US20180309089A1 - Compositions and Techniques for Forming Organic Thin Films - Google Patents
Compositions and Techniques for Forming Organic Thin Films Download PDFInfo
- Publication number
- US20180309089A1 US20180309089A1 US15/955,303 US201815955303A US2018309089A1 US 20180309089 A1 US20180309089 A1 US 20180309089A1 US 201815955303 A US201815955303 A US 201815955303A US 2018309089 A1 US2018309089 A1 US 2018309089A1
- Authority
- US
- United States
- Prior art keywords
- meth
- mol
- acrylate monomer
- ink composition
- curable ink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 184
- 238000000034 method Methods 0.000 title claims description 58
- 239000010409 thin film Substances 0.000 title claims description 26
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 103
- 239000000178 monomer Substances 0.000 claims abstract description 74
- 230000009477 glass transition Effects 0.000 claims abstract description 6
- 239000010408 film Substances 0.000 claims description 58
- 230000008569 process Effects 0.000 claims description 38
- 230000004888 barrier function Effects 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 16
- 239000003999 initiator Substances 0.000 claims description 14
- 238000007641 inkjet printing Methods 0.000 claims description 14
- 230000005693 optoelectronics Effects 0.000 claims description 11
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 9
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 9
- 238000006116 polymerization reaction Methods 0.000 claims description 9
- 229920006254 polymer film Polymers 0.000 claims description 7
- KQMPMWGWJLNKPC-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCC(OC(=O)C(C)=C)OC(=O)C(C)=C KQMPMWGWJLNKPC-UHFFFAOYSA-N 0.000 claims 3
- 239000000758 substrate Substances 0.000 abstract description 69
- 239000003431 cross linking reagent Substances 0.000 abstract description 14
- 239000000976 ink Substances 0.000 description 84
- 239000007789 gas Substances 0.000 description 68
- 239000010410 layer Substances 0.000 description 49
- 238000009472 formulation Methods 0.000 description 48
- 238000001723 curing Methods 0.000 description 26
- 238000007639 printing Methods 0.000 description 26
- 238000005538 encapsulation Methods 0.000 description 20
- 125000000217 alkyl group Chemical group 0.000 description 19
- 238000000151 deposition Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 16
- 238000012545 processing Methods 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 13
- 230000008021 deposition Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 10
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 229920000620 organic polymer Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 7
- 0 *C(=C)C(=O)OCOC(=O)C(*)=C Chemical compound *C(=C)C(=O)OCOC(=O)C(*)=C 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- HYQASEVIBPSPMK-UHFFFAOYSA-N 12-(2-methylprop-2-enoyloxy)dodecyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCCCCCCCOC(=O)C(C)=C HYQASEVIBPSPMK-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- UUEYEUDSRFNIQJ-UHFFFAOYSA-N CCOC(N)=O.CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O Chemical compound CCOC(N)=O.CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O UUEYEUDSRFNIQJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- -1 silicon nitride Chemical class 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZMDDERVSCYEKPQ-UHFFFAOYSA-N Ethyl (mesitylcarbonyl)phenylphosphinate Chemical compound C=1C=CC=CC=1P(=O)(OCC)C(=O)C1=C(C)C=C(C)C=C1C ZMDDERVSCYEKPQ-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- UEKHZPDUBLCUHN-UHFFFAOYSA-N 2-[[3,5,5-trimethyl-6-[2-(2-methylprop-2-enoyloxy)ethoxycarbonylamino]hexyl]carbamoyloxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC(=O)NCCC(C)CC(C)(C)CNC(=O)OCCOC(=O)C(C)=C UEKHZPDUBLCUHN-UHFFFAOYSA-N 0.000 description 1
- WZFWXLJQSBSXEG-UHFFFAOYSA-N C=C(C(OC(CC1)CC1OC(C(N)=C)=O)=O)N Chemical compound C=C(C(OC(CC1)CC1OC(C(N)=C)=O)=O)N WZFWXLJQSBSXEG-UHFFFAOYSA-N 0.000 description 1
- XRYOJIPAATZQCR-UHFFFAOYSA-N C=C(C)C(=O)OCCCNC(=O)OCCOC(=O)C(=C)C Chemical compound C=C(C)C(=O)OCCCNC(=O)OCCOC(=O)C(=C)C XRYOJIPAATZQCR-UHFFFAOYSA-N 0.000 description 1
- BBMOYPFGOZFHDM-UHFFFAOYSA-N C=C(C)C(=O)OCCOC(=O)CCCCCCCNC(=O)OCCOC(=O)C(=C)C Chemical compound C=C(C)C(=O)OCCOC(=O)CCCCCCCNC(=O)OCCOC(=O)C(=C)C BBMOYPFGOZFHDM-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- PYBWEPXWJPJXAA-UHFFFAOYSA-N CC(C(OCCOC(NCCCCCCNC(OCCOC(C(C)=C)=O)=O)=O)=O)=C Chemical compound CC(C(OCCOC(NCCCCCCNC(OCCOC(C(C)=C)=O)=O)=O)=O)=C PYBWEPXWJPJXAA-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- LCXXNKZQVOXMEH-UHFFFAOYSA-N Tetrahydrofurfuryl methacrylate Chemical compound CC(=C)C(=O)OCC1CCCO1 LCXXNKZQVOXMEH-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005441 electronic device fabrication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- MKVYSRNJLWTVIK-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical compound CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O MKVYSRNJLWTVIK-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000005359 phenoxyalkyl group Chemical group 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H01L51/5253—
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/101—Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- H01L51/004—
-
- H01L51/0043—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/141—Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
Definitions
- OLED organic light-emitting diode
- OLED optoelectronic devices are fabricated from inorganic and organic materials, including various organic thin film emissive materials. Such materials can be susceptible to degradation by water, oxygen and other chemical species in the environment.
- OLED devices have been encapsulated in order to provide protection against degradation.
- encapsulation stacks that include alternating inorganic barrier layers and organic planarizing layers have been used to isolate the moisture- and/or oxygen-sensitive materials in OLEDs.
- inkjet printing can provide several advantages. First, a range of vacuum processing operations can be eliminated because inkjet-based fabrication can be performed at atmospheric pressure. Additionally, during an inkjet printing process, an organic planarizing layer can be localized to cover portions of an OLED substrate over and proximal to an active region, to effectively encase an active region, including lateral edges of the active region.
- the targeted patterning using inkjet printing results in eliminating material waste, as well as eliminating the need for masks and therefore challenges presented with the alignment and fouling thereof, as well as eliminating additional processing typically required to achieve patterning of an organic layer when utilizing, for example, various vapor deposition processes.
- compositions of the present teachings can be deposited on a substrate and cured to form an organic layer on a substrate.
- inkjet deposition can be used for the deposition of an organic thin film composition on a substrate, followed by a curing process to form an organic layer on a substrate.
- FIG. 1 is a schematic section view of an optoelectronic device, illustrating various aspects of a fabrication.
- FIG. 2 is a graph of viscosity versus temperature for various embodiments of a first organic monomer composition of the present teachings.
- FIG. 3 is a graph of viscosity as a function of temperature for various embodiments of a second organic monomer composition of the present teachings.
- FIG. 4 is a graph of transmission as a function of wavelength for thin films formed from each of an exemplary composition of the present teachings in comparison to the transmission of a glass reference material.
- FIG. 5 illustrates generally examples of a gas enclosure system for integrating and controlling gas sources such as can be used to establish a controlled process environment, as well as providing a pressurized gas and at least partial vacuum for use with a floatation table.
- FIG. 6 illustrates generally an isometric view of at least a portion of a system, such as including an enclosed printing system and an enclosed curing system.
- FIG. 7 is a flow diagram that illustrates generally a process for the fabrication of an organic thin films on various device substrates.
- the present teachings relate to various embodiments of curable ink compositions, which once deposited and cured, provide a polymeric film over at least a portion of a substrate in an electronic device.
- Electronic devices on which the polymeric films may be formed include electronic devices having one or more components that are moisture- and/or oxygen-sensitive—that is, one or more components whose performance is negatively affected by reactions with water and/or oxygen in the atmosphere.
- the polymeric film may be included as a planarizing layer in a multi-layered encapsulation stack, as described in greater detail below.
- the polymeric films may also be used to improve light extraction for a light-emitting optoelectronic device, to provide thermal dissipation for a heat-generating device, and/or to provide protection from mechanical damage for an electronic device that is susceptible to breaking, including electronic devices that have glass components, such as glass screens.
- Electronic devices over which the polymeric films can be formed include optoelectronic devices, such as OLEDs, as well as lithium batteries, capacitors, and touch screen devices. Because the polymeric films are flexible, they are suited for use with flexible electronic devices.
- the polymeric films are disposed over a light-emitting active region of an OLED device substrate.
- the light-emitting active region of an OLED device can include various materials that degrade in the presence of various reactive species, such as, but not limited by, water vapor, oxygen, and various solvent vapors from device processing. Such degradation can impact the stability and reliability of an OLED device.
- a multilayered encapsulation stack can be used to protect the OLED, wherein the encapsulation stack includes a film of an inorganic barrier layer adjacent to a polymeric planarizing layer.
- An encapsulation stack will include at least one such inorganic barrier layer/polymeric planarizing layer pair (“dyad”), but can include multiple stacked dyads.
- the lowermost layer in the encapsulation stack, which is in contact with at least one substrate of the electronic device can be either an inorganic barrier layer or a polymeric planarizing layer.
- a polymeric film that is disposed over a light-emitting active region need not be formed directly on the light-emitting active region.
- the polymeric film can be formed on one of the electrodes between which the light-emitting active region is disposed, on an inorganic barrier layer that forms part of an encapsulation stack, and/or on the surface of an OLED support substrate.
- a deposition system such as an industrial inkjet printing system, that can be housed in an enclosure configured to provide a controlled process environment can be used.
- Inkjet printing for the deposition of the curable ink compositions described herein can have several advantages. First, a range of vacuum processing operations can be eliminated, as inkjet-based fabrication can be performed at atmospheric pressure. Additionally, during an inkjet printing process, an ink composition can be localized to cover portions of an electronic device substrate, including portions that are over and proximal to an active region, to effectively encapsulate an active region, including the lateral edges of the active region.
- the targeted patterning using inkjet printing results in eliminating material waste, as well as eliminating additional processing typically required to achieve patterning of an organic layer, as required, for example, by various masking techniques.
- curable ink compositions of the present teachings can be deposited by printing over a wide number of OLED devices, such as OLED display devices and OLED lighting devices, to form a uniform planarizing layer.
- OLED devices such as OLED display devices and OLED lighting devices
- Such ink compositions can be cured using thermal processing (e.g. bake), by exposure to optical energy, (e.g., UV cure), or electron-beam curing.
- Some embodiments of the ink compositions can be cured by UV radiation, including UV radiation in the wavelength range of between about 365 nm to about 420 nm.
- electronic device 50 can be fabricated on substrate 52 .
- a substrate can include a thin silica-based glass, as well as any of a number of flexible polymeric materials.
- substrate 52 can be transparent, such as for use in a bottom-emitting optoelectronic device (e.g. OLED) configuration.
- OLED optoelectronic device
- One or more layers associated with an electronic device stack, such as various organic or other material can be deposited, inkjet printed, or otherwise formed upon the substrate to provide an active region 54 , such as an electroluminescent region in an OLED. Note that active region 54 in FIG.
- electronic device 50 is an OLED device, in can include an emissive layer, or other layers, coupled to an anode electrode and a cathode electrode.
- An anode electrode or a cathode electrode can be coupled to or can include electrode portion 56 that is laterally offset along the substrate 52 from the active region 54 .
- an inorganic barrier layer 60 A can be provided on electronic device 50 over active region 54 .
- the inorganic barrier layer can be blanket coated (e.g., deposited) over an entirety, or substantially an entirety of a surface of the substrate 52 , including active region 54 , using, by way of a non-limiting example, plasma enhanced chemical vapor deposition (PECVD).
- PECVD plasma enhanced chemical vapor deposition
- examples of inorganic materials useful for fabricating inorganic barrier layer 60 A can include various inorganic oxides, such as one or more of Al 2 O 3 , TiO 2 , HfO 2 , SiO X N Y , inorganic nitrides, such as silicon nitride, or one or more other materials.
- Adjacent to inorganic barrier layer 60 A is polymeric film 62 A.
- polymeric film 62 A can be deposited using for example, inkjet printing of a curable ink composition and then curing the ink composition to form the polymeric film.
- Polymeric film 62 A can serve as a planarizing layer to planarize and mechanically protect the active region 54 , as part of an encapsulation stack that collectively serves to suppress or inhibit moisture or gas permeation into the active region 54 .
- FIG. 1 illustrates generally a multilayered encapsulation stack configuration having inorganic barrier layer 60 A polymeric film 62 A, a second inorganic barrier layer 60 B, and a second polymeric film 62 B.
- planarizing layers in an encapsulation stack can serve to prevent the propagation of defects from one inorganic barrier layer into an adjacent inorganic barrier layer.
- various embodiments of encapsulation stacks can be created to provide the mechanical and sealing properties desired for an electronic device.
- the order of the fabrication of the layers in the encapsulation stack depicted in FIG. 1 could be reversed, so that a polymeric planarizing layer is first fabricated, followed by the fabrication of an inorganic barrier layer. Additionally, greater or fewer numbers of dyads can be present. For example, a stack having inorganic barrier layers 60 A and 60 B as shown, and a single polymeric planarizing layer 62 A can be fabricated.
- curable ink compositions that can be used to form polymeric films that remain stable throughout the electronic device fabrication processes, as well as providing long-term stability and function as part of a protective layer for various electronic devices.
- Curable ink compositions of the present teachings can be readily deposited as a liquid material on a substrate and then cured to form a polymeric thin film thereupon.
- Various embodiments of such curable ink compositions can include diacrylate monomers, dimethacrylate monomers, monoacrylate monomers, monomethacrylate monomers and combinations thereof as base monomers, as well as various multifunctional crosslinking agents.
- the phrase “(meth)acrylate” indicates that the recited component may be an acrylate, methacrylate, or a combination thereof.
- the term “(meth)acrylate monomer” refers to both methacrylate monomers and acrylate monomers.
- Various embodiments of the curable ink compositions further include cure initiators, such as photoinitiators.
- compositions described herein are referred to as “ink compositions” because various embodiments of the compositions can be applied using techniques, including printing techniques, by which conventional inks have been applied to substrates.
- printing techniques include, for example, inkjet printing, screen printing, thermal transfer printing, flexographic printing, and/or offset printing.
- various embodiments of the ink compositions can also be applied using other coating techniques, such as, for example, spray coating, spin coating, and the like.
- the ink compositions need not contain colorants, such as dyes and pigments, which are present in some conventional ink compositions.
- Precision deposition techniques are techniques that apply the ink compositions to a substrate with a high degree of precision and accuracy with respect to the quantity, location, shape, and/or dimensions of the printed ink compositions and the cured polymeric films that are formed therefrom.
- the precision deposition techniques are able to form blanket coatings of the ink compositions or patterned coatings of the ink compositions that, once cured, form thin polymeric films with highly uniform thicknesses and well-defined edges.
- the precision deposition coating techniques are able to provide thin polymeric films that meet the requirements of a variety of organic electronic and organic optoelectronic device applications.
- the required quantity, location, shape, and dimensions for a given precision deposited ink composition and the cured film formed therefrom, will depend on the intended device application.
- various embodiments of the precision deposition techniques are able to form blanket or patterned films having a thickness of no greater than 10 ⁇ m with a thickness variation of no more than 5% across the film.
- Inkjet printing in one example of a precision deposition technique is possible.
- Cured polymeric films made from the ink compositions are stable and flexible.
- the ink compositions can be formulated to provide cured polymeric films with glass transition temperatures (T g ) that allow them to be subjected to various post-processing techniques. Having a sufficiently high T g is desirable for certain applications, such as applications where the polymeric films are exposed to high temperature conditions.
- T g glass transition temperatures
- the devices may be subjected to testing at 60° C. and 90% relative humidity (RH) or at 85° C. and 85% RH.
- the T g of the polymeric films should be sufficiently high to withstand any high temperature post-processing steps that are used to fabricate the electronic devices into which they are incorporated. For example, if a layer of material, such as an inorganic barrier layer, is deposited over the polymeric film the polymeric film should be stable enough to withstand the maximum deposition temperature for the inorganic material.
- inorganic barrier layers can be deposited over polymeric planarizing layers using plasma enhanced chemical vapor deposition (PECVD), which can require deposition temperatures of 80° C. or higher.
- PECVD plasma enhanced chemical vapor deposition
- the polymeric film should have a T g that is higher than the testing or processing temperatures.
- the curable ink compositions can be formulated to provide cured polymers having a T g of 80° C. or greater. This includes embodiments of ink compositions that are formulated to provide cured polymers having a T g of 85° C. or greater, and further includes embodiments of the ink compositions that are formulated to provide cured polymers having a T g of 90° C. or greater. Because the T g of a polymeric material can be measured from the bulk cured polymer or from a polymeric film of the polymer, various embodiments of the ink compositions, the preceding Tg values may apply to the bulk cured polymer or the cured polymeric film. For the purposes of this disclosure, T g measurements for the bulk cured polymers can be performed via Thermomechanical Analysis [TMA], as described in greater detail in the examples.
- TMA Thermomechanical Analysis
- Some embodiments of the curable ink compositions include a di(meth)acrylate monomer, such as an alkyl di(meth)acrylate monomer, where the generalized structure of an alkyl di(meth)acrylate is given by:
- the alkyl chain of an alkyl di(meth)acrylate monomer can have between 3 to 21 carbon atoms and in various compositions, moreover between 3 to 14 carbon atoms.
- Various embodiments of curable ink compositions of the present teachings can utilize an alkyl di(meth)acrylate monomer that can have an alkyl chain with between 6 to 12 carbon atoms.
- factors that can guide the selection of an alkyl di(meth)acrylate monomer can include the resulting viscosity of a formulation at a selected deposition temperature, as well as falling within the range of a target surface tension.
- An exemplary alkyl di(meth)acrylate monomer according to the present teachings is 1, 12 dodecanediol dimethacrylate, having the structure as shown below:
- curable ink compositions of the present teachings can include between about 57 mol. % to about 97 mol. % of an alkyl di(meth)acrylate monomer, such as 1, 12 dodecanediol dimethacrylate (DDMA) monomer, further can include curable ink compositions that comprise about 71 mol. % to 93 mol. % of an alkyl di(meth)acrylate monomer, and still further can include curable ink compositions that comprise about 75 mol. % to 89 mol. % of an alkyl di(meth)acrylate monomer.
- an alkyl di(meth)acrylate monomer such as 1, 12 dodecanediol dimethacrylate (DDMA) monomer
- curable ink compositions that comprise about 71 mol. % to 93 mol. % of an alkyl di(meth)acrylate monomer
- curable ink compositions that comprise about 75 mol. % to 89
- the curable ink compositions of the present teachings can have a diurethane di(meth)acrylate monomer component in the in the formulation.
- a generalized diurethane di(meth)acrylate monomer structure is given by:
- urethane di(meth)acrylate monomers include diurethane dimethacrylates (DUDMA) and urethane dimethacylate, having the generalized structures shown below:
- DMDMA diurethane dimethacrylates
- urethane dimethacylate having the generalized structures shown below:
- DUDMA can be a mixture of isomers in which R can be hydrogen (H) or methyl (CH 3 ) in essentially equal proportion.
- the concentration of the DUDMA can be between about 1 mol. % to about 20 mol. %. This includes embodiments of the curable ink compositions having a DUDMA concentration in the range from 10 mol. % to 14 mol. %.
- the curable ink compositions include monofunctional (meth)acrylates, such as an alkyl monoacrylates and/or alkyl monomethacrylate.
- monofunctional (meth)acrylates such as an alkyl monoacrylates and/or alkyl monomethacrylate.
- the use of monofunctional (meth)acrylates in the ink compositions can reduce the viscosity of the ink compositions and may also provide the cured polymeric films formed from the ink compositions with a lower elastic modulus and, therefore, a higher flexibility.
- Examples of mono(meth)acrylates include long alkyl chain (C8-C12) (meth)acrylates, such as lauryl (meth)acrylate (C12), decyl (meth)acrylate (C10) and octyl (meth)acrylate (C8), and shorter alkyl chain (C4-C6) (meth)acrylates.
- longer chain (meth)acrylates such as stearyl (meth)acrylate
- Other examples include di(ethylene glycol) methyl ether (meth)acrylate (DEGME(M)A), diethylene glycol monoethyl ether acrylate, and ethylene glycol methyl ether (meth)acrylate (EGME(M)A).
- Still other suitable (meth)acrylate monomers include, but are not limited to: alkyl (meth)acrylates, such as methyl (meth)acrylate and ethyl (meth)acrylate; cyclic (meth)acrylates, such as tetrahydrofurfuryl methacrylate, alkoxylated tetrahydrofurfuryl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate; and aromatic (meth)acrylates, such as benzyl (meth)acrylate and phenoxyalkyl (meth)acrylates, including 2-phenoxyethyl (meth)acrylate and phenoxymethyl (meth)acrylate.
- alkyl (meth)acrylates such as methyl (meth)acrylate and ethyl (meth)acrylate
- cyclic (meth)acrylates such as tetrahydrofurfuryl methacrylate, alkoxylated tetrahydrofurfur
- multifunctional crosslinking agents can be included in the curable ink compositions of the present teachings.
- the term multifunctional crosslinking agent refers to a crosslinking agent having at least three reactive crosslinkable groups.
- multifunctional (meth)acrylate crosslinking agents can be, for example, tri(meth)acrylates, tetra(meth)acrylates, as well as higher functionality (meth)acrylates.
- curable ink compositions of the present teachings can include trimethylolpropane tri(meth)acrylate or pentaerythritol tetra(meth)acrylate, as well as combinations thereof.
- tetrafunctional and higher functionality (meth)acrylates is advantageous for applications where a high T g polymer film is desired because the tetra- and higher-functionality (meth)acrylates increase the T g of the polymer film, relative to a polymer film made from an ink composition without the tetra- and higher-functionality (meth)acrylates.
- curable ink compositions of the present teachings can include multifunctional crosslinking agents at concentration in the range from, for example, 1 mol. % to 15 mol. %.
- concentrations outside of these ranges can be used.
- each multifunctional crosslinking agent can have a concentration falling within the above-references ranges.
- an ink composition can include a trimethylolpropane tri(meth)acrylate at a concentration in a range of between about 1-15 mol. %.
- a pentaerythritol tetra(meth)acrylate monomer can be included at a concentration in a range of between about 1-15 mol. % of a composition.
- trimethylolpropane tri(meth)acrylate for various embodiments of a curable ink composition of the present teachings is trimethylolpropane triacrylate, the structure of which is given below:
- pentaerythritol tetra(meth)acrylate is shown below:
- Suitable cure initiators include photoinitiators (PIs), thermal initiators, and initiators that induce polymerization using other types of energy, such as electron beam initiators.
- photoinitiators are used.
- the initiators may be present in amounts in the range from about 1 mol. % to about 10 mol. %. This includes embodiments in which the initiators are present in amounts in the range from about 2 mol. % to about 6 mol. %. However, amounts outside of these ranges can also be used.
- the photoinitiator may be a Type I or a Type II photoinitiator.
- Type I photoinitiators undergo radiation-induced cleavage to generate two free radicals, one of which is reactive and initiates polymerization.
- photoinitiator fragments may be present in the cured polymeric films made from the ink compositions.
- Type II photoinitiators undergo a radiation-induced conversion into an excited triplet state. The molecules in the excited triplet state then react with molecules in the ground state to produce polymerization initiating radicals.
- the photoinitiator may be present in the cured polymeric films made from the ink compositions.
- the specific photoinitiators used for a given curable ink composition are desirably selected such that they are activated at wavelengths that are not damaging to the OLED materials.
- various embodiments of the curable ink compositions include photoinitiators that have a primary absorbance with a peak in the range from about 365 nm to about 420 nm.
- the light source used to activate the photoinitiators and induce the curing of the curable ink compositions is desirably selected such that the absorbance range of the photoinitiator matches or overlaps with the output of the light source, whereby absorption of the light creates free radicals that initiate polymerization.
- Suitable light sources may include mercury arc lamps and light emitting diodes.
- An acylphosphine oxide photoinitiator can be used, though it is to be understood that a wide variety of photoinitiators can be used. For example, but not limited by, photoinitiators from the ⁇ -hydroxyketone, phenylglyoxylate, and ⁇ -aminoketone classes of photoinitiators can also be considered. For initiating a free-radical based polymerization, various classes of photoinitiators can have an absorption profile of between about 200 nm to about 400 nm.
- an acylphosphine oxide photoinitiator can be about 0.1-5 mol. % of a formulation.
- acylphosphine photoinitiators include Omnirad® TPO (also previously available under the tradename Lucirin® TPO) initiators for curing with optical energy in the wavelength range of about 365 nm to about 420 nm sold under the tradenames Omnirad® TPO, a type I hemolytic initiator which; with absorption @ 380 nm; Omnirad® TPO-L, a type I photoinitiator that absorbs at 380 nm; and Omnirad® 819 with absorption at 370 nm.
- Omnirad® TPO also previously available under the tradename Lucirin® TPO
- Omnirad® TPO a type I hemolytic initiator which; with absorption @ 380 nm
- Omnirad® TPO-L a type I photoinitiator that absorbs at 380 nm
- Omnirad® 819 with absorption at 370 nm.
- a light source emitting at a nominal wavelength in the range from 350 nm to 395 nm at a radiant energy density of up to 2.0 J/cm 2 could be used to cure a curable ink composition comprising a TPO photoinitiator.
- high levels of curing can be achieved.
- some embodiments of the cured films have a degree of curing of 90% or greater, as measured by Fourier Transform Infrared (FTIR) spectroscopy.
- FTIR Fourier Transform Infrared
- Table 1 and Table 2 shown below summarize various components, as well as ranges for the components, for two non-limiting exemplary organic polymer compositions of the present teachings.
- composition for Formulation I including component ranges Mol. % Component (Range) 1,12 Dodecanediol Dimethacrylate (DDMA) 57-97 Diurethane Dimethacrylate (DUDMA) 1-20 Trimethylolpropane Triacrylate (TMPTA) 1-13 Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO) 1-10 Total
- curable ink compositions of the present teachings are formulated to provide stability during processing of the formation of a complete encapsulation stack fabricated upon an OLED device, as well as long-term stability for the effective sealing of the device over its useful lifetime. Additionally, curable ink compositions of the present teachings are formulated to provide function, such as flexibility, and optical properties, such as to enhance the use of an OLED device. For example, in Formulation I, and Formulation II of an alkyl di(meth)acrylate monomer, such as DDMA, in conjunction with a selection of cross-linking agents, such as PET and TMPTA, can provide an organic planarizing layer with a hydrophobic property and high cross-linking density.
- an alkyl di(meth)acrylate monomer such as DDMA
- cross-linking agents such as PET and TMPTA
- DUDMA diurethane di(meth)acrylate monomer
- a mixture of trifunctional and tetra-functional crosslinking agents can be used to provide for mechanical strength and desired degree of polymer crosslinking, and at the same time render sufficient segment mobility within the polymer network to provide for targeted polymer film flexibility.
- the surface tension, viscosity and wetting properties of the curable ink compositions should be tailored to allow the compositions to be dispensed through an inkjet printing nozzle without drying onto or clogging the nozzle at the temperature used for printing (e.g., room temperature; ca. 25° C.).
- various embodiments of the curable ink compositions can have a viscosity of between about 10 cP and about 28 cP (including, for example, between about 15 cP and about 26 cP) at 25° C.
- FIG. 2 illustrates generally a graph of viscosity as a function of temperature for Formulation I
- FIG. 3 illustrates generally a graph of viscosity as a function of temperature for Formulation II
- Jetting temperatures can be between about 20° C. to about 50° C., including temperatures between 22° C. to about 40° C.
- various embodiments of organic polymer formulations can have a viscosity of between about 7-25 cP; including, for example, between about 9 cP and about 19 cP.
- curable ink compositions can be prepared to prevent exposure to light.
- the compositions in order to ensure the stability of various compositions, can be prepared in a dark or very dimly lit room or in a facility in which the lighting is controlled to exclude wavelengths that would induce polymerization. Such wavelengths generally include those below about 500 nm.
- the lid of a clean amber vial for example, Falcons, VWR trace clean
- the lid of a clean amber vial for example, Falcons, VWR trace clean
- a desired amount of a photoinitiator can be weighed into the vial.
- the di(meth)acrylate can be weighed into the vial.
- the mono(meth)acrylate monomer can be weighed into the vial.
- the crosslinking agent can be weighed into the vial.
- a Teflon® coated magnetic stir bar can be inserted into the vial and the cap of vial secured. The solution can then be stirred, for example, for 30 minutes at temperatures in the range from room temperature to 50° C. and 600-1000 rpm.
- the curable ink compositions can be dehydrated by mixing in the presence of a 10 wt. % 3A molecular sieve beads for a period of several hours or more to yield ⁇ 100 ppm moisture and then stored under a dry atmosphere, such as a compressed dry air atmosphere. Thereafter, the curable ink composition can be filtered, for example, through a 0.1 ⁇ m or 0.45 ⁇ m PTFE syringe filter or vacuum or pressure filter, followed by sonication for 30 minutes at ambient temperature to remove residual gases. The curable ink composition is then ready for use and should be stored away in a dark cool environment.
- an organic thin film organic polymer preparation as described can have a viscosity of between about 10 cps and about 30 cP at 25° C. and a surface tension of between about 30 dynes/cm and about 40 dynes/cm at 25° C.
- the curable ink compositions can be stable for long periods of time, as determined by the lack of precipitation or gelation under visual inspection and the stabilities in their room temperature viscosities and surface tensions. No significant changes were recorded in viscosity and surface tension of the curable ink compositions of Formulations I and II; any changes are deemed to be within measurement errors for at least 160 days at room temperature under compressed dry air atmosphere in the dark.
- TMA Thermal Mechanical Analysis
- film shrinkage is evaluated using a UV rheometer designed to follow the curing progress from onset of irradiation of the sample to a fully cured state, and the degree of curing is determined using FTIR analysis.
- shrinkage of less than about 12% and degree of curing of between about 85%-90% are target values for those properties.
- Optical properties of films formed from curable ink composition of the present teachings for various OLED devices include haze, percent optical transmission through a desired wavelength range, and color.
- haze is a measure of the fraction of transmitted wide angle scattered light from a source that is transmitted through a film
- a low percent haze is desirable for a polymeric planarizing layer.
- a target for haze not to exceed 0.10% is clearly met by films formed from Formulation I and Formulation II.
- the percent transmission of light in a wavelength range of between about 350 nm to about 750 nm for films formed from Formulation I and Formulation II is comparable to that of a glass reference.
- a controlled process environment of the present teachings can include a process environment that is non-reactive to materials that are used in the fabrication of, for example, various OLED devices, as well as being a substantially low-particle process environment. Patterned printing of an organic thin film on an OLED device substrate in such a controlled environment can provide for high-volume, high yield processes for a variety of OLED devices, such as OLED display and lighting devices.
- Curable ink compositions of the present teachings can be printed using a printing system, such as described in U.S. Pat. No. 9,343,678, issued May 17, 2016, which is incorporated herein in its entirety.
- Various embodiments of the present organic polymer compositions can be inkjet printed into thin films that are continuous and have well-defined edges on such substrates as glass, plastics, silicon, and silicon nitride.
- the organic polymer compositions can be used to print thin films having thicknesses in the range from about 2 ⁇ m to about 10 ⁇ m, or thicker, including thin films having thicknesses in the range from about 2 ⁇ m to about 8 ⁇ m. These thin films can be achieved with film thickness variation of, for example, 5% or lower.
- Gas enclosure system 500 of FIG. 5 can include gas enclosure 1000 for housing printing system 2000 .
- Printing system 2000 can be supported by printing system base 2150 , which can be a granite stage.
- Printing system base 2150 can support a substrate support apparatus, such as a chuck, for example, but not limited by, a vacuum chuck, a substrate floatation chuck having pressure ports, and a substrate floatation chuck having vacuum and pressure ports.
- a substrate support apparatus can be a substrate floatation table, such as substrate floatation table 2250 .
- Substrate floatation table 2250 can be used to float a substrate during frictionless transport of the substrate.
- printing system 2000 can have a Y-axis motion system utilizing air bushings.
- FIG. 5 illustrates generally an example of gas enclosure system 500 of manufacturing system 3000 A configured with external gas loop 3200 for integrating and controlling gas sources, such as a source of CDA and a source of a non-reactive gas such as can be used to establish a controlled process environment for various enclosed manufacturing systems of the present teachings, as well as providing a source of gas for operating various pneumatically controlled devices.
- a non-reactive gas can be any gas that does not undergo a chemical reaction with materials used in the manufacture of OLED devices, such as display and lighting devices, under process conditions.
- a non-reactive gas can be a non-oxidizing gas.
- blower loop 3280 can provide pressurized gas and at least partial vacuum for use with a floatation table 2250 .
- gas enclosure system 500 can be generally configured so that a pressure of gas inside the gas enclosure 1000 can be maintained within a desired or specified range, such as using a valve coupled to a pressure monitor, P.
- Gas enclosure system 500 can also be configured with various embodiments of a gas purification system that can be configured for purifying various reactive species from a non-reactive process gas.
- a gas purification system according to the present teachings can maintain levels for each species of various reactive species, such as water vapor, oxygen, ozone, as well as organic solvent vapors, for example, at 100 ppm or lower, at 10 ppm or lower, at 1.0 ppm or lower, or at 0.1 ppm or lower.
- Gas enclosure system 500 can also be configured with various embodiments of a circulation and filtration system for maintaining a substantially particle free environment.
- a particle filtration system can maintain a low particle environment within a gas enclosure meeting the standards of International Standards Organization Standard (ISO) 14644-1:1999, “Cleanrooms and associated controlled environments—Part 1: Classification of air cleanliness,” as specified by Class 1 through Class 5.
- ISO International Standards Organization Standard
- Blower loop 3280 can include blower housing 3282 , which can enclose first blower 3284 for supplying a pressurized source of gas to substrate floatation table 2250 via line 3286 , and second blower 3290 , acting as a vacuum source for substrate floatation table 2250 via line 3292 , providing at least partial vacuum to substrate floatation table 2250 .
- blower loop 3280 can be, configured with heat exchanger 3288 for maintaining gas from blower loop 3280 to substrate floatation table 2250 at a defined temperature.
- non-reactive gas source 3201 can be in flow communication with low consumption manifold line 3212 via non-reactive gas line 3210 .
- Low consumption manifold line 3212 is shown in flow communication with low consumption manifold 3215 .
- Cross-line 3214 extends from a first flow juncture 3216 , which is located at the intersection of non-reactive gas line 3210 , low consumption manifold line 3212 , and cross-line 3214 .
- Cross-line 3214 extends to a second flow juncture 3226 .
- CDA line 3222 extends from a CDA source 3203 and continues as high consumption manifold line 3224 , which is in fluid communication with high consumption manifold 3225 .
- CDA can be used during, for example, maintenance procedures.
- non-reactive gas source 3201 can be in flow communication with low consumption manifold 3215 and high consumption manifold 3225 .
- non-reactive gas source can be routed through external gas loop 3200 to provide non-reactive gas to gas enclosure 1000 , as well as providing non-reactive gas for operating various pneumatically operated apparatuses and devices used during the operation of printing system 2000 .
- high consumption manifold 3225 can provide non-reactive gas from gas source 3201 during processing for the operation of various components for printing system 2000 housed in gas enclosure 1000 , such as, but not limited by, one or more of a pneumatic robot, a substrate floatation table, an air bearing, an air bushing, a compressed gas tool, a pneumatic actuator, and combinations thereof.
- second flow juncture 3226 is positioned at the intersection of a cross-line 3214 , clean dry air line 3222 , and high consumption manifold line 3224 , which is in flow communication with high consumption manifold 3225 .
- Cross-line 3214 extends from a first flow juncture 3216 , which is in flow communication with non-reactive gas line 3210 , which flow communication can be controlled by valve 3208 .
- valve 3208 can be closed to prevent flow communication between non-reactive gas source 3201 and high consumption manifold 3225 , while valve 3206 can be opened thereby allowing flow communication between CDA source 3203 and high consumption manifold 3225 . Under such conditions, various components that are high consumption can be supplied CDA during maintenance.
- such regulation can assist in maintaining a slight positive internal pressure of a gas enclosure system, which can be between about 2-12 mbar above the pressure in the environment external a gas enclosure. Maintaining the internal pressure of a gas enclosure at a desired slightly positive pressure versus an external pressure is necessary given that pressurized gas is also contemporaneously introduced into the gas enclosure system.
- Variable demand of various devices and apparatuses can create an irregular pressure profile for various gas enclosure assemblies and systems of the present teachings.
- the internal pressure of a gas enclosure can be maintained within a desired or specified range, by using a control system configured with a valve coupled to a pressure monitor, P, where the valve allows gas to be exhausted to another enclosure, system, or a region surrounding the gas enclosure 1000 using information obtained from the pressure monitor. Exhausted gas can be recovered and re-processed through gas circulation and purification systems as previously described herein.
- FIG. 6 illustrates generally an isometric view of a manufacturing system 3000 B, such as including a first printing system 2000 A, a second printing system 2000 B and first curing system 1300 A and second curing system 1300 B as well other enclosed modules, that can be used in manufacturing various optoelectronic devices (e.g., an organic light emitting diode (OLED) device).
- First and second curing systems 1300 A and 1300 B of the present teachings can be used for one or more of holding a substrate (e.g., to facilitate flowing or dispersing the deposited material layer, such as to achieve a more planar or uniform film), as well as curing (e.g.
- a layer of material such as deposited by one or more of the first or second printing systems 2000 A and 2000 B.
- a material layer that flows or disperses, or is cured, using the first and second processing systems 1300 A and 1300 B can include a portion of an encapsulation stack (such as a thin film layer comprising an organic thin film material that can cured or treated via exposure to optical energy).
- the first or second processing systems 1300 A or 1300 B can be configured for holding substrates, such as in a stacked configuration.
- the first and second printers 2000 A and 2000 B can be used, for example, to deposit the same layers on a substrate or printers 2000 A and 2000 B can be used to deposit different layers on a substrate.
- Manufacturing system 3000 B can include an input or output module 1101 (e.g., a “loading module”), such as can be used as a load-lock or otherwise in a manner that allows transfer of a substrate into or out of an interior of one or more chambers of manufacturing system 3000 B in a manner that substantially avoids disruption of a controlled environment maintained within one or more enclosures of manufacturing system 3000 B.
- a loading module e.g., a “loading module”
- substantially avoids disruption can refer to avoiding raising a concentration of a reactive species by a specified amount, such as avoiding raising such a species by more than 10 parts per million, 100 parts per million, or 1000 parts per million within the one or more enclosures during or after a transfer operation of a substrate into or out the one or more enclosures.
- a transfer module such as can include a handler, can be used to manipulate a substrate before, during, or after various operations.
- a gas enclosure system can be referred to as a “gas enclosure system” and such enclosure assemblies can be constructed in a contoured fashion that reduces or minimizes an internal volume of a gas enclosure assembly, and at the same time provides a working volume for accommodating various footprints of a manufacturing system of the present teachings, such as the deposition (e.g., printing), holding, loading, curing systems or modules described herein.
- a contoured gas enclosure assembly according to the present teachings can have a gas enclosure volume of between about 6 m 3 to about 95 m 3 for various examples of a gas enclosure assembly of the present teachings covering, for example, substrate sizes from Gen 3.5 to Gen 10.
- a contoured gas enclosure assembly can have a gas enclosure volume of, for example, but not limited by, of between about 15 m 3 to about 30 m 3 , which might be useful for printing of, for example, Gen 5.5 to Gen 8.5 substrate sizes above, or other substrate sizes that can readily be derived therefrom.
- FIG. 7 depicts flow diagram 100 that illustrates generally a process for the fabrication of an organic thin films on various device substrates.
- FIG. 7 illustrates techniques, such as methods, that can include forming an organic thin-film planarizing layer over the active area a light emitting device (e.g., an of a OLED lighting or display device) formed on a substrate, such as for providing a mura-free organic thin film layer.
- a substrate can be transferred onto a substrate support system of an enclosed printing system configured to provide a controlled process environment as previously described herein.
- a substrate can be transferred to an enclosed printing system from, for example, an inorganic thin film encapsulation system.
- a substrate support system can be configured to provide uniform support of the substrate at least in one or more active regions of the substrate.
- a substrate support system can include a floatation table configuration, such as having various floatation control zones including one or more of a pneumatically-supplied gas cushion, or a combination of pneumatic and at least partial vacuum supplied regions to provide a gas cushion supporting the substrate.
- a curable ink composition can be printed over a target deposition region of a substrate.
- the substrate can be transferred from an enclosed printing system to an enclosed curing system configured to provide a controlled process environment as previously described herein.
- a curing system can provide an apparatus that can uniformly illuminate a substrate or portion or a substrate with optical energy in a wavelength range from about 365 nm to about 420 nm.
- a curing system can have a substrate support system that can provide a pneumatically supplied gas cushion, or a combination of pneumatic and at least partial vacuum supplied regions to provide a gas cushion supporting the substrate uniformly in a manner that can suppress or inhibit mura formation during one or more of a holding operation or curing operation.
- the substrate can be held for a specified duration after printing and before curing, such as before an optical curing process is initiated.
- the liquid organic polymer layer can be cured, for example, using an optical treatment provided within an enclosed curing system, such as to provide a mura-free organic thin film encapsulation layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Electroluminescent Light Sources (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Laminated Bodies (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
- The present application claims priority to U.S. provisional patent application No. 62/488,401 that was filed on Apr. 21, 2017 and to U.S. provisional patent application No. 62/653,035 that was filed on Apr. 5, 2018, the entire contents of which are hereby incorporated by reference.
- Interest in the potential of organic light-emitting diode (OLED) optoelectronic device technology, such as OLED display and OLED lighting devices, has been driven by OLED technology attributes that include demonstration of devices that have highly saturated colors and provide high-contrast, and are ultrathin, fast-responding, and energy efficient.
- Various OLED optoelectronic devices are fabricated from inorganic and organic materials, including various organic thin film emissive materials. Such materials can be susceptible to degradation by water, oxygen and other chemical species in the environment. To address this, OLED devices have been encapsulated in order to provide protection against degradation. For example, encapsulation stacks that include alternating inorganic barrier layers and organic planarizing layers have been used to isolate the moisture- and/or oxygen-sensitive materials in OLEDs.
- Though various manufacturing methods can be used for the deposition of the planarizing layer in an encapsulation stack, inkjet printing can provide several advantages. First, a range of vacuum processing operations can be eliminated because inkjet-based fabrication can be performed at atmospheric pressure. Additionally, during an inkjet printing process, an organic planarizing layer can be localized to cover portions of an OLED substrate over and proximal to an active region, to effectively encase an active region, including lateral edges of the active region. The targeted patterning using inkjet printing results in eliminating material waste, as well as eliminating the need for masks and therefore challenges presented with the alignment and fouling thereof, as well as eliminating additional processing typically required to achieve patterning of an organic layer when utilizing, for example, various vapor deposition processes.
- Accordingly, various compositions of the present teachings can be deposited on a substrate and cured to form an organic layer on a substrate. In various methods of the present teachings, inkjet deposition can be used for the deposition of an organic thin film composition on a substrate, followed by a curing process to form an organic layer on a substrate.
- A better understanding of the features and advantages of the present disclosure will be obtained by reference to the accompanying drawings, which are intended to illustrate, not limit, the present teachings.
-
FIG. 1 is a schematic section view of an optoelectronic device, illustrating various aspects of a fabrication. -
FIG. 2 is a graph of viscosity versus temperature for various embodiments of a first organic monomer composition of the present teachings. -
FIG. 3 is a graph of viscosity as a function of temperature for various embodiments of a second organic monomer composition of the present teachings. -
FIG. 4 is a graph of transmission as a function of wavelength for thin films formed from each of an exemplary composition of the present teachings in comparison to the transmission of a glass reference material. -
FIG. 5 illustrates generally examples of a gas enclosure system for integrating and controlling gas sources such as can be used to establish a controlled process environment, as well as providing a pressurized gas and at least partial vacuum for use with a floatation table. -
FIG. 6 illustrates generally an isometric view of at least a portion of a system, such as including an enclosed printing system and an enclosed curing system. -
FIG. 7 is a flow diagram that illustrates generally a process for the fabrication of an organic thin films on various device substrates. - The present teachings relate to various embodiments of curable ink compositions, which once deposited and cured, provide a polymeric film over at least a portion of a substrate in an electronic device.
- Electronic devices on which the polymeric films may be formed include electronic devices having one or more components that are moisture- and/or oxygen-sensitive—that is, one or more components whose performance is negatively affected by reactions with water and/or oxygen in the atmosphere. In such devices, the polymeric film may be included as a planarizing layer in a multi-layered encapsulation stack, as described in greater detail below. The polymeric films may also be used to improve light extraction for a light-emitting optoelectronic device, to provide thermal dissipation for a heat-generating device, and/or to provide protection from mechanical damage for an electronic device that is susceptible to breaking, including electronic devices that have glass components, such as glass screens. Electronic devices over which the polymeric films can be formed include optoelectronic devices, such as OLEDs, as well as lithium batteries, capacitors, and touch screen devices. Because the polymeric films are flexible, they are suited for use with flexible electronic devices.
- In some embodiments of the encapsulated devices, the polymeric films are disposed over a light-emitting active region of an OLED device substrate. The light-emitting active region of an OLED device can include various materials that degrade in the presence of various reactive species, such as, but not limited by, water vapor, oxygen, and various solvent vapors from device processing. Such degradation can impact the stability and reliability of an OLED device. In order to prevent such degradation, a multilayered encapsulation stack can be used to protect the OLED, wherein the encapsulation stack includes a film of an inorganic barrier layer adjacent to a polymeric planarizing layer. An encapsulation stack will include at least one such inorganic barrier layer/polymeric planarizing layer pair (“dyad”), but can include multiple stacked dyads. Moreover, the lowermost layer in the encapsulation stack, which is in contact with at least one substrate of the electronic device, can be either an inorganic barrier layer or a polymeric planarizing layer. Thus, a polymeric film that is disposed over a light-emitting active region need not be formed directly on the light-emitting active region. For example, the polymeric film can be formed on one of the electrodes between which the light-emitting active region is disposed, on an inorganic barrier layer that forms part of an encapsulation stack, and/or on the surface of an OLED support substrate.
- Regarding the various deposition techniques that can be used to apply the curable ink compositions. For example, a deposition system, such as an industrial inkjet printing system, that can be housed in an enclosure configured to provide a controlled process environment can be used. Inkjet printing for the deposition of the curable ink compositions described herein can have several advantages. First, a range of vacuum processing operations can be eliminated, as inkjet-based fabrication can be performed at atmospheric pressure. Additionally, during an inkjet printing process, an ink composition can be localized to cover portions of an electronic device substrate, including portions that are over and proximal to an active region, to effectively encapsulate an active region, including the lateral edges of the active region. The targeted patterning using inkjet printing results in eliminating material waste, as well as eliminating additional processing typically required to achieve patterning of an organic layer, as required, for example, by various masking techniques.
- Various embodiments of the curable ink compositions of the present teachings can be deposited by printing over a wide number of OLED devices, such as OLED display devices and OLED lighting devices, to form a uniform planarizing layer. Such ink compositions can be cured using thermal processing (e.g. bake), by exposure to optical energy, (e.g., UV cure), or electron-beam curing. Some embodiments of the ink compositions can be cured by UV radiation, including UV radiation in the wavelength range of between about 365 nm to about 420 nm.
- Regarding encapsulation stacks fabricated over an active region of an electronic device, as depicted in the schematic section view of
FIG. 1 ,electronic device 50 can be fabricated onsubstrate 52. Various embodiments of a substrate can include a thin silica-based glass, as well as any of a number of flexible polymeric materials. For example,substrate 52 can be transparent, such as for use in a bottom-emitting optoelectronic device (e.g. OLED) configuration. One or more layers associated with an electronic device stack, such as various organic or other material can be deposited, inkjet printed, or otherwise formed upon the substrate to provide anactive region 54, such as an electroluminescent region in an OLED. Note thatactive region 54 inFIG. 1 is illustrated schematically as a single block, but can in detail further include a region having complex topology or structure with multiple discrete devices and film layers. In an example, ifelectronic device 50 is an OLED device, in can include an emissive layer, or other layers, coupled to an anode electrode and a cathode electrode. An anode electrode or a cathode electrode can be coupled to or can includeelectrode portion 56 that is laterally offset along thesubstrate 52 from theactive region 54. - As depicted in the illustrative embodiment of
FIG. 1 , an inorganic barrier layer 60A can be provided onelectronic device 50 overactive region 54. For example, the inorganic barrier layer can be blanket coated (e.g., deposited) over an entirety, or substantially an entirety of a surface of thesubstrate 52, includingactive region 54, using, by way of a non-limiting example, plasma enhanced chemical vapor deposition (PECVD). Examples of inorganic materials useful for fabricating inorganic barrier layer 60A can include various inorganic oxides, such as one or more of Al2O3, TiO2, HfO2, SiOXNY, inorganic nitrides, such as silicon nitride, or one or more other materials. Adjacent to inorganic barrier layer 60A ispolymeric film 62A. As previously discussed herein,polymeric film 62A can be deposited using for example, inkjet printing of a curable ink composition and then curing the ink composition to form the polymeric film.Polymeric film 62A can serve as a planarizing layer to planarize and mechanically protect theactive region 54, as part of an encapsulation stack that collectively serves to suppress or inhibit moisture or gas permeation into theactive region 54.FIG. 1 illustrates generally a multilayered encapsulation stack configuration having inorganic barrier layer 60Apolymeric film 62A, a second inorganic barrier layer 60B, and a second polymeric film 62B. Without being bound by theory or explanation, the planarizing layers in an encapsulation stack can serve to prevent the propagation of defects from one inorganic barrier layer into an adjacent inorganic barrier layer. As such, various embodiments of encapsulation stacks can be created to provide the mechanical and sealing properties desired for an electronic device. The order of the fabrication of the layers in the encapsulation stack depicted inFIG. 1 could be reversed, so that a polymeric planarizing layer is first fabricated, followed by the fabrication of an inorganic barrier layer. Additionally, greater or fewer numbers of dyads can be present. For example, a stack having inorganic barrier layers 60A and 60B as shown, and a singlepolymeric planarizing layer 62A can be fabricated. - As will be discussed in more detail herein, the present inventors have recognized the need for curable ink compositions that can be used to form polymeric films that remain stable throughout the electronic device fabrication processes, as well as providing long-term stability and function as part of a protective layer for various electronic devices.
- Curable Ink Compositions for Thin Film Formation
- Curable ink compositions of the present teachings can be readily deposited as a liquid material on a substrate and then cured to form a polymeric thin film thereupon. Various embodiments of such curable ink compositions can include diacrylate monomers, dimethacrylate monomers, monoacrylate monomers, monomethacrylate monomers and combinations thereof as base monomers, as well as various multifunctional crosslinking agents. As used herein, the phrase “(meth)acrylate” indicates that the recited component may be an acrylate, methacrylate, or a combination thereof. For example, the term “(meth)acrylate monomer” refers to both methacrylate monomers and acrylate monomers. Various embodiments of the curable ink compositions further include cure initiators, such as photoinitiators.
- The compositions described herein are referred to as “ink compositions” because various embodiments of the compositions can be applied using techniques, including printing techniques, by which conventional inks have been applied to substrates. Such printing techniques include, for example, inkjet printing, screen printing, thermal transfer printing, flexographic printing, and/or offset printing. However, various embodiments of the ink compositions can also be applied using other coating techniques, such as, for example, spray coating, spin coating, and the like. Moreover, the ink compositions need not contain colorants, such as dyes and pigments, which are present in some conventional ink compositions.
- Some of the deposition techniques by which the ink compositions can be applied include precision deposition techniques. Precision deposition techniques are techniques that apply the ink compositions to a substrate with a high degree of precision and accuracy with respect to the quantity, location, shape, and/or dimensions of the printed ink compositions and the cured polymeric films that are formed therefrom. The precision deposition techniques are able to form blanket coatings of the ink compositions or patterned coatings of the ink compositions that, once cured, form thin polymeric films with highly uniform thicknesses and well-defined edges. As a result, the precision deposition coating techniques are able to provide thin polymeric films that meet the requirements of a variety of organic electronic and organic optoelectronic device applications. The required quantity, location, shape, and dimensions for a given precision deposited ink composition and the cured film formed therefrom, will depend on the intended device application. By way of illustration, various embodiments of the precision deposition techniques are able to form blanket or patterned films having a thickness of no greater than 10 μm with a thickness variation of no more than 5% across the film. Inkjet printing in one example of a precision deposition technique.
- Cured polymeric films made from the ink compositions are stable and flexible. In addition, the ink compositions can be formulated to provide cured polymeric films with glass transition temperatures (Tg) that allow them to be subjected to various post-processing techniques. Having a sufficiently high Tg is desirable for certain applications, such as applications where the polymeric films are exposed to high temperature conditions. By way of illustration, for some electronic devices, including OLEDs, is it standard practice to test the stability of the devices by subjecting them to accelerated reliability testing in which the polymeric film would be exposed to high humidity under elevated temperatures. For example, the devices may be subjected to testing at 60° C. and 90% relative humidity (RH) or at 85° C. and 85% RH. Additionally, the Tg of the polymeric films should be sufficiently high to withstand any high temperature post-processing steps that are used to fabricate the electronic devices into which they are incorporated. For example, if a layer of material, such as an inorganic barrier layer, is deposited over the polymeric film the polymeric film should be stable enough to withstand the maximum deposition temperature for the inorganic material. By way of illustration, inorganic barrier layers can be deposited over polymeric planarizing layers using plasma enhanced chemical vapor deposition (PECVD), which can require deposition temperatures of 80° C. or higher. In order to pass the tests or withstand the post-processing, the polymeric film should have a Tg that is higher than the testing or processing temperatures. For high temperature applications such as these, the curable ink compositions can be formulated to provide cured polymers having a Tg of 80° C. or greater. This includes embodiments of ink compositions that are formulated to provide cured polymers having a Tg of 85° C. or greater, and further includes embodiments of the ink compositions that are formulated to provide cured polymers having a Tgof 90° C. or greater. Because the Tg of a polymeric material can be measured from the bulk cured polymer or from a polymeric film of the polymer, various embodiments of the ink compositions, the preceding Tg values may apply to the bulk cured polymer or the cured polymeric film. For the purposes of this disclosure, Tg measurements for the bulk cured polymers can be performed via Thermomechanical Analysis [TMA], as described in greater detail in the examples.
- Some embodiments of the curable ink compositions include a di(meth)acrylate monomer, such as an alkyl di(meth)acrylate monomer, where the generalized structure of an alkyl di(meth)acrylate is given by:
-
- where n is 3 to 21 and R is H or CH3.
- For various embodiments of curable ink compositions of the present teachings, the alkyl chain of an alkyl di(meth)acrylate monomer can have between 3 to 21 carbon atoms and in various compositions, moreover between 3 to 14 carbon atoms. Various embodiments of curable ink compositions of the present teachings can utilize an alkyl di(meth)acrylate monomer that can have an alkyl chain with between 6 to 12 carbon atoms. As will be discussed subsequently in more detail herein, factors that can guide the selection of an alkyl di(meth)acrylate monomer can include the resulting viscosity of a formulation at a selected deposition temperature, as well as falling within the range of a target surface tension.
- An exemplary alkyl di(meth)acrylate monomer according to the present teachings is 1, 12 dodecanediol dimethacrylate, having the structure as shown below:
- Various embodiments of curable ink compositions of the present teachings can include between about 57 mol. % to about 97 mol. % of an alkyl di(meth)acrylate monomer, such as 1, 12 dodecanediol dimethacrylate (DDMA) monomer, further can include curable ink compositions that comprise about 71 mol. % to 93 mol. % of an alkyl di(meth)acrylate monomer, and still further can include curable ink compositions that comprise about 75 mol. % to 89 mol. % of an alkyl di(meth)acrylate monomer. In addition to an alkyl di(meth)acrylate monomer, the curable ink compositions of the present teachings can have a diurethane di(meth)acrylate monomer component in the in the formulation. A generalized diurethane di(meth)acrylate monomer structure is given by:
-
- where R is independently selected from H and CH3
- Exemplary urethane di(meth)acrylate monomers according to the present teachings include diurethane dimethacrylates (DUDMA) and urethane dimethacylate, having the generalized structures shown below:
-
-
- where DUDMA can be a mixture of isomers in which R can be hydrogen (H) or methyl (CH3) in essentially equal proportion. For various embodiments of curable ink compositions of the present teachings, the concentration of the DUDMA can be between about 1 mol. % to about 20 mol. %. This includes embodiments of the curable ink compositions having a DUDMA concentration in the range from 10 mol. % to 14 mol. %.
- Various embodiments of the curable ink compositions include monofunctional (meth)acrylates, such as an alkyl monoacrylates and/or alkyl monomethacrylate. The use of monofunctional (meth)acrylates in the ink compositions can reduce the viscosity of the ink compositions and may also provide the cured polymeric films formed from the ink compositions with a lower elastic modulus and, therefore, a higher flexibility. Examples of mono(meth)acrylates include long alkyl chain (C8-C12) (meth)acrylates, such as lauryl (meth)acrylate (C12), decyl (meth)acrylate (C10) and octyl (meth)acrylate (C8), and shorter alkyl chain (C4-C6) (meth)acrylates. However, longer chain (meth)acrylates, such as stearyl (meth)acrylate, also can be included. Other examples include di(ethylene glycol) methyl ether (meth)acrylate (DEGME(M)A), diethylene glycol monoethyl ether acrylate, and ethylene glycol methyl ether (meth)acrylate (EGME(M)A). Still other suitable (meth)acrylate monomers include, but are not limited to: alkyl (meth)acrylates, such as methyl (meth)acrylate and ethyl (meth)acrylate; cyclic (meth)acrylates, such as tetrahydrofurfuryl methacrylate, alkoxylated tetrahydrofurfuryl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate; and aromatic (meth)acrylates, such as benzyl (meth)acrylate and phenoxyalkyl (meth)acrylates, including 2-phenoxyethyl (meth)acrylate and phenoxymethyl (meth)acrylate.
- In addition to di(meth)acrylate monomers and mono(meth)acrylate monomers as previously described herein, various multifunctional crosslinking agents can be included in the curable ink compositions of the present teachings. As used herein, the term multifunctional crosslinking agent refers to a crosslinking agent having at least three reactive crosslinkable groups. Thus, multifunctional (meth)acrylate crosslinking agents can be, for example, tri(meth)acrylates, tetra(meth)acrylates, as well as higher functionality (meth)acrylates. For example, curable ink compositions of the present teachings can include trimethylolpropane tri(meth)acrylate or pentaerythritol tetra(meth)acrylate, as well as combinations thereof. The use of tetrafunctional and higher functionality (meth)acrylates is advantageous for applications where a high Tg polymer film is desired because the tetra- and higher-functionality (meth)acrylates increase the Tg of the polymer film, relative to a polymer film made from an ink composition without the tetra- and higher-functionality (meth)acrylates.
- Some of the curable ink compositions of the present teachings can include multifunctional crosslinking agents at concentration in the range from, for example, 1 mol. % to 15 mol. %. This includes embodiments of the ink compositions having a multifunctional crosslinking agent concentration in the range from 5 mol. % to 12 mol. % and further includes ink compositions having a multifunctional crosslinking agent concentration in the range from 7 mol. % to 10 mol. %. However, concentrations outside of these ranges can be used. For example, in curable ink compositions that include more than one multifunctional crosslinking agent, each multifunctional crosslinking agent can have a concentration falling within the above-references ranges. By way of illustration, an ink composition can include a trimethylolpropane tri(meth)acrylate at a concentration in a range of between about 1-15 mol. %. In various curable ink composition of the present teachings, a pentaerythritol tetra(meth)acrylate monomer can be included at a concentration in a range of between about 1-15 mol. % of a composition.
- A generalized structure of a tri-functional tri(meth)acrylate monomer, trimethylolpropane tri(meth)acrylate, is shown below:
-
- where R is independently selected from H and CH3
- An exemplary trimethylolpropane tri(meth)acrylate for various embodiments of a curable ink composition of the present teachings is trimethylolpropane triacrylate, the structure of which is given below:
- A generalized structure of a tetra-functional tetra(meth)acrylate monomer, pentaerythritol tetra(meth)acrylate, is shown below:
-
- where R is independently selected from H and CH3.
- An exemplary pentaerythritol tetra(meth)acrylate of the present teachings, pentaerythritol tetraacrylate, is shown below:
- With respect to the initiation of the curing process, various embodiments of the curable ink compositions of the present teachings can utilize numerous types of cure initiators for initiating polymerization. Suitable cure initiators include photoinitiators (PIs), thermal initiators, and initiators that induce polymerization using other types of energy, such as electron beam initiators. In some embodiments of the ink compositions, photoinitiators are used. In these embodiments the initiators may be present in amounts in the range from about 1 mol. % to about 10 mol. %. This includes embodiments in which the initiators are present in amounts in the range from about 2 mol. % to about 6 mol. %. However, amounts outside of these ranges can also be used. The photoinitiator may be a Type I or a Type II photoinitiator. Type I photoinitiators undergo radiation-induced cleavage to generate two free radicals, one of which is reactive and initiates polymerization. When a Type I photoinitiator is used, photoinitiator fragments may be present in the cured polymeric films made from the ink compositions. Type II photoinitiators undergo a radiation-induced conversion into an excited triplet state. The molecules in the excited triplet state then react with molecules in the ground state to produce polymerization initiating radicals. When a Type II photoinitiator is used, the photoinitiator may be present in the cured polymeric films made from the ink compositions.
- The specific photoinitiators used for a given curable ink composition are desirably selected such that they are activated at wavelengths that are not damaging to the OLED materials. For this reason, various embodiments of the curable ink compositions include photoinitiators that have a primary absorbance with a peak in the range from about 365 nm to about 420 nm. The light source used to activate the photoinitiators and induce the curing of the curable ink compositions is desirably selected such that the absorbance range of the photoinitiator matches or overlaps with the output of the light source, whereby absorption of the light creates free radicals that initiate polymerization. Suitable light sources may include mercury arc lamps and light emitting diodes.
- An acylphosphine oxide photoinitiator can be used, though it is to be understood that a wide variety of photoinitiators can be used. For example, but not limited by, photoinitiators from the α-hydroxyketone, phenylglyoxylate, and α-aminoketone classes of photoinitiators can also be considered. For initiating a free-radical based polymerization, various classes of photoinitiators can have an absorption profile of between about 200 nm to about 400 nm. For various embodiments of the curable ink compositions and methods of printing disclosed herein, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) and 2,4,6-trimethylbenzoyl-diphenyl phosphinate have desirable properties. For various embodiments of the curable ink compositions and printing methods of the present teaching, an acylphosphine oxide photoinitiator can be about 0.1-5 mol. % of a formulation. Examples of acylphosphine photoinitiators include Omnirad® TPO (also previously available under the tradename Lucirin® TPO) initiators for curing with optical energy in the wavelength range of about 365 nm to about 420 nm sold under the tradenames Omnirad® TPO, a type I hemolytic initiator which; with absorption @ 380 nm; Omnirad® TPO-L, a type I photoinitiator that absorbs at 380 nm; and Omnirad® 819 with absorption at 370 nm. By way of non-limiting example, a light source emitting at a nominal wavelength in the range from 350 nm to 395 nm at a radiant energy density of up to 2.0 J/cm2 could be used to cure a curable ink composition comprising a TPO photoinitiator. Using the appropriate energy sources, high levels of curing can be achieved. For example, some embodiments of the cured films have a degree of curing of 90% or greater, as measured by Fourier Transform Infrared (FTIR) spectroscopy.
- Table 1 and Table 2 shown below summarize various components, as well as ranges for the components, for two non-limiting exemplary organic polymer compositions of the present teachings.
-
TABLE 1 Summary of composition for Formulation I, including component ranges Mol. % Component (Range) 1,12 Dodecanediol Dimethacrylate (DDMA) 57-97 Diurethane Dimethacrylate (DUDMA) 1-20 Trimethylolpropane Triacrylate (TMPTA) 1-13 Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO) 1-10 Total -
TABLE 2 Summary of composition for Formulation II, including component ranges. Mol. % Component (Range) 1,12 Dodecanediol Dimethacrylate (DDMA) 64-97 Pentaerythritol tetraacrylate (PET) 1-13 Trimethylolpropane Triacrylate (TMPTA) 1-13 Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO) 1-10 Total - Some embodiments of the curable ink compositions of the present teachings are formulated to provide stability during processing of the formation of a complete encapsulation stack fabricated upon an OLED device, as well as long-term stability for the effective sealing of the device over its useful lifetime. Additionally, curable ink compositions of the present teachings are formulated to provide function, such as flexibility, and optical properties, such as to enhance the use of an OLED device. For example, in Formulation I, and Formulation II of an alkyl di(meth)acrylate monomer, such as DDMA, in conjunction with a selection of cross-linking agents, such as PET and TMPTA, can provide an organic planarizing layer with a hydrophobic property and high cross-linking density. However, other polymer film properties may also be important for an encapsulation stack or another electronic device, such as providing flexibility for OLEDs and other devices that can be repeatedly bent, rolled, or otherwise flexed. The selection of the types and amounts of components can be done according to the present teachings, to provide for films that are mechanically durable and at the same time flexible. By way of a non-limiting example, in Formulation I, the diurethane di(meth)acrylate monomer, DUDMA, can be used in conjunction with an alkyl di(meth)acrylate monomer in ranges as given in Table 1 to provide for organic encapsulation stacks that have reduced stress and provide for targeted polymer film flexibility. In another non-limiting example, in Formulation II, a mixture of trifunctional and tetra-functional crosslinking agents can be used to provide for mechanical strength and desired degree of polymer crosslinking, and at the same time render sufficient segment mobility within the polymer network to provide for targeted polymer film flexibility.
- Properties of liquid curable ink compositions that can be tailored to meet the requirements of a given device application include viscosity, surface tension and water content. A summary of viscosity, surface tension and water content determinations for Formulation I and Formulation II is given in Table 3 below:
-
TABLE 3 Properties of exemplary organic polymer formulations Viscosity ± SD Surface Tension ± SD Composition ID (cP at 25° C.) (Dynes/cm at 25° C.) Water (ppm) ± SD Formulation I 25.6 ± 0.47 (N = 10) 38.9 ± 0.21 (N = 10) 73 ± 26 (N = 10) Formulation II 13.95 ± 0.35 (N = 14) 35.9 ± 0.52 (N = 14) 30 ± 7.22 (N = 14) - With respect to properties of curable ink compositions of the present teachings, generally, for use for inkjet printing applications, the surface tension, viscosity and wetting properties of the curable ink compositions should be tailored to allow the compositions to be dispensed through an inkjet printing nozzle without drying onto or clogging the nozzle at the temperature used for printing (e.g., room temperature; ca. 25° C.). Once formulated, various embodiments of the curable ink compositions can have a viscosity of between about 10 cP and about 28 cP (including, for example, between about 15 cP and about 26 cP) at 25° C. and a surface tension of between about 28 dynes/cm and about 45 dynes/cm at 25° C. As will be discussed in more detail herein, it is desirable to keep the water content as determined by the Karl Fischer titrimetric method to less than 100 ppm, which as shown in Table 3 was readily met in analysis of Formulation I and Formulation II.
-
FIG. 2 illustrates generally a graph of viscosity as a function of temperature for Formulation I, whileFIG. 3 illustrates generally a graph of viscosity as a function of temperature for Formulation II. Jetting temperatures can be between about 20° C. to about 50° C., including temperatures between 22° C. to about 40° C. As can be seen by inspection of the graphs presented inFIG. 2 andFIG. 3 , over such temperature ranges, various embodiments of organic polymer formulations can have a viscosity of between about 7-25 cP; including, for example, between about 9 cP and about 19 cP. - Preparation, Drying and Storage of Curable Ink Compositions.
- Given that the initiation of polymerization can be induced by light, curable ink compositions can be prepared to prevent exposure to light. With respect to the preparation of the curable ink compositions of the present teachings, in order to ensure the stability of various compositions, the compositions can be prepared in a dark or very dimly lit room or in a facility in which the lighting is controlled to exclude wavelengths that would induce polymerization. Such wavelengths generally include those below about 500 nm. For example, for the preparation of an embodiment of an organic polymer formulation, in a fashion that protects the direct exposure to light, the lid of a clean amber vial (for example, Falcons, VWR trace clean) can be removed and then can be placed on a balance; and tared. First, a desired amount of a photoinitiator can be weighed into the vial. Then, the di(meth)acrylate can be weighed into the vial. Next, the mono(meth)acrylate monomer can be weighed into the vial. Finally, the crosslinking agent can be weighed into the vial. (The preceding description lays out one protocol for sequentially incorporating the various components into a curable ink composition. Other protocols can be used.) Regarding mixing to provide uniform concentration of components, a Teflon® coated magnetic stir bar can be inserted into the vial and the cap of vial secured. The solution can then be stirred, for example, for 30 minutes at temperatures in the range from room temperature to 50° C. and 600-1000 rpm.
- Once the curable ink compositions are prepared, they can be dehydrated by mixing in the presence of a 10 wt. % 3A molecular sieve beads for a period of several hours or more to yield <100 ppm moisture and then stored under a dry atmosphere, such as a compressed dry air atmosphere. Thereafter, the curable ink composition can be filtered, for example, through a 0.1 μm or 0.45 μm PTFE syringe filter or vacuum or pressure filter, followed by sonication for 30 minutes at ambient temperature to remove residual gases. The curable ink composition is then ready for use and should be stored away in a dark cool environment. Various embodiments of an organic thin film organic polymer preparation as described can have a viscosity of between about 10 cps and about 30 cP at 25° C. and a surface tension of between about 30 dynes/cm and about 40 dynes/cm at 25° C.
- The curable ink compositions, particularly those stored under a dry, inert atmosphere at room temperature (22° C.), can be stable for long periods of time, as determined by the lack of precipitation or gelation under visual inspection and the stabilities in their room temperature viscosities and surface tensions. No significant changes were recorded in viscosity and surface tension of the curable ink compositions of Formulations I and II; any changes are deemed to be within measurement errors for at least 160 days at room temperature under compressed dry air atmosphere in the dark.
- Bulk Polymer Tg Properties Using Exemplary Formulations
- Drops of ink are deposited into a 7 mm×1.5 mm mold and cured to form a bulk polymer disk of approximately that size. The polymer is removed from the mold and measured on a TMA where the thermal coefficient of expansion is measured as a function of temperature. The Tg is determined from the inflection point of the thermal coefficient of expansion curve, which represents the point in the expansion curve where the free volume begins to allow for greater chain mobility. Below are the average Tg values for formulations I and II.
-
Composition ID Tg (° C.) ± SD Formulation I 80.2 ± 3.90 (N = 3) Formulation II 87.5 ± 2.5 (N = 3) - After curing, continuous polymeric films having thicknesses of between about 2 μm to about 10 μm were successfully fabricated on various substrates using Formulation I and Formulation II. Film properties including percent volume shrinkage, degree of curing, optical haze, optical transmission and color were evaluated for films formed using Formulation I and Formulation II. The results of the evaluation of such properties for Formulation I and Formulation II are presented in Table 4 and Table 5, shown below, as well as in
FIG. 5 . -
TABLE 4 Summary of selected properties of films formed from exemplary formulations. Shrinkage Curing Degree Haze (%) ± SD (%) ± SD % ± SD Composition (N = 3) (N = 3) (N = 3)1 Formulation I 9.55 ± 0.09 87.90 ± 0.12 0.033 ± 0.005 Formulation II 9.93 ± 0.29 87.70 ± 0.03 0.043 ± 0.005 1compared to glass reference of 0.083 ± 0.005 -
TABLE 5 Summary of Lab color space properties of films formed from exemplary formulations. Source Film from Film from Glass Formulation I Formulation II Reference Mean Std. Mean Std. Mean Std. Attribute (N = 3) Dev. (N = 3) Dev. (N = 3) Dev. L* 96.83 0 96.83 0 96.93 0 a* −0.013 0 0.003 0 0.003 0 b* 0.32 0.01 0.33 0.01 0.15 0.005 - In Table 4, film shrinkage is evaluated using a UV rheometer designed to follow the curing progress from onset of irradiation of the sample to a fully cured state, and the degree of curing is determined using FTIR analysis. For polymeric planarizing films from curable ink compositions of the present teachings, shrinkage of less than about 12% and degree of curing of between about 85%-90% are target values for those properties.
- Optical properties of films formed from curable ink composition of the present teachings for various OLED devices include haze, percent optical transmission through a desired wavelength range, and color. As haze is a measure of the fraction of transmitted wide angle scattered light from a source that is transmitted through a film, a low percent haze is desirable for a polymeric planarizing layer. As such, a target for haze not to exceed 0.10% is clearly met by films formed from Formulation I and Formulation II. As can be seen in the graph presented in
FIG. 4 , the percent transmission of light in a wavelength range of between about 350 nm to about 750 nm for films formed from Formulation I and Formulation II is comparable to that of a glass reference. Finally, regarding color, it is desirable for films formed from Formulation I and Formulation II not to act as a color filter. Color space as defined by CIELAB, defines a value of L*=100 as the brightness of the object measured, while a* is a measure of chromaticity of red and green, and b is a measure of the chromaticity of yellow and blue. In that regard, for films formed from Formulation I and Formulation II, it is desirable for L* to be greater 95, while it is desirable for a* and b* to be less than 0.5. In that regard, as can be seen by inspection of Table 5, the analysis of representative films formed using Formulation I and Formulation II do not exceed these values, which is consistent with the optical transmission graph shown inFIG. 4 . - Systems and Methods for Organic Thin Film Formation on a Substrate
- Various embodiments of formulations of the present teachings can be printed using an industrial inkjet printing system that can be housed in an enclosure defining an interior that has a controlled process environment. For example, a controlled process environment of the present teachings can include a process environment that is non-reactive to materials that are used in the fabrication of, for example, various OLED devices, as well as being a substantially low-particle process environment. Patterned printing of an organic thin film on an OLED device substrate in such a controlled environment can provide for high-volume, high yield processes for a variety of OLED devices, such as OLED display and lighting devices.
- Curable ink compositions of the present teachings can be printed using a printing system, such as described in U.S. Pat. No. 9,343,678, issued May 17, 2016, which is incorporated herein in its entirety. Various embodiments of the present organic polymer compositions can be inkjet printed into thin films that are continuous and have well-defined edges on such substrates as glass, plastics, silicon, and silicon nitride. For example, the organic polymer compositions can be used to print thin films having thicknesses in the range from about 2 μm to about 10 μm, or thicker, including thin films having thicknesses in the range from about 2 μm to about 8 μm. These thin films can be achieved with film thickness variation of, for example, 5% or lower.
-
Gas enclosure system 500 ofFIG. 5 can includegas enclosure 1000 forhousing printing system 2000.Printing system 2000 can be supported byprinting system base 2150, which can be a granite stage.Printing system base 2150 can support a substrate support apparatus, such as a chuck, for example, but not limited by, a vacuum chuck, a substrate floatation chuck having pressure ports, and a substrate floatation chuck having vacuum and pressure ports. In various examples of the present teachings, a substrate support apparatus can be a substrate floatation table, such as substrate floatation table 2250. Substrate floatation table 2250 can be used to float a substrate during frictionless transport of the substrate. In addition to a low-particle generating floatation table, for frictionless Y-axis conveyance of a substrate,printing system 2000 can have a Y-axis motion system utilizing air bushings. -
FIG. 5 illustrates generally an example ofgas enclosure system 500 ofmanufacturing system 3000A configured with external gas loop 3200 for integrating and controlling gas sources, such as a source of CDA and a source of a non-reactive gas such as can be used to establish a controlled process environment for various enclosed manufacturing systems of the present teachings, as well as providing a source of gas for operating various pneumatically controlled devices. According to the present teachings, a non-reactive gas can be any gas that does not undergo a chemical reaction with materials used in the manufacture of OLED devices, such as display and lighting devices, under process conditions. In various embodiments, a non-reactive gas can be a non-oxidizing gas. Some non-limiting examples of non-reactive gas that can be used include nitrogen, any of the noble gases, and any combination thereof. As will be discussed in more detail hereinblower loop 3280 can provide pressurized gas and at least partial vacuum for use with a floatation table 2250. Additionally, as depicted inFIG. 5 ,gas enclosure system 500 can be generally configured so that a pressure of gas inside thegas enclosure 1000 can be maintained within a desired or specified range, such as using a valve coupled to a pressure monitor, P. -
Gas enclosure system 500 can also be configured with various embodiments of a gas purification system that can be configured for purifying various reactive species from a non-reactive process gas. A gas purification system according to the present teachings can maintain levels for each species of various reactive species, such as water vapor, oxygen, ozone, as well as organic solvent vapors, for example, at 100 ppm or lower, at 10 ppm or lower, at 1.0 ppm or lower, or at 0.1 ppm or lower.Gas enclosure system 500 can also be configured with various embodiments of a circulation and filtration system for maintaining a substantially particle free environment. Various embodiments of a particle filtration system can maintain a low particle environment within a gas enclosure meeting the standards of International Standards Organization Standard (ISO) 14644-1:1999, “Cleanrooms and associated controlled environments—Part 1: Classification of air cleanliness,” as specified by Class 1 throughClass 5. - Substrate floatation table is depicted in
FIG. 5 as being in flow communication withblower loop 3280.Blower loop 3280 can includeblower housing 3282, which can enclose first blower 3284 for supplying a pressurized source of gas to substrate floatation table 2250 vialine 3286, andsecond blower 3290, acting as a vacuum source for substrate floatation table 2250 vialine 3292, providing at least partial vacuum to substrate floatation table 2250. Various embodiments ofblower loop 3280 can be, configured withheat exchanger 3288 for maintaining gas fromblower loop 3280 to substrate floatation table 2250 at a defined temperature. - As depicted in
FIG. 5 , non-reactive gas source 3201 can be in flow communication with lowconsumption manifold line 3212 vianon-reactive gas line 3210. Lowconsumption manifold line 3212 is shown in flow communication withlow consumption manifold 3215.Cross-line 3214 extends from afirst flow juncture 3216, which is located at the intersection ofnon-reactive gas line 3210, lowconsumption manifold line 3212, andcross-line 3214.Cross-line 3214 extends to asecond flow juncture 3226. CDA line 3222 extends from a CDA source 3203 and continues as high consumption manifold line 3224, which is in fluid communication withhigh consumption manifold 3225. As will be discussed in more detail herein, CDA can be used during, for example, maintenance procedures. During processing, non-reactive gas source 3201 can be in flow communication withlow consumption manifold 3215 andhigh consumption manifold 3225. As such, during processing non-reactive gas source can be routed through external gas loop 3200 to provide non-reactive gas togas enclosure 1000, as well as providing non-reactive gas for operating various pneumatically operated apparatuses and devices used during the operation ofprinting system 2000. For example,high consumption manifold 3225 can provide non-reactive gas from gas source 3201 during processing for the operation of various components forprinting system 2000 housed ingas enclosure 1000, such as, but not limited by, one or more of a pneumatic robot, a substrate floatation table, an air bearing, an air bushing, a compressed gas tool, a pneumatic actuator, and combinations thereof. - Regarding the use of CDA, for example, during a maintenance procedure,
second flow juncture 3226 is positioned at the intersection of a cross-line 3214, clean dry air line 3222, and high consumption manifold line 3224, which is in flow communication withhigh consumption manifold 3225.Cross-line 3214 extends from afirst flow juncture 3216, which is in flow communication withnon-reactive gas line 3210, which flow communication can be controlled by valve 3208. During a maintenance procedure, valve 3208 can be closed to prevent flow communication between non-reactive gas source 3201 andhigh consumption manifold 3225, while valve 3206 can be opened thereby allowing flow communication between CDA source 3203 andhigh consumption manifold 3225. Under such conditions, various components that are high consumption can be supplied CDA during maintenance. - With respect to controlling the pressure of gas inside the
gas enclosure 1000, as depicted inFIG. 5 , such regulation can assist in maintaining a slight positive internal pressure of a gas enclosure system, which can be between about 2-12 mbar above the pressure in the environment external a gas enclosure. Maintaining the internal pressure of a gas enclosure at a desired slightly positive pressure versus an external pressure is necessary given that pressurized gas is also contemporaneously introduced into the gas enclosure system. Variable demand of various devices and apparatuses can create an irregular pressure profile for various gas enclosure assemblies and systems of the present teachings. The internal pressure of a gas enclosure can be maintained within a desired or specified range, by using a control system configured with a valve coupled to a pressure monitor, P, where the valve allows gas to be exhausted to another enclosure, system, or a region surrounding thegas enclosure 1000 using information obtained from the pressure monitor. Exhausted gas can be recovered and re-processed through gas circulation and purification systems as previously described herein. -
FIG. 6 illustrates generally an isometric view of a manufacturing system 3000B, such as including a first printing system 2000A, a second printing system 2000B andfirst curing system 1300A and second curing system 1300B as well other enclosed modules, that can be used in manufacturing various optoelectronic devices (e.g., an organic light emitting diode (OLED) device). First andsecond curing systems 1300A and 1300B of the present teachings can be used for one or more of holding a substrate (e.g., to facilitate flowing or dispersing the deposited material layer, such as to achieve a more planar or uniform film), as well as curing (e.g. via optical illumination in wavelength a wavelength range of about 365 nm to about 420 nm) a layer of material, such as deposited by one or more of the first or second printing systems 2000A and 2000B. For example, a material layer that flows or disperses, or is cured, using the first andsecond processing systems 1300A and 1300B can include a portion of an encapsulation stack (such as a thin film layer comprising an organic thin film material that can cured or treated via exposure to optical energy). The first orsecond processing systems 1300A or 1300B can be configured for holding substrates, such as in a stacked configuration. The first and second printers 2000A and 2000B can be used, for example, to deposit the same layers on a substrate or printers 2000A and 2000B can be used to deposit different layers on a substrate. - Manufacturing system 3000B can include an input or output module 1101 (e.g., a “loading module”), such as can be used as a load-lock or otherwise in a manner that allows transfer of a substrate into or out of an interior of one or more chambers of manufacturing system 3000B in a manner that substantially avoids disruption of a controlled environment maintained within one or more enclosures of manufacturing system 3000B. For example, in relation to
FIG. 6 , “substantially avoids disruption” can refer to avoiding raising a concentration of a reactive species by a specified amount, such as avoiding raising such a species by more than 10 parts per million, 100 parts per million, or 1000 parts per million within the one or more enclosures during or after a transfer operation of a substrate into or out the one or more enclosures. A transfer module, such as can include a handler, can be used to manipulate a substrate before, during, or after various operations. - Various examples described herein include enclosed processing systems that can be environmentally-controlled. Enclosure assemblies and corresponding support equipment can be referred to as a “gas enclosure system” and such enclosure assemblies can be constructed in a contoured fashion that reduces or minimizes an internal volume of a gas enclosure assembly, and at the same time provides a working volume for accommodating various footprints of a manufacturing system of the present teachings, such as the deposition (e.g., printing), holding, loading, curing systems or modules described herein. For example, a contoured gas enclosure assembly according to the present teachings can have a gas enclosure volume of between about 6 m3 to about 95 m3 for various examples of a gas enclosure assembly of the present teachings covering, for example, substrate sizes from Gen 3.5 to
Gen 10. Various examples of a contoured gas enclosure assembly according to the present teachings can have a gas enclosure volume of, for example, but not limited by, of between about 15 m3 to about 30 m3, which might be useful for printing of, for example, Gen 5.5 to Gen 8.5 substrate sizes above, or other substrate sizes that can readily be derived therefrom. -
FIG. 7 depicts flow diagram 100 that illustrates generally a process for the fabrication of an organic thin films on various device substrates.FIG. 7 illustrates techniques, such as methods, that can include forming an organic thin-film planarizing layer over the active area a light emitting device (e.g., an of a OLED lighting or display device) formed on a substrate, such as for providing a mura-free organic thin film layer. At 110, a substrate can be transferred onto a substrate support system of an enclosed printing system configured to provide a controlled process environment as previously described herein. A substrate can be transferred to an enclosed printing system from, for example, an inorganic thin film encapsulation system. As previously described herein, a substrate support system can be configured to provide uniform support of the substrate at least in one or more active regions of the substrate. Such a substrate support system can include a floatation table configuration, such as having various floatation control zones including one or more of a pneumatically-supplied gas cushion, or a combination of pneumatic and at least partial vacuum supplied regions to provide a gas cushion supporting the substrate. At 120, a curable ink composition can be printed over a target deposition region of a substrate. At 130, the substrate can be transferred from an enclosed printing system to an enclosed curing system configured to provide a controlled process environment as previously described herein. According to the present teachings, for example, a curing system can provide an apparatus that can uniformly illuminate a substrate or portion or a substrate with optical energy in a wavelength range from about 365 nm to about 420 nm. At 140, a curing system can have a substrate support system that can provide a pneumatically supplied gas cushion, or a combination of pneumatic and at least partial vacuum supplied regions to provide a gas cushion supporting the substrate uniformly in a manner that can suppress or inhibit mura formation during one or more of a holding operation or curing operation. For example, the substrate can be held for a specified duration after printing and before curing, such as before an optical curing process is initiated. At 150, the liquid organic polymer layer can be cured, for example, using an optical treatment provided within an enclosed curing system, such as to provide a mura-free organic thin film encapsulation layer. - The present teachings are intended to be illustrative, and not restrictive. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Claims (34)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107113054A TWI841527B (en) | 2017-04-21 | 2018-04-17 | Compositions and techniques for forming organic thin films |
TW112149036A TW202417582A (en) | 2017-04-21 | 2018-04-17 | Compositions and techniques for forming organic thin films |
US15/955,303 US20180309089A1 (en) | 2017-04-21 | 2018-04-17 | Compositions and Techniques for Forming Organic Thin Films |
US17/809,243 US11844234B2 (en) | 2017-04-21 | 2022-06-27 | Compositions and techniques for forming organic thin films |
US18/497,917 US20240081096A1 (en) | 2017-04-21 | 2023-10-30 | Curable compositions and techniques for forming organic thin films |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762488401P | 2017-04-21 | 2017-04-21 | |
US201862653035P | 2018-04-05 | 2018-04-05 | |
US15/955,303 US20180309089A1 (en) | 2017-04-21 | 2018-04-17 | Compositions and Techniques for Forming Organic Thin Films |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/809,243 Continuation US11844234B2 (en) | 2017-04-21 | 2022-06-27 | Compositions and techniques for forming organic thin films |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180309089A1 true US20180309089A1 (en) | 2018-10-25 |
Family
ID=63854158
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/955,303 Abandoned US20180309089A1 (en) | 2017-04-21 | 2018-04-17 | Compositions and Techniques for Forming Organic Thin Films |
US17/809,243 Active US11844234B2 (en) | 2017-04-21 | 2022-06-27 | Compositions and techniques for forming organic thin films |
US18/497,917 Pending US20240081096A1 (en) | 2017-04-21 | 2023-10-30 | Curable compositions and techniques for forming organic thin films |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/809,243 Active US11844234B2 (en) | 2017-04-21 | 2022-06-27 | Compositions and techniques for forming organic thin films |
US18/497,917 Pending US20240081096A1 (en) | 2017-04-21 | 2023-10-30 | Curable compositions and techniques for forming organic thin films |
Country Status (7)
Country | Link |
---|---|
US (3) | US20180309089A1 (en) |
EP (1) | EP3613091A4 (en) |
JP (2) | JP7144864B2 (en) |
KR (2) | KR102607711B1 (en) |
CN (2) | CN118510305A (en) |
TW (2) | TW202417582A (en) |
WO (1) | WO2018195066A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019203120A1 (en) * | 2018-04-20 | 2019-10-24 | 積水化学工業株式会社 | Sealant for organic el display element |
US11793021B2 (en) | 2019-11-22 | 2023-10-17 | Samsung Display Co., Ltd. | Method of fabricating display device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303924A (en) * | 1978-12-26 | 1981-12-01 | The Mead Corporation | Jet drop printing process utilizing a radiation curable ink |
US4680368A (en) * | 1985-06-05 | 1987-07-14 | Mitsubishi Rayon Company Limited | Ultraviolet curable ink composition |
US20050197419A1 (en) * | 2004-03-03 | 2005-09-08 | Graziano Louis C. | Radiation curable aqueous binders for ink jet inks |
US20080045618A1 (en) * | 2006-06-27 | 2008-02-21 | Nagvekar Devdatt S | Low viscosity UV curable ink formulations |
US20090324970A1 (en) * | 2008-06-30 | 2009-12-31 | Shigehide Ito | Barrier laminate, gas barrier film, device and method for producing barrier laminate |
US20110318595A1 (en) * | 2009-03-30 | 2011-12-29 | Evonik Roehm Gmbh | Coating composition, (meth)acrylic polymer and monomer mixture for producing the (meth)acrylic polymer |
US20120083569A1 (en) * | 2009-06-10 | 2012-04-05 | Kunststoff-Und Farben-Gesellschaft Mbh | Polymerizable Compounds, Curable Compositions And Methods |
US20140178675A1 (en) * | 2012-12-20 | 2014-06-26 | Kyoung Jin Ha | Composition for encapsulation and encapsulated apparatus including the same |
US20160329524A1 (en) * | 2014-01-16 | 2016-11-10 | Hunet Plus | Organic electronic device and fabrication method thereof |
US20170145231A1 (en) * | 2014-05-13 | 2017-05-25 | Sericol Limited | Inks |
US20180339500A1 (en) * | 2015-12-22 | 2018-11-29 | 3M Innovative Properties Company | Acrylic polyvinyl acetal graphic films |
Family Cites Families (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07169567A (en) | 1993-12-16 | 1995-07-04 | Idemitsu Kosan Co Ltd | Organic el element |
US5607789A (en) | 1995-01-23 | 1997-03-04 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
DE19603746A1 (en) | 1995-10-20 | 1997-04-24 | Bosch Gmbh Robert | Electroluminescent layer system |
US5690722A (en) | 1996-10-28 | 1997-11-25 | Hewlett-Packard Company | Use of tetrafluoropropanol as co-solvent in ink-jet ink vehicles |
US5952778A (en) | 1997-03-18 | 1999-09-14 | International Business Machines Corporation | Encapsulated organic light emitting device |
JP3290375B2 (en) | 1997-05-12 | 2002-06-10 | 松下電器産業株式会社 | Organic electroluminescent device |
JP3747127B2 (en) | 1997-07-28 | 2006-02-22 | キヤノン株式会社 | Manufacturing method of color filter, manufacturing method of display device, and manufacturing method of information processing device including display device |
US6146225A (en) | 1998-07-30 | 2000-11-14 | Agilent Technologies, Inc. | Transparent, flexible permeability barrier for organic electroluminescent devices |
US6268695B1 (en) | 1998-12-16 | 2001-07-31 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
EP1524708A3 (en) | 1998-12-16 | 2006-07-26 | Battelle Memorial Institute | Environmental barrier material and methods of making. |
TW543341B (en) | 1999-04-28 | 2003-07-21 | Du Pont | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
US20090191342A1 (en) | 1999-10-25 | 2009-07-30 | Vitex Systems, Inc. | Method for edge sealing barrier films |
US6866901B2 (en) | 1999-10-25 | 2005-03-15 | Vitex Systems, Inc. | Method for edge sealing barrier films |
US7198832B2 (en) | 1999-10-25 | 2007-04-03 | Vitex Systems, Inc. | Method for edge sealing barrier films |
US6623861B2 (en) | 2001-04-16 | 2003-09-23 | Battelle Memorial Institute | Multilayer plastic substrates |
US6413645B1 (en) | 2000-04-20 | 2002-07-02 | Battelle Memorial Institute | Ultrabarrier substrates |
US6492026B1 (en) | 2000-04-20 | 2002-12-10 | Battelle Memorial Institute | Smoothing and barrier layers on high Tg substrates |
US6550906B2 (en) | 2001-01-02 | 2003-04-22 | 3M Innovative Properties Company | Method and apparatus for inkjet printing using UV radiation curable ink |
US6664137B2 (en) | 2001-03-29 | 2003-12-16 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
KR100413450B1 (en) | 2001-07-20 | 2003-12-31 | 엘지전자 주식회사 | protecting film structure for display device |
EP1419286A1 (en) | 2001-08-20 | 2004-05-19 | Nova-Plasma Inc. | Coatings with low permeation of gases and vapors |
US6597111B2 (en) | 2001-11-27 | 2003-07-22 | Universal Display Corporation | Protected organic optoelectronic devices |
US7307119B2 (en) | 2002-08-01 | 2007-12-11 | Electronics And Telecommunications Research Institute | Thin film material using pentaerythritol acrylate for encapsulation of organic or polymeric light emitting device, and encapsulation method for LED using the same |
US7012363B2 (en) | 2002-01-10 | 2006-03-14 | Universal Display Corporation | OLEDs having increased external electroluminescence quantum efficiencies |
US7109653B2 (en) | 2002-01-15 | 2006-09-19 | Seiko Epson Corporation | Sealing structure with barrier membrane for electronic element, display device, electronic apparatus, and fabrication method for electronic element |
KR100475849B1 (en) | 2002-04-17 | 2005-03-10 | 한국전자통신연구원 | Organic electroluminescent devices having encapsulation thin film formed by wet processing and methods for manufacturing the same |
US20030203210A1 (en) | 2002-04-30 | 2003-10-30 | Vitex Systems, Inc. | Barrier coatings and methods of making same |
US6949389B2 (en) | 2002-05-02 | 2005-09-27 | Osram Opto Semiconductors Gmbh | Encapsulation for organic light emitting diodes devices |
GB0221894D0 (en) * | 2002-09-20 | 2002-10-30 | Avecia Ltd | Compositions |
CN1176565C (en) | 2002-11-25 | 2004-11-17 | 清华大学 | Package layer for organic electroluminescent device and its prepn method and application |
US6945647B2 (en) | 2002-12-20 | 2005-09-20 | Eastman Kodak Company | Method for increasing the diameter of an ink jet ink dot |
US7297460B2 (en) * | 2003-02-26 | 2007-11-20 | Agfa-Gevaert | Radiation curable ink compositions suitable for ink-jet printing |
US7018713B2 (en) | 2003-04-02 | 2006-03-28 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
US7510913B2 (en) | 2003-04-11 | 2009-03-31 | Vitex Systems, Inc. | Method of making an encapsulated plasma sensitive device |
KR101035850B1 (en) | 2003-11-17 | 2011-05-19 | 삼성전자주식회사 | Printing equipments for forming a thin layer |
US20050137282A1 (en) | 2003-12-19 | 2005-06-23 | Cagle Phillip C. | Liquid vehicle systems for improving latex ink-jet ink frequency response |
US20050238846A1 (en) | 2004-03-10 | 2005-10-27 | Fuji Photo Film Co., Ltd. | Gas barrier laminate film, method for producing the same and image display device utilizing the film |
US7279506B2 (en) | 2004-05-05 | 2007-10-09 | Xerox Corporation | Ink jettable overprint compositions |
KR101256424B1 (en) | 2004-08-23 | 2013-04-19 | 이시이 효키 가부시키가이샤 | Ink jet printer discharge amount control method, ink droplet spread check method, and orientation film formation method |
JP4159525B2 (en) * | 2004-08-23 | 2008-10-01 | 株式会社石井表記 | Alignment film forming method and ink jet print head ejection inspection device |
KR100736531B1 (en) * | 2005-03-16 | 2007-07-06 | 주식회사 엘지화학 | Pixel-to-barrier-uneveness-controllable ink |
US7687119B2 (en) | 2005-04-04 | 2010-03-30 | Henkel Ag & Co. Kgaa | Radiation-curable desiccant-filled adhesive/sealant |
US20060223937A1 (en) | 2005-04-04 | 2006-10-05 | Herr Donald E | Radiation curable cycloaliphatic barrier sealants |
CN100368490C (en) | 2005-07-28 | 2008-02-13 | 中国印钞造币总公司 | UV cured concealed fluorescent frequency conversion ink |
US7767498B2 (en) | 2005-08-25 | 2010-08-03 | Vitex Systems, Inc. | Encapsulated devices and method of making |
US7621794B2 (en) | 2005-11-09 | 2009-11-24 | International Display Systems, Inc. | Method of encapsulating an organic light-emitting device |
DE602007000572D1 (en) | 2006-03-29 | 2009-04-09 | Fujifilm Corp | Laminated film with gas barrier properties |
JP2007277467A (en) | 2006-04-10 | 2007-10-25 | Sony Chemical & Information Device Corp | Curable resin composition |
US8039739B1 (en) | 2006-05-05 | 2011-10-18 | Nanosolar, Inc. | Individually encapsulated solar cells and solar cell strings |
JP5315629B2 (en) * | 2006-08-11 | 2013-10-16 | Jnc株式会社 | Photo-curable inkjet ink |
JP2008087163A (en) | 2006-09-29 | 2008-04-17 | Fujifilm Corp | Gas barrier laminated film and image display element using it |
JP2008106165A (en) * | 2006-10-26 | 2008-05-08 | Chisso Corp | Inkjet ink and cured film formed using the ink |
US8101288B2 (en) | 2007-06-11 | 2012-01-24 | Fujifilm Corporation | Gas barrier film and organic device using the same |
JP5296343B2 (en) | 2007-07-31 | 2013-09-25 | 住友化学株式会社 | Substrate with barrier layer, display element, and method of manufacturing display element |
JP4932758B2 (en) | 2008-02-06 | 2012-05-16 | 富士フイルム株式会社 | Light emitting device and manufacturing method thereof |
KR100934752B1 (en) | 2008-04-10 | 2009-12-30 | 주식회사 잉크테크 | Ink composition for optoelectronic device |
JP5320167B2 (en) | 2008-05-30 | 2013-10-23 | 富士フイルム株式会社 | Barrier laminate, gas barrier film, device and laminate production method |
US8899171B2 (en) | 2008-06-13 | 2014-12-02 | Kateeva, Inc. | Gas enclosure assembly and system |
JP5281964B2 (en) | 2008-06-26 | 2013-09-04 | 富士フイルム株式会社 | Barrier laminate, gas barrier film, device and laminate production method |
US20100055407A1 (en) | 2008-09-04 | 2010-03-04 | Xerox Corporation | Ultra-Violet Curable Gellant Inks For Creating Tactile Text And Images For Packaging Applications |
FR2936651B1 (en) | 2008-09-30 | 2011-04-08 | Commissariat Energie Atomique | ORGANIC OPTOELECTRONIC DEVICE AND METHOD OF ENCAPSULATION |
CN102239197A (en) * | 2008-12-05 | 2011-11-09 | 旭硝子株式会社 | Photocurable composition and method for manufacturing a molded body having a fine surface pattern |
US9337446B2 (en) | 2008-12-22 | 2016-05-10 | Samsung Display Co., Ltd. | Encapsulated RGB OLEDs having enhanced optical output |
US9184410B2 (en) | 2008-12-22 | 2015-11-10 | Samsung Display Co., Ltd. | Encapsulated white OLEDs having enhanced optical output |
US8405233B2 (en) | 2009-01-14 | 2013-03-26 | Dow Corning Corporation | Flexible barrier film, method of forming same, and organic electronic device including same |
JP2010198735A (en) | 2009-02-20 | 2010-09-09 | Fujifilm Corp | Optical member and organic electroluminescent display device equipped with the same |
US8329306B2 (en) | 2009-03-03 | 2012-12-11 | Fujifilm Corporation | Barrier laminate, gas barrier film, and device using the same |
US8342669B2 (en) | 2009-09-18 | 2013-01-01 | Xerox Corporation | Reactive ink components and methods for forming images using reactive inks |
US9379323B2 (en) | 2010-04-12 | 2016-06-28 | Merck Patent Gmbh | Composition having improved performance |
JP5905880B2 (en) | 2010-07-02 | 2016-04-20 | スリーエム イノベイティブ プロパティズ カンパニー | Barrier assembly |
WO2012054037A1 (en) | 2010-10-21 | 2012-04-26 | Hewlett-Packard Development Company, L.P. | Controlling ink deposition during printing |
KR101199064B1 (en) | 2011-01-21 | 2012-11-07 | 엘지이노텍 주식회사 | Light conversion member, display device having the same and method of fabricating the same |
US8851649B2 (en) * | 2011-05-13 | 2014-10-07 | Eckart Gmbh | UV ink jet printing ink composition |
KR101424346B1 (en) | 2011-11-18 | 2014-08-01 | 주식회사 엘지화학 | Photocuring type adhesive or pressure-sensitive adhesive film for encapsulating organic electronic device, Organic Electronic Device and Preparing Method thereof |
TWI582202B (en) | 2011-11-18 | 2017-05-11 | Lg化學股份有限公司 | Photocurable pressure-sensitive adhesive film for encapsulating organic electronic device, organic electronic device and method for encapsulating the same |
TWI477824B (en) | 2011-12-27 | 2015-03-21 | Asahi Kasei E Materials Corp | Optical substrate and light emitting device |
JP5803746B2 (en) | 2012-03-02 | 2015-11-04 | 株式会社リコー | Photopolymerizable inkjet ink, ink cartridge |
US8771787B2 (en) | 2012-05-17 | 2014-07-08 | Xerox Corporation | Ink for digital offset printing applications |
JP6270837B2 (en) | 2012-07-19 | 2018-01-31 | ロリク アーゲーRolic Ag | Radiation curable composition for water capture layer and method for producing the same |
KR101735223B1 (en) | 2012-07-30 | 2017-05-12 | 이스트맨 코닥 캄파니 | Ink formulations for flexographic printing of high-resolution conducting patterns |
TWI610806B (en) | 2012-08-08 | 2018-01-11 | 3M新設資產公司 | Barrier film, method of making the barrier film, and articles including the barrier film |
KR101847229B1 (en) * | 2013-09-27 | 2018-05-29 | 주식회사 엘지화학 | Light curable resin composition for donor film and donor film |
KR101802574B1 (en) * | 2014-03-28 | 2017-12-01 | 삼성에스디아이 주식회사 | Composition for encapsulating organic light emitting diode device and organic light emitting diode display using prepared the same |
KR101712700B1 (en) | 2014-06-12 | 2017-03-07 | 제일모직주식회사 | Composition for encapsulating organic light emitting diode device and organic light emitting diode display using the same |
KR20170036701A (en) * | 2014-07-25 | 2017-04-03 | 카티바, 인크. | Organic Thin Film Ink Compositions and Methods |
KR20160053750A (en) * | 2014-10-29 | 2016-05-13 | 삼성에스디아이 주식회사 | Sealant composition for display, organic protective layer comprising the same, and display apparatus comprising the same |
CN107109083B (en) * | 2014-12-18 | 2021-01-08 | 巴斯夫涂料有限公司 | Radiation curable compositions comprising hydrophilic nanoparticles |
CN107925010B (en) * | 2015-08-17 | 2020-11-06 | 3M创新有限公司 | Barrier film construction |
KR20180048690A (en) * | 2015-08-31 | 2018-05-10 | 카티바, 인크. | Di- and mono (meth) acrylate-based organic thin film ink compositions |
-
2018
- 2018-04-17 TW TW112149036A patent/TW202417582A/en unknown
- 2018-04-17 KR KR1020197030869A patent/KR102607711B1/en active IP Right Grant
- 2018-04-17 KR KR1020237040343A patent/KR20230167139A/en active Application Filing
- 2018-04-17 US US15/955,303 patent/US20180309089A1/en not_active Abandoned
- 2018-04-17 CN CN202410398697.6A patent/CN118510305A/en active Pending
- 2018-04-17 TW TW107113054A patent/TWI841527B/en active
- 2018-04-17 JP JP2019545807A patent/JP7144864B2/en active Active
- 2018-04-17 WO PCT/US2018/027954 patent/WO2018195066A2/en active Application Filing
- 2018-04-17 EP EP18787847.5A patent/EP3613091A4/en not_active Withdrawn
- 2018-04-17 CN CN201880025479.0A patent/CN111788265B/en active Active
-
2022
- 2022-06-27 US US17/809,243 patent/US11844234B2/en active Active
- 2022-09-09 JP JP2022144122A patent/JP7546945B2/en active Active
-
2023
- 2023-10-30 US US18/497,917 patent/US20240081096A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303924A (en) * | 1978-12-26 | 1981-12-01 | The Mead Corporation | Jet drop printing process utilizing a radiation curable ink |
US4680368A (en) * | 1985-06-05 | 1987-07-14 | Mitsubishi Rayon Company Limited | Ultraviolet curable ink composition |
US20050197419A1 (en) * | 2004-03-03 | 2005-09-08 | Graziano Louis C. | Radiation curable aqueous binders for ink jet inks |
US20080045618A1 (en) * | 2006-06-27 | 2008-02-21 | Nagvekar Devdatt S | Low viscosity UV curable ink formulations |
US20090324970A1 (en) * | 2008-06-30 | 2009-12-31 | Shigehide Ito | Barrier laminate, gas barrier film, device and method for producing barrier laminate |
US20110318595A1 (en) * | 2009-03-30 | 2011-12-29 | Evonik Roehm Gmbh | Coating composition, (meth)acrylic polymer and monomer mixture for producing the (meth)acrylic polymer |
US20120083569A1 (en) * | 2009-06-10 | 2012-04-05 | Kunststoff-Und Farben-Gesellschaft Mbh | Polymerizable Compounds, Curable Compositions And Methods |
US20140178675A1 (en) * | 2012-12-20 | 2014-06-26 | Kyoung Jin Ha | Composition for encapsulation and encapsulated apparatus including the same |
US20160329524A1 (en) * | 2014-01-16 | 2016-11-10 | Hunet Plus | Organic electronic device and fabrication method thereof |
US20170145231A1 (en) * | 2014-05-13 | 2017-05-25 | Sericol Limited | Inks |
US20180339500A1 (en) * | 2015-12-22 | 2018-11-29 | 3M Innovative Properties Company | Acrylic polyvinyl acetal graphic films |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019203120A1 (en) * | 2018-04-20 | 2019-10-24 | 積水化学工業株式会社 | Sealant for organic el display element |
US11793021B2 (en) | 2019-11-22 | 2023-10-17 | Samsung Display Co., Ltd. | Method of fabricating display device |
Also Published As
Publication number | Publication date |
---|---|
WO2018195066A2 (en) | 2018-10-25 |
JP2020520043A (en) | 2020-07-02 |
JP2022191227A (en) | 2022-12-27 |
CN111788265B (en) | 2024-04-23 |
CN111788265A (en) | 2020-10-16 |
US11844234B2 (en) | 2023-12-12 |
EP3613091A2 (en) | 2020-02-26 |
KR20230167139A (en) | 2023-12-07 |
WO2018195066A3 (en) | 2020-03-26 |
KR102607711B1 (en) | 2023-11-28 |
US20240081096A1 (en) | 2024-03-07 |
CN118510305A (en) | 2024-08-16 |
JP7546945B2 (en) | 2024-09-09 |
TW201839070A (en) | 2018-11-01 |
TWI841527B (en) | 2024-05-11 |
KR20190141149A (en) | 2019-12-23 |
EP3613091A4 (en) | 2021-08-04 |
US20220328788A1 (en) | 2022-10-13 |
JP7144864B2 (en) | 2022-09-30 |
TW202417582A (en) | 2024-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240081096A1 (en) | Curable compositions and techniques for forming organic thin films | |
US10190018B2 (en) | Di- and mono(meth)acrylate based organic thin film ink compositions | |
US9909022B2 (en) | Organic thin film ink compositions and methods | |
JP5441406B2 (en) | Encapsulated device and manufacturing method | |
US20180026234A1 (en) | Methods of forming a polymeric thin film layer on an organic light-emitting diode substrate | |
KR20190118156A (en) | Inkjet Printing Systems and Technologies for Light-Emitting Devices with Improved Light Outcoupling | |
US11732074B2 (en) | Compositions and techniques for forming organic thin films | |
US10533104B2 (en) | Two-step process for forming cured polymeric films for electronic device encapsulation | |
CN114686122A (en) | Sealing agent for organic EL element, sealing film, organic EL element, and method for producing organic EL element | |
US20170358775A1 (en) | Highly Spreading Polyethylene Glycol Di(meth)acrylate-Based Organic Thin Film Ink Compositions | |
TW201742897A (en) | Highly spreading polyethylene glycol di(meth)acrylate-based organic thin film ink compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KATEEVA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROGOJINA, ELENA;RAMO, TERESA A.;YUWONO, CITRA;AND OTHERS;SIGNING DATES FROM 20180425 TO 20180426;REEL/FRAME:045686/0574 |
|
AS | Assignment |
Owner name: KATEEVA, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND INVENTOR LAST NAME PREVIOUSLY RECORDED AT REEL: 045686 FRAME: 0574. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:ROGOJINA, ELENA;RAMOS, TERESA A.;YUWONO, CITRA;AND OTHERS;SIGNING DATES FROM 20180425 TO 20180426;REEL/FRAME:045791/0782 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: EAST WEST BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:KATEEVA, INC.;REEL/FRAME:048806/0639 Effective date: 20190402 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: KATEEVA, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK, A CALIFORNIA BANKING CORPORATION;REEL/FRAME:051664/0802 Effective date: 20200121 |
|
AS | Assignment |
Owner name: SINO XIN JI LIMITED, HONG KONG Free format text: SECURITY AGREEMENT;ASSIGNOR:KATEEVA, INC.;REEL/FRAME:051682/0212 Effective date: 20200120 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: SINO XIN JI LIMITED, HONG KONG Free format text: SECURITY INTEREST;ASSIGNORS:KATEEVA, INC.;KATEEVA CAYMAN HOLDING, INC.;REEL/FRAME:059382/0053 Effective date: 20220307 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
AS | Assignment |
Owner name: HB SOLUTION CO., LTD., KOREA, REPUBLIC OF Free format text: SECURITY INTEREST;ASSIGNOR:KATEEVA CAYMAN HOLDING, INC.;REEL/FRAME:059727/0111 Effective date: 20220414 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |