US20180354273A1 - Printing apparatus and printing method - Google Patents

Printing apparatus and printing method Download PDF

Info

Publication number
US20180354273A1
US20180354273A1 US16/105,050 US201816105050A US2018354273A1 US 20180354273 A1 US20180354273 A1 US 20180354273A1 US 201816105050 A US201816105050 A US 201816105050A US 2018354273 A1 US2018354273 A1 US 2018354273A1
Authority
US
United States
Prior art keywords
temperature
sheet
printing
printing apparatus
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/105,050
Inventor
Naoyuki Hattori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to US16/105,050 priority Critical patent/US20180354273A1/en
Assigned to TOSHIBA TEC KABUSHIKI KAISHA reassignment TOSHIBA TEC KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HATTORI, NAOYUKI
Publication of US20180354273A1 publication Critical patent/US20180354273A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/325Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet

Definitions

  • the temperature sensor 5 measures the temperature of the sheet forming the sheet roll 2 a.
  • the temperature sensor 5 measures the temperature of the sheet before the sheet supplied from the sheet roll 2 a reaches an image forming position in the printing section 10 (at a position before the sheet is conveyed to the image forming position). For example, the temperature sensor 5 measures the temperature of the sheet at a position between the sheet storage section 2 and the image forming position in the printing section 10 . Further, the temperature sensor 5 may measure the temperature of the sheet before the sheet reaches the image forming position in the printing section 10 . For example, the temperature sensor 5 may measure the temperature of the sheet in the sheet storage section 2 .
  • the CPU 31 acquires the temperature of the sheet via the temperature sensor 5 .
  • the CPU 31 acquires the temperature of the ink ribbon via the temperature sensor 6 .
  • the CPU 31 acquires the temperature in the printing apparatus 1 via the temperature sensor 7 .

Landscapes

  • Electronic Switches (AREA)

Abstract

In accordance with an embodiment, a printing apparatus comprises a printing section, a first temperature sensor and a processor. The printing section carries out printing on a sheet through heating. The first temperature sensor measures a temperature of the sheet on which the printing section carries out the printing. The processor sets a heating amount on the basis of the temperature of the sheet and controls the printing section to carry out printing through the heating amount.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a Continuation of application Ser. No. 15/414,746 filed on Jan. 25, 2017, the entire contents of which are incorporated herein by reference.
  • FIELD
  • Embodiments described herein relate generally to a printing apparatus and a printing method.
  • BACKGROUND
  • There is a printing apparatus which forms an image on a sheet through heating an ink ribbon and a sheet which closely adhere to each other. A conventional printing apparatus forms an image according to a heat amount according to a temperature such as an outside air temperature.
  • However, the conventional printing apparatus cannot properly form an image in a case in which the temperature of the sheet or the ink ribbon is substantially different from the outside air temperature.
  • DESCRIPTION OF THE DRAWING
  • FIG. 1 is a diagram illustrating an example of the configuration of a printing apparatus according to an embodiment;
  • FIG. 2 is a block diagram illustrating an example of the configuration of the printing apparatus according to the embodiment;
  • FIG. 3 is a flowchart illustrating an example of the operation of the printing apparatus according to the embodiment.
  • DETAILED DESCRIPTION
  • In accordance with an embodiment, a printing apparatus comprises a printing section, a first temperature sensor and a processor. The printing section carries out printing on a sheet through heating. The first temperature sensor measures a temperature of the sheet on which the printing section carries out the printing. The processor sets a heating amount on the basis of the temperature of the sheet and controls the printing section to carry out printing through the heating amount.
  • In accordance with another embodiment, printing method involving measuring a temperature of a sheet, setting a heating amount on the basis of the temperature of the sheet, and controlling a printing section which carries out printing on the sheet through heating to carry out printing through the heating amount.
  • Hereinafter, an embodiment is described with reference to the accompanying drawings.
  • A printing apparatus according to the embodiment is a printing apparatus with a thermal transfer system for forming an image on a medium through applying heat to an image forming material. The printing apparatus forms an image on the sheet with, for example, an ink ribbon as the image forming material. The printing apparatus heats the sheet and the ink ribbon which closely adhere to each other to form the image on the sheet. Further, the image formed by the printing apparatus is not limited to a specific configuration.
  • FIG. 1 is an example of the configuration of a printing apparatus 1.
  • As shown in FIG. 1, the printing apparatus 1 comprises a sheet storage section 2, an ink storage section 3, a roller 4, a temperature sensor 5, a temperature sensor 6, a temperature sensor 7 and a printing section 10. Furthermore, the printing apparatus 1 may properly add necessary components or delete unnecessary components.
  • The sheet storage section 2 stores a medium used for forming an image. In the printing apparatus 1 according to the embodiment, the sheet storage section 2 stores a sheet roll 2 a. The sheet roll 2 a is a band-like sheet formed into a roll shape. The sheet constituting the sheet roll 2 a is formed with a predetermined width.
  • For example, the sheet storage section 2 is provided with a rotatable shaft around which the sheet roll 2 a is set. The sheet roll 2 a is set around a rotatable shaft in the sheet storage section 2. The sheet roll 2 a supplies a sheet band through rotating around the shaft of the sheet storage section 2. The sheet roll 2 a is set in the printing apparatus 1 by an operator from outside.
  • The ink storage section 3 stores an ink ribbon roll 3 a. The ink ribbon roll 3 a is an ink ribbon which is formed into a roll shape. The ink ribbon is an image forming material formed into a film shape. The ink ribbon becomes ink fixed on the sheet through heat . For example, the ink storage section 3 is provided with a rotatable shaft around which the ink ribbon roll 3 a is set. The ink ribbon roll 3 a is set around the rotatable shaft in the ink storage section 3. As a result, the ink ribbon roll 3 a supplies the ink ribbon through rotating around the shaft in the ink storage section 3. The ink ribbon supplied from the ink ribbon roll 3 a fixes the ink on the sheet through being heated in a state in which the ink ribbon closely adheres to the sheet.
  • The roller 4 is arranged in a predetermined position in the printing apparatus 1. The roller 4 rotates in conjunction with a drive section. The roller 4 winds the ink ribbon after the ink is fixed on the sheet. The ink ribbon supplied from the ink ribbon roll 3 a passes through a thermal head 21 described later and reaches the roller 4. The roller 4 winds the ink ribbon passing through the thermal head 21. The roller 4 supplies a new ink ribbon from the ink ribbon roll 3 a to the printing section 10 through winding the ink ribbon.
  • The temperature sensor 5 measures the temperature of the sheet forming the sheet roll 2 a. The temperature sensor 5 measures the temperature of the sheet before the sheet supplied from the sheet roll 2 a reaches an image forming position in the printing section 10 (at a position before the sheet is conveyed to the image forming position). For example, the temperature sensor 5 measures the temperature of the sheet at a position between the sheet storage section 2 and the image forming position in the printing section 10. Further, the temperature sensor 5 may measure the temperature of the sheet before the sheet reaches the image forming position in the printing section 10. For example, the temperature sensor 5 may measure the temperature of the sheet in the sheet storage section 2.
  • The temperature sensor 5 measures the temperature of the sheet in a non-contact manner. For example, the temperature sensor 5 measures the temperature through receiving light such as an infrared ray.
  • Further, the temperature sensor 5 may measure the temperature of the sheet through contacting with the sheet. For example, the temperature sensor 5 may be a thermistor.
  • The temperature sensor 6 measures the temperature of the ink ribbon constituting the ink ribbon roll 3 a. The temperature sensor 6 measures the temperature of the ink ribbon before the ink ribbon supplied from the ink ribbon roll 3 a reaches the image forming position in the printing section 10 (at a position before the ink ribbon is conveyed to the image forming position). For example, the temperature sensor 6 measures the temperature of the ink ribbon at a position between the ink storage section 3 and the image forming position in the printing section 10. Furthermore, the temperature sensor 6 may be any temperature sensor as long as it measures the temperature of the ink ribbon before the ink ribbon reaches the image forming position in the printing section 10. For example, the temperature sensor 6 may measure the temperature of the ink ribbon in the ink storage section 3.
  • The temperature sensor 6 measures the temperature of the ink ribbon in a non-contact manner. For example, the temperature sensor 6 measures the temperature through receiving light such as an infrared ray.
  • Further, the temperature sensor 6 may measure the temperature of the ink ribbon through contacting with the sheet. For example, the temperature sensor 6 may be a thermistor.
  • The temperature sensor 7 (atmospheric temperature sensor) measures an atmospheric temperature. For example, the temperature sensor 7 measures the temperature in the printing apparatus 1 as the atmospheric temperature. The temperature sensor 7 is arranged at a predetermined position in the printing apparatus 1. For example, the temperature sensor 7 is a thermistor. Further, the temperature sensor 7 may measure a temperature of the outside of the printing apparatus 1 as the atmospheric temperature.
  • The printing section 10 uses the ink ribbon supplied from the ink ribbon roll 3 a to form the image on the sheet supplied from the sheet roll 2 a. The printing section 10 cuts the sheet on which the image is formed into a predetermined size. The printing section 10 discharges the cut sheet.
  • The printing section 10 includes an inlet 11, a roller 12, an image forming section 13, a cutting section 14, a roller 15 and a discharge port 16.
  • The inlet 11 is arranged at a position where the sheet supplied from the sheet roll 2 a is taken in.
  • The roller 12 is formed between the inlet 11 and the image forming section 13. The roller 12 is rotated through a drive mechanism. The roller 12 conveys the sheet that is taken in from the inlet 11. For example, the roller 12 conveys the sheet taken in from the inlet 11 to the image forming section 13.
  • The image forming section 13 (printing section) heats the ink ribbon to form the image on the sheet. For example, the image forming section 13 forms the image on the sheet on the basis of print data stored in an internal memory section or print data supplied from an external device.
  • The image forming section 13 is provided with the thermal head 21. The image forming section 13 is formed by sandwiching the sheet and the ink ribbon closing adhering to each other between a stand (or the roller) formed at a lower part of the image forming section 13 and the thermal head 21. For example, as shown in FIG. 1, the image forming section 13 is formed in such a manner that the ink ribbon and the sheet pass through a lower part of the thermal head 21. Further, the image forming section 13 may include a component for energizing the thermal head 21 to a stand side (lower side).
  • The thermal head 21 heats the sheet and the ink ribbon. For example, the thermal head 21 receives supply of electric power from a power supply section (not shown). The thermal head 21 heats the sheet and the ink ribbon through the supplied electric power.
  • The thermal head 21 can set a heating area. For example, a CPU 31 sets a heating area to the thermal head 21 on the basis of the print data.
  • The cutting section 14 cuts the sheet on which the image is formed into a predetermined size. For example, the cutting section 14 is provided with a blade. The cutting section 14 is formed at the discharge port 16 side with respect to the image forming section 13. The cutting section 14 cuts the sheet drawn out from the sheet roll 2 a at a timing at which a length in a conveyance direction of the conveyed sheet in the printing section 10 to a predetermined size.
  • The roller 15 discharges the sheet cut by the cutting section 14 towards the discharge port 16. The roller 15 is rotated by a drive mechanism. The roller 15 is formed at the discharge port 16 side with respect to the cutting section 14.
  • The discharge port 16 is arranged at a position for discharging the cut sheet to the outside.
  • Next, a control system of the printing apparatus 1 is described.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a control system in the printing apparatus 1.
  • As shown in FIG. 2, the printing apparatus 1 comprises the temperature sensor 5, the temperature sensor 6, the temperature sensor 7, the cutting section 14, the thermal head 21, the CPU (processor), a memory section 32, a drive section 33 and a communication section 34.
  • The CPU 31 is mutually connected with the temperature sensor 5, the temperature sensor 6, the temperature sensor 7, the cutting section 14, the thermal head 21, the memory section 32, the drive section 33 and the communication section 34 in a communicable manner via a data bus.
  • The temperature sensor 5, the temperature sensor 6, the temperature sensor 7, the cutting section 14 and the thermal head 21 are as mentioned above.
  • The CPU 31 controls the entire printing apparatus 1. The CPU 31 may include an internal cache and various interfaces. The CPU 31 executes a program stored in advance in the internal memory or the memory section 32 to realize various processing. The CPU 31 may be any processor as long as it can realize control of each section of the printing apparatus 1 and information processing by executing a program.
  • A part of the various functions realized by the CPU 31 through executing the program may be realized by a hardware circuit. In this case, the CPU 31 controls the functions realized by the hardware circuit.
  • The memory section 32 is composed of a volatile memory and a nonvolatile memory. For example, the memory section 32 stores control programs, control data and the like in advance. The memory section 32 temporarily stores data being processed by the CPU 31. For example, the memory section 32 stores various application programs that is executed based on a command from the CPU 31. The memory section 32 may also store data required for executing the application program and an execution result of the application program.
  • The drive section 33 drives each section of the printing apparatus 1 according to a signal from the CPU 31. For example, the drive section 33 drives the roller 4, the roller 12 and the roller 15. For example, the drive section 33 is formed by a motor and a driver for driving the motor. The drive section 33 may include a motor for each roller or may drive some rollers with one motor.
  • The communication section 34 is an interface for sending and receiving data to and from a host device. For example, the communication section 34 may communicate with the host device through an external network such as an internet. The communication section 34 may communicate with the host device through an internal network. The communication section 34 is, for example, an interface supporting LAN connection.
  • Next, the function realized by the CPU 31 is described. The CPU 31 has a function of acquiring the print data indicating an image to be printed on the sheet. For example, the CPU 31 acquires the print data from an external device via the communication section 34. The CPU 31 may also acquire the print data from the memory section 32.
  • The CPU 31 has a function of acquiring the temperature of the sheet, the temperature of the ink ribbon and the temperature (atmospheric temperature) in the printing apparatus 1.
  • For example, the CPU 31 acquires the temperature of the sheet via the temperature sensor 5. The CPU 31 acquires the temperature of the ink ribbon via the temperature sensor 6. The CPU 31 acquires the temperature in the printing apparatus 1 via the temperature sensor 7.
  • The CPU 31 may acquire a value obtained by averaging the temperature acquired in a predetermined period from the temperature sensor 5 as the temperature of the sheet. The CPU 31 may also acquire a value obtained by averaging the temperature acquired in a predetermined period as the temperature of the ink ribbon and the temperature in the printing apparatus 1.
  • The CPU 31 has a function of determining the heating amount applied to the sheet and the ink ribbon by the thermal head 21 on the basis of at least one of the temperature of the sheet and the temperature of the ink ribbon in addition to the temperature in the printing apparatus 1.
  • The heating amount is applied to the sheet and the ink ribbon by the thermal head 21 to form an image. For example, the heating amount maybe the temperature of the thermal head 21, or a voltage or a current applied to the thermal head 21. The heating amount may be time for which the thermal head 21 heats the sheet and the ink ribbon. The parameter constituting the heating amount is not limited to a specific configuration.
  • For example, the CPU 31 determines the heating amount according to the temperature in the printing apparatus 1. The CPU 31 adjusts the heating amount in response to the temperature in the printing apparatus 1 in such a manner that the hating amount becomes higher if the temperature of the sheet or the temperature of the ink ribbon becomes lower. The CPU 31 adjusts the heating amount in response to the temperature in the printing apparatus 1 in such a manner that the heating amount becomes lower if the temperature of the sheet or the temperature of the ink ribbon becomes higher.
  • For example, the CPU 31 calculates a first difference between the temperature in the printing apparatus 1 and the temperature of the sheet. The CPU 31 calculates a second difference between the temperature in the printing apparatus 1 and the temperature of the ink ribbon. The CPU 31 compares the two differences to determine the heating amount on the basis of the greater one.
  • The CPU 31 may determine the heating amount on the basis of a total value obtained by respectively calculating predetermined coefficients to the first difference and the second difference.
  • The CPU 31 calculates a difference between the temperature of a predetermined standard and the temperature of the sheet. The CPU 31 calculates a difference between the temperature of the predetermined standard and the temperature of the ink ribbon. The CPU 31 compares the two differences to determine the heating amount on the basis of the greater one.
  • The CPU 31 may determine the heating amount on the basis of the temperature of the sheet. The CPU 31 may determine the heating amount on the basis of the temperature of the ink ribbon.
  • The method by the CPU 31 for determining the heating amount is not limited to a specific method.
  • The CPU 31 has a function of cutting the sheet on which the image is formed.
  • For example, the CPU 31 uses the roller 12 to convey the sheet to a predetermined position. The CPU 31 uses the cutting section 14 to cut the sheet located at the predetermined position.
  • Next, an example of the operation of the printing apparatus 1 is described.
  • FIG. 3 is a flowchart illustrating an example of the operation of the printing apparatus 1.
  • The CPU 31 of the printing apparatus 1 determines whether or not the printing of the image is started (ACT 11). For example, the CPU 31 determines whether or not an operation for starting the printing is received via an operation section (not shown). The CPU 31 may determine whether or not the print data is received via the communication section 34.
  • If it is determined that the printing of the image is not started (No in ACT 11), the CPU 31 returns to the processing in ACT 11.
  • If it is determined that the printing of the image is started (Yes in ACT 11), the CPU 31 acquires the atmospheric temperature (ACT 12). If the atmospheric temperature is acquired, the CPU 31 determines the heating amount in response to the atmospheric temperature (ACT 13).
  • If the heating amount is determined in response to the atmospheric temperature, the CPU 31 acquires the temperature of the sheet via the temperature sensor 5 (ACT 14). If the temperature of the sheet is acquired, the CPU 31 acquires the temperature of the ink ribbon via the temperature sensor 6 (ACT 15). If the temperature of the ink ribbon is acquired, the CPU 31 adjusts the heating amount on the basis of the temperature of the sheet and the temperature of the ink ribbon (ACT 16).
  • If the heating amount is adjusted, the CPU 31 heats the ink ribbon in accordance with the adjusted heating amount to form the image on the sheet (ACT 17). If the image is formed on the sheet, the CPU 31 uses the cutting section 14 to cut the sheet on which the image is formed to the predetermined size (ACT 18). If the sheet is cut, the CPU 31 uses the drive section 33 to discharge the cut sheet from the discharge port 16 (ACT 19).
  • If the sheet is discharged from the discharge port 16, the CPU 31 terminates the operation.
  • Further, the CPU 31 may execute the processing in ACT 12, ACT 14 and ACT 15 in any order. The CPU 31 may execute the processing in ACT 12, ACT 14 and ACT 15 in parallel.
  • In a case in which the CPU 31 determines the heating amount on the basis of the temperature of the sheet, the processing in ACT 12, ACT 13, ACT 15 and ACT 16 may not be executed. In a case in which the CPU 31 determines the heating amount on the basis of the temperature of the ink ribbon, the processing in ACT 12, ACT 13, ACT 14 and ACT 16 may not be executed. In a case in which the CPU 31 determines the heating amount on the basis of the temperature of the sheet and the temperature of the ink ribbon, the processing in ACT 12, ACT 13 and ACT 16 may not be executed.
  • Further, the foregoing embodiment is not limited to the printing apparatus which uses the ink ribbon to form the image. For example, the foregoing embodiment is also easily applicable to a printing apparatus which forms the image on a thermal sheet which contains the image forming material.
  • The printing apparatus 1 may also be a device for forming the image on a sheet which is cut to the predetermined size in advance. In this case, the printing apparatus 1 may store the sheet that is cut into the predetermined size in the sheet storage section 2. The printing apparatus 1 may not include the cutting section 14.
  • The printing apparatus with the foregoing configuration acquires the temperature of the sheet and the temperature of the ink ribbon. The printing apparatus determines the heating amount for forming the image on the basis of the temperature of the sheet and the temperature of the ink ribbon. Thus, the printing apparatus can adjust the heating amount according to the temperature of the sheet and the temperature of the ink ribbon. As a result, the printing apparatus can prevent irregularity from being generated in a printing state according to the temperature of the sheet and the temperature of the ink ribbon.
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.

Claims (12)

What is claimed is:
1. A printing apparatus, comprising:
a printing section configured to carry out printing on a sheet through heating;
a first temperature sensor configured to measure a temperature of the sheet on which the printing section carries out the printing;
a processor configured to control the printing section to carry out the printing through the heating amount;
an atmospheric temperature sensor configured to measure a temperature in the printing apparatus,
wherein the processer is further configured to calculate a first difference between the temperature in the printing apparatus and the temperature of the sheet, calculate a second difference between the temperature in the printing apparatus and a temperature of an ink ribbon, and determine the heating amount on the basis of a total value obtained by respectively calculating predetermined coefficients to the first difference and the second difference.
2. The printing apparatus according to claim 1, wherein
the first temperature sensor measures the temperature of the sheet in a non-contact manner.
3. The printing apparatus according to claim 1, further comprising:
a roller configured to convey the sheet to the printing section, wherein
the first temperature sensor measures the temperature of the sheet at a position before the sheet is conveyed to the printing section.
4. The printing apparatus according to claim 3, further comprising:
a storage section configured to store a sheet roll formed into a roll shape as the sheet conveyed to the printing section, wherein
the first temperature sensor measures the temperature of the sheet stored in the storage section.
5. The printing apparatus according to claim 1, further comprising:
a second temperature sensor configured to measure a temperature of an ink ribbon.
6. The printing apparatus according to claim 5, wherein
the second temperature sensor measures the temperature of the ink ribbon in a non-contact manner.
7. A printing method, comprising:
measuring a temperature of a sheet for printing;
measuring an atmospheric temperature;
calculating a first difference between a temperature in the printing apparatus and the temperature of the sheet, calculating a second difference between the temperature in the printing apparatus and a temperature of an ink ribbon, and determining the heating amount on the basis of a total value obtained by respectively calculating predetermined coefficients to the first difference and the second difference; and
printing on the sheet through heating.
8. The printing apparatus according to claim 7, wherein
the temperature of the sheet is measured in a non-contact manner.
9. The printing apparatus according to claim 7, further comprising:
conveying the sheet to a printing section, wherein
the temperature of the sheet is measured at a position before the sheet is conveyed to the printing section.
10. The printing apparatus according to claim 9, further comprising:
a storage section configured to storing a sheet roll formed into a roll shape as the sheet conveyed to the printing section, wherein
the temperature of the sheet stored in the storage section is measured.
11. The printing apparatus according to claim 7, further comprising:
measuring a temperature of an ink ribbon.
12. The printing apparatus according to claim 11, wherein
the temperature of the ink ribbon is measured in a non-contact manner.
US16/105,050 2017-01-25 2018-08-20 Printing apparatus and printing method Abandoned US20180354273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/105,050 US20180354273A1 (en) 2017-01-25 2018-08-20 Printing apparatus and printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/414,746 US10093110B2 (en) 2017-01-25 2017-01-25 Printing apparatus and printing method
US16/105,050 US20180354273A1 (en) 2017-01-25 2018-08-20 Printing apparatus and printing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/414,746 Continuation US10093110B2 (en) 2017-01-25 2017-01-25 Printing apparatus and printing method

Publications (1)

Publication Number Publication Date
US20180354273A1 true US20180354273A1 (en) 2018-12-13

Family

ID=61024667

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/414,746 Expired - Fee Related US10093110B2 (en) 2017-01-25 2017-01-25 Printing apparatus and printing method
US16/105,050 Abandoned US20180354273A1 (en) 2017-01-25 2018-08-20 Printing apparatus and printing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/414,746 Expired - Fee Related US10093110B2 (en) 2017-01-25 2017-01-25 Printing apparatus and printing method

Country Status (3)

Country Link
US (2) US10093110B2 (en)
EP (1) EP3354470A1 (en)
CN (1) CN108340684A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904003B2 (en) * 2017-03-30 2021-07-14 ブラザー工業株式会社 Printing equipment
JP6868219B2 (en) * 2017-06-28 2021-05-12 ブラザー工業株式会社 Printing equipment
JP7253390B2 (en) * 2019-01-18 2023-04-06 日本電産サンキョー株式会社 PRINTING DEVICE, PRINTING METHOD AND PROGRAM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119065A (en) * 2003-10-15 2005-05-12 Konica Minolta Photo Imaging Inc Thermal transfer printer and equipment for taking photograph for certificate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073889A (en) 1983-09-30 1985-04-26 Toshiba Corp Printer
JP2001315374A (en) 2000-05-10 2001-11-13 Toshiba Tec Corp Thermal printer and method of controlling printing
KR20040015079A (en) * 2001-05-10 2004-02-18 상와 뉴테크 가부시끼가이샤 Rewritable printing method and its printer
JP4898618B2 (en) * 2007-09-28 2012-03-21 富士フイルム株式会社 Inkjet recording method
EP2962856B1 (en) 2014-07-04 2020-12-23 Sebastian Meyer Device and method for thermal printing on a target
US9216596B1 (en) * 2014-07-28 2015-12-22 Toshiba Tec Kabushiki Kaisha Printing apparatus and commodity information processing apparatus
JP6323674B2 (en) 2014-09-30 2018-05-16 ブラザー工業株式会社 Print production device
JP6463088B2 (en) 2014-11-17 2019-01-30 キヤノン株式会社 Printing apparatus and printing apparatus control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119065A (en) * 2003-10-15 2005-05-12 Konica Minolta Photo Imaging Inc Thermal transfer printer and equipment for taking photograph for certificate

Also Published As

Publication number Publication date
EP3354470A1 (en) 2018-08-01
CN108340684A (en) 2018-07-31
US20180207952A1 (en) 2018-07-26
US10093110B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
US20180354273A1 (en) Printing apparatus and printing method
EP3034310B1 (en) Drying apparatus, printing apparatus, and drying method
CN102310659B (en) Printer and method for driving the same
US20190240990A1 (en) Printer
CN105278304B (en) Image forming apparatus
JPH06194995A (en) Thermal fixing device and electrophotographic device
JP2018126925A (en) Printer and printer control program
JP2021024092A (en) Liquid ejection system and method for controlling liquid ejection system
US20210014379A1 (en) Duplex printing method with shrinkage compensation
JP2019008217A (en) Image formation device, image formation system, image formation method, and image formation device-purpose program
US10488800B2 (en) Image forming system, method for controlling image forming system, and paper conveyance processing apparatus
JPH09234899A (en) Thermosensitive recording device
JP6364966B2 (en) Image forming apparatus, sheet conveying method, and program
JP2017213795A (en) Curl correction apparatus and thermal printer
JP6676755B2 (en) Thermal printer and printing method in thermal printer
JP2006235477A (en) Fixing device for image forming apparatus
JP6471543B2 (en) Image forming apparatus and image forming system
JP6463088B2 (en) Printing apparatus and printing apparatus control method
US20220118781A1 (en) Printing apparatus and printing method
JP7342658B2 (en) Image forming device
JP2017052143A (en) Card processing device and ticket dispenser
JP7363087B2 (en) printer
JP6496130B2 (en) Image erasing apparatus and image erasing method
JP6325411B2 (en) Image erasing device
US20190064712A1 (en) Fixing device and image forming apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOSHIBA TEC KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HATTORI, NAOYUKI;REEL/FRAME:046692/0773

Effective date: 20170120

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION