US20180336967A1 - Software Application Transmission via Body Interface Using a Wearable Device in Conjunction with Removable Body Sensor Arrays System and Method - Google Patents
Software Application Transmission via Body Interface Using a Wearable Device in Conjunction with Removable Body Sensor Arrays System and Method Download PDFInfo
- Publication number
- US20180336967A1 US20180336967A1 US16/049,408 US201816049408A US2018336967A1 US 20180336967 A1 US20180336967 A1 US 20180336967A1 US 201816049408 A US201816049408 A US 201816049408A US 2018336967 A1 US2018336967 A1 US 2018336967A1
- Authority
- US
- United States
- Prior art keywords
- wearable
- data
- sensor
- processor
- software instructions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000005540 biological transmission Effects 0.000 title description 8
- 238000003491 array Methods 0.000 title description 2
- 238000012545 processing Methods 0.000 claims abstract description 27
- 238000004891 communication Methods 0.000 claims description 16
- 238000013475 authorization Methods 0.000 claims description 6
- 102000005962 receptors Human genes 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 206010010254 Concussion Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000016979 Other receptors Human genes 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003683 cardiac damage Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0008—Temperature signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0024—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0026—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the transmission medium
- A61B5/0028—Body tissue as transmission medium, i.e. transmission systems where the medium is the human body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6815—Ear
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- G06F19/00—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Social work or social welfare, e.g. community support activities or counselling services
-
- H04L29/08—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/40—Support for services or applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
Definitions
- the present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to ear pieces and other sensors worn on the body for use in capturing multipoint data.
- Another object, feature, or advantage is to reduce the amount of processing power and/or battery associated with body worn accessories in or to allow for reduced size and/or energy consumption.
- a method for communicating data from wearable devices includes sensing data with a wearable sensor worn by an individual and communicating the data from the wearable sensor to an earpiece worn by the individual.
- the method may further include communicating software instructions for analyzing the data sensed with the wearable sensor from the wearable sensor to the earpiece.
- the communication linkage may be a galvanic communication linkage or other wireless communication linkage.
- a system includes a wearable device comprising a sensor and software instructions stored on a machine-readable storage medium for processing data collected by the sensor.
- the system further includes an earpiece having an ear piece housing, a processor disposed within the ear piece housing, a speaker operatively connected to the processor, and a microphone operatively connected to the processor.
- the earpiece may be configured to communicate with the wearable device to collect data from the wearable device, to receive the software instructions from the wearable device, and to process the data at the processor using the software instructions.
- the earpiece may be further configured to prompt a user to authorize the software instructions from the wearable device such as before receiving the software instructions and/or before processing the software instructions.
- a system includes a first wearable device comprising a sensor and software instructions stored on a machine-readable storage medium for processing data collected by the sensor.
- a second wearable device includes a wearable device housing and a processor disposed within the wearable device housing. The second wearable device is configured to communicate with the first wearable device to collect data from the first wearable device, to receive the software instructions from the first wearable device, and to process the data at the processor of the second wearable device using the software instructions.
- the second wearable device may be configured to prompt a user to authorize the software instructions from the first wearable device.
- the second wearable device may include a speaker operatively connected to the processor and a microphone operatively connected to the processor.
- the second wearable device may be an earpiece or a set of earpieces.
- FIG. 1 is a pictorial representation of a communication system in accordance with an illustrative embodiment
- FIG. 2 is a block diagram of receptor devices and sensor devices
- FIG. 3 is another block diagram of receptor devices and sensor devices.
- FIG. 4 is a flowchart of one method for use with wearable devices.
- Multiple sensors may be incorporated into clothing or other body worn accessories including jewelry items such as watches. These accessories are equipped with operational software able to be transmitted galvanically, wirelessly, or otherwise to the receptor units in the ear for sophisticated analysis, processing and transmission of the processed data. These data systems are unable to process or fully process by themselves and are reliant upon powered devices for full implementation.
- the signals generated can be transmitted to the receptor devices through wireless schemes, such as electromagnetic fields or other low power wireless networks.
- the data can then be processed using a built-in software program, transmitted to the wearable receptor device providing the processing capability for the remote sensor array.
- software for analysis may reside with the remote sensor array of the wearable device.
- the software may be transmitted via wireless low power transmission schemes to the wearable device (such as an earpiece which is able to process).
- This communication may be via galvanic transmission or other very low power transmission schemes. This allows for the ready exchange and modulation of the programming based upon the array presented in the remote wearable location.
- Authorization of a transmitted applet to the device may be requested of the user prior to any processing at the wearable device.
- the earpiece 100 may be important to a user for business, exercise, or personal activities.
- the earpiece housing 102 includes a frame to fit substantially within the ears of the user.
- the earpiece housing 102 may be composed of a single structure or multiple, interconnected structures.
- the earpieces 100 may also contain sensors to perform sensor measurements for the user to read any number of user biometrics. These user biometrics may be analyzed to include measuring deviations or changing sensor measurements over time, identifying trends of the sensor measurements, and comparing the sensor measurements to control data for the user. The biometrics may also be used
- a galvanic signal 200 may be used to communicate data from one or more sensor devices 112 to a galvanic contact area 404 of an earpiece 100 .
- Galvanic communication involves the use of the human body as a transmission medium for electrical signals.
- Galvanic communication may occur via many embodiments, including but not limited to wireless intra-body communications, biomedical monitoring, and supplying power for implants.
- Galvanic communication may be used to communicate information between a wearable device having one or more sensor devices 112 and the wearable device 100 such as an earpiece. The earpiece 100 may then communicate across other communication channels or with other devices such as a computing device 210 such as a mobile phone.
- Information from the sensor devices 112 may be used for any number of different purposes including for identifying a person, an article of clothing or other object associated with the person, collecting health data about the person, including activity of the user such as exercise or other movement, or any number of different types of monitoring such as may be performed with a wearable device.
- the sensor devices 112 may contain software instructions for processing of sensor data. These software instructions may be conveyed to the receptor device such as the earpiece 100 . Thus, instead of each sensor device 112 performing its own data processing, the earpiece 100 may perform processing for many different earpieces according to different instruction sets from different sensor devices 112 .
- the software instructions may take any number of forms. For example, in some embodiments an identifier is provided by the sensor devices 112 which the receptor device or earpiece 100 may perform a lookup operation either from local storage or remote storage to obtain the processing instructions. In other embodiments, the instructions themselves form a part of an applet which is communicated from the sensor devices 112 to the receptor device or earpiece 100 for execution.
- wearable devices 112 may be present.
- the wearable sensor devices 112 may be located on any part of the user's body or on a device adjacent to or coupled to the user's body.
- the sensor devices 112 may be part of this galvanic communication system may be incorporated on the wireless earpieces or other receptor device, or in a separate location on the user.
- the sensor devices 112 may be used to sense directly or indirectly user biometrics, including but not limited to pulse rate, blood pressure, blood oxygenation, temperature, calories expended, blood or sweat chemical content, voice and audio input, impact levels, and orientation (e.g., body, head, etc.).
- the sensor devices 112 may also determine the user's location, position, velocity, impact levels, and so forth.
- the sensor devices 112 may also receive user input and convert the user input into commands or selections made across personal devices of the personal area network.
- the user input detected by the wireless earpieces may include voice commands, head motions, finger taps, finger swipes, motions or gestures, or other user inputs sensed by the wireless earpieces.
- sensor devices 112 may be used for galvanic communication, including but not limited to biomedical sensors worn on the outside of the body such as heart rate monitors; contact lenses embedded with a microchip; and digital tattoos which may come in the form of a transdermal patch.
- Galvanically communicating sensors may also include adhesive patches for monitoring concussions; electronic pills; ingestible biomedical sensors; microneedle drug delivery systems; dietary spectrometer sensors; ultraviolet light exposure sensors; cerebral pressure sensors.
- Implantable galvanically communicating sensors may include aneurism monitors, brain sensors, blood analyzer chips, pressure sensors, skin sensors, drug delivery devices, pressure sensor detectors for damaged nerves, endoscope probes, insulin micro-pumps, microsurgical tools, and sensors for cardiac damage.
- One galvanically communicating embodiment involves sensors sending electromagnetic signals through the biological tissues such as the skin, fat, bone, muscle, or other human tissue.
- the signal transmission distance and the potential signal distribution of each tissue may be taken into consideration.
- an electrical signal between a pair of transmitting electrodes an electrical field is established. This electrical field may then be received by a pair of receiving electrodes.
- a galvanic contact area 404 may be located between the sensor and the biological tissue to allow for enhanced communication of the electromagnetic or electrical signals.
- the galvanic contact area 404 may be used to assist in conducting signals to and from one or more earpieces and one or more other body worn wearable devices or sensors. It should be appreciated where it is used, the galvanic contact area 404 may be placed in any number of different locations on the earpieces 100 which would be in contact with an individual wearing the earpiece 100 . What is shown is merely representative.
- the system also includes a processor 104 disposed within the housing 102 of the receptor device or earpiece.
- the processor 104 may be a microprocessor, a digital signal processor, an application-specific integrated circuit (ASIC), a central processing unit, combination thereof, or another device suitable for controlling an electronic device including one or more hardware and software elements, executing software, instructions, programs, and applications, converting and processing signals and information, and performing other related tasks.
- a galvanic contact area 404 is shown which may be in operative communication with the wearable sensor 112 .
- the wearable sensor device 112 may include one or more sensors 148 such as those previously described for detecting physiological or biometric information, movement or other activity, or state or condition of a device or a person.
- Storage 150 is shown which may be any type of memory or other storage. Remote processing instructions 113 may be stored within the storage.
- a controller 152 is shown which may be electrically connected to the sensors 148 , the storage 150 , and the galvanic contact area 404 .
- the controller 152 may be a microprocessor, a digital signal processor, an application-specific integrated circuit (ASIC), a central processing unit, combination thereof, or other electronics for controlling the sensor device 112 and conveying remote processing instructions 113 to the receptor device 102 .
- ASIC application-specific integrated circuit
- FIG. 3 illustrates another configuration for the earpiece 100 and sensor device 112 .
- one or more wireless transceivers 106 may also be present.
- the wireless transceiver 106 may include a Bluetooth or Bluetooth Low Energy transceiver (BLE) 106 or other type of wireless transceiver.
- BLE Bluetooth Low Energy transceiver
- the earpiece may include circuitry for sending and receiving galvanically, a magnetic induction transceiver for communicating through magnetic induction, or other types of transceivers for communicating with other devices.
- FIG. 4 illustrates one example of a methodology.
- step 300 data is sensed using one or more sensors of a first wearable device. The data is then communicated from the one or more sensors to a second wearable device or receptor device such as an earpiece.
- software instructions are communicated to the second wearable device or receptor device for processing the sensor data from the first wearable device.
- step 306 a user may provide authorization to allow the software instructions to be executed on the first wearable device. The user may be prompted to provide authorization, the user may provide pre-authorization, or other methods of authorization may be used.
- step 308 the data is processed at the second wearable device using the instructions.
- a receptor device may also be a sensor device.
- each earpiece could service as a receptor device or a sensor device.
- the earpiece could communicate processing instructions to a receptor device, or the earpiece could perform processing on data from sensor devices based on instructions for performing processing received from the sensor devices.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Computer Networks & Wireless Communication (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Otolaryngology (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Signal Processing (AREA)
- Pulmonology (AREA)
- Telephone Function (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
- This application claims priority to U.S. patent application Ser. No. 15/720,058 filed on Sep. 29, 2017 which claims priority to U.S. Provisional Patent Application 62/405,524, filed on Oct. 7, 2016, all of which are titled Software Application Transmission via Body Interface Using a Wearable Device in Conjunction with Removable Body Sensor Arrays System and Method and all of which are hereby incorporated by reference in their entireties
- The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to ear pieces and other sensors worn on the body for use in capturing multipoint data.
- Current and upcoming technology is limited by the available methods for sensor location on the body of the user. Multiple schemes have been devised but face ongoing issues with power supply as well as processing capability. What is needed is a new way to localize sensors on the body of the user to provide multipoint data capture for transmission wirelessly to worn devices able to process the data and incorporate the processed data into higher level schemes.
- Therefore, it is a primary object, feature, or advantage to improve over the state of the art.
- It is a further object, feature, or advantage to provide for processing of body worn sensors using a wearable receptor device.
- It is a still further object, feature, or advantage to communicate operational software from sensors associated with body worn accessories to a wearable receptor device such as an ear piece.
- Another object, feature, or advantage is to reduce the amount of processing power and/or battery associated with body worn accessories in or to allow for reduced size and/or energy consumption.
- One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and following claims. No single embodiment need provide every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an objects, features, or advantages stated herein.
- According to one aspect, a method for communicating data from wearable devices is provided. The method includes sensing data with a wearable sensor worn by an individual and communicating the data from the wearable sensor to an earpiece worn by the individual. The method may further include communicating software instructions for analyzing the data sensed with the wearable sensor from the wearable sensor to the earpiece. The communication linkage may be a galvanic communication linkage or other wireless communication linkage.
- According to another aspect, a system includes a wearable device comprising a sensor and software instructions stored on a machine-readable storage medium for processing data collected by the sensor. The system further includes an earpiece having an ear piece housing, a processor disposed within the ear piece housing, a speaker operatively connected to the processor, and a microphone operatively connected to the processor. The earpiece may be configured to communicate with the wearable device to collect data from the wearable device, to receive the software instructions from the wearable device, and to process the data at the processor using the software instructions. The earpiece may be further configured to prompt a user to authorize the software instructions from the wearable device such as before receiving the software instructions and/or before processing the software instructions.
- According to another aspect, a system includes a first wearable device comprising a sensor and software instructions stored on a machine-readable storage medium for processing data collected by the sensor. A second wearable device includes a wearable device housing and a processor disposed within the wearable device housing. The second wearable device is configured to communicate with the first wearable device to collect data from the first wearable device, to receive the software instructions from the first wearable device, and to process the data at the processor of the second wearable device using the software instructions. The second wearable device may be configured to prompt a user to authorize the software instructions from the first wearable device. The second wearable device may include a speaker operatively connected to the processor and a microphone operatively connected to the processor. The second wearable device may be an earpiece or a set of earpieces.
-
FIG. 1 is a pictorial representation of a communication system in accordance with an illustrative embodiment; -
FIG. 2 is a block diagram of receptor devices and sensor devices; -
FIG. 3 is another block diagram of receptor devices and sensor devices; and -
FIG. 4 is a flowchart of one method for use with wearable devices. - Multiple sensors may be incorporated into clothing or other body worn accessories including jewelry items such as watches. These accessories are equipped with operational software able to be transmitted galvanically, wirelessly, or otherwise to the receptor units in the ear for sophisticated analysis, processing and transmission of the processed data. These data systems are unable to process or fully process by themselves and are reliant upon powered devices for full implementation. The signals generated can be transmitted to the receptor devices through wireless schemes, such as electromagnetic fields or other low power wireless networks. The data can then be processed using a built-in software program, transmitted to the wearable receptor device providing the processing capability for the remote sensor array.
- Thus, software for analysis may reside with the remote sensor array of the wearable device. The software may be transmitted via wireless low power transmission schemes to the wearable device (such as an earpiece which is able to process). This communication may be via galvanic transmission or other very low power transmission schemes. This allows for the ready exchange and modulation of the programming based upon the array presented in the remote wearable location. Authorization of a transmitted applet to the device may be requested of the user prior to any processing at the wearable device.
- One embodiment of the illustrative embodiments provides a receptor device such as an
earpiece 100 having anearpiece housing 102, as shown inFIG. 1 . Theearpiece 100 may be important to a user for business, exercise, or personal activities. Theearpiece housing 102 includes a frame to fit substantially within the ears of the user. Theearpiece housing 102 may be composed of a single structure or multiple, interconnected structures. Theearpieces 100 may also contain sensors to perform sensor measurements for the user to read any number of user biometrics. These user biometrics may be analyzed to include measuring deviations or changing sensor measurements over time, identifying trends of the sensor measurements, and comparing the sensor measurements to control data for the user. The biometrics may also be used - Several different body worn devices, or
sensor devices 112 may be present on the body of aperson 106 or otherwise associated with theperson 106. These body worn devices may include any number of different sensing technologies for any number of different applications or purposes. This may include implantable as well as other body worn devices. Preferably thesesensor devices 112 may have low power requirements and limited or no processing capabilities to reduce size, complexity, cost, power requirements, or other factors. Agalvanic signal 200 may be used to communicate data from one ormore sensor devices 112 to agalvanic contact area 404 of anearpiece 100. Galvanic communication involves the use of the human body as a transmission medium for electrical signals. Galvanic communication may occur via many embodiments, including but not limited to wireless intra-body communications, biomedical monitoring, and supplying power for implants. Galvanic communication may be used to communicate information between a wearable device having one ormore sensor devices 112 and thewearable device 100 such as an earpiece. Theearpiece 100 may then communicate across other communication channels or with other devices such as acomputing device 210 such as a mobile phone. Information from thesensor devices 112 may be used for any number of different purposes including for identifying a person, an article of clothing or other object associated with the person, collecting health data about the person, including activity of the user such as exercise or other movement, or any number of different types of monitoring such as may be performed with a wearable device. - The
sensor devices 112 may contain software instructions for processing of sensor data. These software instructions may be conveyed to the receptor device such as theearpiece 100. Thus, instead of eachsensor device 112 performing its own data processing, theearpiece 100 may perform processing for many different earpieces according to different instruction sets fromdifferent sensor devices 112. The software instructions may take any number of forms. For example, in some embodiments an identifier is provided by thesensor devices 112 which the receptor device orearpiece 100 may perform a lookup operation either from local storage or remote storage to obtain the processing instructions. In other embodiments, the instructions themselves form a part of an applet which is communicated from thesensor devices 112 to the receptor device orearpiece 100 for execution. Any number of different types ofwearable devices 112 orwearable sensor devices 112 may be present. Thewearable sensor devices 112 may be located on any part of the user's body or on a device adjacent to or coupled to the user's body. Thesensor devices 112 may be part of this galvanic communication system may be incorporated on the wireless earpieces or other receptor device, or in a separate location on the user. Thesensor devices 112 may be used to sense directly or indirectly user biometrics, including but not limited to pulse rate, blood pressure, blood oxygenation, temperature, calories expended, blood or sweat chemical content, voice and audio input, impact levels, and orientation (e.g., body, head, etc.). Thesensor devices 112 may also determine the user's location, position, velocity, impact levels, and so forth. Thesensor devices 112 may also receive user input and convert the user input into commands or selections made across personal devices of the personal area network. For example, the user input detected by the wireless earpieces may include voice commands, head motions, finger taps, finger swipes, motions or gestures, or other user inputs sensed by the wireless earpieces. - Many different types of
sensor devices 112 may be used for galvanic communication, including but not limited to biomedical sensors worn on the outside of the body such as heart rate monitors; contact lenses embedded with a microchip; and digital tattoos which may come in the form of a transdermal patch. Galvanically communicating sensors may also include adhesive patches for monitoring concussions; electronic pills; ingestible biomedical sensors; microneedle drug delivery systems; dietary spectrometer sensors; ultraviolet light exposure sensors; cerebral pressure sensors. Implantable galvanically communicating sensors may include aneurism monitors, brain sensors, blood analyzer chips, pressure sensors, skin sensors, drug delivery devices, pressure sensor detectors for damaged nerves, endoscope probes, insulin micro-pumps, microsurgical tools, and sensors for cardiac damage. - One galvanically communicating embodiment involves sensors sending electromagnetic signals through the biological tissues such as the skin, fat, bone, muscle, or other human tissue. In selecting a biological tissue to send the electromagnetic signal through, the signal transmission distance and the potential signal distribution of each tissue may be taken into consideration. By applying an electrical signal between a pair of transmitting electrodes, an electrical field is established. This electrical field may then be received by a pair of receiving electrodes.
- A
galvanic contact area 404 may be located between the sensor and the biological tissue to allow for enhanced communication of the electromagnetic or electrical signals. Thegalvanic contact area 404 may be used to assist in conducting signals to and from one or more earpieces and one or more other body worn wearable devices or sensors. It should be appreciated where it is used, thegalvanic contact area 404 may be placed in any number of different locations on theearpieces 100 which would be in contact with an individual wearing theearpiece 100. What is shown is merely representative. - As shown in
FIG. 2 , the system also includes aprocessor 104 disposed within thehousing 102 of the receptor device or earpiece. Theprocessor 104 may be a microprocessor, a digital signal processor, an application-specific integrated circuit (ASIC), a central processing unit, combination thereof, or another device suitable for controlling an electronic device including one or more hardware and software elements, executing software, instructions, programs, and applications, converting and processing signals and information, and performing other related tasks. Where the receptor device is an earpiece, other components may include one ormore speakers 108 and one ormore microphones 110. Agalvanic contact area 404 is shown which may be in operative communication with thewearable sensor 112. Thewearable sensor device 112 may include one ormore sensors 148 such as those previously described for detecting physiological or biometric information, movement or other activity, or state or condition of a device or a person.Storage 150 is shown which may be any type of memory or other storage.Remote processing instructions 113 may be stored within the storage. Acontroller 152 is shown which may be electrically connected to thesensors 148, thestorage 150, and thegalvanic contact area 404. Thecontroller 152 may be a microprocessor, a digital signal processor, an application-specific integrated circuit (ASIC), a central processing unit, combination thereof, or other electronics for controlling thesensor device 112 and conveyingremote processing instructions 113 to thereceptor device 102. -
FIG. 3 illustrates another configuration for theearpiece 100 andsensor device 112. As shown inFIG. 3 , one or morewireless transceivers 106 may also be present. Thewireless transceiver 106 may include a Bluetooth or Bluetooth Low Energy transceiver (BLE) 106 or other type of wireless transceiver. In addition, or alternatively, the earpiece may include circuitry for sending and receiving galvanically, a magnetic induction transceiver for communicating through magnetic induction, or other types of transceivers for communicating with other devices. -
FIG. 4 illustrates one example of a methodology. Instep 300, data is sensed using one or more sensors of a first wearable device. The data is then communicated from the one or more sensors to a second wearable device or receptor device such as an earpiece. In addition, software instructions are communicated to the second wearable device or receptor device for processing the sensor data from the first wearable device. Instep 306, a user may provide authorization to allow the software instructions to be executed on the first wearable device. The user may be prompted to provide authorization, the user may provide pre-authorization, or other methods of authorization may be used. Instep 308, the data is processed at the second wearable device using the instructions. - It is to be understood a receptor device may also be a sensor device. For example, in a system where two earpieces are present, each earpiece could service as a receptor device or a sensor device. Thus, the earpiece could communicate processing instructions to a receptor device, or the earpiece could perform processing on data from sensor devices based on instructions for performing processing received from the sensor devices.
- Therefore, various methods, systems, and apparatus have been shown and described. It is to be understood numerous variations, options, and alternatives are contemplated. This includes variations in the configuration of different devices, the way data is communicated between receptor and sensor devices, the way instructions are communicated between receptor and sensor devices, and other options, variations, and alternatives.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/049,408 US20180336967A1 (en) | 2016-10-07 | 2018-07-30 | Software Application Transmission via Body Interface Using a Wearable Device in Conjunction with Removable Body Sensor Arrays System and Method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662405524P | 2016-10-07 | 2016-10-07 | |
US15/720,058 US10049184B2 (en) | 2016-10-07 | 2017-09-29 | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
US16/049,408 US20180336967A1 (en) | 2016-10-07 | 2018-07-30 | Software Application Transmission via Body Interface Using a Wearable Device in Conjunction with Removable Body Sensor Arrays System and Method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/720,058 Continuation US10049184B2 (en) | 2016-10-07 | 2017-09-29 | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180336967A1 true US20180336967A1 (en) | 2018-11-22 |
Family
ID=61829700
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/720,058 Active US10049184B2 (en) | 2016-10-07 | 2017-09-29 | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
US16/049,408 Abandoned US20180336967A1 (en) | 2016-10-07 | 2018-07-30 | Software Application Transmission via Body Interface Using a Wearable Device in Conjunction with Removable Body Sensor Arrays System and Method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/720,058 Active US10049184B2 (en) | 2016-10-07 | 2017-09-29 | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
Country Status (1)
Country | Link |
---|---|
US (2) | US10049184B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023163840A1 (en) * | 2022-02-28 | 2023-08-31 | Purdue Research Foundation | Communication and powering systems and methods between implantable and wearable devices |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10049184B2 (en) * | 2016-10-07 | 2018-08-14 | Bragi GmbH | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
CN111260816A (en) * | 2020-01-16 | 2020-06-09 | 国网冀北电力有限公司张家口供电公司 | Intelligent inspection device for power distribution network |
US20210307672A1 (en) | 2020-04-05 | 2021-10-07 | Epitel, Inc. | Eeg recording and analysis |
US11918368B1 (en) * | 2022-10-19 | 2024-03-05 | Epitel, Inc. | Systems and methods for electroencephalogram monitoring |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10049184B2 (en) * | 2016-10-07 | 2018-08-14 | Bragi GmbH | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
Family Cites Families (278)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2325590A (en) | 1940-05-11 | 1943-08-03 | Sonotone Corp | Earphone |
US2430229A (en) | 1943-10-23 | 1947-11-04 | Zenith Radio Corp | Hearing aid earpiece |
US3047089A (en) | 1959-08-31 | 1962-07-31 | Univ Syracuse | Ear plugs |
US3586794A (en) | 1967-11-04 | 1971-06-22 | Sennheiser Electronic | Earphone having sound detour path |
US3934100A (en) | 1974-04-22 | 1976-01-20 | Seeburg Corporation | Acoustic coupler for use with auditory equipment |
US3983336A (en) | 1974-10-15 | 1976-09-28 | Hooshang Malek | Directional self containing ear mounted hearing aid |
US4150262A (en) | 1974-11-18 | 1979-04-17 | Hiroshi Ono | Piezoelectric bone conductive in ear voice sounds transmitting and receiving apparatus |
US4069400A (en) | 1977-01-31 | 1978-01-17 | United States Surgical Corporation | Modular in-the-ear hearing aid |
USD266271S (en) | 1979-01-29 | 1982-09-21 | Audivox, Inc. | Hearing aid |
JPS5850078B2 (en) | 1979-05-04 | 1983-11-08 | 株式会社 弦エンジニアリング | Vibration pickup type ear microphone transmitting device and transmitting/receiving device |
JPS56152395A (en) | 1980-04-24 | 1981-11-25 | Gen Eng:Kk | Ear microphone of simultaneous transmitting and receiving type |
US4375016A (en) | 1980-04-28 | 1983-02-22 | Qualitone Hearing Aids Inc. | Vented ear tip for hearing aid and adapter coupler therefore |
US4588867A (en) | 1982-04-27 | 1986-05-13 | Masao Konomi | Ear microphone |
JPS6068734U (en) | 1983-10-18 | 1985-05-15 | 株式会社岩田エレクトリツク | handset |
US4617429A (en) | 1985-02-04 | 1986-10-14 | Gaspare Bellafiore | Hearing aid |
US4682180A (en) | 1985-09-23 | 1987-07-21 | American Telephone And Telegraph Company At&T Bell Laboratories | Multidirectional feed and flush-mounted surface wave antenna |
US4852177A (en) | 1986-08-28 | 1989-07-25 | Sensesonics, Inc. | High fidelity earphone and hearing aid |
CA1274184A (en) | 1986-10-07 | 1990-09-18 | Edward S. Kroetsch | Modular hearing aid with lid hinged to faceplate |
US4791673A (en) | 1986-12-04 | 1988-12-13 | Schreiber Simeon B | Bone conduction audio listening device and method |
US5201008A (en) | 1987-01-27 | 1993-04-06 | Unitron Industries Ltd. | Modular hearing aid with lid hinged to faceplate |
US4865044A (en) | 1987-03-09 | 1989-09-12 | Wallace Thomas L | Temperature-sensing system for cattle |
DK157647C (en) | 1987-10-14 | 1990-07-09 | Gn Danavox As | PROTECTION ORGANIZATION FOR ALT-I-HEARED HEARING AND TOOL FOR USE IN REPLACEMENT OF IT |
US5201007A (en) | 1988-09-15 | 1993-04-06 | Epic Corporation | Apparatus and method for conveying amplified sound to ear |
US5185802A (en) | 1990-04-12 | 1993-02-09 | Beltone Electronics Corporation | Modular hearing aid system |
US5298692A (en) | 1990-11-09 | 1994-03-29 | Kabushiki Kaisha Pilot | Earpiece for insertion in an ear canal, and an earphone, microphone, and earphone/microphone combination comprising the same |
US5191602A (en) | 1991-01-09 | 1993-03-02 | Plantronics, Inc. | Cellular telephone headset |
USD340286S (en) | 1991-01-29 | 1993-10-12 | Jinseong Seo | Shell for hearing aid |
US5347584A (en) | 1991-05-31 | 1994-09-13 | Rion Kabushiki-Kaisha | Hearing aid |
US5295193A (en) | 1992-01-22 | 1994-03-15 | Hiroshi Ono | Device for picking up bone-conducted sound in external auditory meatus and communication device using the same |
US5343532A (en) | 1992-03-09 | 1994-08-30 | Shugart Iii M Wilbert | Hearing aid device |
DE69232313T2 (en) | 1992-05-11 | 2002-06-20 | Jabra Corp., San Diego | UNIDIRECTIONAL EARPHONE AND METHOD THEREFOR |
US5280524A (en) | 1992-05-11 | 1994-01-18 | Jabra Corporation | Bone conductive ear microphone and method |
US5497339A (en) | 1993-11-15 | 1996-03-05 | Ete, Inc. | Portable apparatus for providing multiple integrated communication media |
DE69527731T2 (en) | 1994-05-18 | 2003-04-03 | Nippon Telegraph & Telephone Co., Tokio/Tokyo | Transceiver with an acoustic transducer of the earpiece type |
US5749072A (en) | 1994-06-03 | 1998-05-05 | Motorola Inc. | Communications device responsive to spoken commands and methods of using same |
US5613222A (en) | 1994-06-06 | 1997-03-18 | The Creative Solutions Company | Cellular telephone headset for hand-free communication |
US5748743A (en) | 1994-08-01 | 1998-05-05 | Ear Craft Technologies | Air conduction hearing device |
USD367113S (en) | 1994-08-01 | 1996-02-13 | Earcraft Technologies, Inc. | Air conduction hearing aid |
DE19504478C2 (en) | 1995-02-10 | 1996-12-19 | Siemens Audiologische Technik | Ear canal insert for hearing aids |
US6339754B1 (en) | 1995-02-14 | 2002-01-15 | America Online, Inc. | System for automated translation of speech |
US5692059A (en) | 1995-02-24 | 1997-11-25 | Kruger; Frederick M. | Two active element in-the-ear microphone system |
EP0872032B1 (en) | 1995-05-18 | 2003-11-26 | Aura Communications, Inc. | Short-range magnetic communication system |
US5721783A (en) | 1995-06-07 | 1998-02-24 | Anderson; James C. | Hearing aid with wireless remote processor |
US5606621A (en) | 1995-06-14 | 1997-02-25 | Siemens Hearing Instruments, Inc. | Hybrid behind-the-ear and completely-in-canal hearing aid |
US6081724A (en) | 1996-01-31 | 2000-06-27 | Qualcomm Incorporated | Portable communication device and accessory system |
US7010137B1 (en) | 1997-03-12 | 2006-03-07 | Sarnoff Corporation | Hearing aid |
JP3815513B2 (en) | 1996-08-19 | 2006-08-30 | ソニー株式会社 | earphone |
US5802167A (en) | 1996-11-12 | 1998-09-01 | Hong; Chu-Chai | Hands-free device for use with a cellular telephone in a car to permit hands-free operation of the cellular telephone |
US6112103A (en) | 1996-12-03 | 2000-08-29 | Puthuff; Steven H. | Personal communication device |
IL119948A (en) | 1996-12-31 | 2004-09-27 | News Datacom Ltd | Voice activated communication system and program guide |
US6111569A (en) | 1997-02-21 | 2000-08-29 | Compaq Computer Corporation | Computer-based universal remote control system |
US6021207A (en) | 1997-04-03 | 2000-02-01 | Resound Corporation | Wireless open ear canal earpiece |
US5987146A (en) | 1997-04-03 | 1999-11-16 | Resound Corporation | Ear canal microphone |
US6181801B1 (en) | 1997-04-03 | 2001-01-30 | Resound Corporation | Wired open ear canal earpiece |
DE19721982C2 (en) | 1997-05-26 | 2001-08-02 | Siemens Audiologische Technik | Communication system for users of a portable hearing aid |
US5929774A (en) | 1997-06-13 | 1999-07-27 | Charlton; Norman J | Combination pager, organizer and radio |
USD397796S (en) | 1997-07-01 | 1998-09-01 | Citizen Tokei Kabushiki Kaisha | Hearing aid |
USD411200S (en) | 1997-08-15 | 1999-06-22 | Peltor Ab | Ear protection with radio |
US6167039A (en) | 1997-12-17 | 2000-12-26 | Telefonaktiebolget Lm Ericsson | Mobile station having plural antenna elements and interference suppression |
US6230029B1 (en) | 1998-01-07 | 2001-05-08 | Advanced Mobile Solutions, Inc. | Modular wireless headset system |
US6041130A (en) | 1998-06-23 | 2000-03-21 | Mci Communications Corporation | Headset with multiple connections |
US6054989A (en) | 1998-09-14 | 2000-04-25 | Microsoft Corporation | Methods, apparatus and data structures for providing a user interface, which exploits spatial memory in three-dimensions, to objects and which provides spatialized audio |
US6519448B1 (en) | 1998-09-30 | 2003-02-11 | William A. Dress | Personal, self-programming, short-range transceiver system |
US20020030637A1 (en) | 1998-10-29 | 2002-03-14 | Mann W. Stephen G. | Aremac-based means and apparatus for interaction with computer, or one or more other people, through a camera |
US20030034874A1 (en) | 1998-10-29 | 2003-02-20 | W. Stephen G. Mann | System or architecture for secure mail transport and verifiable delivery, or apparatus for mail security |
US6275789B1 (en) | 1998-12-18 | 2001-08-14 | Leo Moser | Method and apparatus for performing full bidirectional translation between a source language and a linked alternative language |
US20010005197A1 (en) | 1998-12-21 | 2001-06-28 | Animesh Mishra | Remotely controlling electronic devices |
EP1017252A3 (en) | 1998-12-31 | 2006-05-31 | Resistance Technology, Inc. | Hearing aid system |
US6424820B1 (en) | 1999-04-02 | 2002-07-23 | Interval Research Corporation | Inductively coupled wireless system and method |
EP1046943B1 (en) | 1999-04-20 | 2002-08-14 | Firma Erika Köchler | Listening assistance device |
US7113611B2 (en) | 1999-05-05 | 2006-09-26 | Sarnoff Corporation | Disposable modular hearing aid |
US7403629B1 (en) | 1999-05-05 | 2008-07-22 | Sarnoff Corporation | Disposable modular hearing aid |
USD468299S1 (en) | 1999-05-10 | 2003-01-07 | Peter V. Boesen | Communication device |
US6823195B1 (en) | 2000-06-30 | 2004-11-23 | Peter V. Boesen | Ultra short range communication with sensing device and method |
US6094492A (en) | 1999-05-10 | 2000-07-25 | Boesen; Peter V. | Bone conduction voice transmission apparatus and system |
US20020057810A1 (en) | 1999-05-10 | 2002-05-16 | Boesen Peter V. | Computer and voice communication unit with handsfree device |
US6952483B2 (en) | 1999-05-10 | 2005-10-04 | Genisus Systems, Inc. | Voice transmission apparatus with UWB |
US6738485B1 (en) | 1999-05-10 | 2004-05-18 | Peter V. Boesen | Apparatus, method and system for ultra short range communication |
US6879698B2 (en) | 1999-05-10 | 2005-04-12 | Peter V. Boesen | Cellular telephone, personal digital assistant with voice communication unit |
US6920229B2 (en) | 1999-05-10 | 2005-07-19 | Peter V. Boesen | Earpiece with an inertial sensor |
US6542721B2 (en) | 1999-10-11 | 2003-04-01 | Peter V. Boesen | Cellular telephone, personal digital assistant and pager unit |
US6560468B1 (en) | 1999-05-10 | 2003-05-06 | Peter V. Boesen | Cellular telephone, personal digital assistant, and pager unit with capability of short range radio frequency transmissions |
US6084526A (en) | 1999-05-12 | 2000-07-04 | Time Warner Entertainment Co., L.P. | Container with means for displaying still and moving images |
US6208372B1 (en) | 1999-07-29 | 2001-03-27 | Netergy Networks, Inc. | Remote electromechanical control of a video communications system |
US7508411B2 (en) | 1999-10-11 | 2009-03-24 | S.P. Technologies Llp | Personal communications device |
US6694180B1 (en) | 1999-10-11 | 2004-02-17 | Peter V. Boesen | Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception |
US6852084B1 (en) | 2000-04-28 | 2005-02-08 | Peter V. Boesen | Wireless physiological pressure sensor and transmitter with capability of short range radio frequency transmissions |
US6470893B1 (en) | 2000-05-15 | 2002-10-29 | Peter V. Boesen | Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception |
AU2001245678A1 (en) | 2000-03-13 | 2001-09-24 | Sarnoff Corporation | Hearing aid with a flexible shell |
US8140357B1 (en) | 2000-04-26 | 2012-03-20 | Boesen Peter V | Point of service billing and records system |
US7047196B2 (en) | 2000-06-08 | 2006-05-16 | Agiletv Corporation | System and method of voice recognition near a wireline node of a network supporting cable television and/or video delivery |
JP2002083152A (en) | 2000-06-30 | 2002-03-22 | Victor Co Of Japan Ltd | Contents download system, portable terminal player, and contents provider |
KR100387918B1 (en) | 2000-07-11 | 2003-06-18 | 이수성 | Interpreter |
US6784873B1 (en) | 2000-08-04 | 2004-08-31 | Peter V. Boesen | Method and medium for computer readable keyboard display incapable of user termination |
JP4135307B2 (en) | 2000-10-17 | 2008-08-20 | 株式会社日立製作所 | Voice interpretation service method and voice interpretation server |
AU2002218080A1 (en) | 2000-11-07 | 2002-05-21 | Research In Motion Limited | Communication device with multiple detachable communication modules |
US20020076073A1 (en) | 2000-12-19 | 2002-06-20 | Taenzer Jon C. | Automatically switched hearing aid communications earpiece |
USD455835S1 (en) | 2001-04-03 | 2002-04-16 | Voice And Wireless Corporation | Wireless earpiece |
US6987986B2 (en) | 2001-06-21 | 2006-01-17 | Boesen Peter V | Cellular telephone, personal digital assistant with dual lines for simultaneous uses |
USD464039S1 (en) | 2001-06-26 | 2002-10-08 | Peter V. Boesen | Communication device |
USD468300S1 (en) | 2001-06-26 | 2003-01-07 | Peter V. Boesen | Communication device |
US20030065504A1 (en) | 2001-10-02 | 2003-04-03 | Jessica Kraemer | Instant verbal translator |
US6664713B2 (en) | 2001-12-04 | 2003-12-16 | Peter V. Boesen | Single chip device for voice communications |
US7539504B2 (en) | 2001-12-05 | 2009-05-26 | Espre Solutions, Inc. | Wireless telepresence collaboration system |
US8527280B2 (en) | 2001-12-13 | 2013-09-03 | Peter V. Boesen | Voice communication device with foreign language translation |
US20030218064A1 (en) | 2002-03-12 | 2003-11-27 | Storcard, Inc. | Multi-purpose personal portable electronic system |
US8436780B2 (en) | 2010-07-12 | 2013-05-07 | Q-Track Corporation | Planar loop antenna system |
US9153074B2 (en) | 2011-07-18 | 2015-10-06 | Dylan T X Zhou | Wearable augmented reality eyeglass communication device including mobile phone and mobile computing via virtual touch screen gesture control and neuron command |
US7030856B2 (en) | 2002-10-15 | 2006-04-18 | Sony Corporation | Method and system for controlling a display device |
US7107010B2 (en) | 2003-04-16 | 2006-09-12 | Nokia Corporation | Short-range radio terminal adapted for data streaming and real time services |
US20050017842A1 (en) | 2003-07-25 | 2005-01-27 | Bryan Dematteo | Adjustment apparatus for adjusting customizable vehicle components |
US7818036B2 (en) | 2003-09-19 | 2010-10-19 | Radeum, Inc. | Techniques for wirelessly controlling push-to-talk operation of half-duplex wireless device |
US20050094839A1 (en) | 2003-11-05 | 2005-05-05 | Gwee Lin K. | Earpiece set for the wireless communication apparatus |
US7136282B1 (en) | 2004-01-06 | 2006-11-14 | Carlton Rebeske | Tablet laptop and interactive conferencing station system |
US7558744B2 (en) | 2004-01-23 | 2009-07-07 | Razumov Sergey N | Multimedia terminal for product ordering |
US20050251455A1 (en) | 2004-05-10 | 2005-11-10 | Boesen Peter V | Method and system for purchasing access to a recording |
US20060074808A1 (en) | 2004-05-10 | 2006-04-06 | Boesen Peter V | Method and system for purchasing access to a recording |
EP1757125B1 (en) | 2004-06-14 | 2011-05-25 | Nokia Corporation | Automated application-selective processing of information obtained through wireless data communication links |
US7925506B2 (en) | 2004-10-05 | 2011-04-12 | Inago Corporation | Speech recognition accuracy via concept to keyword mapping |
USD532520S1 (en) | 2004-12-22 | 2006-11-21 | Siemens Aktiengesellschaft | Combined hearing aid and communication device |
US7558529B2 (en) | 2005-01-24 | 2009-07-07 | Broadcom Corporation | Earpiece/microphone (headset) servicing multiple incoming audio streams |
US8489151B2 (en) | 2005-01-24 | 2013-07-16 | Broadcom Corporation | Integrated and detachable wireless headset element for cellular/mobile/portable phones and audio playback devices |
US7183932B2 (en) | 2005-03-21 | 2007-02-27 | Toyota Technical Center Usa, Inc | Inter-vehicle drowsy driver advisory system |
US20060258412A1 (en) | 2005-05-16 | 2006-11-16 | Serina Liu | Mobile phone wireless earpiece |
US20100186051A1 (en) | 2005-05-17 | 2010-07-22 | Vondoenhoff Roger C | Wireless transmission of information between seats in a mobile platform using magnetic resonance energy |
US20140122116A1 (en) | 2005-07-06 | 2014-05-01 | Alan H. Smythe | System and method for providing audio data to assist in electronic medical records management |
EP1938093B1 (en) | 2005-09-22 | 2012-07-25 | Koninklijke Philips Electronics N.V. | Method and apparatus for acoustical outer ear characterization |
USD554756S1 (en) | 2006-01-30 | 2007-11-06 | Songbird Hearing, Inc. | Hearing aid |
US20120057740A1 (en) | 2006-03-15 | 2012-03-08 | Mark Bryan Rosal | Security and protection device for an ear-mounted audio amplifier or telecommunication instrument |
US7965855B1 (en) | 2006-03-29 | 2011-06-21 | Plantronics, Inc. | Conformable ear tip with spout |
USD549222S1 (en) | 2006-07-10 | 2007-08-21 | Jetvox Acoustic Corp. | Earplug type earphone |
US20080076972A1 (en) | 2006-09-21 | 2008-03-27 | Apple Inc. | Integrated sensors for tracking performance metrics |
KR100842607B1 (en) | 2006-10-13 | 2008-07-01 | 삼성전자주식회사 | Charging cradle for head set device and speaker cover for head set device |
US8652040B2 (en) | 2006-12-19 | 2014-02-18 | Valencell, Inc. | Telemetric apparatus for health and environmental monitoring |
WO2008095167A2 (en) | 2007-02-01 | 2008-08-07 | Personics Holdings Inc. | Method and device for audio recording |
WO2008103925A1 (en) | 2007-02-22 | 2008-08-28 | Personics Holdings Inc. | Method and device for sound detection and audio control |
US8063769B2 (en) | 2007-03-30 | 2011-11-22 | Broadcom Corporation | Dual band antenna and methods for use therewith |
US8111839B2 (en) | 2007-04-09 | 2012-02-07 | Personics Holdings Inc. | Always on headwear recording system |
US20080255430A1 (en) | 2007-04-16 | 2008-10-16 | Sony Ericsson Mobile Communications Ab | Portable device with biometric sensor arrangement |
US8068925B2 (en) | 2007-06-28 | 2011-11-29 | Apple Inc. | Dynamic routing of audio among multiple audio devices |
US8102275B2 (en) | 2007-07-02 | 2012-01-24 | Procter & Gamble | Package and merchandising system |
US20090008275A1 (en) | 2007-07-02 | 2009-01-08 | Ferrari Michael G | Package and merchandising system |
USD579006S1 (en) | 2007-07-05 | 2008-10-21 | Samsung Electronics Co., Ltd. | Wireless headset |
US20090017881A1 (en) | 2007-07-10 | 2009-01-15 | David Madrigal | Storage and activation of mobile phone components |
US8655004B2 (en) | 2007-10-16 | 2014-02-18 | Apple Inc. | Sports monitoring system for headphones, earbuds and/or headsets |
US20090105548A1 (en) | 2007-10-23 | 2009-04-23 | Bart Gary F | In-Ear Biometrics |
US7825626B2 (en) | 2007-10-29 | 2010-11-02 | Embarq Holdings Company Llc | Integrated charger and holder for one or more wireless devices |
US8180078B2 (en) | 2007-12-13 | 2012-05-15 | At&T Intellectual Property I, Lp | Systems and methods employing multiple individual wireless earbuds for a common audio source |
US8108143B1 (en) | 2007-12-20 | 2012-01-31 | U-Blox Ag | Navigation system enabled wireless headset |
US20090191920A1 (en) | 2008-01-29 | 2009-07-30 | Paul Regen | Multi-Function Electronic Ear Piece |
US8199952B2 (en) | 2008-04-01 | 2012-06-12 | Siemens Hearing Instruments, Inc. | Method for adaptive construction of a small CIC hearing instrument |
US20090296968A1 (en) | 2008-05-28 | 2009-12-03 | Zounds, Inc. | Maintenance station for hearing aid |
EP2129088A1 (en) | 2008-05-30 | 2009-12-02 | Oticon A/S | A hearing aid system with a low power wireless link between a hearing instrument and a telephone |
US8319620B2 (en) | 2008-06-19 | 2012-11-27 | Personics Holdings Inc. | Ambient situation awareness system and method for vehicles |
CN101616350A (en) | 2008-06-27 | 2009-12-30 | 深圳富泰宏精密工业有限公司 | The portable electron device of bluetooth earphone and this bluetooth earphone of tool |
US8447609B2 (en) * | 2008-12-31 | 2013-05-21 | Intel Corporation | Adjustment of temporal acoustical characteristics |
US8213862B2 (en) | 2009-02-06 | 2012-07-03 | Broadcom Corporation | Headset charge via short-range RF communication |
USD601134S1 (en) | 2009-02-10 | 2009-09-29 | Plantronics, Inc. | Earbud for a communications headset |
JP5245894B2 (en) | 2009-02-16 | 2013-07-24 | 富士通モバイルコミュニケーションズ株式会社 | Mobile communication device |
DE102009030070A1 (en) | 2009-06-22 | 2010-12-23 | Sennheiser Electronic Gmbh & Co. Kg | Transport and / or storage containers for rechargeable wireless handset |
EP2449676A4 (en) | 2009-07-02 | 2014-06-04 | Bone Tone Comm Ltd | A system and a method for providing sound signals |
US9030404B2 (en) * | 2009-07-23 | 2015-05-12 | Qualcomm Incorporated | Method and apparatus for distributed user interfaces using wearable devices to control mobile and consumer electronic devices |
US20110140844A1 (en) | 2009-12-15 | 2011-06-16 | Mcguire Kenneth Stephen | Packaged product having a reactive label and a method of its use |
US8446252B2 (en) | 2010-03-31 | 2013-05-21 | The Procter & Gamble Company | Interactive product package that forms a node of a product-centric communications network |
US20110286615A1 (en) | 2010-05-18 | 2011-11-24 | Robert Olodort | Wireless stereo headsets and methods |
TWD141209S1 (en) | 2010-07-30 | 2011-06-21 | 億光電子工業股份有限公司 | Light emitting diode |
US8406448B2 (en) | 2010-10-19 | 2013-03-26 | Cheng Uei Precision Industry Co., Ltd. | Earphone with rotatable earphone cap |
US8774434B2 (en) | 2010-11-02 | 2014-07-08 | Yong D. Zhao | Self-adjustable and deforming hearing device |
US9880014B2 (en) | 2010-11-24 | 2018-01-30 | Telenav, Inc. | Navigation system with session transfer mechanism and method of operation thereof |
CN204468122U (en) | 2011-04-05 | 2015-07-15 | 蓝色齿轮有限责任公司 | Ear piece and comprise the system of this ear piece |
USD666581S1 (en) | 2011-10-25 | 2012-09-04 | Nokia Corporation | Headset device |
EP2825846A4 (en) | 2012-03-16 | 2015-12-09 | Qoros Automotive Co Ltd | Navigation system and method for different mobility modes |
US9949205B2 (en) | 2012-05-26 | 2018-04-17 | Qualcomm Incorporated | Smart battery wear leveling for audio devices |
USD687021S1 (en) | 2012-06-18 | 2013-07-30 | Imego Infinity Limited | Pair of earphones |
US9185501B2 (en) * | 2012-06-20 | 2015-11-10 | Broadcom Corporation | Container-located information transfer module |
US8929573B2 (en) | 2012-09-14 | 2015-01-06 | Bose Corporation | Powered headset accessory devices |
SE537958C2 (en) | 2012-09-24 | 2015-12-08 | Scania Cv Ab | Procedure, measuring device and control unit for adapting vehicle train control |
CN102868428B (en) | 2012-09-29 | 2014-11-19 | 裴维彩 | Ultra-low power consumption standby bluetooth device and implementation method thereof |
US10158391B2 (en) | 2012-10-15 | 2018-12-18 | Qualcomm Incorporated | Wireless area network enabled mobile device accessory |
GB2508226B (en) | 2012-11-26 | 2015-08-19 | Selex Es Ltd | Protective housing |
US20140163771A1 (en) | 2012-12-10 | 2014-06-12 | Ford Global Technologies, Llc | Occupant interaction with vehicle system using brought-in devices |
US9391580B2 (en) | 2012-12-31 | 2016-07-12 | Cellco Paternership | Ambient audio injection |
US20140222462A1 (en) | 2013-02-07 | 2014-08-07 | Ian Shakil | System and Method for Augmenting Healthcare Provider Performance |
WO2014124100A1 (en) | 2013-02-07 | 2014-08-14 | Earmonics, Llc | Media playback system having wireless earbuds |
US9301085B2 (en) | 2013-02-20 | 2016-03-29 | Kopin Corporation | Computer headset with detachable 4G radio |
US9516428B2 (en) | 2013-03-14 | 2016-12-06 | Infineon Technologies Ag | MEMS acoustic transducer, MEMS microphone, MEMS microspeaker, array of speakers and method for manufacturing an acoustic transducer |
US9210493B2 (en) | 2013-03-14 | 2015-12-08 | Cirrus Logic, Inc. | Wireless earpiece with local audio cache |
US20150310720A1 (en) * | 2013-03-15 | 2015-10-29 | Leeo, Inc. | Environmental monitoring device |
US20140335908A1 (en) | 2013-05-09 | 2014-11-13 | Bose Corporation | Management of conversation circles for short-range audio communication |
US9668041B2 (en) | 2013-05-22 | 2017-05-30 | Zonaar Corporation | Activity monitoring and directing system |
US9081944B2 (en) | 2013-06-21 | 2015-07-14 | General Motors Llc | Access control for personalized user information maintained by a telematics unit |
TWM469709U (en) | 2013-07-05 | 2014-01-01 | Jetvox Acoustic Corp | Tunable earphone |
EP3025270A1 (en) | 2013-07-25 | 2016-06-01 | Nymi inc. | Preauthorized wearable biometric device, system and method for use thereof |
US9892576B2 (en) | 2013-08-02 | 2018-02-13 | Jpmorgan Chase Bank, N.A. | Biometrics identification module and personal wearable electronics network based authentication and transaction processing |
US20150036835A1 (en) | 2013-08-05 | 2015-02-05 | Christina Summer Chen | Earpieces with gesture control |
JP6107596B2 (en) | 2013-10-23 | 2017-04-05 | 富士通株式会社 | Article conveying device |
US9279696B2 (en) | 2013-10-25 | 2016-03-08 | Qualcomm Incorporated | Automatic handover of positioning parameters from a navigation device to a mobile device |
JP6194114B2 (en) | 2013-11-22 | 2017-09-06 | クアルコム,インコーポレイテッド | System and method for configuring a vehicle interior based on preferences provided with a plurality of mobile computing devices in the vehicle |
USD733103S1 (en) | 2014-01-06 | 2015-06-30 | Google Technology Holdings LLC | Headset for a communication device |
DE102014100824A1 (en) | 2014-01-24 | 2015-07-30 | Nikolaj Hviid | Independent multifunctional headphones for sports activities |
US10798487B2 (en) | 2014-01-24 | 2020-10-06 | Bragi GmbH | Multifunctional earphone system for sports activities |
US9148717B2 (en) | 2014-02-21 | 2015-09-29 | Alpha Audiotronics, Inc. | Earbud charging case |
US8891800B1 (en) | 2014-02-21 | 2014-11-18 | Jonathan Everett Shaffer | Earbud charging case for mobile device |
US10327707B2 (en) * | 2014-03-18 | 2019-06-25 | Kyocera Corporation | Biological information measurement apparatus and biological information measurement method |
US9037125B1 (en) | 2014-04-07 | 2015-05-19 | Google Inc. | Detecting driving with a wearable computing device |
US9648436B2 (en) | 2014-04-08 | 2017-05-09 | Doppler Labs, Inc. | Augmented reality sound system |
USD758385S1 (en) | 2014-04-15 | 2016-06-07 | Huawei Device Co., Ltd. | Display screen or portion thereof with animated graphical user interface |
USD728107S1 (en) | 2014-06-09 | 2015-04-28 | Actervis Gmbh | Hearing aid |
US9818005B2 (en) * | 2014-06-13 | 2017-11-14 | Verily Life Sciences Llc | Zero-power wireless device programming |
US9357320B2 (en) | 2014-06-24 | 2016-05-31 | Harmon International Industries, Inc. | Headphone listening apparatus |
US10024667B2 (en) | 2014-08-01 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable earpiece for providing social and environmental awareness |
JP6337199B2 (en) | 2014-08-26 | 2018-06-06 | トヨタ モーター セールス,ユー.エス.エー.,インコーポレイティド | Integrated wearables for interactive mobile control systems |
US9544689B2 (en) | 2014-08-28 | 2017-01-10 | Harman International Industries, Inc. | Wireless speaker system |
US9532128B2 (en) | 2014-09-05 | 2016-12-27 | Earin Ab | Charging of wireless earbuds |
US9779752B2 (en) | 2014-10-31 | 2017-10-03 | At&T Intellectual Property I, L.P. | Acoustic enhancement by leveraging metadata to mitigate the impact of noisy environments |
CN204244472U (en) | 2014-12-19 | 2015-04-01 | 中国长江三峡集团公司 | A kind of vehicle-mounted road background sound is adopted and is broadcast safety device |
CN104683519A (en) | 2015-03-16 | 2015-06-03 | 镇江博昊科技有限公司 | Mobile phone case with signal shielding function |
CN104837094A (en) | 2015-04-24 | 2015-08-12 | 成都迈奥信息技术有限公司 | Bluetooth earphone integrated with navigation function |
US9510159B1 (en) | 2015-05-15 | 2016-11-29 | Ford Global Technologies, Llc | Determining vehicle occupant location |
KR102449533B1 (en) * | 2015-05-28 | 2022-10-04 | 삼성전자주식회사 | Electronic device and method for controlling an execution of application in electronic device |
US9565491B2 (en) | 2015-06-01 | 2017-02-07 | Doppler Labs, Inc. | Real-time audio processing of ambient sound |
US10219062B2 (en) | 2015-06-05 | 2019-02-26 | Apple Inc. | Wireless audio output devices |
USD777710S1 (en) | 2015-07-22 | 2017-01-31 | Doppler Labs, Inc. | Ear piece |
USD773439S1 (en) | 2015-08-05 | 2016-12-06 | Harman International Industries, Incorporated | Ear bud adapter |
US10203773B2 (en) | 2015-08-29 | 2019-02-12 | Bragi GmbH | Interactive product packaging system and method |
US9905088B2 (en) | 2015-08-29 | 2018-02-27 | Bragi GmbH | Responsive visual communication system and method |
US10409394B2 (en) | 2015-08-29 | 2019-09-10 | Bragi GmbH | Gesture based control system based upon device orientation system and method |
US9972895B2 (en) | 2015-08-29 | 2018-05-15 | Bragi GmbH | Antenna for use in a wearable device |
US9949013B2 (en) | 2015-08-29 | 2018-04-17 | Bragi GmbH | Near field gesture control system and method |
US10234133B2 (en) | 2015-08-29 | 2019-03-19 | Bragi GmbH | System and method for prevention of LED light spillage |
US9866282B2 (en) | 2015-08-29 | 2018-01-09 | Bragi GmbH | Magnetic induction antenna for use in a wearable device |
US9949008B2 (en) | 2015-08-29 | 2018-04-17 | Bragi GmbH | Reproduction of ambient environmental sound for acoustic transparency of ear canal device system and method |
US10194228B2 (en) | 2015-08-29 | 2019-01-29 | Bragi GmbH | Load balancing to maximize device function in a personal area network device system and method |
US10194232B2 (en) | 2015-08-29 | 2019-01-29 | Bragi GmbH | Responsive packaging system for managing display actions |
US9699546B2 (en) | 2015-09-16 | 2017-07-04 | Apple Inc. | Earbuds with biometric sensing |
US20170111723A1 (en) | 2015-10-20 | 2017-04-20 | Bragi GmbH | Personal Area Network Devices System and Method |
US10453450B2 (en) | 2015-10-20 | 2019-10-22 | Bragi GmbH | Wearable earpiece voice command control system and method |
US20170109131A1 (en) | 2015-10-20 | 2017-04-20 | Bragi GmbH | Earpiece 3D Sound Localization Using Mixed Sensor Array for Virtual Reality System and Method |
US10506322B2 (en) | 2015-10-20 | 2019-12-10 | Bragi GmbH | Wearable device onboard applications system and method |
US20170110899A1 (en) | 2015-10-20 | 2017-04-20 | Bragi GmbH | Galvanic Charging and Data Transfer of Remote Devices in a Personal Area Network System and Method |
US10175753B2 (en) | 2015-10-20 | 2019-01-08 | Bragi GmbH | Second screen devices utilizing data from ear worn device system and method |
US10206042B2 (en) | 2015-10-20 | 2019-02-12 | Bragi GmbH | 3D sound field using bilateral earpieces system and method |
US10104458B2 (en) | 2015-10-20 | 2018-10-16 | Bragi GmbH | Enhanced biometric control systems for detection of emergency events system and method |
US20170119318A1 (en) * | 2015-10-28 | 2017-05-04 | Blumio, Inc. | System and method for biometric measurements |
US9674596B2 (en) | 2015-11-03 | 2017-06-06 | International Business Machines Corporation | Headphone with selectable ambient sound admission |
US9936297B2 (en) | 2015-11-16 | 2018-04-03 | Tv Ears, Inc. | Headphone audio and ambient sound mixer |
US20170153114A1 (en) | 2015-11-27 | 2017-06-01 | Bragi GmbH | Vehicle with interaction between vehicle navigation system and wearable devices |
US10040423B2 (en) | 2015-11-27 | 2018-08-07 | Bragi GmbH | Vehicle with wearable for identifying one or more vehicle occupants |
US20170156000A1 (en) | 2015-11-27 | 2017-06-01 | Bragi GmbH | Vehicle with ear piece to provide audio safety |
US20170155998A1 (en) | 2015-11-27 | 2017-06-01 | Bragi GmbH | Vehicle with display system for interacting with wearable device |
US20170151959A1 (en) | 2015-11-27 | 2017-06-01 | Bragi GmbH | Autonomous vehicle with interactions with wearable devices |
US9978278B2 (en) | 2015-11-27 | 2018-05-22 | Bragi GmbH | Vehicle to vehicle communications using ear pieces |
US20170153636A1 (en) | 2015-11-27 | 2017-06-01 | Bragi GmbH | Vehicle with wearable integration or communication |
US10104460B2 (en) | 2015-11-27 | 2018-10-16 | Bragi GmbH | Vehicle with interaction between entertainment systems and wearable devices |
US10099636B2 (en) | 2015-11-27 | 2018-10-16 | Bragi GmbH | System and method for determining a user role and user settings associated with a vehicle |
US20170151957A1 (en) | 2015-11-27 | 2017-06-01 | Bragi GmbH | Vehicle with interactions with wearable device to provide health or physical monitoring |
US20170155985A1 (en) | 2015-11-30 | 2017-06-01 | Bragi GmbH | Graphene Based Mesh for Use in Portable Electronic Devices |
US10542340B2 (en) | 2015-11-30 | 2020-01-21 | Bragi GmbH | Power management for wireless earpieces |
US20170151447A1 (en) | 2015-11-30 | 2017-06-01 | Bragi GmbH | Graphene Based Ultrasound Generation |
US20170155993A1 (en) | 2015-11-30 | 2017-06-01 | Bragi GmbH | Wireless Earpieces Utilizing Graphene Based Microphones and Speakers |
US10099374B2 (en) | 2015-12-01 | 2018-10-16 | Bragi GmbH | Robotic safety using wearables |
US9939891B2 (en) | 2015-12-21 | 2018-04-10 | Bragi GmbH | Voice dictation systems using earpiece microphone system and method |
US9980033B2 (en) | 2015-12-21 | 2018-05-22 | Bragi GmbH | Microphone natural speech capture voice dictation system and method |
US10206052B2 (en) | 2015-12-22 | 2019-02-12 | Bragi GmbH | Analytical determination of remote battery temperature through distributed sensor array system and method |
US10575083B2 (en) | 2015-12-22 | 2020-02-25 | Bragi GmbH | Near field based earpiece data transfer system and method |
US10154332B2 (en) | 2015-12-29 | 2018-12-11 | Bragi GmbH | Power management for wireless earpieces utilizing sensor measurements |
US10334345B2 (en) | 2015-12-29 | 2019-06-25 | Bragi GmbH | Notification and activation system utilizing onboard sensors of wireless earpieces |
EP3188495B1 (en) | 2015-12-30 | 2020-11-18 | GN Audio A/S | A headset with hear-through mode |
US20170195829A1 (en) | 2015-12-31 | 2017-07-06 | Bragi GmbH | Generalized Short Range Communications Device and Method |
USD788079S1 (en) | 2016-01-08 | 2017-05-30 | Samsung Electronics Co., Ltd. | Electronic device |
US10200790B2 (en) | 2016-01-15 | 2019-02-05 | Bragi GmbH | Earpiece with cellular connectivity |
US10129620B2 (en) | 2016-01-25 | 2018-11-13 | Bragi GmbH | Multilayer approach to hydrophobic and oleophobic system and method |
US10104486B2 (en) | 2016-01-25 | 2018-10-16 | Bragi GmbH | In-ear sensor calibration and detecting system and method |
US10085091B2 (en) | 2016-02-09 | 2018-09-25 | Bragi GmbH | Ambient volume modification through environmental microphone feedback loop system and method |
US10667033B2 (en) | 2016-03-02 | 2020-05-26 | Bragi GmbH | Multifactorial unlocking function for smart wearable device and method |
US10052034B2 (en) | 2016-03-07 | 2018-08-21 | FireHUD Inc. | Wearable devices for sensing, displaying, and communicating data associated with a user |
US10045116B2 (en) | 2016-03-14 | 2018-08-07 | Bragi GmbH | Explosive sound pressure level active noise cancellation utilizing completely wireless earpieces system and method |
US10052065B2 (en) | 2016-03-23 | 2018-08-21 | Bragi GmbH | Earpiece life monitor with capability of automatic notification system and method |
-
2017
- 2017-09-29 US US15/720,058 patent/US10049184B2/en active Active
-
2018
- 2018-07-30 US US16/049,408 patent/US20180336967A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10049184B2 (en) * | 2016-10-07 | 2018-08-14 | Bragi GmbH | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023163840A1 (en) * | 2022-02-28 | 2023-08-31 | Purdue Research Foundation | Communication and powering systems and methods between implantable and wearable devices |
Also Published As
Publication number | Publication date |
---|---|
US10049184B2 (en) | 2018-08-14 |
US20180101656A1 (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10049184B2 (en) | Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method | |
CN105722455B (en) | For having the method, apparatus and system of the sensor that node can be removed | |
US20160338646A1 (en) | Ultra-thin wearable sensing device | |
JP2018149355A (en) | Device and method for monitoring | |
JP2018507080A (en) | System and method for vital sign monitoring using earpieces | |
JP2012509103A (en) | Sensing system, device, and method for therapy coordination | |
KR101910282B1 (en) | Apparatus for health care used bone conduction hearing aid | |
US20190223722A1 (en) | Smart telehealth ECG recording system | |
US20200138314A1 (en) | Modular ECG recording system suitable for wearable and handheld measurements | |
CN106163462A (en) | For detection and the method and system of correction of snoring | |
US10420474B2 (en) | Systems and methods for gathering and interpreting heart rate data from an activity monitoring device | |
US20230200649A1 (en) | Gateway device facilitating collection and management of data from a body area network to a study coordinating system | |
KR20170083217A (en) | Electronic apparatus and the control method thereof | |
KR20160108967A (en) | Device and method for bio-signal measurement | |
US20230029042A1 (en) | Wearable system for the ear | |
US20230238127A1 (en) | Medical device control with verification bypass | |
US20220104769A1 (en) | Biological information monitoring system | |
CN109310869B (en) | Authentication of shock treatment delay | |
WO2021142297A1 (en) | Systems and methods including ear-worn devices for vestibular rehabilitation exercises | |
KR102118166B1 (en) | Apparatus, system and method for reducing stress based on real-time bio information | |
KR101203902B1 (en) | Bio-signal measurement unit of exercise prescription system | |
US20220157452A1 (en) | Method for Providing Data for an Interface | |
EP4087465A1 (en) | Wearable nystagmus detection devices and methods for using the same | |
KR20200024044A (en) | Head set appartus for detecting human signal | |
AU2018206855A1 (en) | Apparatus and system for monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: BRAGI GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MILEVSKI, VENIAMIN;REEL/FRAME:048982/0232 Effective date: 20180926 |
|
AS | Assignment |
Owner name: BRAGI GMBH, GERMANY Free format text: EMPLOYMENT DOCUMENT;ASSIGNOR:BOESEN, PETER VINCENT;REEL/FRAME:049672/0188 Effective date: 20190603 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |