted with one or more, the same or different, R 20 ;
  • R 15 and R 15′ can form a ring that is optionally substituted with one or more, the same or different, R 20 ;
  • R 7 s can together form a ring that is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • the disclosure relates to a compound of Formula II,
  • Q is O, —O(C ⁇ O)—, —O(C ⁇ O)Lipid, —O(C ⁇ O)V—, NH, or NR 7 ;
  • V is O, NH, NR 7 , S, CH 2 , or CHR 7 ;
  • W is CH 2 , NH, S or O
  • X is CH 2 or O
  • Y is N or CR′′
  • Z is N or CR′′
  • each R′′ is independently selected from is H, D, F, Cl, Br, I, CH 3 , CD 3 , CF 3 , alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH 3 ;
  • R 1 is monophosphate, diphosphate, triphosphate
  • Y 1 is O or S
  • Y 2 is OH, OR 12 , OAlkyl, or BH 3 ⁇ M + ;
  • Y 3 is OH or BH 3 ⁇ M + ;
  • R 2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R 2 is optionally substituted with one or more, the same or different, R 20 ;
  • R 3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 3 is optionally substituted with one or more, the same or different, R 20 ;
  • R 4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 5 is optionally substituted with one or more, the same or different, R 20 ;
  • R 6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 6 is optionally substituted with one or more, the same or different, R 20 ;
  • each R 7 is independently selected from absent, hydrogen, —(C ⁇ O)Oalkyl, —(C ⁇ O)alkyl, —(C ⁇ O)NHalkyl, —(C ⁇ O)N-dialkyl, —(C ⁇ O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R 7 is optionally substituted with one or more, the same or different, R 20 ;
  • R 8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 8 is optionally substituted with one or more, the same or different, R 20 ;
  • R 9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C 6 -C 16 )alkyl, (C 6 -C 22 )alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 9 is optionally substituted with one or more, the same or different, R 20 ;
  • R 10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 10 is optionally substituted with one or more, the same or different, R 20 ;
  • R 11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 11 is optionally substituted with one or more, the same or different, R 20 ;
  • R 12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R 2 is optionally substituted with one or more, the same or different, R 20 ;
  • R 13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein IC is optionally substituted with one or more, the same or different, R 20 ;
  • R 14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 4 is optionally substituted with one or more, the same or different, R 20 ;
  • R 7 s can together form a ring that is optionally substituted with one or more, the same or different, R 20 ;
  • R 20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl) 2 amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R 13 is optionally substituted with one or more, the same or different, R 21 ; and
  • R 21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfon
  • any citation of higher alkyl, (C 6 -C 16 )alkyl may be substituted with a (C 6 -C 22 )alkyl.
  • any citation of higher alkyl, (C 6 -C 16 )alkyl or (C 6 -C 22 )alkyl may be substituted with polyethylene glycol or —CH 2 (CH 2 OCH 2 ) n CH 3 , wherein n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, or 30-100.
  • the disclosure relates to methods of treating or preventing a viral infection comprising administering in effective amount of a compound disclosed herein to a subject in need thereof.
  • the viral infection is, or is caused by, an alphavirus, flavivirus or coronaviruses orthomyxoviridae or paramyxoviridae, or RSV, influenza, Powassan virus or filoviridae or ebola.
  • the viral infection is, or is caused by, a virus selected from MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Ross River virus, Barmah Forest virus, Powassan virus and Chikungunya virus.
  • a virus selected from MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Ross River virus, Barmah Forest virus, Powassan virus and Chikungunya virus.
  • the compound is administered by inhalation through the lungs.
  • the subject is at risk of, exhibiting symptoms of, or diagnosed with influenza A virus including subtype H1N1, H3N2, H7N9, or H5N1, influenza B virus, influenza C virus, rotavirus A, rotavirus B, rotavirus C, rotavirus D, rotavirus E, human coronavirus, SARS coronavirus, MERS coronavirus, human adenovirus types (HAdV-1 to 55), human papillomavirus (HPV) Types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59, parvovirus B19, molluscum contagiosum virus, JC virus (JCV), BK virus, Merkel cell polyomavirus, coxsackie A virus, norovirus, Rubella virus, lymphocytic choriomeningitis virus (LCMV), Dengue virus, chikungunya, Eastern equine encephalitis virus (EEEV), Western equine
  • influenza A virus including subtypes H1N1, H3N2, H7N9, H5N1 (low path), and H5N1 (high path) influenza B virus, influenza C virus, rotavirus A, rotavirus B, rotavirus C, rotavirus D, rotavirus E, SARS coronavirus, MERS-CoV, human adenovirus types (HAdV-1 to 55), human papillomavirus (HPV) Types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59, parvovirus B19, molluscum contagiosum virus, JC virus (JCV), BK virus, Merkel cell polyomavirus, coxsackie A virus, norovirus, Rubella virus, lymphocytic choriomeningitis virus (LCMV), yellow fever virus, measles virus, mumps virus, respiratory syncytial virus, parainfluenza viruses 1 and 3, rinder
  • the subject is diagnosed with gastroenteritis, acute respiratory disease, severe acute respiratory syndrome, post-viral fatigue syndrome, viral hemorrhagic fevers, acquired immunodeficiency syndrome or hepatitis.
  • compounds and pharmaceutical compositions disclosed herein are contemplated to be administered in combination with other the antiviral agent(s) such as abacavir, acyclovir, acyclovir, adefovir, amantadine, amprenavir, ampligen, arbidol, atazanavir, atripla, boceprevir, cidofovir, combivir, daclatasvir, darunavir, dasabuvir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, famciclovir, fomivirsen, fosamprenavir, foscarnet, fosfonet, ganciclovir, ibacitabine, imunovir, idoxuridine, imiquimod, indinavir, inosine, interferon type III, interferon type II,
  • compositions disclosed herein may be in the form of pharmaceutically acceptable salts, as generally described below.
  • suitable pharmaceutically acceptable organic and/or inorganic acids are hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, acetic acid and citric acid, as well as other pharmaceutically acceptable acids known per se (for which reference is made to the references referred to below).
  • the compounds of the disclosure may also form internal salts, and such compounds are within the scope of the disclosure.
  • a compound contains a hydrogen-donating heteroatom (e.g. NH)
  • salts are contemplated to covers isomers formed by transfer of said hydrogen atom to a basic group or atom within the molecule.
  • Pharmaceutically acceptable salts of the compounds include the acid addition and base salts thereof. Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include the acetate, adipate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulphate/sulphate, borate, camsylate, citrate, cyclamate, edisylate, esylate, formate, fumarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, mesylate, methylsulphate, naphthylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydr
  • Suitable base salts are formed from bases which form non-toxic salts. Examples include the aluminium, arginine, benzathine, calcium, choline, diethylamine, diolamine, glycine, lysine, magnesium, meglumine, olamine, potassium, sodium, tromethamine and zinc salts. Hemisalts of acids and bases may also be formed, for example, hemisulphate and hemicalcium salts.
  • suitable salts see Handbook of Pharmaceutical Salts: Properties, Selection, and Use by Stahl and Wermuth (Wiley-VCH, 2002), incorporated herein by reference.
  • a prodrug can include a covalently bonded carrier which releases the active parent drug when administered to a mammalian subject.
  • Prodrugs can be prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.
  • Prodrugs include, for example, compounds wherein a hydroxyl group is bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl group.
  • Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol functional groups in the compounds.
  • prodrugs form the active metabolite by transformation of the prodrug by hydrolytic enzymes, the hydrolysis of amide, lactams, peptides, carboxylic acid esters, epoxides or the cleavage of esters of inorganic acids.
  • compositions for use in the present disclosure typically comprise an effective amount of a compound and a suitable pharmaceutical acceptable carrier.
  • the preparations may be prepared in a manner known per se, which usually involves mixing the at least one compound according to the disclosure with the one or more pharmaceutically acceptable carriers, and, if desired, in combination with other pharmaceutical active compounds, when necessary under aseptic conditions.
  • the compounds may be formulated as a pharmaceutical preparation comprising at least one compound and at least one pharmaceutically acceptable carrier, diluent or excipient and/or adjuvant, and optionally one or more further pharmaceutically active compounds.
  • the pharmaceutical preparations of the disclosure are preferably in a unit dosage form, and may be suitably packaged, for example in a box, blister, vial, bottle, sachet, ampoule or in any other suitable single-dose or multi-dose holder or container (which may be properly labeled); optionally with one or more leaflets containing product information and/or instructions for use.
  • unit dosages will contain between 1 and 1000 mg, and usually between 5 and 500 mg, of the at least one compound of the disclosure, e.g. about 10, 25, 50, 100, 200, 300 or 400 mg per unit dosage.
  • the compounds can be administered by a variety of routes including the oral, ocular, rectal, transdermal, subcutaneous, intravenous, intramuscular or intranasal routes, depending mainly on the specific preparation used.
  • the compound will generally be administered in an “effective amount”, by which is meant any amount of a compound that, upon suitable administration, is sufficient to achieve the desired therapeutic or prophylactic effect in the subject to which it is administered.
  • such an effective amount will usually be between 0.01 to 1000 mg per kilogram body weight of the patient per day, more often between 0.1 and 500 mg, such as between 1 and 250 mg, for example about 5, 10, 20, 50, 100, 150, 200 or 250 mg, per kilogram body weight of the patient per day, which may be administered as a single daily dose, divided over one or more daily doses.
  • the amount(s) to be administered, the route of administration and the further treatment regimen may be determined by the treating clinician, depending on factors such as the age, gender and general condition of the patient and the nature and severity of the disease/symptoms to be treated.
  • Formulations containing one or more compounds can be prepared in various pharmaceutical forms, such as granules, tablets, capsules, suppositories, powders, controlled release formulations, suspensions, emulsions, creams, gels, ointments, salves, lotions, or aerosols and the like.
  • these formulations are employed in solid dosage forms suitable for simple, and preferably oral, administration of precise dosages.
  • Solid dosage forms for oral administration include, but are not limited to, tablets, soft or hard gelatin or non-gelatin capsules, and caplets.
  • liquid dosage forms such as solutions, syrups, suspension, shakes, etc. can also be utilized.
  • the formulation is administered topically.
  • suitable topical formulations include, but are not limited to, lotions, ointments, creams, and gels.
  • the topical formulation is a gel.
  • the formulation is administered intranasally.
  • Formulations containing one or more of the compounds described herein may be prepared using a pharmaceutically acceptable carrier composed of materials that are considered safe and effective and may be administered to an individual without causing undesirable biological side effects or unwanted interactions.
  • the carrier is all components present in the pharmaceutical formulation other than the active ingredient or ingredients.
  • carrier includes, but is not limited to, diluents, binders, lubricants, disintegrators, fillers, pH modifying agents, preservatives, antioxidants, solubility enhancers, and coating compositions.
  • Carrier also includes all components of the coating composition which may include plasticizers, pigments, colorants, stabilizing agents, and glidants. Delayed release, extended release, and/or pulsatile release dosage formulations may be prepared as described in standard references such as “Pharmaceutical dosage form tablets”, eds. Liberman et. al. (New York, Marcel Dekker, Inc., 1989), “Remington—The science and practice of pharmacy”, 20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000, and “Pharmaceutical dosage forms and drug delivery systems”, 6th Edition, Ansel et al., (Media, Pa.: Williams and Wilkins, 1995). These references provide information on carriers, materials, equipment and process for preparing tablets and capsules and delayed release dosage forms of tablets, capsules, and granules.
  • suitable coating materials include, but are not limited to, cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and methacrylic resins that are commercially available under the trade name EUDRAGIT® (Roth Pharma, Westerstadt, Germany), zein, shellac, and polysaccharides.
  • cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate
  • polyvinyl acetate phthalate acrylic acid polymers and copolymers
  • methacrylic resins that are commercially available under the trade name EUDRAGIT® (Roth Pharma, Westerstadt, Germany), ze
  • the coating material may contain conventional carriers such as plasticizers, pigments, colorants, glidants, stabilization agents, pore formers and surfactants.
  • Optional pharmaceutically acceptable excipients present in the drug-containing tablets, beads, granules or particles include, but are not limited to, diluents, binders, lubricants, disintegrants, colorants, stabilizers, and surfactants.
  • Diluents also referred to as “fillers,” are typically necessary to increase the bulk of a solid dosage form so that a practical size is provided for compression of tablets or formation of beads and granules.
  • Suitable diluents include, but are not limited to, dicalcium phosphate dihydrate, calcium sulfate, lactose, sucrose, mannitol, sorbitol, cellulose, microcrystalline cellulose, kaolin, sodium chloride, dry starch, hydrolyzed starches, pregelatinized starch, silicone dioxide, titanium oxide, magnesium aluminum silicate and powdered sugar.
  • Binders are used to impart cohesive qualities to a solid dosage formulation, and thus ensure that a tablet or bead or granule remains intact after the formation of the dosage forms.
  • Suitable binder materials include, but are not limited to, starch, pregelatinized starch, gelatin, sugars (including sucrose, glucose, dextrose, lactose and sorbitol), polyethylene glycol, waxes, natural and synthetic gums such as acacia, tragacanth, sodium alginate, cellulose, including hydroxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose, and veegum, and synthetic polymers such as acrylic acid and methacrylic acid copolymers, methacrylic acid copolymers, methyl methacrylate copolymers, aminoalkyl methacrylate copolymers, polyacrylic acid/polymethacrylic acid and polyvinylpyrrolidone.
  • Lubricants are used to facilitate tablet manufacture.
  • suitable lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, glycerol behenate, polyethylene glycol, talc, and mineral oil.
  • Disintegrants are used to facilitate dosage form disintegration or “breakup” after administration, and generally include, but are not limited to, starch, sodium starch glycolate, sodium carboxymethyl starch, sodium carboxymethylcellulose, hydroxypropyl cellulose, pregelatinized starch, clays, cellulose, alginine, gums or cross linked polymers, such as cross-linked PVP (Polyplasdone XL from GAF Chemical Corp).
  • starch sodium starch glycolate, sodium carboxymethyl starch, sodium carboxymethylcellulose, hydroxypropyl cellulose, pregelatinized starch, clays, cellulose, alginine, gums or cross linked polymers, such as cross-linked PVP (Polyplasdone XL from GAF Chemical Corp).
  • Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions.
  • Surfactants may be anionic, cationic, amphoteric or nonionic surface active agents.
  • Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions.
  • anionic surfactants include sodium, potassium, ammonium of long chain alkyl sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis-(2-ethylthioxyl)-sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate.
  • Cationic surfactants include, but are not limited to, quaternary ammonium compounds such as benzalkonium chloride, benzethonium chloride, cetrimonium bromide, stearyl dimethylbenzyl ammonium chloride, polyoxyethylene and coconut amine.
  • nonionic surfactants include ethylene glycol monostearate, propylene glycol myristate, glyceryl monostearate, glyceryl stearate, polyglyceryl-4-oleate, sorbitan acylate, sucrose acylate, PEG-150 laurate, PEG-400 monolaurate, polyoxyethylene monolaurate, polysorbates, polyoxyethylene octylphenylether, PEG-1000 cetyl ether, polyoxyethylene tridecyl ether, polypropylene glycol butyl ether, Poloxamer® 401, stearoyl monoisopropanolamide, and polyoxyethylene hydrogenated tallow amide.
  • amphoteric surfactants include sodium N-dodecyl-.beta.-alanine, sodium N-lauryl-.beta.-iminodipropionate, myristoamphoacetate, lauryl betaine and lauryl sulfobetaine.
  • the tablets, beads, granules, or particles may also contain minor amount of nontoxic auxiliary substances such as wetting or emulsifying agents, dyes, pH buffering agents, or preservatives.
  • the concentration of the compound to carrier and/or other substances may vary from about 0.5 to about 100 wt. % (weight percent).
  • the pharmaceutical formulation will generally contain from about 5 to about 100% by weight of the active material.
  • the pharmaceutical formulation will generally have from about 0.5 to about 50 wt. % of the active material.
  • compositions described herein can be formulation for modified or controlled release.
  • controlled release dosage forms include extended release dosage forms, delayed release dosage forms, pulsatile release dosage forms, and combinations thereof.
  • the extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in “Remington—The science and practice of pharmacy” (20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000).
  • a diffusion system typically consists of two types of devices, a reservoir and a matrix, and is well known and described in the art.
  • the matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form.
  • the three major types of materials used in the preparation of matrix devices are insoluble plastics, hydrophilic polymers, and fatty compounds.
  • Plastic matrices include, but are not limited to, methyl acrylate-methyl methacrylate, polyvinyl chloride, and polyethylene.
  • Hydrophilic polymers include, but are not limited to, cellulosic polymers such as methyl and ethyl cellulose, hydroxyalkylcelluloses such as hydroxypropyl-cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and Carbopol® 934, polyethylene oxides and mixtures thereof.
  • Fatty compounds include, but are not limited to, various waxes such as carnauba wax and glyceryl tristearate and wax-type substances including hydrogenated castor oil or hydrogenated vegetable oil, or mixtures thereof.
  • the plastic material is a pharmaceutically acceptable acrylic polymer, including but not limited to, acrylic acid and methacrylic acid copolymers, methyl methacrylate, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamine copolymer poly(methyl methacrylate), poly(methacrylic acid)(anhydride), polymethacrylate, polyacrylamide, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • acrylic acid and methacrylic acid copolymers including but not limited to, acrylic acid and methacrylic acid copolymers, methyl methacrylate, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl me
  • the acrylic polymer is comprised of one or more ammonio methacrylate copolymers.
  • Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
  • the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the tradename Eudragit®.
  • the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the tradenames Eudragit® RL30D and Eudragit RS30D, respectively.
  • Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D.
  • the mean molecular weight is about 150,000.
  • Edragit® S-100 and Eudragit® L-100 are also preferred.
  • the code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents.
  • Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
  • the polymers described above such as Eudragit® RL/RS may be mixed together in any desired ratio in order to ultimately obtain a sustained-release formulation having a desirable dissolution profile. Desirable sustained-release multiparticulate systems may be obtained, for instance, from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL and 90% Eudragit® RS.
  • Desirable sustained-release multiparticulate systems may be obtained, for instance, from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL and 90% Eudragit® RS.
  • acrylic polymers may also be used, such as, for example, Eudragit® L.
  • extended release formulations can be prepared using osmotic systems or by applying a semi-permeable coating to the dosage form.
  • the desired drug release profile can be achieved by combining low permeable and high permeable coating materials in suitable proportion.
  • the devices with different drug release mechanisms described above can be combined in a final dosage form comprising single or multiple units.
  • multiple units include, but are not limited to, multilayer tablets and capsules containing tablets, beads, or granules.
  • An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core using a coating or compression process or in a multiple unit system such as a capsule containing extended and immediate release beads.
  • Extended release tablets containing hydrophilic polymers are prepared by techniques commonly known in the art such as direct compression, wet granulation, or dry granulation. Their formulations usually incorporate polymers, diluents, binders, and lubricants as well as the active pharmaceutical ingredient.
  • the usual diluents include inert powdered substances such as starches, powdered cellulose, especially crystalline and microcrystalline cellulose, sugars such as fructose, mannitol and sucrose, grain flours and similar edible powders.
  • Typical diluents include, for example, various types of starch, lactose, mannitol, kaolin, calcium phosphate or sulfate, inorganic salts such as sodium chloride and powdered sugar.
  • Powdered cellulose derivatives are also useful.
  • Typical tablet binders include substances such as starch, gelatin and sugars such as lactose, fructose, and glucose.
  • Natural and synthetic gums including acacia, alginates, methylcellulose, and polyvinylpyrrolidone can also be used.
  • Polyethylene glycol, hydrophilic polymers, ethylcellulose and waxes can also serve as binders.
  • a lubricant is necessary in a tablet formulation to prevent the tablet and punches from sticking in the die.
  • the lubricant is chosen from such slippery solids as talc, magnesium and calcium stearate, stearic acid and hydrogenated vegetable oils.
  • Extended release tablets containing wax materials are generally prepared using methods known in the art such as a direct blend method, a congealing method, and an aqueous dispersion method.
  • the congealing method the drug is mixed with a wax material and either spray—congealed or congealed and screened and processed.
  • Delayed release formulations are created by coating a solid dosage form with a polymer film, which is insoluble in the acidic environment of the stomach, and soluble in the neutral environment of the small intestine.
  • the delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material.
  • the drug-containing composition may be, e.g., a tablet for incorporation into a capsule, a tablet for use as an inner core in a “coated core” dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule.
  • Preferred coating materials include bioerodible, gradually hydrolyzable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional “enteric” polymers.
  • Enteric polymers become soluble in the higher pH environment of the lower gastrointestinal tract or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon.
  • Suitable coating materials for effecting delayed release include, but are not limited to, cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropylmethyl cellulose phthalate, methylcellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, preferably formed from acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate, and other methacrylic resins that are commercially available under the tradename Eudragit® (Rohm Pharma; Westerstadt, Germany), including Eudragit® L30D-55 and L100-55 (soluble at pH 5.5 and above), Eudragit® L-100 (soluble at pH
  • the preferred coating weights for particular coating materials may be readily determined by those skilled in the art by evaluating individual release profiles for tablets, beads and granules prepared with different quantities of various coating materials. It is the combination of materials, method and form of application that produce the desired release characteristics, which one can determine only from the clinical studies.
  • the coating composition may include conventional additives, such as plasticizers, pigments, colorants, stabilizing agents, glidants, etc.
  • a plasticizer is normally present to reduce the fragility of the coating, and will generally represent about 10 wt. % to 50 wt. % relative to the dry weight of the polymer.
  • typical plasticizers include polyethylene glycol, propylene glycol, triacetin, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dibutyl sebacate, triethyl citrate, tributyl citrate, triethyl acetyl citrate, castor oil and acetylated monoglycerides.
  • a stabilizing agent is preferably used to stabilize particles in the dispersion.
  • Typical stabilizing agents are nonionic emulsifiers such as sorbitan esters, polysorbates and polyvinylpyrrolidone. Glidants are recommended to reduce sticking effects during film formation and drying, and will generally represent approximately 25 wt. % to 100 wt. % of the polymer weight in the coating solution.
  • One effective glidant is talc.
  • Other glidants such as magnesium stearate and glycerol monostearates may also be used.
  • Pigments such as titanium dioxide may also be used.
  • Small quantities of an anti-foaming agent such as a silicone (e.g., simethicone), may also be added to the coating composition.
  • the formulation can provide pulsatile delivery of the one or more compounds.
  • pulsatile is meant that a plurality of drug doses are released at spaced apart intervals of time.
  • release of the initial dose is substantially immediate, i.e., the first drug release “pulse” occurs within about one hour of ingestion.
  • This initial pulse is followed by a first time interval (lag time) during which very little or no drug is released from the dosage form, after which a second dose is then released.
  • a second nearly drug release-free interval between the second and third drug release pulses may be designed.
  • the duration of the nearly drug release-free time interval will vary depending upon the dosage form design e.g., a twice daily dosing profile, a three times daily dosing profile, etc.
  • the nearly drug release-free interval has a duration of approximately 3 hours to 14 hours between the first and second dose.
  • the nearly drug release-free interval has a duration of approximately 2 hours to 8 hours between each of the three doses.
  • the pulsatile release profile is achieved with dosage forms that are closed and preferably sealed capsules housing at least two drug-containing “dosage units” wherein each dosage unit within the capsule provides a different drug release profile.
  • Control of the delayed release dosage unit(s) is accomplished by a controlled release polymer coating on the dosage unit, or by incorporation of the active agent in a controlled release polymer matrix.
  • Each dosage unit may comprise a compressed or molded tablet, wherein each tablet within the capsule provides a different drug release profile. For dosage forms mimicking a twice a day dosing profile, a first tablet releases drug substantially immediately following ingestion of the dosage form, while a second tablet releases drug approximately 3 hours to less than 14 hours following ingestion of the dosage form.
  • a first tablet releases drug substantially immediately following ingestion of the dosage form
  • a second tablet releases drug approximately 3 hours to less than 10 hours following ingestion of the dosage form
  • the third tablet releases drug at least 5 hours to approximately 18 hours following ingestion of the dosage form. It is possible that the dosage form includes more than three tablets. While the dosage form will not generally include more than a third tablet, dosage forms housing more than three tablets can be utilized.
  • each dosage unit in the capsule may comprise a plurality of drug-containing beads, granules or particles.
  • drug-containing “beads” refer to beads made with drug and one or more excipients or polymers.
  • Drug-containing beads can be produced by applying drug to an inert support, e.g., inert sugar beads coated with drug or by creating a “core” comprising both drug and one or more excipients.
  • drug-containing “granules” and “particles” comprise drug particles that may or may not include one or more additional excipients or polymers. In contrast to drug-containing beads, granules and particles do not contain an inert support.
  • Granules generally comprise drug particles and require further processing. Generally, particles are smaller than granules, and are not further processed. Although beads, granules and particles may be formulated to provide immediate release, beads and granules are generally employed to provide delayed release.
  • the compound is formulated for topical administration.
  • suitable topical dosage forms include lotions, creams, ointments, and gels.
  • a “gel” is a semisolid system containing a dispersion of the active agent, i.e., compound, in a liquid vehicle that is rendered semisolid by the action of a thickening agent or polymeric material dissolved or suspended in the liquid vehicle.
  • the liquid may include a lipophilic component, an aqueous component or both.
  • Some emulsions may be gels or otherwise include a gel component.
  • Some gels, however, are not emulsions because they do not contain a homogenized blend of immiscible components.
  • the compound described herein can be administered adjunctively with other active compounds.
  • active compounds include but are not limited to analgesics, anti-inflammatory drugs, antipyretics, antidepressants, antiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti-asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics and anti-narcoleptics.
  • Adjunctive administration means the compound can be administered in the same dosage form or in separate dosage forms with one or more other active agents.
  • compounds that can be adjunctively administered with the compounds include, but are not limited to, aceclofenac, acetaminophen, adomexetine, almotriptan, alprazolam, amantadine, amcinonide, aminocyclopropane, amitriptyline, amolodipine, amoxapine, amphetamine, aripiprazole, aspirin, atomoxetine, azasetron, azatadine, beclomethasone, benactyzine, benoxaprofen, bermoprofen, betamethasone, bicifadine, bromocriptine, budesonide, buprenorphine, bupropion, buspirone, butorphanol, butriptyline, caffeine, carbamazepine, carbidopa, carisoprodol, celecoxib, chlordiazepoxide, chlorpromazine, choline salicy
  • the additional active agent(s) can be formulated for immediate release, controlled release, or combinations thereof.
  • Example 1 The synthesis of N4-hydroxycytidine or 1-(3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-4-(hydroxyamino)pyrimidin-2-one (EIDD-01931)
  • the compound can be made in one step from cytidine by heating in a pH-adjusted solution of hydroxylamine. Despite being shorter, this route tends to give lower yields and requires purification by reverse phase flash column chromatography, limiting its use to producing smaller quantities.
  • TLC analysis was performed on silica gel, using illumination with a UV lamp (254 nm) or staining with KMnO 4 and heating.
  • Manual flash column chromatography was performed with 40-60 micron (60 ⁇ particle size) RediSep R f silica gel, purchased from Teledyne Isco, as the stationary phase.
  • Automated gradient flash column chromatography was performed on a Teledyne Isco CombiFlash Companion; normal phase separations were performed with pre-packed RediSep R f silica gel as the stationary phase, and reverse phase separations were performed with pre-packed RediSep R f C 18 High Performance Gold stationary phase.
  • Triphosphate purifications were performed using ion-exchange chromatography, with DEAE (diethylaminoethyl) Sephadex A-25 as the stationary phase, and aqueous TEAB (triethylammonium bicarbonate) as the mobile phase.
  • DEAE diethylaminoethyl
  • TEAB triethylammonium bicarbonate
  • Nominal (low resolution) liquid chromatography/mass spectrometry was performed using an Agilent 1200 series LC (UV absorption detector at 254 nm), using a Zorbax Eclipse XDB C 18 4.6 ⁇ 50 mm, 3.5 micron column, eluting with a MeOH/water mixture (typically 95/5 isocratic) and an Agilent 6120 LCMS quadrupole instrument.
  • High resolution mass spectrometry was performed by the Emory University Mass Spectrometry Center with a Thermo LTQ-FTMS using either APCI or ESI.
  • TEAB triethylammonium bicarbonate
  • the contents of the tube were transferred to a round bottom flask, and concentrated by rotary evaporation.
  • the crude material was taken up in 100 mM TEAB, and chromatography on DEAE followed by lyophilization of the product gave a triethylammonium salt of the desired product.
  • a solution of triethylammonium bis(POM)phosphate was prepared by adding triethylamine (0.362 mL, 2.60 mmol) to a solution of S20 (0.782 g, 2.398 mmol) in THF (8 mL). To a solution of EIDD-1931 (0.518 g, 1.998 mmol) in THF (32 mL) under nitrogen was added the prepared solution of triethylammonium bis(POM)phosphate at rt, then it was cooled to 0° C.
  • a 2 N hydroxylamine (30.0 mL, 60.0 mmol) aqueous solution was made by adjusting a 50% w/w aq. NH 2 OH solution with glacial AcOH and then diluting with water to achieve the desired concentration.
  • a sealable pressure vessel was charged with the above solution, L-cytidine (0.486 g, 2.0 mmol), and a stir bar. The vessel was sealed and the mixture was heated at 50° C. for 40 h. The mixture was cooled to rt and concentrated by rotary evaporation. The crude reside was dissolved in water, and automated reverse phase flash chromatography (100 g column, gradient of 100% water to 100% MeCN) gave 300 mg of semipure material as a yellow flaky solid.
  • a sealable pressure tube was charged with uridine (1.00 g, 4.09 mmol), K 2 CO 3 (0.679 g, 4.91 mmol), and deuterium oxide (8.2 mL). The mixture was purged with nitrogen for 15 minutes, the tubed was sealed, and the contents were heated with stirring at 95° C. for 16 h. The mixture was cooled to rt, the tube was unsealed, and the mixture was transferred to a round-bottom flask and concentrated by rotary evaporation. The resulting crude was coevaporated with MeOH ( ⁇ 3) to remove water. NMR analysis showed >95% deuterium incorporation at the 5-position on the nucleobase.
  • reaction mixture was diluted with dichloromethane (25 mL) and washed with 5% aqueous hydrochloric acid (25 mL) and aqueous sodium bicarbonate (25 mL). The organic layer was dried over Na 2 SO 4 and concentrated by rotary evaporation to give S40. The crude product was taken directly to the next step without further purification.
  • reaction mixture was diluted with dichloromethane (25 mL) and washed with 5% aqueous hydrochloric acid (25 mL) and aqueous sodium bicarbonate (25 mL). The organic layer was dried over Na 2 SO 4 and concentrated by rotary evaporation to give crude S41. The crude product was taken directly to the next step without further purification.
  • reaction mixture was diluted with dichloromethane (70 mL) and washed with 5% aqueous hydrochloric acid (100 mL) followed by aqueous sodium hydrogen carbonate (100 mL) and brine (100 mL). The organic layer was dried over Na 2 SO 4 , filtered, and concentrated by rotary evaporation.
  • CPE Primary Cytopathic Effect
  • test compound is prepared at four log 10 final concentrations, usually 0.1, 1.0, 10, and 100 ⁇ g/ml or ⁇ M.
  • the virus control and cell control wells are on every microplate.
  • a known active drug is tested as a positive control drug using the same method as is applied for test compounds. The positive control is tested with each test run.
  • the assay is set up by first removing growth media from the 96-well plates of cells. Then the test compound is applied in 0.1 ml volume to wells at 2 ⁇ concentration. Virus, normally at ⁇ 100 50% cell culture infectious doses (CCID 50 ) in 0.1 ml volume, is placed in those wells designated for virus infection. Medium devoid of virus is placed in toxicity control wells and cell control wells. Virus control wells are treated similarly with virus. Plates are incubated at 37° C. with 5% CO 2 until maximum CPE is observed in virus control wells. The plates are then stained with 0.011% neutral red for approximately two hours at 37° C. in a 5% CO 2 incubator.
  • CCID 50 cell culture infectious doses
  • the neutral red medium is removed by complete aspiration, and the cells may be rinsed 1 ⁇ with phosphate buffered solution (PBS) to remove residual dye.
  • PBS phosphate buffered solution
  • the PBS is completely removed and the incorporated neutral red is eluted with 50% Sorensen's citrate buffer/50% ethanol (pH 4.2) for at least 30 minutes.
  • Neutral red dye penetrates into living cells, thus, the more intense the red color, the larger the number of viable cells present in the wells.
  • the dye content in each well is quantified using a 96-well spectrophotometer at 540 nm wavelength.
  • the dye content in each set of wells is converted to a percentage of dye present in untreated control wells using a Microsoft Excel computer-based spreadsheet.
  • the 50% effective (EC 50 , virus-inhibitory) concentrations and 50% cytotoxic (CC 50 , cell-inhibitory) concentrations are then calculated by linear regression analysis.
  • the quotient of CC 50 divided by EC 50 gives the selectivity index (SI) value.
  • VYR Virus Yield Reduction
  • This assay involves similar methodology to what is described in the previous paragraphs using 96-well microplates of cells. The differences are noted in this section. Eight half-log 10 concentrations of inhibitor are tested for antiviral activity and cytotoxicity. After sufficient virus replication occurs, a sample of supernatant is taken from each infected well (three replicate wells are pooled) and held for the VYR portion of this test, if needed. Alternately, a separate plate may be prepared and the plate may be frozen for the VYR assay. After maximum CPE is observed, the viable plates are stained with neutral red dye. The incorporated dye content is quantified as described above. The data generated from this portion of the test are neutral red EC 50 , CC 50 , and SI values.
  • VYR assay Compounds observed to be active above are further evaluated by VYR assay.
  • the VYR test is a direct determination of how much the test compound inhibits virus replication. Virus that was replicated in the presence of test compound is titrated and compared to virus from untreated, infected controls. Titration of pooled viral samples (collected as described above) is performed by endpoint dilution. This is accomplished by titrating log 10 dilutions of virus using 3 or 4 microwells per dilution on fresh monolayers of cells by endpoint dilution. Wells are scored for presence or absence of virus after distinct CPE (measured by neutral red uptake) is observed.
  • the assay is set up by first removing growth media from the 12-well plates of cells, and infecting cells with 0.01 MOI of LASV strain Josiah. Cells will be incubated for 90 min: 500 ⁇ l inoculum/M12 well, at 37° C., 5% CO2 with constant gentle rocking. The inoculums will be removed and cells will be washed 2 ⁇ with medium. Then the test compound is applied in 1 ml of total volume of media. Tissue culture supernatant (TCS) will be collected at appropriate time points. TCS will then be used to determine the compounds inhibitory effect on virus replication. Virus that was replicated in the presence of test compound is titrated and compared to virus from untreated, infected controls.
  • serial ten-fold dilutions will be prepared and used to infect fresh monolayers of cells.
  • Cells will be overlaid with 1% agarose mixed 1:1 with 2 ⁇ MEM supplemented with 10% FBS and 1% penecillin, and the number of plaques determined. Plotting the log 10 of the inhibitor concentration versus log 10 of virus produced at each concentration allows calculation of the 90% (one log 10 ) effective concentration by linear regression.
  • the secondary assay involves similar methodology to what is described in the previous paragraphs using 12-well plates of cells. The differences are noted in this section. Cells are being infected as described above but this time overlaid with 1% agarose diluted 1:1 with 2 ⁇ MEM and supplemented with 2% FBS and 1% penicillin/streptomycin and supplemented with the corresponding drug concentration. Cells will be incubated at 37° C. with 5% CO2 for 6 days. The overlay is then removed and plates stained with 0.05% crystal violet in 10% buffered formalin for approximately twenty minutes at room temperature. The plates are then washed, dried and the number of plaques counted. The number of plaques is in each set of compound dilution is converted to a percentage relative to the untreated virus control. The 50% effective (EC50, virus-inhibitory) concentrations are then calculated by linear regression analysis.
  • test compound is prepared at four log 10 final concentrations, usually 0.1, 1.0, 10, and 100 ⁇ g/ml or ⁇ M.
  • the virus control and cell control will be run in parallel with each tested compound. Further, a known active drug is tested as a positive control drug using the same experimental set-up as described for the virus and cell control. The positive control is tested with each test run.
  • the assay is set up by first removing growth media from the 12-well plates of cells. Then the test compound is applied in 0.1 ml volume to wells at 2 ⁇ concentration. Virus, normally at approximately 200 plaque-forming units in 0.1 ml volume, is placed in those wells designated for virus infection. Medium devoid of virus is placed in toxicity control wells and cell control wells. Virus control wells are treated similarly with virus. Plates are incubated at 37° C. with 5% CO 2 for one hour. Virus-compound inoculums will be removed, cells washed and overlaid with 1.6% tragacanth diluted 1:1 with 2 ⁇ MEM and supplemented with 2% FBS and 1% penicillin/streptomycin and supplemented with the corresponding drug concentration.
  • Cells will be incubated at 37° C. with 5% CO 2 for 10 days.
  • the overlay is then removed and plates stained with 0.05% crystal violet in 10% buffered formalin for approximately twenty minutes at room temperature. The plates are then washed, dried and the number of plaques counted. The number of plaques is in each set of compound dilution is converted to a percentage relative to the untreated virus control.
  • the 50% effective (EC 50 , virus-inhibitory) concentrations are then calculated by linear regression analysis.
  • the secondary assay involves similar methodology to what is described in the previous paragraphs using 12-well plates of cells. The differences are noted in this section. Eight half-log 10 concentrations of inhibitor are tested for antiviral activity. One positive control drug is tested per batch of compounds evaluated.
  • cells are infected with virus. Cells are being infected as described above but this time incubated with DMEM supplemented with 2% FBS and 1% penicillin/streptomycin and supplemented with the corresponding drug concentration. Cells will be incubated for 10 days at 37° C. with 5% CO 2 , daily observed under microscope for the number of green fluorescent cells. Aliquots of supernatant from infected cells will be taken daily and the three replicate wells are pooled.
  • the pooled supernatants are then used to determine the compounds inhibitory effect on virus replication.
  • Virus that was replicated in the presence of test compound is titrated and compared to virus from untreated, infected controls.
  • serial ten-fold dilutions will be prepared and used to infect fresh monolayers of cells.
  • Cells are overlaid with tragacanth and the number of plaques determined. Plotting the log 10 of the inhibitor concentration versus log 10 of virus produced at each concentration allows calculation of the 90% (one log 10 ) effective concentration by linear regression.
  • BHK21 cells (Syrian golden hamster kidney cells, ATCC catalog # CCL-I 0), Vero cells (African green monkey kidney cells, ATCC catalog# CCL-81), or Huh-7 cells (human hepatocyte carcinoma) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 ⁇ g/mL streptomycin in T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion.
  • Cell viability was greater than 95% for the cells to be utilized in the assay.
  • the cells were resuspended at 3 ⁇ 10 3 (5 ⁇ 10 5 for Vero cells and Huh-7 cells) cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 ⁇ L. The plates were incubated at 37° C./5% CO 2 overnight to allow for cell adherence. Monolayers were observed to be approximately 70% confluent.
  • Virus Preparation The Dengue virus type 2 New Guinea C strain was obtained from ATCC (catalog# VR-1584) and was grown in LLC-MK2 (Rhesus monkey kidney cells; catalog #CCL-7.1) cells for the production of stock virus pools. An aliquot of virus pretitered in BHK21 cells was removed from the freezer ( ⁇ 80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet.
  • Virus was resuspended and diluted into assay medium (DMEM supplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 ⁇ g/mL streptomycin) such that the amount of virus added to each well in a volume of 100 ⁇ L was the amount determined to yield 85 to 95% cell killing at 6 days post-infection.
  • assay medium DMEM supplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 ⁇ g/mL streptomycin
  • Plate Format Each plate contains cell control wells (cells only), virus control wells (cells plus virus), triplicate drug toxicity wells per compound (cells plus drug only), as well as triplicate experimental wells (drug plus cells plus virus).
  • XTT-tetrazolium was metabolized by the mitochondrial enzymes of metabolically active cells to a soluble formazan product, allowing rapid quantitative analysis of the inhibition of virus-induced cell killing by antiviral test substances.
  • XTT solution was prepared daily as a stock of 1 mg/mL in RPMI 1640.
  • Phenazine methosulfate (PMS) solution was prepared at 0.15 mg/mL in PBS and stored in the dark at ⁇ 20° C.
  • XTT/PMS stock was prepared immediately before use by adding 40 ⁇ L of PMS per ml of XTT solution. Fifty microliters of XTT/PMS was added to each well of the plate and the plate was reincubated for 4 hours at 37° C. Plates were sealed with adhesive plate sealers and shaken gently or inverted several times to mix the soluble formazan product and the plate was read spectrophotometrically at 450/650 nm with a Molecular Devices Vmax plate reader.
  • Cell Preparation-HEp2 cells (human epithelial cells, A TCC catalog# CCL-23) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin 1 mM sodium pyruvate, and 0.1 mM NEAA, T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay.
  • the cells were resuspended at 1 ⁇ 10 4 cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 ⁇ L. The plates were incubated at 37° C./5% CO 2 overnight to allow for cell adherence.
  • Virus Preparation The RSV strain Long and RSV strain 9320 were obtained from ATCC (catalog# VR-26 and catalog #VR-955, respectively) and were grown in HEp2 cells for the production of stock virus pools. A pretitered aliquot of virus was removed from the freezer ( ⁇ 80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet.
  • Virus was resuspended and diluted into assay medium (DMEMsupplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin, 1 mM sodium pyruvate, and 0.1 mM NEAA) such that the amount of virus added to each well in a volume of 100 ⁇ L was the amount determined to yield 85 to 95% cell killing at 6 days post-infection. Efficacy and Toxicity XTT-Plates were stained and analyzed as previously described for the Dengue cytoprotection assay.
  • assay medium DMEMsupplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin, 1 mM sodium pyruvate, and 0.1 mM NEAA
  • Cell Preparation-MOCK cells (canine kidney cells, ATCC catalog# CCL-34) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin 1 mM sodium pyruvate, and 0.1 mM NEAA, T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay.
  • the cells were resuspended at 1 ⁇ 10 4 cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 ⁇ L. The plates were incubated at 37° C./5% CO 2 overnight to allow for cell adherence.
  • influenza A/PR/8/34 (A TCC #VR-95), A/CA/201709 (CDC),A/NY/18/09 (CDC) and A/NWS/33 (ATCC #VR-219) strains were obtained from ATCC or from the Center of Disease Control and were grown in MDCK cells for the production of stock virus pools. A pretitered aliquot of virus was removed from the freezer ( ⁇ 80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet.
  • Virus was resuspended and diluted into assay medium (DMEM supplemented with 0.5% BSA, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin, 1 mM sodium pyruvate, 0.1 mM NEAA, and 1 ⁇ g/ml TPCK-treated trypsin) such that the amount of virus added to each well in a volume of 100 ⁇ L was the amount determined to yield 85 to 95% cell killing at 4 days post-infection. Efficacy and Toxicity XTT-Plates were stained and analyzed as previously described for the Dengue cytoprotection assay.
  • assay medium DMEM supplemented with 0.5% BSA, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin, 1 mM sodium pyruvate, 0.1 mM NEAA, and 1 ⁇ g/ml TPCK-treated trypsin
  • the reporter cell line Huh-luc/neo-ET was obtained from Dr. Ralf Bartenschlager (Department of Molecular Virology, Hygiene Institute, University of Heidelberg, Germany) by ImQuest BioSciences through a specific licensing agreement.
  • This cell line harbors the persistently replicating I 389 luc-ubi-neo/NS3-3′/ET replicon containing the firefly luciferase gene-ubiquitin-neomycin phosphotransferase fusion protein and EMCV IRES driven NS3-5B HCV coding sequences containing the ET tissue culture adaptive mutations (E1202G, T12081, and K1846T).
  • a stock culture of the Huh-luc/neo-ET was expanded by culture in DMEM supplemented with I 0% FCS, 2 mM glutamine, penicillin (100 ⁇ U/mL)/streptomycin (100 ⁇ g/mL) and I X nonessential amino acids plus 1 mg/mL G418.
  • the cells were split 1:4 and cultured for two passages in the same media plus 250 ⁇ g/mL G418.
  • the cells were treated with trypsin and enumerated by staining with trypan blue and seeded into 96-well tissue culture plates at a cell culture density 7.5 ⁇ 10 3 cells per well and incubated at 37° C. 5% CO 2 for 24 hours.
  • the cell culture monolayers from treated cells were stained with the tetrazolium dye XTT to evaluate the cellular viability of the Huh-luc/neo-ET reporter cell line in the presence of the compounds.
  • Virus Replication-HCV replication from the replicon assay system was measured by luciferase activity using the britelite plus luminescence reporter gene kit according to the manufacturer's instructions (Perkin Elmer, Shelton, Conn.). Briefly, one vial of britelite plus lyophilized substrate was solubilized in 10 mL of britelite reconstitution buffer and mixed gently by inversion. After a 5 minute incubation at room temperature, the britelite plus reagent was added to the 96 well plates at 100 ⁇ L per well. The plates were sealed with adhesive film and incubated at room temperature for approximately 10 minutes to lyse the cells.
  • the well contents were transferred to a white 96-well plate and luminescence was measured within 15 minutes using the Wallac 1450Microbeta Trilux liquid scintillation counter.
  • the data were imported into a customized Microsoft Excel 2007 spreadsheet for determination of the 50% virus inhibition concentration (EC 50 ).
  • Cell Preparation-HEp2 cells (human epithelial cells, ATCC catalog# CCL-23) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin 1 mM sodium pyruvate, and 0.1 mM NEAA, T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay.
  • the cells were resuspended at 1 ⁇ 10 4 cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 ⁇ L. The plates were incubated at 37° C./5% CO 2 overnight to allow for cell adherence.
  • Virus Preparation The Parainfluenza virus type 3 SF4 strain was obtained from ATCC (catalog# VR-281) and was grown in HEp2 cells for the production of stock virus pools. A pretitered aliquot of virus was removed from the freezer ( ⁇ 80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet. Virus was resuspended and diluted into assay medium (DMEM supplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 ⁇ g/mL streptomycin) such that the amount of virus added to each well in a volume of 100 ⁇ L was the amount determined to yield 85 to 95% cell killing at 6 days post-infection.
  • assay medium DMEM supplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 ⁇ g/mL streptomycin
  • Each plate contains cell control wells (cells only), virus control wells (cells plus virus), triplicate drug toxicity wells per compound (cells plus drug only), as well a triplicate experimental wells (drug plus cells plus virus).
  • XTT-tetrazolium was metabolized by the mitochondrial enzymes of metabolically active cells to a soluble formazan product, allowing rapid quantitative analysis of the inhibition of virus-induced cell killing by antiviral test substances.
  • XTT solution was prepared daily as a stock of 1 mg/mL in RPMI1640.
  • Phenazine methosulfate (PMS) solution was prepared at 0.15 mg/mL in PBS and stored in the dark at ⁇ 20° C.
  • XTT/PMS stock was prepared immediately before use by adding 40 ⁇ L of PMS per ml of XTT solution. Fifty microliters of XTT/PMS was added to each well of the plate and the plate was reincubated for 4 hours at 3 7° C. Plates were sealed with adhesive plate sealers and shaken gently or inverted several times to mix the soluble fomlazan product and the plate was read spectrophotometrically at 450/650 nm with a Molecular Devices Vmax plate reader.
  • Virus Preparation Purified influenza virus A/PR/8/34 (1 ml) was obtained from Advanced Biotechnologies, Inc. (Columbia, Md.), thawed and dispensed into five aliquots for storage at ⁇ 80° C. until use. On the day of assay set up, 20 ⁇ L of 2.5% Triton N-101 was added to 180 ⁇ L of purified virus. The disrupted virus was diluted 1:2 in a solution containing 0.25% Triton and PBS. Disruption provided the source of influenza ribonucleoprotein (RNP) containing the influenza RNA-dependent RNA polymerase and template RNA. Samples were stored on ice until use in the assay.
  • RNP influenza ribonucleoprotein
  • each 50 ⁇ L polymerase reaction contained the following: 5 ⁇ L of the disrupted RNP, 100 mM Tris-HCl (pH 8.0), 100 mM KCl, 5 mM MgCl 2 . 1 mM dithiothreitol, 0.25% Triton N-101, 5 ⁇ Ci of [ ⁇ - 32 P] GTP, 100 ⁇ M ATP, 50 ⁇ M each (CTP, UTP), 1 ⁇ M GTP, and 200 ⁇ M adenyl (3′-5′) guanosine.
  • the reactions contained the inhibitor and the same was done for reactions containing the positive control (2′-Deoxy-2′-fluoroguanosine-5′-triphosphate).
  • Other controls included RNP+reaction mixture, and RNP+I % DMSO.
  • the reaction mixture without the ApG primer and NTPs was incubated at 30° C. for 20 minutes. Once the ApG and NTPs were added to the reaction mixture, the samples were incubated at 30° C. for 1 hour then immediately followed by the transfer of the reaction onto glass-fiber filter plates and subsequent precipitation with 10% trichloroacetic acid (TCA). The plate was then washed five times with 5% TCA followed by one wash with 95% ethanol. Once the filter had dried, incorporation of [ ⁇ - 32 P] GTP was measured using a liquid scintillation counter (Micro beta).
  • Each test plate contained triplicate samples of the three compounds (6 concentrations) in addition to triplicate samples of RNP+reaction mixture (RNP alone), RNP+1% DMSO, and reaction mixture alone (no RNP).
  • the “percent inhibition values” were obtained by dividing the mean value of each test compound by the RNP+1% DMSO control. The mean obtained at each concentration of 2DFGTP was compared to the RNP+reaction control. The data was then imported into Microsoft Excel spreadsheet to calculate the IC 50 values by linear regression analysis.
  • HCV NS5B polymerase assays were performed in 20 ⁇ L volumes in 96 well reaction plates.
  • Each reaction contained 40 ⁇ g/ ⁇ L purified recombinant NS5B ⁇ 22 genotype-1b polymerase, 20 ⁇ g/ ⁇ L of HCV genotype-1b complimentary IRES template, 1 ⁇ M of each of the four natural ribonucleotides, 1 U/mL Optizyme RNAse inhibitor (Promega, Madison, Wis.), 1 mM MgCl 2 , 0.75 mM MnCl 2 , and 2 mM dithiothreitol (DTT) in 50 mM HEPES buffer (pH 7.5). Reaction mixtures were assembled on ice in two steps.
  • Step 1 consisted of combining all reaction components except the natural nucleotides and labeled UTP in a polymerase reaction mixture.
  • Ten microliters (10 ⁇ L) of the polymerase mixture was dispensed into individual wells of the 96 well reaction plate on ice.
  • Polymerase reaction mixtures without NS5B polymerase were included as no enzyme controls.
  • Serial half-logarithmic dilutions of test and control compounds, 2′-O-Methyl-CTP and 2′-O-Methyl-GTP (Trilink, San Diego, Calif.) were prepared in water and 5 ⁇ L of the serial diluted compounds or water alone (no compound control) were added to the wells containing the polymerase mixture.
  • RNA products were applied to a Hybond-N+ membrane (GE Healthcare, Piscataway, N.J) under vacuum pressure using a dot blot apparatus.
  • the membrane was removed from the dot blot apparatus and washed four times with 4 ⁇ SSC (0.6 M NaCl, and 60 mM sodium citrate), and then rinsed one time with water and once with 100% ethanol.
  • the membrane was air dried and exposed to a phosphoimaging screen and the image captured using a Typhoon 8600 Phospho imager. Following capture of the image, the membrane was placed into a Micro beta cassette along with scintillation fluid and the CPM in each reaction was counted on a Micro beta 1450. CPM data were imported into a custom Excel spreadsheet for determination of compound IC 50 s.
  • the human DNA polymerase alpha (catalog#1075), beta (catalog#1077), and gamma (catalog#1076) were purchased from CHIMERx (Madison, Wis.). Inhibition of beta and gamma DNA polymerase activity was assayed in microtiter plates in a 50 uL reaction mixture containing 50 mM Tris-HCl (pH 8.7), KCl (10 mM for beta and 100 mM for gamma), 10 mM MgCl 2 , 0.4 mg/mL BSA, 1 mM DTT, 15% glycerol, 0.05 mM of dCTP, dTTP, and dATP, 10 uCi [ 32 P]-alpha-dGTP (800 Ci/mmol), 20 ug activated calf thymus DNA and the test compound at indicated concentrations.
  • Tris-HCl pH 8.7
  • KCl 10 mM for beta and 100 mM
  • the alpha DNA polymerase reaction mixture was as follows in a 50 uL volume per sample: 20 mM Tris-HCl (pH 8), 5 mM magnesium acetate, 0.3 mg/mL BSA, 1 mM DTT, 0.1 mM spermine, 0.05 mM of dCTP, dTTP, and dATP, 10 uCi [ 32 P]-alpha-dGTP (800 Ci/mmol), 20 ug activated calf thymus DNA and the test compound at the indicated concentrations.
  • the enzyme reactions were allowed to proceed for 30 minutes at 37° C. followed by the transfer onto glass-fiber filter plates and subsequent precipitation with 10% trichloroacetic acid (TCA). The plate was then washed with 5% TCA followed by one wash with 95% ethanol. Once the filter had dried, incorporation of radioactivity was measured using a liquid scintillation counter (Microbeta).
  • PBMCs peripheral blood mononuclear cells
  • cell number was determined by Trypan Blue dye exclusion and cells were re-suspended at 1 ⁇ 10 1 ⁇ 6 cells/mL in RPMI 1640 with 15% Fetal Bovine Serum (FBS), 2 mmol/L L-glutamine, 2 ug/mL PHA-P, 100 U/mL penicillin and 100 ug/mL streptomycin and allowed to incubate for 48-72 hours at 37° C.
  • FBS Fetal Bovine Serum
  • PBMCs were centrifuged and resuspended in tissue culture medium. The cultures were maintained until use by half-volume culture changes with fresh IL-2 containing tissue culture medium every 3 days. Assays were initiated with PBMCs at 72 hours post PHA-P stimulation.
  • PBMCs employed in the assay were a mixture of cells derived from 3 donors. Immediately prior to use, target cells were resuspended in fresh tissue culture medium at 1 ⁇ 10 1 ⁇ 6 cells/mL and plated in the interior wells of a 96-well round bottom microtiter plate at 50 uL/well. Then, 100 uL of 2 ⁇ concentrations of compound-containing medium was transferred to the 96-well plate containing cells in 50 uL of the medium. AZT was employed as an internal assay standard.
  • PBMCs were exposed in triplicate to virus and cultured in the presence or absence of the test material at varying concentrations as described above in the 96-well microtiter plates. After 7 days in culture, HIV-1 replication was quantified in the tissue culture supernatant by measurement of reverse transcriptase (RT) activity. Wells with cells and virus only served as virus controls. Separate plates were identically prepared without virus for drug cytotoxicity studies.
  • Reverse Transcriptase Activity Assay Reverse transcriptase activity was measured in cell-free supernatants using a standard radioactive incorporation polymerization assay. Tritiated thymidine triphosphate (TTP; New England Nuclear) was purchased at 1 Ci/mL and 1 uL was used per enzyme reaction. A rAdT stock solution was prepared by mixing 0.5 mg/mL poly rAand 1.7 U/mL oligo dT in distilled water and was stored at ⁇ 20° C.
  • the RT reaction buffer was prepared fresh daily and consists of 125 uL of 1 mol/L EGTA, 125 uL of dH 2 O, 125 uL of 20% Triton X-100, 50 uL of 1 mol/L Tris (pH 7.4), 50 uL of 1 mol/L DTT, and 40 uL of 1 mol/L MgCl 2 .
  • 1 uL of TTP, 4 uL of dH 2 O, 2.5 uL of rAdT, and 2.5 uL of reaction buffer were mixed.
  • Ten microliters of this reaction mixture was placed in a round bottom microtiter plate and 15 uL of virus-containing supernatant was added and mixed.
  • the plate was incubated at 37° C. in a humidified incubator for 90 minutes. Following incubation, 10 uL of the reaction volume was spotted onto a DEAE filter mat in the appropriate plate format, washed 5 times (5 minutes each) in a 5% sodium phosphate buffer, 2 times (1 minute each) in distilled water, 2 times (1 minute each) in 70% ethanol, and then air dried. The dried filtermat was placed in a plastic sleeve and 4 mL of Opti-Fluor 0 was added to the sleeve. Incorporated radioactivity was quantified utilizing a Wallac 1450 Microbeta Trilux liquid scintillation counter.
  • HepG2.2.15 cells 100 ⁇ L in RPMI1640 medium with 10% fetal bovine serum was added to all wells of a 96-well plate at a density of 1 ⁇ 10 4 cells per well and the plate was incubated at 37° C. in an environment of 5% CO 2 for 24 hours. Following incubation, six ten-fold serial dilutions of test compound prepared in RPMI1640 medium with 10% fetal bovine serum were added to individual wells of the plate in triplicate. Six wells in the plate received medium alone as a virus only control. The plate was incubated for 6 days at 37° C. in an environment of 5% CO 2 . The culture medium was changed on day 3 with medium containing the indicated concentration of each compound. One hundred microliters of supernatant was collected from each well for analysis of viral DNA by qPCR and cytotoxicity was evaluated by XTT staining of the cell culture monolayer on the sixth day.
  • qPCR dilution buffer 40 ⁇ g/mL sheared salmon sperm DNA
  • SDS 2.4 software Ten microliters of cell culture supernatant collected on the sixth day was diluted in qPCR dilution buffer (40 ⁇ g/mL sheared salmon sperm DNA) and boiled for 15 minutes. Quantitative real time PCR was performed in 386 well plates using an Applied Biosystems 7900HT Sequence Detection System and the supporting SDS 2.4 software.
  • HBV-AD38-qF1 (5′-CCG TCT GTG CCT TCT CAT CTG-3′)
  • HBV-AD38-qR1 5′-AGT CCA AGA GTY CTC TTA TRY AAG ACC TT-3′
  • HBV-AD38-qP1 5′-FAM CCG TGT GCA/ZEN/CTT CGC TTC ACC TCT GC-3′BHQ1) at a final concentration of 0.2 ⁇ M for each primer in a total reaction volume of 15 ⁇ L.
  • the HBV DNA copy number in each sample was interpolated from the standard curve by the SDS.24 software and the data were imported into an Excel spreadsheet for analysis.
  • the 50% cytotoxic concentration for the test materials are derived by measuring the reduction of the tetrazolium dye XTT in the treated tissue culture plates.
  • XTT is metabolized by the mitochondrial enzyme NADPH oxidase to a soluble formazan product in metabolically active cells.
  • XTT solution was prepared daily as a stock of 1 mg/mL in PBS.
  • Phenazine methosulfate (PMS) stock solution was prepared at 0.15 mg/mL in PBS and stored in the dark at ⁇ 20° C.
  • XTT/PMS solution was prepared immediately before use by adding 40 ⁇ L of PMS per 1 mL of XTT solution.
  • XTT/PMS Fifty microliters of XTT/PMS was added to each well of the plate and the plate incubated for 2-4 hours at 37° C. The 2-4 hour incubation has been empirically determined to be within linear response range for XTT dye reduction with the indicated numbers of cells for each assay.
  • Adhesive plate sealers were used in place of the lids, the sealed plate was inverted several times to mix the soluble formazan product and the plate was read at 450 nm (650 nm reference wavelength) with a Molecular Devices SpectraMax Plus 384 spectrophotometer. Data were collected by Softmax 4.6 software and imported into an Excel spreadsheet for analysis.
  • RNA polymerase assay was performed at 30° C. using 100 ⁇ l reaction mix in 1.5 ml tube. Final reaction conditions were 50 mM Hepes (pH 7.0), 2 mM DTT, 1 mM MnCl 2 , 10 mM KCl, 100 nM UTR-Poly A (self-annealing primer), 10 ⁇ M UTP, 26 nM RdRp enzyme. The reaction mix with different compounds (inhibitors) was incubated at 30° C. for 1 hour. To assess amount of pyrophosphate generated during polymerase reaction, 30 ⁇ l of polymerase reaction mix was mixed with a luciferase coupled-enzyme reaction mix (70 ⁇ l).
  • Huh-7 cells were seeded at 0.5 ⁇ 10 ⁇ 6 cells/well in 1 mL of complete media in 12 well tissue culture treated plates. The cells were allowed to adhere overnight at 37°/5% CO 2 .
  • a 40 ⁇ M stock solution of test article was prepared in 100% DMSO. From the 40 ⁇ M stock solution, a 20 ⁇ M solution of test article in 25 ml of complete DMEM media was prepared. For compound treatment, the media was aspirated from the wells and 1 mL of the 20 ⁇ M solution was added in complete DMEM media to the appropriate wells. A separate plate of cells with “no” addition of the compound was also prepared. The plates were incubated at 37°/5% CO 2 for the following time points: 1, 3, 6 and 24 hours.
  • the cells were washed 2 ⁇ with 1 mL of DPBS.
  • the cells were extracted by adding 500 ⁇ l of 70% methanol/30% water spiked with the internal standard to each well treated with test article.
  • the non-treated blank plate was extracted with 500 ul of 70% methanol/30% water per well. Samples were centrifuged at 16,000 rpm for 10 minutes at 4° C. Samples were analyzed by LC-MS/MS using an ABSCIEX 5500 QTRAP LC-MS/MS system with a Hypercarb (PGC) column.
  • PPC Hypercarb
  • mice (6-8 weeks old, female) were acclimated for ⁇ 2 days after receipt. Mice were weighed the day before dosing to calculate dosing volumes. Mice were dosed by oral gavage with drug at 30 mg/kg, 100 mg/kg & 300 mg/kg. The mice were sampled at 8 time points: 0.5, 1, 2, 3, 4, 8 and 24 hrs (3 mice per time point for test drug). The mice were euthanized and their organs were collected (see below). In order to collected blood, mice with euthanized by CO 2 at the appropriate time point listed above. Blood was obtained by cardiac puncture (0.3 ml) at each time point. Following blood collection, the organs were removed from the mice (see below).
  • the blood was processed by inverting Li-Heparin tube with blood gently 2 or 3 times to mix well. The tubes were then placed in a rack in ice water until able to centrifuge ( ⁇ 1 hour). As soon as practical, the blood was centrifuged at ⁇ 2000 ⁇ g for 10 min in a refrigerated centrifuge to obtain plasma. Then, using a 200 ⁇ L pipette, the plasma was transferred to a labeled 1.5 ml Eppendorf tube in ice water. The plasma was then frozen in freezer or on dry ice. The samples were stored at ⁇ 80° C. prior to analysis. Organs were collected from euthanized mice.
  • the organs (lungs, liver, kidney, spleen and heart) were removed, placed in a tube, and immediately frozen in liquid nitrogen. The tubes were then transferred to dry ice. The samples were saved in cryogenic tissue vials. Samples were analyzed by LC-MS/MS using an ABSCIEX 5500 QTRAP LC-MS/MS system with a Hypercarb (PGC) column.
  • PPC Hypercarb
  • C57BL-6J mice were injected with 100 pfus CHIK virus in the footpad.
  • the test groups consisted of an unifected and untreated group, an infected and untreated group, an infected group receiving a high dose of 35 mg/kg i.p. of EIDD-01931, and an infected group receiving a low dose of 25 mg/kg i.p. of EIDD-01931.
  • the two test groups receiving EIDD-01931 received compound 12 hours before challenge and then daily for 7 days. Footpads were evaluated for inflammation (paw thickness) daily for 7 days. CHIK virus induced arthritis (histology) was assessed in ankle joints using PCR after 7 days.
  • EIDD-01931 is orally available and dose-proportional with a calculated bioavailability (% F) of 28%.
  • Organ samples (brain, lung, spleen, kidney and liver) were collected at 2.5 and 24 hours post-dose from the 50 mg/kg dose group.
  • EIDD-01931 was well distributed into all tissues tested; of particular note, it was readily distributed into brain tissue at therapeutic levels of drug, based on estimates from cellular data. Once in the brain, EIDD-01931 was rapidly metabolized to its active 5′-triphosphate form to give brain levels of 526 and 135 ng/g at 2.5 and 24 hours, respectively. Even after 24 hours levels of EIDD-01931 and its 5′-triphosphate in the brain are considerable, suggesting that once-daily oral dosing may be adequate for treatment.
  • EIDD-01931 has an acceptable toxicology profile after 6 day q.d. intraperitoneal (IP) injections in mice, with the NOEL (NO Effect Level) to be 33 mg/kg; weight loss was observed at the highest dose tested (100 mg/kg), which reversed on cessation of dosing.
  • IP intraperitoneal
  • EIDD-01931 Several derivatives of EIDD-01931 have shown antiviral activity in screening against various viruses. Activity data is shown in the tables below.

Abstract

This disclosure relates to N4-hydroxycytidine derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to the treatment and prophylaxis of viral infections.

Description

    FIELD
  • This disclosure relates to N4-hydroxycytidine nucleoside derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to the treatment and prophylaxis of viral infections.
  • BACKGROUND
  • The causative agents for Eastern, Western, and Venezuelan Equine Encephalitis (EEE, WEE and VEE, respectively) and Chikungunya fever (CHIK) are vector-borne viruses (family Togaviridae, genus Alphavirus) that can be transmitted to humans through mosquito bites. The equine encephalitis viruses are CDC Category B pathogens, and the CHIK virus is Category C. There is considerable concern about the use of virulent strains of VEE virus, delivered via aerosol, as a bioweapon against warfighters. Animal studies have demonstrated that infection with VEE virus by aerosol exposure rapidly leads to a massive infection of the brain, with high mortality and morbidity. See Roy et al., Pathogenesis of aerosolized Eastern equine encephalitis virus infection in guinea pigs. Virol J, 2009, 6:170.
  • Stuyver et al., report β-D-N(4)-hydroxycytidine (NHC) was found to have antipestivirus and antihepacivirus activities. Antimicrob Agents Chemother, 2003, 47(1):244-54. Constantini et al. report evaluations on the efficacy of 2′-C-MeC, 2′-F-2′-C-MeC, and NHC on Norwalk virus. See also Purohit et al. J Med Chem, 2012, 55(22):9988-9997. Ivanov et al., Collection of Czechoslovak Chemical Communications, 2006, 71(7):1099-1106. Fox et al., JACS, 1959, 81:178-87.
  • References cited herein are not an admission of prior art.
  • SUMMARY
  • This disclosure relates to N4-hydroxycytidine and derivatives, pharmaceutical compositions, and uses related thereto. In certain embodiments, the disclosure relates to a compound having formula I,
  • Figure US20190022116A1-20190124-C00001
  • or a pharmaceutically acceptable salt, derivative, or prodrug thereof, as defined herein.
  • In certain embodiments, the disclosure contemplates derivatives of compounds disclosed herein such as those containing one or more, the same or different, substituents.
  • In certain embodiments, the disclosure contemplates pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound disclosed herein. In certain embodiments, the pharmaceutical composition is in the form of a tablet, capsule, pill, or aqueous buffer, such as a saline or phosphate buffer.
  • In certain embodiments, the pharmaceutical composition comprises a compound disclosed herein and a propellant. In certain embodiments, the propellant is an aerosolizing propellant is compressed air, ethanol, nitrogen, carbon dioxide, nitrous oxide, hydrofluoroalkanes (HFAs), 1,1,1,2,-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane or combinations thereof.
  • In certain embodiments, the disclosure contemplates a pressurized or unpressurized container comprising a compound or pharmaceutical composition as described herein. In certain embodiments, the container is a manual pump spray, inhaler, meter-dosed inhaler, dry powder inhaler, nebulizer, vibrating mesh nebulizer, jet nebulizer, or ultrasonic wave nebulizer.
  • In certain embodiments, the disclosure relates to methods of treating or preventing a viral infection comprising administering an effective amount of a compound or pharmaceutical composition disclosed herein to a subject in need thereof.
  • In certain embodiments, the viral infection is an alphavirus or coronaviruses and flavivirus. In certain embodiments, the viral infection is an orthomyxoviridae or paramyxoviridae. In certain embodiments, the viral infection is selected from MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Ross River virus, Powassan virus, Barmah Forest virus and Chikungunya virus.
  • In certain embodiments, the compound or pharmaceutical composition is administered orally, intravenously, or through the lungs.
  • In certain embodiments, the disclosure relates to the use of a compound as described herein in the production of a medicament for the treatment of or prevention of a viral infection.
  • In certain embodiments, the disclosure relates to method of making compounds disclosed herein by mixing starting materials and reagents disclosed herein under conditions such that the compounds are formed.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates the preparation of β-D-N-hydroxycytidine. a. TBSCl, DMAP, DIPEA, DCM; b. (2,4,6-iPr)PhSO2Cl, DIPEA, DMAP, DCM; c. NH2OH—HCl, DIPEA, DCM; d. F— source; e. aq NH2OH, AcOH, 50° C.
  • FIG. 2 illustrates certain embodiments of the disclosure.
  • FIG. 3 illustrates certain embodiments of the disclosure.
  • FIG. 4 shows EIDD-01931 mean plasma concentrations and pharmacokinetic parameters from mice dosed with EIDD-01931
  • FIG. 5 shows EIDD-01931 nucleoside accumulation in mouse organs
  • FIG. 6 shows EIDD-01931 triphosphate accumulation in mouse organs
  • FIG. 7 shows reduction in footpad swelling in CHIKV challenged mice treat with EIDD-01931
  • FIG. 8 shows reduction of CHIKV RNA copies by PCR in CHIKV challenged mice treated with EIDD-01931
  • DETAILED DESCRIPTION
  • Before the present disclosure is described in greater detail, it is to be understood that this disclosure is not limited to particular embodiments described, and as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.
  • All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.
  • As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.
  • Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
  • In certain embodiments, a pharmaceutical agent, which may be in the form of a salt or prodrug, is administered in methods disclosed herein that is specified by a weight. This refers to the weight of the recited compound. If in the form of a salt or prodrug, then the weight is the molar equivalent of the corresponding salt or prodrug.
  • It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
  • “Subject” refers any animal, preferably a human patient, livestock, or domestic pet.
  • As used herein, the terms “prevent” and “preventing” include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity of the disease is reduced.
  • As used herein, the terms “treat” and “treating” are not limited to the case where the subject (e.g. patient) is cured and the disease is eradicated. Rather, embodiments, of the present disclosure also contemplate treatment that merely reduces symptoms, and/or delays disease progression.
  • As used herein, the term “combination with” when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.
  • As used herein, “alkyl” means a noncyclic straight chain or branched, unsaturated or saturated hydrocarbon such as those containing from 1 to 10 carbon atoms. A “higher alkyl” refers to unsaturated or saturated hydrocarbon having 6 or more carbon atoms. A “C6-C16” refers to an alkyl containing 6 to 16 carbon atoms. Likewise a “C6-C22” refers to an alkyl containing 6 to 22 carbon atoms. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-septyl, n-octyl, n-nonyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like. Unsaturated alkyls contain at least one double or triple bond between adjacent carbon atoms (referred to as an “alkenyl” or “alkynyl”, respectively). Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like; while representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, and the like.
  • Non-aromatic mono or polycyclic alkyls are referred to herein as “carbocycles” or “carbocyclyl” groups. Representative saturated carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated carbocycles include cyclopentenyl and cyclohexenyl, and the like.
  • “Heterocarbocycles” or heterocarbocyclyl” groups are carbocycles which contain from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur which may be saturated or unsaturated (but not aromatic), monocyclic or polycyclic, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized. Heterocarbocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
  • The term “aryl” refers to aromatic homocyclic (i.e., hydrocarbon) mono-, bi- or tricyclic ring-containing groups preferably having 6 to 12 members such as phenyl, naphthyl and biphenyl. Phenyl is a preferred aryl group. The term “substituted aryl” refers to aryl groups substituted with one or more groups, preferably selected from alkyl, substituted alkyl, alkenyl (optionally substituted), aryl (optionally substituted), heterocyclo (optionally substituted), halo, hydroxy, alkoxy (optionally substituted), aryloxy (optionally substituted), alkanoyl (optionally substituted), aroyl, (optionally substituted), alkylester (optionally substituted), arylester (optionally substituted), cyano, nitro, amino, substituted amino, amido, lactam, urea, urethane, sulfonyl, and, the like, where optionally one or more pair of substituents together with the atoms to which they are bonded form a 3 to 7 member ring.
  • As used herein, “heteroaryl” or “heteroaromatic” refers an aromatic heterocarbocycle having 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom, including both mono- and polycyclic ring systems. Polycyclic ring systems may, but are not required to, contain one or more non-aromatic rings, as long as one of the rings is aromatic. Representative heteroaryls are furyl, benzofuranyl, thiophenyl, benzothiophenyl, pyrrolyl, indolyl, isoindolyl, azaindolyl, pyridyl, quinolinyl, isoquinolinyl, oxazolyl, isooxazolyl, benzoxazolyl, pyrazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, and quinazolinyl. It is contemplated that the use of the term “heteroaryl” includes N-alkylated derivatives such as a 1-methylimidazol-5-yl substituent.
  • As used herein, “heterocycle” or “heterocyclyl” refers to mono- and polycyclic ring systems having 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom. The mono- and polycyclic ring systems may be aromatic, non-aromatic or mixtures of aromatic and non-aromatic rings. Heterocycle includes heterocarbocycles, heteroaryls, and the like.
  • “Alkylthio” refers to an alkyl group as defined above with the indicated number of carbon atoms attached through a sulfur bridge. An example of an alkylthio is methylthio, (i.e., —S—CH3).
  • “Alkoxy” refers to an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy. Preferred alkoxy groups are methoxy, ethoxy, n-propoxy, propoxy, n-butoxy, s-butoxy, t-butoxy.
  • “Alkylamino” refers an alkyl group as defined above with the indicated number of carbon atoms attached through an amino bridge. An example of an alkylamino is methylamino, (i.e., —NH—CH3).
  • “Alkanoyl” refers to an alkyl as defined above with the indicated number of carbon atoms attached through a carbonyl bride (i.e., —(C═O)alkyl).
  • “Alkylsulfonyl” refers to an alkyl as defined above with the indicated number of carbon atoms attached through a sulfonyl bridge (i.e., —S(═O)2alkyl) such as mesyl and the like, and “Arylsulfonyl” refers to an aryl attached through a sulfonyl bridge (i.e., —S(═O)2aryl).
  • “Alkylsulfamoyl” refers to an alkyl as defined above with the indicated number of carbon atoms attached through a sulfamoyl bridge (i.e., —NHS(═O)2alkyl), and an “Arylsulfamoyl” refers to an alkyl attached through a sulfamoyl bridge (i.e., —NHS(═O)2aryl).
  • “Alkylsulfinyl” refers to an alkyl as defined above with the indicated number of carbon atoms attached through a sulfinyl bridge (i.e. —S(═O)alkyl).
  • The terms “cycloalkyl” and “cycloalkenyl” refer to mono-, bi-, or tri homocyclic ring groups of 3 to 15 carbon atoms which are, respectively, fully saturated and partially unsaturated. The term “cycloalkenyl” includes bi- and tricyclic ring systems that are not aromatic as a whole, but contain aromatic portions (e.g., fluorene, tetrahydronapthalene, dihydroindene, and the like). The rings of multi-ring cycloalkyl groups may be either fused, bridged and/or joined through one or more spiro unions. The terms “substituted cycloalkyl” and “substituted cycloalkenyl” refer, respectively, to cycloalkyl and cycloalkenyl groups substituted with one or more groups, preferably selected from aryl, substituted aryl, heterocyclo, substituted heterocyclo, carbocyclo, substituted carbocyclo, halo, hydroxy, alkoxy (optionally substituted), aryloxy (optionally substituted), alkylester (optionally substituted), arylester (optionally substituted), alkanoyl (optionally substituted), aryol (optionally substituted), cyano, nitro, amino, substituted amino, amido, lactam, urea, urethane, sulfonyl, and the like.
  • The terms “halogen” and “halo” refer to fluorine, chlorine, bromine, and iodine.
  • The term “substituted” refers to a molecule wherein at least one hydrogen atom is replaced with a substituent. When substituted, one or more of the groups are “substituents.” The molecule may be multiply substituted. In the case of an oxo substituent (“═O”), two hydrogen atoms are replaced. Example substituents within this context may include halogen, hydroxy, alkyl, alkoxy, nitro, cyano, oxo, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —NRaRb, —NRaC(═O)Rb, —NRaC(═O)NRaNRb, —NRaC(═O)ORb, —NRaSO2Rb, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRb, —OC(═O)NRaRb, —ORa, —SRa, —SORa, —S(═O)2Ra, —OS(═O)2Ra and —S(═O)2ORa. Ra and Rb in this context may be the same or different and independently hydrogen, halogen hydroxyl, alkyl, alkoxy, alkyl, amino, alkylamino, dialkylamino, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl.
  • The term “optionally substituted,” as used herein, means that substitution is optional and therefore it is possible for the designated atom to be unsubstituted.
  • Compounds
  • In certain embodiments, the disclosure relates to a compound of Formula I,
  • Figure US20190022116A1-20190124-C00002
  • or salt thereof, wherein
  • Q is O, —O(C═O)—, —O(C═O)Lipid, —O(C═O)V—, NH, or NR7;
  • V is O, NH, NR7, S, CH2, or CHR7;
  • W is CH2, NH, S or O;
  • X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
  • Y is N or CR″;
  • Z is N or CR″;
  • each R″ is independently selected from H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • Figure US20190022116A1-20190124-C00003
    Figure US20190022116A1-20190124-C00004
    Figure US20190022116A1-20190124-C00005
  • alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
  • Y1 is O or S;
  • Y2 is OH, OR12, OAlkyl, or BH3 M+;
  • Y3 is OH or BH3 M+;
  • R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
  • R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
  • each R7 is independently selected from absent, hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
  • R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
  • R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
  • R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
  • R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
  • R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
  • R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
  • R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid, as used herein, is a C6-22 alkyl, alkoxy, polyethylene glycol, or aryl substituted with an alkyl group.
  • In certain embodiments, the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids.
  • In certain embodiments, the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids.
  • In certain embodiments, the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur.
  • In certain embodiments, the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur.
  • In certain embodiments, the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that is optionally substituted.
  • In certain embodiments, the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that is optionally substituted.
  • In certain embodiments, the lipid is a fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur that is optionally substituted.
  • In certain embodiments, the lipid is an unsaturated, polyunsaturated, omega unsaturated, or omega polyunsaturated fatty alcohol, fatty amine, or fatty thiol derived from essential and/or non-essential fatty acids that have one or more of its carbon units substituted with an oxygen, nitrogen, or sulfur that is also optionally substituted.
  • In certain embodiments, the lipid is hexadecyloxypropyl.
  • In certain embodiments, the lipid is 2-aminohexadecyloxypropyl.
  • In certain embodiments, the lipid is 2-aminoarachidyl.
  • In certain embodiments, the lipid is 2-benzyloxyhexadecyloxypropyl.
  • In certain embodiments, the lipid is lauryl, myristyl, palmityl, stearyl, arachidyl, behenyl, or lignoceryl.
  • In certain embodiments, the lipid is a sphingolipid having the formula:
  • Figure US20190022116A1-20190124-C00006
  • wherein,
  • R8 of the sphingolipid is hydrogen, alkyl, C(═O)R12, C(═O)OR12, or C(═O)NHR12;
  • R9 of the sphingolipid is hydrogen, fluoro, OR12, OC(═O)R12, OC(═O)OR12, or OC(═O)NHR12;
  • R10 of the sphingolipid is a saturated or unsaturated alkyl chain of greater than 6 and less than 22 carbons optionally substituted with one or more halogen or hydroxy or a structure of the following formula:
  • Figure US20190022116A1-20190124-C00007
  • n is 8 to 14 or less than or equal to 8 to less than or equal to 14, o is 9 to 15 or less than or equal to 9 to less than or equal to 15, the total or m and n is 8 to 14 or less than or equal to 8 to less than or equal to 14, the total of m and o is 9 to 15 or less than or equal to 9 to less than or equal to 15; or
  • Figure US20190022116A1-20190124-C00008
  • n is 4 to 10 or less than or equal to 4 to less than or equal to 10, o is 5 to 11 or less than or equal to 5 to less than or equal to 11, the total of m and n is 4 to 10 or less than or equal to 4 to less than or equal to 10, and the total of m and o is 5 to 11 or less than or equal to 5 to less than or equal to 11; or
  • Figure US20190022116A1-20190124-C00009
  • n is 6 to 12 or n is less than or equal to 6 to less than or equal to 12, the total of m and n is 6 to 12 or n is less than or equal to 6 to less than or equal to 12;
  • R11 of the sphingolipid is OR12, OC(═O)R12, OC(═O)OR12, or OC(═O)NHR12;
  • R12 of the sphingolipid is hydrogen, a branched or strait chain C1-12alkyl, C13-22alkyl, cycloalkyl, or aryl selected from benzyl or phenyl, wherein the aryl is optionally substituted with one or more, the same or different R13; and
  • R13 of the sphingolipid is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl.
  • In certain embodiments, R12 of the sphingolipid is H, alkyl, methyl, ethyl, propyl, n-butyl, branched alkyl, isopropyl, 2-butyl, 1-ethylpropyl, 1-propylbutyl, cycloalkyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, benzyl, phenyl, monosubstituted phenyl, disubstituted phenyl, trisubstituted phenyl, or saturated or unsaturated C12-C19 long chain alkyl.
  • In certain embodiments, the sphingolipid has the formula:
  • Figure US20190022116A1-20190124-C00010
  • wherein,
  • R8 of the sphingolipid is hydrogen, hydroxy, fluoro, OR12, OC(═O)R12, OC(═O)OR12, or OC(═O)NHR12;
  • R9 of the sphingolipid is hydrogen, hydroxy, fluoro, OR12, OC(═O)R12, OC(═O)OR12, or OC(═O)NHR12;
  • R10 of the sphingolipid is a saturated or unsaturated alkyl chain of greater than 6 and less than 22 carbons optionally substituted with one or more halogens or a structure of the following formula:
  • Figure US20190022116A1-20190124-C00011
  • n is 8 to 14 or less than or equal to 8 to less than or equal to 14, the total or m and n is 8 to 14 or less than or equal to 8 to less than or equal to 14;
  • R12 of the sphingolipid is hydrogen, a branched or strait chain C1-12alkyl, C13-22alkyl, cycloalkyl, or aryl selected from benzyl or phenyl, wherein the aryl is optionally substituted with one or more, the same or different R13; and
  • R13 of the sphingolipid is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl.
  • In certain embodiments, R12 of the sphingolipid is H, alkyl, methyl, ethyl, propyl, n-butyl, branched alkyl, isopropyl, 2-butyl, 1-ethylpropyl, 1-propylbutyl, cycloalkyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, benzyl, phenyl, monosubstituted phenyl, disubstituted phenyl, trisubstituted phenyl, or saturated or unsaturated C12-C19 long chain alkyl.
  • Suitable sphingolipids include, but are not limited to, sphingosine, ceramide, or sphingomyelin, or 2-aminoalkyl optionally substituted with one or more substituents.
  • Other suitable sphingolipids include, but are not limited to, 2-aminooctadecane-3,5-diol; (2S,3S,5S)-2-aminooctadecane-3,5-diol; (2S,3R,5S)-2-aminooctadecane-3,5-diol; 2-(methylamino)octadecane-3,5-diol; (2S,3R,5S)-2-(methylamino)octadecane-3,5-diol; 2-(dimethylamino)octadecane-3,5-diol; (2R,3S,5S)-2-(dimethylamino)octadecane-3,5-diol; 1-(pyrrolidin-2-yl)hexadecane-1,3-diol; (1S,3S)-1-((S)-pyrrolidin-2-yl)hexadecane-1,3-diol; 2-amino-11,11-difluorooctadecane-3,5-diol; (2S,3S,5S)-2-amino-11,11-difluorooctadecane-3,5-diol; 11,11-difluoro-2-(methylamino)octadecane-3,5-diol; (2S,3S,5S)-11,11-difluoro-2-(methylamino)octadecane-3,5-diol; N-((2S,3S,5S)-3,5-dihydroxyoctadecan-2-yl)acetamide; N-((2S,3S,5 S)-3,5-dihydroxyoctadecan-2-yl)palmitamide; 1-(1-aminocyclopropyl)hexadecane-1,3-diol; (1S,3R)-1-(1-aminocyclopropyl)hexadecane-1,3-diol; (1S,3S)-1-(1-aminocyclopropyl)hexadecane-1,3-diol; 2-amino-2-methyloctadecane-3,5-diol; (3S,5S)-2-amino-2-methyloctadecane-3,5-diol; (3S,5R)-2-amino-2-methyloctadecane-3,5-diol; (3S,5S)-2-methyl-2-(methylamino)octadecane-3,5-diol; 2-amino-5-hydroxy-2-methyloctadecan-3-one; (Z)-2-amino-5-hydroxy-2-methyloctadecan-3-one oxime; (2S,3R,5R)-2-amino-6,6-difluorooctadecane-3,5-diol; (2S,3S,5R)-2-amino-6,6-difluorooctadecane-3,5-diol; (2S,3S,5S)-2-amino-6,6-difluorooctadecane-3,5-diol; (2S,3R,5S)-2-amino-6,6-difluorooctadecane-3,5-diol; and (2S,3S,5S)-2-amino-18,18,18-trifluorooctadecane-3,5-diol; which may be optionally substituted with one or more substituents.
  • In certain embodiments, Q is O.
  • In certain embodiments, each R7 is independently selected from hydrogen, —(C═O)O(C6-C16)alkyl or —(C═O)O(C6-C22)alkyl.
  • In certain embodiments, R1 is
  • Figure US20190022116A1-20190124-C00012
  • In certain embodiments, R8 is hydrogen, hydroxy, or benzyloxy.
  • In certain embodiments, R9 is higher alkyl, (C6-C16)alkyl or (C6-C22)alkyl.
  • In certain embodiments, R9 is tert-butyl or isobutyl.
  • In certain embodiments, W is O;
  • In certain embodiments, Z is H.
  • In certain embodiments, R1 is hydrogen, monophosphate, diphosphate, triphospate,
  • Figure US20190022116A1-20190124-C00013
  • In certain embodiments, R8 is hydrogen, hydroxy, or benzyloxy.
  • In certain embodiments, R9 is higher alkyl, (C6-C16)alkyl or (C6-C22)alkyl.
  • In certain embodiments, R10 is isopropyl.
  • In certain embodiments, R11 is methyl.
  • In certain embodiments, R12 is phenyl.
  • In certain embodiments, R13 is hydrogen.
  • In certain embodiments, R14 is hydrogen.
  • In certain embodiments, R2 is hydrogen.
  • In certain embodiments, R3 is hydroxy.
  • In certain embodiments, R4 is hydrogen, hydroxy, alkyl, halogen, or fluoro.
  • In certain embodiments, R5 is hydrogen, hydroxy, alkoxy, alkyl, methyl, ethynyl, or allenyl.
  • In certain embodiments, R6 is hydrogen.
  • In certain embodiments, each R7 is independently selected from hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)Salkyl, —(C═O)O(C6-C16)alkyl, —(C═O)(C6-C16) alkyl, —(C═O)NH(C6-C16)alkyl, or —(C═O)S(C6-C16)alkyl.
  • In certain embodiments, the compound is selected from:
    • 1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-(hydroxyamino)pyrimidin-2(1H)-one,
    • 1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-((nonanoyloxy)amino)pyrimidin-2(1H)-one, and
    • 1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-((((heptyloxy)carbonyl)oxy)amino)pyrimidin-2(1H)-one.
  • In certain embodiments, the disclosure relates to a compound of formula I having formula IA,
  • Figure US20190022116A1-20190124-C00014
  • or salts thereof,
  • X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
  • Y is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • Figure US20190022116A1-20190124-C00015
    Figure US20190022116A1-20190124-C00016
    Figure US20190022116A1-20190124-C00017
  • alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
  • Y1 is O or S;
  • Y2 is OH, OR12, OAlkyl, or BH3 M+;
  • Y3 is OH or BH3 M+;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • Each R7 is independently selected from hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
  • R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
  • R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
  • R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
  • R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
  • R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
  • R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
  • R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid as described herein.
  • In certain embodiments, the disclosure relates to a compound of formula I has formula IB,
  • Figure US20190022116A1-20190124-C00018
  • or salts thereof, wherein
  • V is absent, O, NH, NR15, S, CH2, or CHR15;
  • X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
  • Y is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • Figure US20190022116A1-20190124-C00019
    Figure US20190022116A1-20190124-C00020
    Figure US20190022116A1-20190124-C00021
  • alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
  • Y1 is O or S;
  • Y2 is OH, OR12, OAlkyl, or BH3 M+;
  • Y3 is OH or BH3 M+;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
  • R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
  • R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
  • R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
  • R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
  • R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
  • R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
  • R15 is hydrogen, Lipid, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid as described herein.
  • In certain embodiments, the disclosure relates to a compound of formula I having formula IC,
  • Figure US20190022116A1-20190124-C00022
  • or salts thereof, wherein
  • X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
  • Y is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • Figure US20190022116A1-20190124-C00023
    Figure US20190022116A1-20190124-C00024
    Figure US20190022116A1-20190124-C00025
  • alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
  • Y1 is O or S;
  • Y2 is OH, OR12, OAlkyl, or BH3 M+;
  • Y3 is OH or BH3 M+;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
  • R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
  • R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
  • R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
  • R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
  • R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
  • R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
  • R15 is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid as described herein.
  • In certain embodiments, the disclosure relates to a compound of formula I having formula ID,
  • Figure US20190022116A1-20190124-C00026
  • or salt thereof, wherein
  • W is CH2, NH, S or O;
  • X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
  • Y is N or CR″;
  • Z is N or CR″;
  • each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R1 is hydrogen, monophosphate, diphosphate, triphosphate,
  • Figure US20190022116A1-20190124-C00027
    Figure US20190022116A1-20190124-C00028
    Figure US20190022116A1-20190124-C00029
  • alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
  • Y1 is O or S;
  • Y2 is OH, OR12, OAlkyl, or BH3 M+;
  • Y3 is OH or BH3 M+;
  • R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
  • R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
  • R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
  • R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
  • R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
  • R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
  • R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
  • R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
  • R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
  • R15 is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
  • R15′ is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
  • R15 and R15′ can form a ring that is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid as described herein.
  • In certain embodiments, the disclosure relates to a compound of formula I having formula IE,
  • Figure US20190022116A1-20190124-C00030
  • or salt thereof, wherein
  • Q is O, —O(C═O)—, —O(C═O)Lipid, —O(C═O)V—, NH, or NR7;
  • V is O, NH, NR7, S, CH2, or CHR7;
  • W is CH2, NH, S or O;
  • X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
  • Y is N or CR″;
  • Z is N or CR″;
  • each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
  • R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
  • each R7 is independently selected from absent, hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
  • R15 is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
  • R15′ is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
  • R15 and R15′ can form a ring that is optionally substituted with one or more, the same or different, R20;
  • If Q=-O(C═O)V— and V=NR7 then the R7s can together form a ring that is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid as described herein.
  • In certain embodiments, the disclosure relates to a compound of Formula II,
  • Figure US20190022116A1-20190124-C00031
  • or salt thereof, wherein
  • Q is O, —O(C═O)—, —O(C═O)Lipid, —O(C═O)V—, NH, or NR7;
  • V is O, NH, NR7, S, CH2, or CHR7;
  • W is CH2, NH, S or O;
  • X is CH2 or O;
  • Y is N or CR″;
  • Z is N or CR″;
  • each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
  • R1 is monophosphate, diphosphate, triphosphate,
  • Figure US20190022116A1-20190124-C00032
    Figure US20190022116A1-20190124-C00033
    Figure US20190022116A1-20190124-C00034
  • Y1 is O or S;
  • Y2 is OH, OR12, OAlkyl, or BH3 M+;
  • Y3 is OH or BH3 M+;
  • R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
  • R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
  • R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
  • R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
  • each R7 is independently selected from absent, hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
  • R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
  • R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
  • R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
  • R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
  • R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
  • R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein IC is optionally substituted with one or more, the same or different, R20;
  • R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
  • If Q=-O(C═O)V— and V=NR7 then the R7s can together form a ring that is optionally substituted with one or more, the same or different, R20;
  • R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
  • R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
  • Lipid as described herein.
  • In certain embodiments, any citation of higher alkyl, (C6-C16)alkyl may be substituted with a (C6-C22)alkyl.
  • In certain embodiments, any citation of higher alkyl, (C6-C16)alkyl or (C6-C22)alkyl may be substituted with polyethylene glycol or —CH2(CH2OCH2)nCH3, wherein n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, or 30-100.
  • Methods of Use
  • In certain embodiments, the disclosure relates to methods of treating or preventing a viral infection comprising administering in effective amount of a compound disclosed herein to a subject in need thereof.
  • In certain embodiments, the viral infection is, or is caused by, an alphavirus, flavivirus or coronaviruses orthomyxoviridae or paramyxoviridae, or RSV, influenza, Powassan virus or filoviridae or ebola.
  • In certain embodiments, the viral infection is, or is caused by, a virus selected from MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Ross River virus, Barmah Forest virus, Powassan virus and Chikungunya virus.
  • In certain embodiments, the compound is administered by inhalation through the lungs.
  • In some embodiments, the subject is at risk of, exhibiting symptoms of, or diagnosed with influenza A virus including subtype H1N1, H3N2, H7N9, or H5N1, influenza B virus, influenza C virus, rotavirus A, rotavirus B, rotavirus C, rotavirus D, rotavirus E, human coronavirus, SARS coronavirus, MERS coronavirus, human adenovirus types (HAdV-1 to 55), human papillomavirus (HPV) Types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59, parvovirus B19, molluscum contagiosum virus, JC virus (JCV), BK virus, Merkel cell polyomavirus, coxsackie A virus, norovirus, Rubella virus, lymphocytic choriomeningitis virus (LCMV), Dengue virus, chikungunya, Eastern equine encephalitis virus (EEEV), Western equine encephalitis virus (WEEV), Venezuelan equine encephalitis virus (VEEV), Ross River virus, Barmah Forest virus, yellow fever virus, measles virus, mumps virus, respiratory syncytial virus, rinderpest virus, California encephalitis virus, hantavirus, rabies virus, ebola virus, marburg virus, herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes lymphotropic virus, roseolovirus, or Kaposi's sarcoma-associated herpesvirus, hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E or human immunodeficiency virus (HIV), The Human T-lymphotropic virus Type I (HTLV-1), Friend spleen focus-forming virus (SFFV) or Xenotropic MuLV-Related Virus (XMRV).
  • In certain embodiments, the subject is diagnosed with influenza A virus including subtypes H1N1, H3N2, H7N9, H5N1 (low path), and H5N1 (high path) influenza B virus, influenza C virus, rotavirus A, rotavirus B, rotavirus C, rotavirus D, rotavirus E, SARS coronavirus, MERS-CoV, human adenovirus types (HAdV-1 to 55), human papillomavirus (HPV) Types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59, parvovirus B19, molluscum contagiosum virus, JC virus (JCV), BK virus, Merkel cell polyomavirus, coxsackie A virus, norovirus, Rubella virus, lymphocytic choriomeningitis virus (LCMV), yellow fever virus, measles virus, mumps virus, respiratory syncytial virus, parainfluenza viruses 1 and 3, rinderpest virus, chikungunya, eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), western equine encephalitis virus (WEEV), California encephalitis virus, Japanese encephalitis virus, Rift Valley fever virus (RVFV), hantavirus, Dengue virus serotypes 1, 2, 3 and 4, West Nile virus, Tacaribe virus, Junin, rabies virus, ebola virus, marburg virus, adenovirus, herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes lymphotropic virus, roseolovirus, or Kaposi's sarcoma-associated herpesvirus, hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E or human immunodeficiency virus (HIV).
  • In certain embodiments, the subject is diagnosed with gastroenteritis, acute respiratory disease, severe acute respiratory syndrome, post-viral fatigue syndrome, viral hemorrhagic fevers, acquired immunodeficiency syndrome or hepatitis.
  • In certain embodiments, compounds and pharmaceutical compositions disclosed herein are contemplated to be administered in combination with other the antiviral agent(s) such as abacavir, acyclovir, acyclovir, adefovir, amantadine, amprenavir, ampligen, arbidol, atazanavir, atripla, boceprevir, cidofovir, combivir, daclatasvir, darunavir, dasabuvir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, famciclovir, fomivirsen, fosamprenavir, foscarnet, fosfonet, ganciclovir, ibacitabine, imunovir, idoxuridine, imiquimod, indinavir, inosine, interferon type III, interferon type II, interferon type I, lamivudine, ledipasvir, lopinavir, loviride, maraviroc, moroxydine, methisazone, nelfinavir, nevirapine, nexavir, ombitasvir, oseltamivir, paritaprevir, peginterferon alfa-2a, penciclovir, peramivir, pleconaril, podophyllotoxin, raltegravir, ribavirin, rimantadine, ritonavir, pyramidine, saquinavir, simeprevir, sofosbuvir, stavudine, telaprevir, telbivudine, tenofovir, tenofovir disoproxil, tipranavir, trifluridine, trizivir, tromantadine, truvada, valaciclovir, valganciclovir, vicriviroc, vidarabine, viramidine zalcitabine, zanamivir, or zidovudine and combinations thereof.
  • Formulations
  • Pharmaceutical compositions disclosed herein may be in the form of pharmaceutically acceptable salts, as generally described below. Some preferred, but non-limiting examples of suitable pharmaceutically acceptable organic and/or inorganic acids are hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, acetic acid and citric acid, as well as other pharmaceutically acceptable acids known per se (for which reference is made to the references referred to below).
  • When the compounds of the disclosure contain an acidic group as well as a basic group, the compounds of the disclosure may also form internal salts, and such compounds are within the scope of the disclosure. When a compound contains a hydrogen-donating heteroatom (e.g. NH), salts are contemplated to covers isomers formed by transfer of said hydrogen atom to a basic group or atom within the molecule.
  • Pharmaceutically acceptable salts of the compounds include the acid addition and base salts thereof. Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include the acetate, adipate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulphate/sulphate, borate, camsylate, citrate, cyclamate, edisylate, esylate, formate, fumarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, mesylate, methylsulphate, naphthylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, pyroglutamate, saccharate, stearate, succinate, tannate, tartrate, tosylate, trifluoroacetate and xinofoate salts. Suitable base salts are formed from bases which form non-toxic salts. Examples include the aluminium, arginine, benzathine, calcium, choline, diethylamine, diolamine, glycine, lysine, magnesium, meglumine, olamine, potassium, sodium, tromethamine and zinc salts. Hemisalts of acids and bases may also be formed, for example, hemisulphate and hemicalcium salts. For a review on suitable salts, see Handbook of Pharmaceutical Salts: Properties, Selection, and Use by Stahl and Wermuth (Wiley-VCH, 2002), incorporated herein by reference.
  • The compounds described herein may be administered in the form of prodrugs. A prodrug can include a covalently bonded carrier which releases the active parent drug when administered to a mammalian subject. Prodrugs can be prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include, for example, compounds wherein a hydroxyl group is bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl group. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol functional groups in the compounds. Methods of structuring a compound as prodrugs can be found in the book of Testa and Mayer, Hydrolysis in Drug and Prodrug Metabolism, Wiley (2006). Typical prodrugs form the active metabolite by transformation of the prodrug by hydrolytic enzymes, the hydrolysis of amide, lactams, peptides, carboxylic acid esters, epoxides or the cleavage of esters of inorganic acids.
  • Pharmaceutical compositions for use in the present disclosure typically comprise an effective amount of a compound and a suitable pharmaceutical acceptable carrier. The preparations may be prepared in a manner known per se, which usually involves mixing the at least one compound according to the disclosure with the one or more pharmaceutically acceptable carriers, and, if desired, in combination with other pharmaceutical active compounds, when necessary under aseptic conditions. Reference is again made to U.S. Pat. No. 6,372,778, U.S. Pat. No. 6,369,086, U.S. Pat. No. 6,369,087 and U.S. Pat. No. 6,372,733 and the further references mentioned above, as well as to the standard handbooks, such as the latest edition of Remington's Pharmaceutical Sciences.
  • Generally, for pharmaceutical use, the compounds may be formulated as a pharmaceutical preparation comprising at least one compound and at least one pharmaceutically acceptable carrier, diluent or excipient and/or adjuvant, and optionally one or more further pharmaceutically active compounds.
  • The pharmaceutical preparations of the disclosure are preferably in a unit dosage form, and may be suitably packaged, for example in a box, blister, vial, bottle, sachet, ampoule or in any other suitable single-dose or multi-dose holder or container (which may be properly labeled); optionally with one or more leaflets containing product information and/or instructions for use. Generally, such unit dosages will contain between 1 and 1000 mg, and usually between 5 and 500 mg, of the at least one compound of the disclosure, e.g. about 10, 25, 50, 100, 200, 300 or 400 mg per unit dosage.
  • The compounds can be administered by a variety of routes including the oral, ocular, rectal, transdermal, subcutaneous, intravenous, intramuscular or intranasal routes, depending mainly on the specific preparation used. The compound will generally be administered in an “effective amount”, by which is meant any amount of a compound that, upon suitable administration, is sufficient to achieve the desired therapeutic or prophylactic effect in the subject to which it is administered. Usually, depending on the condition to be prevented or treated and the route of administration, such an effective amount will usually be between 0.01 to 1000 mg per kilogram body weight of the patient per day, more often between 0.1 and 500 mg, such as between 1 and 250 mg, for example about 5, 10, 20, 50, 100, 150, 200 or 250 mg, per kilogram body weight of the patient per day, which may be administered as a single daily dose, divided over one or more daily doses. The amount(s) to be administered, the route of administration and the further treatment regimen may be determined by the treating clinician, depending on factors such as the age, gender and general condition of the patient and the nature and severity of the disease/symptoms to be treated. Reference is again made to U.S. Pat. No. 6,372,778, U.S. Pat. No. 6,369,086, U.S. Pat. No. 6,369,087 and U.S. Pat. No. 6,372,733 and the further references mentioned above, as well as to the standard handbooks, such as the latest edition of Remington's Pharmaceutical Sciences.
  • Depending upon the manner of introduction, the compounds described herein may be formulated in a variety of ways. Formulations containing one or more compounds can be prepared in various pharmaceutical forms, such as granules, tablets, capsules, suppositories, powders, controlled release formulations, suspensions, emulsions, creams, gels, ointments, salves, lotions, or aerosols and the like. Preferably, these formulations are employed in solid dosage forms suitable for simple, and preferably oral, administration of precise dosages. Solid dosage forms for oral administration include, but are not limited to, tablets, soft or hard gelatin or non-gelatin capsules, and caplets. However, liquid dosage forms, such as solutions, syrups, suspension, shakes, etc. can also be utilized. In another embodiment, the formulation is administered topically. Suitable topical formulations include, but are not limited to, lotions, ointments, creams, and gels. In a preferred embodiment, the topical formulation is a gel. In another embodiment, the formulation is administered intranasally.
  • Formulations containing one or more of the compounds described herein may be prepared using a pharmaceutically acceptable carrier composed of materials that are considered safe and effective and may be administered to an individual without causing undesirable biological side effects or unwanted interactions. The carrier is all components present in the pharmaceutical formulation other than the active ingredient or ingredients. As generally used herein “carrier” includes, but is not limited to, diluents, binders, lubricants, disintegrators, fillers, pH modifying agents, preservatives, antioxidants, solubility enhancers, and coating compositions.
  • Carrier also includes all components of the coating composition which may include plasticizers, pigments, colorants, stabilizing agents, and glidants. Delayed release, extended release, and/or pulsatile release dosage formulations may be prepared as described in standard references such as “Pharmaceutical dosage form tablets”, eds. Liberman et. al. (New York, Marcel Dekker, Inc., 1989), “Remington—The science and practice of pharmacy”, 20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000, and “Pharmaceutical dosage forms and drug delivery systems”, 6th Edition, Ansel et al., (Media, Pa.: Williams and Wilkins, 1995). These references provide information on carriers, materials, equipment and process for preparing tablets and capsules and delayed release dosage forms of tablets, capsules, and granules.
  • Examples of suitable coating materials include, but are not limited to, cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and methacrylic resins that are commercially available under the trade name EUDRAGIT® (Roth Pharma, Westerstadt, Germany), zein, shellac, and polysaccharides.
  • Additionally, the coating material may contain conventional carriers such as plasticizers, pigments, colorants, glidants, stabilization agents, pore formers and surfactants.
  • Optional pharmaceutically acceptable excipients present in the drug-containing tablets, beads, granules or particles include, but are not limited to, diluents, binders, lubricants, disintegrants, colorants, stabilizers, and surfactants. Diluents, also referred to as “fillers,” are typically necessary to increase the bulk of a solid dosage form so that a practical size is provided for compression of tablets or formation of beads and granules. Suitable diluents include, but are not limited to, dicalcium phosphate dihydrate, calcium sulfate, lactose, sucrose, mannitol, sorbitol, cellulose, microcrystalline cellulose, kaolin, sodium chloride, dry starch, hydrolyzed starches, pregelatinized starch, silicone dioxide, titanium oxide, magnesium aluminum silicate and powdered sugar.
  • Binders are used to impart cohesive qualities to a solid dosage formulation, and thus ensure that a tablet or bead or granule remains intact after the formation of the dosage forms. Suitable binder materials include, but are not limited to, starch, pregelatinized starch, gelatin, sugars (including sucrose, glucose, dextrose, lactose and sorbitol), polyethylene glycol, waxes, natural and synthetic gums such as acacia, tragacanth, sodium alginate, cellulose, including hydroxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose, and veegum, and synthetic polymers such as acrylic acid and methacrylic acid copolymers, methacrylic acid copolymers, methyl methacrylate copolymers, aminoalkyl methacrylate copolymers, polyacrylic acid/polymethacrylic acid and polyvinylpyrrolidone.
  • Lubricants are used to facilitate tablet manufacture. Examples of suitable lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, glycerol behenate, polyethylene glycol, talc, and mineral oil.
  • Disintegrants are used to facilitate dosage form disintegration or “breakup” after administration, and generally include, but are not limited to, starch, sodium starch glycolate, sodium carboxymethyl starch, sodium carboxymethylcellulose, hydroxypropyl cellulose, pregelatinized starch, clays, cellulose, alginine, gums or cross linked polymers, such as cross-linked PVP (Polyplasdone XL from GAF Chemical Corp).
  • Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions.
  • Surfactants may be anionic, cationic, amphoteric or nonionic surface active agents. Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions. Examples of anionic surfactants include sodium, potassium, ammonium of long chain alkyl sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis-(2-ethylthioxyl)-sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate. Cationic surfactants include, but are not limited to, quaternary ammonium compounds such as benzalkonium chloride, benzethonium chloride, cetrimonium bromide, stearyl dimethylbenzyl ammonium chloride, polyoxyethylene and coconut amine. Examples of nonionic surfactants include ethylene glycol monostearate, propylene glycol myristate, glyceryl monostearate, glyceryl stearate, polyglyceryl-4-oleate, sorbitan acylate, sucrose acylate, PEG-150 laurate, PEG-400 monolaurate, polyoxyethylene monolaurate, polysorbates, polyoxyethylene octylphenylether, PEG-1000 cetyl ether, polyoxyethylene tridecyl ether, polypropylene glycol butyl ether, Poloxamer® 401, stearoyl monoisopropanolamide, and polyoxyethylene hydrogenated tallow amide. Examples of amphoteric surfactants include sodium N-dodecyl-.beta.-alanine, sodium N-lauryl-.beta.-iminodipropionate, myristoamphoacetate, lauryl betaine and lauryl sulfobetaine.
  • If desired, the tablets, beads, granules, or particles may also contain minor amount of nontoxic auxiliary substances such as wetting or emulsifying agents, dyes, pH buffering agents, or preservatives.
  • The concentration of the compound to carrier and/or other substances may vary from about 0.5 to about 100 wt. % (weight percent). For oral use, the pharmaceutical formulation will generally contain from about 5 to about 100% by weight of the active material. For other uses, the pharmaceutical formulation will generally have from about 0.5 to about 50 wt. % of the active material.
  • The compositions described herein can be formulation for modified or controlled release. Examples of controlled release dosage forms include extended release dosage forms, delayed release dosage forms, pulsatile release dosage forms, and combinations thereof.
  • The extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in “Remington—The science and practice of pharmacy” (20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000). A diffusion system typically consists of two types of devices, a reservoir and a matrix, and is well known and described in the art. The matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form. The three major types of materials used in the preparation of matrix devices are insoluble plastics, hydrophilic polymers, and fatty compounds. Plastic matrices include, but are not limited to, methyl acrylate-methyl methacrylate, polyvinyl chloride, and polyethylene. Hydrophilic polymers include, but are not limited to, cellulosic polymers such as methyl and ethyl cellulose, hydroxyalkylcelluloses such as hydroxypropyl-cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and Carbopol® 934, polyethylene oxides and mixtures thereof. Fatty compounds include, but are not limited to, various waxes such as carnauba wax and glyceryl tristearate and wax-type substances including hydrogenated castor oil or hydrogenated vegetable oil, or mixtures thereof.
  • In certain preferred embodiments, the plastic material is a pharmaceutically acceptable acrylic polymer, including but not limited to, acrylic acid and methacrylic acid copolymers, methyl methacrylate, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamine copolymer poly(methyl methacrylate), poly(methacrylic acid)(anhydride), polymethacrylate, polyacrylamide, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
  • In one preferred embodiment, the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the tradename Eudragit®. In further preferred embodiments, the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the tradenames Eudragit® RL30D and Eudragit RS30D, respectively. Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. Edragit® S-100 and Eudragit® L-100 are also preferred. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
  • The polymers described above such as Eudragit® RL/RS may be mixed together in any desired ratio in order to ultimately obtain a sustained-release formulation having a desirable dissolution profile. Desirable sustained-release multiparticulate systems may be obtained, for instance, from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL and 90% Eudragit® RS. One skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
  • Alternatively, extended release formulations can be prepared using osmotic systems or by applying a semi-permeable coating to the dosage form. In the latter case, the desired drug release profile can be achieved by combining low permeable and high permeable coating materials in suitable proportion.
  • The devices with different drug release mechanisms described above can be combined in a final dosage form comprising single or multiple units. Examples of multiple units include, but are not limited to, multilayer tablets and capsules containing tablets, beads, or granules. An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core using a coating or compression process or in a multiple unit system such as a capsule containing extended and immediate release beads.
  • Extended release tablets containing hydrophilic polymers are prepared by techniques commonly known in the art such as direct compression, wet granulation, or dry granulation. Their formulations usually incorporate polymers, diluents, binders, and lubricants as well as the active pharmaceutical ingredient. The usual diluents include inert powdered substances such as starches, powdered cellulose, especially crystalline and microcrystalline cellulose, sugars such as fructose, mannitol and sucrose, grain flours and similar edible powders. Typical diluents include, for example, various types of starch, lactose, mannitol, kaolin, calcium phosphate or sulfate, inorganic salts such as sodium chloride and powdered sugar. Powdered cellulose derivatives are also useful. Typical tablet binders include substances such as starch, gelatin and sugars such as lactose, fructose, and glucose. Natural and synthetic gums, including acacia, alginates, methylcellulose, and polyvinylpyrrolidone can also be used. Polyethylene glycol, hydrophilic polymers, ethylcellulose and waxes can also serve as binders. A lubricant is necessary in a tablet formulation to prevent the tablet and punches from sticking in the die. The lubricant is chosen from such slippery solids as talc, magnesium and calcium stearate, stearic acid and hydrogenated vegetable oils.
  • Extended release tablets containing wax materials are generally prepared using methods known in the art such as a direct blend method, a congealing method, and an aqueous dispersion method. In the congealing method, the drug is mixed with a wax material and either spray—congealed or congealed and screened and processed.
  • Delayed release formulations are created by coating a solid dosage form with a polymer film, which is insoluble in the acidic environment of the stomach, and soluble in the neutral environment of the small intestine.
  • The delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material. The drug-containing composition may be, e.g., a tablet for incorporation into a capsule, a tablet for use as an inner core in a “coated core” dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule. Preferred coating materials include bioerodible, gradually hydrolyzable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional “enteric” polymers. Enteric polymers, as will be appreciated by those skilled in the art, become soluble in the higher pH environment of the lower gastrointestinal tract or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon. Suitable coating materials for effecting delayed release include, but are not limited to, cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropylmethyl cellulose phthalate, methylcellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, preferably formed from acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate, and other methacrylic resins that are commercially available under the tradename Eudragit® (Rohm Pharma; Westerstadt, Germany), including Eudragit® L30D-55 and L100-55 (soluble at pH 5.5 and above), Eudragit® L-100 (soluble at pH 6.0 and above), Eudragit® S (soluble at pH 7.0 and above, as a result of a higher degree of esterification), and Eudragits® NE, RL and RS (water-insoluble polymers having different degrees of permeability and expandability); vinyl polymers and copolymers such as polyvinyl pyrrolidone, vinyl acetate, vinylacetate phthalate, vinylacetate crotonic acid copolymer, and ethylene-vinyl acetate copolymer; enzymatically degradable polymers such as azo polymers, pectin, chitosan, amylose and guar gum; zein and shellac. Combinations of different coating materials may also be used. Multi-layer coatings using different polymers may also be applied.
  • The preferred coating weights for particular coating materials may be readily determined by those skilled in the art by evaluating individual release profiles for tablets, beads and granules prepared with different quantities of various coating materials. It is the combination of materials, method and form of application that produce the desired release characteristics, which one can determine only from the clinical studies.
  • The coating composition may include conventional additives, such as plasticizers, pigments, colorants, stabilizing agents, glidants, etc. A plasticizer is normally present to reduce the fragility of the coating, and will generally represent about 10 wt. % to 50 wt. % relative to the dry weight of the polymer. Examples of typical plasticizers include polyethylene glycol, propylene glycol, triacetin, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dibutyl sebacate, triethyl citrate, tributyl citrate, triethyl acetyl citrate, castor oil and acetylated monoglycerides. A stabilizing agent is preferably used to stabilize particles in the dispersion. Typical stabilizing agents are nonionic emulsifiers such as sorbitan esters, polysorbates and polyvinylpyrrolidone. Glidants are recommended to reduce sticking effects during film formation and drying, and will generally represent approximately 25 wt. % to 100 wt. % of the polymer weight in the coating solution. One effective glidant is talc. Other glidants such as magnesium stearate and glycerol monostearates may also be used. Pigments such as titanium dioxide may also be used. Small quantities of an anti-foaming agent, such as a silicone (e.g., simethicone), may also be added to the coating composition.
  • The formulation can provide pulsatile delivery of the one or more compounds. By “pulsatile” is meant that a plurality of drug doses are released at spaced apart intervals of time. Generally, upon ingestion of the dosage form, release of the initial dose is substantially immediate, i.e., the first drug release “pulse” occurs within about one hour of ingestion. This initial pulse is followed by a first time interval (lag time) during which very little or no drug is released from the dosage form, after which a second dose is then released. Similarly, a second nearly drug release-free interval between the second and third drug release pulses may be designed. The duration of the nearly drug release-free time interval will vary depending upon the dosage form design e.g., a twice daily dosing profile, a three times daily dosing profile, etc. For dosage forms providing a twice daily dosage profile, the nearly drug release-free interval has a duration of approximately 3 hours to 14 hours between the first and second dose. For dosage forms providing a three times daily profile, the nearly drug release-free interval has a duration of approximately 2 hours to 8 hours between each of the three doses.
  • In one embodiment, the pulsatile release profile is achieved with dosage forms that are closed and preferably sealed capsules housing at least two drug-containing “dosage units” wherein each dosage unit within the capsule provides a different drug release profile. Control of the delayed release dosage unit(s) is accomplished by a controlled release polymer coating on the dosage unit, or by incorporation of the active agent in a controlled release polymer matrix. Each dosage unit may comprise a compressed or molded tablet, wherein each tablet within the capsule provides a different drug release profile. For dosage forms mimicking a twice a day dosing profile, a first tablet releases drug substantially immediately following ingestion of the dosage form, while a second tablet releases drug approximately 3 hours to less than 14 hours following ingestion of the dosage form. For dosage forms mimicking a three times daily dosing profile, a first tablet releases drug substantially immediately following ingestion of the dosage form, a second tablet releases drug approximately 3 hours to less than 10 hours following ingestion of the dosage form, and the third tablet releases drug at least 5 hours to approximately 18 hours following ingestion of the dosage form. It is possible that the dosage form includes more than three tablets. While the dosage form will not generally include more than a third tablet, dosage forms housing more than three tablets can be utilized.
  • Alternatively, each dosage unit in the capsule may comprise a plurality of drug-containing beads, granules or particles. As is known in the art, drug-containing “beads” refer to beads made with drug and one or more excipients or polymers. Drug-containing beads can be produced by applying drug to an inert support, e.g., inert sugar beads coated with drug or by creating a “core” comprising both drug and one or more excipients. As is also known, drug-containing “granules” and “particles” comprise drug particles that may or may not include one or more additional excipients or polymers. In contrast to drug-containing beads, granules and particles do not contain an inert support. Granules generally comprise drug particles and require further processing. Generally, particles are smaller than granules, and are not further processed. Although beads, granules and particles may be formulated to provide immediate release, beads and granules are generally employed to provide delayed release.
  • In one embodiment, the compound is formulated for topical administration. Suitable topical dosage forms include lotions, creams, ointments, and gels. A “gel” is a semisolid system containing a dispersion of the active agent, i.e., compound, in a liquid vehicle that is rendered semisolid by the action of a thickening agent or polymeric material dissolved or suspended in the liquid vehicle. The liquid may include a lipophilic component, an aqueous component or both. Some emulsions may be gels or otherwise include a gel component. Some gels, however, are not emulsions because they do not contain a homogenized blend of immiscible components. Methods for preparing lotions, creams, ointments, and gels are well known in the art.
  • The compound described herein can be administered adjunctively with other active compounds. These compounds include but are not limited to analgesics, anti-inflammatory drugs, antipyretics, antidepressants, antiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti-asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics and anti-narcoleptics. “Adjunctive administration”, as used herein, means the compound can be administered in the same dosage form or in separate dosage forms with one or more other active agents.
  • Specific examples of compounds that can be adjunctively administered with the compounds include, but are not limited to, aceclofenac, acetaminophen, adomexetine, almotriptan, alprazolam, amantadine, amcinonide, aminocyclopropane, amitriptyline, amolodipine, amoxapine, amphetamine, aripiprazole, aspirin, atomoxetine, azasetron, azatadine, beclomethasone, benactyzine, benoxaprofen, bermoprofen, betamethasone, bicifadine, bromocriptine, budesonide, buprenorphine, bupropion, buspirone, butorphanol, butriptyline, caffeine, carbamazepine, carbidopa, carisoprodol, celecoxib, chlordiazepoxide, chlorpromazine, choline salicylate, citalopram, clomipramine, clonazepam, clonidine, clonitazene, clorazepate, clotiazepam, cloxazolam, clozapine, codeine, corticosterone, cortisone, cyclobenzaprine, cyproheptadine, demexiptiline, desipramine, desomorphine, dexamethasone, dexanabinol, dextroamphetamine sulfate, dextromoramide, dextropropoxyphene, dezocine, diazepam, dibenzepin, diclofenac sodium, diflunisal, dihydrocodeine, dihydroergotamine, dihydromorphine, dimetacrine, divalproxex, dizatriptan, dolasetron, donepezil, dothiepin, doxepin, duloxetine, ergotamine, escitalopram, estazolam, ethosuximide, etodolac, femoxetine, fenamates, fenoprofen, fentanyl, fludiazepam, fluoxetine, fluphenazine, flurazepam, flurbiprofen, flutazolam, fluvoxamine, frovatriptan, gabapentin, galantamine, gepirone, ginko bilboa, granisetron, haloperidol, huperzine A, hydrocodone, hydrocortisone, hydromorphone, hydroxyzine, ibuprofen, imipramine, indiplon, indomethacin, indoprofen, iprindole, ipsapirone, ketaserin, ketoprofen, ketorolac, lesopitron, levodopa, lipase, lofepramine, lorazepam, loxapine, maprotiline, mazindol, mefenamic acid, melatonin, melitracen, memantine, meperidine, meprobamate, mesalamine, metapramine, metaxalone, methadone, methadone, methamphetamine, methocarbamol, methyldopa, methylphenidate, methyl salicylate, methysergid(e), metoclopramide, mianserin, mifepristone, milnacipran, minaprine, mirtazapine, moclobemide, modafinil (an anti-narcoleptic), molindone, morphine, morphine hydrochloride, nabumetone, nadolol, naproxen, naratriptan, nefazodone, neurontin, nomifensine, nortriptyline, olanzapine, olsalazine, ondansetron, opipramol, orphenadrine, oxaflozane, oxaprazin, oxazepam, oxitriptan, oxycodone, oxymorphone, pancrelipase, parecoxib, paroxetine, pemoline, pentazocine, pepsin, perphenazine, phenacetin, phendimetrazine, phenmetrazine, phenylbutazone, phenytoin, phosphatidylserine, pimozide, pirlindole, piroxicam, pizotifen, pizotyline, pramipexole, prednisolone, prednisone, pregabalin, propanolol, propizepine, propoxyphene, protriptyline, quazepam, quinupramine, reboxitine, reserpine, risperidone, ritanserin, rivastigmine, rizatriptan, rofecoxib, ropinirole, rotigotine, salsalate, sertraline, sibutramine, sildenafil, sulfasalazine, sulindac, sumatriptan, tacrine, temazepam, tetrabenozine, thiazides, thioridazine, thiothixene, tiapride, tiasipirone, tizanidine, tofenacin, tolmetin, toloxatone, topiramate, tramadol, trazodone, triazolam, trifluoperazine, trimethobenzamide, trimipramine, tropisetron, valdecoxib, valproic acid, venlafaxine, viloxazine, vitamin E, zimeldine, ziprasidone, zolmitriptan, zolpidem, zopiclone and isomers, salts, and combinations thereof.
  • The additional active agent(s) can be formulated for immediate release, controlled release, or combinations thereof.
  • EXAMPLES Example 1. The synthesis of N4-hydroxycytidine or 1-(3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-4-(hydroxyamino)pyrimidin-2-one (EIDD-01931)
  • Protection of uridine by persilylation is followed by activation of the 4-position of the nucleobase by a hindered arylsulfonyl group (See FIG. 1). Displacement of this group with hydroxylamine installs the N-4-hydroxy moiety. Global deprotection using one of any number of fluoride sources available gives the desired product.
  • The compound can be made in one step from cytidine by heating in a pH-adjusted solution of hydroxylamine. Despite being shorter, this route tends to give lower yields and requires purification by reverse phase flash column chromatography, limiting its use to producing smaller quantities.
  • Example 2. General Methods
  • All chemical reactions were performed in oven-dried glassware under a nitrogen atmosphere, except where noted. Chemicals and solvents were reagent-grade and purchased from commercial suppliers (typically Aldrich, Fisher, Acros, Carbosynth Limited, and Oakwood Chemical) and used as received, excepting where noted. In particular, EIDD-1910, EIDD-1993, and EIDD-2003 were purchased from Carbosynth Limited. Solvents used for reactions (tetrahydrofuran, methanol, acetonitrile, dichloromethane, toluene, pyridine, dimethylformamide) were ≥99.9% anhydrous in all cases. All reactions were followed by thin layer chromatography (TLC) to completion, unless stated otherwise. TLC analysis was performed on silica gel, using illumination with a UV lamp (254 nm) or staining with KMnO4 and heating. Manual flash column chromatography was performed with 40-60 micron (60 Å particle size) RediSep Rf silica gel, purchased from Teledyne Isco, as the stationary phase. Automated gradient flash column chromatography was performed on a Teledyne Isco CombiFlash Companion; normal phase separations were performed with pre-packed RediSep Rf silica gel as the stationary phase, and reverse phase separations were performed with pre-packed RediSep Rf C18 High Performance Gold stationary phase. Triphosphate purifications were performed using ion-exchange chromatography, with DEAE (diethylaminoethyl) Sephadex A-25 as the stationary phase, and aqueous TEAB (triethylammonium bicarbonate) as the mobile phase.
  • 1H NMR spectra were measured on a Varian 400 MHz instrument, and processed using MestReNova software, version 9.0.1. Chemical shifts were measured relative to the appropriate solvent peak: CDCl3 (δ 7.27), DMSO-d6 (δ 2.50), CD3OD (δ 3.31), D2O (δ 4.79).
  • The following abbreviations were used to describe coupling: s=singlet, d=doublet, t=triplet, q=quartet, p=pentet, m=multiplet, br=broad. 13C NMR spectra were measured on a Varian instrument at 100 MHz with chemical shifts relative to the appropriate solvent peak: CDCl3 (δ 77.0), DMSO-d6 (δ 39.5), CD3OD (δ 49.0). 19F spectra were measured on a Varian instrument at 376 MHz, and 31P spectra were measured on a Varian instrument at 162 MHz. Chemical shifts for 19F spectra, 31P spectra, and 13C spectra (in D2O only) were calibrated by MestReNova software using an absolute reference function to the corresponding 1H NMR spectrum in the same solvent.
  • Nominal (low resolution) liquid chromatography/mass spectrometry was performed using an Agilent 1200 series LC (UV absorption detector at 254 nm), using a Zorbax Eclipse XDB C18 4.6×50 mm, 3.5 micron column, eluting with a MeOH/water mixture (typically 95/5 isocratic) and an Agilent 6120 LCMS quadrupole instrument. High resolution mass spectrometry was performed by the Emory University Mass Spectrometry Center with a Thermo LTQ-FTMS using either APCI or ESI.
  • Example 3
  • Figure US20190022116A1-20190124-C00035
  • S1:
  • A 2 L 3-neck flask equipped with an overhead stirrer and nitrogen inlet was charged with uridine (25 g, 102 mmol) and 1 L of dichloromethane. The resulting solution was cooled to 0° C. and 4-DMAP (1.251 g, 10.24 mmol) and imidazole (27.9 g, 409 mmol) were added sequentially. TBSCl (61.7 g, 409 mmol) was added over 10 minutes and the resulting mixture was warmed to ambient temperature and stirred for 18 hrs. Water (300 mL) was added to the reaction mixture and stirred at rt for 2 h, the layers were separated, and the aqueous layer was extracted with additional dichloromethane. The combined organic layers were washed with brine (1×300 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure to yield 75 g of a clear colorless oil. Purification by flash chromatography (5 to 20% gradient of EtOAc in hexanes) to yield S1 (45 g, 75%) as a clear, colorless oil, which solidified when dried in vacuo: 1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 8.02 (d, J=8.2 Hz, 1H), 5.87 (d, J=3.6 Hz, 1H), 5.67 (dd, J=8.1, 2.2 Hz, 1H), 4.07 (q, J=3.8, 3.3 Hz, 1H), 3.98 (dd, J=11.7, 1.7 Hz, 1H), 3.75 (dd, J=11.7, 1.1 Hz, 1H), 0.94 (s, 9H), 0.90 (s, 9H), 0.88 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H).
  • S2:
  • A 1 L round bottom flask was charged with S1 (28 g, 47.7 mmol) and dichloromethane (700 mL).
  • The solution was cooled to 0° C. using an ice bath; 4-DMAP (0.583 g, 4.77 mmol) and N,N-diisopropylethylamine (41.7 ml, 239 mmol) were added sequentially. 2,4,6-Triisopropylbenzene-1-sulfonyl chloride (28.9 g, 95 mmol) was slowly added to the flask, and after addition was complete, the flask was warmed to ambient temperature and stirred for 18 hrs. The dark orange solution was cooled to 0° C. with an ice bath and N,N-diisopropylethylamine (24.66 g, 191 mmol) was added via syringe, followed by solid hydroxylamine hydrochloride (13.26 g, 191 mmol) all at once. The mixture was warmed to room temperature and stirred for 3 hrs. The reaction was quenched with water (200 mL) and the resulting layers were separated. The aqueous layer was extracted with dichloromethane (200 mL), and the combined organics were washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to yield a dark orange oil. Purification by flash chromatography (15 to 50% gradient of EtOAc in hexanes) to yield S2 (19.8 g, 69% over 2 steps) as an oil which solidified to a semi solid upon drying in vacuo: 1H NMR (400 MHz, CDCl3) δ 8.15 (s, 1H), 6.31 (s, 1H), 5.91 (d, J=4.6 Hz, 1H), 5.56 (dd, J=8.2, 2.0 Hz, 1H), 4.07 (m, 2H), 4.02 (m, 1H), 3.91 (dd, J=11.6, 2.4 Hz, 1H), 3.73 (dd, J=11.6, 2.4 Hz, 1H), 0.95 (s, 9H), 0.92 (s, 9H), 0.89 (s, 9H), 0.12 (s, 6H), 0.098 (s, 3H), 0.083 (s, 3H), 0.063 (s, 3H), 0.057 (s, 3H); LRMS m/z 602.3 [M+H]+.
  • EIDD-1931:
  • A 50 mL round bottom flask was charged with S2 (23.3 g, 38.7 mmol) and THF (50 mL). Triethylamine trihydrofluoride (6.30 mL, 38.7 mmol) was added all at once, and the mixture was stirred at ambient temperature for 18 hours. The mixture was concentrated under reduced pressure, and the residue was dissolved in a minimal amount of MeOH, and this solution was slowly added to a Erlenmeyer flask containing rapidly stirred dichloromethane (500 mL) to precipitate the product; the mixture was stirred at rt for 15 minutes. The triturated solid was collected by vacuum filtration and washed with dichloromethane, then ether. The solid was dried in vacuo to yield the title compound (7.10 g, 71%) as a white solid: 1H NMR (400 MHz, CD3OD) δ 7.16 (d, J=8.2 Hz, 1H), 5.86 (d, J=5.6 Hz, 1H), 5.59 (d, J=8.2 Hz, 1H), 4.19-4.04 (m, 2H), 3.93 (q, J=3.3 Hz, 1H), 3.77 (dd, J=12.2, 2.9 Hz, 1H), 3.68 (dd, J=12.1, 2.9 Hz, 1H); 1H NMR (400 MHz, DMSO-d6) δ 9.95 (s, 1H), 9.46 (s, 1H), 7.02 (d, J=8.2 Hz, 1H), 5.71 (d, J=6.3 Hz, 1H), 5.54 (d, J=7.7 Hz, 1H), 5.23 (d, J=6.0 Hz, 1H), 5.02 (d, J=4.6 Hz, 1H), 4.98 (t, J=5.1 Hz, 1H), 3.95 (q, J=5.9 Hz, 1H), 3.89 (td, J=4.9 Hz, 3.0 Hz, 1H), 3.75 (q, J=3.4 Hz, 1H), 3.50 (qdd, J=11.9 Hz, 5.2 Hz, 3.5 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 150.0, 143.9, 130.5, 98.89, 87.1, 85.0, 72.8, 70.8, 61.8. LRMS m/z 260.1 [M+H]+.
  • Example 4
  • Figure US20190022116A1-20190124-C00036
  • EIDD-2050:
  • A solution of EIDD-1931 (124 mg, 0.478 mmol) in anhydrous pyridine (5 mL) was cooled to −20° C. and treated dropwise with nonanoyl chloride (95 μL, 0.528 mmol) over a 5 min period. The mixture was stirred at 0° C. for 15 h and then quenched with methanol (2 mL). After 20 min at rt the mixture was concentrated to dryness, and then purified by flash chromatography (1 to 5% gradient of MeOH in DCM). The resulting purified solid was co-evaporated with methylene chloride (3×10 mL) and then dried under high vacuum for 40 h to give the title compound (82 mg, 43%) as a white solid: 1H NMR (400 MHz, CD3OD) δ 7.50 (d, J=8.3 Hz, 1H), 5.88 (d, J=5.1 Hz, 1H), 5.70 (d, J=8.2 Hz, 1H), 4.19-4.08 (m, 1H), 3.97 (q, J=3.1 Hz, 1H), 3.80 (dd, J=12.2, 2.9 Hz, 1H), 3.70 (dd, J=12.2, 3.3 Hz, 1H), 2.49 (t, J=7.4 Hz, 2H), 1.67 (p, J=7.4 Hz, 2H), 1.37-1.24 (m, 9H), 0.93-0.84 (m, 3H); 13C NMR (101 MHz, CD3OD) δ 171.4, 149.7, 149.4, 134.6, 9597, 88.5, 84.9, 73.7, 70.2, 61.1, 31.8, 31.6, 28.9, 28.9, 28.8, 24.6, 22.3, 13.0; LRMS m/z 400.2 [M+H]+.
  • Example 5
  • Figure US20190022116A1-20190124-C00037
  • EIDD-2051:
  • To a stirred solution of EIDD-1931 (0.194 g, 0.75 mmol) in pyridine (4.8 mL) at 0° C. under nitrogen, was added heptyl chloroformate (0.15 mL, 0.825 mmol) dropwise via syringe. The mixture was stirred at 0° C. for 4 h and then concentrated by rotary evaporation. The mixture was taken up in DCM with a drop of MeOH, and automated flash chromatography (40 g column, 0 to 15% gradient of MeOH in DCM) gave the title compound (0.126 g, 42%) as a powdery white solid. NMR analysis shows a 9:1 mixture of rotamers (most signals near the nucleobase are doubled, or are single but broadened): 1H NMR (400 MHz, CD3OD, major rotamer only) δ 7.50 (d, J=8.3 Hz, 1H), 5.86 (d, J=5.0 Hz, 1H), 5.69 (d, J=8.2 Hz, 1H), 4.23 (t, J=6.6 Hz, 2H), 4.13 (q, J=5.1 Hz, 1H), 4.10 (q, J=4.0 Hz, 1H), 3.96 (q, J=3.4 Hz, 1H), 3.79 (dd, J=12.2, 2.8 Hz, 1H), 3.69 (dd, J=12.2 Hz, 3.2 Hz, 1H), 1.77-1.65 (m, 2H), 1.45-1.25 (m, 8H), 0.90 (t, J=6.9 Hz, 3H); 13C NMR (100 MHz, CD3OD, major rotamer only) δ 153.3, 149.0, 148.7, 133.9, 94.9, 88.0, 84.2, 73.1, 69.5, 68.0, 60.5, 30.9, 28.0, 27.7, 24.7, 21.6, 12.4; HRMS calcd for C17H28N3O8 [M+H]+: 402.18709, found: 402.18774.
  • Example 6
  • Figure US20190022116A1-20190124-C00038
  • S3:
  • To a stirred solution of S1 (2.20 g, 3.75 mmol) in DCM (37 mL) at 0° C. under nitrogen, was added sequentially 4-DMAP (0.460 g, 3.75 mmol), triethylamine (0.78 mL, 5.62 mmol), and 2,4,6-triisopropylbenzene-1-sulfonyl chloride (1.70 g, 5.62 mmol). The mixture was warmed to room temperature and stirred 16 h. The mixture was recooled to 0° C., and triethylamine (2.60 mL, 18.75 mmol) was added via syringe, followed by O-methylhydroxyamine hydrochloride (1.56 g, 18.75 mmol) all at once. The mixture was warmed to rt and stirred 3 h, then quenched by addition of water. The organic layer was removed, and the organic layer was washed with brine. The combined aqueous layers were extracted with DCM (2×25 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated by rotary evaporation. The crude was purified by flash chromatography (10 to 20% gradient of EtOAc in hexanes) to give S3 (1.72 g, 74%) as a white foam. All NMR peaks were broad, likely due to N—OMe rotamers. The spectrum was not deconvoluted. LRMS m/z 617.3 [M+H]+.
  • EIDD-2052:
  • To a stirred solution of S3 (0.300 g, 0.487 mmol) in MeOH (5 mL) at 0° C. under nitrogen, was added a 1.25 M HCl solution in MeOH (2.3 mL, 2.92 mmol) dropwise via syringe. The mixture was stirred at rt for 24 h. Triethylamine (0.70 mL, 5.05 mmol) was added, and the mixture was stirred for 2 h. The mixture was concentrated by rotary evaporation, and flash chromatography (5 to 20% gradient of iPrOH in EtOAc) gave the title compound (85 mg, 64%) as an off-white solid: 1H NMR (400 MHz, D2O) δ 7.19 (d, J=8.2 Hz, 1H), 5.82 (d, J=5.4 Hz, 1H), 5.55 (d, J=8.2 Hz, 1H), 4.15-4.07 (m, 2H), 3.92 (q, J=3.5 Hz, 1H), 3.76 (dd, J=12.2 Hz, 2.9 Hz, 1H), 3.76 (s, 3H), 3.67 (dd, J=12.1 Hz, 3.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 151.4, 146.2, 133.0, 98.6, 89.8, 86.1, 74.7, 71.7, 62.7, 61.9, 25.2; LRMS m/z 274.1 [M+H]+.
  • Example 7
  • Figure US20190022116A1-20190124-C00039
  • S4:
  • A round bottom flask was charged with 2′-methyluridine (0.850 g, 3.29 mmol), imidazole (0.896 g, 13.17 mmol), and DCM (6.5 mL), and the mixture was cooled to 0° C. under nitrogen with stirring. Trimethylsilyl triflate (2.24 mL, 12.34 mmol) was added dropwise via syringe over 15 min. The mixture was warmed to rt and stirred overnight. After 16 h stirring, the mixture was diluted with DCM (200 mL) and poured into ice-cold water (100 mL). The organic layer was removed, and the aqueous layer was extracted with DCM (1×100 mL). The combined organic layers were washed with ice-cold brine (1×100 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation to give 1.8 g crude. The material was taken up in hexanes, and automated flash chromatography (40 g column, gradient of 5 to 20% EtOAc in hexanes) gave S4 (1.50 g, 96%) as a white flaky solid: 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J=8.2 Hz, 1H), 7.92 (s, 1H), 5.92 (s, 1H), 5.64 (dd, J=8.2 Hz, 2.3 Hz, 1H), 4.05-3.95 (m, 2H), 3.83 (d, J=9.1 Hz, 1H), 3.73 (d, J=11.2 Hz, 1H), 1.21 (s, 3H), 0.20 (s, 9H), 0.18 (s, 9H), 0.17 (s, 9H); LRMS m/z 475.2 [M+H]+.
  • S5:
  • To a stirred solution of S4 (1.50 g, 3.16 mmol) and 4-DMAP (0.039 g, 0.316 mmol) in DCM (20 mL) at 0° C. under nitrogen, was added N,N-diisopropylethylamine (2.75 mL, 15.80 mmol) via syringe, followed by solid 2,4,6-triisopropylbenzene-1-sulfonyl chloride (1.91 g, 6.32 mmol) all at once. The stirred mixture was allowed to warm to rt. After 16 h stirring at rt, the mixture was cooled to 0° C. and washed with ice-cold sat. aq. NaHCO3 (3×25 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation to give 4.2 g crude as a brown oil. The crude was taken up in hexanes, and automated flash chromatography (80 g column, 1 to 10% gradient of EtOAc in hexanes) gave the desired product of sulfonyl activation (˜1.57 g, ˜2.12 mmol), mostly pure by LCMS (putative identity confirmed by 1H NMR). The entirety of this mixture was immediately taken on to the next step without further purification or analysis.
  • To a stirred solution of the freshly prepared material described above (˜1.57 g, ˜2.12 mmol) in MeCN (21 mL) at 0° C. under nitrogen, was added triethylamine (0.89 mL, 6.35 mmol) via syringe followed by O-methylhydroxylamine hydrochloride (0.531 g, 6.35 mmol) as a solid all at once. The mixture was warmed to rt and stirred overnight. After 16 h stirring, the mixture was poured into sat. aq. NaHCO3 (50 mL) and extracted with DCM (3×50 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography on a CombiFlash (80 g column, 5 to 15% gradient of EtOAc in hexanes) gave S5 (0.571 g, 36% over 2 steps) as a clear viscous oil, present as a 9:1 ratio of tautomers by NMR:1H NMR (400 MHz, CDCl3, major tautomer only) δ 8.01 (br s, 1H), 7.59 (d, J=8.3 Hz, 1H), 5.88 (s, 1H), 5.54 (d, J=8.1 Hz, 1H), 4.03-3.93 (m, 2H), 3.84 (s, 3H), 3.82 (d, J=9.0 Hz, 1H), 3.71 (d, J=12.0 Hz, 1H), 1.20 (s, 3H), 0.23-0.15 (m, 27H); LRMS m/z 504.2 [M+H]+.
  • EIDD-2054:
  • A round bottom flask was charged with S5 (0.510 g, 1.01 mmol) and a stir bar under nitrogen at rt. A solution of conc. HCl, 1% v/v in MeOH (10 mL, 1.20 mmol HCl) was added via syringe and the mixture was stirred at rt for 30 min. Solid Na2CO3 (1 g) was added all at once, and the mixture was stirred at rt 30 min. Celite was added, and the mixture was concentrated by rotary evaporation to give the crude immobilized on the solid. Automated flash chromatography (12 g column, 0 to 10% gradient of MeOH in DCM) gave the title compound (0.265 g, 91%) as a white powdery solid: 1H NMR (400 MHz, CD3OD) δ 7.36 (d, J=8.3 Hz, 1H), 5.89 (s, 1H), 5.54 (d, J=8.2 Hz, 1H), 3.95 (dd, J=12.5 Hz, 2.2 Hz, 1H), 3.86 (dt, J=9.2 Hz, 2.4 Hz, 1H), 3.82-3.72 (m, 2H), 3.78 (s, 3H), 1.17 (s, 3H); 13C NMR (100 MHz, CD3OD) δ 151.3, 146.2, 132.8, 98.2, 92.6, 83.4, 79.8, 73.8, 61.9, 60.7, 20.3; LRMS m/z 288.1 [M+H]+.
  • Example 8
  • Figure US20190022116A1-20190124-C00040
  • S6:
  • To a stirred solution of S4 (1.67 g, 3.52 mmol) and 4-DMAP (0.043 g, 0.352 mmol) in DCM (25 mL) at 0° C. under nitrogen, was added N,N-diisopropylethylamine (3.06 mL, 17.59 mmol) via syringe, followed by solid 2,4,6-triisopropylbenzene-1-sulfonyl chloride (1.92 g, 6.33 mmol) all at once. The stirred mixture was allowed to warm to rt. After 16 h stirring at rt, the mixture was cooled to 0° C. and washed with ice-cold sat. aq. NaHCO3 (3×25 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation to give 4.1 g crude as a brown oil. The crude was taken up in hexanes, and automated flash chromatography (80 g column, 1 to 10% gradient of EtOAc in hexanes) gave the desired product of sulfonyl activation (˜1.81 g, ˜2.44 mmol), mostly pure by LCMS (putative identity confirmed by 1H NMR). The entirety of this mixture was immediately taken on to the next step without further purification.
  • To a stirred solution of the freshly prepared material described above (˜1.81 g, ˜2.44 mmol) in MeCN (25 mL) at 0° C. under nitrogen, was added triethylamine (1.02 mL, 7.33 mmol) via syringe followed by hydroxylamine hydrochloride (0.509 g, 7.33 mmol) as a solid all at once. The mixture was warmed to rt and stirred 2 h. The mixture was poured into sat. aq. NaHCO3 (50 mL) and extracted with DCM (3×50 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (40 g column, gradient of 5 to 35% EtOAc in hexanes) gave S6 (0.931 g, 54% over 2 steps) as a white flaky solid, present as a 7:1 ratio of tautomers by NMR:1H NMR (400 MHz, DMSO-d6, major tautomer only) δ 9.99 (s, 1H), 9.57 (d, J=2.1 Hz, 1H), 7.25 (d, J=8.3 Hz, 1H), 5.72 (s, 1H), 5.45 (dd, J=8.2 Hz, 2.1 Hz, 1H), 3.92 (d, J=12.0 Hz, 1H), 3.85-3.75 (m, 2H), 3.66 (d, J=12.0 Hz, 1H), 1.13 (s, 3H), 0.15 (s, 9H), 0.14 (s, 9H), 0.12 (s, 9H); LRMS m/z 490.0 [M+H]+.
  • EIDD-2053:
  • A round bottom flask was charged with S6 (0.200 g, 0.408 mmol) and a stir bar under nitrogen at rt. A solution of conc. HCl, 1% v/v in MeOH (6 mL, 0.72 mmol HCl) was added via syringe and the mixture was stirred at rt for 30 min. Solid Na2CO3 (0.75 g) was added all at once, and the mixture was stirred at rt 30 min. Celite was added, and the mixture was concentrated by rotary evaporation to give the crude immobilized on the solid. Automated flash chromatography (4 g column, gradient of 5 to 25% MeOH in DCM) gave the title compound (0.110 g, 99%) as a white powdery solid: 1H NMR (400 MHz, CD3OD) δ 7.30 (d, J=8.3 Hz, 1H), 5.90 (s, 1H), 5.56 (d, J=8.2 Hz, 1H), 3.95 (dd, J=12.5 Hz, 2.1 Hz, 1H), 3.86 (dt, J=9.2 Hz, 2.7 Hz, 1H), 3.80 (d, J=9.2 Hz, 1H), 3.75 (dd, J=12.5 Hz, 3.0 Hz, 1H), 1.18 (s, 3H); 13C NMR (100 MHz, D2O) δ 151.6, 147.3, 131.8, 98.9, 91.7, 81.9, 79.5, 73.3, 60.4, 49.5, 19.6; LRMS m/z 274.1 [M+H]+.
  • Example 9
  • Figure US20190022116A1-20190124-C00041
  • EIDD-2061:
  • A sealable pressure tube was charged with a stir bar, cytidine triphosphate disodium salt (0.137 g, 0.260 mmol), and a 2 N aqueous hydroxylamine solution adjusted to pH=5 (2.0 mL, 4.0 mmol). After mixing the reagents, the pH of the solution was measured (pH=3) and additional drops of 10% w/w aq. NaOH solution were added to readjust the solution to pH=5. The tube was sealed and heated with stirring at 55° C. for 5 h. The mixture was cooled to rt, the sealed tube was opened, and a solution of 100 mM triethylammonium bicarbonate (TEAB) (2 mL) was added. The contents of the tube were transferred to a round bottom flask, and concentrated by rotary evaporation. The crude material was taken up in 100 mM TEAB, and chromatography on DEAE followed by lyophilization of the product gave a triethylammonium salt of the desired product.
  • An ion-exchange column (17 mL CV) of freshly prepared Dowex (Li+ form) was rinsed with 5 CV water. The prepared triethylammonium salt was taken up in water and eluted through the ion-exchange column. Fractions containing product were combined and lyophilized to give the title compound (0.030 g, 22%) as a fluffy tan solid: 1H NMR (400 MHz, D2O) δ 7.19 (d, J=8.3 Hz, 1H), 5.95 (d, J=6.3 Hz, 1H), 5.82 (d, J=8.3 Hz, 1H), 4.42-4.34 (m, 2H), 4.24-4.10 (m, 3H); 31P NMR (162 MHz, D2O) δ −8.5 (br s), −11.2 (d, J=19.6 Hz), −22.0 (t, J=19.3 Hz); LRMS m/z 498.0 [M−H].
  • Example 10
  • Figure US20190022116A1-20190124-C00042
  • EIDD-2080:
  • A round bottom flask was charged with 2′-deoxy-2′-fluoro-2′-methylcytidine (120 mg, 0.463 mmol) and a 2 N aqueous hydroxylamine solution adjusted to pH=5 (1.1 mL, 2.2 mmol), and the mixture was heated to 50° C. After 16 h, the mixture was concentrated to dryness and then purified by flash chromatography (19 mm×170 mm column volume, 10% MeOH in DCM). The resulting gum was co-evaporated with DCM (3×4 mL) to give a white solid that was further dried under high vacuum at 40° C. for 24 h to yield the title compound (94 mg, 74%) as a white powder: 1H NMR (400 MHz, CD3OD) δ 7.23 (d, J=8.3 Hz, 1H), 6.07 (d, J=19.8 Hz, 1H), 5.60 (d, J=8.3 Hz, 1H), 4.04-3.95 (m, 1H), 3.91 (d, J=8.3 Hz, 2H), 3.77 (dd, J=12.5, 2.3 Hz, 1H), 1.36 (d, J=22.2 Hz, 3H); 13C NMR (101 MHz, CD3OD) δ 150.0, 144.6, 129.9, 101.4, 99.6, 98.0, 88.7 (d, J=46.5 Hz), 81.5, 71.5 (d, J=18.1 Hz), 58.9, 15.5 (d, J=25.8 Hz); HRMS calcd. for C10H15FN3O5 [M+H]+: 276.09903, found: 276.09910.
  • Example 11
  • Figure US20190022116A1-20190124-C00043
  • EIDD-2085:
  • A ˜2 N solution of hydroxylamine hydrochloride (3.33 g, 48.0 mmol) in water (24 mL) was prepared, and adjusted to pH=5 with a small amount of aq. NaOH (10% w/w). A sealable pressure tube was charged with this solution and 2′-fluoro-2′deoxycytidine (0.736 g, 3.00 mmol), the flask was sealed, and heated with stirring at 55° C. for 16 h. The mixture was cooled to room temperature, transferred to a round bottom flask, and concentrated by rotary evaporation. The crude material was suspended in MeOH and immobilized on Celite. Automated flash chromatography (40 g column, 5 to 25% gradient of MeOH in DCM) gave the title compound (0.365 g, 47%) as an off-white solid. NMR analysis showed the compound to be ˜90% pure by weight, with the remainder being occluded DCM and MeOH. A sample (103 mg) was dissolved in water, frozen in a dry ice bath, and lyophilized to give 91 mg of the title compound, solvent-free. This purified material was used for all biological testing: 1H NMR (400 MHz, D2O) δ 7.00 (d, J=8.3 Hz, 1H), 5.91 (dd, J=21.0 Hz, 2.0 Hz, 1H), 5.71 (d, J=8.2 Hz, 1H), 5.19 (ddd, J=53.1 Hz, 5.0 Hz, 2.0 Hz, 1H), 4.36 (ddd, J=20.0 Hz, 8.2 Hz, 5.0 Hz, 1H), 4.08-4.02 (br m, 1H), 3.95 (dd, J=12.9 Hz, 2.5 Hz, 1H), 3.78 (dd, J=12.9 Hz, 4.6 Hz, 1H); 13C NMR (100 MHz, D2O) δ 150.8, 146.7, 132.5, 98.4, 93.1 (d, J=183.1 Hz), 89.0 (d, J=35.9 Hz), 82.1, 68.3 (d, J=16.5 Hz), 60.2 Hz; 19F NMR (376 MHz, D2O) δ −200.51 (dt, J=53.1 Hz, 20.4 Hz); HRMS calcd. for C9H13FN3O5 [M+H]+: 262.08338, found: 262.08332.
  • Example 12
  • Figure US20190022116A1-20190124-C00044
  • EIDD-2086:
  • A solution of EIDD-2054 (45 mg, 0.16 mmol) in anhydrous THF (1 mL) at 0° C. was treated with a 1 M THF solution of tert-butylmagnesium chloride (0.31 mL, 0.31 mmol). After 1 h at 0° C., the mixture was treated dropwise with a solution of S7 (139 mg, 0.31 mmol) in anhydrous THF (1 mL) over a 5 min period. The mixture was allowed to warm to rt and was stirred overnight. The mixture was quenched with sat. aq. NH4Cl (5 mL) and then extracted with ethyl acetate (50 mL). The organic phase was washed with sat. aq. NaHCO3 (2×15 mL), dried over Na2SO4, filtered and concentrated to dryness. The resulting crude yellow oil was purified by flash chromatography (column volume 19 mm×170 mm, 5 to 10% gradient of MeOH in DCM) to give a 1:1 diastereomeric mixture of the title compound (49 mg, 56%) as an off-white solid: 1H NMR (400 MHz, CDCl3, diastereomeric mixture) δ 8.25 (s, 1H), 7.32 (t, J=7.7 Hz, 2H), 7.18 (dd, J=16.8, 8.0 Hz, 3H), 6.81 (d, J=8.2 Hz, 1H), 6.66 (d, J=8.2 Hz, 1H), 5.87 (d, J=14.0 Hz, 1H), 5.55 (d, J=8.2 Hz, 1H), 5.48 (d, J=8.2 Hz, 1H), 5.00 (h, J=6.3 Hz, 1H), 4.49-4.39 (m, 2H), 4.34 (ddd, J=11.8, 8.3, 3.4 Hz, 1H), 4.07-3.86 (m, 2H), 3.82 (s, 3H), 3.74 (dd, J=38.5, 8.4 Hz, 1H), 1.36 (d, J=2.2 Hz, 3H), 1.35 (d, J=2.2 Hz, 3H), 1.25-1.20 (m, 6H), 1.17 (s, 3H), 1.11 (s, 3H); 31P NMR (162 MHz, CDCl3, diastereomeric mixture) δ 3.55, 3.19; 13C NMR (101 MHz, CDCl3, diastereomeric mixture) δ 173.02, 172.95, 172.91, 172.84, 150.49, 150.42, 149.28, 149.18, 144.31, 144.22, 130.74, 130.46, 129.87, 129.83, 125.28, 125.16, 119.93, 119.88, 97.94, 91.57, 91.18, 77.33, 73.52, 73.03, 69.55, 69.51, 65.05, 64.99, 64.51, 61.80, 50.41, 50.32, 29.68, 21.70, 21.67, 21.61, 21.58, 20.93, 20.88, 20.82, 20.46; HRMS calcd. for C23H33N4O10PNa [M+Na]+: 579.18265; found: 579.18184.
  • Example 13
  • Figure US20190022116A1-20190124-C00045
  • S8:
  • To a stirred suspension of cytidine (0.972 g, 4.00 mmol) in dry acetone (50.0 mL) was dropwise added a catalytic amount of H2SO4 (0.13 ml, 2.439 mmol). The resulting reaction was stirred at rt overnight. After filtration, the obtained white solid was redissolved in MeOH with a little heating, then reevaporated to give a white solid as a sulfate salt form of the desired product (>95% yield), which was used without further purification: 1H NMR (400 MHz, CD3OD) δ 8.23 (d, J=7.9 Hz, 1H), 6.09 (d, J=7.9 Hz, 1H), 5.86 (d, J=2.4 Hz, 1H), 4.90 (dd, J1=6.2 Hz, J2=2.3 Hz, 1H), 4.82 (dd, J1=6.1 Hz, J2=2.7 Hz, 1H), 4.35 (q, J=3.4 Hz, 1H), 3.80 (dd, J1=12.1 Hz, J2=3.2 Hz, 1H), 3.71 (dd, J1=12.1 Hz, J2=4.1 Hz, 1H), 1.54 (s, 3H), 1.35 (s, 3H); 13C NMR (100 MHz, CD3OD) δ 161.33, 148.49, 147.34, 114.86, 95.58, 94.22, 89.56, 86.59, 82.34, 62.85, 27.42, 25.41; HRMS calcd. for C12H18O5N3 [M+H]+: 284.12410, found: 284.12424.
  • S9:
  • To a suspension of S8 (0.566 g, 2.00 mmol) in THF (20.0 ml) was dropwise added a 1 M solution of t-butylmagnesium chloride in THF (3.00 mL, 3.00 mmol) via syringe at 0° C. under argon, and the resulting mixture was stirred at the same temperature for 1 hr. A solution of S7 (1.33 g, 3.00 mmol) in THF (20 mL) was added at 0° C., upon which the mixture was allowed to warm to rt and stirred for another 27 hrs. The reaction was carefully quenched by the addition of sat. aq. NH4Cl at 0° C. The obtained mixture was filtered through a Celite pad, and the pad was washed with MeOH. The filtrate was concentrated by rotary evaporation to give a brown solid, which was purified by flash chromatography (5% MeOH in DCM) to give a semipure product. The mixture was further purified by automated flash chromagraphy (40 g column, 0 to 25% gradient of MeOH in DCM) to give S9 (0.744 g, 67% over 2 steps) as a white solid present as a mixture of two diastereomers in a ratio of 1:2 based on the integration of 31P-NMR: 1H NMR (400 MHz, CD3OD, diastereomeric mixture) δ 7.61 (m, 1H), 7.34 (t, J=7.9 Hz, 2H), 7.27-7.09 (m, 3H), 5.93-5.69 (m, 2H), 4.95 (p, J=6.3 Hz, 1H), 4.90 (dd, J=6.4 Hz, 2.2 Hz, 1H), 4.84-4.71 (m, 1H), 4.46-4.20 (m, 3H), 3.88 (p, J=7.8 Hz, 1H), 2.15 (s, 1H), 1.53 (s, 3H), 1.32 (m, 6H), 1.21 (m, 6H); 13C NMR (100 MHz, CD3OD, both diastereomers) δ 210.06, 174.62, 174.57, 174.41, 174.35, 167.89, 157.81, 152.18, 152.11, 144.64, 144.38, 130.82, 130.78, 130.77, 126.24, 126.22, 126.17, 126.16, 121.48, 121.45, 121.43, 121.40, 115.18, 115.08, 96.18, 95.96, 87.13, 87.05, 86.96, 86.88, 86.23, 82.48, 82.47, 70.14, 68.02, 51.81, 51.67, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.36, 30.68, 27.46, 27.43, 25.51, 25.46, 22.00, 21.98, 21.90, 20.56, 20.49, 20.30; 31P NMR (162 MHz, CD3OD) δ 3.68, 3.45; HRMS calcd. for C24H33O9N4NaP [M+Na]+: 575.18774, found: 575.18824.
  • S10:
  • A solution of S9 (0.289 g, 0.502 mmol) in 80% aq. HCOOH (12.40 mL) was stirred at rt for 3.5 hrs. The reaction was concentrated by rotary evaporation, and co-evaporated with MeOH (3×10 mL). The crude product S9 (0.257 g, quant.) was obtained as a brown glassy solid that was used in the next step without further purification: 1H NMR (400 MHz, CD3OD, diastereomeric mixture) δ 8.16 (s, 1H), 7.79 (d, J=7.5 Hz, 1H), 7.73 (d, J=7.5 Hz, 1H), 7.50-7.08 (m, 5H), 6.03-5.68 (m, 2H), 4.96 (septet, J=8 Hz, 1H), 4.55-4.24 (m, 2H), 4.23-4.08 (m, 2H), 4.08-3.99 (m, 1H), 3.97-3.82 (m, 1H), 1.43-1.26 (m, 4H), 1.26-1.10 (m, 6H); 13C NMR (100 MHz, CD3OD, both diastereomers) δ 174.65, 174.61, 174.38, 174.33, 166.90, 157.46, 152.15, 152.08, 142.73, 130.89, 130.88, 130.85, 130.85, 126.28, 126.26, 121.42, 121.40, 121.37, 121.36, 96.19, 92.05, 91.97, 83.49, 83.42, 75.90, 75.84, 70.70, 70.64, 70.18, 67.14, 67.08, 51.88, 51.87, 51.71, 51.70, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.36, 21.98, 21.91, 21.89, 21.80, 20.61, 20.55, 20.30; 31P NMR (162 MHz, CD3OD) δ 3.91, 3.76; HRMS calcd. for C21H30O9N4P [M+H]+: 513.17449, found: 513.17413.
  • EIDD-2088:
  • To a solution of S10 (0.257 g, 0.502 mmol) in THF (5 mL) was added a 2 N hydroxylamine at pH 6 (6.27 ml, 12.54 mmol), and the resulted mixture was stirred at 37° C. for 1.5 days. The reaction mixture was concentrated by rotary evaporation. The obtained yellow solid was redissolved in MeOH and immobilized onto silica gel, which was loaded onto a silica plug. Elution with 10% MeOH in CH2Cl2 through the silica plug, gave a light brown liquid after rotary evaporation of fractions containing product. Automated flash chromatography (12 g column, 2.5 to 15% gradient of MeOH in DCM) provided the title compound (0.155 mg, 59%) as an off-white foam: 1H NMR (400 MHz, CD3OD, diastereomeric mixture) δ 7.89 (d, J=8.0 Hz, 0.3H), 7.80 (d, J=8.1 Hz, 0.65H), 7.48-7.31 (m, 2H), 7.31-7.13 (m, 3H), 6.02-5.79 (m, 2H), 4.97 (hept, J=8 Hz, 1H), 4.55-4.08 (m, 6H), 3.90 (m, 1H), 1.44-1.26 (m, 4H), 1.22 (m, 6H); 13C NMR (100 MHz, CD3OD, both diastereomers) δ 174.72, 174.68, 174.36, 174.30, 155.25, 152.10, 152.03, 148.74, 148.68, 142.86, 130.92, 130.87, 126.33, 126.32, 121.43, 121.39, 91.71, 91.63, 91.58, 84.08, 84.02, 83.95, 75.48, 75.41, 70.71, 70.67, 70.20, 67.03, 51.90, 51.73, 51.71, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.36, 21.98, 21.92, 21.89, 21.79, 20.59, 20.53, 20.31; 31P NMR (162 MHz, CD3OD) δ 3.98, 3.81; HRMS calcd. for C21H30O10N4P [M+H]+: 529.16941, found: 529.16900.
  • Example 14
  • Figure US20190022116A1-20190124-C00046
  • EIDD-2101:
  • A solution of 5-methylcytidine (0.257 g, 1.00 mmol) in a 2N aq. hydroxylamine solution with pH 6 (8 mL, 16.0 mmol) was heated to 55° C. in a sealed tube with stirring for 5 hrs. The solution was cooled to rt, transferred to a round bottom flask, concentrated by rotary evaporation, and coevaporated with MeOH (2×20 mL). The crude residue was taken up in MeOH and immobilized on silica gel. Flash chromatography (2 to 10% gradient of MeOH in DCM) provided the title compound (140 mg, 51%) as a light purple solid: 1H NMR (400 MHz, CD3OD) δ 6.99 (s, 1H), 5.86 (d, J=5.7 Hz, 1H), 4.23-4.06 (m, 2H), 3.93 (q, J=3.2 Hz, 1H), 3.78 (dd, J=12.1 Hz, 2.8 Hz, 1H), 3.70 (dd, J=12.1 Hz, 3.4 Hz, 1H), 1.79 (s, 3H); 13C NMR (100 MHz, CD3OD) δ 152.0, 146.6, 128.4, 108.4, 89.4, 86.1, 74.4, 71.8, 62.8, 12.9; FIRMS calcd. for C10H16O6N3 [M+H]+: 274.10336, found: 274.10350.
  • Example 15
  • Figure US20190022116A1-20190124-C00047
  • EIDD-2103:
  • A ˜2 N solution of hydroxylamine hydrochloride (1.11 g, 16.0 mmol) in water (8 mL) was prepared, and adjusted to pH=5 with a small amount of aq. NaOH (10% w/w). A sealable pressure tube was charged with this solution and 5-fluorocytidine (0.261 g, 1.00 mmol), the flask was sealed, and heated with stirring at 55° C. for 16 h. The mixture was cooled to room temperature, transferred to a round bottom flask, and concentrated by rotary evaporation. The crude material was suspended in MeOH and immobilized on Celite. Automated flash chromatography (40 g column, 0 to 20% gradient of MeOH in DCM) gave 600 mg of a semipure pink solid. This solid was dissolved in 2 mL water, and automated reverse phase chromatography (43 g column, 5 to 100% gradient of MeOH in water) gave the desired product free from organic and inorganic impurities. The solid was dissolved in water, frozen in a dry ice/acetone bath, and lyophilized to provide the title compound (0.066 g, 0.238 mmol, 24% yield) as a white flocculent solid. 1H NMR (400 MHz, D2O) δ 7.31 (d, J=7.6 Hz, 1H), 5.87 (dd, J=5.5 Hz, 1.8 Hz, 1H), 4.26 (t, J=5.5 Hz, 1H), 4.19 (t, J=4.8 Hz, 1H), 4.07 (q, J=3.8 Hz, 1H), 3.85 (dd, J=12.8 Hz, 3.1 Hz, 1H), 3.77 (dd, J=12.7 Hz, 4.2 Hz, 1H); 13C NMR (100 MHz, D2O) δ 150.0, 139.7, 137.4, 115.6 (d, J=36.1 Hz), 88.0, 84.2, 72.8, 69.8, 61.0; 19F NMR (376 MHz, D2O) 6-164.70 (d, J=7.6 Hz); HRMS calcd. for C9H13FN3O6 [M+H]+: 278.07829, found: 278.07848.
  • Example 16
  • Figure US20190022116A1-20190124-C00048
  • S11:
  • To a stirred solution of S2 (0.903 g, 1.50 mmol) in DCM (15 mL) under nitrogen at rt, was added heptyl isocyanate (0.266 mL, 1.65 mmol) dropwise via syringe over 2 minutes. The reaction was stirred at rt for 6 h, then concentrated by rotary evaporation to give crude residue. Automated flash chromatography (40 g column, 5 to 25% gradient of EtOAc in hexanes) gave S11 (0.930 g, 83%) as a flaky light pink solid: 1H NMR (400 MHz, CDCl3) δ 8.26 (br s, 1H), 7.50 (d, J=8.3 Hz, 1H), 6.29 (t, J=5.8 Hz, 1H), 5.90 (d, J=4.4 Hz, 1H), 5.57 (dd, J=8.2 Hz, 2.3 Hz, 1H), 4.10-4.00 (m, 3H), 3.93 (dd, J=11.6 Hz, 2.3 Hz, 1H), 3.74 (d, J=11.6 Hz, 1H), 3.28 (q, J=6.7 Hz, 1H), 1.62-1.52 (m, 2H), 1.40-1.25 (m, 8H), 0.96 (s, 9H), 0.91 (s, 9H), 0.91-0.86 (m, 3H), 0.89 (s, 9H), 0.13 (s, 6H), 0.10 (s, 3H), 0.08 (s, 3H), 0.05 (s, 6H).
  • EIDD-2107:
  • To a stirred solution of S11 (0.910 g, 1.22 mmol) in a mixture of THF (18 mL) and DMF (6 mL) at 0° C. under nitrogen, was added acetic acid (0.350 mL, 6.12 mmol) followed by solid tetraethylammonium fluoride (0.877 g, 5.88 mmol) all at once. The mixture was warmed to rt and stirred for 20 h. The mixture was then concentrated by rotary evaporation to give crude as an oil. The oil was taken up in DCM, and automated flash chromatography (40 g column, 1 to 10% gradient of MeOH in DCM) gave 300 mg of a flaky white solid, consisting of desired product and tetraethylammonium acetate. The mixture was taken up in MeOH and immobilized on Celite. A second automated flash chromatography (12 g column, 1 to 10% gradient of MeOH in DCM) gave the title compound (0.228 g, 47% yield) as a white powdery solid. NMR analysis showed a 5:1 ratio of signals, most likely rotamers about one of the bonds of the carbamate (most signals associated with the nucleobase are doubled or single but broadened)1H NMR (400 MHz, DMSO-d6, major rotamer only) δ 10.30 (s, 1H), 7.38 (d, J=8.2 Hz, 1H), 6.85 (t, J=5.8 Hz, 1H), 5.75 (d, J=5.8 Hz, 1H), 5.69 (dd, J=8.4 Hz, 2.2 Hz, 1H), 5.32 (d, J=5.9 Hz, 1H), 5.10-5.00 (m, 2H), 3.99 (q, J=5.6 Hz, 1H), 3.94 (q, J=4.7 Hz, 1H), 3.83-3.76 (m, 1H), 3.63-3.46 (m, 2H), 3.04 (q, J=6.5 Hz, 1H), 1.46-1.36 (m, 2H), 1.32-1.19 (m, 8H), 0.86 (t, J=7.0 Hz, 3H); 13C NMR (100 MHz, CD3OD, major rotamer peaks only) δ 157.5, 150.8, 149.3, 135.3, 97.5, 89.9, 86.1, 75.0, 71.5, 64.7, 62.5, 41.9, 32.9, 30.8, 30.1, 27.7, 23.6, 14.4; HRMS calcd. for C17H29N4O7 [M+H]+: 401.20308, found: 401.20319.
  • Example 17
  • Figure US20190022116A1-20190124-C00049
  • S12:
  • A solution of S8 in anhydrous DMF (56 mL) was treated with 1,1-dimethoxy-N,N-dimethylmethanamine (9.4 mL, 70.6 mmol). After 18 h at rt, the reaction mixture was concentrated to dryness and the crude white solid triturated with ether (3×100 mL). The solid was collected by filtration and dried under high vacuum for 12 h to yield S12 (4.52 g, 95%) as a white solid: 1H NMR (400 MHz, CD3OD) δ 8.67 (s, 1H), 7.99 (d, J=7.3 Hz, 1H), 6.14 (d, J=7.2 Hz, 1H), 5.87 (d, J=2.4 Hz, 1H), 4.92 (dd, J=6.3, 2.4 Hz, 1H), 4.84 (dd, J=6.3, 3.5 Hz, 1H), 4.25 (q, J=4.7, 1H), 3.81 (dd, J=11.9, 3.6 Hz, 1H), 3.73 (dd, J=11.9, 4.6 Hz, 1H), 3.22 (s, 3H), 3.14 (s, 3H), 1.55 (s, 3H), 1.34 (s, 3H).
  • S13:
  • A suspension of 3-hexadecyloxypropan-1-ol (1.58 g, 5.26 mmol) and DIPEA (0.92 mL, 5.26 mmol) in anhydrous acetonitrile (25 mL) was treated dropwise over a 10 min period with 3-((chloro(diisopropylamino)phosphino)oxy)-propanenitrile (1.2 mL, 5.26 mmol). After 18 h at rt, the mixture was quenched with sat. aq. NaHCO3 (15 mL) and extracted with ethyl acetate (2×100 mL). The combined organic phases were concentrated by rotary evaporation, and flash chromatography (column volume 25 mm×140 mm, 10 to 20% gradient of EtOAc in hexanes) provided S13 (1.40 g, 53%) as a white solid: 1H NMR (400 MHz, CDCl3) δ 3.89-3.54 (m, 6H), 3.49 (t, J=6.3 Hz, 2H), 3.39 (t, J=6.7 Hz, 2H), 2.64 (t, J=6.6 Hz, 2H), 1.87 (p, J=6.3 Hz, 2H), 1.57 (p, J=6.3 Hz, 2H), 1.25 (s, 26H), 1.18 (dd, J=6.8, 3.5 Hz, 12H), 0.87 (t, J=6.6 Hz, 3H); 31P NMR (162 MHz, CDCl3) δ 147.40.
  • S14:
  • A solution of S12 (800 mg, 2.36 mmol) and S13 (2.15 g, 4.29 mmol) in anhydrous THF (20 mL) was treated dropwise with a solution of tetrazole (19 mL of a 0.45 M solution in acetonitrile, 8.59 mmol). After 19 h at rt, the mixture was treated dropwise with a nonane solution of tert-butyl hydroperoxide (1.9 mL of a 5.5 M solution, 10.73 mmol) and stirring continued for an additional 1 h. Excess tert-butyl hydroperoxide was quenched with saturated sodium thiosulfate solution (50 mL), the mixture was stirred for 45 min and then extracted with ethyl acetate (2×100 mL). Combined organic phases were concentrated by rotary evaporation, and flash chromatography (25 mm×180 mm column volume, 0 to 5% gradient of MeOH in DCM) gave S14 (1.2 g, 80%) as a foam, a mixture of diastereomers: 1H NMR (400 MHz, CDCl3, diastereomeric mixture) δ 7.38 (d, J=7.6 Hz, 1H, diastereomer a), 7.37 (d, J=7.6, 1H, diastereomer b), 5.78 (d, J=7.3 Hz, 1H), 5.54 (d, J=5.6, 1H, diastereomer a), 5.53 (d, J=5.6, 1H, diastereomer b), 5.14 (ddd, J=6.5, 3.1, 1.4 Hz, 1H), 4.93 (dt, J=7.0, 3.6 Hz, 1H), 4.34 (td, J=7.4, 6.8, 4.8 Hz, 3H), 4.28-4.08 (m, 4H), 3.48 (t, J=6.1, 2H), 3.38 (t, J=6.8, 2H), 2.78 (t, J=6.5 Hz, 2H, diastereomer a), 2.75 (t, J=6.5 Hz, 2H diastereomer b), 1.93 (m, 2H), 1.55 (s, 5H), 1.34 (s, 3H), 1.25 (s, 26H), 0.87 (t, J=6.8, 3H); 13C NMR (101 MHz, CDCl3, diastereomeric mixture) δ 166.26, 155.40, 144.20, 144.16, 116.62, 116.59, 113.93, 97.45, 97.38, 95.74, 95.69, 86.73, 86.64, 86.54, 84.90, 84.80, 81.87, 81.66, 71.23, 67.84, 67.79, 67.69, 67.64, 66.25, 66.22, 66.03, 65.97, 62.08, 62.03, 31.90, 30.51, 30.50, 30.44, 30.43, 29.68, 29.67, 29.64, 29.61, 29.52, 29.34, 27.06, 27.04, 26.13, 25.23, 25.21, 22.67, 19.57, 19.50, 14.12; 31P NMR (162 MHz, CDCl3, diastereomeric mixture) 6-1.75, −1.83; LRMS m/z 699.4 [M+H]+.
  • S15:
  • A solution of S14 (310 mg, 0.44 mmol) in THF (4 mL) was treated with an 2M aqueous solution of hydroxylamine at pH 5 (1.1 mL, 2.2 mmol) with stirring at 50° C. After 19 h, TLC (10% methanol in methylene chloride) indicated approximately 50% conversion to a more non-polar component. Additional hydroxylamine and extended reaction time did not increase conversion beyond 50%. After cooling to rt, the mixture was partitioned between ethyl acetate (100 mL) and brine (10 mL). The organic phase was concentrated, and flash chromatography of the crude (column volume 19 mm×170 mm, 1 to 5% gradient of MeOH in DCM) yielded S15 (70 mg, 22%) as a foam, in a 1:1 mixture of diastereomers: 1H NMR (400 MHz, CDCl3) δ 8.94 (s, 1H), 6.60 (d, J=8.1, 1H, diastereomer a), 6.58 (d, J=8.1, 1H, diastereomer b), 5.67 (d, J=8.1, 1H, diastereomer a), 5.65 (d, J=8.1, 1H, diastereomer b), 5.59 (d, J=2.1 Hz, 1H, diastereomer a), 5.55 (d, J=2.1 Hz, 1H, diastereomer b), 4.98 (m, 1H), 4.84 (m, 1H), 4.35-4.10 (m, 6H), 3.48 (t, J=6.1 Hz, 2H), 3.38 (t, J=6.7, 2H), 2.76 (m, 2H), 1.94 (m, 2H), 1.59-1.49 (m, 5H), 1.34 (s, 3H), 1.24 (s, 26H), 0.87 (t, J=6.7 Hz, 3H); 31P NMR (162 MHz, CDCl3, diastereomeric mixture) δ −1.57, −1.64. LRMS m/z 715.3 [M+H]+.
  • EIDD-2108:
  • A solution of S15 (62 mg, 0.087 mmol) in methanol (4 mL) was treated with a catalytic amount of para-toluenesulfonic acid (3.3 mg, 0.017 mmol). After 16 h stirring at rt, the mixture was treated with saturated aqueous ammonium hydroxide solution (1.5 mL) and allowed to stir for an additional 4 h at rt. The mixture was concentrated by rotary evaporation, and the resulting residue was triturated with 5% acetonitrile in methanol (2×15 mL). The resulting white solid was purified by flash chromatography (11 mm×45 mm column volume, 25% MeOH in DCM, 2.5% v/v sat. aq. NH4OH) to give the title compound (25 mg, 46%) as a white solid: 1H NMR (400 MHz, CD3OD) δ 7.21 (d, J=8.2 Hz, 1H), 5.95 (d, J=5.5 Hz, 1H), 5.67 (d, J=8.2 Hz, 1H), 4.22-4.16 (m, 2H), 4.07-3.98 (m, 3H), 3.94 (q, J=6.3 Hz, 2H), 3.52 (t, J=6.3 Hz, 2H), 3.41 (t, J=6.6 Hz, 2H), 1.87 (p, J=6.3 Hz, 2H), 1.53 (q, J=6.9 Hz, 2H), 1.28 (s, 28H), 0.92-0.85 (m, 3H); 13C NMR (101 MHz, CD3OD) δ 150.45, 144.99, 130.77, 98.13, 87.51, 83.39, 83.30, 72.98, 70.72, 70.55, 66.89, 64.80, 62.51, 62.46, 31.66, 30.71, 30.63, 29.38, 29.35, 29.24, 29.07, 25.87, 22.33, 13.07; 31P NMR (162 MHz, CD3OD) δ 0.34; HRMS calcd. for C28H51N3O10P [M−H]: 620.33175; found, 620.33205.
  • Example 18
  • Figure US20190022116A1-20190124-C00050
  • S16:
  • To a solution of 2′-deoxy-2′,2′-difluorocytidine (0.526 g, 2.00 mmol) and imidazole (0.408 g, 6.00 mmol) in DMF (10 ml) was added TBS triflate (1.147 ml, 5.00 mmol) at 0° C. under argon. The resulting mixture was stirred at 0° C. for 2 hrs, then it was slowly warmed to rt and stirred overnight. After being partitioned between Et2O and water, the organic layer was separated and washed with H2O and brine, dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (24 g column, 0 to 12.5% gradient of MeOH in DCM) yielded S16 (0.71 g, 72%) as a clear colorless oil: 1H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 7.71 (d, J=7.6 Hz, 1H), 6.72 (s, 1H), 6.25 (dd, J=10.4 Hz, 4.2 Hz, 1H), 5.97 (d, J=7.6 Hz, 1H), 4.30 (m, 1H), 3.98 (m, 1H), 3.89 (m, 1H), 3.79 (dd, J=11.8 Hz, 2.1 Hz, 1H), 0.93 (s, 9H), 0.90 (s, 9H), 0.11 (t, J=4.1 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 164.6, 154.6, 140.8, 121.9 (t, J=259 Hz), 95.7, 84.1 (dd, J=40 Hz, 24 Hz), 81.3 (d, J=9 Hz), 77.2, 69.7 (dd, J=28 Hz, 18 Hz), 60.1, 53.4, 25.8, 25.5, 18.3, 18.0, −4.8, −5.3, −5.49, −5.52; 19F NMR (376 MHz, CDCl3) δ −115.95 (dd, J=238.4 Hz, 12.1 Hz), −117.55 (dt, J=239.1 Hz, 10.7 Hz); HRMS calcd. for C21H40O4N3F2Si2 [M+H]+: 492.25199, found: 492.25172.
  • S17:
  • To a solution of S16 (0.250 g, 0.508 mmol) in THF (5.1 mL) was added an aqueous 2N solution of hydroxylamine at pH 6 (6.4 mL, 12.71 mmol), and the resulting mixture was stirred at 55° C. for 1.5 days. After being partitioned between EtOAc and H2O, the aqueous layer was separated and extracted with EtOAc (2×15 mL). The combined organic layers were washed with water and brine, dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (24 g column, 0 to 7.5% gradient of MeOH in DCM) provided S17 (0.124 g, 48%) as a white solid: 1H NMR (400 MHz, CDCl3) δ 8.69 (s, 1H), 8.34 (s, 1H), 6.94 (d, J=8.2 Hz, 1H), 6.13 (dd, J=11.0 Hz, 4.8 Hz, 1H), 5.62 (d, J=8.3 Hz, 1H), 4.30 (dq, J=12 Hz, 4 Hz, 1H), 3.95 (d, J=12 Hz, 1H), 3.83 (d, J=4 Hz, 1H), 3.77 (dd, J=12 Hz, 4 Hz, 1H), 0.92 (s, 9H), 0.90 (s, 9H), 0.18-0.03 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 149.1, 144.8, 130.2, 122.1 (t, J=259 Hz), 98.4, 83.4 (dd, J=40 Hz, 24 Hz), 80.8 (d, J=9 Hz), 69.8 (dd, J=27 Hz, 18 Hz), 77.2, 60.0, 25.8, 25.5, 18.3, 18.0, 4.8, −5.3, −5.5, −5.6; 19F NMR (376 MHz, CDCl3) δ −115.67 (dd, J=239.5 Hz, 12.4 Hz), −117.02 (dt, J=239.4 Hz, 10.8 Hz); HRMS calcd. for C21H40O5N3F2Si2 [M+H]+: 508.24691, found: 508.24697.
  • EIDD-2133:
  • A mixture of S17 (0.220 g, 0.433 mmol) and NH4F (0.128 g, 3.47 mmol) in MeOH (22 mL) was stirred under reflux overnight. The mixture was cooled to rt and concentrated by rotary evaporation. Flash chromatography (5 to 10% gradient of MeOH in DCM) gave semipure product. After another two rounds of flash chromatography purification (the desired coeluted with an unknown impurity, only the fractions that could NOT be instantaneously stained by KMnO4 on TLC were collected), the title compound (18 mg, 15% yield) was obtained as a white solid: 1H NMR (400 MHz, CD3OD) δ 7.05 (d, J=8.3 Hz, 1H), 6.06 (m, 1H), 5.59 (d, J=8.3 Hz, 1H), 4.21 (m, 1H), 3.90 (d, J=12.6 Hz, 1H), 3.81 (td, J=12 Hz, 4 Hz, 1H), 3.74 (dd, J=12 Hz, 4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 151.1, 145.7, 131.5, 124.1 (t, J=256 Hz), 99.3, 84.8 (dd, J=39 Hz, 26 Hz), 82.0 (d, J=9 Hz), 70.7 (dd, J=26 Hz, 21 Hz), 60.6. 19F NMR (376 MHz, CD3OD) δ 118.62 (ddd, J=240.2 Hz, 13.4 Hz, 6.1 Hz), −119.67 (broad d, J=240.7 Hz); HRMS calcd. for C9H12O5N3F2 [M+H]+: 280.07395, found: 280.07347.
  • Example 19
  • Figure US20190022116A1-20190124-C00051
  • S18:
  • To a suspension of 2′-Deoxy-2′,2′-difluorocytidine (0.526 g, 1.998 mmol) in THF (13.32 ml) at 0° C. under nitrogen, was dropwise added via syringe a 1M THF solution of t-butylmagnesium chloride (4.00 mL, 4.00 mmol), and the resulting mixture was stirred at the same temperature for 30 min. A solution of S7 (1.770 g, 4.00 mmol) in THF (13.32 mL) at 0° C. was added dropwise via syringe, the mixture was allowed to warm to rt and was stirred for another 24 hrs. The reaction was cooled to 0° C. and carefully quenched with sat. aq. NH4Cl. The mixture was concentrated by rotary evaporation, and the obtained solid was redissolved in MeOH and filtered through a plug of Celite, rinsing the plug with MeOH. The filtrate was concentrated by rotary evaporation, and automated flash chromatography (40 g column, 0 to 15% gradient of MeOH in DCM) gave S18 (0.620 g, 58%) as a brown foam, as a diastereomeric mixture. 1H NMR (400 MHz, CD3OD, diastereomeric mixture) δ 7.60 (dd, J=26.1 Hz, 7.4 Hz, 1H), 7.43-7.30 (m, 2H), 7.31-7.12 (m, 3H), 6.26 (q, J=7.7 Hz, 1H), 5.92 (dd, J=21.2 Hz, 7.2 Hz, 1H), 4.97 (m, 1H), 4.60-4.30 (m, 2H), 4.29-4.15 (m, 1H), 4.10 (m, 1H), 3.88 (m, 1H), 1.33 (t, J=8.0 Hz, 3H), 1.22 (m, 6H); 13C NMR (100 MHz, CD3OD, diastereomeric mixture) δ 174.61, 174.57, 174.35, 174.30, 167.18, 154.42, 152.15, 152.08, 142.62, 142.52, 139.86, 130.84, 130.20, 126.30, 124.17, 121.49, 121.44, 80.45, 70.18, 69.95, 66.90, 65.69, 51.88, 51.72, 21.97, 21.94, 21.91, 21.89, 21.85, 21.25, 21.19, 20.52, 20.45, 20.34, 20.26, 15.44; 19F NMR (376 MHz, CD3OD) δ −118.20 (dd, J=238.6 Hz, 73.5 Hz), −120.20 (d, J=237.0 Hz); 31P NMR (162 MHz, CD3OD) δ 3.81, 3.74; HRMS calcd. for C21H28O8N4F2P [M+H]+: 533.16073, found: 533.16038.
  • EIDD-2091:
  • To a suspension of S18 (0.266 g, 0.500 mmol) in THF (5 mL) was added a 2 N aq. Hydroxylamine solution at pH 6 (6.3 ml, 12.49 mmol), and the resulting mixture was stirred at 37° C. for 1.5 days. The reaction (incomplete by TLC) was partitioned between EtOAc and H2O. The aqueous layer was extracted with EtOAc (2×15 mL). The combined organic layers were washed with H2O and brine, dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (24 g column, 0 to 10% gradient of MeOH in DCM) provided the title compound (34 mg, 12%) as a white solid, in a mixture of diastereomers. 1H NMR (400 MHz, CD3OD, diastereomeric mixture) δ 7.36 (t, J=7.7 Hz, 2H), 7.28-7.12 (m, 3H), 6.78 (t, J=9.0 Hz, 1H), 6.09 (q, J=8 Hz, 1H), 5.55 (dd, J=19.8 Hz, 8.3 Hz, 1H), 4.97 (sept, J=6.3 Hz, 1H), 4.63-4.27 (m, 3H), 4.20 (m, 1H), 4.10-3.96 (m, 1H), 3.95-3.76 (m, 1H), 1.33 (t, J=7.8 Hz, 3H), 1.22 (m, 6H); 13C NMR (100 MHz, CD3OD, diastereomeric mixture) δ 174.58, 174.54, 174.36, 174.31, 152.14, 152.07, 150.98, 145.48, 131.51, 131.34, 130.83, 126.26, 121.39, 121.37, 121.34, 121.32, 99.77, 85.24, 84.60, 80.02, 79.93, 79.88, 79.78, 71.52, 71.30, 71.05, 70.83, 70.18, 65.78, 65.72, 65.49, 65.44, 51.79, 51.66, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.36, 21.97, 21.89, 20.54, 20.48, 20.39, 20.31; 19F NMR (376 MHz, CD3OD) δ −118.04 (dd, J=240.8, 22.2 Hz), −119.47 (d, J=242.6 Hz); 31P NMR (162 MHz, CD3OD) δ 3.76, 3.69; HRMS calcd. for C21H27O8N4F2NaP [M+Na]+: 571.13759, found: 571.13708.
  • Example 20
  • Figure US20190022116A1-20190124-C00052
  • S19:
  • To a solution of trimethyl phosphate (4.68 mL, 40.0 mmol) in MeCN (40.0 mL) was sequentially added chloromethyl pivalate (23 mL, 160 mmol) and NaI (17.98 g, 120 mmol). The resulting yellow mixture was stirred under reflux overnight in the presence of 4 Å molecular sieves. Product could be visualized on TLC plate by phosphomolybdic acid. After cooling to r.t., the reaction was filtered through a plug of celite and condensed on rotavap. The obtained yellow residue was redissolved in Et2O, washed with H2O, brine, and finally dried over Na2SO4. The organics were combined and condensed on rotavap to give a brownish-red residue. Flash chromatography (10 to 20% gradient of EtOAc in hexanes) provided S19 (11.24 g, 63.8% yield) as a pale yellow liquid: 1H NMR (400 MHz, CDCl3) δ 5.67 (s, 3H), 5.64 (s, 3H), 1.23 (s, 27H); 13C NMR (100 MHz, CDCl3) δ 176.6, 82.7 (d, J=5 Hz), 38.7, 26.8; 31P NMR (162 MHz, CDCl3) δ −5.24; HRMS calcd. for C18H33O10NaP [M+Na]+: 463.17035, found: 463.17022.
  • S20:
  • A solution of S19 in piperidine (51.0 mL, 25.5 mmol) was stirred at rt for 7 hrs. The reaction was concentrated by rotary evaporation and then was redissolved in CH2Cl2. The organic solution was washed with ˜0.5N ice cold HCl (4×200 mL) and brine, and dried over Na2SO4. After filtrationg and concentration by rotary evaporation, the yellow residue was lyophilized to give S19 (8.1 g, 97%) as a light yellow wax: 1H NMR (400 MHz, CDCl3) δ 12.20 (s, 1H), 5.61 (s, 2H), 5.57 (s, 2H), 1.21 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 177.2, 82.7, 38.7, 26.8; 31P NMR (162 MHz, CDCl3) δ −3.58; Positive mode HRMS calcd. for C12H24O8P [M+H]+: 327.12033, found: 327.12053; Negative mode HRMS calcd. for C12H22O8P [M−H]: 325.10578, found: 325.10568.
  • EIDD-2135:
  • A solution of triethylammonium bis(POM)phosphate was prepared by adding triethylamine (0.362 mL, 2.60 mmol) to a solution of S20 (0.782 g, 2.398 mmol) in THF (8 mL). To a solution of EIDD-1931 (0.518 g, 1.998 mmol) in THF (32 mL) under nitrogen was added the prepared solution of triethylammonium bis(POM)phosphate at rt, then it was cooled to 0° C. DIPEA (1.392 mL, 7.99 mmol), BOP-C1 (1.017 g, 4.00 mmol) and 3-nitro-1H-1,2,4-triazole (0.456 g, 4.00 mmol) were sequentially added to the reaction, and the resulting mixture was stirred at 0° C. for 6 hrs followed by warming to rt and stirring overnight. The reaction mixture was partitioned between EtOAc and saturated aq. NaHCO3. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (40 g column, 0 to 10% gradient of MeOH in DCM) gave the title compound (30. mg, 2.6%) as a white foam: 1H NMR (400 MHz, CDCl3) δ 10.25 (s, 1H), 7.43 (d, J=8.2 Hz, 1H), 6.83 (d, J=8.1 Hz, 1H), 5.99-5.42 (m, 6H), 4.58-4.00 (m, 5H), 3.89 (m, 2H), 1.21 (s, 18H); 31P NMR (162 MHz, CDCl3) δ −4.77, −5.16; HRMS calcd. for C21H34O13N3NaP [M+Na]+: 590.17215, found: 590.17171.
  • Example 21
  • Figure US20190022116A1-20190124-C00053
  • EIDD-2159:
  • A 2 N hydroxylamine (30.0 mL, 60.0 mmol) aqueous solution was made by adjusting a 50% w/w aq. NH2OH solution with glacial AcOH and then diluting with water to achieve the desired concentration. A sealable pressure vessel was charged with the above solution, L-cytidine (0.486 g, 2.0 mmol), and a stir bar. The vessel was sealed and the mixture was heated at 50° C. for 40 h. The mixture was cooled to rt and concentrated by rotary evaporation. The crude reside was dissolved in water, and automated reverse phase flash chromatography (100 g column, gradient of 100% water to 100% MeCN) gave 300 mg of semipure material as a yellow flaky solid. The compound was taken up in MeOH and immobilized on Celite. Automated flash chromatography (12 g column, gradient of 10 to 25% MeOH in DCM) gave ˜150 mg of a white flaky solid containing some occluded solvent. The residue was dissolved in water, frozen in a dry ice/acetone bath, and lyophilized to give the title compound (0.128 g, 0.494 mmol, 25% yield) as an off-white flocculent solid. Spectral analysis showed 90-95% purity; the impurity was unknown and inseparable by chromatography. 1H NMR (400 MHz, D2O) δ 7.04 (d, J=8.3 Hz, 1H), 5.83 (d, J=5.7 Hz, 1H), 5.72 (d, J=8.2 Hz, 1H), 4.27 (t, J=5.5 Hz, 1H), 4.16 (t, J=4.7 Hz, 1H), 4.03 (q, J=3.9 Hz, 1H), 3.80 (dd, J=12.9 Hz, 3.0 Hz, 1H), 3.72 (dd, J=12.9 Hz, 4.2 Hz, 1H); 13C NMR (100 MHz, D2O) δ 151.1, 146.5, 131.2, 98.6, 87.8, 83.9, 72.4, 69.7, 60.9; HRMS calcd. for C9H14N3O6 [M+H]+: 260.08771, found: 260.08734.
  • Example 22
  • Figure US20190022116A1-20190124-C00054
  • S21:
  • A round bottom flask was charged with 1-O-D-arabinofuranosyluracil (4.88 g, 20.0 mmol) and dichloromethane (40 mL). The resulting mixture was cooled to 0° C. and 4-DMAP (0.244 g, 2.00 mmol) and imidazole (5.45 g, 80.0 mmol) were added all at once. TBSCl (12.06 g, 80.0 mmol) was added all at once as a solid, the mixture was warmed to ambient temperature, and stirred for 16 hours. Water (100 mL) was added to the reaction mixture, the layers were separated, and the aqueous layer was extracted with dichloromethane (2×100 mL). The combined organic layers were washed with brine (1×100 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation to give ˜12 g crude. 1H NMR and LCMS analysis showed a 3:1 ratio of bis-silylated to persilylated products. The crude was redissolved in dichloromethane (40 mL), and imidazole (2.04 g, 30.0 mmol) and 4-DMAP (0.122 g, 1.00 mmol) were added all at once. TBS triflate (6.89 mL, 30.0 mmol) was added dropwise via syringe, and the mixture was stirred for 16 hours at ambient temperature. Water (100 mL) was added to the reaction mixture, the layers were separated, and the aqueous layer was extracted with dichloromethane (2×100 mL). The combined organic layers were washed with brine (1×100 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation to give ˜25 g crude. Automated flash chromatography (330 g column, 5 to 60% gradient of EtOAc in hexanes) gave S21 (2.90 g, 25%) as a clear colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.93 (br s, 1H), 7.51 (d, J=8.2 Hz, 1H), 6.15 (d, J=3.2 Hz, 1H), 5.67 (dd, J=8.2 Hz, 2.8 Hz, 1H), 4.18 (s, 1H), 4.12 (dd, J=3.2 Hz, 1.3 Hz, 1H), 3.97 (dd, J=8.6 Hz, 5.8 Hz, 1H), 3.82 (dd, J=9.8 Hz, 5.7 Hz, 1H), 3.74 (dd, J=9.7 Hz, 8.6 Hz, 1H), 0.92 (s, 9H), 0.91 (s, 9H), 0.84 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), −0.06 (s, 3H); LRMS m/z 587.3 [M+H]+, 609.3 [M+Na]+.
  • S22:
  • To a stirred solution of S21 (2.90 g, 4.94 mmol) and 4-DMAP (0.060 g, 0.49 mmol) in dichloromethane (50 mL) at 0° C. under nitrogen, was added N,N-diisopropylethylamine (4.30 mL, 24.70 mmol) via syringe, followed by solid 2,4,6-triisopropylbenzene-1-sulfonyl chloride (2.99 g, 9.88 mmol) in one portion. The mixture was warmed to ambient temperature and stirred for 4 h, then recooled to 0° C. The mixture was washed with ice-cold sat. aq. NaHCO3 (3×50 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation. The crude oil was taken up in dichloromethane, and automated flash chromatography (80 g column, 1 to 10% gradient of EtOAc in hexanes) gave S22 (3.30 g, 78%) as a clear colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J=7.3 Hz, 1H), 7.20 (s, 2H), 6.10 (d, J=3.0 Hz, 1H), 6.05 (d, J=7.3 Hz, 1H), 4.33-4.23 (m, 3H), 4.14 (s, 1H), 4.01 (dd, J=8.8 Hz, 6.2 Hz, 1H), 3.80 (dd, J=9.6 Hz, 6.2 Hz, 1H), 3.70 (t, J=9.3 Hz, 1H), 2.90 (p, J=7.0 Hz, 1H), 1.32-1.22 (m, 21H), 0.91 (s, 9H), 0.89 (s, 9H), 0.72 (s, 9H), 0.10 (s, 6H), 0.08 (s, 3H), 0.07 (s, 3H), −0.03 (s, 3H), −0.34 (s, 3H).
  • S23:
  • To a stirred solution of S22 (3.30 g, 3.87 mmol) in acetonitrile (40 mL) under nitrogen at 0° C., was added triethylamine (1.08 mL, 7.73 mmol) via syringe, followed by solid hydroxylamine hydrochloride (0.537 g, 7.73 mmol) in one portion. The mixture was warmed to ambient temperature and stirred 16 h. The mixture was recooled to 0° C., and sat. aq. NaHCO3 (80 mL) was added. The mixture was extracted with dichloromethane (3×80 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated by rotary evaporation. The crude was subjected to automated flash chromatography (80 g column, 5 to 20% gradient of EtOAc in dichloromethane) to give semipure material. A second automated flash chromatography (80 g column, 5 to 50% gradient of EtOAc in hexanes) gave S23 (1.17 g, 50%) as a white flaky solid: 1H NMR (400 MHz, CDCl3) δ 8.20 (br s, 1H), 6.90 (d, J=8.4 Hz, 1H), 6.42 (s, 1H), 6.12 (d, J=3.4 Hz, 1H), 5.51 (dd, J=8.3 Hz, 1.8 Hz, 1H), 4.15 (br m, 1H), 4.07 (dd, J=3.4 Hz, 1.4 Hz, 1H), 3.91 (dd, J=8.2 Hz, 6.4 Hz, 1H), 3.80 (dd, J=9.8 Hz, 5.6 Hz, 1H), 3.74 (dd, J=9.8 Hz, 8.6 Hz, 1H), 0.91 (s, 9H), 0.90 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.08 (s, 3H), 0.07 (s, 6H), −0.02 (s, 3H); LRMS m/z 602.3 [M+H]+.
  • EIDD-02200:
  • To a stirred solution of S23 (0.602 g, 1.00 mmol) in THF (8 mL) at room temperature under nitrogen, was added triethylamine trihydrofluoride (0.163 mL, 1.00 mmol) dropwise via syringe. The mixture was stirred at ambient temperature for 4 days. Celite was added to the reaction mixture, and rotary evaporation immobilized the crude onto Celite. Automated flash chromatography (24 g column, 5 to 25% gradient of MeOH in dichloromethane) gave 600 mg of semipure product. The mixture was taken up in water, and automated reverse phase flash chromatography (43 g column, 0 to 15% gradient of acetonitrile in water) gave the desired product free from impurities. The solid was dissolved in water, frozen in a dry ice/acetone bath, and lyophilized to provide the title compound (0.164 g, 63% yield) as a white flocculent solid: 1H NMR (400 MHz, CD3OD) δ 7.13 (d, J=8.3 Hz, 1H), 6.07 (d, J=4.4 Hz, 1H), 5.51 (d, J=8.3 Hz, 1H), 4.10 (dd, J=4.5 Hz, 1.3 Hz, 1H), 4.03 (t, J=3.4 Hz, 1H), 3.87-3.72 (m, 3H); 1H NMR (400 MHz, D2O) δ 7.08 (d, J=8.3 Hz, 1H), 6.09 (d, J=5.6 Hz, 1H), 5.67 (d, J=8.3 Hz, 1H), 4.33 (t, J=5.4 Hz, 1H), 4.06 (t, J=5.6 Hz, 1H), 3.89-3.86 (m, 2H), 3.76 (dd, J=13.1 Hz, 6.1 Hz, 1H); 13C NMR (100 MHz, D2O) δ 150.9, 146.8, 132.8, 97.0, 84.1, 82.1, 75.8, 74.8, 60.4; LRMS m/z 260.1 [M+H]+.
  • Example 23
  • Figure US20190022116A1-20190124-C00055
  • S24:
  • To a stirred suspension of EIDD-1931 (1.25 g, 4.82 mmol) in dry acetone (60 mL) under nitrogen at room temperature was added conc. H2SO4 (0.05 mL, 0.964 mmol), and the mixture was stirred at room temperature overnight. The acid was neutralized by addition of triethylamine (0.27 mL, 1.93 mmol), and the mixture was concentrated by rotary evaporation. Automated flash chromatography (80 g column, 0 to 10% gradient of methanol in dichloromethane) gave S24 (0.831 g, 58%) as a white solid: 1H NMR (400 MHz, CD3OD) δ 7.03 (d, J=8.2 Hz, 1H), 5.81 (d, J=3.2 Hz, 1H), 5.58 (d, J=8.2 Hz, 1H), 4.86 (dd, J=6.5 Hz, 3.2 Hz, 1H), 4.79 (dd, J=6.4 Hz, 3.6 Hz, 1H), 4.10 (q, J=4.0 Hz, 1H), 3.75 (dd, J=11.9 Hz, 3.7 Hz, 1H), 3.70 (dd, J=12.0 Hz, 4.5 Hz, 1H), 1.54 (s, 3H), 1.35 (s, 3H).
  • S25:
  • To a stirred suspension of S24 (0.831 g, 2.78 mmol) in dichloromethane (14 mL) at room temperature under nitrogen, was added triethylamine (0.58 mL, 4.16 mmol) and 4-DMAP (3.4 mg, 0.028 mmol), and the mixture was stirred at room temperature for 15 min. A solution of 4,4′-dimethoxytrityl chloride (0.988 g, 2.92 mmol) in dichloromethane (14 mL) was added dropwise, and the mixture was stirred overnight at room temperature. The reaction mixture was washed with brine (1×30 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation. Flash chromatography (9:1 hexanes:EtOAc, 2.5% v/v Et3N) gave S25 (1.39 g, 83%) as a yellow foam: 1H NMR (400 MHz, CD3OD) δ 7.35-7.20 (m, 10H), 7.01 (d, J=8.3 Hz, 1H), 6.85-6.80 (m, 4H), 5.80 (d, J=3.0 Hz, 1H), 5.52 (d, J=8.2 Hz, 1H), 4.84 (dd, J=6.4 Hz, 3.0 Hz, 1H), 4.77 (dd, J=6.4 Hz, 3.6 Hz, 1H), 4.10 (q, J=4.0 Hz, 1H), 3.73 (dd, J=11.9 Hz, 3.6 Hz, 1H), 3.68 (dd, J=12.0 Hz, 4.6 Hz, 1H), 1.53 (s, 3H), 1.34 (s, 3H).
  • S27:
  • To a stirred solution of S26 (0.523 g, 2.56 mmol) and N,N-diisopropylethylamine (0.46 mL, 2.64 mmol) in acetonitrile (5 mL) at 0° C. under nitrogen, was added S25 (0.300 g, 0.499 mmol). The resulting mixture was warmed to room temperature and stirred 22 h, then diluted with EtOAc (50 mL), washed with brine (2×50 mL), dried over Na2SO4, and concentrated by rotary evaporation. The crude residue was taken directly to the next step without further purification.
  • EIDD-2207:
  • The entirety of the crude S27 prepared in the previous step was mixed with 80% w/w aq. formic acid (10 mL), and the mixture was stirred at room temperature for 20 hours. The mixture was concentrated by rotary evaporation, and automated flash chromatography (40 g column, 0 to 15% gradient of methanol in dichloromethane) gave the title compound (0.104 g, 48% over 2 steps) as a yellow foam, in a ˜1:1 diastereomeric mixture at phosphorus: 1H NMR (400 MHz, CD3OD, diastereomeric mixture) δ 7.41-7.35 (m, 1H), 7.26-7.18 (m, 2H), 7.12 (d, J=8.3 Hz, 1H), 6.75 (d, J=8.3 Hz, 0.5×1H), 6.69 (d, J=8.3 Hz, 0.5×1H), 5.79 (d, J=4.8 Hz, 0.5×1H), 5.75 (d, J=4.8 Hz, 0.5×1H), 5.54-5.42 (m, 2H), 5.46 (d, J=8.2 Hz, 0.5×1H), 5.32 (d, J=8.2 Hz, 0.5×1H), 4.56-4.25 (m, 2H), 4.13-4.02 (m, 3H); 31P NMR (162 MHz, CD3OD, diastereomeric mixture) δ −9.13, −9.33; HRMS calcd. for C16H18N3O9PNa [M+Na]+: 450.06729; found: 450.06777.
  • Example 24
  • Figure US20190022116A1-20190124-C00056
  • EIDD-2216:
  • A ˜5 N solution of hydroxylamine hydrochloride (4.71 g, 67.8 mmol) in water (13.5 mL) was prepared, and adjusted to pH=6 with a small amount of aq. NaOH (10% w/w). A sealable pressure tube was charged with this solution and [1′,2′,3′,4′,5′-13C5]cytidine (0.661 g, 2.26 mmol), the flask was sealed, and heated with stirring at 37° C. for 16 h. The mixture was cooled to room temperature, transferred to a round bottom flask, and concentrated by rotary evaporation. The crude material was taken up in water, and automated reverse phase flash chromatography (240 g C18 column, 0 to 100% gradient of acetonitrile in water) removed bulk impurities to give 1.4 g of a wet solid. This solid was dissolved in water, and a second automated reverse phase chromatography (240 g C18 column, 0 to 100% gradient of acetonitrile in water) removed more impurities to give 400 mg semipure material. The material was dissolved in MeOH and immobilized on Celite. Automated flash chromatography (24 g column, 5 to 25% gradient of MeOH in dichloromethane) gave ˜200 mg of nearly pure product. The solid was dissolved in water, and a final automated reverse phase chromatography (48 g C18 column, 0 to 100% gradient of acetonitrile in water) gave the desired product free from organic and inorganic impurities. The solid was dissolved in water, frozen in a dry ice/acetone bath, and lyophilized to provide the title compound (0.119 g, 20%) as a pale purple flocculent solid, ˜95% pure by NMR/LCMS analysis: 1H NMR (400 MHz, D2O) δ 7.03 (dd, J=8.2 Hz, 2.2 Hz, 1H), 5.82 (ddd, J=167.5 Hz, 5.3 Hz, 2.9 Hz, 1H), 5.70 (d, J=8.2 Hz, 1H), 4.47-4.30 (br m, 1H), 4.23-4.03 (br m, 1H), 4.00-3.80 (br m, 2H), 3.65-3.50 (br m, 1H); 13C NMR (100 MHz, D2O) δ 151.3, 146.6, 131.3, 98.7, 87.9 (dd, J=43.1 Hz, 4.0 Hz), 84.0 (dd, J=41.5 Hz, 38.0 Hz), 72.5 (dd, J=43.3 Hz, 37.8 Hz), 69.8 (td, J=37.9 Hz, 3.9 Hz), 61.1 (d, J=41.5 Hz); LRMS m/z 265.1 [M+H]+.
  • Example 25
  • Figure US20190022116A1-20190124-C00057
  • S28:
  • A sealable pressure tube was charged with uridine (1.00 g, 4.09 mmol), K2CO3 (0.679 g, 4.91 mmol), and deuterium oxide (8.2 mL). The mixture was purged with nitrogen for 15 minutes, the tubed was sealed, and the contents were heated with stirring at 95° C. for 16 h. The mixture was cooled to rt, the tube was unsealed, and the mixture was transferred to a round-bottom flask and concentrated by rotary evaporation. The resulting crude was coevaporated with MeOH (×3) to remove water. NMR analysis showed >95% deuterium incorporation at the 5-position on the nucleobase. The light brown solid S28 (1.00 g, 100%) was used in the next step without further purification: 1H NMR (400 MHz, CD3OD) δ 7.76 (s, 1H), 5.88 (d, J=4.2 Hz, 1H), 4.17-4.12 (m, 2H), 4.00-3.96 (m, 1H), 3.84 (dd, J=12.3 Hz, 2.8 Hz, 1H), 3.72 (dd, J=12.3 Hz, 3.5 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 185.6, 177.4, 160.4, 141.1, 91.8, 85.8, 75.9, 71.2, 62.4.
  • S29:
  • A round bottom flask was charged with S28 (1.00 g, 4.09 mmol) and dichloromethane (8 mL) under nitrogen. The resulting mixture was cooled to 0° C. and 4-DMAP (0.050 g, 0.408 mmol) and imidazole (1.11 g, 16.3 mmol) were added all at once. TBSCl (2.15 g, 14.3 mmol) was added all at once as a solid, the mixture was warmed to ambient temperature, and stirred for 16 hours. Water (25 mL) was added to the reaction mixture, the layers were separated, and the aqueous layer was extracted with dichloromethane (2×25 mL). The combined organic layers were washed with brine (1×25 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (40 g column, 0 to 35% gradient of EtOAc in hexanes) gave S29 (2.52 g, 84%) as an off-white foam: 1H NMR (400 MHz, CDCl3) δ 8.08 (br s, 1H), 8.03 (s, 1H), 5.89 (d, J=3.6 Hz, 1H), 4.12-4.06 (m, 3H), 3.99 (dd, J=11.5 Hz, 1.8 Hz, 1H), 3.76 (d, J=12.0 Hz, 1H), 0.96 (s, 9H), 0.92 (s, 9H), 0.90 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 163.7, 150.3, 140.3, 89.0, 84.3, 76.1, 70.5, 61.6, 26.0 (3C), 25.8 (3C), 25.7 (3C), 18.4, 18.3, 17.9, −4.2, −4.6, −4.8, −4.9, −5.4, −5.6; HRMS calcd. for C27H54DN2NaO6Si [M+Na]+: 610.32446, found: 610.32482.
  • S30:
  • To a stirred solution of S29 (0.840 g, 1.43 mmol) in acetonitrile (14.3 mL) at 0° C. under nitrogen, were added sequentially p-toluenesulfonyl chloride (0.545 g, 2.86 mmol), 4-DMAP (0.175 g, 1.43 mmol), and triethylamine (0.80 mL, 5.71 mmol). The mixture was stirred at 0° C. for 2.5 h, at which time hydroxylamine hydrochloride (0.993 g, 14.3 mmol) was added all at once as a solid. The mixture was heated at 50° C. for 3 days, then cooled to rt. The reaction mixture was diluted with EtOAc (100 mL), then washed with water (2×100 mL) and brine (1×100 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (40 g column, 5 to 35% gradient of EtOAc in hexanes) produced a mixture of starting material and desired product. A second automated flash chromatography (24 g column, 10 to 40% gradient of EtOAc in hexanes), gave S30 (0.332 g, 39%) as an off-white foam: 1H NMR (400 MHz, CDCl3) δ 8.37 (br s, 1H), 5.92 (d, J=4.6 Hz, 1H), 4.10-4.05 (m, 2H), 4.04-4.00 (m, 1H), 3.91 (dd, J=11.6 Hz, 2.4 Hz, 1H), 3.73 (dd, J=11.6 Hz, 1.8 Hz, 1H), 0.95 (s, 9H), 0.92 (s, 9H), 0.89 (s, 9H), 0.12 (s, 6H), 0.10 (s, 3H), 0.08 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H).
  • EIDD-2261:
  • A round bottom flask was charged with S30 (0.332 g, 0.551 mmol), tetramethylammonium fluoride (0.196 g, 2.64 mmol), THF (8.25 mL), and DMF (2.75 mL) under nitrogen at 0° C. Acetic acid (0.157 mL, 2.75 mmol) was added all at once via syringe. The mixture was warmed to 45° C. and heated with stirring for 4 days, then concentrated by rotary evaporation. Automated flash chromatography (40 g column, 0 to 20% gradient of MeOH in DCM) gave the title compound (0.106 g, 74%) as a white solid. Final NMR analysis showed >95% deuterium incorporation at the 5-position of the nucleobase: 1H NMR (400 MHz, D2O) δ 7.16 (s, 1H), 5.85 (d, J=5.6 Hz, 1H), 4.14 (t, J=5.5 Hz, 1H), 4.10 (dd, J=5.6 Hz, 3.8 Hz, 1H), 3.93 (q, J=3.4 Hz, 1H), 3.77 (dd, J=12.2 Hz, 2.9 Hz, 1H), 3.68 (dd, J=12.2 Hz, 3.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 151.8, 146.3, 132.1, 89.7, 86.1, 74.6, 71.8, 62.8; FIRMS calcd. for C9H13DN3O6 [M+H]+: 261.09399, found: 261.09371.
  • Example 26
  • Figure US20190022116A1-20190124-C00058
    Figure US20190022116A1-20190124-C00059
  • S31:
  • A round bottom flask was charged with S8 (3.13 g, 11.0 mmol) and dichloromethane (75 mL) under nitrogen at room temperature. To this stirred mixture was added sequentially pyridinium dichromate (8.28 g, 22.0 mmol), acetic anhydride (10.4 mL, 110 mmol) and t-butanol (21.1 mL, 220 mmol) at room temperature. The mixture was stirred for 22 hours at room temperature, then washed with water (1×75 mL). The aqueous layer was extracted with dichloromethane (2×75 mL) and the combined organic layers were washed with brine (1×100 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation. The obtained residue was taken up in EtOAc and filtered through a Celite plug, followed by washing with EtOAc. The filtrate was concentrated by rotary evaporation, and automated flash chromatography (120 g column, 40 to 80% gradient of EtOAc in hexanes) gave S31 (3.10 g, 72%) as an off-white foam: 1H NMR (400 MHz, CDCl3) δ 8.36 (br s, 1H), 7.42 (d, J=8.0 Hz, 1H), 5.76 (dd, J=8.0 Hz, 2.3 Hz, 1H), 5.59 (s, 1H), 5.27 (dd, J=6.0 Hz, 1.8 Hz, 1H), 5.19 (d, J=6.0 Hz, 1H), 4.62 (d, J=1.8 Hz, 1H), 1.56 (s, 3H), 1.48 (s, 9H), 1.39 (s, 3H).
  • S32:
  • To a stirred solution of S31 (2.61 g, 7.37 mmol) in EtOD (75 mL) at room temperature under nitrogen, was added NaBD4 (1.234 g, 29.5 mmol) in one portion. The mixture was stirred at room temperature for 1 hour, heated to 55° C. for 6 hours, then overnight at room temperature. The mixture was cooled to 0° C. and excess reagent was quenched with AcOD. The mixture was concentrated by rotary evaporation to give crude S32 (2.57 g) which was taken directly on to the next step without further purification.
  • S33:
  • To a stirred suspension of crude S32 (2.00 g impure material, ˜5.74 mmol) in dichloromethane (70 mL) at 0° C., was added solid imidazole (1.90 g, 27.9 mmol) and 4-DMAP (0.171 g, 1.40 mmol). Solid t-butyldimethylsilyl chloride (2.11 g, 14.0 mmol) was added, and the mixture was warmed to room temperature and stirred for 4 days. The mixture was washed sequentially with water and brine (1×70 mL each), dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (120 g column, 0 to 35% gradient of EtOAc in hexanes) gave S33 (1.42 g, 66% over 2 steps) as a white solid: 1H NMR (400 MHz, CDCl3) δ 8.30 (br s, 1H), 7.72 (m, 1H), 5.99 (d, J=2.8 Hz, 1H), 5.69 (dd, J=8.2 Hz, 2.3 Hz, 1H), 4.77 (dd, J=6.1 Hz, 2.9 Hz, 1H), 4.69 (dd, J=6.2 Hz, 2.8 Hz, 1H), 4.33 (d, J=3.0 Hz, 1H), 1.60 (s, 3H), 1.37 (s, 3H), 0.91 (s, 9H), 0.11 (s, 3), 0.10 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.7, 149.9, 140.5, 114.1, 102.1, 91.9, 86.5, 85.4, 80.3, 27.4, 25.9 (3C), 25.4, 18.4, −5.4, −5.5; HRMS calcd. for C18H29D2N2O6Si [M+H]+: 401.20714, found: 401.20663.
  • S34:
  • To a stirred solution of S33 (1.42 g, 3.55 mmol) in acetonitrile (35 mL) at 0° C. under nitrogen, was added sequentially p-toluenesulfonyl chloride (1.35 g, 7.09 mmol), 4-DMAP (0.433 g, 3.55 mmol), and triethylamine (9.88 mL, 70.9 mmol). The resulting mixture was stirred at 0° C. for 2.5 hours. Hydroxylamine hydrochloride (2.46 g, 35.5 mmol) was added, and the mixture was heated with stirring at 50° C. for 2 days. The mixture was recooled to rt and diluted with EtOAc (100 mL), then washed with water (2×50 mL) and brine (1×50 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation. Automated flash chromatography (120 g column, 1 to 3.5% gradient of methanol in dichloromethane) gave S34 (0.416 g, 28%) as an off-white solid: 1H NMR (400 MHz, CDCl3) δ 8.36 (br s, 1H), 7.00 (m, 1H), 5.97 (d, J=3.1 Hz, 1H), 5.58 (d, J=8.2 Hz, 1H), 4.77 (dd, J=6.2 Hz, 3.2 Hz, 1H), 4.68 (dd, J=6.3 Hz, 3.2 Hz, 1H), 4.22 (d, J=3.2 Hz, 1H), 1.59 (s, 3H), 1.36 (s, 3H), 0.92 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.0, 145.4, 131.4, 114.1, 98.3, 90.8, 85.5, 84.5, 80.2, 27.4, 25.9 (3C), 25.5, 18.4, −5.4, −5.5; HRMS calcd. for C18H29D2N3O6Si [M+H]+: 416.21804, found: 416.21827.
  • S35:
  • To a stirred solution of S34 (0.416 g, 1.00 mmol) in THF (5 mL) at 0° C. under nitrogen, was added a 1.0 M THF solution of TBAF (1.50 mL, 1.5 mmol), and the resulting mixture was kept at 0° C. for 24 hours. The reaction mixture was concentrated by rotary evaporation, and automated flash chromatography (40 g column, 0 to 8% gradient of methanol in dichloromethane) gave S35 (0.257 g, 85%) as a white solid: 1H NMR (400 MHz, CD3OD) δ 7.02 (m, 1H), 5.81 (d, J=3.2 Hz, 1H), 5.58 (d, J=8.2 Hz, 1H), 4.86 (dd, J=6.4 Hz, 3.2 Hz, 1H), 4.79 (dd, J=6.5 Hz, 3.6 Hz, 1H), 4.09 (d, J=3.7 Hz, 1H), 1.54 (s, 3H), 1.34 (s, 3H); 13C NMR (100 MHz, CD3OD) δ 151.3, 146.2, 133.4, 115.2, 99.4, 92.9, 87.2, 84.9, 82.1, 27.6, 25.6; HRMS calcd. for C12H16D2N3O6 [M+H]+: 302.13157, found: 302.13130.
  • EIDD-2345:
  • To a stirred solution of S35 (0.140 g, 0.465 mmol) in methanol (8.4 mL) and water (0.93 mL) at room temperature, was added Dowex 50WX8 hydrogen form (0.30 g), and the mixture was stirred at room temperature for 24 hours. The reaction mixture was filtered, and the filtrate was concentrated by rotary evaporation. Automated flash chromatography (40 g column, 5 to 20% gradient of methanol in dichloromethane) gave the title compound (0.050 g, 41%) as an off-white solid: 1H NMR (400 MHz, CD3OD) δ 7.17 (m, 1H), 5.86 (d, J=5.6 Hz, 1H), 5.60 (d, J=8.2 Hz, 1H), 4.15 (t, J=5.5 Hz, 1H), 4.11 (dd, J=5.6 Hz, 3.5 Hz, 1H), 3.94 (d, J=3.8 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 151.8, 146.3, 132.2, 99.3, 89.7, 86.0, 74.6, 71.7, FIRMS calcd. for C9H10D2N3O6 [M+H]+: 260.08571, found: 260.08578.
  • Example 27
  • Figure US20190022116A1-20190124-C00060
  • S36:
  • To a stirred solution of S2 (0.090 g, 0.150 mmol) in DCM (1.5 mL) under nitrogen at rt, was added hexadecyl isocyanate (0.051 mL, 0.165 mmol) dropwise via syringe over 2 minutes. The reaction was stirred at rt for 4 h, then concentrated by rotary evaporation to give crude residue. Automated flash chromatography (12 g column, 0 to 20% gradient of EtOAc in hexanes) gave S36 (0.120 g, 92%) as an off-white foam: 1H NMR (400 MHz, CDCl3) δ 8.27 (br s, 1H), 7.51 (d, J=8.4 Hz, 1H), 6.29 (t, J=5.8 Hz, 1H), 5.90 (d, J=4.5 Hz, 1H), 5.57 (dd, J=8.2 Hz, 2.2 Hz, 1H), 4.09-4.02 (m, 3H), 3.93 (dd, J=11.7 Hz, 2.2 Hz, 1H), 3.73 (dd, J=11.6 Hz, 1.6 Hz, 1H), 3.27 (q, J=6.6 Hz, 2H), 1.56 (m, 2H), 1.26 (br s, 28H), 0.95 (s, 9H), 0.91 (s, 9H), 0.89 (s, 9H), 0.89 (m, 3H), 0.13 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 154.6, 147.9, 146.9, 134.0, 96.0, 91.2, 87.9, 85.1, 75.5, 71.7, 62.5, 41.2, 31.9, 29.73, 29.70, 29.69 (2C, accidental isochrony), 29.67, 29.65 (2C, accidental isochrony), 29.60, 29.5, 29.4, 29.3, 26.8, 26.0 (3C), 25.8 (3C), 25.7 (3C), 22.7, 18.4, 18.1, 17.9, 14.1, −4.4, −4.6, −4.7, −4.8, −5.5, −5.6; HRMS calcd. for C44H89N4O7Si3 [M+H]+: 869.60336, found: 869.60408.
  • EIDD-2356:
  • To a stirred solution of S36 (0.120 g, 0.138 mmol) in THF (2.75 mL) under nitrogen at 0° C., was added a 1M solution of TBAF in THF (0.483 mL, 0.483 mmol). The solution was stirred at 0° C. for 5 hours, then concentrated by rotary evaporation. Automated flash chromatography (12 g column, 0 to 10% gradient of MeOH in dichloromethane) gave the title compound (0.055 g, 76%) as an off-white solid: 1H NMR (400 MHz, CDCl3 with a drop of CD3OD) δ 7.26 (d, J=8.2 Hz, 1H), 5.62 (d, J=4.4 Hz, 1H), 5.55 (d, J=8.2 Hz, 1H), 4.14-4.06 (m, 2H), 3.96-3.92 (m, 1H), 3.82-3.76 (m, 1H), 3.65 (m, 1H, obscured by MeOH-d4), 3.15 (t, 7.0 Hz, 2H), 1.56 (m, 2H), 1.30-1.11 (br s, 28H), 0.79 (t, J=6.9 Hz, 3H); HRMS calcd. for C26H47N4O7 [M+H]+: 527.34393, found: 527.34396.
  • Example 28
  • Figure US20190022116A1-20190124-C00061
  • S37:
  • To a stirred solution of S2 (0.090 g, 0.150 mmol) in DCM (1.5 mL) under nitrogen at rt, was added octadecyl isocyanate (0.057 mL, 0.165 mmol) dropwise via syringe over 2 minutes. The reaction was stirred at rt for 6 h, then concentrated by rotary evaporation to give crude residue. Automated flash chromatography (12 g column, 0 to 20% gradient of EtOAc in hexanes) gave S37 (0.128 g, 95%) as an off-white foam: 1H NMR (400 MHz, CDCl3) δ 8.27 (br s, 1H), 7.51 (d, J=8.3 Hz, 1H), 6.29 (t, J=5.8 Hz, 1H), 5.90 (d, J=4.4 Hz, 1H), 5.57 (dd, J=8.2 Hz, 2.2 Hz, 1H), 4.10-4.00 (m, 3H), 3.93 (dd, J=11.6 Hz, 2.1 Hz, 1H), 3.73 (dd, J=11.7 Hz, 1.5 Hz, 1H), 3.28 (q, J=6.6 Hz, 2H), 1.55 (m, 2H), 1.26 (br s, 30H), 0.95 (s, 9H), 0.91 (s, 9H), 0.89 (s, 9H), 0.89 (m, 3H), 0.13 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 154.6, 147.9, 146.9, 134.0, 96.0, 91.2, 87.9, 85.1, 75.5, 71.7, 62.5, 41.2, 31.9, 29.73, 29.70 (5C, accidental isochrony), 29.67, 29.66 (2C, accidental isochrony), 29.60, 29.5, 29.4, 29.3, 26.8, 26.0 (3C), 25.8 (3C), 25.7 (3C), 22.7, 18.4, 18.1, 17.9, 14.1, −4.4, −4.6, −4.7, −4.8, −5.5, −5.6; HRMS calcd. for C46H93N4O7Si3 [M+H]+: 897.63466, found: 897.63589.
  • EIDD-2357:
  • To a stirred solution of S37 (0.128 g, 0.143 mmol) in THF (2.85 mL) under nitrogen at 0° C., was added a 1M solution of TBAF in THF (0.499 mL, 0.499 mmol). The solution was stirred at 0° C. for 5 hours, then concentrated by rotary evaporation. Automated flash chromatography (12 g column, 0 to 10% gradient of MeOH in dichloromethane) gave the title compound (0.059 g, 74%) as an off-white solid: 1H NMR (400 MHz, CDCl3) δ 10.70 (br s, 1H), 7.47 (d, J=8.2 Hz, 1H), 6.56 (t, J=6.2 Hz, 1H), 5.76 (s, 1H), 5.60 (d, J=8.2 Hz, 1H), 4.32-4.20 (br m, 2H), 4.12-4.02 (br m, 2H), 3.90 (d, J=11.7 Hz, 1H), 1.56 (m, 2H), 1.26 (br s, 30H), 0.89 (t, J=7.0 Hz, 3H); FIRMS calcd. for C28H51N4O7 [M+H]+: 555.37523, found: 555.37531.
  • Example 29
  • Figure US20190022116A1-20190124-C00062
  • S38:
  • To a vigorously stirred mixture of triphosgene (0.297 g, 1.00 mmol) and sodium bicarbonate (0.370 g, 4.40 mmol) in acetonitrile (5 mL) at −15° C., was added an admixed solution of methylamine (2.0 M in THF, 0.600 mL, 1.20 mmol) and triethylamine (0.488 mL, 3.50 mmol) dropwise via syringe. The mixture was warmed to ambient temperature and stirred for 6 hours. A solution of S2 (0.662 g, 1.10 mmol) and 4-DMAP (0.024 g, 0.200 mmol) in acetonitrile (5 mL) and DCM (5 mL) was prepared, and this was added dropwise to the reaction mixture via syringe. The entire mixture was stirred at ambient temperature for 16 h, diluted with dichloromethane (50 mL), washed with sat. aq. NaHCO3 and brine (1×25 mL each), dried over Na2SO4, filtered, and concentrated by rotary evaporation. The crude was taken up in dichloromethane, and automated flash chromatography (24 g column, 5 to 35% gradient of EtOAc in hexanes) gave S38 (0.340 g, 52%) as a white waxy solid. NMR analysis showed a ˜8:1 ratio of rotamers:1H NMR (400 MHz, DMSO-d6, major rotamer) δ 10.53 (d, J=2.2 Hz, 1H), 7.30 (d, J=8.2 Hz, 1H), 6.83 (q, J=4.9 Hz, 1H), 5.80 (d, J=6.5 Hz, 1H), 5.67 (dd, J=8.3 Hz, 2.2 Hz, 1H), 4.18 (dd, J=6.4 Hz, 4.3 Hz, 1H), 4.05 (m, 1H), 3.92 (m, 1H), 3.82 (dd, J=11.6 Hz, 4.0 Hz, 1H), 3.70 (dd, J=11.5 Hz, 2.9 Hz, 1H), 2.64 (d, J=4.7 Hz, 3H), 0.91 (s, 9H), 0.89 (s, 9H), 0.83 (s, 9H), 0.10 (s, 6H), 0.09 (s, 3H), 0.08 (s, 3H), 0.02 (s, 3H), −0.03 (s, 3H).
  • EIDD-2422:
  • To a stirred solution of S38 (0.330 g, 0.500 mmol) in THF (3.75 mL) and DMF (1.25 mL) at 0° C., was added acetic acid (0.143 mL, 2.50 mmol) followed by tetraethylammonium fluoride (0.359 g, 2.40 mmol) all at once. The mixture was warmed to ambient temperature and stirred 24 hours. The mixture was concentrated by rotary evaporation, and the crude was taken up in dichloromethane. Automated flash chromatography (12 g column, 1 to 25% gradient of MeOH in dichloromethane) gave 80 mg of semipure material. This material was taken up in water, and automated reverse phase flash chromatography (30 g column, 0 to 100% gradient of acetonitrile in water) gave the desired product free from impurities. The solid was dissolved in water, frozen in a dry ice/acetone bath, and lyophilized to provide the title compound (0.057 g, 36% yield) as a white flocculent solid. NMR analysis showed a 13:1 ratio of signals in D2O and a 8:1 ratio in MeOH-d4, indicating solvent-dependent rotamer ratios of a single pure compound: 1H NMR (400 MHz, CD3OD, major rotamer) δ 7.45 (d, J=8.2 Hz, 1H), 5.86 (d, J=5.1 Hz, 1H), 5.69 (d, J=8.2 Hz, 1H), 4.16-4.08 (m, 2H), 3.96 (q, J=3.2 Hz, 1H), 3.79 (dd, J=12.2 Hz, 2.8 Hz, 1H), 3.69 (dd, J=12.2 Hz, 3.3 Hz, 1H), 2.79 (s, 3H); 1H NMR (400 MHz, D2O, major rotamer) δ 7.27 (d, J=8.2 Hz, 1H), 5.84 (d, J=5.4 Hz, 1H), 5.80 (d, J=8.2 Hz, 1H), 4.28 (t, J=5.2 Hz, 1H), 4.17 (t, J=5.2 Hz, 1H), 4.05 (q, J=4.2 Hz, 1H), 3.82 (dd, J=12.8 Hz, 3.1 Hz, 1H), 3.73 (dd, J=12.8 Hz, 4.6 Hz, 1H), 2.76 (s, 3H); 13C NMR (100 MHz, D2O) δ 157.6, 150.2, 148.8, 134.0, 97.1, 88.4, 84.1, 73.1, 69.7, 61.0, 26.9; LRMS m/z 315.1 [M−H].
  • Example 30
  • Figure US20190022116A1-20190124-C00063
  • S39:
  • To a vigorously stirred solution of S2 (1.10 g, 1.82 mmol) in pyridine (12 mL) under nitrogen at 0° C., was added dimethylcarbamyl chloride (0.184 mL, 2.00 mmol) dropwise via syringe over 5 minutes. The mixture was stirred at 0° C. for 4 hours, then warmed to ambient temperature and stirred another 16 hours. Methanol (2 mL) was added, the mixture was stirred an additional 15 minutes at room temperature, then concentrated by rotary evaporation. The crude was taken up in dichloromethane, and automated flash chromatography (40 g column, 5 to 50% gradient of EtOAc in hexanes) provided S39 (1.16 g, 95%) as a fluffy white solid. NMR analysis showed a ˜10:1 ratio of rotamers:1H NMR (400 MHz, DMSO-d6, major rotamer) δ 10.76 (d, J=2.2 Hz, 1H), 7.28 (d, J=8.3 Hz, 1H), 5.80 (d, J=6.3 Hz, 1H), 5.70 (dd, J=8.2 Hz, 2.2 Hz, 1H), 4.20 (dd, J=6.3 Hz, 4.6 Hz, 1H), 4.05 (dd, J=4.3 Hz, 2.3 Hz, 1H), 3.92 (q, J=3.1 Hz, 1H), 3.83 (dd, J=11.5 Hz, 4.0 Hz, 1H), 3.70 (dd, J=11.5 Hz, 2.8 Hz, 1H), 2.96 (br s, 3H), 2.83 (br s, 3H), 0.91 (s, 9H), 0.89 (s, 9H), 0.83 (s, 9H), 0.10 (s, 6H), 0.09 (s, 3H), 0.08 (s, 3H), 0.02 (s, 3H), −0.01 (s, 3H).
  • EIDD-2423:
  • To a stirred solution of S39 (1.16 g, 1.72 mmol) in THF (12.9 mL) and DMF (4.3 mL) at 0° C., was added acetic acid (0.493 mL, 8.62 mmol) followed by tetraethylammonium fluoride (1.24 g, 8.27 mmol) all at once. The mixture was warmed to ambient temperature and stirred 16 hours. The mixture was concentrated by rotary evaporation, and the crude was taken up in dichloromethane. Automated flash chromatography (80 g column, 1 to 15% gradient of MeOH in dichloromethane) gave 400 mg of semipure material. This material was taken up in water, and automated reverse phase flash chromatography (100 g column, 0 to 100% gradient of acetonitrile in water) gave the desired product free from impurities. The solid was dissolved in water, frozen in a dry ice/acetone bath, and lyophilized to provide the title compound (0.200 g, 35% yield) as a white flocculent solid. NMR analysis showed a 9:1 ratio of signals in D2O and a 5:1 ratio in MeOH-d4, indicating solvent-dependent rotamer ratios of a single pure compound: 1H NMR (400 MHz, CD3OD, major rotamer) δ 7.46 (d, J=8.3 Hz, 1H), 5.85 (d, J=4.8 Hz, 1H), 5.72 (d, J=8.2 Hz, 1H), 4.18-4.11 (m, 2H), 3.97 (q, J=3.5 Hz, 1H), 3.80 (dd, J=12.1 Hz, 2.8 Hz, 1H), 3.70 (dd, J=12.2 Hz, 3.2 Hz, 1H), 3.05 (br s, 3H), 2.98 (br s, 3H); 1H NMR (400 MHz, D2O, major rotamer) □ 7.27 (d, J=8.3 Hz, 1H), 5.84 (d, J=5.4 Hz, 1H), 5.80 (d, J=8.3 Hz, 1H), 4.28 (t, J=5.4 Hz, 1H), 4.17 (d, J=5.2 Hz, 1H), 4.05 (q, J=4.3 Hz, 1H), 3.82 (dd, J=12.7 Hz, 3.2 Hz, 1H), 3.73 (dd, J=12.7 Hz, 4.5 Hz, 1H), 2.99 (br s, 3H), 2.91 (br s, 3H); 13C NMR (100 MHz, D2O) δ 156.2, 150.1, 149.4, 133.9, 97.2, 88.3, 84.1, 73.0, 69.7, 61.0, 36.5, 35.7; LRMS m/z 329.0 [M−H].
  • Example 31
  • Figure US20190022116A1-20190124-C00064
  • S40:
  • A solution of S25 (0.50 g, 0.83 mmol) in anhydrous dichloromethane (5 mL) in a round bottom flask was cooled to 0° C. with an ice bath under nitrogen, and treated with pyridine (0.14 mL, 1.66 mmol) and DMAP (10 mg, 0.083 mmol), followed by dropwise addition of heptyl chloroformate (0.165 mL, 0.914 mmol). The mixture was warmed to room temperature and stirred for 2 h. After completion of the reaction, the reaction mixture was diluted with dichloromethane (25 mL) and washed with 5% aqueous hydrochloric acid (25 mL) and aqueous sodium bicarbonate (25 mL). The organic layer was dried over Na2SO4 and concentrated by rotary evaporation to give S40. The crude product was taken directly to the next step without further purification.
  • EIDD-2474:
  • The entirety of crude S40 prepared as above was stirred with formic acid (10 mL) at room temperature for 12 h. The solvent was removed by rotary evaporation, and the crude product was purified by flash column chromatography using methanol and dichloromethane to yield the title compound (0.140 g, 42% over two steps) as a colorless solid: 1H NMR (400 MHz, DMSO-d6) δ 10.05 (s, 1H), 9.61 (s, 1H), 6.85 (d, J=8.1 Hz, 1H), 5.75 (d, J=5.8 Hz, 1H), 5.57 (d, J=8.1 Hz, 1H), 5.42 (d, J=5.8 Hz, 1H), 5.30 (d, J=5.0 Hz, 1H), 4.31 (dd, J=11.7 Hz, 3.2 Hz, 1H), 4.20 (dd, J=11.8 Hz, 5.4 Hz, 1H), 4.14-4.08 (m, 1H), 4.02 (q, J=5.7 Hz, 1H), 3.97-3.90 (m, 2H), 3.10 (m, 1H), 1.61-1.18 (m, 10H), 0.90-0.86 (m, 3H); 13C NMR (100 MHz, DMSO-d6) δ 154.9, 149.9, 143.6, 130.3, 99.2, 87.9, 81.0, 72.1, 70.4, 68.2, 67.8, 45.9, 31.6, 28.5, 25.6, 22.5, 14.4; LRMS m/z 402.1 [M+H]+.
  • Example 32
  • Figure US20190022116A1-20190124-C00065
  • S41:
  • A solution of S25 (0.40 g, 0.66 mmol) in anhydrous dichloromethane (5 mL) in a 50 mL round bottom flask was cooled to 0° C. with an ice bath under nitrogen, and treated with pyridine (0.10 mL, 1.33 mmol) and DMAP (0.080 g, 0.66 mmol), followed by addition of heptyl isocyanate (0.16 mL, 0.99 mmol) and stirred at 40° C. for 12 h. After completion of the reaction, the reaction mixture was diluted with dichloromethane (25 mL) and washed with 5% aqueous hydrochloric acid (25 mL) and aqueous sodium bicarbonate (25 mL). The organic layer was dried over Na2SO4 and concentrated by rotary evaporation to give crude S41. The crude product was taken directly to the next step without further purification.
  • EIDD-2475:
  • The entirety of crude S41 as prepared above was stirred with formic acid (10 mL) at room temperature for 12 h. The solvent was removed by rotary evaporation, and the crude product was purified by flash column chromatography using methanol and dichloromethane to yield the title compound (0.150 g, 56% over 2 steps) as a colorless solid: 1H NMR (400 MHz, DMSO-d6) δ 9.98 (s, 1H), 9.53 (s, 1H), 7.26 (t, J=5.5 Hz, 1H), 6.83 (d, J=8.2 Hz, 1H), 5.71 (d, J=6.3 Hz, 1H), 5.52 (d, J=8.2 Hz, 1H), 4.19-3.77 (m, 5H), 2.94 (q, J=6.2 Hz, 2H), 1.48-1.10 (m, 10H), 0.83 (t, J=6.6 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 156.3, 150.0, 143.7, 130.4, 99.1, 87.4, 81.9, 72.1, 70.6, 64.2, 31.7, 29.9, 28.9, 26.6, 22.5, 14.4; LRMS m/z 401.1 [M+H]+.
  • Example 33
  • Figure US20190022116A1-20190124-C00066
  • S42:
  • A solution of S25 (0.25 g, 0.41 mmol) in anhydrous dichloromethane (5 mL) in a 50 mL round bottom flask was cooled to 0° C. with an ice bath under nitrogen, and treated with pyridine (0.068 mL, 0.83 mmol) and DMAP (0.073 g, 0.41 mmol), followed by addition of nonanoyl chloride (0.082 mL, 0.45 mmol) and stirred at 40° C. for 12 h. After completion of the reaction, the reaction mixture was diluted with dichloromethane (15 mL) and washed with 5% aqueous hydrochloric acid (20 mL) and aqueous sodium bicarbonate (20 mL). The organic layer was dried over Na2SO4 and concentrated by rotary evaporation to give crude S42. The crude product was taken directly to the next step without further purification.
  • EIDD-2476:
  • The entirety of crude S42 as prepared above was stirred with formic acid (5 mL) at room temperature for 12 h. The solvent was removed by rotary evaporation, and the crude product was purified by flash column chromatography using methanol and dichloromethane to yield the title compound (0.080 g, 54% over 2 steps) as a colorless solid: 1H NMR (400 MHz, DMSO-d6) δ 9.99 (s, 1H), 9.54 (s, 1H), 6.81 (d, J=8.3 Hz, 1H), 5.69 (d, J=5.6 Hz, 1H) (dd, J=8.2 Hz, 1.8 Hz, 1H), 5.35 (d, J=5.8 Hz, 1H), 5.22 (d, J=5.1 Hz, 1H), 4.25-4.02 (m, 2H), 4.03-3.78 (m, 3H), 2.35-2.20 (m, 2H), 1.58-1.42 (m, 2H), 1.22 (m, 10H), 0.83 (t, J=3.3 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) δ 173.2, 149.9, 143.7, 130.3, 99.2, 88.0, 81.1, 72.3, 70.4, 64.3, 33.8, 31.7, 29.1, 29.0, 28.9, 24.9, 22.5, 14.4; LRMS m/z 400.2 [M+H]+.
  • Example 34
  • Figure US20190022116A1-20190124-C00067
  • S43:
  • To a stirred solution of S8 (5.87 g, 20.7 mmol) in pyridine (20 mL) at 0° C. under nitrogen, was added diethyl phosphorochloridate (2.99 mL, 20.7 mmol) dropwise via syringe. The mixture was stirred at 0° C. for 30 minutes, then warmed to ambient temperature and stirred an additional 30 minutes. The mixture was recooled to 0° C., MeOH (20 mL) was added, the mixture was warmed to ambient temperature and stirred 15 minutes. The mixture was concentrated by rotary evaporation and taken up in dichloromethane. Automated flash chromatography (120 g column, 1 to 10% gradient of MeOH in dichloromethane) gave S43 (4.25 g, 49%) as an off-white flaky solid: 1H NMR (400 MHz, DMSO-d6) δ 9.28 (br s, 1H), 8.39 (br s, 1H), 7.95 (d, J=7.7 Hz, 1H), 6.04 (d, J=7.6 Hz, 1H), 5.80 (d, J=1.7 Hz, 1H), 5.07 (dd, J=6.4 Hz, 1.7 Hz, 1H), 4.79 (dd, J=6.4 Hz, 3.7 Hz, 1H), 4.30-4.24 (m, 1H), 4.21-4.07 (m, 2H), 4.01 (dq, J=8.2 Hz, 7.1 Hz, 4H), 1.49 (s, 3H), 1.29 (s, 3H), 1.22 (tq, J=7.0 Hz, 0.8 Hz, 6H); 31P NMR (162 MHz, CDCl3) δ −1.21; LRMS m/z 420.1 [M+H]+.
  • S44:
  • A ˜5 N solution of hydroxylamine hydrochloride (12.7 g, 182 mmol) in water (36.4 mL solution volume) was prepared, and adjusted to pH=6 with a small amount of aq. NaOH (10% w/w). A sealable pressure tube was charged with this solution, S43 (3.82 g, 9.11 mmol), and THF (18 mL), the flask was sealed, and the mixture was heated with stirring at 37° C. for 5 days. The mixture was cooled to room temperature, transferred to a round bottom flask, and concentrated by rotary evaporation. The crude material was taken up in methanol and immobilized on Celite. Automated flash chromatography (80 g column, 0 to 10% gradient of MeOH in dichloromethane) gave S44 (2.28 g, 58%) as a flaky white solid: 1H NMR (400 MHz, CDCl3) δ 8.58 (br s, 1H), 7.72 (br s, 1H), 6.68 (d, J=8.2 Hz, 1H), 5.69 (d, J=2.5 Hz, 1H), 5.63 (dd, J=7.8 Hz, 1.1 Hz, 1H), 4.93 (dd, J=6.4 Hz, 2.4 Hz, 1H), 4.85 (dd, J=6.5 Hz, 3.6 Hz, 1H), 4.30-4.20 (m, 3H), 4.20-4.10 (m, 5H), 1.57 (s, 3H), 1.35 (s, 3H), 1.35 (tdd, J=7.0 Hz, 4.1 Hz, 1.0 Hz, 6H); 31P NMR (162 MHz, CDCl3) δ −1.09; LRMS m/z 436.1 [M+H]+.
  • EIDD-2503:
  • A solution of S44 (0.25 g, 0.57 mmol) was stirred with formic acid (5 mL) at room temperature for 12 h under nitrogen. After completion of the reaction the solvent was removed by rotary evaporation, and the crude product was purified by flash column chromatography using methanol and dichloromethane to yield the title compound (0.180 g, 79%) as a colorless solid: 1H NMR (400 MHz, DMSO-d6) δ 10.00 (s, 1H), 9.57 (s, 1H), 6.83 (d, J=8.2 Hz, 1H), 5.71 (d, J=5.9 Hz, 1H), 5.54 (dd, J=8.2 Hz, 2.0 Hz, 1H), 5.38 (d, J=5.8 Hz, 1H), 5.24 (d, J=4.7 Hz, 1H), 4.16-3.86 (m, 8H), 1.30-1.15 (m, 5H). 13C NMR (100 MHz, DMSO-d6) δ 149.9, 143.7, 130.3, 110.0, 99.1, 87.8, 82.0, 72.1, 70.2, 67.2, 63.9, 16.4; 31P NMR (162 MHz, DMSO-d6) δ −1.12; LRMS m/z 396.1 [M+H]+.
  • Example 35
  • Figure US20190022116A1-20190124-C00068
  • S45:
  • A solution of 2′,3′-isopropylideneuridine (4.00 g, 14.0 mmol) in anhydrous dichloromethane (50 mL) was cooled to 0° C. under nitrogen with stirring. To this solution triethylamine (3.92 mL, 28.1 mmol) and 4-DMAP (0.172 g, 1.40 mmol) were added, followed by dropwise addition of methanesulfonyl chloride (1.32 mL, 16.9 mmol). The reaction mixture was warmed to room temperature and stirred for 2 h. After completion of the reaction, the mixture was quenched with crushed ice and washed with 5% aqueous hydrochloric acid, aqueous sodium hydrogen carbonate, and brine (1×50 mL each). The organic layer was dried over Na2SO4 and concentrated by rotary evaporation. The crude product was purified by flash column chromatography using ethyl acetate and hexane to yield S45 (3.99 g, 78%) as a colorless foam: 1H NMR (400 MHz, CDCl3) δ 9.97 (s, 1H), 7.27 (d, J=8.2 Hz, 1H), 5.74 (d, J=8.0 Hz, 1H), 5.60 (d, J=1.8 Hz, 1H), 5.06 (d, J=8.2 Hz, 1H), 4.88 (dd, J=6.4 Hz, 3.9 Hz, 1H), 4.45 (d, J=5.2 Hz, 2H), 4.37 (m, 1H), 3.03 (s, 3H), 1.54 (s, 3H), 1.34 (s, 3H); LRMS m/z 363.0 [M+H]+.
  • S46:
  • To a solution of S45 (3.00 g, 8.28 mmol) in anhydrous tetrahydrofuran (60 mL) at room temperature under nitrogen, lithium bromide (1.44 gm, 16.56 mmol) was added and the reaction mixture was refluxed for 6 h. After completion of the reaction, the concentrated by rotary evaporation and the crude product was partitioned between dichloromethane (60 mL) and water (60 mL). The aqueous layer was removed and the organic layer was washed with brine (60 mL), dried over Na2SO4 and concentrated by rotary evaporation. The crude product was purified by flash column chromatography using ethyl acetate and hexane to yield S45 (2.30 g, 80%) as a colorless solid: 1H NMR (400 MHz, CDCl3) δ 9.24 (s, 1H), 7.34 (d, J=8.2 Hz, 1H), 5.76 (d, J=8.2 Hz, 1H), 5.66 (d, J=2.2 Hz, 1H), 5.01 (dd, J=6.5 Hz, 2.3 Hz, 1H), 4.88 (dd, J=6.5 Hz, 3.7 Hz, 1H), 4.38 (td, J=5.7 Hz, 3.8 Hz, 1H), 3.68 (dd, J=10.6 Hz, 6.2 Hz, 1H), 3.56 (dd, J=10.6 Hz, 5.2 Hz, 1H), 1.57 (s, 3H), 1.36 (s, 3H); LRMS m/z 348.9 [M+H]+.
  • S47:
  • To a suspension of S46 (2.0 g, 5.76 mmol) in anhydrous toluene (40 mL) at room temperature under nitrogen, ethanol (5 mL) was added followed by tributyltin hydride (3.11 mL, 11.52 mmol) and AIBN (0.94 gm, 5.76 mmol). The reaction mixture was refluxed for 6 h. After completion of the reaction, solvent was removed under reduced pressure, and the crude product was dissolved in dichloromethane (50 mL) and vacuum filtered through a glass frit. The filtrate was concentrated by rotary evaporation and the crude product was purified by flash column chromatography using ethyl acetate and hexane to yield S47 (1.10 g, 71%) as a colorless foam: 1H NMR (400 MHz, CDCl3) δ 9.81 (s, 1H), 7.26 (d, J=8.0 Hz, 1H), 5.73 (d, J=8.0 Hz, 1H), 5.62 (d, J=2.2 Hz, 1H), 4.94 (dd, J=6.5 Hz, 2.2 Hz, 1H), 4.54 (dd, J=6.5 Hz, 4.6 Hz, 1H), 4.19 (qd, J=6.4 Hz, 4.7 Hz, 1H), 1.54 (s, 3H), 1.37 (d, J=6.5 Hz, 3H), 1.32 (s, 3H). LRMS m/z 269.1 [M+H]+.
  • S48:
  • A solution of S47 (1.00 g, 3.73 mmol) in anhydrous dichloromethane (30 mL) was cooled to 0° C. under nitrogen with stirring. To this solution N,N-diisopropylethylamine (3.25 mL, 18.64 mmol) and 4-DMAP (46 mg, 0.37 mmol) were added, followed by addition of 2,4,6-triisopropylbenzenesulfonyl chloride (1.69 g, 5.59 mmol). After the disappearance of starting material, hydroxylamine hydrochloride (0.648 g, 9.32 mmol) was added and the mixture was stirred for another 12 h at room temperature. After completion of the reaction, the reaction mixture was diluted with dichloromethane (70 mL) and washed with 5% aqueous hydrochloric acid (100 mL) followed by aqueous sodium hydrogen carbonate (100 mL) and brine (100 mL). The organic layer was dried over Na2SO4, filtered, and concentrated by rotary evaporation. The crude product was purified by flash column chromatography using ethyl acetate and hexane to yield S48 (0.59 g, 55.9%) as a colorless solid: 1H NMR (400 MHz, DMSO-d6) δ 10.03 (s, 1H), 9.62 (d, J=1.8 Hz, 1H), 6.85 (d, J=8.2 Hz, 1H), 5.66 (d, J=2.8 Hz, 1H), 5.55 (dd, J=8.1 Hz, 2.1 Hz, 1H), 4.86 (dd, J=6.6 Hz, 2.8 Hz, 1H), 4.47 (dd, J=6.5 Hz, 4.9 Hz, 1H), 3.97-3.84 (m, 1H), 1.44 (s, 3H), 1.30-1.15 (m, 5H); LRMS m/z 284.1 [M+H]+.
  • EIDD-2524:
  • A solution of S48 (0.250 g, 0.88 mmol) was stirred in formic acid (5 mL) at room temperature for 12 h. After completion of the reaction, the mixture was concentrated by rotary evaporation, and the crude product was purified by flash column chromatography using methanol and dichloromethane to yield the title compound (0.150 g, 70%) as a colorless solid: 1H NMR (400 MHz, DMSO-d6) δ 9.94 (s, 1H), 9.46 (s, 1H), 6.75 (d, J=8.2 Hz, 1H), 5.59 (d, J=5.1 Hz, 1H), 5.51 (d, J=8.2 Hz, 1H), 5.20 (s, 1H), 4.98 (s, 1H), 3.94 (s, 1H), 3.78-3.65 (m, 1H), 3.59 (dd, J=5.5 Hz, 3.9 Hz, 1H), 1.17 (d, J=6.4 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 149.9, 143.8, 130.8, 99.1, 88.5, 79.0, 74.8, 72.5, 19.3; LRMS m/z 244.1 [M+H]+.
  • Example 36 Assay Protocols (1) Screening Assays for DENY, JEV, POWV, WNV, YFV, PTV, RVFV, CHIKV, EEEV, VEEV, WEEV, TCRV, PCV, JUNV, MPRLV
  • Primary Cytopathic Effect (CPE) Reduction Assay.
  • Four-concentration CPE inhibition assays are performed. Confluent or near-confluent cell culture monolayers in 96-well disposable microplates are prepared. Cells are maintained in MEM or DMEM supplemented with FBS as required for each cell line. For antiviral assays the same medium is used but with FBS reduced to 2% or less and supplemented with 50 μg/ml gentamicin. The test compound is prepared at four log10 final concentrations, usually 0.1, 1.0, 10, and 100 μg/ml or μM. The virus control and cell control wells are on every microplate. In parallel, a known active drug is tested as a positive control drug using the same method as is applied for test compounds. The positive control is tested with each test run. The assay is set up by first removing growth media from the 96-well plates of cells. Then the test compound is applied in 0.1 ml volume to wells at 2× concentration. Virus, normally at <100 50% cell culture infectious doses (CCID50) in 0.1 ml volume, is placed in those wells designated for virus infection. Medium devoid of virus is placed in toxicity control wells and cell control wells. Virus control wells are treated similarly with virus. Plates are incubated at 37° C. with 5% CO2 until maximum CPE is observed in virus control wells. The plates are then stained with 0.011% neutral red for approximately two hours at 37° C. in a 5% CO2 incubator. The neutral red medium is removed by complete aspiration, and the cells may be rinsed 1× with phosphate buffered solution (PBS) to remove residual dye. The PBS is completely removed and the incorporated neutral red is eluted with 50% Sorensen's citrate buffer/50% ethanol (pH 4.2) for at least 30 minutes. Neutral red dye penetrates into living cells, thus, the more intense the red color, the larger the number of viable cells present in the wells. The dye content in each well is quantified using a 96-well spectrophotometer at 540 nm wavelength. The dye content in each set of wells is converted to a percentage of dye present in untreated control wells using a Microsoft Excel computer-based spreadsheet. The 50% effective (EC50, virus-inhibitory) concentrations and 50% cytotoxic (CC50, cell-inhibitory) concentrations are then calculated by linear regression analysis. The quotient of CC50 divided by EC50 gives the selectivity index (SI) value.
  • Secondary CPE/Virus Yield Reduction (VYR) Assay.
  • This assay involves similar methodology to what is described in the previous paragraphs using 96-well microplates of cells. The differences are noted in this section. Eight half-log10 concentrations of inhibitor are tested for antiviral activity and cytotoxicity. After sufficient virus replication occurs, a sample of supernatant is taken from each infected well (three replicate wells are pooled) and held for the VYR portion of this test, if needed. Alternately, a separate plate may be prepared and the plate may be frozen for the VYR assay. After maximum CPE is observed, the viable plates are stained with neutral red dye. The incorporated dye content is quantified as described above. The data generated from this portion of the test are neutral red EC50, CC50, and SI values. Compounds observed to be active above are further evaluated by VYR assay. The VYR test is a direct determination of how much the test compound inhibits virus replication. Virus that was replicated in the presence of test compound is titrated and compared to virus from untreated, infected controls. Titration of pooled viral samples (collected as described above) is performed by endpoint dilution. This is accomplished by titrating log10 dilutions of virus using 3 or 4 microwells per dilution on fresh monolayers of cells by endpoint dilution. Wells are scored for presence or absence of virus after distinct CPE (measured by neutral red uptake) is observed. Plotting the log10 of the inhibitor concentration versus log10 of virus produced at each concentration allows calculation of the 90% (one log10) effective concentration by linear regression. Dividing EC90 by the CC50 obtained in part 1 of the assay gives the SI value for this test.
  • Example 37 (2) Screening Assays for Lassa Fever Virus (LASV)
  • Primary Lassa fever virus assay. Confluent or near-confluent cell culture monolayers in 12-well disposable cell culture plates are prepared. Cells are maintained in DMEM supplemented with 10% FBS. For antiviral assays the same medium is used but with FBS reduced to 2% or less and supplemented with 1% penicillin/streptomycin. The test compound is prepared at four log10 final concentrations, usually 0.1, 1.0, 10, and 100 μg/ml or μM. The virus control and cell control will be run in parallel with each tested compound. Further, a known active drug is tested as a positive control drug using the same experimental set-up as described for the virus and cell control. The positive control is tested with each test run. The assay is set up by first removing growth media from the 12-well plates of cells, and infecting cells with 0.01 MOI of LASV strain Josiah. Cells will be incubated for 90 min: 500 μl inoculum/M12 well, at 37° C., 5% CO2 with constant gentle rocking. The inoculums will be removed and cells will be washed 2× with medium. Then the test compound is applied in 1 ml of total volume of media. Tissue culture supernatant (TCS) will be collected at appropriate time points. TCS will then be used to determine the compounds inhibitory effect on virus replication. Virus that was replicated in the presence of test compound is titrated and compared to virus from untreated, infected controls. For titration of TCS, serial ten-fold dilutions will be prepared and used to infect fresh monolayers of cells. Cells will be overlaid with 1% agarose mixed 1:1 with 2×MEM supplemented with 10% FBS and 1% penecillin, and the number of plaques determined. Plotting the log10 of the inhibitor concentration versus log10 of virus produced at each concentration allows calculation of the 90% (one log10) effective concentration by linear regression.
  • Secondary Lassa Fever Virus Assay.
  • The secondary assay involves similar methodology to what is described in the previous paragraphs using 12-well plates of cells. The differences are noted in this section. Cells are being infected as described above but this time overlaid with 1% agarose diluted 1:1 with 2×MEM and supplemented with 2% FBS and 1% penicillin/streptomycin and supplemented with the corresponding drug concentration. Cells will be incubated at 37° C. with 5% CO2 for 6 days. The overlay is then removed and plates stained with 0.05% crystal violet in 10% buffered formalin for approximately twenty minutes at room temperature. The plates are then washed, dried and the number of plaques counted. The number of plaques is in each set of compound dilution is converted to a percentage relative to the untreated virus control. The 50% effective (EC50, virus-inhibitory) concentrations are then calculated by linear regression analysis.
  • Example 38 (3) Screening Assays for Ebola Virus (EBOV) and Nipah Virus (NIV)
  • Primary Ebola/Nipah Virus Assay.
  • Four-concentration plaque reduction assays are performed. Confluent or near-confluent cell culture monolayers in 12-well disposable cell culture plates are prepared. Cells are maintained in DMEM supplemented with 10% FBS. For antiviral assays the same medium is used but with FBS reduced to 2% or less and supplemented with 1% penicillin/streptomycin. The test compound is prepared at four log10 final concentrations, usually 0.1, 1.0, 10, and 100 μg/ml or μM. The virus control and cell control will be run in parallel with each tested compound. Further, a known active drug is tested as a positive control drug using the same experimental set-up as described for the virus and cell control. The positive control is tested with each test run. The assay is set up by first removing growth media from the 12-well plates of cells. Then the test compound is applied in 0.1 ml volume to wells at 2× concentration. Virus, normally at approximately 200 plaque-forming units in 0.1 ml volume, is placed in those wells designated for virus infection. Medium devoid of virus is placed in toxicity control wells and cell control wells. Virus control wells are treated similarly with virus. Plates are incubated at 37° C. with 5% CO2 for one hour. Virus-compound inoculums will be removed, cells washed and overlaid with 1.6% tragacanth diluted 1:1 with 2×MEM and supplemented with 2% FBS and 1% penicillin/streptomycin and supplemented with the corresponding drug concentration. Cells will be incubated at 37° C. with 5% CO2 for 10 days. The overlay is then removed and plates stained with 0.05% crystal violet in 10% buffered formalin for approximately twenty minutes at room temperature. The plates are then washed, dried and the number of plaques counted. The number of plaques is in each set of compound dilution is converted to a percentage relative to the untreated virus control. The 50% effective (EC50, virus-inhibitory) concentrations are then calculated by linear regression analysis.
  • Secondary Ebola/NIpah Virus Assay with VYR Component.
  • The secondary assay involves similar methodology to what is described in the previous paragraphs using 12-well plates of cells. The differences are noted in this section. Eight half-log10 concentrations of inhibitor are tested for antiviral activity. One positive control drug is tested per batch of compounds evaluated. For this assay, cells are infected with virus. Cells are being infected as described above but this time incubated with DMEM supplemented with 2% FBS and 1% penicillin/streptomycin and supplemented with the corresponding drug concentration. Cells will be incubated for 10 days at 37° C. with 5% CO2, daily observed under microscope for the number of green fluorescent cells. Aliquots of supernatant from infected cells will be taken daily and the three replicate wells are pooled. The pooled supernatants are then used to determine the compounds inhibitory effect on virus replication. Virus that was replicated in the presence of test compound is titrated and compared to virus from untreated, infected controls. For titration of pooled viral samples, serial ten-fold dilutions will be prepared and used to infect fresh monolayers of cells. Cells are overlaid with tragacanth and the number of plaques determined. Plotting the log10 of the inhibitor concentration versus log10 of virus produced at each concentration allows calculation of the 90% (one log10) effective concentration by linear regression.
  • Example 39 Anti-Dengue Virus Cytoprotection Assay:
  • Cell Preparation—BHK21 cells (Syrian golden hamster kidney cells, ATCC catalog # CCL-I 0), Vero cells (African green monkey kidney cells, ATCC catalog# CCL-81), or Huh-7 cells (human hepatocyte carcinoma) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin in T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay. The cells were resuspended at 3×103 (5×105 for Vero cells and Huh-7 cells) cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 μL. The plates were incubated at 37° C./5% CO2 overnight to allow for cell adherence. Monolayers were observed to be approximately 70% confluent.
  • Virus Preparation—The Dengue virus type 2 New Guinea C strain was obtained from ATCC (catalog# VR-1584) and was grown in LLC-MK2 (Rhesus monkey kidney cells; catalog #CCL-7.1) cells for the production of stock virus pools. An aliquot of virus pretitered in BHK21 cells was removed from the freezer (−80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet. Virus was resuspended and diluted into assay medium (DMEM supplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin) such that the amount of virus added to each well in a volume of 100 μL was the amount determined to yield 85 to 95% cell killing at 6 days post-infection.
  • Plate Format—Each plate contains cell control wells (cells only), virus control wells (cells plus virus), triplicate drug toxicity wells per compound (cells plus drug only), as well as triplicate experimental wells (drug plus cells plus virus).
  • Efficacy and Toxicity XTT-Following incubation at 37° C. in a 5% CO2 incubator, the test plates were stained with the tetrazolium dye XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide). XTT-tetrazolium was metabolized by the mitochondrial enzymes of metabolically active cells to a soluble formazan product, allowing rapid quantitative analysis of the inhibition of virus-induced cell killing by antiviral test substances. XTT solution was prepared daily as a stock of 1 mg/mL in RPMI 1640. Phenazine methosulfate (PMS) solution was prepared at 0.15 mg/mL in PBS and stored in the dark at −20° C. XTT/PMS stock was prepared immediately before use by adding 40 μL of PMS per ml of XTT solution. Fifty microliters of XTT/PMS was added to each well of the plate and the plate was reincubated for 4 hours at 37° C. Plates were sealed with adhesive plate sealers and shaken gently or inverted several times to mix the soluble formazan product and the plate was read spectrophotometrically at 450/650 nm with a Molecular Devices Vmax plate reader.
  • Data Analysis—Raw data was collected from the Softmax Pro 4.6 software and imported into a Microsoft Excel spreadsheet for analysis. The percent reduction in viral cytopathic effect compared to the untreated virus controls was calculated for each compound. The percent cell control value was calculated for each compound comparing the drug treated uninfected cells to the uninfected cells in medium alone.
  • Example 40
  • Anti-RSV Cytoprotection Assay:
  • Cell Preparation-HEp2 cells (human epithelial cells, A TCC catalog# CCL-23) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin 1 mM sodium pyruvate, and 0.1 mM NEAA, T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay. The cells were resuspended at 1×104 cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 μL. The plates were incubated at 37° C./5% CO2 overnight to allow for cell adherence. Virus Preparation—The RSV strain Long and RSV strain 9320 were obtained from ATCC (catalog# VR-26 and catalog #VR-955, respectively) and were grown in HEp2 cells for the production of stock virus pools. A pretitered aliquot of virus was removed from the freezer (−80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet. Virus was resuspended and diluted into assay medium (DMEMsupplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, 1 mM sodium pyruvate, and 0.1 mM NEAA) such that the amount of virus added to each well in a volume of 100 μL was the amount determined to yield 85 to 95% cell killing at 6 days post-infection. Efficacy and Toxicity XTT-Plates were stained and analyzed as previously described for the Dengue cytoprotection assay.
  • Example 41 Anti-Influenza Virus Cytoprotection Assay:
  • Cell Preparation-MOCK cells (canine kidney cells, ATCC catalog# CCL-34) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin 1 mM sodium pyruvate, and 0.1 mM NEAA, T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay. The cells were resuspended at 1×104 cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 μL. The plates were incubated at 37° C./5% CO2 overnight to allow for cell adherence.
  • Virus Preparation—The influenza A/PR/8/34 (A TCC #VR-95), A/CA/05/09 (CDC),A/NY/18/09 (CDC) and A/NWS/33 (ATCC #VR-219) strains were obtained from ATCC or from the Center of Disease Control and were grown in MDCK cells for the production of stock virus pools. A pretitered aliquot of virus was removed from the freezer (−80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet. Virus was resuspended and diluted into assay medium (DMEM supplemented with 0.5% BSA, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, 1 mM sodium pyruvate, 0.1 mM NEAA, and 1 μg/ml TPCK-treated trypsin) such that the amount of virus added to each well in a volume of 100 μL was the amount determined to yield 85 to 95% cell killing at 4 days post-infection. Efficacy and Toxicity XTT-Plates were stained and analyzed as previously described for the Dengue cytoprotection assay.
  • Example 42 Anti-Hepatitis C Virus Assay:
  • Cell Culture—The reporter cell line Huh-luc/neo-ET was obtained from Dr. Ralf Bartenschlager (Department of Molecular Virology, Hygiene Institute, University of Heidelberg, Germany) by ImQuest BioSciences through a specific licensing agreement. This cell line harbors the persistently replicating I389luc-ubi-neo/NS3-3′/ET replicon containing the firefly luciferase gene-ubiquitin-neomycin phosphotransferase fusion protein and EMCV IRES driven NS3-5B HCV coding sequences containing the ET tissue culture adaptive mutations (E1202G, T12081, and K1846T). A stock culture of the Huh-luc/neo-ET was expanded by culture in DMEM supplemented with I 0% FCS, 2 mM glutamine, penicillin (100 μU/mL)/streptomycin (100 μg/mL) and I X nonessential amino acids plus 1 mg/mL G418. The cells were split 1:4 and cultured for two passages in the same media plus 250 μg/mL G418. The cells were treated with trypsin and enumerated by staining with trypan blue and seeded into 96-well tissue culture plates at a cell culture density 7.5×103 cells per well and incubated at 37° C. 5% CO2 for 24 hours. Following the 24 hour incubation, media was removed and replaced with the same media minus the G418 plus the test compounds in triplicate. Six wells in each plate received media alone as a no-treatment control. The cells were incubated an additional 72 hours at 37° C. 5% CO2 then anti-HCV activity was measured by luciferase endpoint. Duplicate plates were treated and incubated in parallel for assessment of cellular toxicity by XTT staining.
  • Cellular Viability—The cell culture monolayers from treated cells were stained with the tetrazolium dye XTT to evaluate the cellular viability of the Huh-luc/neo-ET reporter cell line in the presence of the compounds.
  • Measurement of Virus Replication-HCV replication from the replicon assay system was measured by luciferase activity using the britelite plus luminescence reporter gene kit according to the manufacturer's instructions (Perkin Elmer, Shelton, Conn.). Briefly, one vial of britelite plus lyophilized substrate was solubilized in 10 mL of britelite reconstitution buffer and mixed gently by inversion. After a 5 minute incubation at room temperature, the britelite plus reagent was added to the 96 well plates at 100 μL per well. The plates were sealed with adhesive film and incubated at room temperature for approximately 10 minutes to lyse the cells. The well contents were transferred to a white 96-well plate and luminescence was measured within 15 minutes using the Wallac 1450Microbeta Trilux liquid scintillation counter. The data were imported into a customized Microsoft Excel 2007 spreadsheet for determination of the 50% virus inhibition concentration (EC50).
  • Example 43 Anti-Parainfluenza-3 Cytoprotection Assay:
  • Cell Preparation-HEp2 cells (human epithelial cells, ATCC catalog# CCL-23) were passaged in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin 1 mM sodium pyruvate, and 0.1 mM NEAA, T-75 flasks prior to use in the antiviral assay. On the day preceding the assay, the cells were split 1:2 to assure they were in an exponential growth phase at the time of infection. Total cell and viability quantification was performed using a hemocytometer and Trypan Blue dye exclusion. Cell viability was greater than 95% for the cells to be utilized in the assay. The cells were resuspended at 1×104 cells per well in tissue culture medium and added to flat bottom microtiter plates in a volume of 100 μL. The plates were incubated at 37° C./5% CO2 overnight to allow for cell adherence.
  • Virus Preparation—The Parainfluenza virus type 3 SF4 strain was obtained from ATCC (catalog# VR-281) and was grown in HEp2 cells for the production of stock virus pools. A pretitered aliquot of virus was removed from the freezer (−80° C.) and allowed to thaw slowly to room temperature in a biological safety cabinet. Virus was resuspended and diluted into assay medium (DMEM supplemented with 2% heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin) such that the amount of virus added to each well in a volume of 100 μL was the amount determined to yield 85 to 95% cell killing at 6 days post-infection.
  • Plate Format—Each plate contains cell control wells (cells only), virus control wells (cells plus virus), triplicate drug toxicity wells per compound (cells plus drug only), as well a triplicate experimental wells (drug plus cells plus virus). Efficacy and Toxicity XTT-Following incubation at 37° C. in a 5% C02 incubator, the test plates were stained with the tetrazolium dye XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazol hydroxide). XTT-tetrazolium was metabolized by the mitochondrial enzymes of metabolically active cells to a soluble formazan product, allowing rapid quantitative analysis of the inhibition of virus-induced cell killing by antiviral test substances. XTT solution was prepared daily as a stock of 1 mg/mL in RPMI1640. Phenazine methosulfate (PMS) solution was prepared at 0.15 mg/mL in PBS and stored in the dark at −20° C. XTT/PMS stock was prepared immediately before use by adding 40 μL of PMS per ml of XTT solution. Fifty microliters of XTT/PMS was added to each well of the plate and the plate was reincubated for 4 hours at 3 7° C. Plates were sealed with adhesive plate sealers and shaken gently or inverted several times to mix the soluble fomlazan product and the plate was read spectrophotometrically at 450/650 nm with a Molecular Devices Vmax plate reader.
  • Data Analysis—Raw data was collected from the Softmax Pro 4.6 software and imported into a Microsoft Excel spreadsheet for analysis. The percent reduction in viral cytopathic effect compared to the untreated virus controls was calculated for each compound. The percent cell control value was calculated for each compound comparing the drug treated uninfected cells to the uninfected cells in medium alone.
  • Example 44 Influenza Polymerase Inhibition Assay:
  • Virus Preparation—Purified influenza virus A/PR/8/34 (1 ml) was obtained from Advanced Biotechnologies, Inc. (Columbia, Md.), thawed and dispensed into five aliquots for storage at −80° C. until use. On the day of assay set up, 20 μL of 2.5% Triton N-101 was added to 180 μL of purified virus. The disrupted virus was diluted 1:2 in a solution containing 0.25% Triton and PBS. Disruption provided the source of influenza ribonucleoprotein (RNP) containing the influenza RNA-dependent RNA polymerase and template RNA. Samples were stored on ice until use in the assay.
  • Polymerase reaction—Each 50 μL polymerase reaction contained the following: 5 μL of the disrupted RNP, 100 mM Tris-HCl (pH 8.0), 100 mM KCl, 5 mM MgCl2. 1 mM dithiothreitol, 0.25% Triton N-101, 5 μCi of [α-32P] GTP, 100 μM ATP, 50 μM each (CTP, UTP), 1 μM GTP, and 200 μM adenyl (3′-5′) guanosine. For testing the inhibitor, the reactions contained the inhibitor and the same was done for reactions containing the positive control (2′-Deoxy-2′-fluoroguanosine-5′-triphosphate). Other controls included RNP+reaction mixture, and RNP+I % DMSO. The reaction mixture without the ApG primer and NTPs was incubated at 30° C. for 20 minutes. Once the ApG and NTPs were added to the reaction mixture, the samples were incubated at 30° C. for 1 hour then immediately followed by the transfer of the reaction onto glass-fiber filter plates and subsequent precipitation with 10% trichloroacetic acid (TCA). The plate was then washed five times with 5% TCA followed by one wash with 95% ethanol. Once the filter had dried, incorporation of [α-32P] GTP was measured using a liquid scintillation counter (Micro beta).
  • Plate Format—Each test plate contained triplicate samples of the three compounds (6 concentrations) in addition to triplicate samples of RNP+reaction mixture (RNP alone), RNP+1% DMSO, and reaction mixture alone (no RNP).
  • Data Analysis—Raw data was collected from the Micro Beta scintillation counter. The incorporation of radioactive GTP directly correlates with the levels of polymerase activity.
  • The “percent inhibition values” were obtained by dividing the mean value of each test compound by the RNP+1% DMSO control. The mean obtained at each concentration of 2DFGTP was compared to the RNP+reaction control. The data was then imported into Microsoft Excel spreadsheet to calculate the IC50 values by linear regression analysis.
  • Example 45 HCV Polymerase Inhibition Assay:
  • Activity of compounds for inhibition of HCV polymerase was evaluated using methods previously described (Lam eta!. 2010. Antimicrobial Agents and Chemotherapy 54(8):3187-3196). HCV NS5B polymerase assays were performed in 20 μL volumes in 96 well reaction plates. Each reaction contained 40 μg/μL purified recombinant NS5BΔ22 genotype-1b polymerase, 20 μg/μL of HCV genotype-1b complimentary IRES template, 1 μM of each of the four natural ribonucleotides, 1 U/mL Optizyme RNAse inhibitor (Promega, Madison, Wis.), 1 mM MgCl2, 0.75 mM MnCl2, and 2 mM dithiothreitol (DTT) in 50 mM HEPES buffer (pH 7.5). Reaction mixtures were assembled on ice in two steps. Step 1 consisted of combining all reaction components except the natural nucleotides and labeled UTP in a polymerase reaction mixture. Ten microliters (10 μL) of the polymerase mixture was dispensed into individual wells of the 96 well reaction plate on ice. Polymerase reaction mixtures without NS5B polymerase were included as no enzyme controls. Serial half-logarithmic dilutions of test and control compounds, 2′-O-Methyl-CTP and 2′-O-Methyl-GTP (Trilink, San Diego, Calif.), were prepared in water and 5 μL of the serial diluted compounds or water alone (no compound control) were added to the wells containing the polymerase mixture. Five microliters of nucleotide mix (natural nucleotides and labeled UTP) was then added to the reaction plate wells and the plate was incubated at 27° C. for 30 minutes. The reactions were quenched with the addition of 80 μL stop solution (12.5 mM EDTA, 2.25 M NaCl, and 225 mM sodium citrate) and the RNA products were applied to a Hybond-N+ membrane (GE Healthcare, Piscataway, N.J) under vacuum pressure using a dot blot apparatus. The membrane was removed from the dot blot apparatus and washed four times with 4×SSC (0.6 M NaCl, and 60 mM sodium citrate), and then rinsed one time with water and once with 100% ethanol. The membrane was air dried and exposed to a phosphoimaging screen and the image captured using a Typhoon 8600 Phospho imager. Following capture of the image, the membrane was placed into a Micro beta cassette along with scintillation fluid and the CPM in each reaction was counted on a Micro beta 1450. CPM data were imported into a custom Excel spreadsheet for determination of compound IC50s.
  • Example 46 NS5B RNA-Dependent RNA Polymerase Reaction Conditions
  • Compounds were assayed for inhibition of NS5B-δ21 from HCV GT-1b Con-1. Reactions included purified recombinant enzyme, 1 u/μL negative-strand HCV IRES RNA template, and 1 μM NTP substrates including either [32P]-CTP or [32P]-UTP. Assay plates were incubated at 27° C. for 1 hour before quench. [32P] incorporation into macromolecular product was assessed by filter binding.
  • Example 47 Human DNA Polymerase Inhibition Assay:
  • The human DNA polymerase alpha (catalog#1075), beta (catalog#1077), and gamma (catalog#1076) were purchased from CHIMERx (Madison, Wis.). Inhibition of beta and gamma DNA polymerase activity was assayed in microtiter plates in a 50 uL reaction mixture containing 50 mM Tris-HCl (pH 8.7), KCl (10 mM for beta and 100 mM for gamma), 10 mM MgCl2, 0.4 mg/mL BSA, 1 mM DTT, 15% glycerol, 0.05 mM of dCTP, dTTP, and dATP, 10 uCi [32P]-alpha-dGTP (800 Ci/mmol), 20 ug activated calf thymus DNA and the test compound at indicated concentrations. The alpha DNA polymerase reaction mixture was as follows in a 50 uL volume per sample: 20 mM Tris-HCl (pH 8), 5 mM magnesium acetate, 0.3 mg/mL BSA, 1 mM DTT, 0.1 mM spermine, 0.05 mM of dCTP, dTTP, and dATP, 10 uCi [32P]-alpha-dGTP (800 Ci/mmol), 20 ug activated calf thymus DNA and the test compound at the indicated concentrations. For each assay, the enzyme reactions were allowed to proceed for 30 minutes at 37° C. followed by the transfer onto glass-fiber filter plates and subsequent precipitation with 10% trichloroacetic acid (TCA). The plate was then washed with 5% TCA followed by one wash with 95% ethanol. Once the filter had dried, incorporation of radioactivity was measured using a liquid scintillation counter (Microbeta).
  • Example 48 HIV Infected PBMC Assay:
  • Fresh human peripheral blood mononuclear cells (PBMCs) were obtained from a commercial source (Biological Specialty) and were determined to be seronegative for HIV and HBV. Depending on the volume of donor blood received, the leukophoresed blood cells were washed several times with PBS. After washing, the leukophoresed blood was diluted 1:1 with Dulbecco's phosphate buffered saline (PBS) and layered over 15 mL of Ficoll-Hypaque density gradient in a 50 ml conical centrifuge tube. These tubes were centrifuged for 30 min at 600 g. Banded PBMCs were gently aspirated from the resulting interface and washed three times with PBS. After the final wash, cell number was determined by Trypan Blue dye exclusion and cells were re-suspended at 1×101̂6 cells/mL in RPMI 1640 with 15% Fetal Bovine Serum (FBS), 2 mmol/L L-glutamine, 2 ug/mL PHA-P, 100 U/mL penicillin and 100 ug/mL streptomycin and allowed to incubate for 48-72 hours at 37° C. After incubation, PBMCs were centrifuged and resuspended in tissue culture medium. The cultures were maintained until use by half-volume culture changes with fresh IL-2 containing tissue culture medium every 3 days. Assays were initiated with PBMCs at 72 hours post PHA-P stimulation.
  • To minimize effects due to donor variability, PBMCs employed in the assay were a mixture of cells derived from 3 donors. Immediately prior to use, target cells were resuspended in fresh tissue culture medium at 1×101̂6 cells/mL and plated in the interior wells of a 96-well round bottom microtiter plate at 50 uL/well. Then, 100 uL of 2× concentrations of compound-containing medium was transferred to the 96-well plate containing cells in 50 uL of the medium. AZT was employed as an internal assay standard.
  • Following addition of test compound to the wells, 50 uL of a predetermined dilution of HIV virus (prepared from 4× of final desired in-well concentration) was added, and mixed well. For infection, 50-150 TCID50 of each virus was added per well (final MOI approximately 0.002). PBMCs were exposed in triplicate to virus and cultured in the presence or absence of the test material at varying concentrations as described above in the 96-well microtiter plates. After 7 days in culture, HIV-1 replication was quantified in the tissue culture supernatant by measurement of reverse transcriptase (RT) activity. Wells with cells and virus only served as virus controls. Separate plates were identically prepared without virus for drug cytotoxicity studies.
  • Reverse Transcriptase Activity Assay—Reverse transcriptase activity was measured in cell-free supernatants using a standard radioactive incorporation polymerization assay. Tritiated thymidine triphosphate (TTP; New England Nuclear) was purchased at 1 Ci/mL and 1 uL was used per enzyme reaction. A rAdT stock solution was prepared by mixing 0.5 mg/mL poly rAand 1.7 U/mL oligo dT in distilled water and was stored at −20° C. The RT reaction buffer was prepared fresh daily and consists of 125 uL of 1 mol/L EGTA, 125 uL of dH2O, 125 uL of 20% Triton X-100, 50 uL of 1 mol/L Tris (pH 7.4), 50 uL of 1 mol/L DTT, and 40 uL of 1 mol/L MgCl2. For each reaction, 1 uL of TTP, 4 uL of dH2O, 2.5 uL of rAdT, and 2.5 uL of reaction buffer were mixed. Ten microliters of this reaction mixture was placed in a round bottom microtiter plate and 15 uL of virus-containing supernatant was added and mixed. The plate was incubated at 37° C. in a humidified incubator for 90 minutes. Following incubation, 10 uL of the reaction volume was spotted onto a DEAE filter mat in the appropriate plate format, washed 5 times (5 minutes each) in a 5% sodium phosphate buffer, 2 times (1 minute each) in distilled water, 2 times (1 minute each) in 70% ethanol, and then air dried. The dried filtermat was placed in a plastic sleeve and 4 mL of Opti-Fluor 0 was added to the sleeve. Incorporated radioactivity was quantified utilizing a Wallac 1450 Microbeta Trilux liquid scintillation counter.
  • Example 49 HBV:
  • HepG2.2.15 cells (100 μL) in RPMI1640 medium with 10% fetal bovine serum was added to all wells of a 96-well plate at a density of 1×104 cells per well and the plate was incubated at 37° C. in an environment of 5% CO2 for 24 hours. Following incubation, six ten-fold serial dilutions of test compound prepared in RPMI1640 medium with 10% fetal bovine serum were added to individual wells of the plate in triplicate. Six wells in the plate received medium alone as a virus only control. The plate was incubated for 6 days at 37° C. in an environment of 5% CO2. The culture medium was changed on day 3 with medium containing the indicated concentration of each compound. One hundred microliters of supernatant was collected from each well for analysis of viral DNA by qPCR and cytotoxicity was evaluated by XTT staining of the cell culture monolayer on the sixth day.
  • Ten microliters of cell culture supernatant collected on the sixth day was diluted in qPCR dilution buffer (40 μg/mL sheared salmon sperm DNA) and boiled for 15 minutes. Quantitative real time PCR was performed in 386 well plates using an Applied Biosystems 7900HT Sequence Detection System and the supporting SDS 2.4 software. Five microliters (5 μL) of boiled DNA for each sample and serial 10-fold dilutions of a quantitative DNA standard were subjected to real time Q-PCR using Platinum Quantitative PCR SuperMix-UDG (Invitrogen) and specific DNA oligonucleotide primers (IDT, Coralville, ID) HBV-AD38-qF1 (5′-CCG TCT GTG CCT TCT CAT CTG-3′), HBV-AD38-qR1 (5′-AGT CCA AGA GTY CTC TTA TRY AAG ACC TT-3′), and HBV-AD38-qP1 (5′-FAM CCG TGT GCA/ZEN/CTT CGC TTC ACC TCT GC-3′BHQ1) at a final concentration of 0.2 μM for each primer in a total reaction volume of 15 μL. The HBV DNA copy number in each sample was interpolated from the standard curve by the SDS.24 software and the data were imported into an Excel spreadsheet for analysis.
  • The 50% cytotoxic concentration for the test materials are derived by measuring the reduction of the tetrazolium dye XTT in the treated tissue culture plates. XTT is metabolized by the mitochondrial enzyme NADPH oxidase to a soluble formazan product in metabolically active cells. XTT solution was prepared daily as a stock of 1 mg/mL in PBS. Phenazine methosulfate (PMS) stock solution was prepared at 0.15 mg/mL in PBS and stored in the dark at −20° C. XTT/PMS solution was prepared immediately before use by adding 40 μL of PMS per 1 mL of XTT solution. Fifty microliters of XTT/PMS was added to each well of the plate and the plate incubated for 2-4 hours at 37° C. The 2-4 hour incubation has been empirically determined to be within linear response range for XTT dye reduction with the indicated numbers of cells for each assay. Adhesive plate sealers were used in place of the lids, the sealed plate was inverted several times to mix the soluble formazan product and the plate was read at 450 nm (650 nm reference wavelength) with a Molecular Devices SpectraMax Plus 384 spectrophotometer. Data were collected by Softmax 4.6 software and imported into an Excel spreadsheet for analysis.
  • Example 50 Dengue RNA-Dependent RNA Polymerase Reaction Conditions
  • RNA polymerase assay was performed at 30° C. using 100 μl reaction mix in 1.5 ml tube. Final reaction conditions were 50 mM Hepes (pH 7.0), 2 mM DTT, 1 mM MnCl2, 10 mM KCl, 100 nM UTR-Poly A (self-annealing primer), 10 μM UTP, 26 nM RdRp enzyme. The reaction mix with different compounds (inhibitors) was incubated at 30° C. for 1 hour. To assess amount of pyrophosphate generated during polymerase reaction, 30 μl of polymerase reaction mix was mixed with a luciferase coupled-enzyme reaction mix (70 μl). Final reaction conditions of luciferase reaction were 5 mM MgCl2, 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 200 μU ATP sulfurylase, 5 μM APS, 10 nM Luciferase, 100 μM D-luciferin. White plates containing the reaction samples (100 μl) were immediately transferred to the luminometer Veritas (Turner Biosystems, CA) for detection of the light signal.
  • Example 51 Procedure for Cell Incubation and Analysis
  • Huh-7 cells were seeded at 0.5×10̂6 cells/well in 1 mL of complete media in 12 well tissue culture treated plates. The cells were allowed to adhere overnight at 37°/5% CO2. A 40 μM stock solution of test article was prepared in 100% DMSO. From the 40 μM stock solution, a 20 μM solution of test article in 25 ml of complete DMEM media was prepared. For compound treatment, the media was aspirated from the wells and 1 mL of the 20 μM solution was added in complete DMEM media to the appropriate wells. A separate plate of cells with “no” addition of the compound was also prepared. The plates were incubated at 37°/5% CO2 for the following time points: 1, 3, 6 and 24 hours. After incubation at the desired time points, the cells were washed 2× with 1 mL of DPBS. The cells were extracted by adding 500 μl of 70% methanol/30% water spiked with the internal standard to each well treated with test article. The non-treated blank plate was extracted with 500 ul of 70% methanol/30% water per well. Samples were centrifuged at 16,000 rpm for 10 minutes at 4° C. Samples were analyzed by LC-MS/MS using an ABSCIEX 5500 QTRAP LC-MS/MS system with a Hypercarb (PGC) column.
  • Example 52 Procedure for Rodent Pharmacokinetic Experiment
  • DBA-1J mice (6-8 weeks old, female) were acclimated for ≥2 days after receipt. Mice were weighed the day before dosing to calculate dosing volumes. Mice were dosed by oral gavage with drug at 30 mg/kg, 100 mg/kg & 300 mg/kg. The mice were sampled at 8 time points: 0.5, 1, 2, 3, 4, 8 and 24 hrs (3 mice per time point for test drug). The mice were euthanized and their organs were collected (see below). In order to collected blood, mice with euthanized by CO2 at the appropriate time point listed above. Blood was obtained by cardiac puncture (0.3 ml) at each time point. Following blood collection, the organs were removed from the mice (see below). The blood was processed by inverting Li-Heparin tube with blood gently 2 or 3 times to mix well. The tubes were then placed in a rack in ice water until able to centrifuge (≤1 hour). As soon as practical, the blood was centrifuged at ˜2000×g for 10 min in a refrigerated centrifuge to obtain plasma. Then, using a 200 μL pipette, the plasma was transferred to a labeled 1.5 ml Eppendorf tube in ice water. The plasma was then frozen in freezer or on dry ice. The samples were stored at −80° C. prior to analysis. Organs were collected from euthanized mice. The organs (lungs, liver, kidney, spleen and heart) were removed, placed in a tube, and immediately frozen in liquid nitrogen. The tubes were then transferred to dry ice. The samples were saved in cryogenic tissue vials. Samples were analyzed by LC-MS/MS using an ABSCIEX 5500 QTRAP LC-MS/MS system with a Hypercarb (PGC) column.
  • Pharmacokinetic Parameters:
      • Tmax after oral dosing is 0.25-0.5 hr
      • Cmax's are 3.0, 7.7 and 11.7 ng/ml after PO dosing with 30, 100 and 300 mg/kg;
      • Bioavailability (versus I.P. delivery) is 65% at 30 mg/kg and 39-46% at 100 and 300 mg/kg PO dosing;
      • EIDD-1931 plasma T1/2 is 2.2 hr after IV dosing and 4.1-4.7 hrs after PO dosing
      • After 300 mg/kg P.O. dose, the 24 hr plasma levels are ˜0.4 μM; ˜0.1 μM after 100 mg/kg dose
    Example 53 Protocol for Mouse Model of Chikungunya Infection
  • C57BL-6J mice were injected with 100 pfus CHIK virus in the footpad. The test groups consisted of an unifected and untreated group, an infected and untreated group, an infected group receiving a high dose of 35 mg/kg i.p. of EIDD-01931, and an infected group receiving a low dose of 25 mg/kg i.p. of EIDD-01931. The two test groups receiving EIDD-01931 received compound 12 hours before challenge and then daily for 7 days. Footpads were evaluated for inflammation (paw thickness) daily for 7 days. CHIK virus induced arthritis (histology) was assessed in ankle joints using PCR after 7 days.
  • Example 54 N(4)-Hydroxycytidine for the Prophylaxis and Treatment of Alphavirus Infections
  • Activity testing in Vero cell cytopathic effect (CPE) models of infection have shown that the ribonucleoside analog N(4)-hydroxycytidine (EIDD-01931) has activity against the Ross River, EEE, WEE, VEE and CHIK viruses with EC50 values of 2.45 μM, 1.08 μM, 1.36 μM, 1.00 μM and 1.28 μM, respectively. The cytotoxicity profile of the compound is acceptable, with selectivity indices ranging from a low of 8 in CEM cells to a high of 232 in Huh7 (liver) cells.
  • Example 55
  • Given that high titers of VEE virus can develop in the brain within hours of aerosol exposure, a direct-acting antiviral agent is desirable if it is able to rapidly achieve therapeutic levels of drug in the brain. A pilot pharmacokinetic study was conducted in male SD rats dosed by oral gavage with 5 and 50 mg/kg of EIDD-01931, to determine pharmacokinetic parameters and the tissue distribution profile of the compound into key organ systems, including the brain. EIDD-01931 is orally available and dose-proportional with a calculated bioavailability (% F) of 28%. Organ samples (brain, lung, spleen, kidney and liver) were collected at 2.5 and 24 hours post-dose from the 50 mg/kg dose group. EIDD-01931 was well distributed into all tissues tested; of particular note, it was readily distributed into brain tissue at therapeutic levels of drug, based on estimates from cellular data. Once in the brain, EIDD-01931 was rapidly metabolized to its active 5′-triphosphate form to give brain levels of 526 and 135 ng/g at 2.5 and 24 hours, respectively. Even after 24 hours levels of EIDD-01931 and its 5′-triphosphate in the brain are considerable, suggesting that once-daily oral dosing may be adequate for treatment.
  • Alternatively, drug delivery by aerosol (nasal spray) administration may immediately achieve therapeutic levels of drug in the nasal mucosa and the brain. EIDD-01931 has an acceptable toxicology profile after 6 day q.d. intraperitoneal (IP) injections in mice, with the NOEL (NO Effect Level) to be 33 mg/kg; weight loss was observed at the highest dose tested (100 mg/kg), which reversed on cessation of dosing.
  • Example 56
  • Several derivatives of EIDD-01931 have shown antiviral activity in screening against various viruses. Activity data is shown in the tables below.
  • Norovirus SARS Coronavirus
    GT1 Urbani
    HG23 Vero 76
    Structure EC50(ug/ml) CC50(ug/ml) SI50 EC50(ug/ml) CC50(ug/ml) SI50
    Figure US20190022116A1-20190124-C00069
    >100 >100 <0.1  36 >360
    Figure US20190022116A1-20190124-C00070
     0.19 36  190
    Figure US20190022116A1-20190124-C00071
     0.28 >100 >360
    Figure US20190022116A1-20190124-C00072
    >100 >100
    Figure US20190022116A1-20190124-C00073
    >100 >100 >100 >100
  • Chikungunya virus
    (MOI 0.5)
    U2OS cell line
    Viral Viral Cell Cell
    Inh. Inh. Viability Viability
    Structure
    10 uM 50 uM 10 uM 50 uM
    Figure US20190022116A1-20190124-C00074
    80% ± 15% (n = 4) 100% ± 0% (n = 4) 97% ± 5%  (n = 4) 79% ± 10% (n = 4)
    Figure US20190022116A1-20190124-C00075
    72% ± 14% (n = 4) 98% ± 1% (n = 4) 93% ± 4%  (n = 4) 78% ± 8%  (n = 4)
    Figure US20190022116A1-20190124-C00076
    3% ± 2% (n = 4) 36% ± 21% (n = 4) 99% ± 6%  (n = 4) 99% ± 8%  (n = 4)
    Figure US20190022116A1-20190124-C00077
    8% ± 3% (n = 4) 51% ± 11% (n = 4) 81% ± 4%  (n = 4) 53% ± 2%  (n = 4)
    Figure US20190022116A1-20190124-C00078
    14% ± 11% (n = 4) 70% ± 20% (n = 4) 105% ± 2%  (n = 4) 96% ± 11% (n = 4)
  • VEEV
    (MOI 0.025)
    HeLa
    Viral Viral Cell Cell
    EC50 Inh. Inh. Viability Viability
    Structure (μM) 10 uM 50 uM 10 uM 50 uM
    Figure US20190022116A1-20190124-C00079
    1.24 100% ± 0%  (n = 4) 100% ± 0%  (n = 4) 116% ± 24%  (n = 4) 61% ± 8%  (n = 4)
    Figure US20190022116A1-20190124-C00080
    0.57 100% ± 0%  (n = 4) 100% ± 0%  (n = 4) 116% ± 20%  (n = 4) 85% ± 8%  (n = 4)
    Figure US20190022116A1-20190124-C00081
    16.20 73% ± 10% (n = 4) 100% ± 0%  (n = 4) 137% ± 16%  (n = 4) 134% ± 16%  (n = 4)
    Figure US20190022116A1-20190124-C00082
    N.A. 61% ± 14% (n = 4) 98% ± 1%  (n = 4) 55% ± 4%  (n = 4) 36% ± 2%  (n = 4)
    Figure US20190022116A1-20190124-C00083
    6.00 93% ± 3%  (n = 4) 100% ± 0%  (n = 4) 151% ± 16%  (n = 4) 126% ± 7%  (n = 4)
  • VEEV
    (MOI 0.003)
    Astrocytes
    Viral Viral Cell Cell
    Inh. Inh. Viability Viability
    Structure
    10 uM 50 uM 10 uM 50 uM
    Figure US20190022116A1-20190124-C00084
    99% ± 0%  (n = 3) 100% ± 0%  (n = 3) 98% ± 12% (n = 3) 86% ± 5%  (n = 3)
    Figure US20190022116A1-20190124-C00085
    94% ± 5%  (n = 3) 100% ± 0%  (n = 3) 99% ± 9%  (n = 3) 94% ± 10% (n = 3)
    Figure US20190022116A1-20190124-C00086
    49% ± 21% (n = 3) 96% ± 2%  (n = 3) 102% ± 16%  (n = 3) 100% ± 17%  (n = 3)
    Figure US20190022116A1-20190124-C00087
    N.A. N.A. N.A. N.A.
    Figure US20190022116A1-20190124-C00088
    51% ± 32% (n = 3) 37% ± 47% (n = 3) 98% ± 12% (n = 3) 85% ± 19% (n = 3)
  • MERV
    (MOI 0.4)
    Vero
    Viral Viral Cell Cell
    Inh. Inh. Viability Viability
    Structure
    10 uM 50 uM 10 uM 50 uM
    Figure US20190022116A1-20190124-C00089
    99% ± 0%  (n = 4) 100% ± 0%  (n = 4) 75% ± 6%  (n = 4) 47% ± 3%  (n = 4)
    Figure US20190022116A1-20190124-C00090
    99% ± 0%  (n = 4) 99% ± 0%  (n = 4) 84% ± 8%  (n = 4) 58% ± 2%  (n = 4)
    Figure US20190022116A1-20190124-C00091
    29% ± 16% (n = 4) 85% ± 11% (n = 4) 103% ± 14%  (n = 4) 102% ± 36%  (n = 4)
    Figure US20190022116A1-20190124-C00092
    N.A. N.A. N.A. N.A.
    Figure US20190022116A1-20190124-C00093
    86% ± 6%  (n = 4) 98% ± 1%  (n = 4) 118% ± 15%  (n = 4) 91% ± 39% (n = 4)
  • Example 57:Compounds Screened in a CHIKV CPE Assay
  • Figure US20190022116A1-20190124-C00094
    Figure US20190022116A1-20190124-C00095
  • Example 58 Compounds Screened in a CHIKV CPE Assay
  • EIDD- EC50 CC50 SI
    01931-04 0.6 15.3 25.5
    02053-01 72 >500 >6.9
    02054-01 >75 >500 >6.7
    02080-01 >75 >500 >6.7
    02085-01 >75 >500 >6.7
    02107-01 29 165 5.7
    02107-02 38 165 4.3
  • Example 59 Compounds Screened in a CHIKV CPE Assay
  • Figure US20190022116A1-20190124-C00096
    Figure US20190022116A1-20190124-C00097
  • Example 60
  • EIDD- EC50 CC50 SI
    01931-04 0.7 >500 >714
    01910-01 >78 >500 N/D
    02339-01 >78 >500 N/D
    02340-01 >78 >500 N/D
    02356-01 >78 211 <2.7
    02357-01 >78 90 <1.2
    02422-01 32 >500 >15.6
    02423-01 25 >500 >20
    02474-01 0.07 184 2628.6
    02475-01 >78 >500 N/D
    02476-01 0.3 154 513.3
  • Example 61 Compounds Screened in a CHIKV CPE Assay
  • Figure US20190022116A1-20190124-C00098
    Figure US20190022116A1-20190124-C00099
  • Example 62
  • EIDD- EC50 CC50 SI
    01931-04 1.8 >500 >277
    02504-01 >78 >500 N/A
    02416-01 27 53 2.0
    02345-01 1.5 >500 >333
    02261-01 1.5 >500 >333
    02427-01 58 355 6.1
    02207-01 10.8 >500 >46.3
    02108-03 34.5 98 2.8
    02503-01 >78 >500 N/D
    02110-03 56 387 6.9
    01872-01 >78 >500 N/D
    02200-01 >78 >500 N/D
    02290-01 64.4 274 4.3

Claims (22)

1. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound having Formula I,
Figure US20190022116A1-20190124-C00100
or salt thereof, wherein
Q is O, —O(C═O)—, —O(C═O)Lipid, —O(C═O)V—, NH, or NR7;
V is O, NH, NR7, S, CH2, or CHR7;
W is CH2, NH, S or O;
X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
Y is N or CR″;
Z is N or CR″;
each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R1 is hydrogen, monophosphate, diphosphate, triphosphate,
Figure US20190022116A1-20190124-C00101
Figure US20190022116A1-20190124-C00102
Figure US20190022116A1-20190124-C00103
alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
Y1 is O or S;
Y2 is OH, OR12, OAlkyl, or BH3 M+;
Y3 is OH or BH3 M+;
R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
each R7 is independently selected from absent, hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid is a C6-22 alkyl, alkoxy, polyethylene glycol, or aryl substituted with an alkyl group.
2. The pharmaceutical composition of claim 1, wherein Q-R7 is OH.
3. The pharmaceutical composition of claim 1, wherein R1 is
Figure US20190022116A1-20190124-C00104
R8 is hydrogen, hydroxy, or benzyloxy, and
R9 is (C6-C22)alkyl.
4. The pharmaceutical composition of claim 1, wherein a compound of formula I has formula IB,
Figure US20190022116A1-20190124-C00105
or salts thereof, wherein
V is absent, O, NH, NR15, S, CH2, or CHR15;
X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
Y is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R1 is hydrogen, monophosphate, diphosphate, triphosphate,
Figure US20190022116A1-20190124-C00106
Figure US20190022116A1-20190124-C00107
Figure US20190022116A1-20190124-C00108
Figure US20190022116A1-20190124-C00109
Figure US20190022116A1-20190124-C00110
alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
Y1 is O or S;
Y2 is OH, OR12, OAlkyl, or BH3 M+;
Y3 is OH or BH3 M+;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
R15 is hydrogen, Lipid, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid is a C6-22 alkyl, alkoxy, polyethylene glycol, or aryl substituted with an alkyl group.
5. The composition of claim 1, wherein the compound is selected from:
1-(3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-((nonanoyloxy)amino)pyrimidin-2-one,
1-(3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-((((heptyloxy)carbonyl)oxy)amino)pyrimidin-2-one, and
isopropyl(((3,4-dihydroxy-5-(4-(hydroxyamino)-2-oxopyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)alaninate.
6. The pharmaceutical composition of claim 1 wherein a compound of formula I has Formula IC,
Figure US20190022116A1-20190124-C00111
or salts thereof, wherein
X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
Y is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R1 is hydrogen, monophosphate, diphosphate, triphosphate,
Figure US20190022116A1-20190124-C00112
Figure US20190022116A1-20190124-C00113
Figure US20190022116A1-20190124-C00114
alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
Y1 is O or S;
Y2 is OH, OR12, OAlkyl, or BH3 M+;
Y3 is OH or BH3 M+;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
R15 is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid as described herein.
7. The pharmaceutical composition of claim 1, wherein a compound of formula I has Formula ID,
Figure US20190022116A1-20190124-C00115
or salt thereof, wherein
W is CH2, NH, S or O;
X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
Y is N or CR″;
Z is N or CR″;
each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R1 is hydrogen, monophosphate, diphosphate, triphosphate,
Figure US20190022116A1-20190124-C00116
Figure US20190022116A1-20190124-C00117
Figure US20190022116A1-20190124-C00118
alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
Y1 is O or S;
Y2 is OH, OR12, OAlkyl, or BH3 M+;
Y3 is OH or BH3 M+;
R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
R15 is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
R15′ is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
R15 and R15′ can form a ring that is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid is a C6-22 alkyl, alkoxy, polyethylene glycol, or aryl substituted with an alkyl group.
8. The pharmaceutical composition of claim 1 wherein a compound of formula I has Formula IE,
Figure US20190022116A1-20190124-C00119
or salt thereof, wherein
Q is O, —O(C═O)—, —O(C═O)Lipid, —O(C═O)V—, NH, or NR7;
V is O, NH, NR7, S, CH2, or CHR7;
W is CH2, NH, S or O;
X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
Y is N or CR″;
Z is N or CR″;
each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
each R7 is independently selected from absent, hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
R15 is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
R15′ is hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
R15 and R15′ can form a ring that is optionally substituted with one or more, the same or different, R20;
If Q=-O(C═O)V— and V=NR7 then the R7s can together form a ring that is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid is a C6-22 alkyl, alkoxy, polyethylene glycol, or aryl substituted with an alkyl group.
9. The pharmaceutical composition of claim 1, wherein a compound of formula I has Formula II,
Figure US20190022116A1-20190124-C00120
or salt thereof, wherein
Q is O, —O(C═O)—, —O(C═O)Lipid, —O(C═O)V—, NH, or NR7;
V is O, NH, NR7, S, CH2, or CHR7;
W is CH2, NH, S or O;
X is CH2 or O;
Y is N or CR″;
Z is N or CR″;
each R″ is independently selected from is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R1 is monophosphate, diphosphate, triphosphate,
Figure US20190022116A1-20190124-C00121
Figure US20190022116A1-20190124-C00122
Figure US20190022116A1-20190124-C00123
Figure US20190022116A1-20190124-C00124
Figure US20190022116A1-20190124-C00125
Y1 is O or S;
Y2 is OH, OR12, OAlkyl, or BH3 M+;
Y3 is OH or BH3 M+;
R2 is hydrogen, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, azido, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
R3 is hydrogen, hydroxy, alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R3 is optionally substituted with one or more, the same or different, R20;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R6 is hydrogen, hydroxy, alkoxy, alkyl, ethynyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R6 is optionally substituted with one or more, the same or different, R20;
each R7 is independently selected from absent, hydrogen, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein each R7 is optionally substituted with one or more, the same or different, R20;
R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R2 is optionally substituted with one or more, the same or different, R20;
R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein IC is optionally substituted with one or more, the same or different, R20;
R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
If Q=-O(C═O)V— and V=NR7 then the R7s can together form a ring that is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid as described herein.
10. The pharmaceutical composition of claim 1, further comprising a propellant.
11. The pharmaceutical composition of claim 10, wherein the propellant is compressed air, ethanol, nitrogen, carbon dioxide, nitrous oxide, hydrofluoroalkanes (HFA), 1,1,1,2,-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane or combinations thereof.
12. A pressurized container comprising a pharmaceutical composition of claim 1.
13. The container of claim 12 which is a manual pump spray, inhaler, meter-dosed inhaler, dry powder inhaler, nebulizer, vibrating mesh nebulizer, jet nebulizer, or ultrasonic wave nebulizer.
14. A method of treating or preventing a viral infection comprising administering in effective amount of a compound of claim 1 or 9 to a subject in need thereof.
15. The method of claim 14 wherein the viral infection is an alphavirus or MERS coronaviruses.
16. The method of claim 14 wherein the virus is selected from MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Chikungunya virus, and Ross River virus.
17. The method of claim 14 wherein the compound is administered through the lungs.
18. A method of treating or preventing Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Chikungunya virus, and Ross River virus infection, orthomyxoviridae virus or paramyxoviridae virus or RSV virus, or influenza virus, or filoviridae virus or ebola virus infection comprising administering in effective amount of a compound to a patient in need thereof with the structure:
Figure US20190022116A1-20190124-C00126
19. A method of treating or preventing a human coronavirus, SARS coronavirus, MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Chikungunya virus, and Ross River infection infection, orthomyxoviridae virus or paramyxoviridae virus or RSV virus, or influenza virus, or filoviridae virus or ebola virus infection in a patient comprising administering in effective amount of a compound with the formula:
Figure US20190022116A1-20190124-C00127
or salts thereof, wherein
V is absent, O, NH, NR15, S, CH2, or CHR15;
X is CH2, CHMe, CMe2, CHF, CF2, or CD2;
Y is H, D, F, Cl, Br, I, CH3, CD3, CF3, alkyl, acyl, alkenyl, alkynyl, hydroxyl, formyl or SCH3;
R1 is hydrogen, monophosphate, diphosphate, triphosphate,
Figure US20190022116A1-20190124-C00128
Figure US20190022116A1-20190124-C00129
Figure US20190022116A1-20190124-C00130
Figure US20190022116A1-20190124-C00131
Figure US20190022116A1-20190124-C00132
alkyl,
halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, carbanoyl, esteryl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, phosphoramidyl, or phosphate wherein R1 is optionally substituted with one or more, the same or different, R20;
Y1 is O or S;
Y2 is OH, OR12, OAlkyl, or BH3 M+;
Y3 is OH or BH3 M+;
R4 is hydrogen, hydroxy, alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R4 is optionally substituted with one or more, the same or different, R20;
R5 is hydrogen, hydroxy, alkoxy, alkyl, alkenyl, alkynyl, ethynyl, fluoromethyl, difluoromethyl, trifluoromethyl, hydroxymethyl, allenyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R5 is optionally substituted with one or more, the same or different, R20;
R8 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, benzyloxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R8 is optionally substituted with one or more, the same or different, R20;
R9 is hydrogen, methyl, ethyl, tert-butyl, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, cycloalkyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R9 is optionally substituted with one or more, the same or different, R20;
R10 is hydrogen, alkyl, branched alkyl, cycloalkyl, lipid methyl, ethyl, isopropyl, cyclopentyl, cyclohexyl, butyl, pentyl, hexyl, neopentyl, benzyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R10 is optionally substituted with one or more, the same or different, R20;
R11 is hydrogen, deuterium, alkyl, methyl, halogen, nitro, cyano, hydroxy, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkylsulfonyl, arylsulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R11 is optionally substituted with one or more, the same or different, R20;
R12 is hydrogen, alkyl, aryl, phenyl, 1-naphthyl, 2-naphthyl, aromatic, heteroaromatic, 4-substituted phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, naphthyl, or heterocyclyl, wherein R12 is optionally substituted with one or more, the same or different, R20;
R13 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R20;
R14 is hydrogen, deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, lipid, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R14 is optionally substituted with one or more, the same or different, R20;
R15 is hydrogen, Lipid, —(C═O)Oalkyl, —(C═O)alkyl, —(C═O)NHalkyl, —(C═O)N-dialkyl, —(C═O)Salkyl, hydroxy, alkoxy, alkyl, higher alkyl, (C6-C16)alkyl, (C6-C22)alkyl, halogen, nitro, cyano, amino, mercapto, formyl, carboxy, carbamoyl, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R15 is optionally substituted with one or more, the same or different, R20;
R20 is deuterium, alkyl, alkenyl, alkynyl, halogen, nitro, cyano, hydroxy, amino, amido, mercapto, formyl, carboxy, carbamoyl, azido, alkoxy, alkylthio, alkylamino, (alkyl)2amino, alkylsulfinyl, alkyl sulfonyl, aryl sulfonyl, carbocyclyl, aryl, or heterocyclyl, wherein R13 is optionally substituted with one or more, the same or different, R21; and
R21 is halogen, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, formyl, carboxy, carbamoyl, mercapto, sulfamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, mesyl, ethyl sulfonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, N-methyl-N-ethylsulfamoyl, carbocyclyl, aryl, or heterocyclyl;
Lipid as described herein.
20. A method of treating or preventing MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Chikungunya virus, and Ross River virus infection, orthomyxoviridae virus or paramyxoviridae virus or RSV virus, or influenza virus, or filoviridae virus or ebola virus infection in a patient comprising administering in effective amount of a compound with the formula:
Figure US20190022116A1-20190124-C00133
or salts thereof.
21. A method of treating or preventing MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Chikungunya virus, and Ross River virus infection, orthomyxoviridae virus or paramyxoviridae virus or RSV virus, or influenza virus, or filoviridae virus or ebola virus infection infection in a patient comprising administering in effective amount of a compound with the formula:
Figure US20190022116A1-20190124-C00134
or salts thereof.
22. A method of treating or preventing MERS coronavirus, Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, Chikungunya virus, and Ross River virus infection, orthomyxoviridae virus or paramyxoviridae virus or RSV virus, or influenza virus, or filoviridae virus or ebola virus infection in a patient comprising administering in effective amount of a compound with the formula:
Figure US20190022116A1-20190124-C00135
or salt thereof.
US15/537,087 2014-12-26 2015-12-16 N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto Abandoned US20190022116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/537,087 US20190022116A1 (en) 2014-12-26 2015-12-16 N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462096915P 2014-12-26 2014-12-26
US201562201140P 2015-08-05 2015-08-05
PCT/US2015/066144 WO2016106050A1 (en) 2014-12-26 2015-12-16 N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US15/537,087 US20190022116A1 (en) 2014-12-26 2015-12-16 N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/066144 A-371-Of-International WO2016106050A1 (en) 2014-12-26 2015-12-16 N4-hydroxycytidine and derivatives and anti-viral uses related thereto

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/921,359 Continuation US11628181B2 (en) 2014-12-26 2020-07-06 N4-hydroxycytidine and derivatives and anti-viral uses related thereto

Publications (1)

Publication Number Publication Date
US20190022116A1 true US20190022116A1 (en) 2019-01-24

Family

ID=56151433

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/537,087 Abandoned US20190022116A1 (en) 2014-12-26 2015-12-16 N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto
US16/921,359 Active US11628181B2 (en) 2014-12-26 2020-07-06 N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US18/184,288 Pending US20230293566A1 (en) 2014-12-26 2023-03-15 N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/921,359 Active US11628181B2 (en) 2014-12-26 2020-07-06 N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US18/184,288 Pending US20230293566A1 (en) 2014-12-26 2023-03-15 N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto

Country Status (22)

Country Link
US (3) US20190022116A1 (en)
EP (2) EP3236972B1 (en)
JP (3) JP7381190B2 (en)
KR (2) KR20230130175A (en)
CN (1) CN107427529A (en)
AU (3) AU2015370004B2 (en)
BR (1) BR112017013858A2 (en)
CA (1) CA2972259A1 (en)
CY (1) CY1124663T1 (en)
DK (1) DK3236972T3 (en)
EA (1) EA201791460A1 (en)
ES (1) ES2892123T3 (en)
HR (1) HRP20211456T1 (en)
HU (1) HUE056470T2 (en)
IL (3) IL279663B2 (en)
LT (1) LT3236972T (en)
PL (1) PL3236972T3 (en)
PT (1) PT3236972T (en)
RS (1) RS62434B1 (en)
SG (2) SG10202105371YA (en)
SI (1) SI3236972T1 (en)
WO (1) WO2016106050A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11331331B2 (en) 2017-12-07 2022-05-17 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
WO2022159787A1 (en) * 2021-01-22 2022-07-28 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Compounds for the treatment of a disease or disorder, methods for identifying said compounds
WO2023012329A1 (en) 2021-08-06 2023-02-09 Intervet International B.V. Method of treating veterinary viral diseases
US11628181B2 (en) 2014-12-26 2023-04-18 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019002339A (en) 2016-09-02 2019-05-16 Dicerna Pharmaceuticals Inc 4'-phosphate analogs and oligonucleotides comprising the same.
CA3047373A1 (en) * 2016-12-16 2018-06-21 Gifu University Nucleoside derivative and use thereof
US11780874B2 (en) 2017-10-31 2023-10-10 Yamasa Corporation Nucleoside derivative and use thereof
GB201720279D0 (en) 2017-12-05 2018-01-17 Nucana Biomed Ltd Anticancer compounds
CN108586294A (en) * 2018-05-29 2018-09-28 王若锴 A kind of carbamide derivative and its application in preventing inflammation
KR20200095934A (en) * 2019-02-01 2020-08-11 재단법인 경기도경제과학진흥원 Pharmaceutical composition for treating or preventing middle east respiratory syndrome
CN112390838A (en) * 2019-08-14 2021-02-23 斯微(上海)生物科技有限公司 Modified nucleoside and synthetic method thereof
BR112022015479A2 (en) * 2020-02-07 2022-10-11 Univ Emory PHARMACEUTICAL COMPOSITION, PRESSURIZED CONTAINER, AND METHOD OF TREATMENT OR PREVENTION OF INFECTION
CN111548384B (en) * 2020-03-29 2021-04-27 常州安蒂卫生物科技有限公司 Substituted N4-hydroxycytidine derivatives and prodrugs thereof for antiviral therapy
US11642372B2 (en) 2020-05-01 2023-05-09 Tygrus, LLC Therapeutic material with low pH and low toxicity active against at least one pathogen for addressing patients with respiratory illnesses
US11826382B2 (en) 2020-05-01 2023-11-28 Tygrus, LLC Therapeutic material with low pH and low toxicity active against at least one pathogen for addressing patients with respiratory illnesses
US11702440B2 (en) * 2020-12-10 2023-07-18 Optimus Drugs Private Limited Pharmaceutical polymorphs of Molnupiravir
CN114621229A (en) * 2020-12-11 2022-06-14 嘉兴金派特生物科技有限公司 Compounds or compositions for treating or preventing feline infectious peritonitis
CN112279877B (en) * 2020-12-15 2021-08-06 南京颐媛生物医学研究院有限公司 Nucleoside phosphate and synthesis method thereof
CN112608357B (en) * 2020-12-21 2022-12-09 杭州科巢生物科技有限公司 Preparation method of antiviral drug Molnbupiravir
CN112939981B (en) * 2021-01-19 2022-08-26 嘉兴金派特生物科技有限公司 Nucleoside compound, pharmaceutically acceptable salt, composition and application thereof
US11407779B1 (en) 2021-04-23 2022-08-09 Divi's Laboratories Ltd. Process for the preparation of molnupiravir
EP4334329A1 (en) * 2021-05-06 2024-03-13 Council Of Scientific & Industrial Research A process for the preparation of n4-hydroxycytidine and its derivatives
WO2022251663A2 (en) * 2021-05-27 2022-12-01 Emory University Novel universal anti-rna virus agents
WO2022262845A1 (en) * 2021-06-18 2022-12-22 Suzhou Spring-Sea Bio-Pharmaceuticals Co., Ltd. Ester derivatives of n4-hydroxycytidine and use thereof
CN113321694A (en) * 2021-06-22 2021-08-31 药康众拓(江苏)医药科技有限公司 N4-hydroxycytidine derivative and preparation method and application thereof
CN113735929A (en) * 2021-07-21 2021-12-03 海化生命(厦门)科技有限公司 Anti-coronavirus compound and preparation method and application thereof
WO2023025319A1 (en) * 2021-08-27 2023-03-02 南京知和医药科技有限公司 Novel cytidine derivative and pharmaceutical composition and use thereof
CN113980074A (en) * 2021-10-21 2022-01-28 苏州立新制药有限公司 Crystal form A of N4-hydroxycytidine, preparation method and application
TW202333706A (en) 2021-11-01 2023-09-01 德商埃慕尼克股份公司 Medical use of n-hydroxy citicoline compounds
CN116583530A (en) * 2021-11-12 2023-08-11 苏州春海生物医药有限公司 N 4 Ester derivatives of hydroxycytidine and their use
US11541071B1 (en) 2021-12-16 2023-01-03 Ascletis BioScience Co., Ltd Nucleoside derivatives and methods of use thereof
CN116554249A (en) * 2022-01-28 2023-08-08 北京恩泰伟医药科技有限公司 Antiviral compounds and uses thereof
WO2023161427A1 (en) 2022-02-24 2023-08-31 Eisbach Bio Gmbh Viral combination therapy
WO2023167488A1 (en) * 2022-03-02 2023-09-07 유재혁 Veterinary composition for topical administration of molnupiravir and use thereof
CN116731087A (en) * 2022-03-03 2023-09-12 上海科胜药物研发有限公司 Preparation method of monabivalir and intermediate thereof
KR20230130898A (en) * 2022-03-04 2023-09-12 동아대학교 산학협력단 N4-o-isobutyryloxycytidine analogs and anti-viral uses thereof
CN114573651A (en) * 2022-03-11 2022-06-03 山东大学 N4-hydroxycytidine lipid prodrug and preparation method and application thereof
CN114805458B (en) * 2022-03-31 2023-09-08 中国人民解放军军事科学院军事医学研究院 Fatty acid prodrug of nucleoside broad-spectrum antiviral drug, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809616B2 (en) * 2012-10-29 2017-11-07 Emory University Pyrimidine nucleosides and their monophosphate prodrugs for the treatment of viral infections and cancer
US10100076B2 (en) * 2000-10-18 2018-10-16 Gilead Pharmasset Llc Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
US20190083520A1 (en) * 2016-03-10 2019-03-21 Emory University N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto

Family Cites Families (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1325798A (en) 1970-09-24 1973-08-08 Upjohn Co Derivatives of 2,2-anhydro-ara-cytidine
GB1386334A (en) 1972-09-22 1975-03-05 Kohjin Co 2,2-cyclocytidine derivatives
DE2456547A1 (en) 1973-11-29 1975-08-14 Kohjin Co N HIGH 4 -SUBSTITUTED 2,2'-CYCLOCYTIDINE COMPOUNDS
US4096324A (en) 1975-07-07 1978-06-20 The Upjohn Company Cytidine nucleoside compound
US5470838A (en) 1987-10-28 1995-11-28 Pro-Neuron, Inc. Method of delivering exogenous uridine or cytidine using acylated uridine or cytidine
US5736531A (en) 1987-10-28 1998-04-07 Pro-Neuron, Inc. Compositions of chemotherapeutic agent or antiviral agent with acylated pyrimidine nucleosides
KR920701230A (en) 1989-06-05 1992-08-11 원본미기재 Exonuclease-resistant oligonucleotides and methods for preparing the same
WO1992009705A1 (en) 1990-11-23 1992-06-11 Gilead Sciences, Inc. Triplex-forming oligomers containing modified bases
CA2079413C (en) * 1991-09-30 2003-09-09 Masakatsu Kaneko Pyrimidine nucleoside derivatives having anti-tumor activity, their preparation and use
JP3739785B2 (en) 1991-11-26 2006-01-25 アイシス ファーマシューティカルズ,インコーポレイティド Enhanced triple and double helix shaping using oligomers containing modified pyrimidines
US6057305A (en) 1992-08-05 2000-05-02 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Antiretroviral enantiomeric nucleotide analogs
IS2334B (en) 1992-09-08 2008-02-15 Vertex Pharmaceuticals Inc., (A Massachusetts Corporation) Aspartyl protease inhibitor of a new class of sulfonamides
AU6632094A (en) 1993-04-19 1994-11-08 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5349947A (en) * 1993-07-15 1994-09-27 Newhouse Michael T Dry powder inhaler and process that explosively discharges a dose of powder and gas from a soft plastic pillow
JP4086314B2 (en) 1993-09-17 2008-05-14 ギリアード サイエンシーズ, インコーポレイテッド Nucleotide analogs
JPH09506333A (en) 1993-09-17 1997-06-24 ギリアード サイエンシーズ,インコーポレイテッド Method of administering therapeutic compound
JP3300365B2 (en) 1995-02-27 2002-07-08 ギリアード サイエンシーズ,インコーポレイテッド Novel selective inhibitors of viral or bacterial neuraminidase
US6043358A (en) 1995-11-01 2000-03-28 Merck & Co., Inc. Hexahydro-5-imino-1,4-heteroazepine derivatives as inhibitors of nitric oxide synthases
KR20000052702A (en) 1996-10-21 2000-08-25 헨슬레이 맥스 디. Piperidine compounds
GB9718913D0 (en) 1997-09-05 1997-11-12 Glaxo Group Ltd Substituted oxindole derivatives
US6086376A (en) * 1998-01-30 2000-07-11 Rtp Pharma Inc. Dry aerosol suspension of phospholipid-stabilized drug microparticles in a hydrofluoroalkane propellant
US6369087B1 (en) 1999-08-26 2002-04-09 Robert R. Whittle Alkoxy substituted benzimidazole compounds, pharmaceutical preparations containing the same, and methods of using the same
KR20080021797A (en) 2000-05-26 2008-03-07 이데닉스(케이만)리미티드 Methods and compositions for treating flaviviruses and pestiviruses
US20030008841A1 (en) 2000-08-30 2003-01-09 Rene Devos Anti-HCV nucleoside derivatives
NZ561342A (en) 2000-10-18 2010-02-26 Pharmasset Inc Simultaneous quantification of nucleic acids in diseased cells
CA2743451A1 (en) 2000-10-18 2002-04-25 Pharmasset, Inc. Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
WO2002088159A1 (en) 2001-04-30 2002-11-07 Trommsdorff Gmbh & Co. Kg Arzneimittel Pharmaceutically active uridine esters
GB0114286D0 (en) 2001-06-12 2001-08-01 Hoffmann La Roche Nucleoside Derivatives
US7049303B2 (en) 2001-11-07 2006-05-23 Medical Research Council Inhibition of viruses
JP2005523922A (en) 2002-04-26 2005-08-11 ギリアード サイエンシーズ, インコーポレイテッド Non-nucleoside reverse transcriptase inhibitors
US20050239054A1 (en) 2002-04-26 2005-10-27 Arimilli Murty N Method and compositions for identifying anti-HIV therapeutic compounds
GB0215293D0 (en) 2002-07-03 2002-08-14 Rega Foundation Viral inhibitors
SG165996A1 (en) 2002-07-15 2010-11-29 Gilead Sciences Inc Combination therapies with l-fmau for the treatment of hepatitis b virus infection
AU2003264406A1 (en) 2002-09-11 2004-04-30 Michio Ishibashi Drug or cosmetic
AU2003279103A1 (en) 2002-10-01 2004-04-23 Gilead Sciences, Inc. Hbv mutations associated with reduced susceptibility to adefovir
US20040157804A1 (en) 2002-10-16 2004-08-12 Gilead Sciences, Inc. Pre-organized tricyclic integrase inhibitor compounds
AU2003287606A1 (en) * 2002-11-12 2004-06-03 Enzon Pharmaceuticals, Inc. Novel acylating reagents
TWI332507B (en) 2002-11-19 2010-11-01 Hoffmann La Roche Antiviral nucleoside derivatives
WO2004050613A2 (en) 2002-12-02 2004-06-17 Gilead Sciences, Inc. 2-substituted-3-propenamide derivatives and methods of using the same
JP4996241B2 (en) 2003-01-14 2012-08-08 ギリアード サイエンシーズ, インコーポレイテッド Compositions and methods for combination antiviral therapy
WO2004100960A2 (en) 2003-04-25 2004-11-25 Gilead Sciences, Inc. Anti-inflammatory phosphonate compounds
WO2004096287A2 (en) 2003-04-25 2004-11-11 Gilead Sciences, Inc. Inosine monophosphate dehydrogenase inhibitory phosphonate compounds
WO2005002626A2 (en) 2003-04-25 2005-01-13 Gilead Sciences, Inc. Therapeutic phosphonate compounds
CN101410120A (en) 2003-04-25 2009-04-15 吉里德科学公司 Anti-inflammatory phosphonate compounds
SG182849A1 (en) 2003-04-25 2012-08-30 Gilead Sciences Inc Antiviral phosphonate analogs
CA2533966A1 (en) 2003-07-30 2005-02-10 Gilead Sciences, Inc. Nucleobase phosphonate analogs for antiviral treatment
DE602004021611D1 (en) 2003-09-19 2009-07-30 Gilead Sciences Inc AZACHINOLINOL PHOSPHONATE COMPOUNDS AS INTEGRASE INHIBITORS
RU2264409C2 (en) 2003-10-01 2005-11-20 Государственный научный центр вирусологии и биотехнологии "Вектор" (ГНЦ ВБ "Вектор") 2'-amino-2'-deoxynucleosides as inhibitors if measles and marburg virusus reproduction
CA2543294A1 (en) 2003-10-24 2005-05-26 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds
JP2007509994A (en) 2003-11-03 2007-04-19 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Acyl ribonucleosides and acyl deoxyribonucleosides
CN1906196A (en) 2003-12-22 2007-01-31 吉里德科学公司 4'-substituted carbovir-and abacavir-derivatives as well as related compounds with HIV and HCV antiviral activity
US7648998B2 (en) 2003-12-22 2010-01-19 K.U. Leuven Research & Development Imidazo 4,5-c pyridine compounds and methods of antiviral treatment
ES2389602T3 (en) 2003-12-30 2012-10-29 Gilead Sciences, Inc. Nucleoside phosphonates and analogues thereof for the treatment of HPV infections
KR20060124701A (en) 2004-01-12 2006-12-05 길리애드 사이언시즈, 인코포레이티드 Pyrimidyl phosphonate antiviral compounds and methods of use
JP2007518815A (en) 2004-01-21 2007-07-12 ギリアード サイエンシーズ, インコーポレイテッド Use of adefovir or tenofovir to inhibit MMTV-like virus involved in breast cancer and primary biliary cirrhosis
ATE411030T1 (en) 2004-04-14 2008-10-15 Gilead Sciences Inc PHOSPHONATE ANALOGUES OF HIV INTEGRASE INHIBITOR COMPOUNDS
UA93354C2 (en) 2004-07-09 2011-02-10 Гилиад Сайенсиз, Инк. Topical antiviral formulations
EA200700336A1 (en) 2004-07-16 2009-12-30 Джилид Сайэнс, Инк. ANTI-VIRUS COMPOUNDS
BRPI0513811A (en) 2004-07-27 2008-07-15 Gilead Sciences Inc imidazo [4,5-d] pyrimidines, their uses and processes of preparation
US7871991B2 (en) 2004-07-27 2011-01-18 Gilead Sciences, Inc. Phosphonate analogs of HIV inhibitor compounds
DE102004051804A1 (en) * 2004-10-21 2006-04-27 Max-Delbrück-Centrum Für Molekulare Medizin (Mdc) Beta-L-N4-hydroxycytosine deoxynucleosides and their use as pharmaceutical agents for the prophylaxis or therapy of viral diseases
CA2585353A1 (en) 2004-10-26 2006-05-04 Gilead Sciences, Inc. Phosphonate derivatives of mycophenolic acid
WO2006069193A2 (en) 2004-12-21 2006-06-29 Gilead Sciences, Inc. Imidazo[4,5-c]pyridine compound and method of antiviral treatment
WO2006091905A1 (en) 2005-02-25 2006-08-31 Gilead Sciences, Inc. Bicyclo (3.1.0) hexane derivatives as antiviral compounds
US20070072831A1 (en) 2005-05-16 2007-03-29 Gilead Sciences, Inc. Integrase inhibitor compounds
JP5461009B2 (en) 2005-06-08 2014-04-02 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Method for promoting neuronal cell survival using non-peptide and peptide BDNF neurotrophin analogues
TWI389908B (en) 2005-07-14 2013-03-21 Gilead Sciences Inc Antiviral compounds
TW200738742A (en) 2005-07-14 2007-10-16 Gilead Sciences Inc Antiviral compounds
WO2007014174A2 (en) 2005-07-25 2007-02-01 Gilead Sciences, Inc. Drug-resistant mutants of hepatitis c virus
JP2009502964A (en) 2005-07-27 2009-01-29 ギリアード サイエンシーズ, インコーポレイテッド Antiviral phosphonate conjugates for inhibiting HIV
EP1919924A2 (en) 2005-08-16 2008-05-14 Irm, Llc Compounds and compositions as protein kinase inhibitors
CN101268092B (en) 2005-09-22 2012-07-04 弗·哈夫曼-拉罗切有限公司 Selective O-acylation of nucleosides
AU2006332664B2 (en) 2005-12-30 2013-03-14 Gilead Sciences, Inc. Methods for improving the pharmacokinetics of HIV integrase inhibitors
NZ571302A (en) 2006-03-29 2011-11-25 Gilead Sciences Inc Process for preparation of HIV protease inhibitors via bisfuran intermediates
US20090318456A1 (en) 2006-07-06 2009-12-24 Gilead Sciences, Inc. Substituted pteridines for the treatment and prevention of viral infections
WO2008005542A2 (en) 2006-07-07 2008-01-10 Gilead Sciences, Inc., Antiviral phosphinate compounds
EP2038275B1 (en) 2006-07-07 2010-01-06 Gilead Sciences, Inc. Novel pyridazine compound and use thereof
TWI399377B (en) 2006-07-07 2013-06-21 Gilead Sciences Inc Modulators of toll-like receptor 7
CA2653374A1 (en) 2006-07-07 2008-01-24 Manoj C. Desai Modulators of pharmacokinetic properties of therapeutics
WO2008009077A2 (en) 2006-07-20 2008-01-24 Gilead Sciences, Inc. 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections
US8338435B2 (en) 2006-07-20 2012-12-25 Gilead Sciences, Inc. Substituted pyrido(3,2-D) pyrimidines and pharmaceutical compositions for treating viral infections
WO2008009079A2 (en) 2006-07-20 2008-01-24 Gilead Sciences, Inc. Substituted pteridines useful for the treatment and prevention of viral infections
US9259426B2 (en) 2006-07-20 2016-02-16 Gilead Sciences, Inc. 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections
CA2657936C (en) 2006-07-21 2017-01-10 Gilead Sciences, Inc. Antiviral protease inhibitors
JP5372751B2 (en) 2006-07-21 2013-12-18 ギリアード サイエンシーズ, インコーポレイテッド AZA-peptide protease inhibitor
JP2009544710A (en) 2006-07-24 2009-12-17 ギリアード サイエンシーズ, インコーポレイテッド HIV reverse transcriptase inhibitor
US20090312318A1 (en) 2006-07-24 2009-12-17 Desai Manoj C Therapeutic compounds and methods
JP2010504982A (en) 2006-09-27 2010-02-18 コーリー ファーマシューティカル グループ,インコーポレイテッド Composition of TLR ligand and antiviral agent
EP2094702B1 (en) 2006-12-14 2015-09-02 Gilead Sciences, Inc. Viral inhibitors
TW200840584A (en) 2006-12-26 2008-10-16 Gilead Sciences Inc Pyrido(3,2-d)pyrimidines useful for treating viral infections
WO2008077649A1 (en) 2006-12-26 2008-07-03 Gilead Sciences, Inc. Pyrido(3,2-d)pyrimidines useful for treating viral infectons
US8637531B2 (en) 2006-12-26 2014-01-28 Gilead Sciences, Inc. Pyrido(3,2-d)pyridmidines useful for treating viral infections
US8324179B2 (en) 2007-02-09 2012-12-04 Gilead Sciences, Inc. Nucleoside analogs for antiviral treatment
ES2779826T3 (en) 2007-02-23 2020-08-20 Gilead Sciences Inc Modulators of pharmacokinetic properties of therapeutic agents
ES2377760T3 (en) 2007-03-29 2012-03-30 F. Hoffmann-La Roche Ag Pharmaceutical composition and process
AU2008270634B2 (en) 2007-06-29 2014-01-16 Gilead Sciences, Inc. Therapeutic compositions and the use thereof
TW200918524A (en) 2007-06-29 2009-05-01 Gilead Sciences Inc Antiviral compounds
AP2965A (en) 2007-06-29 2014-09-30 Gilead Sciences Inc Therapeutic compositions and the use thereof
BRPI0813952A2 (en) 2007-06-29 2017-05-09 Gilead Sciences Inc purine derivatives and their use as modulators and bell-like receptor 7
EP2162432A2 (en) 2007-06-29 2010-03-17 Gilead Sciences, Inc. Antiviral compounds
JP2010532350A (en) 2007-06-29 2010-10-07 コレア リサーチ インスティテュート オブ ケミカル テクノロジー Novel HIV reverse transcriptase inhibitor
KR101596524B1 (en) 2007-06-29 2016-02-22 길리애드 사이언시즈, 인코포레이티드 Antiviral compound
KR20100041798A (en) 2007-06-29 2010-04-22 한국화학연구원 Novel hiv reverse transcriptase inhibitors
UA99466C2 (en) 2007-07-06 2012-08-27 Гилиад Сайенсиз, Инк. Crystalline pyridazine compound
WO2009058800A2 (en) 2007-10-29 2009-05-07 President And Fellows Of Harvard College Synthesis of nucleosides
CA2710832A1 (en) * 2007-12-27 2009-07-09 Epiphany Biosciences, Inc. Antiviral compounds
JP5629585B2 (en) 2008-01-04 2014-11-19 ギリアード サイエンシーズ, インコーポレイテッド Inhibitor of cytochrome P450
TWI444384B (en) 2008-02-20 2014-07-11 Gilead Sciences Inc Nucleotide analogues and their use in the treatment of malignancies
PL2937350T3 (en) 2008-04-23 2018-06-29 Gilead Sciences, Inc. 1' -substituted carba-nucleoside analogs for antiviral treatment
WO2009143011A1 (en) * 2008-05-20 2009-11-26 Novartis Ag Antiviral compositions, methods of making and using such compositions, and systems for pulmonary delivery of such compositions
US8536187B2 (en) 2008-07-03 2013-09-17 Gilead Sciences, Inc. 2,4,6-trisubstituted pyrido(3,2-d)pyrimidines useful for treating viral infections
BRPI0915878A2 (en) 2008-07-08 2015-11-03 Gilead Sciences Inc salts or hydrates of HIV-inhibiting compounds, their use and pharmaceutical composition comprising them
JP2011529085A (en) 2008-07-25 2011-12-01 ギリアード サイエンシーズ, インコーポレイテッド Antiviral compounds
WO2010077613A1 (en) 2008-12-09 2010-07-08 Gilead Sciences, Inc. Modulators of toll-like receptors
KR20110114582A (en) 2008-12-19 2011-10-19 길리애드 사이언시즈, 인코포레이티드 Hcv ns3 protease inhibitors
AR074758A1 (en) 2008-12-22 2011-02-09 Gilead Sciences Inc ANTIVIRAL MACROCICLIC COMPOUNDS
PE20161067A1 (en) 2009-02-10 2016-10-23 Gilead Sciences Inc CARBA-NUCLEOSIDIC ANALOGS FOR ANTIVIRAL TREATMENT
KR20190029771A (en) 2009-05-13 2019-03-20 길리애드 파마셋 엘엘씨 Antiviral compounds
TWI576352B (en) 2009-05-20 2017-04-01 基利法瑪席特有限責任公司 Nucleoside phosphoramidates
US20100324060A1 (en) 2009-06-23 2010-12-23 Gilead Sciences, Inc. Pharmaceutical compositions useful for treating hcv
US20100323989A1 (en) 2009-06-23 2010-12-23 Gilead Sciences, Inc. Pharmaceutical combinations useful for treating hcv
US20100324059A1 (en) 2009-06-23 2010-12-23 Gilead Sciences, Inc. Pharmaceutical compositions useful for treating hcv
WO2011005842A1 (en) 2009-07-09 2011-01-13 Gilead Sciences, Inc. Anti-rsv compounds
NZ597528A (en) 2009-07-21 2014-08-29 Gilead Sciences Inc Inhibitors of flaviviridae viruses
EP2507249B1 (en) 2009-09-09 2015-11-11 Gilead Sciences, Inc. Inhibitors of flaviviridae viruses
PT2477987T (en) 2009-09-14 2018-03-13 Gilead Sciences Inc Modulators of toll-like receptors
US7973013B2 (en) 2009-09-21 2011-07-05 Gilead Sciences, Inc. 2'-fluoro substituted carba-nucleoside analogs for antiviral treatment
ME02656B (en) 2009-09-21 2017-06-20 Gilead Sciences Inc 2' -fluoro substituted carba-nucleoside analogs for antiviral treatment
AP3103A (en) 2009-10-22 2015-01-31 Gilead Sciences Inc Derivatives of purine or deazapurine useful for the treatment of (inter alia)viral infections
WO2011079016A1 (en) 2009-12-22 2011-06-30 Gilead Sciences, Inc. Methods of treating hbv and hcv infection
JP5868872B2 (en) 2010-01-15 2016-02-24 ギリアード サイエンシーズ, インコーポレイテッド Inhibitors of Flaviviridae virus
EP2523951B1 (en) 2010-01-15 2015-04-22 Gilead Sciences, Inc. Inhibitors of flaviviridae viruses
MX337050B (en) 2010-01-28 2016-02-10 Riboscience Llc 4 ' - azido - nucleosides as anti - hcv compunds.
US20110223131A1 (en) 2010-02-24 2011-09-15 Gilead Sciences, Inc. Antiviral compounds
US8367829B2 (en) 2010-05-10 2013-02-05 Gilead Sciences, Inc. Bi-functional pyrazolopyridine compounds
UY33372A (en) 2010-05-10 2011-12-30 Gilead Sciences Inc ? QUINOLINA BI? FUNCTIONAL ANALOGS, ITS USE IN THE MANUFACTURE OF MEDICINES, COMPOSITIONS THAT UNDERSTAND AND PREPARATION PROCESSES ?.
NZ603310A (en) 2010-05-21 2015-01-30 Gilead Sciences Inc Heterocyclic flaviviridae virus inhibitors
TW201201815A (en) 2010-05-28 2012-01-16 Gilead Sciences Inc 1'-substituted-carba-nucleoside prodrugs for antiviral treatment
TW201210597A (en) 2010-06-09 2012-03-16 Gilead Sciences Inc Inhibitors of hepatitis C virus
UY33445A (en) 2010-06-10 2012-01-31 Gilead Sciences Inc A DOSAGE SCHEME, METHODS TO TREAT HEPATITIS C VIRUS, PHARMACEUTICAL COMPOSITION, COMPOSITE, ANTI-HCV COMPOUNDS AND KIT
ES2551738T3 (en) 2010-06-11 2015-11-23 Gilead Sciences, Inc. Topical antiviral formulations for the prevention of HSV-2 transmission
CN102958933B (en) 2010-06-24 2016-02-03 吉里德科学公司 As pyrazolo [1, the 5-A] miazines of antiviral drug
US9102614B2 (en) 2010-07-02 2015-08-11 Gilead Sciences, Inc. Naphth-2-ylacetic acid derivatives to treat AIDS
NZ604716A (en) 2010-07-02 2014-12-24 Gilead Sciences Inc 2-quinolinyl-acetic acid derivatives as hiv antiviral compounds
WO2012012465A1 (en) 2010-07-19 2012-01-26 Clarke, Michael, O'neil Hanrahan Methods for the preparation of diasteromerically pure phosphoramidate prodrugs
CN103052631B (en) 2010-07-22 2015-11-25 吉里德科学公司 Be used for the treatment of method and the compound of the infection of paramyxovirus coe virus
CN102351931B (en) * 2010-09-07 2014-01-22 河南省科学院高新技术研究中心 Pyrimidine nucleoside derivatives as well as synthesis method and application thereof in preparation of anti-tumor and antiviral drugs
TW201305185A (en) 2010-09-13 2013-02-01 Gilead Sciences Inc 2'-fluoro substituted carba-nucleoside analogs for antiviral treatment
EA026523B1 (en) 2010-09-20 2017-04-28 Джилид Сайэнс, Инк. 2'-fluoro substituted carba-nucleoside analogs for antiviral treatment
TWI548629B (en) 2010-11-17 2016-09-11 吉李德製藥公司 Antiviral compounds
PE20140163A1 (en) 2010-11-19 2014-02-08 Gilead Sciences Inc THERAPEUTIC COMPOSITIONS INCLUDING RILPIVIRIN HCL AND TENOFOVIR DISOPROXIL FUMARATE
AR084217A1 (en) 2010-12-10 2013-05-02 Gilead Sciences Inc MACROCICLIC INHIBITORS OF VIRUS FLAVIVIRIDAE
TW201701876A (en) 2010-12-20 2017-01-16 吉李德科學股份有限公司 Methods for treating HCV
US20130274254A1 (en) 2010-12-21 2013-10-17 Gilead Sciences, Inc. Inhibitors of cytochrome p450 (cyp3a4)
US8987313B2 (en) 2010-12-21 2015-03-24 Gilead Sciences, Inc. Inhibitors of cytochrome P450
WO2012088153A1 (en) 2010-12-21 2012-06-28 Gilead Sciences, Inc. Inhibitors of cytochrome p450
AU2012240313A1 (en) 2011-04-04 2013-05-02 Gilead Sciences, Inc. Solid state forms of HIV inhibitor
CA2830838A1 (en) 2011-04-04 2012-11-10 Gilead Sciences, Inc. Process for the preparation of an hiv integrase inhibitor
WO2012142523A2 (en) 2011-04-13 2012-10-18 Gilead Sciences, Inc. 1'-substituted pyrimidine n-nucleoside analogs for antiviral treatment
BR112013027096A2 (en) 2011-04-21 2016-12-27 Gilead Sciences Inc benzothiazole compounds and their pharmaceutical use
WO2012151165A1 (en) 2011-05-02 2012-11-08 Gilead Sciences, Inc. Amorphous solid salts
CA2840828A1 (en) 2011-07-06 2013-01-10 Gilead Sciences, Inc. Hcv genotype 3 replicons
ES2553449T3 (en) 2011-07-06 2015-12-09 Gilead Sciences, Inc. Compounds for HIV treatment
CA2840868A1 (en) 2011-07-06 2013-01-10 Gilead Sciences, Inc. Hcv genotype 4 replicons
ES2561888T3 (en) 2011-07-13 2016-03-01 Gilead Sciences, Inc. Thiophene-2-carboxylic acid derivatives useful as Flaviviridae virus inhibitors
LT2744810T (en) 2011-08-16 2016-11-25 Gilead Sciences, Inc. Tenofovir alafenamide hemifumarate
EP2709613B2 (en) 2011-09-16 2020-08-12 Gilead Pharmasset LLC Methods for treating hcv
JP2014532657A (en) 2011-10-31 2014-12-08 ギリアド ファーマセット エルエルシー Methods and compositions for treating hepatitis C virus
DK2907816T3 (en) 2011-11-16 2018-09-24 Gilead Pharmasset Llc CONDENSED IMIDAZOLYLIMIDAZOLES AS ANTIVIRAL COMPOUNDS
CA2856529C (en) 2011-11-29 2018-03-06 Gilead Pharmasset Llc Compositions and methods for treating hepatitis c virus
WO2013090929A1 (en) 2011-12-15 2013-06-20 Gilead Sciences, Inc. Amino quinoline derivatives inhibitors of hcv
WO2013090840A1 (en) 2011-12-15 2013-06-20 Gilead Sciences, Inc. 2 -amino- pyrido [3, 2 -d] pyrimidine derivatives as hcv inhibitors
JP2015504881A (en) 2011-12-20 2015-02-16 ギリアード サイエンシーズ, インコーポレイテッド Pharmaceutical compositions and methods for treating gastrointestinal infections and disorders
EP2794611B1 (en) 2011-12-22 2017-10-11 Gilead Sciences, Inc. Pyrazolo[1,5-a]pyrimidines as antiviral agents
RS58099B1 (en) * 2011-12-22 2019-02-28 Alios Biopharma Inc Substituted nucleosides, nucleotides and analogs thereof
WO2013103738A1 (en) 2012-01-04 2013-07-11 Gilead Sciences, Inc. Napthalene acetic acid derivatives against hiv infection
WO2013103724A1 (en) 2012-01-04 2013-07-11 Gilead Sciences, Inc. 2- (tert - butoxy) -2- (7 -methylquinolin- 6 - yl) acetic acid derivatives for treating aids
WO2013106732A1 (en) 2012-01-12 2013-07-18 Gilead Sciences, Inc. Pharmaceutical compositions and methods for their preparation
MD20140091A2 (en) 2012-02-03 2015-01-31 Gilead Sciences, Inc. Combination therapy comprising tenofovir alafenamide hemifumarate and cobicistat for use in the treatment of viral infections
WO2013115916A1 (en) 2012-02-03 2013-08-08 Gilead Sciences, Inc. Combination therapy comprising gs-7340 and cobicistat for use in the treatment of viral infections
SI2834258T1 (en) 2012-03-13 2017-04-26 Gilead Sciences, Inc. 2'- substituted carba-nucleoside analogs for antiviral treatment
RS58437B1 (en) * 2012-03-21 2019-04-30 Alios Biopharma Inc Substituted nucleosides, nucleotides and analogs thereof
CN104583211A (en) 2012-04-17 2015-04-29 吉里德科学公司 Compounds and methods for antiviral treatment
EA201490647A1 (en) 2012-04-20 2014-12-30 Джилид Сайэнс, Инк. DERIVATIVES OF BENZOTHIAZOL-6-LUCUS ACID AND THEIR APPLICATION FOR THE TREATMENT OF HIV INFECTION
US20130309196A1 (en) 2012-05-16 2013-11-21 Gilead Sciences, Inc. Antiviral compounds
US9079887B2 (en) 2012-05-16 2015-07-14 Gilead Sciences, Inc. Antiviral compounds
US9090653B2 (en) 2012-06-08 2015-07-28 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
AR091279A1 (en) 2012-06-08 2015-01-21 Gilead Sciences Inc MACROCICLIC INHIBITORS OF VIRUS FLAVIVIRIDAE
MX2014014766A (en) 2012-06-08 2015-05-11 Gilead Sciences Inc Macrocyclic inhibitors of flaviviridae viruses.
UA119315C2 (en) 2012-07-03 2019-06-10 Гіліад Фармассет Елелсі Inhibitors of hepatitis c virus
US8841340B2 (en) 2012-08-17 2014-09-23 Gilead Sciences, Inc. Solid forms of an antiviral compound
US20140094485A1 (en) 2012-10-03 2014-04-03 Gilead Sciences, Inc. Solid state forms of hiv inhibitor
JP2016503511A (en) 2012-10-26 2016-02-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Autostereoscopic display device with see-through mode of operation
WO2014070939A1 (en) 2012-10-30 2014-05-08 Gilead Sciences, Inc. Therapeutic and diagnostic methods related to lysyl oxidase-like 2 (loxl2)
EP2917340A1 (en) 2012-11-07 2015-09-16 Gilead Sciences, Inc. Hcv genotype 6 replicons
US9211300B2 (en) 2012-12-19 2015-12-15 Idenix Pharmaceuticals Llc 4′-fluoro nucleosides for the treatment of HCV
EA201590943A1 (en) 2012-12-21 2016-01-29 Алиос Биофарма, Инк. SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND THEIR ANALOGUES
US9233974B2 (en) 2012-12-21 2016-01-12 Gilead Sciences, Inc. Antiviral compounds
PT2822954E (en) 2012-12-21 2016-06-16 Gilead Sciences Inc Polycyclic-carbamoylpyridone compounds and their pharmaceutical use
NZ727792A (en) 2013-01-09 2018-04-27 Gilead Sciences Inc Therapeutic compounds
JP5941598B2 (en) 2013-01-09 2016-06-29 ギリアード サイエンシーズ, インコーポレイテッド 5-membered heteroaryls and their use as antiviral agents
TW201443037A (en) 2013-01-09 2014-11-16 Gilead Sciences Inc Therapeutic compounds
WO2014124430A1 (en) 2013-02-11 2014-08-14 Emory University Nucleotide and nucleoside therapeutic compositions and uses related thereto
TWI706945B (en) 2013-03-01 2020-10-11 美商基利科學股份有限公司 Therapeutic compounds for treating a retroviridae viral infection
US20140273023A1 (en) * 2013-03-15 2014-09-18 Saladax Biomedical Inc. Gemcitabine immunoassay
JP6511432B2 (en) 2013-03-15 2019-05-15 ギリアード サイエンシーズ, インコーポレイテッド Macrocyclic bicyclic inhibitors of hepatitis C virus
EP2981542B1 (en) 2013-04-01 2021-09-15 Idenix Pharmaceuticals LLC 2',4'-fluoro nucleosides for the treatment of hcv
EP2984098A2 (en) 2013-04-12 2016-02-17 Achillion Pharmaceuticals, Inc. Deuterated nucleoside prodrugs useful for treating hcv
BR112015028764B1 (en) 2013-05-16 2022-09-27 Riboscience Llc SUBSTITUTED 4-FLUORO-2-METHYL NUCLEOSIDE DERIVATIVES AS INHIBITORS OF HCV RNA REPLICATION
EP3013340B9 (en) 2013-06-26 2023-10-04 Janssen Pharmaceuticals, Inc. Substituted nucleosides, nucleotides and analogs thereof
US20150072418A1 (en) 2013-08-16 2015-03-12 Gilead Sciences, Inc. Hcv genotype 4d replicons
SI3043803T1 (en) 2013-09-11 2022-09-30 Emory University Nucleotide and nucleoside compositions and their uses
WO2015054465A1 (en) 2013-10-11 2015-04-16 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
UA119050C2 (en) 2013-11-11 2019-04-25 Ґілеад Саєнсиз, Інк. Pyrrolo [1,2,f] [1,2,4] triazines useful for treating respiratory syncitial virus infections
US20150150897A1 (en) 2013-12-02 2015-06-04 Gilead Pharmasset Llc Methods of treating hepatitis c virus infection in subjects with cirrhosis
NZ720887A (en) 2013-12-23 2018-01-26 Gilead Sciences Inc Crystalline forms of a macrocyclic hcv ns3 inhibiting tripeptide
TW201609785A (en) 2013-12-23 2016-03-16 吉李德製藥公司 Solid forms of an antiviral compound
TWI660965B (en) 2014-01-15 2019-06-01 美商基利科學股份有限公司 Solid forms of tenofovir
US9463194B2 (en) 2014-02-05 2016-10-11 Gilead Sciences, Inc. Methods of treating patients co-infected with HIV and tuberculosis
WO2015130966A1 (en) 2014-02-28 2015-09-03 Gilead Sciences, Inc. Antiviral agents
US10202353B2 (en) 2014-02-28 2019-02-12 Gilead Sciences, Inc. Therapeutic compounds
WO2015179448A1 (en) 2014-05-21 2015-11-26 Gilead Sciences, Inc. Therapeutic compounds
PT3154985T (en) 2014-06-12 2018-10-19 Gilead Sciences Inc Antiviral compounds
EP3154960A1 (en) 2014-06-13 2017-04-19 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
EA201692249A1 (en) 2014-06-13 2017-05-31 Джилид Сайэнс, Инк. PHOSPHATIDYLINOSITOL-3-KINASE INHIBITORS
CA2952044C (en) 2014-06-13 2019-01-29 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
WO2015191743A1 (en) 2014-06-13 2015-12-17 Gilead Sciences, Inc. Quinazolinone derivatives as phosphatidylinositol 3-kinase inhibitors
EA201692267A1 (en) 2014-06-13 2017-06-30 Джилид Сайэнс, Инк. PHOSPHATIDYLINOSITOL-3-KINASE INHIBITORS
TW201613936A (en) 2014-06-20 2016-04-16 Gilead Sciences Inc Crystalline forms of(2R,5S,13aR)-8-hydroxy-7,9-dioxo-n-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide
HUE051986T2 (en) 2014-06-24 2021-04-28 Janssen Biopharma Inc Substituted nucleosides, nucleotides and analogs thereof for use in the treatment of viral infection
EP3160475B1 (en) 2014-06-24 2024-01-03 Janssen Pharmaceuticals, Inc. Substituted nucleosides and nucleotides to treat filoviridae infections
CN105288635A (en) 2014-06-26 2016-02-03 昆明积大制药股份有限公司 Pharmaceutical composition containing 5'-Ara-C-O-amino ester
CA2954056C (en) 2014-07-11 2020-04-28 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
TWI678369B (en) 2014-07-28 2019-12-01 美商基利科學股份有限公司 Thieno[3,2-d]pyrimidine, furo[3,2-d]pyrimidine, and pyrrolo[3,2-d]pyrimidines useful for treating respiratory syncitial virus infections
TWI673283B (en) 2014-08-21 2019-10-01 美商基利科學股份有限公司 2'-chloro aminopyrimidinone and pyrimidine dione nucleosides
ES2695700T3 (en) 2014-08-29 2019-01-10 Gilead Sciences Inc Antiretroviral agents
WO2016036759A1 (en) 2014-09-04 2016-03-10 Gilead Sciences, Inc. Methods of treating or preventing hiv in patients using a combination of tenofovir alafenamide and dolutegravir
EP3034499A1 (en) 2014-12-17 2016-06-22 Gilead Sciences, Inc. Novel FXR (NR1H4) modulating compounds
TWI738321B (en) 2014-12-23 2021-09-01 美商基利科學股份有限公司 Polycyclic-carbamoylpyridone compounds and their pharmaceutical use
NZ733135A (en) 2014-12-24 2018-06-29 Gilead Sciences Inc Fused pyrimidine compounds for the treatment of hiv
TWI770552B (en) 2014-12-24 2022-07-11 美商基利科學股份有限公司 Quinazoline compounds
PT3237397T (en) 2014-12-24 2019-02-08 Gilead Sciences Inc Isoquinoline compounds for the treatment of hiv
EA201791460A1 (en) 2014-12-26 2017-12-29 Эмори Юниверсити N4-HYDROXYCYTIDINE AND RELATED DERIVATIVES AND OPTIONS FOR ANTI-VIRUS APPLICATION
WO2016134054A1 (en) 2015-02-18 2016-08-25 Abbvie Inc. Anti-viral compounds
HUE038059T2 (en) 2015-03-04 2018-10-29 Gilead Sciences Inc Toll-like receptor modulating 4,6-diamino-pyrido[3,2-d]pyrimidine compounds
EA201791872A1 (en) 2015-04-02 2018-04-30 Джилид Сайэнс, Инк. POLYCYCLIC CARBAMOILPYRIDONE COMPOUNDS AND THEIR PHARMACEUTICAL APPLICATIONS
US20160303095A1 (en) 2015-04-14 2016-10-20 Gilead Sciences, Inc. Methods of treating hepatitis b virus
WO2016186967A1 (en) 2015-05-15 2016-11-24 Gilead Sciences, Inc. Benzimidazole and imadazopyridine carboximidamide compounds having activity as inhibitors of indoleamine 2,3-dioxygenase
AU2016277859B2 (en) 2015-06-17 2019-08-01 Gilead Sciences, Inc. Co-crystals, salts and solid forms of tenofovir alafenamide
CA2921336A1 (en) 2015-06-30 2016-12-30 Gilead Sciences, Inc. Pharmaceutical formulations
PL4070788T3 (en) 2015-06-30 2023-07-10 Gilead Sciences, Inc. Pharmaceutical formulations
AU2016301188A1 (en) 2015-08-06 2018-02-15 Chimerix, Inc. Pyrrolopyrimidine nucleosides and analogs thereof useful as antiviral agents
US20210292327A1 (en) 2015-08-26 2021-09-23 Gilead Sciences, Inc. Deuterated toll-like receptor modulators
WO2017040895A1 (en) 2015-09-02 2017-03-09 Abbvie Inc. Anti-viral compounds
WO2017040896A1 (en) 2015-09-02 2017-03-09 Abbvie Inc. Anti-viral compounds
CA2997955A1 (en) 2015-09-15 2017-03-23 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
DK3785717T3 (en) 2015-09-16 2022-03-21 Gilead Sciences Inc PROCEDURES FOR THE TREATMENT OF CORONAVIRIDAE INFECTIONS
ES2797900T3 (en) 2015-09-30 2020-12-04 Gilead Sciences Inc Compounds and combinations for the treatment of HIV
WO2017059224A2 (en) 2015-10-01 2017-04-06 Gilead Sciences, Inc. Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers
JP6621933B2 (en) 2015-11-09 2019-12-18 ギリアード サイエンシス インコーポレーテッド Therapeutic composition for treating human immunodeficiency virus
AU2016370591C1 (en) 2015-12-15 2020-09-03 Gilead Sciences, Inc. Human immunodeficiency virus neutralizing antibodies
CN108430993A (en) 2015-12-17 2018-08-21 吉利德科学公司 TANK- combination kinase inhibitor compounds
WO2017165489A1 (en) 2016-03-23 2017-09-28 Emory University Antiviral agents for treating zika and dengue virus infections
MX2018012135A (en) 2016-04-08 2019-03-28 Krystal Biotech Inc Compositions and methods for the treatment of wounds, disorders, and diseases of the skin.
WO2017184668A1 (en) 2016-04-20 2017-10-26 Gilead Sciences, Inc. Methods for treating flaviviridae virus infections
WO2017184670A2 (en) 2016-04-22 2017-10-26 Gilead Sciences, Inc. Methods for treating zika virus infections
BR102017010009A2 (en) 2016-05-27 2017-12-12 Gilead Sciences, Inc. COMPOUNDS FOR THE TREATMENT OF HEPATITIS B VIRUS INFECTION
BR112018073858A2 (en) 2016-05-27 2019-02-26 Gilead Sciences, Inc. methods for treating hepatitis b virus infections using ns5a, ns5b or ns3 inhibitors
US20200179428A1 (en) 2016-06-20 2020-06-11 Merck Sharp & Dohme Corp. Cyclic phosphate substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
WO2017223268A1 (en) 2016-06-22 2017-12-28 Yale University COMPOSITIONS AND METHODS OF RESENSITIZING CELLS TO BROMODOMAIN AND EXTRATERMINAL DOMAIN PROTEIN INHIBITORS (BETi)
BR122022008466B1 (en) * 2017-12-07 2023-12-05 Emory University USE OF A COMPOUND
GB2611644B (en) 2018-03-07 2023-07-26 Univ Emory 4'-halogen containing nucleotide and nucleoside therapeutic compositions and uses related thereto
BR112022015479A2 (en) * 2020-02-07 2022-10-11 Univ Emory PHARMACEUTICAL COMPOSITION, PRESSURIZED CONTAINER, AND METHOD OF TREATMENT OR PREVENTION OF INFECTION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100076B2 (en) * 2000-10-18 2018-10-16 Gilead Pharmasset Llc Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
US9809616B2 (en) * 2012-10-29 2017-11-07 Emory University Pyrimidine nucleosides and their monophosphate prodrugs for the treatment of viral infections and cancer
US20190083520A1 (en) * 2016-03-10 2019-03-21 Emory University N4-Hydroxycytidine and Derivatives and Anti-Viral Uses Related Thereto

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628181B2 (en) 2014-12-26 2023-04-18 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US11331331B2 (en) 2017-12-07 2022-05-17 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US11903959B2 (en) 2017-12-07 2024-02-20 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
WO2022159787A1 (en) * 2021-01-22 2022-07-28 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Compounds for the treatment of a disease or disorder, methods for identifying said compounds
WO2023012329A1 (en) 2021-08-06 2023-02-09 Intervet International B.V. Method of treating veterinary viral diseases

Also Published As

Publication number Publication date
RS62434B1 (en) 2021-11-30
US20210060050A1 (en) 2021-03-04
IL252997A0 (en) 2017-08-31
IL279663B (en) 2022-10-01
PL3236972T3 (en) 2022-03-07
AU2021203840C1 (en) 2024-01-25
EP3939985A1 (en) 2022-01-19
JP2022058363A (en) 2022-04-12
HUE056470T2 (en) 2022-02-28
LT3236972T (en) 2021-11-10
IL252997B (en) 2021-01-31
SG10202105371YA (en) 2021-07-29
IL279663A (en) 2021-03-01
WO2016106050A1 (en) 2016-06-30
KR20230130175A (en) 2023-09-11
CN107427529A (en) 2017-12-01
JP7381190B2 (en) 2023-11-15
BR112017013858A2 (en) 2018-02-27
US11628181B2 (en) 2023-04-18
AU2021203840A1 (en) 2021-07-08
CY1124663T1 (en) 2022-07-22
IL296496A (en) 2022-11-01
EA201791460A1 (en) 2017-12-29
EP3236972A4 (en) 2019-01-23
US20230293566A1 (en) 2023-09-21
AU2021203840B2 (en) 2023-08-24
ES2892123T3 (en) 2022-02-02
HRP20211456T1 (en) 2021-12-24
DK3236972T3 (en) 2021-10-04
KR20170123308A (en) 2017-11-07
SG11201705069YA (en) 2017-07-28
IL279663B2 (en) 2023-02-01
SI3236972T1 (en) 2021-12-31
JP2018500354A (en) 2018-01-11
EP3236972B1 (en) 2021-07-28
AU2015370004B2 (en) 2021-03-11
CA2972259A1 (en) 2016-06-30
AU2023270335A1 (en) 2023-12-14
AU2015370004A1 (en) 2017-07-13
PT3236972T (en) 2021-09-24
JP2023153865A (en) 2023-10-18
EP3236972A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US11628181B2 (en) N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US10874683B2 (en) N4-hydroxycytidine and derivatives and anti-viral uses related thereto
KR102248165B1 (en) N4-hydroxycytidine and derivatives and related anti-viral uses
AU2021206866B2 (en) N4-hydroxycytidine and derivatives and anti-viral uses related thereto
EA045500B1 (en) ANTIVIRAL USE OF N4-HYDROXYCYTIDINE DERIVATIVES

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMORY UNIVERSITY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAINTER, GEORGE R.;GUTHRIE, DAVID B.;BLUEMLING, GREGORY R.;AND OTHERS;SIGNING DATES FROM 20150805 TO 20150807;REEL/FRAME:043857/0039

Owner name: EMORY UNIVERSITY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAINTER, GEORGE R.;GUTHRIE, DAVID B.;BLUEMLING, GREGORY R.;AND OTHERS;REEL/FRAME:043857/0150

Effective date: 20150107

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: DEFENSE THREAT REDUCTION AGENCY, US DOD, VIRGINIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:EMORY UNIVERSITY;REEL/FRAME:052689/0661

Effective date: 20200518

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION