US20170111723A1 - Personal Area Network Devices System and Method - Google Patents

Personal Area Network Devices System and Method Download PDF

Info

Publication number
US20170111723A1
US20170111723A1 US15/290,459 US201615290459A US2017111723A1 US 20170111723 A1 US20170111723 A1 US 20170111723A1 US 201615290459 A US201615290459 A US 201615290459A US 2017111723 A1 US2017111723 A1 US 2017111723A1
Authority
US
United States
Prior art keywords
user
wireless
smart glasses
wireless earpieces
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US15/290,459
Inventor
Peter Vincent Boesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bragi GmbH
Original Assignee
Bragi GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201562244147P priority Critical
Application filed by Bragi GmbH filed Critical Bragi GmbH
Priority to US15/290,459 priority patent/US20170111723A1/en
Publication of US20170111723A1 publication Critical patent/US20170111723A1/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infra-red radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/34User authentication involving the use of external additional devices, e.g. dongles or smart cards
    • G06F21/35User authentication involving the use of external additional devices, e.g. dongles or smart cards communicating wirelessly
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
    • H04L63/0861Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using biometrical features, e.g. fingerprint, retina-scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity ; Protecting confidentiality; Key management; Integrity; Mobile application security; Using identity modules; Secure pairing of devices; Context aware security; Lawful interception
    • H04W12/06Authentication
    • H04W4/008
    • H04W76/023
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type, eyeglass details G02C
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2153Using hardware token as a secondary aspect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/31Aspects of the use of accumulators in hearing aids, e.g. rechargeable batteries or fuel cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
    • H04R25/43Electronic input selection or mixing based on input signal analysis, e.g. mixing or selection between microphone and telecoil or between microphones with different directivity characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Abstract

A system, method and personal area network for communicating utilizing wireless earpieces. The wireless earpieces are linked with smart glasses. User input is received through the wireless earpieces. A command associated with the user input is determined. The command is sent to the smart glasses from the wireless earpieces and may result in information being displayed with the smart glasses.

Description

    PRIORITY STATEMENT
  • This application claims priority to U.S. Provisional Patent Application 62/244,147, filed on Oct. 20, 2015, and entitled Personal Area Network Devices System and Method, hereby incorporated by reference in its entirety.
  • BACKGROUND
  • I. Field of the Disclosure
  • The illustrative embodiments relate to personal area networks. More specifically, but not exclusively, the illustrative embodiments relate to wireless earpieces for use with other wearable devices for utilization with a personal area network.
  • II. Description of the Art
  • The growth of wearable devices is increasing exponentially. This growth is fostered by the decreasing size of microprocessors, circuitry boards, chips, and other components. In some cases, wearable devices may obtain biometric sensing data. Displaying this data to the user may be difficult because of the size of the wearable, position or activity of the user, or other conditions. It may also be difficult for the user to easily or efficiently switch between data streams or sets provided by wearable devices.
  • SUMMARY OF THE DISCLOSURE
  • One embodiment of the illustrative embodiments provides a system, method and personal area network for communicating utilizing wireless earpieces. The wireless earpieces are linked with smart glasses. User input is received through the wireless earpieces. A command associated with the user input is determined. The command is sent to the smart glasses from the wireless earpieces. Another embodiment provides wireless earpieces including, a processor and a memory storing a set of instructions. The set of instructions are executed to perform the method described.
  • Another embodiment provides a wireless earpiece. The wireless earpiece includes a frame for fitting in an ear of a user. The wireless earpiece also includes a logic engine controlling functionality of the wireless earpiece. The wireless earpiece also includes a number of sensors receiving biometric information from the user. The wireless earpiece also includes a transceiver communicating with at least smart glasses. The number of sensors receive user input from the user, the logic engine determines a command associated with the user input, and the transceiver sends the command to the smart glasses from the wireless earpiece.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Illustrated embodiments of the present invention are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein, and where:
  • FIG. 1 is a pictorial representation of a communication system in accordance with an illustrative embodiment;
  • FIG. 2 is a block diagram of wireless earpieces and smart glasses in accordance with an illustrative embodiment; and
  • FIG. 3 is a flowchart of a process for controlling smart glasses utilizing wireless earpieces in accordance with an illustrative embodiment.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • The illustrative embodiments provide a system, method, and personal area network for communicating and controlling external device operations utilizing wireless earpieces. In one embodiment, the personal area network may include wireless earpieces. The wireless earpieces may be utilized to control, communicate, manage, or interact with a number of other wearable devices, such as smart glasses, watches, jewelry, implants, displays, clothing, or so forth. A personal area network is a network for data transmissions among devices, such as personal computing, communications, camera, vehicles, entertainment, and medical devices. The personal area network may utilize any number of wired, wireless, or hybrid configurations and may be stationary or dynamic. For example, the personal area network may utilize wireless network protocols or standards, such as INSTEON, IrDA, Wireless USB, Bluetooth, Z-Wave, ZigBee, Wi-Fi, or other developing standards. In one embodiment, the personal area network may move with a user.
  • The wireless earpieces may include any number of sensors for receiving user input and convening the user input into commands or selections made across the personal devices of the personal area network. For example, the user input of the wireless earpieces may include voice commands, head motions. Finger taps, finger swipes or motions, position, location, or other user inputs sensed by the wireless earpieces. The user input may be determined and converted into commands that may be sent to one or more external devices, such as the smart glasses. In one embodiment, the user input may be utilized to send a command that controls content that is displayed by smart glasses communicatively linked with the wireless earpieces. For example, the user may select to display content, scroll, zoom, dismiss, or implement other actions selected by the user. The user may be able to augment their worldview and expand the field of vision utilizing the personal area network devices.
  • FIG. 1 is a pictorial representation of a communication system 100 in accordance with an illustrative embodiment. In one embodiment, the communication system 100 may represent a personal area network utilized by a user. The communication system 100 may also represent any number of systems, environments, or networks in which a user may utilize the described devices and components.
  • In one embodiment, the communication system 100 utilized by a user 101 may include wireless earpieces 102, including a left earpiece 103, and a right earpiece 104, a wireless signal 106, smart glasses 110, network 122, wireless signals 124, a display 126, a wireless device 128, a vehicle 130, a computer 132, a camera 134, and a smart watch 136. The wireless earpieces 102 are configured to fit into ears of a user 101. The wireless earpieces 102 are shown separately from their positioning within the ears of the user 101 for purposes of simplicity.
  • In one embodiment, the wireless earpieces 102 include a frame shaped to fit substantially within the ear of the user. The frame is a support structure that at least partially encloses and houses the electronic components of the wireless earpieces 102. The frame may include one or more sleeves configured to tit the inside of the ear of the user 101. The wireless earpieces 102 may be configured to play music or audio, receive and make phone calls or other communications, determine ambient environmental conditions (e.g., temperature, altitude, location, speed, heading, etc.), read user biometrics (e.g., heart rate, motion, sleep, blood oxygenation, calories burned, etc.), and receive user input, feedback, or instructions.
  • The devices of the communication system 100 may include any number of devices, components, or so forth that may communicate with each other through a wireless (or wired) connection, signals, or link, such as the wireless signals 106 and 124, The network 122 may include any number of network components and devices, such as routers, servers, signal extenders, intelligent network devices, computing devices, or so forth. In one embodiment, the network 122 represents a personal area network as previously disclosed. Communications, such as the wireless signals 106 and 124, within the communication system 100 may occur through the network 122 or may occur directly between devices, such as the wireless earpieces 102 and the smart glasses 110 (e.g., direct communication of the wireless signal 106) or between the wireless earpieces 102 and the wireless device 128 (indirect communication through the network 122 utilizing the wireless signal 124). In one embodiment, the network 122 may communicate with or include a wireless network, such as a Wi-Fi, cellular (e.g., 3G, 4G, 5G, PCS, GSM, etc,), Bluetooth, or other radio frequency network. The network 122 may also communicate with any number of hard wired networks, such as local area networks, coaxial networks, fiber-optic networks, or so forth. Communications within the communication system 100 may be operated by one or more users, service providers, or network providers.
  • The smart glasses 110 are a wearable computer that adds information to what the wearer naturally sees. In one embodiment, the smart glasses 110 may include an optical head-mounted display (OHMD), a computerized Internet connected glasses with transparent heads up display (HUD), or an augmented reality overlay that has the capability of reflecting projected digital images. In another embodiment, the smart glasses 110 may represent virtual reality or holographic display devices (e.g., devices produced by Oculus VR, Sony, Microsoft, Google, etc.). The smart glasses may include a frame 114 and logical components 116. The frame 114 may be the support structure of the smart glasses 110. In one embodiment, the frame 114 may be physically connected across the lenses 112 and bridge. In one embodiment, the logical components 116 are embedded or integrated with the frame 114. For example, the logical components 116 may be removed for upgrading the smart glasses 110 over time. The logical components 116 may include any number of components including one or more batteries, memories, logic units (e.g., processors, ASICs, FPGAs, digital logic, etc.), transceivers, cameras, speakers, motherboards, circuits, contacts, ports, adapters, connectors, or so forth. The logical components 116 may be connected to the different components within the smart glasses 110 utilizing any number of traces, contacts, wires, busses, or so forth. The connection components may be transparent or positioned to minimize visibility (e.g., within the lenses 112).
  • In one embodiment, the lenses 112 may be a transparent display that presents data without requiring the user 101 to look away from his/her usual viewpoints. The lenses 112 may be transparent displays for displaying information and content to the user 101. For example, the lenses 112 may include electronic glass for displaying content for the user 101. For example, the lenses 112 may display content that is displayed in a single direction toward the user 101 such that the displayed content is not visible on the other side of the smart glasses 110 to preserve confidentiality of the content and privacy of the user 101. In one embodiment, interactive content may be displayed across an entire surface of the lenses 112. in another embodiment, the content may be display on one or more designated segments, such as segments 118. The smart glasses 110 are configured to allow the user full access to real world content while still displaying other content which may include graphics, data, programs, augmented reality content, or other information. The lenses 112 may provide full view to the user's surroundings as well as to focused views of various data streams communicated to the smart glasses 110 and available through the personal area network of the user 101.
  • The lenses 112 may also be adaptive optics that change the focal length or provide augmented views of the surroundings. In one embodiment, the lenses 112 may include liquid display components (adjustable focus eyeglasses) that may dynamically reconfigure the shape of the lenses 112 specifically for the user 101. For example, focal points and characteristics of the eye of the user 101 may be utilized to adjust the lenses 112 by adjust a current or voltage applied across the lenses 112. For example, the lenses 112 may be reshaped or provide additional contrast, color enhancement, or so forth for the user 101. This may be particularly useful for users with disabilities or users in difficult situations, such as firemen, police officers, military personnel, security, or so forth. The lenses 112 may be utilized to help correct myopia, hyperopia, presbyopia, and other eye conditions and diseases.
  • Content displayed by the smart glasses 110 may be controlled by the user 101 utilizing voice commands received through microphones of the wireless earpieces 102, smart glasses, or other devices of the network 122 (e.g., smart television 126, wireless device 128. vehicle 130, etc.). In one embodiment, different or distinct content may be displayed by each of the lenses 112 (i.e., left lens and right lens). For example, audible commands may be directed to the wireless earpieces 102 that may be converted to instructions for displaying content on the lenses 112, such as “display a map on the left and a trip timer on the right”.
  • As noted, both the smart glasses 110 and the wireless earpieces 102 may include a number of sensors including touch sensors, optical sensors, pulse oximeters, microphones, accelerometers, gyroscopes, global positioning chips, and so forth for detecting the biometrics, motion, location, and activities of the user. The information may be utilized to coordinate the audio, video, text, and graphical information presented to the user 101 by the wireless earpieces 102 and the smart glasses 110. For example, the user 101 may select to dismiss content by tilting her head to the left. In one embodiment, the user 101 may program the smart glasses 110 and/or the wireless earpieces 102 to perform specific activities in response to a user motion, command or audio signal, or other action. As a result, the communication system 100 may be adapted to the needs and desires of the user 101.
  • In another embodiment, logical components 116 may utilize one or more projectors 115, such as a scanning laser or other components to display or reflect images directly or indirectly on the lenses 112. For example, one or more projectors 115 may project content onto the lenses 112. In one embodiment, the projectors 115 may be integrated into a portion of the frame 114, the lenses 112, or the logical components 116. The focus, direction, size, and so forth may be adapted so that the content may be properly viewed by the user (whether displayed on the lenses 112 or refracted to the eyes of the user 101).
  • In another embodiment, the projectors 115 may include cameras for tracking the eye movements of the user 101. The eye movements may be utilized to make selections, receive user input, or otherwise select content for display by the smart glasses 110. For example, the user 101 may switch between applications, information, or data sets by looking (e.g., tracking retina motion) at specific content, performing specified eye movements, blinking commands, or so forth. In another embodiment, the cameras may also be utilized to use other user 101 clues or actions, such as facial expressions (e.g., motion or shape of the eyes, mouth, eyebrows, cheeks, etc.), hand motions, or other activities to implement specific commands. In another embodiment, the cameras may face forward and may utilize various wavelengths and spectra to enhance the vision of the user 101. For example, infrared, thermal, or other optical or image sensors may take in images and then project those images onto the lenses 112 liar viewing by the user 101.
  • In one embodiment, the smart glasses 110 may utilize short-range or long-range wireless communications to communicate with the wireless earpieces 102 through the wireless signal 106 or devices of the network 122 through the wireless signal 124. For example, the smart glasses 110 may include a Bluetooth and cellular transceiver within the logical components 116. In one embodiment, the smart glasses 110 may communicate with the wireless earpieces 102 through the wireless signal 106. For example, the wireless signal 106 may be a Bluetooth, Wi-Fi, Zigbee, Ant+, or other short range wireless communication. The smart glasses 110 may include any number of logical components 112. In another embodiment, the smart glasses 110 may be configured to physically connect to or integrate with the wireless earpieces 102. For example, small flexible connectors may be connected to ports of the wireless earpieces 102. Flexible connectors, such as wires may act as lanyards for the wireless earpieces 102. In another embodiment, the wireless earpieces 102 may connect to the frame 114 to fit in the ears of the user 101. For example, magnetic connectors may electrically and physically interface the wireless earpieces with the smart glasses 110 for enhanced functionality (e.g., communications, battery life, synchronization, etc.).
  • The display 126 may represent any number of displays, such as monitors, televisions, smart televisions, projectors, holographic displays, or so forth. The wireless earpieces 102 may control content displayed to any of the devices of the communication system 100. The display 126 may also represent any number of wearable displays or mobile displays that may be utilized by the user 101.
  • The wireless device 128 may represent any number of wireless electronic devices, such as smart phones, laptops, gaming devices, music players, personal digital assistants, vehicle systems, or so forth. The wireless device 128 may communicate utilizing any number of wireless connections, standards, or protocols (e.g., near field communications, Bluetooth, Wi-Fi, ANT+, etc.). For example, the wireless device 128 may be a touch screen cellular phone that communicates with the wireless earpieces 102 utilizing Bluetooth communications. The wireless device 128 may implement and utilize any number of operating systems, kernels, instructions, or applications that may make use of the sensor data or user input received from the wireless earpieces 102. For example, the wireless device 128 may represent any number of android, iOS, Windows, open platforms, or other systems. Similarly, the wireless device 128 may include a number of applications that utilize the user input, biometric data, and other feedback from the wireless earpieces 102 to display applicable information and data, control the applications, or make other selections. For example, biometric information (including, high, low, average, or other values) may be processed by the wireless earpieces 102 or the wireless device 128 to display heart rate, blood oxygenation, altitude, speed, distance traveled, calories burned, or other applicable information.
  • In one embodiment, the wireless device 128 may include any number of input components and sensors (e.g., similar to those described with regard to the wireless earpieces 102) that may be utilized to augment the input and sensor readings of the wireless earpieces 102. For example, a microphone of the wireless device 128 may determine an amount and type of ambient noise. The noise may he analyzed and utilized to filter the sensor readings made by the wireless earpieces 102 to maximize the accuracy and relevance of the sensor measurements of the wireless earpieces 102. For example, the wireless earpieces 102 may adjust the information that is displayed visually to the smart glasses 110 in response to extremely noisy environments (e.g., showing a visual indicator to turn in loud environments, a blind spot indicator, etc.) Filtering, tuning, and adaptation for the sensor measurements may be made for signal noise, electronic noise, or acoustic noise, all of which are applicable in the communication system 100. Sensor measurements made by either the wireless earpieces 102, wireless device 128, or sensor devices of the user 101 may be communicated with one another in the communication system 100. The wireless device 128 is representative of any number of personal computing, communications, exercise, medical, or entertainment devices that may communicate with the wireless earpieces 102.
  • The vehicle 130 may include any number of computing, communications, entertainment, and control systems that may be integrated with or utilized within the vehicle 130. For example, the wireless earpieces 102 may receive music streamed from the vehicle 130, The wireless earpieces 102 may also control vehicle systems, such as UPS, car locks (e.g., doors, truck, windows, panels, trunk, etc.), window controls, emergency systems, music and video systems, telephone features, performance tuning, and so forth.
  • The camera 134 and computer 132 may also receiving information, data, and commands form the wireless earpieces 102. In one embodiment, the user 101 may send an audio command to the camera 134 to take a picture of the user 101 and her family posed in front of the camera 134. In another embodiment, the user 101 may dictate content or control programs and operation of the computer 132 through the wireless earpieces 102. The camera 134 may also represent one or more cameras or a camera system. For example, the camera 134 may represent an array of personal cameras that provide multiple views around the periphery (e.g., side views, behind, etc.) of the user 101. The user 101 may move her eyes or head to change views displayed by the smart glasses 110 between the different views of the camera. Displaying different views provided by the camera 134 may be useful for bikers, vehicles, police officers, or so forth. In one embodiment, the logic 116 may include cameras that look out to the sides of the user 101 when worn. Additionally, the frame 114 may include cameras at the end of the earpieces that look backward to provide a rear/side view for the user. Additional cameras may be utilized to provide a three hundred and sixty degree view around the user 101 at all times utilizing the wireless earpieces. The different views may be communicated to portions of the lenses 112.
  • With respect to the wireless earpieces 102, sensor measurements or user input may refer to measurements made by one or both of the wireless earpieces 102. For example, the wireless earpieces 102 may determine that user input of a sensor in the right wireless earpiece 104 is very noisy and, as a result, may utilize the sensor signal from the sensors of the left wireless earpiece 103 as the primary measurement. The wireless earpieces 102 may also switch back and forth between sensors of the left and right wireless earpieces 104, 103 in response to varying noise for both of the wireless earpieces 102. As a result, the clearest sensor signal may be utilized at any given time. In one embodiment, the wireless earpieces 102 may switch sensor measurements in response to the sensor measurements exceeding or dropping below a specified threshold.
  • The user 101 may also be wearing or carrying any number of sensor-enabled devices, such as heart rate monitors, pacemakers, smart glasses, smart watches or bracelets (e.g., Apple watch, Fitbit, etc.), or other sensory devices that may be worn, attached to, or integrated with the user 101. The data and information from the external sensor devices may be communicated to the wireless earpieces 102. In another embodiment, the data and information from the external sensor devices may be utilized to perform additional processing of the information sent from the wireless earpieces 102 to the wireless device 128. Other examples of body mounted sensors including a display are shown in Boesen U.S. Pat. Nos. 6,470,893 and 6,823,195 which are hereby incorporated by reference and may also be integrated or utilized within the communication system 100.
  • The sensors of the wireless earpieces 102 may also be positioned at enantiomeric locations. For example, a number of colored light emitting diodes may be positioned to provide variable data and information, such as heart rate, respiratory rate, and so forth. The data gathered by the LED arrays may be sampled and used alone or in aggregate with other sensors. As a result, sensor readings may be enhanced and strengthened with additional data.
  • The user 101 may also wear a smart watch 136 (e.g., Apple, Samsung, Sony smart watches, etc.). The smart watch 136 (or other wearable sensor) may utilize bio-potential sensing to determine various user 101 biometrics. The user 101 may view the data on the smart glasses 110 when viewing the smart watch 136 is inconvenient or not possible. The data from the smart watch 136 may be displayed remotely on the lenses 112 of the smart glasses 110 and/or played audibly to the user 101 utilizing the speakers of the wireless earpieces 102. Any of the devices of the communication system 100 may also push data to the other devices in contact with the user 101 directly or through the network 122, such as from the smart watch 136 to an in-vehicle display of the vehicle 130 (which may represent a car, motorcycle, bicycle, boat, plane, bus, etc.).
  • In another embodiment, the wireless earpieces 102 may represent wireless devices that may be ingested or implanted into a user. For example, the described electronics may be endoscopic pills, pacemakers, tracking devices, contact lenses, oral implants, bone implants, artificial organs, or so forth.
  • FIG. 2 is a block diagram of a wireless earpiece system 200 in accordance with an illustrative embodiment. In one embodiment, the wireless earpiece system 200 may include wireless earpieces 202 (described collectively rather than individually) and smart glasses 204, in one embodiment, the wireless earpiece system 200 may enhance communications and functionality of the wireless earpieces 202.
  • As shown, the wireless earpieces 202 may be wirelessly linked to the smart glasses 204. User input and commands may be received from either the wireless earpieces 202 or the smart glasses 204 for implementation on either of the devices of the wireless earpiece system 200 (or other externally connected devices). As previously noted, the wireless earpieces 102 may be referred to or described herein as a pair (wireless earpieces) or singularly (wireless earpiece). The description may also refer to components and functionality of each of the wireless earpieces 202 collectively or individually.
  • In some embodiments, the smart glasses 204 may act as a logging tool for receiving information, data, or measurements made by the wireless earpieces 202. For example, the smart glasses 204 may be worn by the user to download data from the wireless earpieces in real-time. As a result, the smart glasses 204 may he utilized to store, display, and synchronize data for the wireless earpieces 202. For example, the smart glasses 204 may display pulse, oxygenation, distance, calories burned, and so firth as measured by the wireless earpieces 202. The wireless earpieces 202 and the smart glasses 204 may have any number of electrical configurations, shapes, and colors and may include various circuitry, connections, and other components.
  • In one embodiment, the wireless earpieces 202 may include a battery 208, a logic engine 210, a memory 212, user interface 214, physical interface 215, a transceiver 216, and sensors 212. The smart glasses 204 may have a battery 218, a memory 220, an interface 222, and sensor or sensors 224. The battery 208 is a power storage device configured to power the wireless earpieces 202. Likewise, the battery 218 is a power storage device configured to power the smart glasses 204. In other embodiments, the batteries 208 and 218 may represent a fuel cell, thermal electric, generator, piezo electric charger, solar charger, ultra-capacitor, or other existing or developing power storage technologies.
  • The logic engine 210 is the logic that controls the operation and functionality of the wireless earpieces 202. The logic engine 210 may include circuitry, chips, and other digital logic. The logic engine 210 may also include programs, scripts, and instructions that may be implemented to operate the logic engine 210. The logic engine 210 may represent hardware, software, firmware, or any combination thereof. In one embodiment, the logic engine 210 may include one or more processors. The logic engine 210 may also represent an application specific integrated circuit (ASIC) or field programmable gate array (FPGA). The logic engine 210 may be utilize information and from the sensors 212 to determine the biometric, information, data, and readings of the user. The logic engine 202 may utilize this information and other criteria to inform the user of the biometrics (e.g., audibly, through an application of a connected device, tactilely, etc.).
  • The logic engine 210 may also process user input to determine commands implemented by the wireless earpieces 202 or sent to the wireless earpieces 204 through the transceiver 216. The user input may be determined by the sensors 217 to determine specific actions to be taken. In one embodiment, the logic engine 210 may implement a macro allowing the user to associate user input as sensed by the sensors 217 with commands.
  • In one embodiment, a processor included in the logic engine 210 is circuitry or logic enabled to control execution of a set of instructions. The processor may be one or more microprocessors, digital signal processors, application-specific integrated circuits (ASIC), central processing units, or other devices suitable for controlling an electronic device including one or more hardware and software elements, executing software, instructions, programs, and applications, converting and processing signals and information, and performing other related tasks. The processor may be a single chip or integrated with other computing or communications elements of the smart case 202.
  • The memory 212 is a hardware element, device, or recording media configured to store data for subsequent retrieval or access at a later time. The memory 212 may be static or dynamic memory. The memory 212 may include random access memory, cache, removable media drive, mass storage, or configuration suitable as storage for data, instructions, and information. In one embodiment, the memory 212 and the logic engine 210 may be integrated. The memory may use any type of volatile or non-volatile storage techniques and mediums. The memory 212 may store information related to the status of a user, wireless earpieces 202, smart glasses 204, and other peripherals, such as a wireless device, smart case for the wireless earpieces 202, smart watch, and so forth. In one embodiment, the memory 212 may display instructions or programs for controlling the user interface 714 including one or more LEDs or other light emitting components, speakers, tactile generators (e.g., vibrator), and so forth. The memory 212 may also store the user input information associated with each command.
  • The transceiver 216 is a component comprising both a transmitter and receiver which may be combined and share common circuitry on a single housing. The transceiver 216 may communicate utilizing Bluetooth, Wi-Fi, ZigBee, Ant+, near field communications, wireless USB, infrared, mobile body area networks, ultra-wideband communications, cellular (e.g., 3G, 4G, 5G, PCS, GSM, etc.) or other suitable radio frequency standards, networks, protocols, or communications. The transceiver 216 may also be a hybrid transceiver that supports a number of different communications. For example, the transceiver 216 may communicate with the smart glasses 204 or other systems utilizing wired interfaces (e.g., wires, traces, etc.), NFC or Bluetooth communications.
  • The components of the wireless earpieces 202 (or the wireless earpiece system 200) may be electrically connected utilizing any number of wires, contact points, leads, busses, wireless interfaces, or so forth. In addition, the wireless earpieces 202 may include any number of computing and communications components, devices of elements which may include busses, motherboards, circuits, chips, sensors, ports, interfaces, cards, converters, adapters, connections, transceivers, displays, antennas, and other similar components. The physical interface 215 is hardware interface of the wireless earpieces 202 for connecting and communicating with the smart glasses 204 or other electrical components.
  • The physical interface 215 may include any number of pins, arms, or connectors for electrically interfacing with the contacts or other interface components of external devices or other charging or synchronization devices. For example, the physical interface 215 may be a micro USB port. In one embodiment, the physical interface 215 is a magnetic interface that automatically couples to contacts or an interface of the smart glasses 204. In another embodiment, the physical interface 215 may include a wireless inductor for charging the wireless earpieces 202 without a physical connection to a charging device.
  • The user interface 214 is a hardware interface for receiving commands, instructions, or input through the touch (haptics) of the user, voice commands, or predefined motions. The user interface 214 may be utilized to control the other functions of the wireless earpieces 202. The user interface 214 may include the LED array, one or more touch sensitive buttons or portions, as miniature screen or display, or other input/output components. The user interface 214 maybe controlled by the user or based on commands received from the smart glasses 204 or a linked wireless device.
  • In one embodiment, the user may provide feedback by tapping the user interface 214 once, twice, three times, or any number of times. Similarly, a swiping motion may be utilized across the user interface 214 (e.g., the exterior surface of the wireless earpieces 202) to implement a predefined action. Swiping motions in any number of directions may be associated with specific activities, such as play music pause, fast forward, rewind, activate a digital assistant (e.g., Siri, Cortana, smart assistant, etc.). The swiping motions may also be utilized to control actions and functionality of the smart glasses 204 or other external devices (e.g., smart television, camera array, smart watch, etc.). The user nays also provide user input by moving her head in a particular direction or motion or based on the user's position or location. For example, the user may utilize voice commands, head gestures, or touch commands to change the content displayed by the smart glasses 204.
  • The sensors 217 may include pulse oximeters, accelerometers, gyroscopes, magnetometers, inertial sensors, photo detectors, miniature cameras, and other similar instruments for detecting location, orientation, motion, and so forth. The sensors 21 may also be utilized to gather optical images, data, and measurements and determine an acoustic noise level, electronic noise in the environment, ambient conditions, and so forth. The sensors 217 may provide measurements or data that may be utilized to filter or select images for display by the smart glasses 204. For example, motion or sound detected on the left side of the user may be utilized to command the smart glasses to display camera images from the left side of the user. Motion or sound may be utilized, however, any number of triggers may be utilized to send commands to the smart glasses 204.
  • The smart glasses 204 may include components similar in structure and functionality to those shown for the wireless earpieces 202 including a battery 218, a memory a user interface 222, sensors 224, a logic engine 226, a display 228, and transceiver 230. The smart glasses 204 may include the logic engine 226 for executing and implementing the processes and functions as are herein described. The battery 218 of the smart glasses 204 may be integrated into the frames of the smart glasses 204 and may have extra capacity which may be utilized to charge the wireless earpieces 202. For example, the wireless earpieces 202 may be magnetically coupled or connected to the smart glasses 204 so that the battery 218 may be charged. All or a portion of the logic engine 226, sensors, user interface 222, sensors 224, display, and transceiver 230 may be integrated in the frame and/or lenses of the smart glasses 204.
  • The user interface 222 of the smart glasses 204 may include a touch interface or display for indicating the status of the smart glasses 204. For example, an external LED light may indicate the battery status of the smart glasses 204 as well as the connected wireless earpieces 202, connection status (e.g., linked to the wireless earpieces 202, wireless device, etc.), download/synchronization status (e.g., synchronizing, complete, last synchronization, etc.), or other similar information.
  • The display 228 may be integrated into the leases of the smart glasses 204 or represent one or more projectors that may project content directly or reflectively to the eyes of the user. For example, the display 228 may represent a transparent organic light emitting diode lens that is see through and may be utilized to display content. Projectors of the display 228 may utilize any number of wavelengths or light sources to display data, images, or other content to the user.
  • An LED array of the user interface 222 may also be utilized for display actions. For example, an LED may be activated in response to someone or something being in the user's blind spot while riding a bicycle. In another embodiment, device status indications may emanate from the LED array of the wireless earpieces 202 themselves, triggered for display by the user interface 222 of the smart glasses 204. The battery 218 may itself be charged through a physical interface of the user interface 222. The physical interface may be integrated with the user interface 222 or may be a separate interface. For example, the user interface 222 may also include a hardware interface port, connector, etc.) for connecting the smart glasses 204 to a power supply or other electronic device. The user interface 222 may be utilized for charging as well as communications with externally connected devices. For example, the user interface 222 may represent a mini-USB, micro-USB or other similar miniature standard connector. In another embodiment, a wireless inductive charging system may be utilized to initially replenish power to the wireless earpieces 202. The smart glasses 204 may also be charged utilizing inductive charging.
  • In another embodiment, the smart glasses 204 may also include sensors for detecting the location, orientation, and proximity of the wireless earpieces 202. For example, the smart glasses 204 may include optical sensors or cameras for capturing images and other content around the periphery of the user (e.g., front, sides, behind, etc.). The smart glasses 204 may detect any of wavelengths and spectra to provide distinct images, enhancement, data, and content to the user. The smart glasses 204 may also include an LED array, galvanic linkage or other touch sensors, battery, solar charger, actuators or vibrators, one or more touch screens or displays, an NFC chip, or other components.
  • As originally packaged, the wireless earpieces 202 and the smart glasses 204 n include peripheral devices such as charging cords, power adapters, inductive charging adapters, solar cells, batteries, lanyards, additional light arrays, speakers, smart case covers, transceivers (e.g., Wi-Fi, cellular, etc.), or so forth.
  • FIG. 3 is a flowchart of a process for controlling smart glasses utilizing wireless earpieces in accordance with an illustrative embodiment. The process of FIG. 3, may be implemented by one or more wireless earpieces, smart glasses, and any number of other devices communicating directly or through a personal area network.
  • In one embodiment, the process of FIG. 3 may begin by linking wireless earpieces with smart glasses (step 302). The wireless earpieces may be linked with the smart glasses utilizing any number of communications, standards, or protocols. For example, the devices may be linked by a Bluetooth connection. The process may require that the devices he paired utilizing an identifier, such as a passcode, password, serial number, voice identifier, radio frequency, or so firth. The wireless earpieces may be linked with the smart glasses and any number of other devices directly or through a network, such as a personal area network. In alternative embodiment, the wireless earpieces may be linked with the smart glasses utilizing wires with magnetic contacts. Any number of ports, connectors, and conductors may also be utilized to link the wireless earpieces with the smart glasses.
  • Next, the wireless earpieces receive user input through the wireless earpieces (step 304). The user input may represent voice or audio commands (e.g., words, clicks, noises, etc.), head gestures (e.g., tilting, jolts, nods, etc.), taps, touches, locations or positions, swipes, or motions. In one embodiment, the user may train the wireless earpieces two detects specific actions and associate those actions with commands or instructions that are executed or implemented by the wireless earpieces. The user input may be received utilizing any of the sensor systems of the wireless earpieces, such as microphones, touchscreens, accelerometers, gyroscopes, GPS chip, and so forth.
  • The wireless earpieces determine a command associated with the user input (step 306). As previously noted, the command may be associated with the user input by default or by customization efforts performed by the user. The command may represent an instruction, activity, or action performed by the wireless earpieces themselves or, alternatively, as command that is communicated to one or more external devices, such as the smart glasses, in one embodiment, the command may be associated with actions performed by the smart glasses.
  • Next, the wireless earpieces send the command to the smart glasses in communication with the wireless earpieces (step 308). In one embodiment, the command is immediately implemented by the smart glasses. In other embodiments, the command may be converted or translated into a command, instructions, or so forth that may be implemented by the smart glasses.
  • At any time, the process of FIG. 3 may be terminated or suspended based on detected events. Suspension of communications may be performed to allow the user to focus on real world events applicable to the user. For example, the features of the illustrative embodiments may not be available to a user while driving.
  • The illustrative embodiments provide a system, method, and network for augmenting the worldview of a user through a nonthreatening or privacy invading smart glass device. The information provided is safely done in such a way to prevent distraction of the user. As a result, the user may wirelessly distribute and view data and other information generated by devices of a personal area network. As a result, the data and information is available to the user in new and unparalleled manners. The smart glasses may also be utilized to enhance the vision of the user through magnification, dynamic lens adaptation, or vision correction.
  • The features, steps, and components of the illustrative embodiments may be combined in any number of ways and are not limited specifically to those described. In particular, the illustrative embodiments contemplate numerous variations in the smart devices and communications described. The foregoing description has been presented for purposes of illustration and description. It is not intended to be an exhaustive list or limit any of the disclosure to the precise forms disclosed. It is contemplated that other alternatives or exemplary aspects are considered included in the disclosure. The description is merely examples of embodiments, processes or methods of the invention. It is understood that any other modifications, substitutions, and/or additions may be made, which are within the intended spirit and scope of the disclosure. For the foregoing, it can be seen that the disclosure accomplishes at least all of the intended objectives.
  • The previous detailed description is of a small number of embodiments for implementing the invention and is not intended to be limiting in scope. The following claims set forth a number of the embodiments of the invention disclosed with greater particularity.

Claims (19)

What is claimed is:
1. A method fur communicating utilizing wireless earpieces comprising:
linking the wireless earpieces with smart glasses;
receiving user input through the wireless earpieces;
determining a command associated with the user input; and
sending the command to the smart glasses from the wireless earpieces.
2. The method of claim 1, wherein the wireless earpieces are linked with the smart glasses utilizing a Bluetooth connection.
3. The method of claim 1, wherein the user input is a voice command received by a microphone of the wireless earpieces.
4. The method of claim 1, wherein the user input is a touch command received by a touch interlace of the wireless earpieces.
5. The method of claim 1, further comprising:
training the wireless earpieces to associate each of a plurality of user inputs with each of a plurality of commands.
6. The method of claim 5, wherein each of the plurality of user inputs is performed a number of times by a user to be associated with each of the plurality of commands.
7. The method of claim 1, wherein each of a plurality of user inputs including the user input are previously associated with each of a plurality of commands.
8. The method of claim 1, wherein the smart glasses implement the command received from the wireless earpieces.
9. The method of claim 1, wherein the command controls information displayed to a user of the smart glasses and the wireless earpieces.
10. The method of claim 1, wherein lenses of the smart glasses dynamically adapt to vision of a user.
11. The method of claim 1, wherein the command implements augmented reality information for the smart glasses.
12. The method of claim 1, wherein the command controla data and data streams presented to lenses of the smart glasses.
13. A wireless earpiece, comprising:
a frame for fitting in an ear of a user;
a logic engine controlling functionality of the wireless earpiece;
a plurality of sensors receiving biometric information from the user;
a transceiver communicating with smart glasses;
wherein, the plurality of sensors receive user input from the user, the logic engine determines a command associated with the user input, and the transceiver sends the command to the smart glasses from the wireless earpiece.
14. The wireless earpiece of claim 13, wherein the transceiver establishes a bluetooth link with the smart glasses.
15. The wireless earpiece of claim 13, wherein the user input is any of a voice command received by a microphone of the wireless earpiece, a touch command received by a touch interface of the wireless earpiece, or a gesture received by the touch interface of the wireless earpiece.
16. The wireless earpiece of claim 13, wherein each of a plurality of user inputs including the user input are previously associated with each of a plurality of commands by the user.
17. The wireless earpiece of claim 13, wherein the smart glasses implement the command received from the wireless earpieces.
18. The wireless earpiece of claim 17, wherein the command specifies content to be displayed by one or more lenses of the smart glasses.
19. The wireless earpiece of claim 13, wherein the user input is received by a position or location of the user.
US15/290,459 2015-10-20 2016-10-11 Personal Area Network Devices System and Method Pending US20170111723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201562244147P true 2015-10-20 2015-10-20
US15/290,459 US20170111723A1 (en) 2015-10-20 2016-10-11 Personal Area Network Devices System and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/290,459 US20170111723A1 (en) 2015-10-20 2016-10-11 Personal Area Network Devices System and Method
US15/347,763 US20170105622A1 (en) 2015-10-20 2016-11-09 Monitoring pulse transmissions using radar

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/347,763 Continuation US20170105622A1 (en) 2015-10-20 2016-11-09 Monitoring pulse transmissions using radar

Publications (1)

Publication Number Publication Date
US20170111723A1 true US20170111723A1 (en) 2017-04-20

Family

ID=57281187

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/290,459 Pending US20170111723A1 (en) 2015-10-20 2016-10-11 Personal Area Network Devices System and Method
US15/347,763 Pending US20170105622A1 (en) 2015-10-20 2016-11-09 Monitoring pulse transmissions using radar

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/347,763 Pending US20170105622A1 (en) 2015-10-20 2016-11-09 Monitoring pulse transmissions using radar

Country Status (3)

Country Link
US (2) US20170111723A1 (en)
EP (1) EP3365747A1 (en)
WO (1) WO2017067995A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10045117B2 (en) 2016-11-04 2018-08-07 Bragi GmbH Earpiece with modified ambient environment over-ride function
US10045112B2 (en) 2016-11-04 2018-08-07 Bragi GmbH Earpiece with added ambient environment
US10049184B2 (en) 2016-10-07 2018-08-14 Bragi GmbH Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method
US10058282B2 (en) 2016-11-04 2018-08-28 Bragi GmbH Manual operation assistance with earpiece with 3D sound cues
US10062373B2 (en) 2016-11-03 2018-08-28 Bragi GmbH Selective audio isolation from body generated sound system and method
US10063957B2 (en) 2016-11-04 2018-08-28 Bragi GmbH Earpiece with source selection within ambient environment
US10104487B2 (en) 2015-08-29 2018-10-16 Bragi GmbH Production line PCB serial programming and testing method and system
US10104464B2 (en) 2016-08-25 2018-10-16 Bragi GmbH Wireless earpiece and smart glasses system and method
US10122421B2 (en) 2015-08-29 2018-11-06 Bragi GmbH Multimodal communication system using induction and radio and method
US10117604B2 (en) 2016-11-02 2018-11-06 Bragi GmbH 3D sound positioning with distributed sensors
US10169561B2 (en) 2016-04-28 2019-01-01 Bragi GmbH Biometric interface system and method
US10200780B2 (en) 2016-08-29 2019-02-05 Bragi GmbH Method and apparatus for conveying battery life of wireless earpiece
US10205814B2 (en) 2016-11-03 2019-02-12 Bragi GmbH Wireless earpiece with walkie-talkie functionality
US10201309B2 (en) 2016-07-06 2019-02-12 Bragi GmbH Detection of physiological data using radar/lidar of wireless earpieces
US10212505B2 (en) 2015-10-20 2019-02-19 Bragi GmbH Multi-point multiple sensor array for data sensing and processing system and method
US10225638B2 (en) 2016-11-03 2019-03-05 Bragi GmbH Ear piece with pseudolite connectivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065736A (en) * 2017-06-12 2017-08-18 国网江苏省电力公司无锡供电公司 Intelligent integrated transformer station patrol vest

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339706B1 (en) * 1999-11-12 2002-01-15 Telefonaktiebolaget L M Ericsson (Publ) Wireless voice-activated remote control device
US20130176202A1 (en) * 2012-01-11 2013-07-11 Qualcomm Incorporated Menu selection using tangible interaction with mobile devices
US20140254024A1 (en) * 2013-03-11 2014-09-11 Seiko Epson Corporation Virtual image display device
US20150264474A1 (en) * 2014-03-13 2015-09-17 Lg Electronics Inc. Wireless sound equipment
US20160107591A1 (en) * 2014-10-17 2016-04-21 Hyundai Motor Company Apparatus and method for controlling of vehicle using wearable device
US20160154493A1 (en) * 2013-07-01 2016-06-02 Lg Electronics Inc. Display device and control method thereof
US20170108697A1 (en) * 2015-10-16 2017-04-20 Ostendo Technologies, Inc. Dual-Mode Augmented/Virtual Reality (AR/VR) Near-Eye Wearable Displays

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172522A1 (en) * 2009-01-07 2010-07-08 Pillar Ventures, Llc Programmable earphone device with customizable controls and heartbeat monitoring
US9271064B2 (en) * 2013-11-13 2016-02-23 Personics Holdings, Llc Method and system for contact sensing using coherence analysis
US9986934B2 (en) * 2014-01-29 2018-06-05 California Institute Of Technology Microwave radar sensor modules
US20150234187A1 (en) * 2014-02-18 2015-08-20 Aliphcom Adaptive optics
GB2532745B (en) * 2014-11-25 2017-11-22 Inova Design Solution Ltd Portable physiology monitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339706B1 (en) * 1999-11-12 2002-01-15 Telefonaktiebolaget L M Ericsson (Publ) Wireless voice-activated remote control device
US20130176202A1 (en) * 2012-01-11 2013-07-11 Qualcomm Incorporated Menu selection using tangible interaction with mobile devices
US20140254024A1 (en) * 2013-03-11 2014-09-11 Seiko Epson Corporation Virtual image display device
US20160154493A1 (en) * 2013-07-01 2016-06-02 Lg Electronics Inc. Display device and control method thereof
US20150264474A1 (en) * 2014-03-13 2015-09-17 Lg Electronics Inc. Wireless sound equipment
US20160107591A1 (en) * 2014-10-17 2016-04-21 Hyundai Motor Company Apparatus and method for controlling of vehicle using wearable device
US20170108697A1 (en) * 2015-10-16 2017-04-20 Ostendo Technologies, Inc. Dual-Mode Augmented/Virtual Reality (AR/VR) Near-Eye Wearable Displays

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10104487B2 (en) 2015-08-29 2018-10-16 Bragi GmbH Production line PCB serial programming and testing method and system
US10122421B2 (en) 2015-08-29 2018-11-06 Bragi GmbH Multimodal communication system using induction and radio and method
US10212505B2 (en) 2015-10-20 2019-02-19 Bragi GmbH Multi-point multiple sensor array for data sensing and processing system and method
US10169561B2 (en) 2016-04-28 2019-01-01 Bragi GmbH Biometric interface system and method
US10201309B2 (en) 2016-07-06 2019-02-12 Bragi GmbH Detection of physiological data using radar/lidar of wireless earpieces
US10104464B2 (en) 2016-08-25 2018-10-16 Bragi GmbH Wireless earpiece and smart glasses system and method
US10200780B2 (en) 2016-08-29 2019-02-05 Bragi GmbH Method and apparatus for conveying battery life of wireless earpiece
US10049184B2 (en) 2016-10-07 2018-08-14 Bragi GmbH Software application transmission via body interface using a wearable device in conjunction with removable body sensor arrays system and method
US10117604B2 (en) 2016-11-02 2018-11-06 Bragi GmbH 3D sound positioning with distributed sensors
US10225638B2 (en) 2016-11-03 2019-03-05 Bragi GmbH Ear piece with pseudolite connectivity
US10205814B2 (en) 2016-11-03 2019-02-12 Bragi GmbH Wireless earpiece with walkie-talkie functionality
US10062373B2 (en) 2016-11-03 2018-08-28 Bragi GmbH Selective audio isolation from body generated sound system and method
US10063957B2 (en) 2016-11-04 2018-08-28 Bragi GmbH Earpiece with source selection within ambient environment
US10058282B2 (en) 2016-11-04 2018-08-28 Bragi GmbH Manual operation assistance with earpiece with 3D sound cues
US10045112B2 (en) 2016-11-04 2018-08-07 Bragi GmbH Earpiece with added ambient environment
US10045117B2 (en) 2016-11-04 2018-08-07 Bragi GmbH Earpiece with modified ambient environment over-ride function

Also Published As

Publication number Publication date
US20170105622A1 (en) 2017-04-20
EP3365747A1 (en) 2018-08-29
WO2017067995A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US9330499B2 (en) Event augmentation with real-time information
EP2828704B1 (en) Wearable device with input and output structures
US8587514B2 (en) Device for controlling an external unit
CN103748501B (en) Wearable device having input and output structures
JP5965410B2 (en) The optimal focus area for the augmented reality display
CN103091843B (en) Through display brightness control
US9645394B2 (en) Configured virtual environments
AU2011204946C1 (en) Automatic text scrolling on a head-mounted display
US9846308B2 (en) Haptic systems for head-worn computers
JP6348176B2 (en) Adaptation event recognition
US8963956B2 (en) Location based skins for mixed reality displays
US9600721B2 (en) Staredown to produce changes in information density and type
EP3014338B1 (en) Tracking head movement when wearing mobile device
US9395543B2 (en) Wearable behavior-based vision system
US10185147B2 (en) Enhanced optical and perceptual digital eyewear
US20150309534A1 (en) Ear horn assembly for headworn computer
US8696113B2 (en) Enhanced optical and perceptual digital eyewear
JP6083880B2 (en) Wearable with the input and output mechanism equipment
US9927877B2 (en) Data manipulation on electronic device and remote terminal
US9921646B2 (en) Head-mounted display device and method of controlling head-mounted display device
US9651787B2 (en) Speaker assembly for headworn computer
US9176582B1 (en) Input system
US9323325B2 (en) Enhancing an object of interest in a see-through, mixed reality display device
EP2751609B1 (en) Head mounted display with iris scan profiling
JP6328133B2 (en) Wearable food nutrients feedback system