US20190014044A1 - Method and corresponding device for improved bandwidth utilization - Google Patents

Method and corresponding device for improved bandwidth utilization Download PDF

Info

Publication number
US20190014044A1
US20190014044A1 US16/029,752 US201816029752A US2019014044A1 US 20190014044 A1 US20190014044 A1 US 20190014044A1 US 201816029752 A US201816029752 A US 201816029752A US 2019014044 A1 US2019014044 A1 US 2019014044A1
Authority
US
United States
Prior art keywords
packet
packets
super
network
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/029,752
Inventor
Yaron Menahem Peleg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Go Net Systems Ltd
Original Assignee
Go Net Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Go Net Systems Ltd filed Critical Go Net Systems Ltd
Priority to US16/029,752 priority Critical patent/US20190014044A1/en
Publication of US20190014044A1 publication Critical patent/US20190014044A1/en
Assigned to GO NET SYSTEMS LTD. reassignment GO NET SYSTEMS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELEG, YARON MENAHEM
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • H04M7/0075Details of addressing, directories or routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to communication networks, and more particularly, to a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a unified packet with optional internal header compression.
  • the concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side.
  • compression is applied to the concatenated packets featuring the most waste.
  • the present invention relates to communication networks, and more particularly, to a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a big packet with optional internal header compression.
  • the concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side.
  • compression is applied to the concatenated packets featuring the most waste.
  • a method for backhaul connection including: (a) setting the backhaul connection between a backhaul source and a backhaul destination, (b) receiving a packet or frame at the backhaul source, (c) adding the received packet to an available super-packet; if there is no available super-packet, creating a new super-packet and setting a transmission condition for transmitting the super-packet, (d) transmitting the super-packet according to the transmission condition, and (e) receiving and handling the super-packet at the backhaul destination.
  • the method further includes the step of deciding whether to concatenate the received packet or transmit the received packet without concatenation.
  • the performance of a user that transmitted the packet is an input parameter to the step of deciding whether to concatenate the received packet.
  • the performance of the user includes identifying streaming packets and identifying the frequency at which the user should transmit his packets.
  • the performance of the user includes calculating the received jitter and packet loss.
  • the multiple super-packets are prepared by the backhaul source in parallel.
  • the received packet is added to the super-packet according to at least one of the following parameters: traffic type, sensitivity to delay, or QoS.
  • the transmission condition includes at least one of the following: maximum size of the super-packet, maximum delay for the super-packet, or maximum number of users.
  • the transmission condition includes a maximum delay condition.
  • the maximum delay condition starts when a new packet is received at the backhaul source.
  • the maximum delay condition is calculated according to a need of a delay-sensitive application.
  • the transmission condition includes a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: network performance, measured jitter, measured delay, measured packet loss, user's priority, type of application running, transmission rate, number of retransmissions, hidden stations, or collisions.
  • the transmission condition includes a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: the measured performance of a link, transmissions rate, number of retransmission, RSSI, or average packet loss.
  • the method further includes forwarding the received packet to an external device, whereby the external device adds the received packet to the available super-packet or creates the new super-packet.
  • the at least two of the received packets are transmitted by streaming users, and the streaming users are synchronized.
  • the method further includes reordering the packets in the super-packet.
  • the super-packet is compressed.
  • a method for backhaul connection including: (a) receiving a packet or frame at a backhaul source for a required backhaul destination, (b) adding the received packet to an available super-packet for the required backhaul destination; if there is no available super-packet for the required backhaul destination, creating a new super-packet and setting a transmission condition for transmitting the super-packet, (c) transmitting the super-packet according to the transmission condition, and, (d) receiving and handling the super-packet at the backhaul destination.
  • the method further includes checking if the required destination can receive and handle super-packets.
  • the method further includes calculating if it is beneficial to concatenate the received packet.
  • the multiple super-packets are prepared in parallel.
  • the received packet is added to the super-packet according to at least one of the following parameters: traffic type, sensitivity to delay, or QoS.
  • the method further includes forwarding the received packet to an external device, and the external device adds the received packet to the available super-packet or creates the new super-packet.
  • the at least two of the received packets are transmitted by streaming users, and the streaming users are synchronized.
  • the transmission conditions includes a maximum delay condition.
  • counting the maximum delay condition starts when a new packet is received at the backhaul source.
  • the maximum delay condition is calculated according to a need of a delay-sensitive application.
  • the transmission conditions include a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: network performance, measured jitter, measured delay, measured packet loss, user's priority, type of application running, transmission rate, number of retransmissions, hidden stations, or collisions.
  • the transmission conditions include a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: the measured performance of a link, transmissions rate, number of retransmission, RSSI, or average packet loss.
  • a tunneling device for a backhaul connection including: (a) input and output for receiving and transmitting packets, (b) packet concatenation device, and (c) transmission decision logic, whereby the transmission decision logic determines when a super-packet is to be transmitted.
  • the transmission decision logic includes a counter.
  • the packet concatenation device further includes a packet analyzer.
  • the device further includes a user synchronization device.
  • the device further includes a user type identifier.
  • Implementation of the method and corresponding device for improved bandwidth utilization of the present invention involves performing or completing selected tasks or steps manually, semi-automatically, fully automatically, and/or, a combination thereof.
  • several selected steps of the present invention could be performed by hardware, by software on any operating system of any firmware, or a combination thereof.
  • selected steps of the invention could be performed by a computerized network, a computer, a computer chip, an electronic circuit, hard-wired circuitry, or a combination thereof, involving a plurality of digital and/or analog, electrical and/or electronic, components, operations, and protocols.
  • selected steps of the invention could be performed by a data processor, such as a computing platform, executing a plurality of computer program types of software instructions or protocols using any suitable computer operating system.
  • FIG. 1 is a schematic diagram illustrating an exemplary preferred embodiment of the tunneling system, in accordance with the present invention
  • FIG. 2 is a schematic diagram illustrating another exemplary preferred embodiment of the tunneling system, in accordance with the present invention.
  • the present invention relates to communication networks, and more particularly, to a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a big packet with optional internal header compression.
  • the concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side.
  • compression is applied to the concatenated packets featuring the most waste.
  • the present invention is a method and corresponding device for improved bandwidth utilization.
  • the preferred embodiments of the present invention are discussed in detail below. It is to be understood that the present invention is not limited in its application to the details of the order or sequence of steps of operation or implementation of the method set forth in the following description, drawings, or examples. While specific steps, configurations and arrangements are discussed, it is to be understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other steps, configurations and arrangements can be used without departing from the spirit and scope of the present invention.
  • Wireless communication systems handle different sized information packets transmitted at different frequency transmission rates. While the size, type, structure, and frequency of transmissions may vary on the wireless communication system, the number of separate transmissions, especially on a non-synchronized wireless network, affects the performance significantly. Moreover, for small-sized data packets that are frequently used by streaming applications, the transmitted frame length is disproportionally large compared to the data size, thereby occupying a larger than normal amount of bandwidth.
  • the present invention concatenates a plurality of packets/frames into a super-packet/super-frame, and thereby significantly improves bandwidth utilization.
  • Exemplary types of backhaul connections that may be used with the present invention are automatic backhaul connections, manual backhaul connections, backhaul connections according to the link (PTP/PTMP), mesh type backhaul connections, and backhaul connection aggregations, optionally by learning the network dynamically.
  • the backhaul connection may be implemented between the following network elements: access points, base stations, switches, routers, tunneling devices and other appropriate elements.
  • the backhaul connection of the present invention may be set over Open System Interconnection (OSI) layer 2 or over OSI layer 3, without limiting the scope of the present invention.
  • OSI Open System Interconnection
  • super-frames are transmitted.
  • super-packets are transmitted.
  • most of the description of the present invention is phrased in terms of packets, but it is to be understood that all steps are applicable to frames as well. One should take into account the equivalence between packets and frames when interpreting the scope of the present invention.
  • a system in accordance with the present invention can operate, simultaneously, backhaul connections over OSI layer 2 and backhaul connections over OSI layer 3, depending on the tunnel, type of equipment, and the devices on both sides of the connections.
  • the packet is received as known in the art.
  • All, some or none of the received packets may be tunneled.
  • the performance of the user sending the packets is measured and/or estimated.
  • the users performance is one of the input parameters to the algorithm deciding whether and how to build a super-packet (or, equivalently, a super-frame).
  • the tunneling device decides when to transmit a super-packet, in order to keep the total performance above a minimum required performance level. For example, if the measured performance of the user is below a threshold, no concatenation is to be performed.
  • the performance of the users sending the packets may be measured by using one or more of the following exemplary methods:
  • a tunneling device identifies streaming packets and identifies the frequency at which a station should transmit its packets, for example every 20 mili-seconds. Alternatively, the tunneling device identifies streaming packets and extracts the required information from within the packets.
  • the packet loss of a user is calculated by one or more of the following methods: (1) reading the time stamp and sequence number from the Real Time Protocol (RTP). When the received packets numbers are not consecutive, it is an indication that there was a packet loss. (2) Using statistical calculations, for example deviation from a packet each 20 mili second. In this case it is important to be aware of the possible existence of a Voice Activity Detection (VAD) mechanism. (3) Using Real Time Control Protocol (RTCP) information.
  • RTP Real Time Control Protocol
  • the header and packet payload are analyzed in order to check: (a) If there is a backhaul destination that can receive and handle a super packet. (b) Optionally, check if it is beneficial to concatenate the packet.
  • the network topology is learned.
  • the tunneling device learns the destinations which are associated with the destination point-to-multi-point link.
  • the relevant destinations may be used for concatenation.
  • the concatenation algorithm decides whether or not to perform concatenation.
  • the packet type, packet size, number of active destinations, QoS, and performance are analyzed in order to decide whether to concatenate the packet or not.
  • the tunneling device/algorithm it is possible for the tunneling device/algorithm to decide to concatenate only some of the packets. For example, the device may decide to concatenate only streaming packets, such as VoIP, and not concatenate other types of packets).
  • one or more of the following exemplary packet parameters may be analyzed: user profile, required QoS, application type, source properties, packet destination, and/or user performance.
  • the backhaul may be only to one direction, and may be encrypted.
  • the transmission condition is a maximum delay.
  • the maximum allowed delay calculation receives at least one of the following inputs: the measured performance of the link, transmissions rate, number of retransmission, RSSI, and average packet loss.
  • multiple super-packets are prepared in parallel, optionally according to at least one of the following parameters: traffic type, sensitivity to delay, and QoS.
  • Preparing multiple super-packets in parallel features the following benefits: as the super-packet is longer, the bandwidth usage is improved, but at the expense of increasing the delay; It is to be noted that delay sensitive traffic, such as VoIP, cannot be delayed for long, but video and one directional VoIP can be delayed and therefore may have a longer packet.
  • the backhaul connection may have the following exemplary architectures:
  • (a) Mesh architecture that provides dynamic, automatic, and easy system installation.
  • Mesh architecture features high wireless backhaul and fault tolerance, i.e. if a link falls, it is possible to use another link.
  • a connection may be created between any two APs in mesh architecture, so that if the link between AP 1 and AP 2 falls, it is possible for AP 1 to communicate with AP 2 through AP 3 .
  • the packet is added to the appropriate super-packet.
  • not all packets are transmitted.
  • the packets are reordered in the super-packet.
  • the super-packet may be compressed or not compressed. Moreover, specific packets inside the super-packet may be compressed. Optionally, different compressions are used, such as different types of header compressions, payload compression, etc.
  • the following parameters are the main parameters relevant for building super-packets: maximum size of a super-packet; Maximum delay allowed for a super-packet; Maximum number of users. For example, no more than 10 users per super-packet; And method of transmitting the super-packet.
  • the concatenation algorithm may take into account one or more of the following parameters: rate, retransmission, QoS, and the ability to assign different priorities to different super-packets.
  • the time to transmit the super-packet may be set dynamically based on the following parameters: network performance; measured jitter; measured delay; measured packet loss; user's priority; type of application running; transmission rate; number of retransmissions; hidden stations; and collisions.
  • the super-packet may be transmitted earlier than planned due to various reasons, such as measured performance, performance of a specific user, and a decision to give up the concatenation and transmit the packet as it is.
  • the super-packet transmission may be canceled, for example, due to a transmission failure.
  • the concatenation may be performed using an external device.
  • FIG. 1 illustrates external tunneling devices 120 connected in parallel with AP 102 and AP 103 .
  • FIG. 2 illustrates external tunneling device 122 serially connected to AP 102 and AP 103 . As illustrated in FIG. 2 , serially connected external tunneling device 122 that performs the tunneling is placed on the Ethernet side.
  • the APs are unable to create or open super-packets. Therefore, in order to create a super-packet, the AP transmits the packets through its Ethernet output to tunneling device 120 , and tunneling device 120 creates the super-packet and sends the super-packet back to the AP, which transmits the super-packet to its client.
  • tunneling device 120 acts as the default router, concatenates the packets and transmits the super-packet through the AP. Opening a super-packet is similarly performed by tunneling device 120 .
  • the backhaul destination receives and opens the super-packet.
  • the backhaul destination may open the super-packet by itself or by using external equipment.
  • Streaming users such as VoIP and video over IP, transmit with constant delay. As the various users are more synchronized, the delay decreases and the wireless network performance is improved.
  • the users may be synchronized by using a variety of methods, and/or by any appropriate mechanism, without limiting the scope of the present invention. For example, a proprietary synchronization mechanism that sends synchronization signals to all users may be used; or the tunneling device may transmit synchronization signals to the appropriate users; or a central network manager may synchronize the various users.
  • the synchronization signal causes the packets to arrive at the tunneling device approximately at the same time.
  • the delay calculation begins when a new packet is received at the tunneling device and not when the handling of the previous super-packet is completed.
  • the delay is calculated according to the needs of a delay-sensitive application. For example, a radio packet that arrives first at the tunneling device may not start the delay counter. It is to be noted that it may be possible for the same station to run several applications while the tunneling device may be concerned only with the most delay-sensitive applications.
  • the backhaul connection of the present invention may be set over Open System Interconnection (OSI) layer 2 or over OSI layer 3, without limiting the scope of the present invention.
  • OSI Open System Interconnection
  • super-frames are transmitted.
  • super-packets are transmitted.
  • most of the description of the present invention is phrased in terms of packets, but it is to be understood that all steps are applicable to frames as well. One should take into account the equivalence between packets and frames when interpreting the scope of the present invention.
  • the method of the present invention may be implemented by using any appropriate tunneling device.
  • a tunneling device for a backhaul connection includes: (a) input and output for receiving and transmitting packets, (b) a packet concatenation device, and (c) transmission decision logic, for determining when a super-packet is to be transmitted.
  • the tunneling device for a backhaul connection may further include the following optional elements: (a) a counter in the transmission decision logic. (b) a packet analyzer in the packet concatenation device. (c) user synchronization device in the tunneling device. (d) a user type identifier in the tunneling device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a big packet with optional internal header compression. The concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side. In an embodiment of the present invention, compression is applied to the concatenated packets featuring the most waste.

Description

    PRIORITY CLAIMS
  • This application is a continuation of U.S. patent application Ser. No. 15/249,419, entitled “METHOD AND CORRESPONDING DEVICE FOR IMPROVED BANDWIDTH UTILIZATION”, filed in the USPTO on Aug. 28, 2016, by the inventor of the present application;
  • U.S. patent application Ser. No. 14/138,070, entitled “METHOD AND CORRESPONDING DEVICE FOR IMPROVED BANDWIDTH UTILIZATION”, was filed in the USPTO on Dec. 22, 2013, by the inventor of the present application;
    U.S. patent application Ser. No. 14/138,070, claims, in turn, priority from U.S. patent application Ser. No. 11/436,565, entitled “METHOD AND CORRESPONDING DEVICE FOR IMPROVED BANDWIDTH UTILIZATION”, filed in the USPTO on May 19, 2006, by the inventor of the present application;
    U.S. patent application Ser. No. 11/436,565, claims, in turn, priority from U.S. Provisional Patent Application No. 60/682,819, entitled “METHOD AND CORRESPONDING DEVICE FOR IMPROVED BANDWIDTH UTILIZATION”, filed in the USPTO on May 20, 2005, by the inventor of the present application;
    all of the aforementioned applications are hereby incorporated herein by reference in their entirety.
  • FIELD AND BACKGROUND OF THE INVENTION
  • The present invention relates to communication networks, and more particularly, to a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a unified packet with optional internal header compression. The concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side. In an embodiment option of the present invention, compression is applied to the concatenated packets featuring the most waste.
  • To date, the inventor is unaware of prior art teaching a method and corresponding device for concatenating packets featuring a time limit.
  • There is thus a need for, and it would be highly advantageous to have a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection by concatenating a few VoIP packets into a super packet.
  • SUMMARY OF THE INVENTION
  • The present invention relates to communication networks, and more particularly, to a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a big packet with optional internal header compression. The concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side. In an embodiment option of the present invention, compression is applied to the concatenated packets featuring the most waste.
  • Thus, according to the present invention, there is provided a method for backhaul connection including: (a) setting the backhaul connection between a backhaul source and a backhaul destination, (b) receiving a packet or frame at the backhaul source, (c) adding the received packet to an available super-packet; if there is no available super-packet, creating a new super-packet and setting a transmission condition for transmitting the super-packet, (d) transmitting the super-packet according to the transmission condition, and (e) receiving and handling the super-packet at the backhaul destination.
  • According to further features in preferred embodiments of the present invention, the method further includes the step of deciding whether to concatenate the received packet or transmit the received packet without concatenation.
  • According to still further features in the described preferred embodiments, the performance of a user that transmitted the packet is an input parameter to the step of deciding whether to concatenate the received packet.
  • According to still further features in the described preferred embodiments, the performance of the user includes identifying streaming packets and identifying the frequency at which the user should transmit his packets.
  • According to still further features in the described preferred embodiments, the performance of the user includes calculating the received jitter and packet loss.
  • According to still further features in the described preferred embodiments, the multiple super-packets are prepared by the backhaul source in parallel.
  • According to still further features in the described preferred embodiments, the received packet is added to the super-packet according to at least one of the following parameters: traffic type, sensitivity to delay, or QoS.
  • According to still further features in the described preferred embodiments, the transmission condition includes at least one of the following: maximum size of the super-packet, maximum delay for the super-packet, or maximum number of users.
  • According to still further features in the described preferred embodiments, the transmission condition includes a maximum delay condition.
  • According to still further features in the described preferred embodiments, the maximum delay condition starts when a new packet is received at the backhaul source.
  • According to still further features in the described preferred embodiments, the maximum delay condition is calculated according to a need of a delay-sensitive application.
  • According to still further features in the described preferred embodiments, the transmission condition includes a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: network performance, measured jitter, measured delay, measured packet loss, user's priority, type of application running, transmission rate, number of retransmissions, hidden stations, or collisions.
  • According to still further features in the described preferred embodiments, the transmission condition includes a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: the measured performance of a link, transmissions rate, number of retransmission, RSSI, or average packet loss.
  • According to still further features in the described preferred embodiments, the method further includes forwarding the received packet to an external device, whereby the external device adds the received packet to the available super-packet or creates the new super-packet.
  • According to still further features in the described preferred embodiments, the at least two of the received packets are transmitted by streaming users, and the streaming users are synchronized.
  • According to still further features in the described preferred embodiments, the method further includes reordering the packets in the super-packet.
  • According to still further features in the described preferred embodiments, the super-packet is compressed.
  • According to another aspect of the present invention, there is provided a method for backhaul connection including: (a) receiving a packet or frame at a backhaul source for a required backhaul destination, (b) adding the received packet to an available super-packet for the required backhaul destination; if there is no available super-packet for the required backhaul destination, creating a new super-packet and setting a transmission condition for transmitting the super-packet, (c) transmitting the super-packet according to the transmission condition, and, (d) receiving and handling the super-packet at the backhaul destination.
  • According to further features in preferred embodiments of the present invention, the method further includes checking if the required destination can receive and handle super-packets.
  • According to still further features in the described preferred embodiments, the method further includes calculating if it is beneficial to concatenate the received packet.
  • According to still further features in the described preferred embodiments, the multiple super-packets are prepared in parallel.
  • According to still further features in the described preferred embodiments, the received packet is added to the super-packet according to at least one of the following parameters: traffic type, sensitivity to delay, or QoS.
  • According to still further features in the described preferred embodiments, the method further includes forwarding the received packet to an external device, and the external device adds the received packet to the available super-packet or creates the new super-packet.
  • According to still further features in the described preferred embodiments, the at least two of the received packets are transmitted by streaming users, and the streaming users are synchronized.
  • According to still further features in the described preferred embodiments, the transmission conditions includes a maximum delay condition.
  • According to still further features in the described preferred embodiments, counting the maximum delay condition starts when a new packet is received at the backhaul source.
  • According to still further features in the described preferred embodiments, the maximum delay condition is calculated according to a need of a delay-sensitive application.
  • According to still further features in the described preferred embodiments, the transmission conditions include a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: network performance, measured jitter, measured delay, measured packet loss, user's priority, type of application running, transmission rate, number of retransmissions, hidden stations, or collisions.
  • According to still further features in the described preferred embodiments, the transmission conditions include a maximum delay condition for the transmission of the super-packet and the maximum delay condition is calculated according to at least one of the following: the measured performance of a link, transmissions rate, number of retransmission, RSSI, or average packet loss.
  • According to another aspect of the present invention, there is provided a tunneling device for a backhaul connection including: (a) input and output for receiving and transmitting packets, (b) packet concatenation device, and (c) transmission decision logic, whereby the transmission decision logic determines when a super-packet is to be transmitted.
  • According to further features in preferred embodiments of the present invention, the transmission decision logic includes a counter.
  • According to still further features in the described preferred embodiments, the packet concatenation device further includes a packet analyzer.
  • According to still further features in the described preferred embodiments, the device further includes a user synchronization device.
  • According to still further features in the described preferred embodiments, the device further includes a user type identifier.
  • Implementation of the method and corresponding device for improved bandwidth utilization of the present invention involves performing or completing selected tasks or steps manually, semi-automatically, fully automatically, and/or, a combination thereof. Moreover, according to actual instrumentation and/or equipment used for implementing a particular preferred embodiment of the disclosed method and corresponding device, several selected steps of the present invention could be performed by hardware, by software on any operating system of any firmware, or a combination thereof. In particular, regarding hardware, selected steps of the invention could be performed by a computerized network, a computer, a computer chip, an electronic circuit, hard-wired circuitry, or a combination thereof, involving a plurality of digital and/or analog, electrical and/or electronic, components, operations, and protocols. Additionally, or alternatively, regarding software, selected steps of the invention could be performed by a data processor, such as a computing platform, executing a plurality of computer program types of software instructions or protocols using any suitable computer operating system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in order to providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice. Identical structures, elements or parts which appear in more than one figure are preferably labeled with a same or similar number in all the figures in which they appear. In the drawings:
  • FIG. 1 is a schematic diagram illustrating an exemplary preferred embodiment of the tunneling system, in accordance with the present invention;
  • FIG. 2 is a schematic diagram illustrating another exemplary preferred embodiment of the tunneling system, in accordance with the present invention;
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention relates to communication networks, and more particularly, to a method and corresponding device for improved bandwidth utilization featuring optimized transmission of information packets on a backhaul connection, by concatenating a few VoIP packets into a big packet with optional internal header compression. The concatenated packets are transmitted efficiently through the backhaul channel and rearranged at the receiving side. In an embodiment option of the present invention, compression is applied to the concatenated packets featuring the most waste.
  • The present invention is a method and corresponding device for improved bandwidth utilization. The preferred embodiments of the present invention are discussed in detail below. It is to be understood that the present invention is not limited in its application to the details of the order or sequence of steps of operation or implementation of the method set forth in the following description, drawings, or examples. While specific steps, configurations and arrangements are discussed, it is to be understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other steps, configurations and arrangements can be used without departing from the spirit and scope of the present invention.
  • Each primary step, and additional steps, needed for enabling the use of this method and corresponding device for improved bandwidth utilization are described in the following detailed description.
  • Wireless communication systems handle different sized information packets transmitted at different frequency transmission rates. While the size, type, structure, and frequency of transmissions may vary on the wireless communication system, the number of separate transmissions, especially on a non-synchronized wireless network, affects the performance significantly. Moreover, for small-sized data packets that are frequently used by streaming applications, the transmitted frame length is disproportionally large compared to the data size, thereby occupying a larger than normal amount of bandwidth.
  • By implementing the following novel method, the present invention concatenates a plurality of packets/frames into a super-packet/super-frame, and thereby significantly improves bandwidth utilization.
  • Setting a backhaul connection.
  • Exemplary types of backhaul connections that may be used with the present invention are automatic backhaul connections, manual backhaul connections, backhaul connections according to the link (PTP/PTMP), mesh type backhaul connections, and backhaul connection aggregations, optionally by learning the network dynamically.
  • Without limiting the scope of the present invention, the backhaul connection may be implemented between the following network elements: access points, base stations, switches, routers, tunneling devices and other appropriate elements.
  • It is to be understood that the backhaul connection of the present invention may be set over Open System Interconnection (OSI) layer 2 or over OSI layer 3, without limiting the scope of the present invention. In the case where the backhaul connection is set over OSI layer 2, super-frames are transmitted. In the case where the backhaul connection is set over OSI layer 3, super-packets are transmitted. For the sake of simplicity, most of the description of the present invention is phrased in terms of packets, but it is to be understood that all steps are applicable to frames as well. One should take into account the equivalence between packets and frames when interpreting the scope of the present invention.
  • Moreover, a system in accordance with the present invention can operate, simultaneously, backhaul connections over OSI layer 2 and backhaul connections over OSI layer 3, depending on the tunnel, type of equipment, and the devices on both sides of the connections.
  • Receiving a packet at a backhaul source.
  • The packet is received as known in the art.
  • Optionally, decide whether to concatenate the received packet.
  • All, some or none of the received packets may be tunneled. In an embodiment of the present invention, the performance of the user sending the packets is measured and/or estimated.
  • Optionally, the users performance is one of the input parameters to the algorithm deciding whether and how to build a super-packet (or, equivalently, a super-frame). According to the performance of the specific users, the tunneling device decides when to transmit a super-packet, in order to keep the total performance above a minimum required performance level. For example, if the measured performance of the user is below a threshold, no concatenation is to be performed. The performance of the users sending the packets may be measured by using one or more of the following exemplary methods:
  • (a) A tunneling device identifies streaming packets and identifies the frequency at which a station should transmit its packets, for example every 20 mili-seconds. Alternatively, the tunneling device identifies streaming packets and extracts the required information from within the packets.
  • (b) Measuring the time stamp of each frame from each user. From the measured time, the received jitter and packet loss are calculated.
  • (c) The packet loss of a user is calculated by one or more of the following methods: (1) reading the time stamp and sequence number from the Real Time Protocol (RTP). When the received packets numbers are not consecutive, it is an indication that there was a packet loss. (2) Using statistical calculations, for example deviation from a packet each 20 mili second. In this case it is important to be aware of the possible existence of a Voice Activity Detection (VAD) mechanism. (3) Using Real Time Control Protocol (RTCP) information.
  • In the case of a non point-to-point backhaul connection, the header and packet payload are analyzed in order to check: (a) If there is a backhaul destination that can receive and handle a super packet. (b) Optionally, check if it is beneficial to concatenate the packet.
  • In the case where there is a backhaul destination that can receive and handle a super packet, the network topology is learned. Similarly to a switch or a router, the tunneling device learns the destinations which are associated with the destination point-to-multi-point link. As a result, the relevant destinations may be used for concatenation. According to the packet type, the packet size, and link characteristics, the concatenation algorithm decides whether or not to perform concatenation.
  • Alternatively, in the case of a point-to-point (PTP) backhaul connection, the packet type, packet size, number of active destinations, QoS, and performance, are analyzed in order to decide whether to concatenate the packet or not. It is to be noted that it is possible for the tunneling device/algorithm to decide to concatenate only some of the packets. For example, the device may decide to concatenate only streaming packets, such as VoIP, and not concatenate other types of packets).
  • Additionally or alternatively, one or more of the following exemplary packet parameters may be analyzed: user profile, required QoS, application type, source properties, packet destination, and/or user performance.
  • It is to be understood that the backhaul may be only to one direction, and may be encrypted.
  • Adding the received packet to an available or new super-packet.
  • If there is an available super-packet to the required destination, add the received packet. If there is no available super packet, create a new super packet. Note that for a point-to-point connection there is only a need to check whether there is an available super-packet.
  • When creating a new super-packet, setting a transmission condition for transmitting the super-packet.
  • Optionally, the transmission condition is a maximum delay. Optionally, the maximum allowed delay calculation receives at least one of the following inputs: the measured performance of the link, transmissions rate, number of retransmission, RSSI, and average packet loss.
  • In an alternative embodiment, multiple super-packets are prepared in parallel, optionally according to at least one of the following parameters: traffic type, sensitivity to delay, and QoS.
  • Preparing multiple super-packets in parallel features the following benefits: as the super-packet is longer, the bandwidth usage is improved, but at the expense of increasing the delay; It is to be noted that delay sensitive traffic, such as VoIP, cannot be delayed for long, but video and one directional VoIP can be delayed and therefore may have a longer packet.
  • There may be applications where the packets are divided/duplicated between at least two super packets.
  • Alternatively, more than one backhaul connection is created to more than one destination. The backhaul connection may have the following exemplary architectures:
  • (a) Mesh architecture that provides dynamic, automatic, and easy system installation. Mesh architecture features high wireless backhaul and fault tolerance, i.e. if a link falls, it is possible to use another link. For example, a connection may be created between any two APs in mesh architecture, so that if the link between AP1 and AP2 falls, it is possible for AP1 to communicate with AP2 through AP3.
  • (b) Star architecture between APs featuring wireless inputs and outputs and an AP that has an Ethernet connection.
  • If an appropriate super-packet is already available, the packet is added to the appropriate super-packet.
  • Usually, it is not important to where in the super-packet the packet is added, because the entire super-packet gets CRC and decoded.
  • Optionally, not all packets are transmitted. Alternatively, the packets are reordered in the super-packet.
  • The super-packet may be compressed or not compressed. Moreover, specific packets inside the super-packet may be compressed. Optionally, different compressions are used, such as different types of header compressions, payload compression, etc.
  • In a preferred embodiment of the present invention, the following parameters are the main parameters relevant for building super-packets: maximum size of a super-packet; Maximum delay allowed for a super-packet; Maximum number of users. For example, no more than 10 users per super-packet; And method of transmitting the super-packet. The concatenation algorithm may take into account one or more of the following parameters: rate, retransmission, QoS, and the ability to assign different priorities to different super-packets.
  • Transmitting the super-packet before or when its transmission condition is fulfilled.
  • The time to transmit the super-packet may be set dynamically based on the following parameters: network performance; measured jitter; measured delay; measured packet loss; user's priority; type of application running; transmission rate; number of retransmissions; hidden stations; and collisions.
  • The super-packet may be transmitted earlier than planned due to various reasons, such as measured performance, performance of a specific user, and a decision to give up the concatenation and transmit the packet as it is.
  • The super-packet transmission may be canceled, for example, due to a transmission failure.
  • The concatenation may be performed using an external device.
  • FIG. 1 illustrates external tunneling devices 120 connected in parallel with AP 102 and AP 103. FIG. 2 illustrates external tunneling device 122 serially connected to AP 102 and AP 103. As illustrated in FIG. 2, serially connected external tunneling device 122 that performs the tunneling is placed on the Ethernet side.
  • In the case where the receiving sides of AP 102 and AP 103 are not connected to an Ethernet, as illustrated in FIG. 1, the APs are unable to create or open super-packets. Therefore, in order to create a super-packet, the AP transmits the packets through its Ethernet output to tunneling device 120, and tunneling device 120 creates the super-packet and sends the super-packet back to the AP, which transmits the super-packet to its client. On the uplink channel, the packets from the stations are directed to tunneling device 120 and not to the appropriate AP. Therefore tunneling device 120 acts as the default router, concatenates the packets and transmits the super-packet through the AP. Opening a super-packet is similarly performed by tunneling device 120.
  • The backhaul destination receives and opens the super-packet.
  • The backhaul destination may open the super-packet by itself or by using external equipment.
  • Optionally, synchronizing streaming users that transmit to the tunneling device.
  • Streaming users, such as VoIP and video over IP, transmit with constant delay. As the various users are more synchronized, the delay decreases and the wireless network performance is improved. The users may be synchronized by using a variety of methods, and/or by any appropriate mechanism, without limiting the scope of the present invention. For example, a proprietary synchronization mechanism that sends synchronization signals to all users may be used; or the tunneling device may transmit synchronization signals to the appropriate users; or a central network manager may synchronize the various users. The synchronization signal causes the packets to arrive at the tunneling device approximately at the same time.
  • Synchronizing the creation time of a super-packet with the time of arrival of the packets to be concatenated.
  • In order to achieve as little delay as possible, the delay calculation begins when a new packet is received at the tunneling device and not when the handling of the previous super-packet is completed. Alternatively, the delay is calculated according to the needs of a delay-sensitive application. For example, a radio packet that arrives first at the tunneling device may not start the delay counter. It is to be noted that it may be possible for the same station to run several applications while the tunneling device may be concerned only with the most delay-sensitive applications.
  • As previously mentioned, it is to be understood that the backhaul connection of the present invention may be set over Open System Interconnection (OSI) layer 2 or over OSI layer 3, without limiting the scope of the present invention. In the case where the backhaul connection is set over OSI layer 2, super-frames are transmitted. In the case where the backhaul connection is set over OSI layer 3, super-packets are transmitted. For the sake of simplicity, most of the description of the present invention is phrased in terms of packets, but it is to be understood that all steps are applicable to frames as well. One should take into account the equivalence between packets and frames when interpreting the scope of the present invention.
  • The method of the present invention may be implemented by using any appropriate tunneling device.
  • For example, a tunneling device for a backhaul connection includes: (a) input and output for receiving and transmitting packets, (b) a packet concatenation device, and (c) transmission decision logic, for determining when a super-packet is to be transmitted. The tunneling device for a backhaul connection may further include the following optional elements: (a) a counter in the transmission decision logic. (b) a packet analyzer in the packet concatenation device. (c) user synchronization device in the tunneling device. (d) a user type identifier in the tunneling device.

Claims (20)

1. A method for transmitting data packets within an asynchronous packet-based communication network, said method comprising:
(a) wirelessly receiving two or more data packets at a communication node within the asynchronous packet-based communication network;
(b) concatenating the two or more data packets into one wireless superpacket;
(c) upon either a maximum allowable length of the superpacket being reached or a maximum allowable delay for any of the one or more packets concatenated into the superpacket being reached, wirelessly transmitting, within the asynchronous network, the wireless super-packet to a destination.
2. The method according to claim 1, wherein said concatenating and said transmitting are performed in consideration of parameters relating to the asynchronous network and parameters of the two or more packets.
3. The method according to claim 1, wherein said concatenating and said transmitting are performed in consideration of current values of dynamic parameters relating to the asynchronous network and parameters of the two or more packets.
4. The method of claim 1, further comprising the step of deciding whether to concatenate a given received packet or transmit the given received packet without concatenation.
5. The method of claim 4, wherein the performance of a user that transmitted the given packet is an input parameter to the step of deciding whether to concatenate the given received packet.
6. The method of claim 5, wherein measuring the performance of the user comprises calculating the received jitter and packet loss.
7. The method of claim 1, wherein said transmitting is dependent on a transmission condition comprising at least one of the following: a maximum size of said super-packet, a maximum delay for said super-packet, or a maximum number of users.
8. The method according to claim 1, wherein the asynchronous network is a wireless network and said transmitting consists of wirelessly transmitting.
9. The method according to claim 1, wherein the communication node is a backhaul communication node and said transmitting is to a backhaul destination.
10. A network appliance for transmitting data packets within an asynchronous packet-based communication network, said appliance comprising:
(a) wirelessly receiving circuitry adapted to receive two or more data packets;
(b) concatenating circuitry adapted to concatenate the two or more data packets into one wireless superpacket;
(c) wireless transmission circuitry adapted to, upon either a maximum allowable length of the superpacket being reached or a maximum allowable delay for any of the one or more packets concatenated into the superpacket being reached, wirelessly transmit, within the asynchronous network, the wireless super-packet to a destination.
11. The appliance according to claim 10, wherein said concatenating circuitry and said transmission circuitry are further adapted to perform the concatenation and the transmission, respectively, in consideration of parameters relating to the asynchronous network and parameters of the two or more packets.
12. The appliance according to claim 10, further comprising processing circuitry including decision logic adapted to decide whether to concatenate a given received packet or transmit the given received packet without concatenation.
13. The appliance according to claim 11, wherein the parameters of the two or more packets includes: traffic type, sensitivity to delay, or Quality of Service (QoS).
14. The appliance according to claim 10, wherein said transmission circuitry is further adapted to transmit the superpacket within the asynchronous network dependent on a transmission condition comprising at least one of the following: a maximum size of said super-packet, a maximum delay for said super-packet, or a maximum number of users.
15. The appliance according to claim 10, wherein the asynchronous network is a wireless network and said transmission circuitry is further adapted to wirelessly transmit the superpacket within the asynchronous wireless network.
16. The appliance according to claim 10, wherein said transmission circuitry is further adapted to transmit the superpacket within the asynchronous network dependent on a transmission condition, which transmission condition comprises a maximum delay condition and wherein the maximum delay condition is calculated according to at least one of the following: a network performance, a measured jitter, a measured delay, a measured packet loss, a user's priority, a type of application running, a transmission rate, a number of retransmissions, hidden stations, or collisions.
17. The appliance according to claim 10, wherein said network appliance is a backhaul communication node and said transmission circuitry is adapted to transmit the superpacket to a backhaul destination.
18. A system for facilitating network communications within an asynchronous packet-based communication network, said system comprising:
(a) wirelessly receiving circuitry adapted to receive two or more data packets;
(b) a concatenating device including circuitry adapted to concatenate the two or more data packets into one wireless superpacket;
(c) wireless transmission circuitry adapted to, upon either a maximum allowable length of the superpacket being reached or a maximum allowable delay for any of the one or more packets concatenated into the superpacket being reached, wirelessly transmit, within the asynchronous network, the wireless super-packet to a destination;
wherein said concatenating device is external to said receiving and transmission circuitry.
19. The system according to claim 18, wherein said concatenating device and said transmission circuitry are further adapted to perform the concatenation and the transmission, respectively, in consideration of parameters relating to the asynchronous network and parameters of the two or more packets.
20. The system according to claim 18, wherein said concatenating device and said transmission circuitry are further adapted to perform the concatenation and the transmission, respectively, in consideration of current values of dynamic parameters relating to the asynchronous network and parameters of the two or more packets.
US16/029,752 2005-05-20 2018-07-09 Method and corresponding device for improved bandwidth utilization Abandoned US20190014044A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/029,752 US20190014044A1 (en) 2005-05-20 2018-07-09 Method and corresponding device for improved bandwidth utilization

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US68281905P 2005-05-20 2005-05-20
US11/436,565 US8619816B2 (en) 2005-05-20 2006-05-19 Method and corresponding device for improved bandwidth utilization
US14/138,070 US20140219145A1 (en) 2005-05-20 2013-12-22 Method and corresponding device for improved bandwidth utilization
US15/249,419 US20170085476A1 (en) 2005-05-20 2016-08-28 Method and corresponding device for improved bandwidth utilization
US16/029,752 US20190014044A1 (en) 2005-05-20 2018-07-09 Method and corresponding device for improved bandwidth utilization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/249,419 Continuation US20170085476A1 (en) 2005-05-20 2016-08-28 Method and corresponding device for improved bandwidth utilization

Publications (1)

Publication Number Publication Date
US20190014044A1 true US20190014044A1 (en) 2019-01-10

Family

ID=37448241

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/436,565 Active 2028-10-13 US8619816B2 (en) 2005-05-20 2006-05-19 Method and corresponding device for improved bandwidth utilization
US14/138,070 Abandoned US20140219145A1 (en) 2005-05-20 2013-12-22 Method and corresponding device for improved bandwidth utilization
US15/249,419 Abandoned US20170085476A1 (en) 2005-05-20 2016-08-28 Method and corresponding device for improved bandwidth utilization
US16/029,752 Abandoned US20190014044A1 (en) 2005-05-20 2018-07-09 Method and corresponding device for improved bandwidth utilization

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/436,565 Active 2028-10-13 US8619816B2 (en) 2005-05-20 2006-05-19 Method and corresponding device for improved bandwidth utilization
US14/138,070 Abandoned US20140219145A1 (en) 2005-05-20 2013-12-22 Method and corresponding device for improved bandwidth utilization
US15/249,419 Abandoned US20170085476A1 (en) 2005-05-20 2016-08-28 Method and corresponding device for improved bandwidth utilization

Country Status (1)

Country Link
US (4) US8619816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394583A (en) * 2007-09-17 2009-03-25 华为技术有限公司 Method and device for paging message packeting
EP3402103B1 (en) 2008-03-07 2020-05-20 NEC Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
US8051222B2 (en) * 2008-06-25 2011-11-01 Redpine Signals, Inc. Concatenating secure digital input output (SDIO) interface
CN101626585B (en) * 2008-07-10 2013-04-24 日电(中国)有限公司 Network interference evaluation method, dynamic channel distribution method and equipment in wireless network
US10887430B2 (en) 2015-10-21 2021-01-05 Dragonwave-X, Llc Compression in communications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389038B1 (en) * 1999-01-26 2002-05-14 Net 2 Phone Voice IP bandwidth utilization
US6940863B2 (en) * 2003-01-13 2005-09-06 The Regents Of The University Of California Edge router for optical label switched network

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765560A1 (en) 1994-06-08 1997-04-02 Hughes Aircraft Company Apparatus and method for hybrid network access
US7277424B1 (en) 1998-07-21 2007-10-02 Dowling Eric M Method and apparatus for co-socket telephony
US6438123B1 (en) 1998-11-10 2002-08-20 Cisco Technology, Inc. Method and apparatus for supporting header suppression and multiple microflows in a network
US6560223B1 (en) 1998-12-23 2003-05-06 Nortel Networks Limited Wireless multi-site networking using signaling and voice-over-IP
US6430395B2 (en) 2000-04-07 2002-08-06 Commil Ltd. Wireless private branch exchange (WPBX) and communicating between mobile units and base stations
US20020018471A1 (en) * 2000-08-09 2002-02-14 Lucid V.O.N. Ltd. Method and system for voice-over-IP communication
US6920125B1 (en) 2000-10-27 2005-07-19 Nortel Network Limited IP adaptation layer on backhaul connection of cellular network
US6665495B1 (en) * 2000-10-27 2003-12-16 Yotta Networks, Inc. Non-blocking, scalable optical router architecture and method for routing optical traffic
US20040009749A1 (en) 2001-03-20 2004-01-15 Nitzan Arazi Wireless private branch exchange(wpbx) and communicating between mobile units and base stations
EP1386432A4 (en) 2001-03-21 2009-07-15 John A Stine An access and routing protocol for ad hoc networks using synchronous collision resolution and node state dissemination
US6785513B1 (en) 2001-04-05 2004-08-31 Cowave Networks, Inc. Method and system for clustered wireless networks
US20050171662A1 (en) * 2001-06-13 2005-08-04 Strege Timothy A. Method and apparatus for wireless networks in wheel alignment systems
US7002995B2 (en) 2001-06-14 2006-02-21 At&T Corp. Broadband network with enterprise wireless communication system for residential and business environment
US7010002B2 (en) 2001-06-14 2006-03-07 At&T Corp. Broadband network with enterprise wireless communication method for residential and business environment
US7161953B2 (en) * 2001-09-05 2007-01-09 Symmetricom, Inc. Bonding multiple G.shdsl links
US20030220112A1 (en) 2002-01-16 2003-11-27 Engim, Incorporated System and method for enabling the use of spatially distributed multichannel wireless access points/base stations
US7415026B2 (en) 2002-02-04 2008-08-19 Qualcomm Incorporated Method and apparatus for session release in a communication system
US6950628B1 (en) 2002-08-02 2005-09-27 Cisco Technology, Inc. Method for grouping 802.11 stations into authorized service sets to differentiate network access and services
US20050060319A1 (en) 2002-08-02 2005-03-17 Cisco Technology, Inc. Method for central planning and distributed control of client roaming and reassociation
US20040039817A1 (en) 2002-08-26 2004-02-26 Lee Mai Tranh Enhanced algorithm for initial AP selection and roaming
US8315211B2 (en) 2002-09-17 2012-11-20 Broadcom Corporation Method and system for location based configuration of a wireless access point (WAP) and an access device in a hybrid wired/wireless network
US20040053624A1 (en) 2002-09-17 2004-03-18 Frank Ed H. Method and system for optimal load balancing in a hybrid wired/wireless network
US20040049570A1 (en) 2002-09-17 2004-03-11 Frank Ed H. Method and system for network management in a hybrid wired/wireless network
US20040078468A1 (en) 2002-10-18 2004-04-22 Jan Hedin Proxy apparatus and method
US20050232179A1 (en) 2003-05-08 2005-10-20 Dacosta Francis Multiple-radio mission critical wireless mesh networks
US7583648B2 (en) 2003-05-08 2009-09-01 Meshdynamics, Inc. Managing latency and jitter on wireless LANs
WO2004042959A1 (en) 2002-11-04 2004-05-21 Vivato Inc Directed wireless communication
US20040121749A1 (en) 2002-11-06 2004-06-24 Engim, Inc. System throughput enhancement using an intelligent channel association in the environment of multiple access channels
US7257131B2 (en) * 2002-12-13 2007-08-14 Cisco Technology, Inc. System and method for communicating traffic between a cell site and a central office in a telecommunications network
US7206297B2 (en) 2003-02-24 2007-04-17 Autocell Laboratories, Inc. Method for associating access points with stations using bid techniques
JP2007532020A (en) 2003-07-16 2007-11-08 インターデイジタル テクノロジー コーポレーション Method and system for transferring information between network management entities of a wireless communication system
US7885208B2 (en) 2003-09-11 2011-02-08 Nokia Corporation IP-based services for circuit-switched networks
US20050066040A1 (en) 2003-09-18 2005-03-24 Utstarcom, Incorporated Method and apparatus to facilitate conducting an internet protocol session using previous session parameter(s)
US7236476B2 (en) 2003-10-02 2007-06-26 International Business Machines Corporation mSCTP based handover of a mobile device between non-intersecting networks
US7366202B2 (en) 2003-12-08 2008-04-29 Colubris Networks, Inc. System and method for interference mitigation for wireless communication
US7818018B2 (en) * 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
JP4528541B2 (en) * 2004-03-05 2010-08-18 株式会社東芝 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
US20050243746A1 (en) 2004-04-29 2005-11-03 Nokia Corporation Session inspection scheme
US8385937B2 (en) 2004-07-07 2013-02-26 Toshiba America Research Inc. Load equalizing antennas
US20060039353A1 (en) 2004-08-23 2006-02-23 Samuel Louis G Extended voice over internet protocol
WO2006027672A2 (en) * 2004-09-10 2006-03-16 Nortel Networks System and method for adaptive frame size management in a wireless multihop network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389038B1 (en) * 1999-01-26 2002-05-14 Net 2 Phone Voice IP bandwidth utilization
US6940863B2 (en) * 2003-01-13 2005-09-06 The Regents Of The University Of California Edge router for optical label switched network

Also Published As

Publication number Publication date
US8619816B2 (en) 2013-12-31
US20140219145A1 (en) 2014-08-07
US20060262766A1 (en) 2006-11-23
US20170085476A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US20190014044A1 (en) Method and corresponding device for improved bandwidth utilization
AU2003248437B2 (en) Packet Transmission System and Packet Reception System
US8553526B2 (en) Methods and apparatus for determining quality of service in a communication system
US7477651B2 (en) System and method for implementing quality of service in a backhaul communications environment
US20050036497A1 (en) Frame transmission/reception system, frame transmitting apparatus, frame receiving apparatus, and frame transmission/reception method
US20030235202A1 (en) Methods of transmitting data packets without exceeding a maximum queue time period and related devices
US7675851B2 (en) System and method for synchronizing a back-up device in a communications environment
US11743758B2 (en) Data transmission method and apparatus, data sending method and apparatus, and data transmission system
US20170027016A1 (en) Communication device, wireless communication device, and communication method
US20140071971A1 (en) Wireless base station, wireless terminal, and packet transmission method
AlAlawi et al. Quality of service evaluation of VoIP over wireless networks
US7590070B1 (en) System and method for discretionary multiplexing and compressing in a communications environment
EP4104400A2 (en) Measuring latency and delay variation via deep packet inspection
US7929571B2 (en) System and method for implementing a preemptive retransmit for error recovery in a communications environment
CN107886961A (en) Low speed speech optimization method in AMR based on VoLTE carryings
JP4856251B2 (en) Header suppression in wireless communication networks
US8000238B2 (en) System and method for detecting and regulating congestion in a communications environment
US7944823B1 (en) System and method for addressing dynamic congestion abatement for GSM suppression/compression
US8005116B2 (en) System and method for mitigating the effects of bit insertion in a communications environment
US7642936B2 (en) System and method for determining whether to dynamically suppress data in a communications environment
US7778278B2 (en) System and method for implementing dynamic suppression and recreation of suppressed data in a communications environment
Hephibah et al. Voice over Internet Protocol over Wireless Local Area Network: A Review
US7564381B1 (en) System and method for code-based compression in a communications environment
Dely Adaptive aggregation of voice over IP in wireless mesh networks
Drozdy et al. Bundling and multiplexing in packet based mobile backhaul

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: GO NET SYSTEMS LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PELEG, YARON MENAHEM;REEL/FRAME:049318/0032

Effective date: 20140729

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION