US20180281562A1 - Device for distributing the coolant in an air-conditioning system of a motor vehicle - Google Patents

Device for distributing the coolant in an air-conditioning system of a motor vehicle Download PDF

Info

Publication number
US20180281562A1
US20180281562A1 US15/943,205 US201815943205A US2018281562A1 US 20180281562 A1 US20180281562 A1 US 20180281562A1 US 201815943205 A US201815943205 A US 201815943205A US 2018281562 A1 US2018281562 A1 US 2018281562A1
Authority
US
United States
Prior art keywords
coolant
pump system
heat
heat pump
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/943,205
Other versions
US11338646B2 (en
Inventor
Toni Spies
Navid Durrani
Philipp Kozalla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanon Systems Corp
Original Assignee
Hanon Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanon Systems Corp filed Critical Hanon Systems Corp
Assigned to HANON SYSTEMS reassignment HANON SYSTEMS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOZALLA, Philipp, DURRANI, NAVID, SPIES, Toni
Publication of US20180281562A1 publication Critical patent/US20180281562A1/en
Application granted granted Critical
Publication of US11338646B2 publication Critical patent/US11338646B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00942Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a plurality of heat exchangers, e.g. for multi zone heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a device for the distribution of coolant in a motor vehicle, with at least two coolant circulations as well as one refrigerant circulation.
  • the coolant circulation developed for the combined operation in chiller mode, heat pump mode and post-heating mode, comprises two coolant-air heat exchangers.
  • the temperature level of the coolant in the coolant-air heat exchangers is provided by a refrigerant circulation.
  • the refrigerant circulation typically comprises at least one compressor, an expansion element for relieving the refrigerant from a high to a lower pressure level, a refrigerant-coolant heat exchanger operable as condenser/gas cooler as well as a refrigerant-coolant heat exchanger, operable as evaporator, for the heat transfer between the refrigerant of the refrigerant circulation and the coolant of the coolant circulation.
  • the interior compartment of a motor vehicle has to be heated or cooled or dehumidified for the comfort of the passengers.
  • Heat pump systems with secondary circulation employed herein which operate for example with the refrigerant R744, are potentially limited in view of their heating capacity.
  • the efficiency of the overall system in heat pump operation is, in addition, significantly dependent on the input temperature of the coolant in the refrigerant-coolant heat exchanger operated as condenser/gas cooler.
  • the refrigerant in the ideal case can be cooled down to the input temperature of the coolant into the heat exchanger.
  • the output temperature of the refrigerant from the heat exchanger consequently also increases, and therewith the transferred enthalpy difference in the heat exchanger decreases.
  • the above described coolant circulation is operated at a coolant temperature above the level of the ambient temperature and serves for heating the passenger compartment as well as also for the heat emission to the surroundings.
  • the coolant is cooled in a further refrigerant-coolant heat exchanger by the refrigerant and the higher the input temperature of the coolant, the higher is the coefficient of performance (COP) of the heating/cooling mechanism.
  • COP coefficient of performance
  • the invention addresses the problem of improving the coefficient of performance or COP of a heat pump system having a secondary circulation without compromising the comfort of the vehicle passengers.
  • the heat pump system according to the invention for a motor vehicle comprises at least two coolant-air heat exchangers through which, for the purpose of heating and/or cooling the motor vehicle interior, flows air. Further provided are at least two coolant circulations, separate from one another, of which at least one is connectable independently of the other with one, two or more coolant-air heat exchangers, such that, in the presence of a connection with two or more coolant-air heat exchangers, through these a flow can be conducted successively, and the other coolant circulation is connectable with at least one coolant-air heat exchanger.
  • the fundamental concept of the invention resides in conducting the flow successively through the two coolant-air heat exchangers in the case of heating and/or cooling such that, depending on the operational state, lower input temperatures of the coolant when entering the refrigerant-coolant heat exchanger at the high-pressure side, referred to the refrigerant, or higher input temperatures of the coolant when entering into the refrigerant-coolant heat exchanger at the low-pressure side, referred to the refrigerant, in which exchangers the heat transfer from or to the refrigerant takes place, are achievable.
  • This is essentially achieved thereby that by flowing successively through two coolant-air heat exchangers the coolant is heated more strongly in cooling mode and cools down more strongly in heating mode.
  • This effect can additionally be intensified since, through the serial throughflow of the coolant-air heat exchangers, the coolant volume flow can simultaneously be reduced without increasing the air-side temperature difference downstream of the last coolant-air heat exchanger.
  • the invention furthermore enables an operation in which one coolant-air heat exchanger cools the air and the other heats it in order to, first, dehumidify and subsequently to heat it, i.e. a so-called post-heat or reheat operation can be realized.
  • the heat pump system according to the invention is independent of details of the refrigerant circulation, such as, for example, the refrigerant used or the number of evaporators, chillers or condensers. In particular cooling for the battery of an electric vehicle can also be provided. Furthermore, there can be additional heat sources and/or heat sinks. As will be explained in further detail in the following, the valves, required for the described distribution and the stated switching capabilities, can be integrated into a single part.
  • connection between the coolant circulations and the coolant-air heat exchangers can be implemented in a single part in the form of a distributor.
  • a 3/2 way valve has a direct inlet on the side of a first coolant circulation and an outlet in the direction toward the other coolant circulation, as will be described in greater detail in the following with reference to the Figures.
  • At least one 3/2 way valve is further provided that comprises a direct inlet on the side of one heat exchanger, an outlet in the direction toward the one coolant circulation and an outlet in the direction toward the other coolant circulation.
  • shut-off valve or alternatively, one check valve, is preferably provided that prevents the return flow of coolant to a pump of a coolant circulation.
  • This valve is optionally provided in the event that said pump is not laid out to be self-sealing while not in operation.
  • valves may not only be provided as a single part in a distributor but rather can be provided, at least to some extent, at other sites in the two coolant circulations.
  • At least the heat exchangers serving for cooling/dehumidifying of the air to comprise a drainage for the moisture extracted from the interior air.
  • both coolant circulations to be connected with a common refrigerant circulation and for a heat exchange to take place between the refrigerant circulation and both coolant circulations.
  • FIG. 1 a first embodiment of the heat pump system according to the invention during heating
  • FIG. 2 the first embodiment of the heat pump system according to the invention during cooling
  • FIG. 3 the first embodiment of the heat pump system according to the invention during dehumidifying
  • FIG. 4 a second embodiment of the heat pump system according to the invention during heating
  • FIG. 5 the second embodiment of the heat pump according to the invention during cooling
  • FIG. 6 the second embodiment of the heat pump system according to the invention during dehumidifying
  • FIG. 7 a third embodiment of the heat pump system according to the invention during heating
  • FIG. 8 the third embodiment of the heat pump system according to the invention during cooling
  • FIG. 9 the third embodiment of the heat pump system according to the invention during dehumidifying.
  • a refrigerant circulation for example with R744 as the refrigerant
  • a refrigerant circulation for example with R744 as the refrigerant
  • a compressor Comp for example with R744 as the refrigerant
  • WGC refrigerant-coolant heat exchanger
  • Chiller refrigerant-coolant heat exchanger Chiller
  • Each coolant circulation depicted in the upper and lower left comprises a (coolant-air heat exchanger) radiator LTR and two pumps, one of which is disposed directly upstream of the radiator and the other in a line leading off in the direction toward the coolant-air heat exchangers 10 and 12 depicted on the right in the Figure, which, in the following will be denoted as heat exchangers for the sake of simplicity.
  • the first heat exchanger 10 always located upstream, serves primarily for cooling/dehumidifying the air
  • the second heat exchanger 12 always located downstream, serves primarily for heating the air.
  • the two heat exchangers 10 , 12 belong to a heating, ventilation and cooling system, denoted as HVAC or air conditioning unit.
  • Coolant Distributor is a coolant distributor of the depicted embodiment and “System” denotes the combination of refrigerant circulation and the two coolant circulations.
  • System denotes the combination of refrigerant circulation and the two coolant circulations.
  • the arrows in all Figures indicate the flow in the particular direction of the arrow.
  • Both heat exchangers 10 and 12 can advantageously be utilized with especially high efficiency for heating, such that advantageously an especially substantial cooling of the coolant in the first coolant circulation 14 , shown in the Figure on top, takes place when the flow of the coolant in this coolant circulation takes place in the manner as follows.
  • the pump provided in the line leading to the heat exchanger 12 conveys the coolant in the direction toward this heat exchanger 12 , and, by means of a 3/2 way valve labeled 3 , the coolant, after it has passed through the heat exchanger 12 , continues to flow in the direction toward the other coolant circulation 16 and here through the first heat exchanger 10 .
  • a 3/2 way valve labeled 1 it is returned to the first coolant circulation 14 , in particular through the heat exchanger WGC for the renewed heating of the coolant.
  • the radiator LTR does not carry any flow.
  • the coolant in the second coolant circuit 16 flows further through solely the pump, the radiator LTR and the cooler [Chiller], however does not reach in the direction of the heat exchangers 10 , 12 .
  • the flow of air through the heat exchangers 10 , 12 on the one hand, and, on the other hand, the flow of coolant through the heat exchangers 10 , 12 can be implemented as counter or transverse flow or cross/counter flow.
  • the air conducted into the interior of the motor vehicle is consequently heated in two stages.
  • a shut-off valve or check valve 4 is provided that is optional and prevents a backflow of the coolant to the pump, which is advantageous in case this pump is not sealed tightly when this pump is switched off and therefore would enable an unintentional bypass.
  • FIG. 2 shows the case of two-stage cooling of the air conducted through the heat exchangers 10 and 12 , thereby that the coolant of the second coolant circulation 16 is initially conducted, through the appropriate setting of the 3/2 way valve 2 , in the direction toward the first coolant circulation 14 , here through the second heat exchanger 12 , through a setting of the 3.2 way valve 3 corresponding to that in FIG. 1 , back in the direction toward the second coolant circulation 16 , here through the first heat exchanger 10 and from there through the appropriately switched 3/2 way valve 1 in the direction toward the pump of the second coolant circulation 16 .
  • the coolant flows only in “its” coolant circulation.
  • the coolant of the first coolant circulation 14 is conducted through the second heat exchanger 12 and heats the air
  • the coolant of the second coolant circulation 16 is conducted through the first heat exchanger 10 and cools the air.
  • a mixing of cooled and heated air can take place.
  • the air is hereby advantageously dehumidified and the temperature made uniform. Stated differently, in this operating mode there is no flow in the connections, shown in the Figure in the vertical direction, between the two coolant circulations 14 , 16 .
  • the coolant flows in the particular coolant circulation 14 , 16 also through the radiator LTR.
  • FIGS. 4 to 6 differs from that of FIGS. 1 to 3 by the omission of the 3.2 way valve, labeled 2 in FIGS. 1 to 3 , and of the shut-off valve 4 .
  • valve 2 instead of valve 2 , an optional shut-off valve 2 a is provided that prevents a backflow to the pump of the second coolant circulation 16 .
  • the function of the shut-off valve 2 a can also be assumed by the pump disposed in the direction toward the heat exchanger 10 and not directly upstream of radiator LTR.
  • the heating operation depicted in FIG. 4 does not differ from that according to FIG. 1 and therefore reference is made thereto.
  • the cooling operation depicted in FIG. 5 differs in so far as the coolant in the second coolant circulation 16 flows only through the first heat exchanger 10 and consequently only a single-stage cooling takes place.
  • the dehumidification operation shown in FIG. 6 corresponds to that shown in FIG. 3 and will therefore not be described again.
  • the 3/2 way valve, labeled 1 in FIGS. 1 to 6 is omitted such that, as shown in FIG. 7 the heating operation is only carried out in a single stage and in this respect no flow of the coolant from the first coolant circulation 14 through the second coolant circulation 16 takes place.
  • FIG. 8 a two-stage cooling operation continues to be enabled which insofar corresponds to FIG. 2 and does not need to be described again. This applies similarly to the equally possible dehumidification operation according to FIG. 9 , which corresponds to that of FIGS. 3 and 6 .
  • a shut-off valve 4 is provided to prevent the backflow to the pump of the first coolant circulation 16 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A heat pump system for a motor vehicle comprises at least two heat exchangers 10, 12, through which, for heating and/or cooling the motor vehicle interior, a flow is conducted, and at least two coolant circulations 14, 16 separable from one another, of which at least one is connectable, independently of the other coolant circulation, with one, two or more heat exchangers 10, 12 such that through these, in the presence of a connection with two or more heat exchangers 10, 12, a flow is successively conducted and the other coolant circulation is connectable with at least one heat exchanger 10, 12.

Description

    FIELD OF TECHNOLOGY
  • The invention relates to a device for the distribution of coolant in a motor vehicle, with at least two coolant circulations as well as one refrigerant circulation. The coolant circulation, developed for the combined operation in chiller mode, heat pump mode and post-heating mode, comprises two coolant-air heat exchangers. To condition the incoming air of the passenger compartment, the temperature level of the coolant in the coolant-air heat exchangers is provided by a refrigerant circulation. The refrigerant circulation typically comprises at least one compressor, an expansion element for relieving the refrigerant from a high to a lower pressure level, a refrigerant-coolant heat exchanger operable as condenser/gas cooler as well as a refrigerant-coolant heat exchanger, operable as evaporator, for the heat transfer between the refrigerant of the refrigerant circulation and the coolant of the coolant circulation.
  • Depending on the ambient temperature, the interior compartment of a motor vehicle has to be heated or cooled or dehumidified for the comfort of the passengers.
  • Special challenges are encountered, for example, in heating electric vehicles since in this case the waste heat of an engine is not available at the magnitude customary with combustion engines. Heat pump systems with secondary circulation employed herein, which operate for example with the refrigerant R744, are potentially limited in view of their heating capacity.
  • In the case of the principle of indirect heat transfer that forms the basis of the invention, the efficiency of the overall system in heat pump operation is, in addition, significantly dependent on the input temperature of the coolant in the refrigerant-coolant heat exchanger operated as condenser/gas cooler. In the formation of the heat exchanger as a counter flow heat exchanger the refrigerant in the ideal case can be cooled down to the input temperature of the coolant into the heat exchanger. With increasing temperature of the flow temperature of the coolant the output temperature of the refrigerant from the heat exchanger consequently also increases, and therewith the transferred enthalpy difference in the heat exchanger decreases.
  • In particular when operating the air-conditioning system in heat pump operation, at very low temperatures of the ambient air in the range of −15° C. to −20° C., flow temperatures of the coolant in the range of approximately 55° C. to 60° C. must be sought in order to be able to condition the passenger compartment to pleasant temperatures in as short a time as possible. In this operation the refrigerant at the outlet of the refrigerant-coolant heat exchanger in the ideal case has a temperature of more than 55° C. However, in order to be able to operate the air-conditioning system more efficiently, the refrigerant must be cooled to a temperature far below the flow temperature of the coolant to be able to attain as large an enthalpy difference as possible.
  • As a rule, the above described coolant circulation is operated at a coolant temperature above the level of the ambient temperature and serves for heating the passenger compartment as well as also for the heat emission to the surroundings. Challenges similar to those described above exist in a parallel coolant circulation that is operated at low temperature (as a rule below the ambient level) and serves primarily for cooling the motor vehicle interior or vehicle components. Here, the coolant is cooled in a further refrigerant-coolant heat exchanger by the refrigerant and the higher the input temperature of the coolant, the higher is the coefficient of performance (COP) of the heating/cooling mechanism.
  • There is, in addition, the requirement in refrigerant-air heat exchangers that the air conditioned downstream of the heat exchangers can only have small temperature differences so as not to impair the comfort of the passengers. This requirement leads to a permitted maximal temperature difference of the coolant between input and output out of the heat exchangers of approximately 10 to 15 K.
  • PRIOR ART
  • A conventional heat pump system is described in U.S. Pat. No. 7,063,137 B2. However, this system cannot solve the above described problems.
  • DESCRIPTION OF THE INVENTION
  • The invention addresses the problem of improving the coefficient of performance or COP of a heat pump system having a secondary circulation without compromising the comfort of the vehicle passengers.
  • This problem is resolved through the heat pump system described in Claim 1 and, accordingly, the heat pump system according to the invention for a motor vehicle comprises at least two coolant-air heat exchangers through which, for the purpose of heating and/or cooling the motor vehicle interior, flows air. Further provided are at least two coolant circulations, separate from one another, of which at least one is connectable independently of the other with one, two or more coolant-air heat exchangers, such that, in the presence of a connection with two or more coolant-air heat exchangers, through these a flow can be conducted successively, and the other coolant circulation is connectable with at least one coolant-air heat exchanger.
  • The fundamental concept of the invention resides in conducting the flow successively through the two coolant-air heat exchangers in the case of heating and/or cooling such that, depending on the operational state, lower input temperatures of the coolant when entering the refrigerant-coolant heat exchanger at the high-pressure side, referred to the refrigerant, or higher input temperatures of the coolant when entering into the refrigerant-coolant heat exchanger at the low-pressure side, referred to the refrigerant, in which exchangers the heat transfer from or to the refrigerant takes place, are achievable. This is essentially achieved thereby that by flowing successively through two coolant-air heat exchangers the coolant is heated more strongly in cooling mode and cools down more strongly in heating mode. This effect can additionally be intensified since, through the serial throughflow of the coolant-air heat exchangers, the coolant volume flow can simultaneously be reduced without increasing the air-side temperature difference downstream of the last coolant-air heat exchanger.
  • The invention furthermore enables an operation in which one coolant-air heat exchanger cools the air and the other heats it in order to, first, dehumidify and subsequently to heat it, i.e. a so-called post-heat or reheat operation can be realized.
  • It should, moreover, be emphasized that the heat pump system according to the invention is independent of details of the refrigerant circulation, such as, for example, the refrigerant used or the number of evaporators, chillers or condensers. In particular cooling for the battery of an electric vehicle can also be provided. Furthermore, there can be additional heat sources and/or heat sinks. As will be explained in further detail in the following, the valves, required for the described distribution and the stated switching capabilities, can be integrated into a single part.
  • Preferred further developments are described in the other claims.
  • As already indicated, the connection between the coolant circulations and the coolant-air heat exchangers can be implemented in a single part in the form of a distributor.
  • It is preferred for at least two, in particular preferred three, 3/2 way valves to be provided, each of which can be replaced by two shut-off valves.
  • Especially diverse and versatile operating options are hereby obtained if a 3/2 way valve has a direct inlet on the side of a first coolant circulation and an outlet in the direction toward the other coolant circulation, as will be described in greater detail in the following with reference to the Figures.
  • At least one 3/2 way valve is further provided that comprises a direct inlet on the side of one heat exchanger, an outlet in the direction toward the one coolant circulation and an outlet in the direction toward the other coolant circulation.
  • Further, at least one shut-off valve, or alternatively, one check valve, is preferably provided that prevents the return flow of coolant to a pump of a coolant circulation. This valve is optionally provided in the event that said pump is not laid out to be self-sealing while not in operation.
  • In regard to all valves, it should be emphasized that they may not only be provided as a single part in a distributor but rather can be provided, at least to some extent, at other sites in the two coolant circulations.
  • In view of the heat exchangers for cooling or heating the air in the motor vehicle interior compartment, it is preferred for at least the heat exchangers serving for cooling/dehumidifying of the air, to comprise a drainage for the moisture extracted from the interior air.
  • In view of an efficient structure it is of further advantage for both coolant circulations to be connected with a common refrigerant circulation and for a heat exchange to take place between the refrigerant circulation and both coolant circulations.
  • BRIEF DESCRIPTION OF THE DRAWING
  • In the following preferred embodiment examples of the invention will be described in further detail with reference to the drawing.
  • Therein depict:
  • FIG. 1 a first embodiment of the heat pump system according to the invention during heating,
  • FIG. 2 the first embodiment of the heat pump system according to the invention during cooling,
  • FIG. 3 the first embodiment of the heat pump system according to the invention during dehumidifying,
  • FIG. 4 a second embodiment of the heat pump system according to the invention during heating,
  • FIG. 5 the second embodiment of the heat pump according to the invention during cooling,
  • FIG. 6 the second embodiment of the heat pump system according to the invention during dehumidifying,
  • FIG. 7 a third embodiment of the heat pump system according to the invention during heating,
  • FIG. 8 the third embodiment of the heat pump system according to the invention during cooling,
  • FIG. 9 the third embodiment of the heat pump system according to the invention during dehumidifying.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • First, an explanation will be given regarding the heat pump system depicted in FIG. 1 with reference to the left, here in particular the center region, in which a refrigerant circulation, for example with R744 as the refrigerant, is provided which comprises a compressor Comp, a refrigerant-coolant heat exchanger WGC for heating the coolant in a first coolant circulation 14 and a refrigerant-coolant heat exchanger Chiller for cooling a coolant in a second coolant circulation 16. Further provided are an expansion valve EXV and an internal heat exchanger with integrated collector Accu/IHX. Each coolant circulation, depicted in the upper and lower left comprises a (coolant-air heat exchanger) radiator LTR and two pumps, one of which is disposed directly upstream of the radiator and the other in a line leading off in the direction toward the coolant- air heat exchangers 10 and 12 depicted on the right in the Figure, which, in the following will be denoted as heat exchangers for the sake of simplicity. It should be stated that the first heat exchanger 10, always located upstream, serves primarily for cooling/dehumidifying the air, and the second heat exchanger 12, always located downstream, serves primarily for heating the air. The two heat exchangers 10, 12 belong to a heating, ventilation and cooling system, denoted as HVAC or air conditioning unit. Denoted by Coolant Distributor is a coolant distributor of the depicted embodiment and “System” denotes the combination of refrigerant circulation and the two coolant circulations. The arrows in all Figures indicate the flow in the particular direction of the arrow.
  • Both heat exchangers 10 and 12 can advantageously be utilized with especially high efficiency for heating, such that advantageously an especially substantial cooling of the coolant in the first coolant circulation 14, shown in the Figure on top, takes place when the flow of the coolant in this coolant circulation takes place in the manner as follows.
  • The pump provided in the line leading to the heat exchanger 12 conveys the coolant in the direction toward this heat exchanger 12, and, by means of a 3/2 way valve labeled 3, the coolant, after it has passed through the heat exchanger 12, continues to flow in the direction toward the other coolant circulation 16 and here through the first heat exchanger 10. By means of a 3/2 way valve labeled 1, it is returned to the first coolant circulation 14, in particular through the heat exchanger WGC for the renewed heating of the coolant. In this case the radiator LTR does not carry any flow. The coolant in the second coolant circuit 16 flows further through solely the pump, the radiator LTR and the cooler [Chiller], however does not reach in the direction of the heat exchangers 10, 12.
  • Thereby that the flow is successively conducted through both heat exchangers 12, 10, the above described effects according to the invention are achieved. The flow of air through the heat exchangers 10, 12 on the one hand, and, on the other hand, the flow of coolant through the heat exchangers 10, 12 can be implemented as counter or transverse flow or cross/counter flow. The air conducted into the interior of the motor vehicle is consequently heated in two stages. For the sake of completeness, it should be mentioned that in the depicted embodiment a shut-off valve or check valve 4 is provided that is optional and prevents a backflow of the coolant to the pump, which is advantageous in case this pump is not sealed tightly when this pump is switched off and therefore would enable an unintentional bypass.
  • FIG. 2 shows the case of two-stage cooling of the air conducted through the heat exchangers 10 and 12, thereby that the coolant of the second coolant circulation 16 is initially conducted, through the appropriate setting of the 3/2 way valve 2, in the direction toward the first coolant circulation 14, here through the second heat exchanger 12, through a setting of the 3.2 way valve 3 corresponding to that in FIG. 1, back in the direction toward the second coolant circulation 16, here through the first heat exchanger 10 and from there through the appropriately switched 3/2 way valve 1 in the direction toward the pump of the second coolant circulation 16. Correspondingly, but conversely to the above described case, a two-stage cooling of the air conducted into the motor vehicle interior, and an especially substantial heating of the coolant in the second coolant circulation 16 can consequently be achieved. In this case there is no flow through radiator LTR of the second coolant circulation 16 and the coolant in the first coolant circulation 14 flows only through the heat exchanger WGC, the one pump and the radiator LTR, however not in the direction toward the heat exchangers.
  • In the dehumidification operation shown in FIG. 3 the coolant flows only in “its” coolant circulation. Stated differently, the coolant of the first coolant circulation 14 is conducted through the second heat exchanger 12 and heats the air, while the coolant of the second coolant circulation 16 is conducted through the first heat exchanger 10 and cools the air. Through the suitable setting of the louvers 18 on the far right, which are both closed in the operating modes of FIGS. 1 and 2 in order to achieve flow through the second heat exchanger 12, in the operating mode of FIG. 3 a mixing of cooled and heated air can take place. The air is hereby advantageously dehumidified and the temperature made uniform. Stated differently, in this operating mode there is no flow in the connections, shown in the Figure in the vertical direction, between the two coolant circulations 14, 16.
  • In the operating mode shown in FIG. 3 the coolant flows in the particular coolant circulation 14, 16 also through the radiator LTR.
  • The embodiment of FIGS. 4 to 6 differs from that of FIGS. 1 to 3 by the omission of the 3.2 way valve, labeled 2 in FIGS. 1 to 3, and of the shut-off valve 4. Hereby expenditures can advantageously be saved. Instead of valve 2, an optional shut-off valve 2 a is provided that prevents a backflow to the pump of the second coolant circulation 16. However, the function of the shut-off valve 2 a can also be assumed by the pump disposed in the direction toward the heat exchanger 10 and not directly upstream of radiator LTR. The heating operation depicted in FIG. 4 does not differ from that according to FIG. 1 and therefore reference is made thereto.
  • The cooling operation depicted in FIG. 5 differs in so far as the coolant in the second coolant circulation 16 flows only through the first heat exchanger 10 and consequently only a single-stage cooling takes place. The dehumidification operation shown in FIG. 6 corresponds to that shown in FIG. 3 and will therefore not be described again.
  • In the third embodiment according to FIGS. 7 to 9 the 3/2 way valve, labeled 1 in FIGS. 1 to 6, is omitted such that, as shown in FIG. 7 the heating operation is only carried out in a single stage and in this respect no flow of the coolant from the first coolant circulation 14 through the second coolant circulation 16 takes place. As can be seen in FIG. 8, a two-stage cooling operation continues to be enabled which insofar corresponds to FIG. 2 and does not need to be described again. This applies similarly to the equally possible dehumidification operation according to FIG. 9, which corresponds to that of FIGS. 3 and 6. In comparison to the shut-off valve 2 a of FIGS. 4 to 6, in the embodiment of FIGS. 7 to 9 a shut-off valve 4 is provided to prevent the backflow to the pump of the first coolant circulation 16.
  • Even though in the Figures two heat exchangers 10, 12 are depicted, more heat exchangers can also be provided. Moreover, several heat pump systems, each with two or more heat exchangers, can also be provided.

Claims (21)

1.-8. (canceled)
9. A heat pump system for a motor vehicle with at least two heat exchangers, through which, for heating and/or cooling the interior of a motor vehicle, a flow is conducted, and at least two coolant circulations that are separable from one another, at least one of which, independently of the other coolant circulation, is connectable to one, two or more heat exchangers, such that through these, in the presence of a connection with two or more heat exchangers, a flow is successively conducted, and the other coolant circulation is connectable with at least one heat exchanger.
10. A heat pump system according to claim 9, wherein the connection between the coolant circulations and the heat exchangers is established by means of a distributor.
11. A heat pump system according to claim 9, wherein at least two 3/2 way valves or at least four shut-off valves are provided.
12. A heat pump system according to claim 11, wherein a 3/2 way valve has a direct inlet from a coolant circulation and an outlet in the direction toward the other coolant circulation.
13. A heat pump system according to claim 11, wherein at least one 3/2 way valve comprises a direct inlet from a heat exchanger, an outlet in the direction toward the one coolant circulation and an outlet in the direction toward the other coolant circulation.
14. A heat pump system according to claim 9, further comprising at least one shut-off or check valve is provided which prevents a backflow of coolant to a pump of a coolant circulation.
15. A heat pump system according to claim 14, wherein at least one heat exchanger comprises a drainage for the moisture extracted from the air of the interior.
16. A heat pump system according to claim 9, wherein both coolant circulations are connected with a common refrigerant circulation.
17. A heat pump system according to claim 10, further comprising at least one shut-off or check valve is provided which prevents a backflow of coolant to a pump of a coolant circulation.
18. A heat pump system according to claim 11, further comprising at least one shut-off or check valve is provided which prevents a backflow of coolant to a pump of a coolant circulation.
19. A heat pump system according to claim 12, further comprising at least one shut-off or check valve is provided which prevents a backflow of coolant to a pump of a coolant circulation.
20. A heat pump system according to claim 13, further comprising at least one shut-off or check valve is provided which prevents a backflow of coolant to a pump of a coolant circulation.
21. A heat pump system according to claim 12, wherein at least one 3/2 way valve comprises a direct inlet from a heat exchanger, an outlet in the direction toward the one coolant circulation and an outlet in the direction toward the other coolant circulation.
22. A heat pump system according to claim 10, wherein at least one heat exchanger comprises a drainage for the moisture extracted from the air of the interior.
23. A heat pump system according to claim 11, wherein at least one heat exchanger comprises a drainage for the moisture extracted from the air of the interior.
24. A heat pump system according to claim 12, wherein at least one heat exchanger comprises a drainage for the moisture extracted from the air of the interior.
25. A heat pump system according to claim 13, wherein at least one heat exchanger comprises a drainage for the moisture extracted from the air of the interior.
26. A heat pump system according to claim 14, wherein at least one heat exchanger comprises a drainage for the moisture extracted from the air of the interior.
27. A heat pump system according to claim 14, wherein both coolant circulations are connected with a common refrigerant circulation.
28. A heat pump system according to claim 10, wherein both coolant circulations are connected with a common refrigerant circulation.
US15/943,205 2017-04-04 2018-04-02 Device for distributing the coolant in an air-conditioning system of a motor vehicle Active 2038-12-11 US11338646B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017205744.0A DE102017205744A1 (en) 2017-04-04 2017-04-04 Device for distributing the coolant in an air conditioning system of a motor vehicle
DE102017205744.0 2017-04-04

Publications (2)

Publication Number Publication Date
US20180281562A1 true US20180281562A1 (en) 2018-10-04
US11338646B2 US11338646B2 (en) 2022-05-24

Family

ID=63524696

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/943,205 Active 2038-12-11 US11338646B2 (en) 2017-04-04 2018-04-02 Device for distributing the coolant in an air-conditioning system of a motor vehicle

Country Status (3)

Country Link
US (1) US11338646B2 (en)
KR (1) KR102065968B1 (en)
DE (1) DE102017205744A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325444B2 (en) * 2019-06-24 2022-05-10 Hyundai Motor Company Heat pump system for vehicle
US11458812B2 (en) * 2020-02-17 2022-10-04 Hyundai Motor Company Heat pump system for vehicle
WO2022238428A1 (en) * 2021-05-10 2022-11-17 Saint-Gobain Glass France Hvac module and hvac system comprising such module
US11529848B2 (en) * 2019-07-29 2022-12-20 Hyundai Motor Company Heat pump system control method for vehicle
US20220402332A1 (en) * 2020-02-28 2022-12-22 Huawei Digital Power Technologies Co., Ltd. Thermal management system and new energy vehicle
US11683915B1 (en) 2021-04-03 2023-06-20 Nautilus True, Llc Data center liquid conduction and carbon dioxide based cooling apparatus and method
EP4215387A1 (en) * 2022-01-19 2023-07-26 Saint-Gobain Glass France Hvac module and hvac system comprising such module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474188B (en) 2019-02-25 2024-06-18 翰昂汽车零部件有限公司 Heat exchanger and vehicle air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040089003A1 (en) * 2000-05-15 2004-05-13 Manuel Amaral Temperature control method and device in a motor vehichle passenger compartment
US20100281902A1 (en) * 2009-05-08 2010-11-11 Honda Motor Co., Ltd. Evaporator assembly for an hvac system
US20160297283A1 (en) * 2013-11-25 2016-10-13 Denso Corporation Heat pump system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063137B2 (en) 2003-07-15 2006-06-20 Delphi Technologies, Inc. Heat pump with secondary loop air-conditioning system
DE102004008210A1 (en) 2004-02-19 2005-09-01 Valeo Klimasysteme Gmbh A method for operating a motor vehicle air conditioning system as a heat pump to provide interior heating with a cold engine
KR20110117459A (en) * 2010-04-21 2011-10-27 김현희 Air conditioning system for vehicle
JP2012011928A (en) * 2010-07-02 2012-01-19 Panasonic Corp Vehicle water circulation system
DE102011108729A1 (en) * 2011-07-28 2013-01-31 Volkswagen Aktiengesellschaft Air conditioning for tempering components and an interior of a motor vehicle
JP2014189141A (en) * 2013-03-27 2014-10-06 Panasonic Corp Vehicle heat pump device
JP2015182575A (en) 2014-03-24 2015-10-22 株式会社日本クライメイトシステムズ Air conditioner for vehicle
DE102014226346A1 (en) * 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Heating system for an electric or hybrid vehicle
DE102016006682B4 (en) * 2016-05-31 2024-03-14 Audi Ag Method for operating an air conditioning system of an electric or hybrid vehicle and air conditioning system for carrying out the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040089003A1 (en) * 2000-05-15 2004-05-13 Manuel Amaral Temperature control method and device in a motor vehichle passenger compartment
US20100281902A1 (en) * 2009-05-08 2010-11-11 Honda Motor Co., Ltd. Evaporator assembly for an hvac system
US20160297283A1 (en) * 2013-11-25 2016-10-13 Denso Corporation Heat pump system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325444B2 (en) * 2019-06-24 2022-05-10 Hyundai Motor Company Heat pump system for vehicle
US11529848B2 (en) * 2019-07-29 2022-12-20 Hyundai Motor Company Heat pump system control method for vehicle
US11458812B2 (en) * 2020-02-17 2022-10-04 Hyundai Motor Company Heat pump system for vehicle
US20220402332A1 (en) * 2020-02-28 2022-12-22 Huawei Digital Power Technologies Co., Ltd. Thermal management system and new energy vehicle
EP4101667A4 (en) * 2020-02-28 2023-08-23 Huawei Digital Power Technologies Co., Ltd. Thermal management system and new energy vehicle
US11683915B1 (en) 2021-04-03 2023-06-20 Nautilus True, Llc Data center liquid conduction and carbon dioxide based cooling apparatus and method
US12063761B1 (en) * 2021-04-03 2024-08-13 Nautilus True, Llc Data center liquid conduction and carbon dioxide based cooling apparatus and method
WO2022238428A1 (en) * 2021-05-10 2022-11-17 Saint-Gobain Glass France Hvac module and hvac system comprising such module
EP4215387A1 (en) * 2022-01-19 2023-07-26 Saint-Gobain Glass France Hvac module and hvac system comprising such module

Also Published As

Publication number Publication date
DE102017205744A1 (en) 2018-10-04
KR102065968B1 (en) 2020-01-14
KR20180112681A (en) 2018-10-12
US11338646B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
US11338646B2 (en) Device for distributing the coolant in an air-conditioning system of a motor vehicle
US10040334B2 (en) R744 based heat pump system with a water cooled gas cooler for cooling, heating and dehumidification of an EV/HEV
US9242527B2 (en) Refrigerant circuit of an HVAC system of a motor vehicle
US11760162B2 (en) Thermal management system
US20130025311A1 (en) Motor vehicle refrigerant circuit with a refrigeration system circuit and a heat pump circuit
US11912100B2 (en) Thermal conditioning circuit
JP7176405B2 (en) temperature controller
JP6838518B2 (en) Refrigeration cycle equipment
JP5775661B2 (en) Automotive heating, ventilation, and / or air conditioning
KR20160110063A (en) Air-conditioning system of a motor vehicle and method for operating the air-conditioning system
WO2011087001A1 (en) Air conditioning system for vehicle
JP2009257748A (en) Heating and air-conditioning unit for automobile
JP2020142789A (en) Heat management system
CN110831796A (en) Refrigeration device for a vehicle comprising a refrigerant circuit with a heat exchanger, and heat exchanger for such a refrigeration device
KR20190103009A (en) Device for an air-conditioning system of a motor vehicle and method for operating the device
CN109982877B (en) Vehicle heat pump system
US10612798B2 (en) Air conditioning and heat pump tower with energy efficient arrangement
CN107709898B (en) Heat exchanger and heat pump system
US20220297504A1 (en) Refrigeration system with a heat pumping and reheating function
WO2020129496A1 (en) Condenser and air conditioning device for vehicle
CN113424000A (en) Thermal management device for an electric or hybrid motor vehicle
KR20230066727A (en) Heat pump system for vehicle
JP2018177096A (en) Vehicle air conditioner
JP2017165247A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: HANON SYSTEMS, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPIES, TONI;DURRANI, NAVID;KOZALLA, PHILIPP;SIGNING DATES FROM 20180404 TO 20180410;REEL/FRAME:046461/0385

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE