US20180328531A1 - Plugging Apparatus, System and Method for Pipe Lining Applications - Google Patents

Plugging Apparatus, System and Method for Pipe Lining Applications Download PDF

Info

Publication number
US20180328531A1
US20180328531A1 US15/971,785 US201815971785A US2018328531A1 US 20180328531 A1 US20180328531 A1 US 20180328531A1 US 201815971785 A US201815971785 A US 201815971785A US 2018328531 A1 US2018328531 A1 US 2018328531A1
Authority
US
United States
Prior art keywords
plugs
plug
assembly
pipe
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/971,785
Inventor
Kent Weisenberg
Ibrahiim Syed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIPP Technologies LLC
Original Assignee
SIPP Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIPP Technologies LLC filed Critical SIPP Technologies LLC
Priority to US15/971,785 priority Critical patent/US20180328531A1/en
Assigned to SIPP TECHNOLOGIES, LLC reassignment SIPP TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYED, Ibrahiim, WEISENBERG, KENT
Priority to PCT/US2018/032003 priority patent/WO2018209044A1/en
Publication of US20180328531A1 publication Critical patent/US20180328531A1/en
Assigned to STRUCTURAL GROUP, INC. reassignment STRUCTURAL GROUP, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIPP TECHNOLOGIES, LLC
Assigned to STRUCTURAL TECHNOLOGIES IP, LLC reassignment STRUCTURAL TECHNOLOGIES IP, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIPP TECHNOLOGIES, LLC
Assigned to SIPP TECHNOLOGIES, LLC reassignment SIPP TECHNOLOGIES, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: STRUCTURAL TECHNOLOGIES IP, LLC
Assigned to SIPP TECHNOLOGIES, LLC reassignment SIPP TECHNOLOGIES, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY TYPE FROM APPLICATION NUMBER TO PATENT NUMBER FOR PATENT NOS. 10239081 AND 10240707 PREVIOUSLY RECORDED AT REEL: 057135 FRAME: 0885. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST. Assignors: STRUCTURAL TECHNOLOGIES IP, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/20Masking elements, i.e. elements defining uncoated areas on an object to be coated
    • B05B12/26Masking elements, i.e. elements defining uncoated areas on an object to be coated for masking cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0004Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/30Lining or sheathing of internal surfaces using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/04Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D using preformed elements
    • B29C73/10Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D using preformed elements using patches sealing on the surface of the article
    • B29C73/12Apparatus therefor, e.g. for applying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/40Constructional aspects of the body
    • F16L55/44Constructional aspects of the body expandable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/10Treating the inside of pipes
    • F16L2101/18Lining other than coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing

Definitions

  • This invention relates broadly to the field of linings for internal pipe surfaces and methods of applying these linings, and more particularly relates to such linings adapted and adaptable for use in the structural repair or remediation of degraded, damaged or leaking pipes.
  • the invention relates to Sprayed-In-Place-Pipe (SIPP) lining methods, systems and technologies.
  • SIPP Sprayed-In-Place-Pipe
  • the invention most particularly relates in general to methods and apparatuses for temporarily blocking the openings of service laterals, i.e., smaller diameter lateral pipes connected to the wall of a larger mainline pipe, when the SIPP process is performed, such that the lining material does not negatively impact the openings of the smaller lateral pipes, i.e., produce a permanent blockage, or such that liquid flow from the service laterals is stopped during application and curing of the SIPP liner material.
  • service laterals i.e., smaller diameter lateral pipes connected to the wall of a larger mainline pipe
  • SIPP lining technology encompasses many different market sectors such as municipal water, industrial as well as governmental.
  • the pipe systems will consist of mainlines that intersect with numerous smaller diameter pipe for feed lines, drains, monitoring instrumentation etc.
  • these services have pipe diameters ranging from 0.5′′ to 1′′.
  • Fluid conveyance systems rely on the structural integrity of the pipe to safely and efficiently operate.
  • pipe systems that are degrading such that they fall below standards due to corrosion or crack propagation.
  • These systems include for example the potable water transmission lines to residential areas which can range in sizes of 6 to 48 inches and will typically have complex networks that were installed and modified over many years as the neighborhoods were developed.
  • CIPP Cast-In-Place-Pipe
  • SIPP Spray-In-Place-Pipe
  • a SIPP spraying apparatus traverses the pipe by being pulled by an electrical and resin-supplying tether, known as the umbilical, or through robotic armatures.
  • the spraying apparatus comprises a spinner member that ejects the lining material, such as an uncured or partially cured polymer resin, onto the inner diameter of the pipe, effectively creating a new pipe with a known thickness and structural properties inside the pre-existing pipe.
  • the lining application method for class I and class II systems is to simply apply the lining across or over the service laterals during the lining process.
  • the coating/lining is typically not intrusive to the performance of the service, i.e., the lining does not block the opening, however one can still have issues with liquid flow leaking from these service laterals.
  • This water or moisture negatively affects the surface of the mainline pipe being lined, and may cause adhesion and/or foaming issues, and may impede complete curing of the coating. Therefore, temporary blockage of flow from the service laterals is desirable in the SIPP process. This would also hold true for Class III and IV or ‘structural’ lining applications.
  • Such apparatus, system and method address these problems by providing an apparatus which inserts a plug into the service lateral openings prior to application of the liner material in the mainline pipe, the plug being removed to re-establish fluid communication between the service lateral and the mainline pipe.
  • the plug is liquid-soluble such that it is self-destructive in service laterals conducting water or other liquids, or wherein the plug is composed of a material having a low melt temperature so as to be self-destructive in the ambient environment or upon the direct application of heat.
  • the purpose of the apparatus, system and method of the invention in various embodiments is to automatically or easily reinstate the service laterals after lining the mainline pipes with the SIPP process during pipe remediation, rehabilitation or repair.
  • the apparatus being either semi-autonomous or fully autonomous, self-powered or pushed/pulled, navigates in the mainline pipe to locate the opening of the service laterals and upon detection of a service lateral, inserts a plug or insert member to block the service lateral opening.
  • These plug members preclude any flow or leakage from the service lateral, which in turn eradicates the issues of adhesion, foaming and curability of the lining material.
  • the plug members also block the service lateral opening so that when the pipe is lined the service lateral does become sealed over by the polymeric material.
  • the plug member is liquid-soluble, eliminating the need to relocate and uninstall the plug members, and is provided with a hydrophobic coating to repel the lining material, such that the plug member dissolves when liquid is again passed through the service lateral or mainline pipe to contact the non-coated surfaces of the plug members.
  • the plugger apparatus is either self-powered or adapted to be pulled or pushed by a separate powered drive member or by retrieval of an umbilical cable, the plugger apparatus having wheels, rollers, treads or the like for movement through the pipe.
  • the plugger apparatus comprises a plug storage compartment that retains a plurality of plug or insert members, a robotic arm assembly compartment, a plug feeder mechanism for delivering individual plug members from the plug storage compartment to the robotic arm assembly compartment, and an extendable/retractable robotic arm assembly to receive and insert the plug members into the service openings.
  • the robotic arm assembly comprises an extension mechanism and a gripping mechanism adapted to receive a plug member from the plug feeder mechanism, radially extend and press the plug member into a service lateral opening, release the plug member, and retract into the robotic arm assembly compartment to receive the next plug member.
  • the robotic arm assembly compartment is adapted to rotate about the longitudinal axis of the plugger apparatus to properly align the robotic arm assembly with a service lateral opening.
  • One or more alignment control systems such as for example cameras, laser pointers or the like, are provided on the plugger apparatus to locate a service lateral opening and properly align the robotic assembly for delivery of the plug member into the service lateral opening.
  • the invention may be summarized as a plugging apparatus adapted to plug service lateral openings in the interior of a pipe, the plugging apparatus comprising: a housing; transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings; a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly; said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly; said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe.
  • said plug gripping assembly comprising a receiver base, clamp members and a clamp actuator, said clamp actuator adapted to close said clamp members to retain and open said clamp members to release one of said plugs positioned on said receiver base;
  • said extension assembly comprising an extension shaft connected to said gripping assembly and an extension actuator adapted to extend and retract said extension shaft; said housing further retaining a plurality of chutes, said chutes retaining said plugs in rows, one of said plug loading actuators being associated with each of said chutes;
  • said manipulator compartment comprising a feed opening, wherein said manipulator compartment is rotatable to align said feed opening with one of said chutes such that each of said plugs is advanced through said feed opening into said manipulator compartment and said plug gripping assembly;
  • said plugs comprising an insertion portion and a head portion; said plugs formed of a liquid-soluble material;, said plugs having a hydrophobic coating;
  • said transport mechanisms comprising treads, rollers or wheels, and/or further comprising alignment control systems adapted to navigate the apparatus through the
  • the invention may be summarized as a method of plugging service lateral openings in a pipe comprising the steps of: providing a plugging apparatus comprising a housing; transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings; a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly; said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly; said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe; navigating said plugging apparatus said plugging apparatus through a pipe; locating a service lateral opening; aligning said manipulator compartment and said robotic arm assembly with the service lateral opening; extending said robotic arm assembly and inserting one of said plugs into said service lateral opening
  • said plugging apparatus further comprises alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation; and/or wherein said steps of navigating, locating, and aligning are controlled by said alignment control systems.
  • FIG. 1 is a perspective view of an embodiment of the plugging apparatus, shown in the non-loaded state.
  • FIG. 2 is an end view as seen from the longitudinal or transport axis of the plugging apparatus of FIG. 1 .
  • FIG. 3 is a top view, relative to the orientation shown in FIGS. 1 and 2 , of the plugging apparatus of FIG. 1 .
  • FIG. 4 is a side view, relative to the orientation shown in FIGS. 1 and 2 , of the plugging apparatus of FIG. 1 .
  • FIG. 5 is a cross-sectional view of the plugging apparatus of FIG. 1 , taken along line B-B of FIG. 4 .
  • FIG. 6 is a cross-sectional view of the plugging apparatus of FIG. 1 , taken along line A-A of FIG. 4 .
  • FIG. 7 is an exposed perspective view of an alternative embodiment of the plugging apparatus, shown from the end opposite the manipulator compartment and in the non-loaded state.
  • FIG. 8 is an exposed perspective view of the embodiment of the FIG. 7 , shown from the manipulator compartment end.
  • FIG. 9 is an exposed end view of the embodiment of FIG. 7 .
  • FIG. 10 is an exposed perspective view of the embodiment of FIG. 7 , shown from the manipulator end with a plug in the loaded state.
  • FIG. 11 is an exposed perspective view of the embodiment of FIG. 7 , shown from the manipulator end with a plug in the extended state.
  • the invention is a plugging apparatus, system and method of plugging circular service lateral openings in a pipe prior to its undergoing rehabilitation by a SIPP process or similar process, such that the with the plugs inserted into the service lateral openings, polymer material sprayed to coat the inner wall of the pipe will not block the service openings.
  • a plugging apparatus or robot is sent into the pipe.
  • This apparatus can be semi-autonomous or fully automated.
  • the apparatus In the semi-autonomous configuration, the apparatus is connected to an umbilical cord which provides it with the required power and wired data communication protocol.
  • the plugging apparatus In a fully-automated configuration, the plugging apparatus is powered using batteries and uses wireless communication protocol for data transmission.
  • a semi-autonomous system will require an operator to navigate and execute various task of the robot in contrast to the fully-automated system, which may be self-sufficient.
  • Alignment control systems 19 are mounted on the plugging apparatus for navigation, locating service lateral openings, proper positioning of the apparatus relative to the openings, and confirmation of a successful plugging operation.
  • the cameras 19 mounted on the apparatus guide the apparatus through the pipe and transmit HD quality data to the end user so that the operator can have real time images of the pipe.
  • the cameras 19 are preferably surrounded with a ring of LEDs to provide clear images even in dark environment.
  • a secondary camera 19 in addition to the primary navigating camera 19 may be provided on each apparatus to provide concentrated images of the service lateral opening being plugged.
  • the alignment control devices 19 automatically navigate, locate service lateral openings, properly position the apparatus relative to the openings, and confirm a successful plugging operation.
  • Transport mechanisms 11 mounted at spaced locations on the plugging apparatus main housing 10 move and support the apparatus within the pipe.
  • the transport mechanisms 11 which are preferably powered, comprise reads, rollers, wheels or similar members preferably mounted on extendable and retractable assemblies such that the transport mechanisms can be extended or retracted as required for proper fit within the pipe.
  • the transport mechanisms 11 are oriented such that the plugging apparatus moves longitudinally through the pipe.
  • a manipulator compartment 12 is rotationally mounted to the main housing 11 with the rotational axis of the manipulator compartment 12 aligned to be coaxial with or parallel to the central longitudinal axis of the pipe as the plugging apparatus moves through the pipe.
  • the rotating manipulator compartment 12 is mounted in a manner allowing it to rotate relative to the non-rotating main housing 10 . This may be accomplished in various ways, one of which is illustrated wherein the manipulator compartment 12 is mounted on a shaft 13 extending from a powered rotator actuator 14 . Bearings and seals are provided at the junction of the manipulator compartment 12 and main housing 10 .
  • the main housing 10 acts as a storage compartment for a plurality of cylindrical plug or insert members 90 .
  • Each plug 90 is composed of a compressible or resilient material, such as a rubber or polymer, and is configured for ease of insertion in to the circular service lateral openings as well as suitable retention within the opening.
  • each plug 90 comprises a head portion 92 and an insertion portion 91 , the insertion portion being provided with annular grooves 93 to reduce friction during insertion while creating an effective seal within the service lateral opening.
  • the insertion portion 91 could be tapered or otherwise configured.
  • the plug 90 is made of a liquid-soluble material comprising of a low molecular weight polymer and a surfactant, the material being chosen such that it readily dissolves in water or upon application of heat.
  • the plug head portion 92 may be encapsulated or coated with hydrophobic or similar material which repels or prevents adhesion of the lining material later applied to the pipe, thereby precluding the lining material from encasing or trapping the plug 90 such that it cannot be readily, dissolved, removed or expelled from the service lateral opening once the pipe is put back into service.
  • the plugs 90 are stored in longitudinally-oriented rows on or in chutes or rails 16 .
  • a plug loading actuator 17 associated with each chute 17 powered by a servo motor or similar means, pushes the row of plugs 90 in the direction of the manipulator compartment 12 as required to load a plug 90 onto the robotic arm assembly 20 , the manipulator compartment having a feed opening 15 in its interior-facing wall that allows a plug 90 to be moved into the receiver base 22 of the robotic arm assembly 20 when the feed opening 15 is rotated into alignment with a chute 17 .
  • the robotic arm assembly 20 is housed within the manipulator compartment 12 , and is the mechanism that inserts a plug 90 into a service lateral opening.
  • the robotic arm assembly 20 comprises a plug gripping assembly 21 to retain and release the plug 90 during the insertion operation and an extension assembly 25 to extend and retract the gripping assembly 21 through an insertion window or opening 18 during the insertion operation.
  • FIGS. 1 through 6 A first embodiment of the plug gripping assembly 21 is shown in FIGS. 1 through 6 and a second embodiment is shown in FIGS. 7 through 11 .
  • the gripping assembly 21 comprises a receiver base 22 adapted to receive the plug 90 when delivered from the main housing 10 .
  • the receiver base 22 preferably provides a floor or similar structure that enables pressure to be applied against the plug head portion 92 when the plug 90 is extended radially, relative to the longitudinal axis, into a service lateral opening.
  • the gripping assembly 21 further comprises clamp members 23 controlled by a powered clamp actuator 24 , the clamp members 23 being articulated, hinged or otherwise manipulatable so as to be able to be opened or spread laterally to allow a plug 90 to be fed from a chute 17 into the receiver base 22 , closed to securely grasp and retain the plug 90 during the insertion operation, and again opened to release the plug 90 once it is inserted into the service lateral opening.
  • the extension assembly 25 extends and retracts the gripping assembly 21 and comprises an extension shaft 26 connected to the gripping assembly, preferably to the receiver base 22 , and an extension actuator 27 adapted to extend and retract the extension shaft 26 .
  • the plugging apparatus advances or is advanced through the pipe until the alignment control systems 19 , sensors and/or cameras, provide signals or visuals that a service lateral opening has been found.
  • the plugging apparatus automatically align itself with the service lateral opening in the longitudinal direction relying on information from the alignment devices 19 and that the manipulator compartment 12 automatically rotate about its axis to properly orient the robotic arm assembly 20 with the service lateral opening. If in the non-loaded state, as shown in FIGS. 1 through 9 , the manipulator compartment 12 is rotated to align the feed opening 15 with a chute 17 containing a plug 90 .
  • the plug loading actuator 17 is then activated, by an operator or preferably automatically, and a plug 90 is advanced into the receiver base 22 of the gripping assembly, as shown in FIG. 10 .
  • the clamp members 23 opened to allow passage of the plug 90 , are now closed by the clamp actuator, manually or preferably automatically, to securely retain the plug 90 within the receiver base 22 .
  • the manipulator compartment is then rotated manually or preferably automatically to align the plug 90 concentrically with the service lateral opening.
  • the extension actuator is manually or preferably automatically activated to radially advance the plug 90 through the insertion window 18 of the manipulator compartment 12 and toward the service lateral opening, as shown in FIG. 11 , the plug 90 being loaded into the receiver base 22 such that the insertion portion 91 extends outward.
  • Activation of the extension actuator 27 radially advances or extends the extension shaft 26 until the insertion portion 91 of the plug 90 is seated in the service lateral opening, the receiver base 22 pushing against the plug head portion 92 .
  • the clamp members 23 are opened, manually or preferably automatically, by the clamp actuator 24 to release the plug 90 , and the extension shaft 26 is retracted, manually or preferably automatically, by the extension actuator 27 to retract the gripping assembly 21 through the insertion window 18 and into the manipulator compartment 12 .
  • the plugging apparatus is then advanced to the next service lateral opening and the process is repeated until the supply of plugs 90 has been exhausted.

Abstract

A plugging apparatus adapted to plug service lateral openings in the interior of a pipe and a method of plugging service lateral openings, the plugging apparatus having a housing, transport mechanisms mounted to said housing, the transport mechanisms adapted to move the housing through a pipe having service lateral openings, a rotatable manipulator compartment mounted to the housing, the manipulator compartment containing a robotic arm assembly having a plug gripping assembly and an extension assembly; the housing retaining plugs and one or more plug loading actuators adapted to individually advance each of the plugs into the manipulator compartment and the plug gripping assembly, the extension assembly being adapted to extend a plug positioned in the plug gripping assembly radially from the manipulator compartment and into one of the service lateral openings in the pipe.

Description

  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/504,068, filed May 10, 2017, U.S. Provisional Patent Application Ser. No. 62/620,171, filed Jan. 22, 2018, and U.S. Provisional Patent Application Ser. No. 62/635,794, filed Feb. 27, 2018, the disclosures of which are incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • This invention relates broadly to the field of linings for internal pipe surfaces and methods of applying these linings, and more particularly relates to such linings adapted and adaptable for use in the structural repair or remediation of degraded, damaged or leaking pipes. In particular, the invention relates to Sprayed-In-Place-Pipe (SIPP) lining methods, systems and technologies. The invention most particularly relates in general to methods and apparatuses for temporarily blocking the openings of service laterals, i.e., smaller diameter lateral pipes connected to the wall of a larger mainline pipe, when the SIPP process is performed, such that the lining material does not negatively impact the openings of the smaller lateral pipes, i.e., produce a permanent blockage, or such that liquid flow from the service laterals is stopped during application and curing of the SIPP liner material.
  • SIPP lining technology encompasses many different market sectors such as municipal water, industrial as well as governmental. In most of these markets the pipe systems will consist of mainlines that intersect with numerous smaller diameter pipe for feed lines, drains, monitoring instrumentation etc. Typically, the municipal water market—potable water transmission to homes—will always have these smaller pipe intrusions termed as service laterals or service leads or just services. Usually, these services have pipe diameters ranging from 0.5″ to 1″.
  • Fluid conveyance systems rely on the structural integrity of the pipe to safely and efficiently operate. In the municipal and industrial sectors, there are pipe systems that are degrading such that they fall below standards due to corrosion or crack propagation. These systems include for example the potable water transmission lines to residential areas which can range in sizes of 6 to 48 inches and will typically have complex networks that were installed and modified over many years as the neighborhoods were developed.
  • There are currently only a few methods to rehabilitate a pipe system to full structural integrity without excavating and replacing pipe segments. The current methods include Cast-In-Place-Pipe (CIPP) and Spray-In-Place-Pipe (SIPP). In the current SIPP methods, a SIPP spraying apparatus traverses the pipe by being pulled by an electrical and resin-supplying tether, known as the umbilical, or through robotic armatures. The spraying apparatus comprises a spinner member that ejects the lining material, such as an uncured or partially cured polymer resin, onto the inner diameter of the pipe, effectively creating a new pipe with a known thickness and structural properties inside the pre-existing pipe.
  • Currently in the SIPP industry the lining application method for class I and class II systems is to simply apply the lining across or over the service laterals during the lining process. The coating/lining is typically not intrusive to the performance of the service, i.e., the lining does not block the opening, however one can still have issues with liquid flow leaking from these service laterals. This water or moisture negatively affects the surface of the mainline pipe being lined, and may cause adhesion and/or foaming issues, and may impede complete curing of the coating. Therefore, temporary blockage of flow from the service laterals is desirable in the SIPP process. This would also hold true for Class III and IV or ‘structural’ lining applications.
  • A current issue when installing a semi-structural (Class III) or fully structural (Class IV) system, which is becoming more prevalent in the industry, is that the services laterals do get either partially or fully blocked, since the liner volume/thickness in this case is significantly greater than that needed in remediation of a Class I or II system. If the service laterals are blocked upon completion of mainline lining, it is necessary to expend the time and resources to insert a remote cutter unit to first locate the filled service laterals and once located, cut the lining out to reinstate the service.
  • It is an objective of this invention to provide an apparatus, system and method that addresses the problems described above regarding service laterals and their openings when using SIPP technology to remediate, rehabilitate or repair a mainline pipe. Such apparatus, system and method address these problems by providing an apparatus which inserts a plug into the service lateral openings prior to application of the liner material in the mainline pipe, the plug being removed to re-establish fluid communication between the service lateral and the mainline pipe. It is a further objective to provide such an apparatus, system and method wherein the plug is liquid-soluble such that it is self-destructive in service laterals conducting water or other liquids, or wherein the plug is composed of a material having a low melt temperature so as to be self-destructive in the ambient environment or upon the direct application of heat.
  • SUMMARY OF THE INVENTION
  • The purpose of the apparatus, system and method of the invention in various embodiments is to automatically or easily reinstate the service laterals after lining the mainline pipes with the SIPP process during pipe remediation, rehabilitation or repair. The apparatus, being either semi-autonomous or fully autonomous, self-powered or pushed/pulled, navigates in the mainline pipe to locate the opening of the service laterals and upon detection of a service lateral, inserts a plug or insert member to block the service lateral opening. These plug members preclude any flow or leakage from the service lateral, which in turn eradicates the issues of adhesion, foaming and curability of the lining material. The plug members also block the service lateral opening so that when the pipe is lined the service lateral does become sealed over by the polymeric material. In a preferred embodiment, the plug member is liquid-soluble, eliminating the need to relocate and uninstall the plug members, and is provided with a hydrophobic coating to repel the lining material, such that the plug member dissolves when liquid is again passed through the service lateral or mainline pipe to contact the non-coated surfaces of the plug members.
  • The plugger apparatus is either self-powered or adapted to be pulled or pushed by a separate powered drive member or by retrieval of an umbilical cable, the plugger apparatus having wheels, rollers, treads or the like for movement through the pipe. The plugger apparatus comprises a plug storage compartment that retains a plurality of plug or insert members, a robotic arm assembly compartment, a plug feeder mechanism for delivering individual plug members from the plug storage compartment to the robotic arm assembly compartment, and an extendable/retractable robotic arm assembly to receive and insert the plug members into the service openings.
  • The robotic arm assembly comprises an extension mechanism and a gripping mechanism adapted to receive a plug member from the plug feeder mechanism, radially extend and press the plug member into a service lateral opening, release the plug member, and retract into the robotic arm assembly compartment to receive the next plug member. The robotic arm assembly compartment is adapted to rotate about the longitudinal axis of the plugger apparatus to properly align the robotic arm assembly with a service lateral opening. One or more alignment control systems, such as for example cameras, laser pointers or the like, are provided on the plugger apparatus to locate a service lateral opening and properly align the robotic assembly for delivery of the plug member into the service lateral opening.
  • In alternate language, the invention may be summarized as a plugging apparatus adapted to plug service lateral openings in the interior of a pipe, the plugging apparatus comprising: a housing; transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings; a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly; said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly; said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe. Furthermore, said plug gripping assembly comprising a receiver base, clamp members and a clamp actuator, said clamp actuator adapted to close said clamp members to retain and open said clamp members to release one of said plugs positioned on said receiver base; said extension assembly comprising an extension shaft connected to said gripping assembly and an extension actuator adapted to extend and retract said extension shaft; said housing further retaining a plurality of chutes, said chutes retaining said plugs in rows, one of said plug loading actuators being associated with each of said chutes; said manipulator compartment comprising a feed opening, wherein said manipulator compartment is rotatable to align said feed opening with one of said chutes such that each of said plugs is advanced through said feed opening into said manipulator compartment and said plug gripping assembly; said plugs comprising an insertion portion and a head portion; said plugs formed of a liquid-soluble material;, said plugs having a hydrophobic coating; said transport mechanisms comprising treads, rollers or wheels, and/or further comprising alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation.
  • In alternate language, the invention may be summarized as a method of plugging service lateral openings in a pipe comprising the steps of: providing a plugging apparatus comprising a housing; transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings; a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly; said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly; said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe; navigating said plugging apparatus said plugging apparatus through a pipe; locating a service lateral opening; aligning said manipulator compartment and said robotic arm assembly with the service lateral opening; extending said robotic arm assembly and inserting one of said plugs into said service lateral opening; and releasing said one of said plugs and retracting said robotic arm assembly. Furthermore, wherein said plugging apparatus further comprises alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation; and/or wherein said steps of navigating, locating, and aligning are controlled by said alignment control systems.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an embodiment of the plugging apparatus, shown in the non-loaded state.
  • FIG. 2 is an end view as seen from the longitudinal or transport axis of the plugging apparatus of FIG. 1.
  • FIG. 3 is a top view, relative to the orientation shown in FIGS. 1 and 2, of the plugging apparatus of FIG. 1.
  • FIG. 4 is a side view, relative to the orientation shown in FIGS. 1 and 2, of the plugging apparatus of FIG. 1.
  • FIG. 5 is a cross-sectional view of the plugging apparatus of FIG. 1, taken along line B-B of FIG. 4.
  • FIG. 6 is a cross-sectional view of the plugging apparatus of FIG. 1, taken along line A-A of FIG. 4.
  • FIG. 7 is an exposed perspective view of an alternative embodiment of the plugging apparatus, shown from the end opposite the manipulator compartment and in the non-loaded state.
  • FIG. 8 is an exposed perspective view of the embodiment of the FIG. 7, shown from the manipulator compartment end.
  • FIG. 9 is an exposed end view of the embodiment of FIG. 7.
  • FIG. 10 is an exposed perspective view of the embodiment of FIG. 7, shown from the manipulator end with a plug in the loaded state.
  • FIG. 11 is an exposed perspective view of the embodiment of FIG. 7, shown from the manipulator end with a plug in the extended state.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to the drawings, which are meant to be non-limiting as to the scope of the invention and are not to scale, the invention is shown and described in various embodiments. In a broad sense, the invention is a plugging apparatus, system and method of plugging circular service lateral openings in a pipe prior to its undergoing rehabilitation by a SIPP process or similar process, such that the with the plugs inserted into the service lateral openings, polymer material sprayed to coat the inner wall of the pipe will not block the service openings.
  • After cleaning the pipe using conventional methods, such as blasting, pigging, etc. all the service lateral openings need to be covered. To achieve the task a plugging apparatus or robot is sent into the pipe. This apparatus can be semi-autonomous or fully automated. In the semi-autonomous configuration, the apparatus is connected to an umbilical cord which provides it with the required power and wired data communication protocol. In a fully-automated configuration, the plugging apparatus is powered using batteries and uses wireless communication protocol for data transmission. A semi-autonomous system will require an operator to navigate and execute various task of the robot in contrast to the fully-automated system, which may be self-sufficient.
  • Alignment control systems 19, such as cameras and sensors, are mounted on the plugging apparatus for navigation, locating service lateral openings, proper positioning of the apparatus relative to the openings, and confirmation of a successful plugging operation. The cameras 19 mounted on the apparatus guide the apparatus through the pipe and transmit HD quality data to the end user so that the operator can have real time images of the pipe. The cameras 19 are preferably surrounded with a ring of LEDs to provide clear images even in dark environment. A secondary camera 19 in addition to the primary navigating camera 19 may be provided on each apparatus to provide concentrated images of the service lateral opening being plugged. Alternatively and preferably, the alignment control devices 19 automatically navigate, locate service lateral openings, properly position the apparatus relative to the openings, and confirm a successful plugging operation.
  • Transport mechanisms 11 mounted at spaced locations on the plugging apparatus main housing 10 move and support the apparatus within the pipe. The transport mechanisms 11, which are preferably powered, comprise reads, rollers, wheels or similar members preferably mounted on extendable and retractable assemblies such that the transport mechanisms can be extended or retracted as required for proper fit within the pipe. The transport mechanisms 11 are oriented such that the plugging apparatus moves longitudinally through the pipe.
  • A manipulator compartment 12 is rotationally mounted to the main housing 11 with the rotational axis of the manipulator compartment 12 aligned to be coaxial with or parallel to the central longitudinal axis of the pipe as the plugging apparatus moves through the pipe. The rotating manipulator compartment 12 is mounted in a manner allowing it to rotate relative to the non-rotating main housing 10. This may be accomplished in various ways, one of which is illustrated wherein the manipulator compartment 12 is mounted on a shaft 13 extending from a powered rotator actuator 14. Bearings and seals are provided at the junction of the manipulator compartment 12 and main housing 10.
  • The main housing 10 acts as a storage compartment for a plurality of cylindrical plug or insert members 90. Each plug 90 is composed of a compressible or resilient material, such as a rubber or polymer, and is configured for ease of insertion in to the circular service lateral openings as well as suitable retention within the opening. For example, in the embodiment shown in the drawings, each plug 90 comprises a head portion 92 and an insertion portion 91, the insertion portion being provided with annular grooves 93 to reduce friction during insertion while creating an effective seal within the service lateral opening. Alternatively, the insertion portion 91 could be tapered or otherwise configured.
  • In a preferred embodiment, the plug 90 is made of a liquid-soluble material comprising of a low molecular weight polymer and a surfactant, the material being chosen such that it readily dissolves in water or upon application of heat. The plug head portion 92 may be encapsulated or coated with hydrophobic or similar material which repels or prevents adhesion of the lining material later applied to the pipe, thereby precluding the lining material from encasing or trapping the plug 90 such that it cannot be readily, dissolved, removed or expelled from the service lateral opening once the pipe is put back into service.
  • The plugs 90 are stored in longitudinally-oriented rows on or in chutes or rails 16. A plug loading actuator 17 associated with each chute 17, powered by a servo motor or similar means, pushes the row of plugs 90 in the direction of the manipulator compartment 12 as required to load a plug 90 onto the robotic arm assembly 20, the manipulator compartment having a feed opening 15 in its interior-facing wall that allows a plug 90 to be moved into the receiver base 22 of the robotic arm assembly 20 when the feed opening 15 is rotated into alignment with a chute 17.
  • The robotic arm assembly 20 is housed within the manipulator compartment 12, and is the mechanism that inserts a plug 90 into a service lateral opening. The robotic arm assembly 20 comprises a plug gripping assembly 21 to retain and release the plug 90 during the insertion operation and an extension assembly 25 to extend and retract the gripping assembly 21 through an insertion window or opening 18 during the insertion operation.
  • A first embodiment of the plug gripping assembly 21 is shown in FIGS. 1 through 6 and a second embodiment is shown in FIGS. 7 through 11. In both embodiments the gripping assembly 21 comprises a receiver base 22 adapted to receive the plug 90 when delivered from the main housing 10. The receiver base 22 preferably provides a floor or similar structure that enables pressure to be applied against the plug head portion 92 when the plug 90 is extended radially, relative to the longitudinal axis, into a service lateral opening. The gripping assembly 21 further comprises clamp members 23 controlled by a powered clamp actuator 24, the clamp members 23 being articulated, hinged or otherwise manipulatable so as to be able to be opened or spread laterally to allow a plug 90 to be fed from a chute 17 into the receiver base 22, closed to securely grasp and retain the plug 90 during the insertion operation, and again opened to release the plug 90 once it is inserted into the service lateral opening. The extension assembly 25 extends and retracts the gripping assembly 21 and comprises an extension shaft 26 connected to the gripping assembly, preferably to the receiver base 22, and an extension actuator 27 adapted to extend and retract the extension shaft 26.
  • In operation, the plugging apparatus advances or is advanced through the pipe until the alignment control systems 19, sensors and/or cameras, provide signals or visuals that a service lateral opening has been found. Although manual alignment is possible, it is preferred that the plugging apparatus automatically align itself with the service lateral opening in the longitudinal direction relying on information from the alignment devices 19 and that the manipulator compartment 12 automatically rotate about its axis to properly orient the robotic arm assembly 20 with the service lateral opening. If in the non-loaded state, as shown in FIGS. 1 through 9, the manipulator compartment 12 is rotated to align the feed opening 15 with a chute 17 containing a plug 90. The plug loading actuator 17 is then activated, by an operator or preferably automatically, and a plug 90 is advanced into the receiver base 22 of the gripping assembly, as shown in FIG. 10. The clamp members 23, opened to allow passage of the plug 90, are now closed by the clamp actuator, manually or preferably automatically, to securely retain the plug 90 within the receiver base 22. The manipulator compartment is then rotated manually or preferably automatically to align the plug 90 concentrically with the service lateral opening.
  • Once properly aligned, the extension actuator is manually or preferably automatically activated to radially advance the plug 90 through the insertion window 18 of the manipulator compartment 12 and toward the service lateral opening, as shown in FIG. 11, the plug 90 being loaded into the receiver base 22 such that the insertion portion 91 extends outward. Activation of the extension actuator 27 radially advances or extends the extension shaft 26 until the insertion portion 91 of the plug 90 is seated in the service lateral opening, the receiver base 22 pushing against the plug head portion 92. Once seated, the clamp members 23 are opened, manually or preferably automatically, by the clamp actuator 24 to release the plug 90, and the extension shaft 26 is retracted, manually or preferably automatically, by the extension actuator 27 to retract the gripping assembly 21 through the insertion window 18 and into the manipulator compartment 12. The plugging apparatus is then advanced to the next service lateral opening and the process is repeated until the supply of plugs 90 has been exhausted.
  • It is understood that equivalents and substitutions for certain elements and steps described above may be obvious to those of skill in the art, and therefore the true scope and definition of the invention is to be as set forth in the following claims.

Claims (20)

We claim:
1. A plugging apparatus adapted to plug service lateral openings in the interior of a pipe, the plugging apparatus comprising:
a housing;
transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings;
a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly;
said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly;
said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe.
2. The apparatus of claim 1, said plug gripping assembly comprising a receiver base, clamp members and a clamp actuator, said clamp actuator adapted to close said clamp members to retain and open said clamp members to release one of said plugs positioned on said receiver base.
3. The apparatus of claim 1, said extension assembly comprising an extension shaft connected to said gripping assembly and an extension actuator adapted to extend and retract said extension shaft.
4. The apparatus of claim 1, said housing further retaining a plurality of chutes, said chutes retaining said plugs in rows, one of said plug loading actuators being associated with each of said chutes;
said manipulator compartment comprising a feed opening, wherein said manipulator compartment is rotatable to align said feed opening with one of said chutes such that each of said plugs is advanced through said feed opening into said manipulator compartment and said plug gripping assembly.
5. The apparatus of claim 1, said plugs comprising an insertion portion and a head portion.
6. The apparatus of claim 1, further comprising alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation.
7. The apparatus of claim 2, said extension assembly comprising an extension shaft connected to said gripping assembly and an extension actuator adapted to extend and retract said extension shaft.
8. The apparatus of claim 7, said housing further retaining a plurality of chutes, said chutes retaining said plugs in rows, one of said plug loading actuators being associated with each of said chutes;
said manipulator compartment comprising a feed opening, wherein said manipulator compartment is rotatable to align said feed opening with one of said chutes such that each of said plugs is advanced through said feed opening into said manipulator compartment and said plug gripping assembly.
9. The apparatus of claim 8, said plugs comprising an insertion portion and a head portion.
10. The apparatus of claim 9, further comprising alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation.
11. The apparatus of claim 8, further comprising alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation.
12. The apparatus of claim 7, further comprising alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation.
13. The apparatus of claim 6, wherein said alignment control systems comprise cameras.
14. The apparatus of claim 6, wherein said alignment control systems comprise sensors.
15. The apparatus of claim 1, wherein said transport mechanisms comprise extendable and retractable treads, rollers or wheels.
16. The apparatus of claim 1, wherein said plugs are composed of a liquid-soluble material.
17. The apparatus of claim 16, wherein said plugs are provided with a hydrophobic coating.
18. A plugging apparatus adapted to plug service lateral openings in the interior of a pipe, the plugging apparatus comprising a housing; transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings; a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly; said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly; said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe;
said plug gripping assembly comprising a receiver base, clamp members and a clamp actuator, said clamp actuator adapted to close said clamp members to retain and open said clamp members to release one of said plugs positioned on said receiver base;
said extension assembly comprising an extension shaft connected to said gripping assembly and an extension actuator adapted to extend and retract said extension shaft;
said housing further retaining a plurality of chutes, said chutes retaining said plugs in rows, one of said plug loading actuators being associated with each of said chutes;
said manipulator compartment comprising a feed opening, wherein said manipulator compartment is rotatable to align said feed opening with one of said chutes such that each of said plugs is advanced through said feed opening into said manipulator compartment and said plug gripping assembly;
said plugs comprising an insertion portion and a head portion, and said plugs composed of a liquid-soluble material and having a hydrophobic coating;
said transport systems comprising extendable and retractable treads, rollers or wheels; and
further comprising alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation, said alignment control systems comprising cameras or sensors.
19. A method of plugging service lateral openings in a pipe comprising the steps of:
providing a plugging apparatus comprising a housing; transport mechanisms mounted to said housing, said transport mechanisms adapted to move said housing through a pipe having service lateral openings; a rotatable manipulator compartment mounted to said housing, said manipulator compartment containing a robotic arm assembly, said robotic arm assembly comprising a plug gripping assembly and an extension assembly; said housing retaining plugs and one or more plug loading actuators adapted to individually advance each of said plugs into said manipulator compartment and said plug gripping assembly; said extension assembly being adapted to extend each of said plugs positioned in said plug gripping assembly radially from said manipulator compartment and into one of the service lateral openings in the pipe;
navigating said plugging apparatus said plugging apparatus through a pipe;
locating a service lateral opening;
aligning said manipulator compartment and said robotic arm assembly with the service lateral opening;
extending said robotic arm assembly and inserting one of said plugs into said service lateral opening; and
releasing said one of said plugs and retracting said robotic arm assembly.
20. The method of claim 19, wherein said plugging apparatus further comprises alignment control systems adapted to navigate the apparatus through the pipe, locate service lateral openings, properly position the apparatus relative to the openings, properly align said manipulator compartment and said robotic arm assembly, or confirm a successful plugging operation; and
wherein said steps of navigating, locating, and aligning are controlled by said alignment control systems.
US15/971,785 2017-05-10 2018-05-04 Plugging Apparatus, System and Method for Pipe Lining Applications Abandoned US20180328531A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/971,785 US20180328531A1 (en) 2017-05-10 2018-05-04 Plugging Apparatus, System and Method for Pipe Lining Applications
PCT/US2018/032003 WO2018209044A1 (en) 2017-05-10 2018-05-10 Plugging apparatus, system and method for pipe lining applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762504068P 2017-05-10 2017-05-10
US15/971,785 US20180328531A1 (en) 2017-05-10 2018-05-04 Plugging Apparatus, System and Method for Pipe Lining Applications

Publications (1)

Publication Number Publication Date
US20180328531A1 true US20180328531A1 (en) 2018-11-15

Family

ID=64096523

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/971,785 Abandoned US20180328531A1 (en) 2017-05-10 2018-05-04 Plugging Apparatus, System and Method for Pipe Lining Applications
US15/971,828 Active 2038-08-11 US10837589B2 (en) 2017-05-10 2018-05-04 Taping apparatus, system and method for pipe lining applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/971,828 Active 2038-08-11 US10837589B2 (en) 2017-05-10 2018-05-04 Taping apparatus, system and method for pipe lining applications

Country Status (2)

Country Link
US (2) US20180328531A1 (en)
WO (2) WO2018209044A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079055B2 (en) 2018-10-30 2021-08-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit
US20210239253A1 (en) * 2017-03-15 2021-08-05 Titan CMP Solutions LLC Expander with accessories to adjust nominal size
US20220085583A1 (en) * 2018-12-21 2022-03-17 3M Innovative Properties Company Electrical power cable preparation system
US20220205578A1 (en) * 2019-05-08 2022-06-30 Peanta Inventions Ab Light head for use in relining pipes
US11774025B2 (en) 2018-10-30 2023-10-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125046B2 (en) 2019-12-10 2021-09-21 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11261678B2 (en) 2019-12-10 2022-03-01 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11668143B2 (en) 2019-12-10 2023-06-06 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11286733B2 (en) 2020-03-26 2022-03-29 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11454071B2 (en) 2020-03-26 2022-09-27 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11643878B2 (en) 2020-03-26 2023-05-09 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11459838B2 (en) 2020-06-10 2022-10-04 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11434707B2 (en) 2020-06-10 2022-09-06 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11434708B2 (en) 2020-06-10 2022-09-06 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
CN112474640B (en) * 2020-11-13 2023-10-20 长缆电工科技股份有限公司 Device for detecting and cleaning inner wall of pipeline and pipeline cleaning method
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) * 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
CN114811255A (en) * 2021-04-25 2022-07-29 四川大唐国际甘孜水电开发有限公司 Pipeline mouth sealing device for pre-buried pipeline
CN113464769B (en) * 2021-07-06 2023-04-21 仙桃绿色东方环保发电有限公司 Modularized cleaning and repairing machine for exhaust emission pipeline
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
CN114658957A (en) * 2022-02-28 2022-06-24 国能朔黄铁路发展有限责任公司 Pipeline detection device
DE102022110418A1 (en) * 2022-04-28 2023-11-02 Geobrugg Ag Device for providing braids, system with the device and method for providing braids

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898918A (en) * 1969-05-13 1975-08-12 Carter Warne Jun Device for temporarily providing a seal within an advancing pipe
FR2244876B1 (en) * 1973-09-20 1978-01-06 Scarpi Bruno
US4075053A (en) * 1976-06-25 1978-02-21 Price International, Inc. Masking tape applicator for pipe
WO1989001588A1 (en) * 1987-08-19 1989-02-23 Rib Loc Australia Pty. Ltd. Slip control for helically wound pipes
FR2686678B1 (en) * 1992-01-27 1994-08-12 Cellier Andre METHOD AND DEVICE FOR THE LINING OF PIPES.
IT1255632B (en) * 1992-05-22 1995-11-09 Snam Spa TAPE FOR REINFORCING CABLE BODIES SUITABLE TO SUPPORT PRESSURES AND PROCEDURE FOR THE REPAIR OF DETERIORATED PIPES
RU2119443C1 (en) * 1995-01-05 1998-09-27 Александр Владимирович Алексашин Device for winding tape on pipeline
KR100353682B1 (en) * 1997-01-22 2002-12-28 세끼스이 가가쿠 고교 가부시키가이샤 Lining construction device in free section pipe
FR2769664B1 (en) * 1997-10-13 1999-12-17 Inst Francais Du Petrole MEASUREMENT METHOD AND SYSTEM HAVING SEMI-RIGID EXTENSION
US6267001B1 (en) * 1998-09-25 2001-07-31 E Ticket Enterprises, Llc Test plug
US6820653B1 (en) * 1999-04-12 2004-11-23 Carnegie Mellon University Pipe inspection and repair system
AU784066B2 (en) * 2000-12-12 2006-01-19 Adachi Construction Industry Co., Ltd. Tubular culvert interior lining method and lining apparatus with simultaneous injection of back-filling material
CA2354226A1 (en) * 2001-01-31 2002-07-31 Cal Holland Robotic apparatus and method for non-destructive maintenance of intersecting conduits
EP1785354B1 (en) * 2005-11-15 2009-03-25 Ondal 5 GmbH Apparatus and method for wrapping or bundling articles.
WO2007121772A1 (en) * 2006-04-20 2007-11-01 Freyssinet Method and machine for lining a pipe
ES2687041T3 (en) * 2008-08-08 2018-10-23 Geobrugg Ag Procedure and device for cladding tunnel walls or tunnel ceilings with protective nets
US8197158B2 (en) * 2008-08-20 2012-06-12 Sanexen Environmental Services Inc. Device and method for the plugging of services in conduits
CN102971134B (en) * 2010-05-13 2017-12-15 结构集团有限公司 With can the tensile reinforcement member system and method being repaired and reinforced to pipeline that wind of internal helicoid
US8864418B2 (en) * 2012-09-20 2014-10-21 Sanexan Environmental Services Inc. Method and apparatus for rehabilitating an underground water conduit and detecting and drilling a service entrance in the conduit
CN202914966U (en) * 2012-11-30 2013-05-01 电子科技大学 Folding type wheeled leg pipeline robot
US8925590B2 (en) * 2013-02-07 2015-01-06 King Fahd University Of Petroleum And Minerals Pipeline leak detection and repair device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210239253A1 (en) * 2017-03-15 2021-08-05 Titan CMP Solutions LLC Expander with accessories to adjust nominal size
US11892114B2 (en) * 2017-03-15 2024-02-06 Titan CMP Solutions LLC Expander with accessories to adjust nominal size
US11079055B2 (en) 2018-10-30 2021-08-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit
US11774025B2 (en) 2018-10-30 2023-10-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit
US20220085583A1 (en) * 2018-12-21 2022-03-17 3M Innovative Properties Company Electrical power cable preparation system
US11705700B2 (en) * 2018-12-21 2023-07-18 3M Innovative Properties Company Electrical power cable preparation system
US20220205578A1 (en) * 2019-05-08 2022-06-30 Peanta Inventions Ab Light head for use in relining pipes

Also Published As

Publication number Publication date
WO2018209044A1 (en) 2018-11-15
US20180326679A1 (en) 2018-11-15
US10837589B2 (en) 2020-11-17
WO2018209047A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US20180328531A1 (en) Plugging Apparatus, System and Method for Pipe Lining Applications
CA2934339C (en) Liner removal system
US6887014B2 (en) Robotic apparatus and method for treatment of conduits
US8783297B2 (en) Robotic system for pipeline rehabilitation
US7866277B1 (en) Apparatus and method for lining large diameter pipe with environmentally compatible impervious membrane
CA2948435C (en) Drilling apparatus
US8272808B1 (en) Device and method for the plugging of services in conduits
WO2010111044A1 (en) Internal composite repair apparatus
EP3449168A1 (en) In-situ deployment device
US5586580A (en) Apparatus and method for internally sealing pipes
KR20080108892A (en) The apparatus and method of trenchless repairing for pipeline
JP2021063371A (en) Pipeline laying device and pipeline laying method
US10605399B2 (en) Apparatus and method for installing a connection fitting into a main pipeline
KR102055345B1 (en) Apparatus and method for full reparing sewerage and waterworks pipe conduit
EP0761417B1 (en) A method of repairing a pipe
US10245624B2 (en) Device and system for opening up branch point of pipe assembly
WO2023064030A1 (en) Apparatus and method for installing cables, such as fiber optic cables including associated sensors, in tubular structures such as a pipelines
CA2369714C (en) Robotic apparatus and method for treatment of conduits
WO2016192817A1 (en) Apparatus and method for lining a lateral pipe
CA2683355A1 (en) Robotic apparatus and method for treatment of conduits
GB2538956A (en) Apparatus and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIPP TECHNOLOGIES, LLC, KANSAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEISENBERG, KENT;SYED, IBRAHIIM;REEL/FRAME:045731/0360

Effective date: 20180503

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: STRUCTURAL GROUP, INC., MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:SIPP TECHNOLOGIES, LLC;REEL/FRAME:048463/0377

Effective date: 20190220

AS Assignment

Owner name: STRUCTURAL TECHNOLOGIES IP, LLC, MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:SIPP TECHNOLOGIES, LLC;REEL/FRAME:049159/0352

Effective date: 20190426

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SIPP TECHNOLOGIES, LLC, KANSAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STRUCTURAL TECHNOLOGIES IP, LLC;REEL/FRAME:057135/0885

Effective date: 20210810

AS Assignment

Owner name: SIPP TECHNOLOGIES, LLC, KANSAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY TYPE FROM APPLICATION NUMBER TO PATENT NUMBER FOR PATENT NOS. 10239081 AND 10240707 PREVIOUSLY RECORDED AT REEL: 057135 FRAME: 0885. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:STRUCTURAL TECHNOLOGIES IP, LLC;REEL/FRAME:057312/0369

Effective date: 20210810