US20180271609A1 - Use of a magnetic material in removal of stones - Google Patents
Use of a magnetic material in removal of stones Download PDFInfo
- Publication number
- US20180271609A1 US20180271609A1 US15/763,611 US201615763611A US2018271609A1 US 20180271609 A1 US20180271609 A1 US 20180271609A1 US 201615763611 A US201615763611 A US 201615763611A US 2018271609 A1 US2018271609 A1 US 2018271609A1
- Authority
- US
- United States
- Prior art keywords
- magnetic
- nanoparticle
- group
- acid
- stone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004575 stone Substances 0.000 title claims abstract description 178
- 239000000696 magnetic material Substances 0.000 title claims abstract description 52
- 239000002105 nanoparticle Substances 0.000 claims abstract description 160
- 238000000034 method Methods 0.000 claims abstract description 108
- 239000003607 modifier Substances 0.000 claims abstract description 51
- 239000000178 monomer Substances 0.000 claims abstract description 51
- 238000002360 preparation method Methods 0.000 claims abstract description 41
- 239000003999 initiator Substances 0.000 claims abstract description 30
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 24
- 230000009471 action Effects 0.000 claims abstract description 7
- 239000002122 magnetic nanoparticle Substances 0.000 claims description 80
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 64
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 58
- 239000000243 solution Substances 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 55
- 239000002245 particle Substances 0.000 claims description 55
- 238000006243 chemical reaction Methods 0.000 claims description 51
- 238000012986 modification Methods 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 230000004048 modification Effects 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 230000002209 hydrophobic effect Effects 0.000 claims description 31
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 30
- -1 amino, mercapto, hydroxyl Chemical group 0.000 claims description 29
- 239000006249 magnetic particle Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 27
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 239000004793 Polystyrene Substances 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 22
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 21
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 21
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 20
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 20
- 230000003993 interaction Effects 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 20
- 239000008096 xylene Substances 0.000 claims description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 19
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 19
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 18
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 18
- 229920000642 polymer Polymers 0.000 claims description 18
- 238000013019 agitation Methods 0.000 claims description 17
- 229920002223 polystyrene Polymers 0.000 claims description 17
- QEYMMOKECZBKAC-UHFFFAOYSA-N 3-chloropropanoic acid Chemical compound OC(=O)CCCl QEYMMOKECZBKAC-UHFFFAOYSA-N 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 238000000975 co-precipitation Methods 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 15
- 230000005660 hydrophilic surface Effects 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 15
- 125000000524 functional group Chemical group 0.000 claims description 14
- 239000002071 nanotube Substances 0.000 claims description 14
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 13
- 238000001179 sorption measurement Methods 0.000 claims description 13
- 238000005406 washing Methods 0.000 claims description 13
- 239000002502 liposome Substances 0.000 claims description 12
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 claims description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 230000005661 hydrophobic surface Effects 0.000 claims description 10
- 230000002485 urinary effect Effects 0.000 claims description 10
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 9
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 9
- 229910017163 MnFe2O4 Inorganic materials 0.000 claims description 9
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 9
- 230000001476 alcoholic effect Effects 0.000 claims description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 9
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 9
- 125000005442 diisocyanate group Chemical group 0.000 claims description 9
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 9
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 8
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 8
- WWJCRUKUIQRCGP-UHFFFAOYSA-N 3-(dimethylamino)propyl 2-methylprop-2-enoate Chemical compound CN(C)CCCOC(=O)C(C)=C WWJCRUKUIQRCGP-UHFFFAOYSA-N 0.000 claims description 8
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 8
- 239000011837 N,N-methylenebisacrylamide Substances 0.000 claims description 8
- 239000005642 Oleic acid Substances 0.000 claims description 8
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 159000000007 calcium salts Chemical class 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 8
- 238000004132 cross linking Methods 0.000 claims description 8
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 claims description 8
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 8
- 239000011553 magnetic fluid Substances 0.000 claims description 8
- 239000004005 microsphere Substances 0.000 claims description 8
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 8
- 239000004094 surface-active agent Substances 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims description 7
- 239000004584 polyacrylic acid Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 6
- 206010029148 Nephrolithiasis Diseases 0.000 claims description 6
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 238000010382 chemical cross-linking Methods 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 6
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 6
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 6
- WSSMOXHYUFMBLS-UHFFFAOYSA-L iron dichloride tetrahydrate Chemical compound O.O.O.O.[Cl-].[Cl-].[Fe+2] WSSMOXHYUFMBLS-UHFFFAOYSA-L 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- VHJFWJXYEWHCGD-UHFFFAOYSA-N 4-nonyl-2-(4-nonylpyridin-2-yl)pyridine Chemical compound CCCCCCCCCC1=CC=NC(C=2N=CC=C(CCCCCCCCC)C=2)=C1 VHJFWJXYEWHCGD-UHFFFAOYSA-N 0.000 claims description 5
- 208000000913 Kidney Calculi Diseases 0.000 claims description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 238000005411 Van der Waals force Methods 0.000 claims description 5
- 239000012965 benzophenone Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- LBLSDWGRWPNYHR-UHFFFAOYSA-N diphenylmethanone;ethene Chemical compound C=C.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 LBLSDWGRWPNYHR-UHFFFAOYSA-N 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- PBSASXNAZJHOBR-UHFFFAOYSA-N n-(2-methylpropyl)prop-2-enamide Chemical compound CC(C)CNC(=O)C=C PBSASXNAZJHOBR-UHFFFAOYSA-N 0.000 claims description 5
- 229910006297 γ-Fe2O3 Inorganic materials 0.000 claims description 5
- 241001070941 Castanea Species 0.000 claims description 4
- 235000014036 Castanea Nutrition 0.000 claims description 4
- 241001146209 Curio rowleyanus Species 0.000 claims description 4
- 241000257465 Echinoidea Species 0.000 claims description 4
- 241000219991 Lythraceae Species 0.000 claims description 4
- 235000014360 Punica granatum Nutrition 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 125000003368 amide group Chemical group 0.000 claims description 4
- 229940111121 antirheumatic drug quinolines Drugs 0.000 claims description 4
- 150000008366 benzophenones Chemical class 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 4
- 238000000593 microemulsion method Methods 0.000 claims description 4
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 claims description 4
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 claims description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 4
- 150000003248 quinolines Chemical class 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 238000003980 solgel method Methods 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 208000006568 Urinary Bladder Calculi Diseases 0.000 claims description 3
- 210000003445 biliary tract Anatomy 0.000 claims description 3
- 239000011258 core-shell material Substances 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 210000000056 organ Anatomy 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 2
- 241000533950 Leucojum Species 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims description 2
- 235000007164 Oryza sativa Nutrition 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- 241000482268 Zea mays subsp. mays Species 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 125000003172 aldehyde group Chemical group 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 claims description 2
- 235000013339 cereals Nutrition 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- 238000007772 electroless plating Methods 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims description 2
- 125000004185 ester group Chemical group 0.000 claims description 2
- 125000001033 ether group Chemical group 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims description 2
- 229920002521 macromolecule Polymers 0.000 claims description 2
- 239000003094 microcapsule Substances 0.000 claims description 2
- 239000002480 mineral oil Substances 0.000 claims description 2
- 235000010446 mineral oil Nutrition 0.000 claims description 2
- 239000002074 nanoribbon Substances 0.000 claims description 2
- 239000002073 nanorod Substances 0.000 claims description 2
- 239000002070 nanowire Substances 0.000 claims description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 2
- 239000006069 physical mixture Substances 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 235000009566 rice Nutrition 0.000 claims description 2
- 238000005185 salting out Methods 0.000 claims description 2
- 238000001338 self-assembly Methods 0.000 claims description 2
- 229920002545 silicone oil Polymers 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- COVQXPJCMCBBPX-UHFFFAOYSA-N sulfanylcarbamic acid Chemical group OC(=O)NS COVQXPJCMCBBPX-UHFFFAOYSA-N 0.000 claims description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- 210000000626 ureter Anatomy 0.000 abstract description 8
- 239000000523 sample Substances 0.000 description 28
- 210000003734 kidney Anatomy 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- 239000008367 deionised water Substances 0.000 description 13
- 229910021641 deionized water Inorganic materials 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 208000009911 Urinary Calculi Diseases 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 7
- 230000035484 reaction time Effects 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 208000008281 urolithiasis Diseases 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 5
- 239000007771 core particle Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000693 micelle Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 239000012798 spherical particle Substances 0.000 description 5
- 229940116269 uric acid Drugs 0.000 description 5
- FXCSCTVYEKPPDO-UHFFFAOYSA-N (2-ethenylphenyl)-phenylmethanone Chemical compound C=CC1=CC=CC=C1C(=O)C1=CC=CC=C1 FXCSCTVYEKPPDO-UHFFFAOYSA-N 0.000 description 4
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 4
- BTOOAFQCTJZDRC-UHFFFAOYSA-N 1,2-hexadecanediol Chemical compound CCCCCCCCCCCCCCC(O)CO BTOOAFQCTJZDRC-UHFFFAOYSA-N 0.000 description 4
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 4
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 4
- 229960003067 cystine Drugs 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- 239000002504 physiological saline solution Substances 0.000 description 4
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 4
- 210000003708 urethra Anatomy 0.000 description 4
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 210000003744 kidney calice Anatomy 0.000 description 3
- 229940031182 nanoparticles iron oxide Drugs 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- SHMWGXIEPCHLGC-UHFFFAOYSA-N (4-ethenylphenyl)-phenylmethanone Chemical compound C1=CC(C=C)=CC=C1C(=O)C1=CC=CC=C1 SHMWGXIEPCHLGC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002614 Polyether block amide Polymers 0.000 description 2
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 2
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 238000010609 cell counting kit-8 assay Methods 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 201000009160 urethral calculus Diseases 0.000 description 2
- GUOSQNAUYHMCRU-UHFFFAOYSA-N 11-Aminoundecanoic acid Chemical compound NCCCCCCCCCCC(O)=O GUOSQNAUYHMCRU-UHFFFAOYSA-N 0.000 description 1
- 206010007027 Calculus urinary Diseases 0.000 description 1
- 241001164374 Calyx Species 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 108010087230 Sincalide Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000007665 chronic toxicity Effects 0.000 description 1
- 231100000160 chronic toxicity Toxicity 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940044631 ferric chloride hexahydrate Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010808 liquid waste Substances 0.000 description 1
- 238000002504 lithotomy Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- ACEONLNNWKIPTM-UHFFFAOYSA-N methyl 2-bromopropanoate Chemical compound COC(=O)C(C)Br ACEONLNNWKIPTM-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/028—Other inorganic materials not covered by A61L31/022 - A61L31/026
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00195—Optical arrangements with eyepieces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
- A61B1/051—Details of CCD assembly
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/225—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/50—Instruments, other than pincettes or toothpicks, for removing foreign bodies from the human body
- A61B17/52—Magnets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/26—Iron; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/04—Drugs for disorders of the urinary system for urolithiasis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00734—Aspects not otherwise provided for battery operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00876—Material properties magnetic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
- A61B2017/22087—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance photodynamic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/12—Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
Definitions
- the present invention relates to a use of a magnetic material in removal of stones, nano-particles, a method for preparing the same, includes a device comprising nano-particles for removal of stones.
- Urinary calculi/stone (urolithiasis) have an incidence as high as 5% -10%, and can be found in any part of kidney, bladder, ureter and urethra, in which stones in kidney and ureter are common. It is found in clinical observation that calcium-containing stones are the most common types of urinary stones, that is, about 70% to 80% of all urinary stones. At present, there are only a few cases of calcium-containing stones which pathological causes have been clearly revealed, while the causes for most of calcium-containing stones are not yet clear. According to chemical composition, stones can be divided into four categories: calcium-containing stones, infection induced stones, uric acid stones and cystine stones.
- Calcium-containing stones can be divided into following types: simple calcium oxalate, calcium oxalate with calcium phosphate, calcium oxalate with a small amount of uric acid; the main components of infection induced stones are ammonium magnesium phosphate and hydroxyapatite; uric acid stones can be divided into following types: uric acid, uric acid amine, or those containing a small amount of calcium oxalate in addition to the above ingredients; cystine stones can be divided into following types: simple cystine, or cystine with a small amount of calcium oxalate.
- Soft/hard ureteroscopic lithotripsy is performed through natural channel of the human body, has the advantages of small trauma and definite lithothriptic effect, and is currently the main treatment means for most of ureteral stones and kidney stones.
- the current soft/hard ureteroscopic lithotripsy also has some deficiencies: 1) upper ureteral stones and fragments of stones in ureter may be easily brought back to kidney by the infused water or the recoil force of lithotripsy tools; 2) there is lack of a fast, safe and effective method to take out residual debris of stones in ureteral lumen and kidney calices.
- JP2009536081A, DE19904569A1, WO2004056275A1, WO2011123274A1 are designed with a net bag) are the most commonly used stone interception and removal tools, which cross over stone and then are opened to form a net so as to prevent the upward drift of stone debris, and at the same time, the stone baskets are also used as stone removal tools to net and take out small stone debris.
- the amount of stone removed by the stone basket every time is limited, so that multiple feeds of ureteroscope are needed, while repeated injection of water and feeds of ureteroscope would increase the risk of residual debris drift; in addition, the stone basket cannot completely seal the ureteral lumen, and there are still a chance that stones escape from the net; moreover, the edges of stones in stone basket may be easily squeezed out from basket holes, and thus may easily scratch the ureter wall when the stones are dragged and removed, thereby causing complications in severe cases.
- CN105283140A describes a kit of a cross-linked gel for encapsulating urethral stones and/or debris of urethral stones.
- a gel-containing magnetic reagent (mock) is added to an aqueous solution containing stones, the cationic polymer is dispersed substantially in the form of dissolving in a solvent rather than aggregates to the periphery of stones due to the principle of similar compatibility, which is not sufficient to magnetize stones and remove stones.
- a first object of the present invention is to provide a use of a magnetic material in removal of stones;
- a second object of the present invention is to provide a magnetic material capable of safely and efficiently removing urinary stones located in the kidney, ureter, etc., wherein the magnetic material is a magnetic nano-material;
- a third object of the present invention is to provide a method for preparing the magnetic material in different morphological structures, wherein the magnetic material is a magnetic nano-material;
- a fourth object of the present invention is to provide a use of the magnetic material in combination with a self-made magnetic probe rod system in a urinary stones surgery, wherein the magnetic material is a magnetic nano-material;
- a fifth object of the present invention is to provide a use of the magnetic material in manufacture of an article for removal of stones in urinary system, wherein the magnetic material is a magnetic nano-material.
- a first aspect of the present invention provides a solution 1, that is, a use of a magnetic material in removal of stones, wherein the magnetic material magnetizes the stones by physical adsorption, chemical bonding or the like, and removes the stones by the action of a non-contact magnetic field.
- the magnetic material comprises the following components: a preparation containing a magnetic metal element or a compound thereof; and materials capable of binding to calcium salt.
- the preparation containing the magnetic metal element or compound thereof and the material capable of binding to calcium salt form a structure that may be a clad structure or a core-shell structure, for example, the materials are completely or partially coated on the surface of the preparation; or form a modified structure in which the materials are bonded to the surface of the preparation by absorption; or form a complex structure in which the preparation and the materials form a physical mixture; or form a composite structure of the aforementioned structures.
- the magnetic material includes carboxyl, amido, amino, mercapto, hydroxyl, carbonyl, ether group, amine group, ester group, carbamate group, carbamido or quaternary amine group, sulfonic acid group, sulfhydryl, phosphine group or conjugate acid or base thereof, epoxy group, chlorine group, sulfate group, phosphinic acid, sulfinic acid, carboxylic anhydride group, hydrosilyl group, amine group and moiety of any combination thereof, aldehyde group, unsaturated double bond, phosphoric acid group, halogen group, N-succinimido, maleimido, ethylenediaminetriacetic acid alkyl group, polyethylene glycol, polyamino acid or glycan, preferably carboxyl, amido, mercapto, carbamate group, carbamido, sulfonic acid group, phosphino conjugate
- the magnetic material is in the shape of bar, line, band, sheet, tube, pomegranate, cube, three-dimensional flower, petal, chestnut, four-pointed star, shuttle, rice grain, sea urchin, chain ball, rugby ball, string of beads, snowflake, ellipsoid, sphere, regular tetrahedron, regular hexahedron, regular octahedron, quasi-sphere, popcorn, cross, strip, rod, cone, disc, branch, web, simple cubic, body-centered cubic, face-centered cubic, simple tetragon, body-centered tetragon, simple orthogon body-centered orthogon, single-face-centered orthogon, multi-shell, laminar, preferably the shape of sphere, quasi-sphere, pomegranate, chestnut, sea urchin, chain ball, string of beads.
- the magnetic material includes a magnetic fluid, a magnetic liposome, a magnetic microcapsule, a magnetic microsphere, a magnetic emulsion, a magnetic nanoparticle, a magnetic nanotube, a magnetic nanowire, a magnetic nanorod, a magnetic nanoribbons, preferably a magnetic fluid, a magnetic liposome, a magnetic microsphere, a magnetic nanotube.
- the type of the magnetic liposome includes a single layer, a multi-layer, a multi-vesicle, and the preparation method of the magnetic liposome includes preferably a film dispersion method and an ultrasonic dispersion method.
- the magnetic fluid is a stable suspension liquid composed of magnetic particles, a carrier liquid (mineral oil, silicone oil, etc.) and a surfactant
- the magnetic particles that can be used for removal of stones comprise magnetic nanoparticles which surface is modified with the functional group according to the embodiment 7, and also comprise a surfactant with the functional group as described in the embodiment 7.
- the preparation method for the magnetic fluid includes a chemical co-precipitation method, a sol-gel method, a hydrothermal synthesis method, a microemulsion method, a phase transfer method, preferably a co-precipitation method, a sol-gel method, a hydrothermal synthesis method.
- the preparation method for the magnetic microsphere includes an emulsion volatilization method, a solvent replacement method and a salting-out method.
- the magnetic nanotube comprises a magnetic nanotube in which a magnetic material is filled in the tube and also a magnetic nanotube in which a magnetic material covers outside the tube, the surface of which has the functional group described in the embodiment 7, and the functional group may be derived from the magnetic material covered on surface or from the nanotube itself.
- the preparation method for the magnetic nanotube includes a chemical vapor deposition method, a co-precipitation method, a dip-pyrolysis method, an electroless plating method and a self-assembly method, and the preferred method is a co-precipitation method.
- the magnetic nanoparticle is surface-modified or covered with the functional group as described in the embodiment 7.
- the magnetic material constitutes a nanoparticle core
- the nanoparticle core is modified in-situ with a surface modifier monomer by using an initiator and/or a crosslinking agent to form a nanoparticle shell.
- the nanoparticle core has a diameter of 2-50 nm, and a weight percentage of 30-95% relative to the whole weight of the nanoparticle, and its magnetic material includes a compound of Fe 3+ , Fe 2+ , Mn 2+ or Ni 2+ , or a metal element selected from iron, nickel, copper, cobalt, platinum, gold, europium, gadolinium, dysprosium, terbium, or a composite or oxide of the aforementioned metals, or any one of the above items or a combination of two or more of the above items, preferably a compound of Fe 3+ , Fe 2+ , Mn 2+ or Ni 2+ , more preferably Fe 3+ and Fe 2+ in a ratio of 15% to 85%, preferably 1:2.5 to 1.5:1.
- the surface modifier includes a hydrophilic surface modifier with function response, a hydrophobic surface modifier with function response, a photosensitive surface modifier with function response, a thermosensitive surface modifier with function response or a pH sensitive surface modifier with function response
- the hydrophilic surface modifier includes acrylic acid, methacrylic acid, isobutyl acrylamide or poly N-substituted isopropylacrylamide
- the hydrophobic surface modifier includes olefins, preferably polystyrene, polyethylene or oleic acid
- the photosensitive surface modifier is selected from the group consisting of azos and quinolines and benzophenones (PVBP), preferably ethylene benzophenone
- the thermosensitive surface modifier is selected from the group consisting of amphiphilic polymers with amide bond, preferably polyacrylamide or poly N-substituted isopropylacrylamide
- the pH-sensitive surface modifier is selected from the group consisting of polymers with carboxyl group
- crosslinking agent includes 3-(methacryloyloxy)propyltriethoxysilane, divinylbenzene, diisocyanate or N,N-methylenebisacrylamide
- the initiator includes 3-chloropropionic acid, CuCl, 4,4′-dinonyl-2,2-bipyridine or potassium persulfate.
- nanoparticle by in situ linking the surface modifier monomer to the nanoparticle core by the initiator and/or crosslinking agent to form the nanoparticle shell.
- the magnetic material includes a compound of Fe 3+ , Fe 2+ , Mn 2+ or Ni 2+ , or a metal element selected from iron, nickel, copper, cobalt, platinum, gold, europium, gadolinium, dysprosium, terbium, or a composite or oxide of the aforementioned metals, or any one of the above items or a combination of two or more of the above items, preferably Fe 3 O 4 , MnFe 2 O 4 , ⁇ -Fe 2 O 3 or other nanoscale-sized ferrite particles, more preferably FeCl 3 .6H 2 O and FeCl 2 .4H 2 O in a molar ratio of 15% to 85%, preferably 1:2.5 to 1.5:1, and is prepared by the following steps:
- a catalyst at a room temperature of 10-40° C., preferably 30° C. to adjust the pH to 7-12, preferably 10;
- the method for adding aqueous ammonia is a continuous dropping method with assistance of an electronic pump at a speed of 20-100 drops/minute, preferably 40-60 drops/minute; and when the magnetic material is a liquid monomer material, the liquid monomer is added dropwise in continuous manner with assistance of an electronic pump, and the reaction agitation is at a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute.
- a photosensitive monomer such as ethylene benzophenone, a thermosensitive monomer such as N-isopropylacrylamide, or a pH-sensitive monomer such as dimethylaminopropyl methacrylate or a blend monomer of acrylic acid and styrene, keeping reaction at 40-80° C. for 1 h, preferably at a reaction temperature of 70° C.; and separating with a magnet, washing and drying to obtain a photosensitive, thermosensitive or pH sensitive functional monomer-modified magnetic nanoparticles, respectively.
- a photosensitive monomer such as ethylene benzophenone
- a thermosensitive monomer such as N-isopropylacrylamide
- a pH-sensitive monomer such as dimethylaminopropyl methacrylate or a blend monomer of acrylic acid and styrene
- a second aspect of the present invention provides a nanoparticle comprising a nanoparticle core comprised of the magnetic material; and a nanoparticle shell formed by linking a surface modifier monomer to the nanoparticle core via an initiator and/or a crosslinking agent.
- the nanoparticle surrounds a stone via physical adsorption, chemical bonding, as well as photosensitive crosslinking, thermosensitive crosslinking and pH-sensitive crosslinking, specifically, the forces for binding and surrounding interactions between the nanoparticle and stone include: van der Waals forces that form surrounding interactions, hydrophobic interactions, adsorption and surface deposition; covalent bonds formed between carboxyl-stone, including hydrogen bonds, ester bonds, amide bonds, and other covalent bonds; physical entanglement and chemical crosslinking between chains.
- the nanoparticle core has a diameter of 2-50 nm, and a weight percentage of 30-95% relative to the whole weight of the nanoparticle
- the magnetic material constituting the core includes a compound of Fe 3+ , Fe 2+ , Mn 2+ or Ni 2+ , or a metal element selected from iron, nickel, copper, cobalt, platinum, gold, europium, gadolinium, dysprosium, terbium, or a composite or oxide of the aforementioned metals, or any one of the above items or a combination of two or more of the above items, preferably one or a combination of two or more of Fe 3+ , Fe 2+ , Mn 2+ or Ni 2+ , more preferably Fe 3+ and Fe 2+ in a ratio of 15% to 85%, preferably 1:2.5 to 1.5:1.
- the preparation method of the nanoparticle used in the present invention can well control the size of the magnetic nanoparticle core, especially in comparison with the nanoparticles prepared by other methods, among the parameters of the nanoparticles obtained in the present invention, the dispersibility of nanoparticles relative to biomedical applications is very good and less than 1.1.
- the surface modifier includes a hydrophilic surface modifier with function response, a hydrophobic surface modifier with function response, a photosensitive surface modifier with function response, a thermosensitive surface modifier with function response or a pH sensitive surface modifier with function response
- the hydrophilic surface modifier includes acrylic acid, methacrylic acid, isobutyl acrylamide or poly N-substituted isopropylacrylamide
- the hydrophobic surface modifier includes olefins, preferably polystyrene, polyethylene or oleic acid
- the photosensitive surface modifier is selected from the group consisting of azos and quinolines and benzophenones (PVBP), preferably ethylene benzophenone
- the thermosensitive surface modifier is selected from amphiphilic polymers with amide bond, preferably polyacrylamide or poly N-substituted isopropylacrylamide
- the pH-sensitive surface modifier is selected from the group consisting of polymers with carboxyl group and quaternary ammonium salt, preferably
- the crosslinking agent includes 3-(methacryloyloxy)propyltriethoxysilane, divinylbenzene, diisocyanate or N,N-methylenebisamide, and the initiator includes 3-chloropropionic acid, CuCl, 4,4′-dinonyl-2,2-bipyridine or potassium persulfate.
- the third aspect of the invention provides a method of preparing the nanoparticle, comprising the steps of: a) preparing the nanoparticle core using the magnetic material; and b) forming the nanoparticle shell by in situ linking the surface modifier monomer to the nanoparticle core by the initiator and/or crosslinking agent to form a nanoparticle shell.
- in situ means that the surface modifier is directly attached to the surface of the nanoparticle core.
- the resulting modified nanoparticle has a size between 50 nm and 5000 nm, which varies according to different conditions.
- the nanoparticle core is composed of Fe 3 O 4 , MnFe 2 O 4 , ⁇ -Fe 2 O 3 , or other nanoscale-sized ferrite particles, and these ferrite particles are prepared by the following steps:
- the oxygen-containing metal salt is FeCl 3 .6H 2 O and FeCl 2 .4H 2 O, which are dissolved in water in a molar ratio of 15% to 85%, preferably 1:2.5 to 1.5:1, wherein the catalyst is ammonia.
- Fe 3 O 4 nanoparticles can be obtained by following the above steps.
- the step b) includes dispersing the prepared nanoparticles in an aqueous solution, adding with an xylene solution of 3-chloropropionic acid, polystyrene, CuCl and 4,4′-dinonyl-2,2-bipyridine, wherein the molar ratio between the solution of iron particles and the reaction solution is 1:1; reacting the mixture for 15-30 hours, preferably 24 hours, at 130° C. under continuous agitation; and collecting the nanoparticles with a magnet, washing with repeatedly with toluene to obtain hydrophobic polystyrene-coated magnetic iron oxide nanoparticles.
- the step b) includes dissolving and dispersing the resulting nanoparticle core into xylene, adding with a silane coupling agent, wherein the silane coupling agent, wherein the nanoparticles, xylene and silane coupling agent are added in a ratio of 95:5; reacting under the protection of nitrogen atmosphere at 20-100° C., preferably at 80° C., for 2-5 hours, preferably for 3 hours; washing with an alcoholic solvent (preferably absolute ethanol) and drying for 12 hours, dispersing in an aqueous solution under ultrasonic condition, adding with potassium persulfate; reacting under nitrogen protection, 40-80° C. for 10 minutes, adding with acrylic acid to continue reaction at 40-80° C. for 1 hour, wherein the reaction temperature is preferably 70° C.; and separating with a magnet, washing and drying to obtain the polyacrylic acid-modified hydrophilic nanoparticles.
- a silane coupling agent wherein the silane coupling agent, wherein the nanoparticles,
- the above step b includes: dissolving and dispersing Fe 3 O 4 nanoparticles into xylene, and adding with a silane coupling agent, wherein the silane coupling agent (the ratio of the added Fe 3 O 4 nanoparticles and the silane coupling agent is 95:5); reacting under protection of nitrogen atmosphere at 80° C. for 2-5 hours, preferably for 3 hours; washing with an alcoholic solvent (preferably absolute ethanol) and drying for 12 hours, dispersing in an aqueous solution under ultrasonic condition, adding with potassium persulfate; reacting under nitrogen protection at 40-80° C.
- a silane coupling agent the ratio of the added Fe 3 O 4 nanoparticles and the silane coupling agent is 95:5
- an alcoholic solvent preferably absolute ethanol
- a photosensitive monomer such as vinyl benzophenone, a thermosensitive monomer such as N-isopropylacrylamide, or a pH-sensitive monomer such as dimethylaminopropyl methacrylate, etc. (or a blended monomer of acrylic acid and styrene), reacting continuously for 1 hour at 40-80, preferably at 70; and separating with a magnet, washing and drying to obtain the photosensitive, thermosensitive or pH sensitive functional monomer-modified magnetic nanoparticles, respectively.
- a photosensitive monomer such as vinyl benzophenone, a thermosensitive monomer such as N-isopropylacrylamide, or a pH-sensitive monomer such as dimethylaminopropyl methacrylate, etc.
- the photosensitive monomer modification based on the hydrophilic surface modification includes: dissolving and dispersing the polyacrylic acid-modified magnetic nanoparticles in an alcoholic solvent, dispersing for 5-30 minutes under ultrasonic condition, then adding an initiator and a photosensitive monomer polyvinylbenzophenone, refluxing and reacting at agitation and 130° C. for 24 hours under condition that oxygen is kept out to prepare the photosensitive monomer-modified magnetic nanoparticles.
- the method for dropping aqueous ammonia is performed in a continuous and dropwise manner with assistance of an electronic pump at a speed of 20-100 drops/minute, preferably 40-60 drops/minute; and when the magnetic material is an element material, the liquid monomer is added in a dropwise and continuous manner with assistance of an electronic pump, and the reaction is carried out under agitation with a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute.
- the particle size, distribution and morphology (such as shape of sphere, rod, diamond, etc.) of the obtained magnetic nanoparticle core can be relatively easily controlled under the synthetic methods and preparation conditions as we designed above.
- the surface-modified magnetic nanoparticles prepared by the above method have particle size and distribution superior to those of magnetic nanoparticles obtained by conventional preparation methods.
- the dispersibility index (PD.I.) of the obtained nanoparticles is basically close to 1.0, which clearly shows that the particle size distribution of the obtained particles is narrow. This is very important because, for in vivo biomedical applications, the size and dispersion of nanoparticles determine the breadth of their medical applications.
- the PD.I described herein for describing the dispersibility of nanoparticles is defined as follows:
- Rh hydrodynamic radius of particle
- the nanoparticle core and the surface-modified magnetic nanoparticle have distribution PD.I. as shown in the following table:
- Magnetic nanoparticle core After surface modification Diameter/nm 40-50 80-100 PD.I./a.u. 0.005 0.0055
- a device for removal of stone which can be used in the urinary system and consists of a magnetic nanoparticle in combination with a stone-removal magnetic probe rod system.
- the device for removal of stone comprises the above-mentioned nanoparticles of the present invention and an auxiliary stone-removal magnetic probe rod system.
- the device for removal of stone can be used for removing a stone in urinary system such as kidney stone, ureteral stone and bladder stone, etc., as well as removing a stone in human biliary system and a stone-like particle in other organs.
- the stone-removal magnetic probe rod system comprises a handle, a flexible rod, a magnetic field source, a magnetically permeable material section, etc.
- the handle may be provided with an AC or DC power supply, a power switch, a DC battery compartment and an AC plug
- the flexible rod is made of a polymer material including, for example, PU, TPU, PE, PVC, NYLON, PEBAX and silicone rubber and the modified materials of the above materials
- the magnetic field source made of a permanent magnet or electromagnet can be embedded in the flexible rod, and optionally a high performance magnetically permeable material is connected to the magnetic field source to form the flexible probe rod with different configurations, for example, the permanent magnet is placed in the middle or back end of the flexible rod, and the magnetically permeable material is placed in the distal end of the flexible rod, so that such configuration is more conducive to the treatment of renal stones under ureteroscope to avoid the situation that the distal end of the flexible rod becomes rigid due to the rigid structure of the permanent magnet or
- the invention provides a novel preparation process for synthesizing hydrophilic, hydrophobic, thermosensitive and pH-sensitive as well as photosensitive magnetic nanoparticles, which has the advantages of simple preparation process, good repeatability and convenient application.
- the stones are surrounded; and the thermosensitive and pH-sensitive nanoparticles can surround stones through physically surrounding action in ureter; thereby, small stone remaining in body can be removed quickly without damage from the body under the action of an externally applied magnetic field, that is, the stone can be drawn and moved without injuring ureteral wall, and meanwhile the nanoparticles are placed conveniently without shift.
- FIG. 1 shows the transmission electron microscope (TEM) images and the particle size distribution diagrams under dynamic light scattering for the cores with different morphologies obtained in Example 1 of the present invention.
- TEM transmission electron microscope
- FIG. 2 shows the particle size distribution diagram under dynamic light scattering for the monomer-modified nanoparticles obtained in Example 4 of the present invention; and TEM images of the monomer-modified nanoparticles obtained in Example 3 of the present invention.
- FIG. 3 shows the hysteresis curves of the monomer-modified nanoparticle cores with different Fe 3+ /Fe 2+ ratios in the synthesis of the nanoparticles obtained in Example 3 of the present invention.
- FIG. 4 shows the graphs of stone separation for the photosensitive monomer-modified nanoparticle cores obtained in Example 4 of the present invention, and the graphs of separation performance for the nanoparticle cores synthesized with different Fe 3+ /Fe 2+ ratios and modified with functional monomer.
- FIG. 5 shows a graph of biocompatibilitv to 293t cells for the functional magnetic nanoparticles obtained in Example 4 of the present invention.
- FIG. 6 shows a graph of stone separation with in vitro assistance for the nanoparticles obtained in Example 6 of the present invention.
- FIG. 7 shows a graph of safety evaluation in body of animals for the nanoparticles of the present invention.
- FIG. 8 shows an overall schematic diagram of the magnetic probe rod system for assisting stone removal in the present invention.
- FIG. 9 shows a schematic view of the handle portion of the magnetic probe rod system for assisting stone removal in the present invention.
- FIG. 10 shows a schematic view of the magnetic probe rod system with an AC power supply for assisting stone removal according to the present invention.
- FIG. 11 shows a schematic view of the internal structure of the magnetic probe rod system using an electromagnet as magnetic field source according to the present invention.
- FIG. 12 shows a schematic view of the magnetic probe rod system of the present invention which uses an electromagnet as magnetic field source and a magnetically permeable material section at distal end.
- FIG. 13 shows a schematic view of the magnetic probe rod system of the present invention which uses a permanent magnet as magnetic field source and a magnetically permeable material section at distal end.
- FIG. 14 shows a schematic view of the magnetic probe rod system of the present invention which uses a permanent magnet as magnetic field source and has not a magnetically permeable material section at distal end.
- FIG. 15 shows a diagram of the principle of interaction between magnetic particles and stones.
- FIG. 16 shows a diagram of agitation of the reaction system in steps 2-4) of the method for preparing the nanoparticles of the present invention, which uses a magnetic stirrer at a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute.
- FIG. 17 shows a diagram of the steps 1-4) of the method for preparing the nanoparticles according to the present invention, in which aqueous ammonia and liquid monomer are added dropwise continuously and uniformly by an electronic pump at a rate of 20-100 drops/minute, preferably 40-60 drops/minute.
- FIG. 18 shows a diagram of comparison of stone removal performance for the different methods.
- FIG. 19 shows a diagram of in vivo stone removal performance for two mimic situations.
- the present invention provides a magnetic nano-material capable of safely and efficiently removing stones in urinary system, in which the magnetic nano-material is a functional magnetic nanoparticle comprising, for example, hydrophilic, hydrophobic, photosensitive, thermosensitive, pH-sensitive magnetic nanoparticles, which morphology can be spherical, rod-shaped and the like, which structure can be of core-shell structure consisting of a magnetic core and a monomer modifier such as hydrophilic, hydrophobic, temperature sensitive, pH-sensitive or photosensitive surface modifiers as well as a small amount of initiator; in which the hydrophilic surface modifier forms a hydrophilic shell by polymerization to surround the magnetic nanoparticle core, including the hydrophilic materials with positive charges, negative charges and electricity neutrality; the hydrophobic surface modification is carried out by a poor water-soluble polymer or inorganic material
- the materials for synthesizing magnetic nanoparticle cores comprise Fe 3+ , Fe 2+ and Mn 2+ , Ni 2+ compounds, as well as metal elements such as iron (Fe), nickel (Ni), copper (Cu), cobalt (Co), platinum (Pt), gold (Au), europium (Eu), gadolinium (Gd), dysprosium (Dy), terbium (Tb), or composites and oxides of the metals, such as Fe 3 O 4 or MnFe 2 O 4 , preferably iron, manganese or their compounds; also preferably, any one of them or any combination of two or more of them may be used; and the core has a size of 2-50 nm.
- metal elements such as iron (Fe), nickel (Ni), copper (Cu), cobalt (Co), platinum (Pt), gold (Au), europium (Eu), gadolinium (Gd), dysprosium (Dy), terbium (Tb), or composites and oxides of the metals, such
- the preparation method of the magnetic nanoparticle core includes co-precipitation methods, emulsion methods, redox reaction or high-temperature high-pressure methods.
- the weight percentage of the magnetic nanoparticle core accounts for 30% to 95% relative to the total weight of the functional magnetic nanoparticle, taking the synthesis of Fe 3 O 4 as example, the ratio of Fe 2+ to Fe 2+ is 15% to 85%, preferably 1:2.5 to 1.5:1 for Fe 3+ and Fe 2+ .
- the surface of the magnetic nanoparticle can be subjected to functional modification, such as hydrophilic modification, hydrophobic modification, and modification with photosensitive, thermosensitive and pH-sensitive materials.
- a hydrophilically modified functional particle wherein the core size is 2-50 nm, the magnetic nano-core has a weight of 30-95% relative to the total nanoparticle;
- the hydrophilic surface modifier is a polycationic or an anionic polymer, such as acrylic acid, methacrylic acid and isobutyl acrylamide, etc., which weight percentage is 2-8% relative to the whole phydrophobic magnetic nanoparticle.
- the magnetic core particle is attached on its surface with an initiator such as 3-chloropropionic acid or the like, then a polymer based on acrylic acid, methacrylic acid and isobutyl acrylamide or the like is modified on the particle surface with a crosslinking agent by a chemical reaction, such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the shape of the particle may be spherical, rod-shaped and layered, preferably spherical particles.
- the crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- a hydrophobically modified functional particle wherein the core has a size of 2-50 nm, the magnetic nano-core is 30-95% by weight relative to the whole nanoparticle;
- the hydrophobic surface modifier is an water insoluble monomer, such as olefins, for example, polystyrene and the like, which weight percentage is 2-8% by weight relative to the whole hydrophobic magnetic nanoparticle.
- the magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a hydrophobic polymer based on styrenes is modified on the particle surface by a crosslinking agent via a chemical reaction such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the morphology of the particle may be spherical, rod-shaped and layered, preferably spherical particle.
- the crosslinking agent is 3-(methacryloyloxy) propyl triethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- a photosensitive surface-modified functional particle wherein the core has a size of 2-50 nm, and the magnetic core is 30-95% by weight relative to the whole nanoparticle;
- the photosensitive modifier is selected from the group consisting of azos and quinolines as well as benzophenones (PVBP), etc., which weight percentage is 2-8% relative to the whole hydrophobic magnetic nanoparticle.
- the magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a photosensitive polymer based on benzophenone (PVBP) and the like is modified to the surface of the particle by a crosslinking agent via a chemical reaction such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the morphology of the particle may be spherical, rod-shaped and layered, preferably spherical particle.
- the crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- thermosensitive surface-modified functional particle wherein the size of the core is 2-50 nm, and the magnetic nano-core is 30-95% by weight relative to the whole nanoparticle;
- the thermosensitive surface modifier is selected from the group consisting of amphiphilic polymers carrying amide bonds, such as polyacrylamide, poly N-substituted isopropylacrylamide, etc., which weight percentage is 2-8% relative to the whole hydrophobic magnetic nanoparticle.
- the magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a thermosensitive polymer such as poly N-substituted isopropylacrylamide is modified to the surface of the particle by a crosslinking agent via a chemical reaction such as radical, ring-opening assembly and atom transfer radical polymerization (ATRP); the shape of the particle may be spherical, rod-shaped and layered, preferably spherical particle.
- the crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- a pH-sensitive surface-modified functional particle wherein the core has a diameter of 2 to 50 nm, the magnetic nano-core is 30 to 95% by weight relative to the whole nanoparticle; the pH-sensitive surface modifier is selected from the group consisting of polymers carrying carboxyl groups and quaternary ammonium salt groups, such as polyacrylic acid, dimethylaminoethyl ester and dimethylaminopropyl methacrylate, etc., which weight percentage is 2-8% relative to the whole hydrophobic magnetic nanoparticle.
- the magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a pH-sensitive polymer based on dimethylaminoethyl methacrylate and dimethylaminopropyl methacrylate or the like is modified to the surface of the particle by a crosslinking agent via a chemical reaction such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the shape of the particle may be spherical, rod-shaped and layered, preferably spherical particle.
- the crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- an initiator and/or a crosslinking agent are further included.
- the initiator includes thermal initiators, for example, potassium persulfate, ammonium persulfate and azo type initiators;
- the crosslinking agent includes 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA), molecular weight is 100,000, and oleic acid, etc.
- a preparation method for a nanoparticle obtained from a magnetic material generally includes two main steps: synthesis of a magnetic nanoparticle core (the magnetic material constitutes the nanoparticle core), and various surface modifications based on the magnetic nanoparticle core (hydrophilic, hydrophobic and thermosensitive, photosensitive and pH-sensitive modification). Taking the preparation of magnetic Fe 3 O 4 nanoparticles as an example, the two steps of the preparation method are respectively described in detail.
- FeCl 3 .6H 2 O and FeCl 2 .4H 2 O in a certain molar ratio are dissolved in 100 mL of water, fed with nitrogen gas to expel oxygen in the solution, added with aqueous ammonia at a room temperature of 20-30° C. to adjust the pH value of 8-12, preferably 10, and kept agitation and reaction for 20-40 minutes; then under a 50-100 , preferably 70 water bath, the reaction is carried out for 20-40 minutes, and then Fe 3 O 4 nanoparticles are obtained by separation with a magnet and drying.
- preparation methods such as co-precipitation method, thermal decomposition method, hydrothermal synthesis method, microemulsion method (reverse micelle method) and the like.
- the Fe 3 O 4 nanoparticle core prepared in the step 1) is dispersed into an aqueous solution, added with an initiator 3-chloropropionic acid and pre-treated for 12 hours, then added with an xylene solution of a hydrophobic surface-modifying monomer polystyrene and an active initiator CuCl and 4,4′-dinonyl-2,2-dipyridine (the molar ratio of the iron particle solution and the reaction solution is 1:1), and the mixture solution is reacted under continuous agitation at 130° C. for 15-30 hours, preferably 24 hours; the resulting nanoparticles are collected with a magnet and washed repeatedly with toluene to obtain the hydrophobic polystyrene-coated magnetic iron oxide nanoparticles.
- the reaction time is preferably 18 to 30 hours, preferably 24 hours.
- the solvent is toluene or xylene in an amount of 1 ⁇ 2 to 1 of the monomer volume, the mass ratio of the surface-modified polystyrene magnetic nanoparticles, the initiator and the monomer is 95:0.5:4.5.
- the Fe 3 O 4 nanoparticle core obtained in the above step 1) is dissolved and dispersed into xylene, added with a silane coupling agent (the addition ratio of Fe 3 O 4 nanoparticles and the silane coupling agent is 95:5), and reacted at 80° C. under nitrogen protection for 2-5 hours, preferably 3 hours; then washed with an alcoholic solvent (preferably absolute ethanol) and dried for 12 h, dispersed in an aqueous solution under ultrasonic condition, added with potassium persulfate; reacted under nitrogen protection at 40-80° C. for 10 minutes, then added with acrylic acid and reacted continuously at 40-80° C. for 1 hour, preferably reacted at a reaction temperature of 70° C.; separated by a magnet, washed and dried to obtain polyacrylic acid-modified, hydrophilic surface-modified magnetic nanoparticles.
- a silane coupling agent the addition ratio of Fe 3 O 4 nanoparticles and the silane coupling agent is 95:5
- the silane coupling agent is 3-(methacryloyloxy)propyl triethoxysilane (MPS) in an amount of 8 to 16 times the mass of acrylic acid; the solvent is benzene or 2-toluene; potassium persulfate is used as initiator; the reaction time is preferably 20 minutes to 80 minutes.
- the mass ratio of the surface-modified magnetic Fe 3 O 4 nanoparticles, the potassium persulfate and the acrylic acid monomer is 25-100:1:100.
- the alcoholic solvent here is methanol, ethanol or butanol, preferably ethanol
- the reaction temperature is preferably 100° C. to 150° C.
- the reaction time is preferably 18 hours to 24 hours
- the mass ratio of the photosensitive monomer-modified magnetic nanoparticles, the potassium sulfate and the vinylbenzophenone monomer is 25-100:1:100.
- the Fe 3 O 4 nanoparticle core as prepared in the above step 1) is dissolved and dispersed into xylene, added with a silane coupling agent (the addition ratio of the Fe 3 O 4 nanoparticles and the silane coupling agent is 95:5), reacted under nitrogen protection at 80° C. for 2-5 hours, preferably 3 hours, then washed with an alcoholic solvent (preferably absolute ethanol) and dried for 12 hours, dispersed into an aqueous solution under ultrasonic condition, added with potassium persulfate; reacted under nitrogen protection at 40-80° C.
- a silane coupling agent the addition ratio of the Fe 3 O 4 nanoparticles and the silane coupling agent is 95:5
- the functionally modified nanoparticles here may also be obtained by a cross-reaction with steps 2.1 and 2.2) and step 3) after pre-modification of the surface of the nanoparticle in the steps 2.1 and 2.2). That is, after the modification of 3-chloropropionic acid in step 2.1 (or the modification of silane coupling agent in step 2.2), the hydrophobic monomer styrene (or hydrophilic monomer acrylic acid) and the functional monomer such as vinyl benzophenone, N-substituted isopropylacrylamide or dimethylaminoethyl methacrylate and the like are added at the same time, and reacted at 40-80° C.
- the silane coupling agent is 3-(methacryloyloxy)propyl triethoxysilane (MPS) in an amount of 8 to 16 times the mass of acrylic acid; the solvent is benzene or 2-toluele in an amount of 8 to 16 times the mass of acrylic acid; potassium persulfate is used as initiator; the reaction time is preferably 20 minutes to 80 minutes.
- the mass ratio of the surface-modified magnetic Fe 3 O 4 nanoparticles, the potassium persulfate and the acrylic acid monomer is 25-100:1:100.
- the alcoholic solvent here is methanol, ethanol or butanol, preferably ethanol
- the reaction temperature is preferably 100° C. to 150° C.
- the reaction time is preferably 18 hours to 24 hours.
- the mass ratio of the functional monomer-modified magnetic nanoparticles, the potassium persulfate and the functional monomer is 25-100:1:100.
- the Fe 3 O 4 nanoparticles are nanoscale ferroferric oxide particles (Fe 3 O 4 ), MnFe 2 O 4 , nanoscale ferric oxide particles ( ⁇ -Fe 2 O 3 ) or other nanoscale ferrite particles
- the aqueous ammonia is used as catalyst
- the reaction pH is preferably 9 to 10
- the reaction time is preferably 20 to 30 minutes
- the reaction temperature is between 50-100° C., preferably 70-80° C.
- the preferred ratio of Fe 3+ :Fe 2+ is 15% to 85%, preferably 1.5:1 to 1:2.5.
- the nanoparticle core is nanoscale ferroferric oxide particles (Fe 3 O 4 ).
- Fe 3 O 4 nanoscale ferroferric oxide particles
- MnFe 2 O 4 nanoscale ferric oxide particles
- ⁇ -Fe 2 O 3 nanoscale ferric oxide particles
- the aqueous ammonia is used as catalyst, the reaction pH is preferably 9 to 10, the reaction time is preferably 20-30 minutes, the reaction temperature is between 50-100° C., preferably 70-80° C.
- the preferred ratio of Fe 3+ :Fe 2+ is 15% to 85%, preferably 1:2.5 to 1.5:1.
- the agitation in the above reaction system is performed by a magnetic stirrer at a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute.
- the aqueous ammonia and the liquid monomer are added dropwise continuously and uniformly by an electronic pump at a rate of 20-100 drops/minute, preferably 40-60 drops/minute.
- an electronic pump for continuous and uniform dripping, large-scale production can be easily achieved, and the dispersibility and uniformity of nanoparticles can be well controlled.
- a magnetic probe rod system for assisting the removal of stone in urinary system.
- the magnetic probe rod system comprises a handle 1 , a flexible rod 2 , a magnetic field source 3 and a magnetically permeable material section 4 (in the present invention, the side of the handle is defined as the proximal end of the instrument, and the end of the magnetic field source is defined as the distal end).
- a switch 11 can be integrated into the handle 1 , and the magnetic field power supply can be selected from DC battery, and a battery compartment 12 a and a battery cover 13 a are provided accordingly; when an AC power is selected as the magnetic field power supply, an AC power plug 12 b is provided on the handle correspondingly.
- the magnetic field source 3 is composed of an electromagnet core 32 a and an electromagnetic coil 33 a, and externally provided with a magnetic field source encapsulation membrane 31 a made by biocompatible material; when the magnetic field source 3 is a permanent magnet, the magnetic field source 3 is composed of the permanent magnet 32 b and the magnetic field source encapsulation membrane 31 b on its surface; in order to ensure the accessibility of the present invention in human body, a magnetically permeable material section 4 can be optionally disposed at the distal end of the magnetic field source 3 , that is, when the electromagnet is used as the magnetic field source, the magnetically permeable material section 4 a can be optionally disposed at the distal end of the electromagnet 3 a, and the magnetically permeable material section is composed of a highly magnetically permeable material 42 a and a magnetically permeable material encapsulating membrane 41 a, in which the highly magnetically permeable material 42 a can be made of an iron-based
- the present invention provides a use of a magnetic nanoparticle in manufacture of an article, in which the magnetic nanoparticle is further processed to form a stone-removing solution (using physiological saline, buffer as solvent) or a stone-removing powder, preferably a stone-removing solution, which is used as a medical clinical article.
- a stone-removing solution using physiological saline, buffer as solvent
- a stone-removing powder preferably a stone-removing solution
- the basic principle of the high performance system for removing a stone in urinary system which consists of the functional magnetic nanoparticle composed of the magnetic material and the magnetic probe rod as shown, is achieved by the following steps; 1) pulverization of stones in vivo; 2) injection of the functional magnetic nanoparticles, the magnetic nanoparticles having excellent dispersibility (dispersibility and dispersion coefficient are related, the smaller the dispersion coefficient, the better the dispersibility); 3) interaction between the functional magnetic nanoparticles and the stones; 4) surrounding the stones with the functional magnetic nanoparticles: 5) physical or chemical crosslinking of the magnetic nanoparticles on the surface of the stones; 6) removal of the magnetized stones under the guidance of an external magnetic field.
- the stones are surrounded and magnetized by the magnetic nanoparticles via physical adsorption, chemical bonding and the like.
- the physical adsorption mainly refers to an attraction generated by van der Waal's force and hydrophobic interaction within the range of action between hydrophobic magnetic particles—particles and between particles—stones, so that the surface of the stones are adsorbed and surrounded by the magnetic particles;
- the chemical bonding mainly refers to the interaction between the hydrophilic magnetic nanoparticles—particles and between particles—stones mainly through the formation of chemical bonds (chemical bonds, such as hydrogen bonds, covalent bonds, etc., between carboxyl on the surface of the particles and the stones), so that the surface of the stones is surrounded with the magnetic particles;
- the chemical bonding includes: the functional magnetic nanoparticles (such as photosensitive, thermosensitive nanoparticles, etc.) firstly act on the stones via physical adsorption, and then further enhance the mutual forces between particles—particles and particles—stones via photosensitive crosslinking,
- the suspension of the synthesized Fe 3 O 4 magnetic particles was poured into a 50 ml centrifuge tube, a powerful magnet was used to attract the magnetic particles, liquid waste was discarded, deionized water was added, the magnetic particles were re-suspended under ultrasonic, so repeatedly to wash away excess ammonia until pH showed neutral.
- the collected magnetic particles were placed in an oven at 65° C. to be dried and dewatered.
- the synthesized magnetic particles were weighed, and 1.0 ml suspension of 0.02 mg/ml magnetic particles was formulated for measurement of particle size.
- a total of 1.5 ml of 0.02M sodium oleate solution was added dropwise to 1.0 ml suspension of 0.2 mg/ml magnetic particles, reacted at 70 ⁇ under nitrogen and vigorous agitation for 30 minutes, and then cooled to room temperature. Excess sodium oleate was removed by dialysis using 12 KD dialysis membrane. Thus, 1.0 ml of 0.02 mg/ml sodium oleate-encapsulated Fe 3 O 4 solution was formulated, and its particle size was measured.
- the black product obtained by centrifugation was redissolved in n-hexane containing 50 ⁇ L of oleic acid and 50 ⁇ L of oleylamine, centrifuged at 600 rpm for 10 minutes to remove insoluble residues.
- the resulting 4 nm Fe 3 O 4 product was precipitated with ethanol, centrifuged at 600 rpm for 10 minutes to remove solvent and then redispersed into n-hexane.
- the following different methods were used respectively to synthesize surface-functionalized nanoparticles with different sizes.
- MnFe 2 O 4 nanoparticles with an average particle size of 9 nm were added to an aqueous solution/3-chloropropionic acid solution with a concentration of 1.0 mol/L initiator, the solution was adjusted to pH of 4 with hydrochloric acid, and stirred overnight.
- the nanoparticles were collected with a magnet, washed with water for several times to remove excess 3-chloropropionic acid.
- 0.22 g of dried nanoparticles were added to 8 mL of polystyrene solution under continuous feeding of nitrogen gas, followed by the addition of 4 mL of an xylene solution of 0.3 mmol of CuCl and 1.1 mmol of 4,4′-dinonyl-2.2-dipyridine. The above mixture reacted at 130° C. for 24 h under continuous agitation.
- the nanoparticles were collected with a magnet and washed repeatedly with toluene to obtain polystyrene-coated magnetic iron oxide nanoparticles
- Example 1 1 g of Fe 3 O 4 obtained in Example 1 (for example, 10 nm Fe 3 O 4 obtained by co-precipitation method) and 5 ml of a silane coupling agent (methacryloxypropyltrimethoxysilane, KH570) were mixed with 50 ml of xylene in a reaction flask. Under nitrogen protection, the reaction was carried out under stirring at 80° C. for 3 hours. After the reaction, the mixture was centrifuged and washed with ethanol three times to remove the silane coupling agent adsorbed on the surface of the Fe 3 O 4 and vacuum-dried for 12 hours.
- a silane coupling agent methacryloxypropyltrimethoxysilane, KH570
- silane coupling agent-activated Fe 3 O 4 40 mg of potassium persulfate and 30 ml of deionized water were added in a flask, reacted under nitrogen protection and stirring at 40 for 10 minutes. Then, 4 ml of acrylic acid was slowly dropped into the flask, and reacted under nitrogen protection and stirring at 40° C. for 1 hour. The nanoparticles were magnetically separated, washed three times with deionized water and finally dried under vacuum.
- the synthesis method of photosensitive monomer with photo-crosslinking characteristics comprised: 4-vinylbenzophenone (4 VBP) and styrene monomer were directly polymerized by atom transfer radical polymerization (ATRP) to obtain a photosensitive polystyrene-polyvinylbenzophenone copolymer (PS-PVBP), wherein the specific steps were as follows: in a dry Schlenk tube connected with a reflux condenser, Cu(I)Br (0.695 mg, 4.8 umol), 4 VBP (1.0 g, 4.8 mmol), styrene (2 u, 20 umol) and 4-vinylbenzophenone (1 ⁇ L, 4.8 umol) were added, and the mixture was degassed for three times by means of freeze-pump-thaw circulation.
- 4 VBP 4-vinylbenzophenone
- ATRP atom transfer radical polymerization
- Methyl bromopropionate (5.35 ⁇ L, 48 umol) was added to the above mixture at ⁇ 78° C. under condition of nitrogen with positive pressure, and the mixture was degassed again for three more times by means of freeze-pump-thaw circulation. Polymerization was carried out by heating the mixture to a temperature of 85° C. under negative pressure, and the reaction was allowed to proceed for 4 hours. The above Schlenk tube was immersed in liquid nitrogen, and 10 ml of dichloromethane was added to dissolve the polymer.
- PS 75 -PVBP 25 -PAA 100 could be obtained by adding hydrophilic monomer acrylic acid.
- (Polystyrene 75 -co-polyvinylbenzophenone 25 )-polyacrylic acid 100 was chosen as a polymer to form micelles in aqueous solution.
- 5 mg of (PS 75 -co-PVBP 25 ) 115 -b-PAA 100 and 10 mg of Fe 3 O 4 obtained in Example 1 were dissolved in 10 ml of dimethylformamide (DMF) solution; and then double distilled water (0.1 ml/min) was gradually added under vigorous stirring.
- DMF dimethylformamide
- the resulting solution was added to a dialysis membrane with a molecular weight cut off of 12K-14K and dialyzed against water for 24 hour to remove DMF, and then the micellar solution was transferred to a quartz tube and irradiated with a laser at different time periods (emission wavelength: 315-400 nm) to form a photosensitive monomer-coated nanoparticle.
- Example 1 1 g of Fe 3 O 4 obtained in Example 1 (for example, 10 nm Fe 3 O 4 obtained by co-precipitation method) and 5 ml of a silane coupling agent (methacryloxypropyltrimethoxysilane, KH570) were mixed with 50 ml of xylene in a reaction flask. Under nitrogen protection, the reaction was carried out with stirring at 80° C. for 3 hours. After the completion of the reaction, the mixture was centrifuged and washed with ethanol three times to remove the silane coupling agent adsorbed on the surface of the Fe 3 O 4 , and vacuum-dried for 12 hours.
- a silane coupling agent methacryloxypropyltrimethoxysilane, KH570
- silane coupling agent-activated Fe 3 O 4 40 mg of potassium persulfate and 30 ml of deionized water were added in a flask, reacted under nitrogen protection and stirring at 40 for 10 minutes. Then, 4 ml of N-isopropylacrylamide aqueous solution was slowly dropped into the flask, and reacted under nitrogen protection and stirring at 40° C. for 1 hour. The nanoparticles were magnetically separated, washed three times with deionized water and finally dried in vacuo.
- Example 1 1 g of Fe 3 O 4 obtained in Example 1 (for example, 10 nm Fe 3 O 4 obtained by co-precipitation method) and 5 ml of a silane coupling agent (methacryloxypropyltrimethoxysilane, KH570) were mixed with 50 ml of xylene in a reaction flask, and reacted under nitrogen protection and stirring at 80° C. for 3 hours. After the completion of the reaction, the mixture was centrifuged and washed with ethanol three times to remove the silane coupling agent adsorbed on the surface of the Fe 3 O 4 , and dried in vacuo for 12 hours.
- a silane coupling agent methacryloxypropyltrimethoxysilane, KH570
- silane coupling agent-activated Fe 3 O 4 40 mg of potassium persulfate and 30 ml of deionized water were added in a flask, reacted under nitrogen protection and stirring at 40 for 10 minutes. Then, 4 ml of dimethylaminoethyl methacrylate aqueous solution was slowly dropped into the flask, and reacted at 40° C. for 1 hour under stirring and nitrogen protection. The nanoparticles were magnetically separated, washed three times with deionized water and finally dried in vacuo.
- the hydrophilically modified magnetic nanoparticles of Example 3 in an amount of 100 ⁇ l per well were added to the cell wells and incubated with N87 cells, wherein the magnetic nanoparticles obtained in Example 3 was used in concentrations of 0.1, 0.2, 0.4, 0.8, 1.0 mg/ml respectively. After incubated at 37 ⁇ for 24 hours, the cells were gently washed twice with culture medium, and then the cell viability was measured with a Cell Counting Kit-8 kit, in which the detection conditions were as follows: 10 ⁇ l of CCK-8 reagent per well, incubate at 37 ⁇ for 2 hours, read the absorbance value at 450 nm with BIO-TEK ELx800 automatic microplate reader, and calculate the cell viability.
- the results shown in FIG. 5 indicating the synthesized hydrophilically modified magnetic nanoparticles had good biocompatibility and almost no toxicity in vivo, and giving preliminary evidences of applicability for in vivo experiments.
- a certain amount of stones were weighed, pulverized with a pestle into a powder (particle size 0.5-2 mm), poured into a transparent glass bottle, and PBS solution was added to obtain a stone liquid.
- the hydrophilically modified magnetic particles of Example 3 at a concentration of 1 mg/ml was used as a separation liquid and added, and then gently shaken. After standing for 5 minutes, separation was carried out with a magnet. During standing, it was observed that the color of the mixture gradually faded, and after 5 minutes, it was observed that the black magnetic particles were adsorbed on the surface of the stone. Under the guidance of the magnetic field, the stones with magnetic particles adsorbed on their surface moved toward the magnet.
- one 6-week-old nude rat and 3 mice were intraperitoneal injected and tail vein injected, respectively.
- the hydrophilically modified magnetic nanoparticles of Example 3 at a concentration of 0.5 mg/ml and in an amount of 200 ⁇ L were used for the injection for consecutive two days.
- the living conditions of the mice were observed periodically (such as one week, two weeks, etc.).
- the results showed that after intravenous injection of 200 ⁇ L of magnetic nanoparticle solution, no obvious toxicity was found in the nude rat and the mice within 1 week; and after intraperitoneal injection of particle solution at the same concentration 3 times, it was found that the rat and the mice had good survival status within 3 months.
- an ureteroscope was used for holmium laser lithotripsy.
- 200 ml of the hydrophilic magnetic nanoparticle solution of Example 3 according to the present invention was injected into the kidney through the working channel of the ureteroscope, so that the hydrophilic magnetic nanoparticle solution was thoroughly mixed with the stone debris. After about 3 minutes, the nanoparticles in the solution completely adhered to the surface of the stone debris, and magnetized the stone debris.
- the above-mentioned magnetic probe rod system for removal of stones in urinary system in which a NdFeB permanent magnet was used as the magnetic field source 3, was inserted into the kidney through the working channel of the ureteroscope. Under the action of the magnetic field at the distal end of the magnetic probe rod system, the magnetized stone debris moved closer to the distal end of the magnetic probe rod and attracted to the magnetic probe rod. Finally, the magnetic probe rod system filled with stones debris at its distal end together with the ureteroscope were drawn from the body through the soft sheath of the ureteroscope.
- the magnetic probe rod could be inserted again into the endoscope to carry out stone removal operation, until all of the stone debris inside the kidney were removed from the body.
- the stone had a diameter of about 20 mm and was located in the lower kidney calyx.
- the product was ground, and screened over mesh sieves into three grades of magnetic particles: d ⁇ 0.048 mm, 0.048 mm ⁇ d ⁇ 0.106 mm, d ⁇ 0.106 mm,
- 150 mg of magnetic particles was added in a three-necked flask into which a magnetic rotor was placed.
- oil bath temperature was elevated to 80 degrees Celsius
- 15 ml of xylene solution was added, fed with nitrogen gas immediately and sealed, adjusting the rotation speed.
- 1.5 ml of silane was added, timing for 6 hours, and a nitrogen pack was connected.
- the three-necked flask was removed, the xylene was poured out, the product was washed with ethanol twice, 10 minutes for each time, 20 ml for each dose, and then washed with dd water twice.
- the inventor designed a stone basket, and a cationic polymer polyethylenimine gel with gel composition according to CN105283140A was used to simulate the gel in the kit.
- Example 11 From Example 11, it can be seen that the magnetic nanoparticles as claimed in the present invention have excellent effect in stone removal applications relative to the gel stone removal method existing in the prior art (for example, CN105283140A).
- the whole chamber was filled with physiological saline, and 1 ml (3 mg/ml) of the magnetic particle solution (the magnetic particles obtained in Example 11) was injected through a microinjector catheter, timing for 5 min.
- the experimental results showed that when a magnetic probe was used to verify stone removal effect, the stone could be quick guided and removed successfully (see FIG. 19-2 ).
- this model was basically the same in structure, size and shape as a human kidney, and had more complicated structure and pipeline obstructions.
- the purpose was to perform further in vitro simulation, and to observe the effects of obstructions possibly existing in kidney calices and urethra on stone removal.
- the whole chamber was filled with physiological saline, and 1 ml (3 mg/ml) of the magnetic particle solution (the magnetic particles obtained in Example 11) was injected through a microinjector catheter, timing for 5 min.
- the experimental results showed that when a magnetic probe was used to verify stone removal effect, the obstructions in calices and pipeline basically had not effect on the removal of stone, and the stones were removed successfully (see FIG. 19-5 ).
- Example 12 From Example 12, it can be seen that the magnetic nanoparticles of the present application have excellent effects in the two experiments that simulate the removal of stones in vivo, and furthermore, the magnetic nanoparticles have a good application prospect in stone removal applications.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Nanotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Organic Chemistry (AREA)
- Robotics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Soft Magnetic Materials (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Hard Magnetic Materials (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- The present invention relates to a use of a magnetic material in removal of stones, nano-particles, a method for preparing the same, includes a device comprising nano-particles for removal of stones.
- Urinary calculi/stone (urolithiasis) have an incidence as high as 5% -10%, and can be found in any part of kidney, bladder, ureter and urethra, in which stones in kidney and ureter are common. It is found in clinical observation that calcium-containing stones are the most common types of urinary stones, that is, about 70% to 80% of all urinary stones. At present, there are only a few cases of calcium-containing stones which pathological causes have been clearly revealed, while the causes for most of calcium-containing stones are not yet clear. According to chemical composition, stones can be divided into four categories: calcium-containing stones, infection induced stones, uric acid stones and cystine stones. Calcium-containing stones can be divided into following types: simple calcium oxalate, calcium oxalate with calcium phosphate, calcium oxalate with a small amount of uric acid; the main components of infection induced stones are ammonium magnesium phosphate and hydroxyapatite; uric acid stones can be divided into following types: uric acid, uric acid amine, or those containing a small amount of calcium oxalate in addition to the above ingredients; cystine stones can be divided into following types: simple cystine, or cystine with a small amount of calcium oxalate.
- Soft/hard ureteroscopic lithotripsy is performed through natural channel of the human body, has the advantages of small trauma and definite lithothriptic effect, and is currently the main treatment means for most of ureteral stones and kidney stones. However, the current soft/hard ureteroscopic lithotripsy also has some deficiencies: 1) upper ureteral stones and fragments of stones in ureter may be easily brought back to kidney by the infused water or the recoil force of lithotripsy tools; 2) there is lack of a fast, safe and effective method to take out residual debris of stones in ureteral lumen and kidney calices. It is an important mean to prevent ureteral stones from being recoiled back to kidney that a tool is used to block the ureter above the ureteral stones. At present, there are also some ureteral occluders in clinical practice, and such kind of stones blocking tools are also commonly used to remove stones. However, these ureteral occluders still have some shortcomings in actual use. Stone baskets (such as various stone baskets described in Patent Publication No. JP2009536081A, DE19904569A1, WO2004056275A1, WO2011123274A1 are designed with a net bag) are the most commonly used stone interception and removal tools, which cross over stone and then are opened to form a net so as to prevent the upward drift of stone debris, and at the same time, the stone baskets are also used as stone removal tools to net and take out small stone debris. However, the amount of stone removed by the stone basket every time is limited, so that multiple feeds of ureteroscope are needed, while repeated injection of water and feeds of ureteroscope would increase the risk of residual debris drift; in addition, the stone basket cannot completely seal the ureteral lumen, and there are still a chance that stones escape from the net; moreover, the edges of stones in stone basket may be easily squeezed out from basket holes, and thus may easily scratch the ureter wall when the stones are dragged and removed, thereby causing complications in severe cases.
- In addition, CN105283140A describes a kit of a cross-linked gel for encapsulating urethral stones and/or debris of urethral stones. However, when a gel-containing magnetic reagent (mock) is added to an aqueous solution containing stones, the cationic polymer is dispersed substantially in the form of dissolving in a solvent rather than aggregates to the periphery of stones due to the principle of similar compatibility, which is not sufficient to magnetize stones and remove stones.
- In summary, there is an urgent need for a material and method for removal of stone in urinary system that can collect stones, facilitate the stone taking, do not damage the ureteral wall when the stones are dragged, can be conveniently placed and are not easy to cause shift of stone.
- The present invention is aimed to solve the problem of residual stone debris and difficult removal thereof in the conventional soft/hard ureteroscopic lithotripsy. Therefore, a first object of the present invention is to provide a use of a magnetic material in removal of stones; a second object of the present invention is to provide a magnetic material capable of safely and efficiently removing urinary stones located in the kidney, ureter, etc., wherein the magnetic material is a magnetic nano-material; a third object of the present invention is to provide a method for preparing the magnetic material in different morphological structures, wherein the magnetic material is a magnetic nano-material; a fourth object of the present invention is to provide a use of the magnetic material in combination with a self-made magnetic probe rod system in a urinary stones surgery, wherein the magnetic material is a magnetic nano-material; a fifth object of the present invention is to provide a use of the magnetic material in manufacture of an article for removal of stones in urinary system, wherein the magnetic material is a magnetic nano-material.
- A first aspect of the present invention provides a
solution 1, that is, a use of a magnetic material in removal of stones, wherein the magnetic material magnetizes the stones by physical adsorption, chemical bonding or the like, and removes the stones by the action of a non-contact magnetic field. - 2. The use according to the
embodiment 1, wherein the magnetic material comprises the following components: a preparation containing a magnetic metal element or a compound thereof; and materials capable of binding to calcium salt. - 3. The use according to the embodiment 2, wherein the preparation containing the magnetic metal element or compound thereof and the material capable of binding to calcium salt form a structure that may be a clad structure or a core-shell structure, for example, the materials are completely or partially coated on the surface of the preparation; or form a modified structure in which the materials are bonded to the surface of the preparation by absorption; or form a complex structure in which the preparation and the materials form a physical mixture; or form a composite structure of the aforementioned structures.
- 4. The use according to the embodiment 2, wherein the preparation containing the magnetic metal element or compound thereof is in nano-scale or in micro-scale.
- 5. The use according to the embodiment 2, wherein the materials capable of binding to calcium salt are surfactant or polymer compounds.
- 6. The use according to embodiment 2, wherein the materials capable of binding to calcium salt are macromolecular compounds.
- 7. The use according to the
embodiment 1, wherein the magnetic material includes carboxyl, amido, amino, mercapto, hydroxyl, carbonyl, ether group, amine group, ester group, carbamate group, carbamido or quaternary amine group, sulfonic acid group, sulfhydryl, phosphine group or conjugate acid or base thereof, epoxy group, chlorine group, sulfate group, phosphinic acid, sulfinic acid, carboxylic anhydride group, hydrosilyl group, amine group and moiety of any combination thereof, aldehyde group, unsaturated double bond, phosphoric acid group, halogen group, N-succinimido, maleimido, ethylenediaminetriacetic acid alkyl group, polyethylene glycol, polyamino acid or glycan, preferably carboxyl, amido, mercapto, carbamate group, carbamido, sulfonic acid group, phosphino conjugate acid, phosphino basic group, sulfate group, phosphinic acid, sulfinic acid, N-succinimido, maleimido, polyamino acid. - 8. The use according to the
embodiment 1, wherein the magnetic material is in the shape of bar, line, band, sheet, tube, pomegranate, cube, three-dimensional flower, petal, chestnut, four-pointed star, shuttle, rice grain, sea urchin, chain ball, rugby ball, string of beads, snowflake, ellipsoid, sphere, regular tetrahedron, regular hexahedron, regular octahedron, quasi-sphere, popcorn, cross, strip, rod, cone, disc, branch, web, simple cubic, body-centered cubic, face-centered cubic, simple tetragon, body-centered tetragon, simple orthogon body-centered orthogon, single-face-centered orthogon, multi-shell, laminar, preferably the shape of sphere, quasi-sphere, pomegranate, chestnut, sea urchin, chain ball, string of beads. - 9. The use according to the
embodiment 1, wherein the magnetic material includes a magnetic fluid, a magnetic liposome, a magnetic microcapsule, a magnetic microsphere, a magnetic emulsion, a magnetic nanoparticle, a magnetic nanotube, a magnetic nanowire, a magnetic nanorod, a magnetic nanoribbons, preferably a magnetic fluid, a magnetic liposome, a magnetic microsphere, a magnetic nanotube. - 10. The use according to the embodiment 9, wherein the magnetic liposome includes a magnetic liposome which surface is modified to carry a functional group as described in the embodiment 7.
- 11. The use according to the embodiment 9, wherein the type of the magnetic liposome includes a single layer, a multi-layer, a multi-vesicle, and the preparation method of the magnetic liposome includes preferably a film dispersion method and an ultrasonic dispersion method.
- 12. The use according to the embodiment 9, wherein the magnetic fluid is a stable suspension liquid composed of magnetic particles, a carrier liquid (mineral oil, silicone oil, etc.) and a surfactant, the magnetic particles that can be used for removal of stones comprise magnetic nanoparticles which surface is modified with the functional group according to the embodiment 7, and also comprise a surfactant with the functional group as described in the embodiment 7.
- 13. The use according to the embodiment 9, wherein the preparation method for the magnetic fluid includes a chemical co-precipitation method, a sol-gel method, a hydrothermal synthesis method, a microemulsion method, a phase transfer method, preferably a co-precipitation method, a sol-gel method, a hydrothermal synthesis method.
- 14. The use according to the embodiment 9, wherein the magnetic microsphere is characterized by a surface modified with the functional group as described in the embodiment 7.
- 15. The use according to the embodiment 9, wherein the preparation method for the magnetic microsphere includes an emulsion volatilization method, a solvent replacement method and a salting-out method.
- 16. The use according to the
embodiment 1, the magnetic nanotube comprises a magnetic nanotube in which a magnetic material is filled in the tube and also a magnetic nanotube in which a magnetic material covers outside the tube, the surface of which has the functional group described in the embodiment 7, and the functional group may be derived from the magnetic material covered on surface or from the nanotube itself. - 17. The use according to the
embodiment 1, wherein the preparation method for the magnetic nanotube includes a chemical vapor deposition method, a co-precipitation method, a dip-pyrolysis method, an electroless plating method and a self-assembly method, and the preferred method is a co-precipitation method. - 18. The use according to the
embodiment 1, the magnetic nanoparticle is surface-modified or covered with the functional group as described in the embodiment 7. - 19. The use according to the
embodiment 1, wherein the magnetic material constitutes a nanoparticle core; and the nanoparticle core is modified in-situ with a surface modifier monomer by using an initiator and/or a crosslinking agent to form a nanoparticle shell. - 20. The use according to the embodiment 19, wherein the nanoparticle core has a diameter of 2-50 nm, and a weight percentage of 30-95% relative to the whole weight of the nanoparticle, and its magnetic material includes a compound of Fe3+, Fe2+, Mn2+ or Ni2+, or a metal element selected from iron, nickel, copper, cobalt, platinum, gold, europium, gadolinium, dysprosium, terbium, or a composite or oxide of the aforementioned metals, or any one of the above items or a combination of two or more of the above items, preferably a compound of Fe3+, Fe2+, Mn2+ or Ni2+, more preferably Fe3+ and Fe2+ in a ratio of 15% to 85%, preferably 1:2.5 to 1.5:1.
- 21. The use according to the embodiment 19, wherein the mutual forces for surrounding and crosslinking between the nanoparticle and stone include van der Waals force, hydrophobic interaction, adsorption and surface deposition that form surrounding interactions; a chemical bond formed between carboxyl-stone, including a hydrogen bond, an ester bond, an amide bond and other covalent bonds; physical and chemical inter-chain entanglements between chains and chemical crosslinking between chains.
- 22. The use according to any one of the embodiments 19-22, wherein the surface modifier includes a hydrophilic surface modifier with function response, a hydrophobic surface modifier with function response, a photosensitive surface modifier with function response, a thermosensitive surface modifier with function response or a pH sensitive surface modifier with function response, wherein the hydrophilic surface modifier includes acrylic acid, methacrylic acid, isobutyl acrylamide or poly N-substituted isopropylacrylamide; the hydrophobic surface modifier includes olefins, preferably polystyrene, polyethylene or oleic acid; the photosensitive surface modifier is selected from the group consisting of azos and quinolines and benzophenones (PVBP), preferably ethylene benzophenone; the thermosensitive surface modifier is selected from the group consisting of amphiphilic polymers with amide bond, preferably polyacrylamide or poly N-substituted isopropylacrylamide; the pH-sensitive surface modifier is selected from the group consisting of polymers with carboxyl group and quaternary ammonium salt, preferably a polyacrylic acid, dimethylaminoethyl ester and dimethylaminopropyl methacrylate; the shell accounts for 2-40% by weight of the nano-particle, preferably the particle is of a shape of sphere, rod or diamond.
- 23. The use according to any one of the embodiments 19 to 22, wherein the crosslinking agent includes 3-(methacryloyloxy)propyltriethoxysilane, divinylbenzene, diisocyanate or N,N-methylenebisacrylamide, and the initiator includes 3-chloropropionic acid, CuCl, 4,4′-dinonyl-2,2-bipyridine or potassium persulfate.
- 24. The use according to any one of the embodiments 19-22, wherein the preparation method for the nanoparticle includes the steps of:
- a) preparation of the nanoparticle core using the magnetic material;
- b) forming the nanoparticle by in situ linking the surface modifier monomer to the nanoparticle core by the initiator and/or crosslinking agent to form the nanoparticle shell.
- 25. The use according to the embodiment 24, wherein the magnetic material includes a compound of Fe3+, Fe2+, Mn2+ or Ni2+, or a metal element selected from iron, nickel, copper, cobalt, platinum, gold, europium, gadolinium, dysprosium, terbium, or a composite or oxide of the aforementioned metals, or any one of the above items or a combination of two or more of the above items, preferably Fe3O4, MnFe2O4, γ-Fe2O3 or other nanoscale-sized ferrite particles, more preferably FeCl3.6H2O and FeCl2.4H2O in a molar ratio of 15% to 85%, preferably 1:2.5 to 1.5:1, and is prepared by the following steps:
- dissolving a proportion of the metal salt-containing material in water;
- feeding nitrogen to expel oxygen in the solution;
- adding a catalyst at a room temperature of 10-40° C., preferably 30° C. to adjust the pH to 7-12, preferably 10;
- keeping agitation for 10-60 minutes; and
- reacting under condition of 40-100° C., preferably 70° C. water bath, for 20-40 minutes, then separating with a magnet and drying to obtain the magnetic nanoparticle core.
- 26. The use according to the
embodiment 25, wherein when aqueous ammonia is used as the catalyst for preparing the nanoparticle, the method for adding aqueous ammonia is a continuous dropping method with assistance of an electronic pump at a speed of 20-100 drops/minute, preferably 40-60 drops/minute; and when the magnetic material is a liquid monomer material, the liquid monomer is added dropwise in continuous manner with assistance of an electronic pump, and the reaction agitation is at a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute. - 27. The use according to any one of the embodiments 24-27, wherein said use further includes performing hydrophobic surface modification on the obtained nanoparticle core, comprising the steps of:
- dispersing the prepared nanoparticle core in an aqueous solution and added with a xylene solution of 3-chloropropionic acid, polystyrene, CuCl and 4,4′-dinonyl-2,2-dipyridine, and the molar ration between the above-mentioned nanoparticle core and the reaction solution is 1:1;
- reacting the above mixture at 130° C. with continuous agitation for 15-30 h, preferably for 24 hours; and
- collecting the nanoparticle with a magnet and washing repeatedly with toluene to obtain a hydrophobic polystyrene-coated magnetic nanoparticle.
- 28. The use according to any one of the embodiments 24-27, wherein said use further includes performing hydrophilic surface modification on the obtained nanoparticle core comprising the steps of:
- dispersing the nanoparticle core in xylene, and adding a silane coupling agent, wherein the ratio of the added nanoparticles, xylene and silane coupling agent is 95:5;
- reacting under protection of nitrogen atmosphere at a temperature of 20 to 100° C., preferably 80° C. for 2 to 5 hours, preferably 3 hours;
- washing with an alcohol solvent and drying for 12 h, dispersing in an aqueous solution under ultrasonic condition, adding with potassium persulfate;
- reacting under protection of nitrogen atmosphere at 40-80° C. for 10 minutes, then adding with acrylic acid and continuously reacting at 40-80° C. for 1 hour, preferably reacting at 70° C.; and
- separating by a magnet, washing and drying to prepare and obtain a polyacrylic acid-modified hydrophilic nanoparticle.
- 29. The use according to any one of the embodiments 24-27, wherein said use further includes performing a photosensitive, thermosensitive or pH-sensitive surface modification based on the resulting nanoparticle core or hydrophilic surface, or a hydrophilic, hydrophobic, photosensitive, thermosensitive and pH-sensitive co-modification based on the resulting nanoparticle core, wherein the re-modification on the hydrophilic surface includes the steps of:
- dissolving and dispersing the polyacrylic acid-modified magnetic nanoparticles in an alcoholic solvent, adding with a photosensitive monomer such as ethylene benzophenone, a thermosensitive monomer such as N-isopropylacrylamide, or a pH-sensitive monomer such as dimethylaminopropyl methacrylate or a blend monomer of acrylic acid and styrene, keeping reaction at 40-80° C. for 1 h, preferably at a reaction temperature of 70° C.; and separating with a magnet, washing and drying to obtain a photosensitive, thermosensitive or pH sensitive functional monomer-modified magnetic nanoparticles, respectively.
- 30. The use according to the
embodiment 1, wherein the stone comprise urinary system stones, such as kidney stones, ureteral stones and bladder stones, human biliary system stones, and stone-like particles in other organs. - 31. The use according to the
embodiment 1, wherein the interactions between the magnetic material and stone include ionic bonds, van der Waals forces that form surrounding interactions, hydrophobic interactions, adsorption and surface deposition; chemical bonds between the carboxyl-stone, including hydrogen bonds, ester bonds, amide bonds and other covalent bonds; physical and chemical inter-chain entanglement between chains and chemical crosslinking between chains. - A second aspect of the present invention provides a nanoparticle comprising a nanoparticle core comprised of the magnetic material; and a nanoparticle shell formed by linking a surface modifier monomer to the nanoparticle core via an initiator and/or a crosslinking agent.
- According to some embodiments of the present invention, the nanoparticle surrounds a stone via physical adsorption, chemical bonding, as well as photosensitive crosslinking, thermosensitive crosslinking and pH-sensitive crosslinking, specifically, the forces for binding and surrounding interactions between the nanoparticle and stone include: van der Waals forces that form surrounding interactions, hydrophobic interactions, adsorption and surface deposition; covalent bonds formed between carboxyl-stone, including hydrogen bonds, ester bonds, amide bonds, and other covalent bonds; physical entanglement and chemical crosslinking between chains.
- According to some embodiments of the present invention, the nanoparticle core has a diameter of 2-50 nm, and a weight percentage of 30-95% relative to the whole weight of the nanoparticle, and the magnetic material constituting the core includes a compound of Fe3+, Fe2+, Mn2+ or Ni2+, or a metal element selected from iron, nickel, copper, cobalt, platinum, gold, europium, gadolinium, dysprosium, terbium, or a composite or oxide of the aforementioned metals, or any one of the above items or a combination of two or more of the above items, preferably one or a combination of two or more of Fe3+, Fe2+, Mn2+ or Ni2+, more preferably Fe3+ and Fe2+ in a ratio of 15% to 85%, preferably 1:2.5 to 1.5:1. It should be noted that the preparation method of the nanoparticle used in the present invention can well control the size of the magnetic nanoparticle core, especially in comparison with the nanoparticles prepared by other methods, among the parameters of the nanoparticles obtained in the present invention, the dispersibility of nanoparticles relative to biomedical applications is very good and less than 1.1.
- According to certain embodiments of the present invention, the surface modifier includes a hydrophilic surface modifier with function response, a hydrophobic surface modifier with function response, a photosensitive surface modifier with function response, a thermosensitive surface modifier with function response or a pH sensitive surface modifier with function response, wherein the hydrophilic surface modifier includes acrylic acid, methacrylic acid, isobutyl acrylamide or poly N-substituted isopropylacrylamide; the hydrophobic surface modifier includes olefins, preferably polystyrene, polyethylene or oleic acid; the photosensitive surface modifier is selected from the group consisting of azos and quinolines and benzophenones (PVBP), preferably ethylene benzophenone: the thermosensitive surface modifier is selected from amphiphilic polymers with amide bond, preferably polyacrylamide or poly N-substituted isopropylacrylamide; the pH-sensitive surface modifier is selected from the group consisting of polymers with carboxyl group and quaternary ammonium salt, preferably a polyacrylic acid, dimethylaminoethyl ester and dimethylaminopropyl methacrylate.
- According to some embodiments of the present invention, the crosslinking agent includes 3-(methacryloyloxy)propyltriethoxysilane, divinylbenzene, diisocyanate or N,N-methylenebisamide, and the initiator includes 3-chloropropionic acid, CuCl, 4,4′-dinonyl-2,2-bipyridine or potassium persulfate.
- The third aspect of the invention provides a method of preparing the nanoparticle, comprising the steps of: a) preparing the nanoparticle core using the magnetic material; and b) forming the nanoparticle shell by in situ linking the surface modifier monomer to the nanoparticle core by the initiator and/or crosslinking agent to form a nanoparticle shell. As used herein, “in situ” means that the surface modifier is directly attached to the surface of the nanoparticle core. The resulting modified nanoparticle has a size between 50 nm and 5000 nm, which varies according to different conditions.
- According to some embodiments of the present invention, the nanoparticle core is composed of Fe3O4, MnFe2O4, γ-Fe2O3, or other nanoscale-sized ferrite particles, and these ferrite particles are prepared by the following steps:
- dissolving a proportion of the metal salt-containing material in water;
- feeding nitrogen to expel oxygen in the solution;
- adding a catalyst at a room temperature of 20-30° C. to adjust the pH to 8-12, preferably 10;
- keeping agitation and reaction for 20-40 minutes; and
- reacting under condition of 50-100° C., preferably 70° C. water bath, for 20-40 minutes, then separating with a magnet and drying to obtain the magnetic nanoparticle core.
- In a particular embodiment of the present invention, the oxygen-containing metal salt is FeCl3.6H2O and FeCl2.4H2O, which are dissolved in water in a molar ratio of 15% to 85%, preferably 1:2.5 to 1.5:1, wherein the catalyst is ammonia. Fe3O4 nanoparticles can be obtained by following the above steps.
- According to some embodiments of the present invention, the step b) includes dispersing the prepared nanoparticles in an aqueous solution, adding with an xylene solution of 3-chloropropionic acid, polystyrene, CuCl and 4,4′-dinonyl-2,2-bipyridine, wherein the molar ratio between the solution of iron particles and the reaction solution is 1:1; reacting the mixture for 15-30 hours, preferably 24 hours, at 130° C. under continuous agitation; and collecting the nanoparticles with a magnet, washing with repeatedly with toluene to obtain hydrophobic polystyrene-coated magnetic iron oxide nanoparticles.
- According to some embodiments of the present invention, the step b) includes dissolving and dispersing the resulting nanoparticle core into xylene, adding with a silane coupling agent, wherein the silane coupling agent, wherein the nanoparticles, xylene and silane coupling agent are added in a ratio of 95:5; reacting under the protection of nitrogen atmosphere at 20-100° C., preferably at 80° C., for 2-5 hours, preferably for 3 hours; washing with an alcoholic solvent (preferably absolute ethanol) and drying for 12 hours, dispersing in an aqueous solution under ultrasonic condition, adding with potassium persulfate; reacting under nitrogen protection, 40-80° C. for 10 minutes, adding with acrylic acid to continue reaction at 40-80° C. for 1 hour, wherein the reaction temperature is preferably 70° C.; and separating with a magnet, washing and drying to obtain the polyacrylic acid-modified hydrophilic nanoparticles.
- According to some embodiments of the present invention, the above step b includes: dissolving and dispersing Fe3O4 nanoparticles into xylene, and adding with a silane coupling agent, wherein the silane coupling agent (the ratio of the added Fe3O4 nanoparticles and the silane coupling agent is 95:5); reacting under protection of nitrogen atmosphere at 80° C. for 2-5 hours, preferably for 3 hours; washing with an alcoholic solvent (preferably absolute ethanol) and drying for 12 hours, dispersing in an aqueous solution under ultrasonic condition, adding with potassium persulfate; reacting under nitrogen protection at 40-80° C. for 10 minutes, adding with a photosensitive monomer such as vinyl benzophenone, a thermosensitive monomer such as N-isopropylacrylamide, or a pH-sensitive monomer such as dimethylaminopropyl methacrylate, etc. (or a blended monomer of acrylic acid and styrene), reacting continuously for 1 hour at 40-80, preferably at 70; and separating with a magnet, washing and drying to obtain the photosensitive, thermosensitive or pH sensitive functional monomer-modified magnetic nanoparticles, respectively.
- In certain embodiments of the present invention, the photosensitive monomer modification based on the hydrophilic surface modification includes: dissolving and dispersing the polyacrylic acid-modified magnetic nanoparticles in an alcoholic solvent, dispersing for 5-30 minutes under ultrasonic condition, then adding an initiator and a photosensitive monomer polyvinylbenzophenone, refluxing and reacting at agitation and 130° C. for 24 hours under condition that oxygen is kept out to prepare the photosensitive monomer-modified magnetic nanoparticles.
- In the above embodiment, when aqueous ammonia is used as catalyst to prepare the nanoparticles, the method for dropping aqueous ammonia is performed in a continuous and dropwise manner with assistance of an electronic pump at a speed of 20-100 drops/minute, preferably 40-60 drops/minute; and when the magnetic material is an element material, the liquid monomer is added in a dropwise and continuous manner with assistance of an electronic pump, and the reaction is carried out under agitation with a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute.
- It should be noted here that the particle size, distribution and morphology (such as shape of sphere, rod, diamond, etc.) of the obtained magnetic nanoparticle core can be relatively easily controlled under the synthetic methods and preparation conditions as we designed above. Furthermore, the surface-modified magnetic nanoparticles prepared by the above method have particle size and distribution superior to those of magnetic nanoparticles obtained by conventional preparation methods. As shown in the following table, the dispersibility index (PD.I.) of the obtained nanoparticles is basically close to 1.0, which clearly shows that the particle size distribution of the obtained particles is narrow. This is very important because, for in vivo biomedical applications, the size and dispersion of nanoparticles determine the breadth of their medical applications. The PD.I described herein for describing the dispersibility of nanoparticles is defined as follows:
-
PD.I.=<Rh 2 >/<Rh> 2 - wherein, Rh represents hydrodynamic radius of particle.
- The nanoparticle core and the surface-modified magnetic nanoparticle have distribution PD.I. as shown in the following table:
-
Magnetic nanoparticle core After surface modification Diameter/nm 40-50 80-100 PD.I./a.u. 0.005 0.0055 - In addition, as shown in
FIG. 2 , the structure of the nanoparticles obtained in the present invention is clear. - According to a fourth aspect of the present invention, there is provided a device for removal of stone, which can be used in the urinary system and consists of a magnetic nanoparticle in combination with a stone-removal magnetic probe rod system. The device for removal of stone comprises the above-mentioned nanoparticles of the present invention and an auxiliary stone-removal magnetic probe rod system. The device for removal of stone can be used for removing a stone in urinary system such as kidney stone, ureteral stone and bladder stone, etc., as well as removing a stone in human biliary system and a stone-like particle in other organs.
- Specifically, the stone-removal magnetic probe rod system comprises a handle, a flexible rod, a magnetic field source, a magnetically permeable material section, etc., in which the handle may be provided with an AC or DC power supply, a power switch, a DC battery compartment and an AC plug; the flexible rod is made of a polymer material including, for example, PU, TPU, PE, PVC, NYLON, PEBAX and silicone rubber and the modified materials of the above materials, the magnetic field source made of a permanent magnet or electromagnet can be embedded in the flexible rod, and optionally a high performance magnetically permeable material is connected to the magnetic field source to form the flexible probe rod with different configurations, for example, the permanent magnet is placed in the middle or back end of the flexible rod, and the magnetically permeable material is placed in the distal end of the flexible rod, so that such configuration is more conducive to the treatment of renal stones under ureteroscope to avoid the situation that the distal end of the flexible rod becomes rigid due to the rigid structure of the permanent magnet or the electromagnet, so that such magnetic probe rod can be successfully inserted into the working channel of ureteroscope, and inserted into upper, middle and lower kidney calices to carry out stone removal operation when driven by the ureteroscope.
- In a fifth aspect of the invention, there is provided a use of the nanoparticle of the present invention in manufacture of an article, in which the nanoparticle is prepared in the form of a solution or powder.
- The invention provides a novel preparation process for synthesizing hydrophilic, hydrophobic, thermosensitive and pH-sensitive as well as photosensitive magnetic nanoparticles, which has the advantages of simple preparation process, good repeatability and convenient application. By the hydrophobic interaction between the prepared hydrophobic nanoparticles and stones, the chemical bond interaction between hydrophilic nanoparticles and stones, and the polymerization of the photosensitive nanoparticles under illumination, the stones are surrounded; and the thermosensitive and pH-sensitive nanoparticles can surround stones through physically surrounding action in ureter; thereby, small stone remaining in body can be removed quickly without damage from the body under the action of an externally applied magnetic field, that is, the stone can be drawn and moved without injuring ureteral wall, and meanwhile the nanoparticles are placed conveniently without shift.
- The present invention is further described with reference to the accompanying drawings.
-
FIG. 1 shows the transmission electron microscope (TEM) images and the particle size distribution diagrams under dynamic light scattering for the cores with different morphologies obtained in Example 1 of the present invention. -
FIG. 2 shows the particle size distribution diagram under dynamic light scattering for the monomer-modified nanoparticles obtained in Example 4 of the present invention; and TEM images of the monomer-modified nanoparticles obtained in Example 3 of the present invention. -
FIG. 3 shows the hysteresis curves of the monomer-modified nanoparticle cores with different Fe3+/Fe2+ ratios in the synthesis of the nanoparticles obtained in Example 3 of the present invention. -
FIG. 4 shows the graphs of stone separation for the photosensitive monomer-modified nanoparticle cores obtained in Example 4 of the present invention, and the graphs of separation performance for the nanoparticle cores synthesized with different Fe3+/Fe2+ ratios and modified with functional monomer. -
FIG. 5 shows a graph of biocompatibilitv to 293t cells for the functional magnetic nanoparticles obtained in Example 4 of the present invention. -
FIG. 6 shows a graph of stone separation with in vitro assistance for the nanoparticles obtained in Example 6 of the present invention. -
FIG. 7 shows a graph of safety evaluation in body of animals for the nanoparticles of the present invention. -
FIG. 8 shows an overall schematic diagram of the magnetic probe rod system for assisting stone removal in the present invention. -
FIG. 9 shows a schematic view of the handle portion of the magnetic probe rod system for assisting stone removal in the present invention. -
FIG. 10 shows a schematic view of the magnetic probe rod system with an AC power supply for assisting stone removal according to the present invention. -
FIG. 11 shows a schematic view of the internal structure of the magnetic probe rod system using an electromagnet as magnetic field source according to the present invention. -
FIG. 12 shows a schematic view of the magnetic probe rod system of the present invention which uses an electromagnet as magnetic field source and a magnetically permeable material section at distal end. -
FIG. 13 shows a schematic view of the magnetic probe rod system of the present invention which uses a permanent magnet as magnetic field source and a magnetically permeable material section at distal end. -
FIG. 14 shows a schematic view of the magnetic probe rod system of the present invention which uses a permanent magnet as magnetic field source and has not a magnetically permeable material section at distal end. -
FIG. 15 shows a diagram of the principle of interaction between magnetic particles and stones. -
FIG. 16 shows a diagram of agitation of the reaction system in steps 2-4) of the method for preparing the nanoparticles of the present invention, which uses a magnetic stirrer at a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute. -
FIG. 17 shows a diagram of the steps 1-4) of the method for preparing the nanoparticles according to the present invention, in which aqueous ammonia and liquid monomer are added dropwise continuously and uniformly by an electronic pump at a rate of 20-100 drops/minute, preferably 40-60 drops/minute. -
FIG. 18 shows a diagram of comparison of stone removal performance for the different methods. -
FIG. 19 shows a diagram of in vivo stone removal performance for two mimic situations. - The present invention is further illustrated below with reference to the accompanying drawings and specific examples. It should be understood that the following examples are only used to illustrate the present invention, rather than to limit the scope of the present invention.
- According to a first aspect of the present invention, there is provided a use of a magnetic material for removal of stones, and further a use of a magnetic nano-material for removal of stones. Meanwhile, the present invention provides a magnetic nano-material capable of safely and efficiently removing stones in urinary system, in which the magnetic nano-material is a functional magnetic nanoparticle comprising, for example, hydrophilic, hydrophobic, photosensitive, thermosensitive, pH-sensitive magnetic nanoparticles, which morphology can be spherical, rod-shaped and the like, which structure can be of core-shell structure consisting of a magnetic core and a monomer modifier such as hydrophilic, hydrophobic, temperature sensitive, pH-sensitive or photosensitive surface modifiers as well as a small amount of initiator; in which the hydrophilic surface modifier forms a hydrophilic shell by polymerization to surround the magnetic nanoparticle core, including the hydrophilic materials with positive charges, negative charges and electricity neutrality; the hydrophobic surface modification is carried out by a poor water-soluble polymer or inorganic material; the other functional materials such as photosensitive, thermosensitive and pH-sensitive monomer modifiers may be polymerized by a crosslinking agent and embedded in a hydrophobic shell, or these monomer modifiers may be in situ and directly attached to the surface of the core by an initiator and/or crosslinking agent.
- Among the various kinds of responsive magnetic nanoparticles such as hydrophilic, hydrophobic, thermosensitive, pH-sensitive and photosensitive magnetic nanoparticles, the materials for synthesizing magnetic nanoparticle cores comprise Fe3+, Fe2+ and Mn2+, Ni2+ compounds, as well as metal elements such as iron (Fe), nickel (Ni), copper (Cu), cobalt (Co), platinum (Pt), gold (Au), europium (Eu), gadolinium (Gd), dysprosium (Dy), terbium (Tb), or composites and oxides of the metals, such as Fe3O4 or MnFe2O4, preferably iron, manganese or their compounds; also preferably, any one of them or any combination of two or more of them may be used; and the core has a size of 2-50 nm.
- The preparation method of the magnetic nanoparticle core includes co-precipitation methods, emulsion methods, redox reaction or high-temperature high-pressure methods. The weight percentage of the magnetic nanoparticle core accounts for 30% to 95% relative to the total weight of the functional magnetic nanoparticle, taking the synthesis of Fe3O4 as example, the ratio of Fe2+ to Fe2+ is 15% to 85%, preferably 1:2.5 to 1.5:1 for Fe3+ and Fe2+.
- The surface of the magnetic nanoparticle can be subjected to functional modification, such as hydrophilic modification, hydrophobic modification, and modification with photosensitive, thermosensitive and pH-sensitive materials.
- According to a first embodiment of the present invention, there is provided a hydrophilically modified functional particle, wherein the core size is 2-50 nm, the magnetic nano-core has a weight of 30-95% relative to the total nanoparticle; the hydrophilic surface modifier is a polycationic or an anionic polymer, such as acrylic acid, methacrylic acid and isobutyl acrylamide, etc., which weight percentage is 2-8% relative to the whole phydrophobic magnetic nanoparticle. The magnetic core particle is attached on its surface with an initiator such as 3-chloropropionic acid or the like, then a polymer based on acrylic acid, methacrylic acid and isobutyl acrylamide or the like is modified on the particle surface with a crosslinking agent by a chemical reaction, such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the shape of the particle may be spherical, rod-shaped and layered, preferably spherical particles. The crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- According to a second embodiment of the present invention, there is provided a hydrophobically modified functional particle, wherein the core has a size of 2-50 nm, the magnetic nano-core is 30-95% by weight relative to the whole nanoparticle; the hydrophobic surface modifier is an water insoluble monomer, such as olefins, for example, polystyrene and the like, which weight percentage is 2-8% by weight relative to the whole hydrophobic magnetic nanoparticle. The magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a hydrophobic polymer based on styrenes is modified on the particle surface by a crosslinking agent via a chemical reaction such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the morphology of the particle may be spherical, rod-shaped and layered, preferably spherical particle. The crosslinking agent is 3-(methacryloyloxy) propyl triethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- According to a third embodiment of the present invention, there is provided a photosensitive surface-modified functional particle, wherein the core has a size of 2-50 nm, and the magnetic core is 30-95% by weight relative to the whole nanoparticle; the photosensitive modifier is selected from the group consisting of azos and quinolines as well as benzophenones (PVBP), etc., which weight percentage is 2-8% relative to the whole hydrophobic magnetic nanoparticle. The magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a photosensitive polymer based on benzophenone (PVBP) and the like is modified to the surface of the particle by a crosslinking agent via a chemical reaction such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the morphology of the particle may be spherical, rod-shaped and layered, preferably spherical particle. The crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- According to a fourth embodiment of the present invention, there is provided a thermosensitive surface-modified functional particle, wherein the size of the core is 2-50 nm, and the magnetic nano-core is 30-95% by weight relative to the whole nanoparticle; the thermosensitive surface modifier is selected from the group consisting of amphiphilic polymers carrying amide bonds, such as polyacrylamide, poly N-substituted isopropylacrylamide, etc., which weight percentage is 2-8% relative to the whole hydrophobic magnetic nanoparticle. The magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a thermosensitive polymer such as poly N-substituted isopropylacrylamide is modified to the surface of the particle by a crosslinking agent via a chemical reaction such as radical, ring-opening assembly and atom transfer radical polymerization (ATRP); the shape of the particle may be spherical, rod-shaped and layered, preferably spherical particle. The crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- According to a fifth embodiment of the present invention, there is provided a pH-sensitive surface-modified functional particle, wherein the core has a diameter of 2 to 50 nm, the magnetic nano-core is 30 to 95% by weight relative to the whole nanoparticle; the pH-sensitive surface modifier is selected from the group consisting of polymers carrying carboxyl groups and quaternary ammonium salt groups, such as polyacrylic acid, dimethylaminoethyl ester and dimethylaminopropyl methacrylate, etc., which weight percentage is 2-8% relative to the whole hydrophobic magnetic nanoparticle. The magnetic core particle is attached to its surface with an initiator such as 3-chloropropionic acid, and then a pH-sensitive polymer based on dimethylaminoethyl methacrylate and dimethylaminopropyl methacrylate or the like is modified to the surface of the particle by a crosslinking agent via a chemical reaction such as radical, ring-opening polymerization and atom transfer radical polymerization (ATRP); the shape of the particle may be spherical, rod-shaped and layered, preferably spherical particle. The crosslinking agent is 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA) and the like.
- In the above embodiments of the present invention, an initiator and/or a crosslinking agent are further included. The initiator includes thermal initiators, for example, potassium persulfate, ammonium persulfate and azo type initiators; the crosslinking agent includes 3-(methacryloyloxy) propyltriethoxysilane (MPS), divinylbenzene and diisocyanate or N,N-methylenebisacrylamide (MBA), molecular weight is 100,000, and oleic acid, etc.
- According to a second aspect of the present invention, there is provided a preparation method for a nanoparticle obtained from a magnetic material. The preparation method generally includes two main steps: synthesis of a magnetic nanoparticle core (the magnetic material constitutes the nanoparticle core), and various surface modifications based on the magnetic nanoparticle core (hydrophilic, hydrophobic and thermosensitive, photosensitive and pH-sensitive modification). Taking the preparation of magnetic Fe3O4 nanoparticles as an example, the two steps of the preparation method are respectively described in detail.
- 1) Preparation of Magnetic Fe3O4 Nanoparticle Core
- FeCl3.6H2O and FeCl2.4H2O in a certain molar ratio (the molar ratio of FeCl3.6H2O and FeCl2.4H2O is 15% to 85%, preferably 1:2.5 to 1.5:1) are dissolved in 100 mL of water, fed with nitrogen gas to expel oxygen in the solution, added with aqueous ammonia at a room temperature of 20-30° C. to adjust the pH value of 8-12, preferably 10, and kept agitation and reaction for 20-40 minutes; then under a 50-100 , preferably 70 water bath, the reaction is carried out for 20-40 minutes, and then Fe3O4 nanoparticles are obtained by separation with a magnet and drying. There are different kinds of preparation methods such as co-precipitation method, thermal decomposition method, hydrothermal synthesis method, microemulsion method (reverse micelle method) and the like.
- 2) Surface Modification of the Synthesized Fe3O4 Nanoparticle Core
- 2.1) Hydrophobic Modification of the Surface of the Synthesized Fe3O4 Nanoparticle Core
- The Fe3O4 nanoparticle core prepared in the step 1) is dispersed into an aqueous solution, added with an initiator 3-chloropropionic acid and pre-treated for 12 hours, then added with an xylene solution of a hydrophobic surface-modifying monomer polystyrene and an active initiator CuCl and 4,4′-dinonyl-2,2-dipyridine (the molar ratio of the iron particle solution and the reaction solution is 1:1), and the mixture solution is reacted under continuous agitation at 130° C. for 15-30 hours, preferably 24 hours; the resulting nanoparticles are collected with a magnet and washed repeatedly with toluene to obtain the hydrophobic polystyrene-coated magnetic iron oxide nanoparticles.
- Here, 3-chloropropionic acid is used as an initiator, and CuCl and 4,4′-dinonyl-2,2-bipyridine are used as another initiator. In addition, according to one embodiment of the present invention, the reaction time is preferably 18 to 30 hours, preferably 24 hours. In addition, according to one embodiment of the present invention, the solvent is toluene or xylene in an amount of ½ to 1 of the monomer volume, the mass ratio of the surface-modified polystyrene magnetic nanoparticles, the initiator and the monomer is 95:0.5:4.5.
- 2.2) Hydrophilic Modification of the Surface of the Synthesized Fe3O4 Nanoparticle Core
- The Fe3O4 nanoparticle core obtained in the above step 1) is dissolved and dispersed into xylene, added with a silane coupling agent (the addition ratio of Fe3O4 nanoparticles and the silane coupling agent is 95:5), and reacted at 80° C. under nitrogen protection for 2-5 hours, preferably 3 hours; then washed with an alcoholic solvent (preferably absolute ethanol) and dried for 12 h, dispersed in an aqueous solution under ultrasonic condition, added with potassium persulfate; reacted under nitrogen protection at 40-80° C. for 10 minutes, then added with acrylic acid and reacted continuously at 40-80° C. for 1 hour, preferably reacted at a reaction temperature of 70° C.; separated by a magnet, washed and dried to obtain polyacrylic acid-modified, hydrophilic surface-modified magnetic nanoparticles.
- Here, the silane coupling agent is 3-(methacryloyloxy)propyl triethoxysilane (MPS) in an amount of 8 to 16 times the mass of acrylic acid; the solvent is benzene or 2-toluene; potassium persulfate is used as initiator; the reaction time is preferably 20 minutes to 80 minutes. According to one embodiment of the present invention, the mass ratio of the surface-modified magnetic Fe3O4 nanoparticles, the potassium persulfate and the acrylic acid monomer is 25-100:1:100.
- In addition, the alcoholic solvent here is methanol, ethanol or butanol, preferably ethanol, the reaction temperature is preferably 100° C. to 150° C., the reaction time is preferably 18 hours to 24 hours, and the mass ratio of the photosensitive monomer-modified magnetic nanoparticles, the potassium sulfate and the vinylbenzophenone monomer is 25-100:1:100.
- 2.3) Functional Modification of the Surface of the Synthesized Fe3O4 Nanoparticle Core
- The Fe3O4 nanoparticle core as prepared in the above step 1) is dissolved and dispersed into xylene, added with a silane coupling agent (the addition ratio of the Fe3O4 nanoparticles and the silane coupling agent is 95:5), reacted under nitrogen protection at 80° C. for 2-5 hours, preferably 3 hours, then washed with an alcoholic solvent (preferably absolute ethanol) and dried for 12 hours, dispersed into an aqueous solution under ultrasonic condition, added with potassium persulfate; reacted under nitrogen protection at 40-80° C. for 10 minutes, then added with a photosensitive monomer vinyl benzophenone, or a thermosensitive monomer N-substituted isopropylacrylamide, or a pH-sensitive monomer dimethylaminoethyl methacrylate, reacted at 40-80° C. for 1 hour, preferably reacted at a reaction temperature of 70° C.; separated by a magnet, washed and dried to obtain magnetic nanoparticles with photosensitive, thermosensitive or pH-sensitive surface modification, respectively.
- In addition, the functionally modified nanoparticles here may also be obtained by a cross-reaction with steps 2.1 and 2.2) and step 3) after pre-modification of the surface of the nanoparticle in the steps 2.1 and 2.2). That is, after the modification of 3-chloropropionic acid in step 2.1 (or the modification of silane coupling agent in step 2.2), the hydrophobic monomer styrene (or hydrophilic monomer acrylic acid) and the functional monomer such as vinyl benzophenone, N-substituted isopropylacrylamide or dimethylaminoethyl methacrylate and the like are added at the same time, and reacted at 40-80° C. for 1 hour, preferably reacted at a reaction temperature of 70° C.; separated by a magnet, washed and dried to obtain magnetic nanoparticles with photosensitive, thermosensitive or pH-sensitive surface modification. The co-reaction would result in co-modified functional nanoparticles corresponding to polystyrene (or polyacrylic acid) and the functional monomer.
- Here, the silane coupling agent is 3-(methacryloyloxy)propyl triethoxysilane (MPS) in an amount of 8 to 16 times the mass of acrylic acid; the solvent is benzene or 2-toluele in an amount of 8 to 16 times the mass of acrylic acid; potassium persulfate is used as initiator; the reaction time is preferably 20 minutes to 80 minutes. According to one embodiment of the present invention, the mass ratio of the surface-modified magnetic Fe3O4 nanoparticles, the potassium persulfate and the acrylic acid monomer is 25-100:1:100.
- In addition, the alcoholic solvent here is methanol, ethanol or butanol, preferably ethanol, the reaction temperature is preferably 100° C. to 150° C., and the reaction time is preferably 18 hours to 24 hours. The mass ratio of the functional monomer-modified magnetic nanoparticles, the potassium persulfate and the functional monomer is 25-100:1:100.
- In the process for preparing the nano iron oxide (in step 1), the Fe3O4 nanoparticles are nanoscale ferroferric oxide particles (Fe3O4), MnFe2O4, nanoscale ferric oxide particles (γ-Fe2O3) or other nanoscale ferrite particles, the aqueous ammonia is used as catalyst, the reaction pH is preferably 9 to 10, the reaction time is preferably 20 to 30 minutes, the reaction temperature is between 50-100° C., preferably 70-80° C., the preferred ratio of Fe3+:Fe2+ is 15% to 85%, preferably 1.5:1 to 1:2.5.
- In addition, in the above process for preparing nanoscale iron oxide (i.e., step 1)), the nanoparticle core is nanoscale ferroferric oxide particles (Fe3O4). Those skilled in the art can understand that it is also possible to use MnFe2O4, nanoscale ferric oxide particles (γ-Fe2O3) or other nanoscale ferrite particles. The aqueous ammonia is used as catalyst, the reaction pH is preferably 9 to 10, the reaction time is preferably 20-30 minutes, the reaction temperature is between 50-100° C., preferably 70-80° C. The preferred ratio of Fe3+:Fe2+ is 15% to 85%, preferably 1:2.5 to 1.5:1.
- In addition, in the above embodiments of the present invention, the agitation in the above reaction system is performed by a magnetic stirrer at a speed of 100-1000 revolutions/minute, preferably 500-700 revolutions/minute.
- In addition, in the above embodiments of the present invention, the aqueous ammonia and the liquid monomer are added dropwise continuously and uniformly by an electronic pump at a rate of 20-100 drops/minute, preferably 40-60 drops/minute. Through the use of electronic pump for continuous and uniform dripping, large-scale production can be easily achieved, and the dispersibility and uniformity of nanoparticles can be well controlled.
- According to a third aspect of the present invention, there is provided a magnetic probe rod system for assisting the removal of stone in urinary system. The magnetic probe rod system comprises a
handle 1, a flexible rod 2, amagnetic field source 3 and a magnetically permeable material section 4 (in the present invention, the side of the handle is defined as the proximal end of the instrument, and the end of the magnetic field source is defined as the distal end). When an electromagnet is selected as themagnetic field source 3, a switch 11 can be integrated into thehandle 1, and the magnetic field power supply can be selected from DC battery, and a battery compartment 12 a and a battery cover 13 a are provided accordingly; when an AC power is selected as the magnetic field power supply, an AC power plug 12 b is provided on the handle correspondingly. When the magnetic field source is an electromagnet, the magnetic field source 3 is composed of an electromagnet core 32 a and an electromagnetic coil 33 a, and externally provided with a magnetic field source encapsulation membrane 31 a made by biocompatible material; when the magnetic field source 3 is a permanent magnet, the magnetic field source 3 is composed of the permanent magnet 32 b and the magnetic field source encapsulation membrane 31 b on its surface; in order to ensure the accessibility of the present invention in human body, a magnetically permeable material section 4 can be optionally disposed at the distal end of the magnetic field source 3, that is, when the electromagnet is used as the magnetic field source, the magnetically permeable material section 4 a can be optionally disposed at the distal end of the electromagnet 3 a, and the magnetically permeable material section is composed of a highly magnetically permeable material 42 a and a magnetically permeable material encapsulating membrane 41 a, in which the highly magnetically permeable material 42 a can be made of an iron-based magnetically permeable material, preferably a pure iron material, and the magnetically permeable material encapsulating membrane 41 a and the magnetic field source encapsulation membrane 31 a can be made of the same material; when the permanent magnet is selected as the magnetic field source, the magnetically permeable material section 4 b may also be disposed at the distal end of the permanent magnet 3 b, composed of the highly permeable material 42 b and the magnetically permeable material encapsulation membrane 41 b, and the magnetically permeable material encapsulation membrane 41 b and the magnetic field source encapsulation membrane 31 b can be made of the same material; when it is not necessary to dispose a magnetically permeable material section at the distal end of the magnetic field source, the system of the present invention is composed of the handle 1, the flexible rod 2 and the magnetic field source 3; for example, when the permanent magnet is selected as the magnetic field source, the magnetic field source at distal end would be composed of a permanent magnet 32 c and an externally disposed magnetic field source encapsulation membrane 31 c; in the above embodiment, the flexible rod 2 may be made of a polymer material such as PU, TPU, PE, PVC, NYLON, PEBAX and silicone rubber, as well as modified materials of the above materials, and the magnetic field source encapsulation membranes 31 a, 31 b and 31 c as well as the magnetically permeable material encapsulation membranes 41 a and 41 b are all made of the same material as the flexible rods. - Further, the present invention provides a use of a magnetic nanoparticle in manufacture of an article, in which the magnetic nanoparticle is further processed to form a stone-removing solution (using physiological saline, buffer as solvent) or a stone-removing powder, preferably a stone-removing solution, which is used as a medical clinical article.
- The basic principle of the high performance system for removing a stone in urinary system, which consists of the functional magnetic nanoparticle composed of the magnetic material and the magnetic probe rod as shown, is achieved by the following steps; 1) pulverization of stones in vivo; 2) injection of the functional magnetic nanoparticles, the magnetic nanoparticles having excellent dispersibility (dispersibility and dispersion coefficient are related, the smaller the dispersion coefficient, the better the dispersibility); 3) interaction between the functional magnetic nanoparticles and the stones; 4) surrounding the stones with the functional magnetic nanoparticles: 5) physical or chemical crosslinking of the magnetic nanoparticles on the surface of the stones; 6) removal of the magnetized stones under the guidance of an external magnetic field. Among them, the stones are surrounded and magnetized by the magnetic nanoparticles via physical adsorption, chemical bonding and the like. The physical adsorption mainly refers to an attraction generated by van der Waal's force and hydrophobic interaction within the range of action between hydrophobic magnetic particles—particles and between particles—stones, so that the surface of the stones are adsorbed and surrounded by the magnetic particles; the chemical bonding mainly refers to the interaction between the hydrophilic magnetic nanoparticles—particles and between particles—stones mainly through the formation of chemical bonds (chemical bonds, such as hydrogen bonds, covalent bonds, etc., between carboxyl on the surface of the particles and the stones), so that the surface of the stones is surrounded with the magnetic particles; the chemical bonding includes: the functional magnetic nanoparticles (such as photosensitive, thermosensitive nanoparticles, etc.) firstly act on the stones via physical adsorption, and then further enhance the mutual forces between particles—particles and particles—stones via photosensitive crosslinking, thermosensitive physical entanglement (crosslinking) and the like to surround the stones. The principle of the above interaction is shown in
FIG. 15 : - The followings are detailed examples of the structure, preparation and use of the magnetic nanoparticles of the present invention.
- 1. Preparation of 10 nm Fe3O4 By Co-Precipitation Method
- 3.05 g FeCl3.6H2O and 2.08 g FeCl2.4H2O (molar ratio 1:1) were dissolved in 50 ml deionized water in a three-necked flask. Nitrogen gas was used throughout the experiment. Aqueous ammonia was added dropwise with a syringe and stirred vigorously at room temperature to adjust pH to 9, the solution gradually turned from yellow to brown and finally black, and the reaction was carried out for 20 minutes. After the reaction, the solution was placed in a 70° C. water bath and incubated for 20 minutes, stirred vigorously to remove excess ammonia. The three-necked flask was taken out and allowed to cool to room temperature under vigorous agitation. The suspension of the synthesized Fe3O4 magnetic particles was poured into a 50 ml centrifuge tube, a powerful magnet was used to attract the magnetic particles, liquid waste was discarded, deionized water was added, the magnetic particles were re-suspended under ultrasonic, so repeatedly to wash away excess ammonia until pH showed neutral. The collected magnetic particles were placed in an oven at 65° C. to be dried and dewatered. The synthesized magnetic particles were weighed, and 1.0 ml suspension of 0.02 mg/ml magnetic particles was formulated for measurement of particle size. A total of 1.5 ml of 0.02M sodium oleate solution was added dropwise to 1.0 ml suspension of 0.2 mg/ml magnetic particles, reacted at 70□ under nitrogen and vigorous agitation for 30 minutes, and then cooled to room temperature. Excess sodium oleate was removed by dialysis using 12 KD dialysis membrane. Thus, 1.0 ml of 0.02 mg/ml sodium oleate-encapsulated Fe3O4 solution was formulated, and its particle size was measured.
- 2. Preparation of Fe3O4 Magnetic Nanoparticle Core
- 2.1 Thermal Decomposition Method
- 2.1.1 Synthesis of 4 nm Fe3O4 Seeds:
- 5 mmol of ferric triacetylacetonate, 5 mmol of 1,2-dihydroxyhexadecane, 3 mmol of oleic acid, 1 mmol of oleylamine were dissolved in 20 ml of diphenyl ether and magnetically stirred under a nitrogen atmosphere. The above mixture was stirred at 200° C. for 30 minutes, and then heated under reflux for 30 minutes at 265° C. under the protection of nitrogen gas. The heating was stopped, and the dark brown liquid mixture obtained from the reaction was cooled to room temperature; under atmospheric conditions, 400 ml of ethanol was added, and the resulting black material was separated by overspeed centrifugation. The black product obtained by centrifugation was redissolved in n-hexane containing 50 μL of oleic acid and 50 μL of oleylamine, centrifuged at 600 rpm for 10 minutes to remove insoluble residues. The resulting 4 nm Fe3O4 product was precipitated with ethanol, centrifuged at 600 rpm for 10 minutes to remove solvent and then redispersed into n-hexane. The following different methods were used respectively to synthesize surface-functionalized nanoparticles with different sizes.
- 2.1.2 Synthesis of 6 nm Fe3O4 Nanoparticle Core Using 4 nm Fe3O4 Seeds
- 20 mmol of ferric triacetylacetonate, 10 mmol of 1,2-dihydroxyhexadecane, 6 mmol of oleic acid and 6 mmol of oleylamine were dissolved in 20 ml of diphenyl ether and magnetically stirred under a nitrogen atmosphere. The above mixture was heated at 200° C. for 2 hours, and then heated under reflux for 1 h at 300° C. under the protection of nitrogen gas. The heating was stopped, and the dark brown liquid mixture obtained from the reaction was cooled to room temperature. The aforementioned operation steps for the synthesis of the 4 nm Fe3O4 particles were adopted to obtain a black brown suspension of 6 nm Fe3O4 particles dispersed in n-hexane.
- 2.1.3 Synthesis of 8 nm Fe3O4 Nanoparticle Core using 6 m Fe3O4 Seeds
- 2 mmol of ferric triacetylacetonate, 10 mmol of 1,2-dihydroxyhexadecane, 2 mmol of oleic acid and 2 mmol of oleylamine were dissolved in 20 ml of ethyl ether and magnetically stirred under nitrogen protection. 84 mg of 6 nm Fe3O4 particles were weighed, dissolved in 4 ml of n-hexane, and then added to the above mixture liquid. The above mixture liquid was first heated at 100° C. for 30 minutes to remove n-hexane, then heated at 200° C. for 1 hour, and heated under reflux at 300° C. for 30 minutes under nitrogen protection. The heating was stopped, and the black mixture liquid resulting from the reaction was allowed to cool to room temperature. The aforementioned synthesis steps for 4 nm Fe3O4 particles was used to give a dark brown suspension of 8 nm Fe3O4 particles dispersed in n-hexane. Similarly, 80 mg of 8 nm Fe3O4 seeds reacted with 2 mmol of ferric triacetylacetonate and 10 mmol of 1,2-dihydroxyhexadecane to produce 10 nm Fe3O4 nanoparticles. Using this Fe3O4 seed-mediated growth method, Fe3O4 nanoparticles with larger size (up to 20 nm) could be synthesized.
- 2.1.4. Surface Modification of Fe3O4 Nanoparticle Core
- Under atmospheric conditions, 200 μl of n-hexane solvent with 20 mg of dispersed hydrophobic Fe3O4 nanoparticle core was added to 2 ml of dichloromethane suspension containing 20 mg of tetramethylammonium salt of 11-aminoundecanoic acid. The mixture was shaken for 20 minutes, while a magnet was used to separate the precipitated Fe3O4 nanoparticles. The solvent and the non-magnetic suspended matter were decanted, the resulting precipitate was washed once with dichloromethane, and then the separation with magnet was performed again to remove excess surfactant. The resulting product was dried under nitrogen gas and then dispersed in deionized water or pH-neutral PBS.
- 2.2 Hydrothermal Synthesis Method
- 1.35 g (5 mmol) of ferric chloride hexahydrate (FeCl3.6H2O) was dissolved in 40 mL of ethylene glycol to form a clear solution. To the above solution, 3.6 g of sodium acetate and 1.0 g of polyethylene glycol were added, stirred vigorously for 30 minutes, and then transferred to a 50 ml sealed stainless steel autoclave, reacted at 200° C. for 8-72 hours, and then cooled to room temperature. The black product obtained in the reaction was washed with ethanol for several times and then dried at 60° C. for 6 hours, to obtain a magnetic nanoparticle core having a particle diameter of 10 nm or less.
- 2.3 Microemulsion Method (Reverse Micellar Method)
- 5 mmol of Mn(NO3)3 and 10 mmol of Fe(NO3)3 were dissolved in 25 mL of deionized water to form a clear and transparent solution: 25 mL of 0.4 M NaDBS ([CH3(CH2)11(C6H4)SO3]Na) was added to the above iron ion solution, and then added with a large volume of toluene, in which the size of the resulting MnFe2O4 nanoparticles particles depended on the volume ratio of water and toluene. For example, in order to obtain 8 nm nanoparticles, the volume ratio of water and toluene should be 5:100. After the above mixture liquid was stirred overnight, it became a clear single-phase solution containing reversed micelles.
- In order to form colloids in the reversed micelles, 40 mL of 1 M NaOH solution was added dropwise with vigorous stirring, and the stirring was continued for 2 hours. The water and most of the toluene in the solution were removed by distillation to reduce the volume of the solution. The resulting concentrated solution containing suspended colloids was washed with water and ethanol to remove excess surfactant in the solution. A primary magnetic nanoparticle core was obtained by ultracentrifugation, and a nanocrystal was obtained by heating at 350° C. under nitrogen atmosphere for 12 hours.
- (Modification on the Magnetic Nanoparticle Core (MnFe2O4) Obtained in Example 1)
- MnFe2O4 nanoparticles with an average particle size of 9 nm were added to an aqueous solution/3-chloropropionic acid solution with a concentration of 1.0 mol/L initiator, the solution was adjusted to pH of 4 with hydrochloric acid, and stirred overnight. The nanoparticles were collected with a magnet, washed with water for several times to remove excess 3-chloropropionic acid. 0.22 g of dried nanoparticles were added to 8 mL of polystyrene solution under continuous feeding of nitrogen gas, followed by the addition of 4 mL of an xylene solution of 0.3 mmol of CuCl and 1.1 mmol of 4,4′-dinonyl-2.2-dipyridine. The above mixture reacted at 130° C. for 24 h under continuous agitation. The nanoparticles were collected with a magnet and washed repeatedly with toluene to obtain polystyrene-coated magnetic iron oxide nanoparticles.
- 1 g of Fe3O4 obtained in Example 1 (for example, 10 nm Fe3O4 obtained by co-precipitation method) and 5 ml of a silane coupling agent (methacryloxypropyltrimethoxysilane, KH570) were mixed with 50 ml of xylene in a reaction flask. Under nitrogen protection, the reaction was carried out under stirring at 80° C. for 3 hours. After the reaction, the mixture was centrifuged and washed with ethanol three times to remove the silane coupling agent adsorbed on the surface of the Fe3O4 and vacuum-dried for 12 hours. The above-mentioned silane coupling agent-activated Fe3O4, 40 mg of potassium persulfate and 30 ml of deionized water were added in a flask, reacted under nitrogen protection and stirring at 40 for 10 minutes. Then, 4 ml of acrylic acid was slowly dropped into the flask, and reacted under nitrogen protection and stirring at 40° C. for 1 hour. The nanoparticles were magnetically separated, washed three times with deionized water and finally dried under vacuum.
- 1. Synthesis of Photosensitive Functional Monomer
- The synthesis method of photosensitive monomer with photo-crosslinking characteristics comprised: 4-vinylbenzophenone (4 VBP) and styrene monomer were directly polymerized by atom transfer radical polymerization (ATRP) to obtain a photosensitive polystyrene-polyvinylbenzophenone copolymer (PS-PVBP), wherein the specific steps were as follows: in a dry Schlenk tube connected with a reflux condenser, Cu(I)Br (0.695 mg, 4.8 umol), 4 VBP (1.0 g, 4.8 mmol), styrene (2 u, 20 umol) and 4-vinylbenzophenone (1 μL, 4.8 umol) were added, and the mixture was degassed for three times by means of freeze-pump-thaw circulation. Methyl bromopropionate (5.35 μL, 48 umol) was added to the above mixture at −78° C. under condition of nitrogen with positive pressure, and the mixture was degassed again for three more times by means of freeze-pump-thaw circulation. Polymerization was carried out by heating the mixture to a temperature of 85° C. under negative pressure, and the reaction was allowed to proceed for 4 hours. The above Schlenk tube was immersed in liquid nitrogen, and 10 ml of dichloromethane was added to dissolve the polymer. The resulting solution was precipitated twice with methanol (2×300 mL) to give PSx-PVBPy as a light yellow solid, wherein x: y˜(60% -90%), and a preferred composition was PS75-PVBP25. In the same way, PS75-PVBP25-PAA100 could be obtained by adding hydrophilic monomer acrylic acid.
- 2. Preparation of Nanoparticles Surrounded with Photosensitive Cross-Linked Micelles
- (Polystyrene75-co-polyvinylbenzophenone25)-polyacrylic acid100, namely (PS75-co-PVBP25)115-b-PAA100, was chosen as a polymer to form micelles in aqueous solution. 5 mg of (PS75-co-PVBP25)115-b-PAA100 and 10 mg of Fe3O4 obtained in Example 1 (for example, 10 nm Fe3O4 obtained by co-precipitation method) were dissolved in 10 ml of dimethylformamide (DMF) solution; and then double distilled water (0.1 ml/min) was gradually added under vigorous stirring. When the volume of water reached 60%, the resulting solution was added to a dialysis membrane with a molecular weight cut off of 12K-14K and dialyzed against water for 24 hour to remove DMF, and then the micellar solution was transferred to a quartz tube and irradiated with a laser at different time periods (emission wavelength: 315-400 nm) to form a photosensitive monomer-coated nanoparticle.
- 1 g of Fe3O4 obtained in Example 1 (for example, 10 nm Fe3O4 obtained by co-precipitation method) and 5 ml of a silane coupling agent (methacryloxypropyltrimethoxysilane, KH570) were mixed with 50 ml of xylene in a reaction flask. Under nitrogen protection, the reaction was carried out with stirring at 80° C. for 3 hours. After the completion of the reaction, the mixture was centrifuged and washed with ethanol three times to remove the silane coupling agent adsorbed on the surface of the Fe3O4, and vacuum-dried for 12 hours. The above-mentioned silane coupling agent-activated Fe3O4, 40 mg of potassium persulfate and 30 ml of deionized water were added in a flask, reacted under nitrogen protection and stirring at 40 for 10 minutes. Then, 4 ml of N-isopropylacrylamide aqueous solution was slowly dropped into the flask, and reacted under nitrogen protection and stirring at 40° C. for 1 hour. The nanoparticles were magnetically separated, washed three times with deionized water and finally dried in vacuo.
- 1 g of Fe3O4 obtained in Example 1 (for example, 10 nm Fe3O4 obtained by co-precipitation method) and 5 ml of a silane coupling agent (methacryloxypropyltrimethoxysilane, KH570) were mixed with 50 ml of xylene in a reaction flask, and reacted under nitrogen protection and stirring at 80° C. for 3 hours. After the completion of the reaction, the mixture was centrifuged and washed with ethanol three times to remove the silane coupling agent adsorbed on the surface of the Fe3O4, and dried in vacuo for 12 hours. The above-mentioned silane coupling agent-activated Fe3O4, 40 mg of potassium persulfate and 30 ml of deionized water were added in a flask, reacted under nitrogen protection and stirring at 40 for 10 minutes. Then, 4 ml of dimethylaminoethyl methacrylate aqueous solution was slowly dropped into the flask, and reacted at 40° C. for 1 hour under stirring and nitrogen protection. The nanoparticles were magnetically separated, washed three times with deionized water and finally dried in vacuo.
- Cell Plating: 293 t cells in logarithmic growth phase were digested, counted after centrifugation, and plated on a 96-well plate with a cell density of 5.0×104/well. 100 μl of serum-containing medium was added to each well. The surronding blank wells were each complemented with 100 μl of serum-containing medium. The plate was placed in a 7% CO2, 37° C. cell incubator overnight. The hydrophilically modified magnetic nanoparticles of Example 3 in an amount of 100 μl per well were added to the cell wells and incubated with N87 cells, wherein the magnetic nanoparticles obtained in Example 3 was used in concentrations of 0.1, 0.2, 0.4, 0.8, 1.0 mg/ml respectively. After incubated at 37□ for 24 hours, the cells were gently washed twice with culture medium, and then the cell viability was measured with a Cell Counting Kit-8 kit, in which the detection conditions were as follows: 10 μl of CCK-8 reagent per well, incubate at 37□ for 2 hours, read the absorbance value at 450 nm with BIO-TEK ELx800 automatic microplate reader, and calculate the cell viability. The results shown in
FIG. 5 , indicating the synthesized hydrophilically modified magnetic nanoparticles had good biocompatibility and almost no toxicity in vivo, and giving preliminary evidences of applicability for in vivo experiments. - As shown in
FIG. 6 , a certain amount of stones were weighed, pulverized with a pestle into a powder (particle size 0.5-2 mm), poured into a transparent glass bottle, and PBS solution was added to obtain a stone liquid. After being mixed uniformly, the hydrophilically modified magnetic particles of Example 3 at a concentration of 1 mg/ml was used as a separation liquid and added, and then gently shaken. After standing for 5 minutes, separation was carried out with a magnet. During standing, it was observed that the color of the mixture gradually faded, and after 5 minutes, it was observed that the black magnetic particles were adsorbed on the surface of the stone. Under the guidance of the magnetic field, the stones with magnetic particles adsorbed on their surface moved toward the magnet. - As shown in
FIG. 7 , one 6-week-old nude rat and 3 mice were intraperitoneal injected and tail vein injected, respectively. The hydrophilically modified magnetic nanoparticles of Example 3 at a concentration of 0.5 mg/ml and in an amount of 200 μL were used for the injection for consecutive two days. The living conditions of the mice were observed periodically (such as one week, two weeks, etc.). The results showed that after intravenous injection of 200 μL of magnetic nanoparticle solution, no obvious toxicity was found in the nude rat and the mice within 1 week; and after intraperitoneal injection of particle solution at thesame concentration 3 times, it was found that the rat and the mice had good survival status within 3 months. This shows that the prepared magnetic nanoparticles have good biocompatibility, and such preliminary assessment shows they basically have no acute toxicity and chronic toxicity. - In the treatment of disease of kidney stones, an ureteroscope was used for holmium laser lithotripsy. In the operation, after crushing process of kidney stones with holmium laser, 200 ml of the hydrophilic magnetic nanoparticle solution of Example 3 according to the present invention was injected into the kidney through the working channel of the ureteroscope, so that the hydrophilic magnetic nanoparticle solution was thoroughly mixed with the stone debris. After about 3 minutes, the nanoparticles in the solution completely adhered to the surface of the stone debris, and magnetized the stone debris. The above-mentioned magnetic probe rod system for removal of stones in urinary system, in which a NdFeB permanent magnet was used as the
magnetic field source 3, was inserted into the kidney through the working channel of the ureteroscope. Under the action of the magnetic field at the distal end of the magnetic probe rod system, the magnetized stone debris moved closer to the distal end of the magnetic probe rod and attracted to the magnetic probe rod. Finally, the magnetic probe rod system filled with stones debris at its distal end together with the ureteroscope were drawn from the body through the soft sheath of the ureteroscope. After the stone debris were removed from the distal end of the magnetic probe rod, the magnetic probe rod could be inserted again into the endoscope to carry out stone removal operation, until all of the stone debris inside the kidney were removed from the body. In this Example, the stone had a diameter of about 20 mm and was located in the lower kidney calyx. By using the magnetic probe rod system in combination with the hydrophilic magnetic nanoparticle material of the present invention, all (100%) of the stone debris were removed from the body. In comparison with the traditional method of removing stones by baskets and the method of pulverizing stones and then allowing patients to discharge stone debris, the technical solutions of the present invention achieved simple, efficient and complete removal of stones, thereby greatly improving the efficiency and safety of stone removal operations. -
Step 1. Synthesis of Magnetic Particles - From the left mouth of the three-mouth bottle, ferrous iron and ferric iron solutions were added, the total volume was 200 ml. The left mouth was sealed with a glass stopper, the right mouth was sealed with nitrogen gas, and the mechanical stirrer was set at a speed of 500, timing for 30 min. After 30 min, aqueous ammonia was added dropwise with a syringe to adjust pH to 10.0; and timing for 30 min again; a water bath at 80° C. was prepared, and the three-mouth bottle was transferred to the water bath, and the reaction was continued for 30 minutes. After 30 minutes, the instrument was turned off and allowed to cool to room temperature. After being washed with deionized water twice, acetone once, the product was placed in an oven for drying.
- Step 2. Screening
- After being dried, the product was ground, and screened over mesh sieves into three grades of magnetic particles: d≤0.048 mm, 0.048 mm≤d≤0.106 mm, d≥0.106 mm,
-
Step 3. Surface Modification of Magnetic Particles - 150 mg of magnetic particles was added in a three-necked flask into which a magnetic rotor was placed. When oil bath temperature was elevated to 80 degrees Celsius, 15 ml of xylene solution was added, fed with nitrogen gas immediately and sealed, adjusting the rotation speed. After 10 minutes, 1.5 ml of silane was added, timing for 6 hours, and a nitrogen pack was connected. After 6 hours, the three-necked flask was removed, the xylene was poured out, the product was washed with ethanol twice, 10 minutes for each time, 20 ml for each dose, and then washed with dd water twice. 15 ml of deionized water was prepared, the magnetic particles was transferred to the bottle, fed with nitrogen gas for 20 minutes, adjusting the rotation speed at 3 and the oil bath temperature of 70□. 20 mg of potassium persulfate dissolved in a solution at room temperature was added, continuously passing nitrogen gas for 10 minutes. 1.5 ml of acrylic acid was added dropwise, the reaction in the flask was observed; adjusting rotation speed, and stopping the reaction after 20 minutes. The product was washed with sodium hydroxide solution twice, transferred to a beaker, and then washed twice with deionized water; re-suspended in water.
- In order to compare the stone removal performance of the lithotomy with magnetic material (i.e., magnetic nanoparticles) of the present application with the polymer gel stone removal method existing in the prior art, the inventor designed a stone basket, and a cationic polymer polyethylenimine gel with gel composition according to CN105283140A was used to simulate the gel in the kit.
- Specifically, two glass bottles as shown in
FIG. 18 were used, and each of them was added with 3 pieces of 2-3 mm blank stones, the stones in the bottle (a) were not modified, while the stones in the bottle (b) were treated with 1 ml (3 mg/ml) of the magnetic particle solution ofstep 3 for modification. After 5 minutes, the magnetic particle solution was sucked out from the bottle (b), and then the bottles (a) and (b) were added with 2 ml of physiological saline, respectively. - The experimental results show that the magnetic particles had stone removal effect (3 stones were removed) significantly superior to the polymer gel stone removal method (0 stone was removed).
- From Example 11, it can be seen that the magnetic nanoparticles as claimed in the present invention have excellent effect in stone removal applications relative to the gel stone removal method existing in the prior art (for example, CN105283140A).
- The purpose of this experiment was to simulate stone removal effects gradually and really from simple to complex. Therefore, the experiment was divided into two parts:
- 1. Using an Urethra Model with Two Calices Simulated with Transparent Glass Tube
- Modification of stones: To simulate the in vivo environment, three stones with diameter of 2-3 mm were placed in the transparent glass tube for simulating urethra model with two calices, which was the initial state of the environment for the stone in kidney (see
FIG. 19-1 ). - The whole chamber was filled with physiological saline, and 1 ml (3 mg/ml) of the magnetic particle solution (the magnetic particles obtained in Example 11) was injected through a microinjector catheter, timing for 5 min. The experimental results showed that when a magnetic probe was used to verify stone removal effect, the stone could be quick guided and removed successfully (see
FIG. 19-2 ). - The results of the adsorption of stones on the magnetic probe were shown in
FIG. 19-3 . - 2. Using a Transparent Artificial Kidney Model
- Compared with the previous model, this model was basically the same in structure, size and shape as a human kidney, and had more complicated structure and pipeline obstructions. The purpose was to perform further in vitro simulation, and to observe the effects of obstructions possibly existing in kidney calices and urethra on stone removal.
- Modification of stones: In order to better simulate the environment for stones in kidney, a glass model was made, and three stones with diameter of 2-3 mm were placed in the transparent artificial kidney model, which was the initial state of the environment for stones in kidney (see
FIG. 19-4 ). - The whole chamber was filled with physiological saline, and 1 ml (3 mg/ml) of the magnetic particle solution (the magnetic particles obtained in Example 11) was injected through a microinjector catheter, timing for 5 min. The experimental results showed that when a magnetic probe was used to verify stone removal effect, the obstructions in calices and pipeline basically had not effect on the removal of stone, and the stones were removed successfully (see
FIG. 19-5 ). - The results of the adsorption of stones on the magnetic probe were shown in
FIG. 19-6 . - From Example 12, it can be seen that the magnetic nanoparticles of the present application have excellent effects in the two experiments that simulate the removal of stones in vivo, and furthermore, the magnetic nanoparticles have a good application prospect in stone removal applications.
- While many embodiments of the invention have been shown and/or discussed herein, it is not intended that the invention is limited thereto. It is anticipated that the scope of the present invention will be the same as what is allowed in the art and interpreted from the description. Therefore, the above description should not be construed as limitation, but merely as exemplifications of specific embodiments. Those skilled in the art can envision other variations within the scope and spirit of Claims appended hereto.
Claims (31)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510631394.5A CN106552296B (en) | 2015-09-29 | 2015-09-29 | Nano particles, preparation method thereof, calculus removing device and application |
CN201510631394.5 | 2015-09-29 | ||
PCT/CN2016/100804 WO2017054753A1 (en) | 2015-09-29 | 2016-09-29 | Use of magnetic materials in removing calculus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180271609A1 true US20180271609A1 (en) | 2018-09-27 |
Family
ID=58416862
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/763,639 Active 2038-03-16 US11331417B2 (en) | 2015-09-29 | 2016-09-26 | Magnetic target separation instrument and application thereof |
US15/763,611 Abandoned US20180271609A1 (en) | 2015-09-29 | 2016-09-29 | Use of a magnetic material in removal of stones |
US15/763,625 Abandoned US20180289866A1 (en) | 2015-09-29 | 2016-09-29 | Nanoparticles and preparation method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/763,639 Active 2038-03-16 US11331417B2 (en) | 2015-09-29 | 2016-09-26 | Magnetic target separation instrument and application thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/763,625 Abandoned US20180289866A1 (en) | 2015-09-29 | 2016-09-29 | Nanoparticles and preparation method thereof |
Country Status (7)
Country | Link |
---|---|
US (3) | US11331417B2 (en) |
EP (3) | EP3348287A4 (en) |
JP (3) | JP6719565B2 (en) |
KR (3) | KR102164560B1 (en) |
CN (4) | CN106552296B (en) |
RU (3) | RU2723259C1 (en) |
WO (3) | WO2017054750A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110483709A (en) * | 2019-08-30 | 2019-11-22 | 陕西师范大学 | Responsiveness cross-linked polymer micella and its preparation method and application based on multiple hydrogen bonding interaction |
CN113281573A (en) * | 2021-05-21 | 2021-08-20 | 哈尔滨理工大学 | Method for testing electromagnetic performance of nano ferroferric oxide |
CN113604293A (en) * | 2021-08-31 | 2021-11-05 | 浙江雅澜洗涤有限公司 | Composite cleaning agent and preparation method thereof |
EP4144308A1 (en) * | 2021-09-07 | 2023-03-08 | Srinivasan, Shyam | Magnetic device and system for urinary stone extraction using magnet |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106552296B (en) | 2015-09-29 | 2020-08-14 | 上海氪励铵勤科技发展有限公司 | Nano particles, preparation method thereof, calculus removing device and application |
CN107008922B (en) * | 2017-04-20 | 2019-06-28 | 郑州航空工业管理学院 | A kind of magnetic metal Co nano-powder and preparation method thereof |
RU2684325C1 (en) * | 2018-05-03 | 2019-04-08 | Федеральное государственное бюджетное учреждение науки Пермский федеральный исследовательский центр Уральского отделения Российской академии наук ("ПФИЦ УрО РАН") | Method of producing conjugate based on magnetic metall-carbon nanoparticles suitable for diagnostic and analytical target using nmr-relaxometry as a detection method |
CN109954168B (en) * | 2019-04-11 | 2021-08-27 | 江西理工大学 | Uniformly and rapidly degradable iron-nano hydroxyapatite medical material and preparation method thereof |
CN110038495A (en) * | 2019-04-16 | 2019-07-23 | 武汉科技大学 | A kind of device preparing magnetic microsphere |
JP2021017373A (en) * | 2019-07-17 | 2021-02-15 | 中國南玻集團股▲ふん▼有限公司 | Self-cleaning agent for glass, self-cleaning glass, and manufacturing method and application thereof |
US20220273382A1 (en) * | 2019-08-01 | 2022-09-01 | Indian Institute Of Science | A method for locomotion of a nanorobot and implementations thereof |
CN110340348B (en) * | 2019-08-05 | 2021-12-21 | 郴州市金贵银业股份有限公司 | Nano silver powder, preparation method, silver paste and application |
CN110584583B (en) * | 2019-08-30 | 2024-07-12 | 常州延顺光电科技有限公司 | Ureteroscope's insertion tube assembly |
KR102297995B1 (en) * | 2019-10-24 | 2021-09-02 | 포항공과대학교 산학협력단 | Iron oxide nanocube with open-mouthed cavity and methods for preparing the same |
CN111493973B (en) * | 2020-04-26 | 2021-04-23 | 北京纳米能源与系统研究所 | Preparation method and assembly method of miniature magnetic control robot, inner core and thin film |
CN112007754B (en) * | 2020-08-27 | 2022-11-11 | 合肥维信诺科技有限公司 | Pickup device |
US11903666B2 (en) | 2020-11-20 | 2024-02-20 | The Board Of Trustees Of The Leland Stanford Junior University | Magnetic wire for retrieval and elimination of calculus from the urinary tract |
KR102634542B1 (en) * | 2021-06-15 | 2024-02-07 | 전남대학교 산학협력단 | Method for manufacturing surface-modified magnetic nanoparticles and surface-modified magnetic nanoparticles manufactured therefrom |
KR102596635B1 (en) * | 2021-11-09 | 2023-11-02 | 한국전자기술연구원 | Method for surface modification of nanoparticles to be hydrophobic |
CN114522277B (en) * | 2022-01-11 | 2022-11-18 | 广州医科大学附属第五医院 | Design synthesis of in-situ gel and application of in-situ gel in medicament for removing calculus and fragments |
CN114644823B (en) * | 2022-03-09 | 2023-04-25 | 中国科学院化学研究所 | PH responsive composite Janus nano-particle and preparation method thereof |
WO2023229438A1 (en) * | 2022-05-26 | 2023-11-30 | 포항공과대학교 산학협력단 | Microfluidic reactor for producing microcapsules and external stimuli-responsive microcapsules produced by using same |
CN115229178B (en) * | 2022-06-07 | 2024-05-31 | 深圳市信维通信股份有限公司 | Preparation method of magnetic powder, magnetic powder and inductor |
CN115090275A (en) * | 2022-06-10 | 2022-09-23 | 南京工业大学 | Nano composite material for sewage treatment and application thereof |
CN115337411A (en) * | 2022-08-15 | 2022-11-15 | 广东省人民医院 | TPGS-modified multifunctional magnetic nanoparticle and preparation method and application thereof |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582884A (en) * | 1978-12-19 | 1980-06-21 | Olympus Optical Co | Flexible tube and its manufacture |
US4240410A (en) | 1979-01-23 | 1980-12-23 | Storz Instrument Company | Ophthalmic electromagnet |
CN87100846A (en) * | 1987-02-11 | 1988-08-24 | 刘孟陶 | Magnetic bead and process thereof |
CN87206141U (en) | 1987-04-04 | 1988-01-27 | 刘跃武 | Multifunction physicotherapy granula |
US4802461A (en) * | 1987-08-26 | 1989-02-07 | Candela Laser Corporation | Rigid endoscope with flexible tip |
CN2031656U (en) * | 1988-05-26 | 1989-02-01 | 中国人民解放军第一○七医院 | Appliance for removing magnetic foreign bodies from eye |
CN2043493U (en) * | 1989-03-07 | 1989-08-30 | 李昭 | Calculus-removing and calculus-smashing apparatus for cholelithiasis |
US5364404A (en) | 1990-12-21 | 1994-11-15 | Cook Incorporated | Neodymium-based magnetic retrieval catheter |
US5228453A (en) * | 1991-05-07 | 1993-07-20 | Target Therapeutics, Inc. | Catheter guide wire |
JP3233953B2 (en) | 1991-08-07 | 2001-12-04 | オリンパス光学工業株式会社 | Catheter device |
US5357961A (en) * | 1993-05-12 | 1994-10-25 | Hdc Corporation | Catheter guidewire and flushing apparatus and method of insertion |
CN1098896A (en) * | 1994-05-25 | 1995-02-22 | 营口市磁应用设备厂 | Strong magnetic foreign matter sucker |
US5682894A (en) * | 1996-04-26 | 1997-11-04 | Orr; Gregory C. | Guide wire |
US7066924B1 (en) * | 1997-11-12 | 2006-06-27 | Stereotaxis, Inc. | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip |
US6157853A (en) * | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
JP3075355B2 (en) | 1998-02-05 | 2000-08-14 | オリンパス光学工業株式会社 | Basket type grasping forceps |
US20080140101A1 (en) * | 2006-12-07 | 2008-06-12 | Revascular Therapeutic, Inc. | Apparatus for crossing occlusions or stenoses |
US6902528B1 (en) * | 1999-04-14 | 2005-06-07 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US7527622B2 (en) * | 1999-08-23 | 2009-05-05 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
US7772786B2 (en) * | 1999-12-02 | 2010-08-10 | Olympus Corporation | Battery-powered light source device for endoscope |
US6817364B2 (en) * | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
CN1152055C (en) * | 2001-03-20 | 2004-06-02 | 清华大学 | Surface cladding and radical functino modification method of magnetic microsphere, thus obtained microsphere and its application |
CN1122674C (en) * | 2001-07-16 | 2003-10-01 | 复旦大学 | nm Microsphere of magnetic polymer and its preparing process |
DE10201066B4 (en) * | 2002-01-14 | 2004-07-15 | Siemens Ag | Shockwave source |
JP2004043802A (en) | 2002-06-14 | 2004-02-12 | Rohm & Haas Co | Polymer nanoparticle composition and its use for microorganism repellent coating |
US7682366B2 (en) * | 2002-10-16 | 2010-03-23 | Olympus Corporation | Calculus manipulation apparatus |
JP4156898B2 (en) | 2002-10-16 | 2008-09-24 | オリンパス株式会社 | Treatment fixture |
US6875220B2 (en) | 2002-12-30 | 2005-04-05 | Cybersonics, Inc. | Dual probe |
GB2406276A (en) | 2003-09-23 | 2005-03-30 | Martin Lister | Magnetic surgical instrument |
JP4326003B2 (en) | 2003-09-26 | 2009-09-02 | 株式会社日本触媒 | Method for producing polymer-coated particles |
US7533170B2 (en) | 2005-01-06 | 2009-05-12 | International Business Machines Corporation | Coordinating the monitoring, management, and prediction of unintended changes within a grid environment |
CN2933285Y (en) * | 2005-04-06 | 2007-08-15 | 长沙天海分析检测自动化有限公司 | Cleaning pick-up device for steel particles |
CN106236181A (en) * | 2006-09-29 | 2016-12-21 | 普拉罗美德公司 | The method that calculus and stone debris retreat is prevented during lithotrity |
CN200987697Y (en) * | 2006-12-26 | 2007-12-12 | 张家安 | Humanbody hollow viscus metal foreign body extractor |
US8597630B2 (en) | 2007-04-19 | 2013-12-03 | University Of Massachusetts | Thermal-responsive polymer networks, compositions, and methods and applications related thereto |
US9547415B2 (en) * | 2007-04-30 | 2017-01-17 | Oracle International Corporation | Suite-wide navigation |
US20090041673A1 (en) * | 2007-08-03 | 2009-02-12 | Anygen Co., Ltd. | Thermally Crosslinked Contrast Agents |
CN100575376C (en) * | 2007-10-26 | 2009-12-30 | 中山大学 | A kind of magnetic temperature sensing nano-particle and synthetic method thereof with biocompatibility |
JP5371228B2 (en) | 2007-11-08 | 2013-12-18 | オリンパス株式会社 | Endoscopic treatment tool |
CN201108459Y (en) | 2007-11-20 | 2008-09-03 | 张伟 | Lead wire aspirator for knee joint lens operation |
WO2009070766A2 (en) | 2007-11-27 | 2009-06-04 | Board Of Regents, The University Of Texas System | Functionalization of micro-and nano particles for selective attachment to calcium biomineral surfaces |
EP2221327B1 (en) * | 2007-12-04 | 2014-04-16 | Tamagawa Seiki Co., Ltd. | Polymer-coated fine inorganic particle and process for producing the same |
IL188067A (en) * | 2007-12-12 | 2011-12-29 | Lithotech Medical Ltd | Device for fragmenting and removing concretions from body ducts and cavities |
HU230862B1 (en) | 2008-04-28 | 2018-10-29 | DARHOLDING Vagyonkezelő Kft | Device and method for continuous production of nanoparticles |
CN201323106Y (en) * | 2008-10-31 | 2009-10-07 | 李维跃 | Variable reluctance iron attracting tool |
US20110028785A1 (en) * | 2009-07-31 | 2011-02-03 | There In One Enterprises Co., Ltd. | Endoscope with adjustable viewing angle |
CN102686518B (en) | 2009-11-20 | 2015-07-29 | 户田工业株式会社 | Martial ethiops fine-particle powder, water dispersion containing magnetic-particle and manufacture method thereof |
WO2012071473A2 (en) | 2010-11-24 | 2012-05-31 | Mount Sinai School Of Medicine | Magnetic based device for retrieving a misplaced article |
CN202020521U (en) | 2011-03-28 | 2011-11-02 | 郭先科 | Endoscope snare for fetching foreign matters |
CN202020520U (en) | 2011-03-28 | 2011-11-02 | 郭先科 | Endoscope reticular basket for removing foreign bodies |
CN202051675U (en) * | 2011-03-30 | 2011-11-30 | 郑飞 | Movable magnetic mop |
CN202096279U (en) | 2011-04-02 | 2012-01-04 | 河南理工大学 | Foreign matter taking forceps with endoscope |
CN202096278U (en) | 2011-04-02 | 2012-01-04 | 河南理工大学 | Foreign body taking hook of endoscope |
KR101309360B1 (en) * | 2011-07-15 | 2013-09-17 | 단국대학교 산학협력단 | Nanocomposites comprising with calcium phosphate adsorbed modified carbon nanotubes and degradable polymer and method of preparing thereof |
CN102429703A (en) * | 2011-09-02 | 2012-05-02 | 王宝根 | Pneumatically-controlled stone extractor with magnet |
EP2808036A4 (en) | 2012-01-27 | 2015-08-19 | Soluciones Nanotecnológicas S L | Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*) |
US20130197297A1 (en) * | 2012-01-27 | 2013-08-01 | Kurt J. Tekulve | Magnetic clot disrupter |
US20140155295A1 (en) | 2012-08-14 | 2014-06-05 | 10X Technologies, Inc. | Capsule array devices and methods of use |
CN103111614B (en) * | 2013-02-05 | 2015-02-25 | 西安金磁纳米生物技术有限公司 | Manufacturing method of gold magnetic nanoparticles of surface modification functional perssad |
RU2516961C1 (en) | 2013-02-11 | 2014-05-20 | Федеральное государственное бюджетное учреждение науки Институт прикладной механики Российской академии наук (ИПРИМ РАН) | Magnetically controlled sorbent for endo- and exotoxin elimination in humans |
US8715315B1 (en) * | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment systems |
EP2796101B1 (en) | 2013-04-23 | 2016-04-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Kit for producing a cross-linked gel for encapsulating kidney stones and/or kidney stone fragments |
CN203208098U (en) | 2013-04-25 | 2013-09-25 | 郝波 | Device for gripping ferrous metal foreign body under gastroscope |
CN103242494B (en) * | 2013-05-27 | 2016-02-10 | 上海交通大学 | The preparation method of the composite microgel of the triple susceptibility in a kind of temperature, pH and magnetic field |
JP2016529209A (en) | 2013-05-29 | 2016-09-23 | ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション | Stimulus-responsive magnetic nanoparticles |
CN103386135B (en) * | 2013-07-24 | 2015-05-20 | 上海交通大学 | Preparation method of multifunctional medicine carrier integrating magnetism, fluorescence and thermosensitivity |
CN103536935B (en) * | 2013-11-26 | 2015-09-09 | 上海师范大学 | Core-shell structure magnetic nano composite material that a kind of photosensitizer is modified and its preparation method and application |
CN103861729B (en) * | 2014-02-27 | 2016-08-31 | 中铝广西有色金源稀土股份有限公司 | A kind of easy device collecting magnetic |
KR20150104901A (en) | 2014-03-07 | 2015-09-16 | 비손메디칼 주식회사 | Laser apparatus for medical treatment |
CN104448088B (en) * | 2014-11-03 | 2017-02-15 | 西北工业大学 | Preparation method of temperature-sensitive anisotropic magnetic microcapsule |
CN104382635B (en) * | 2014-11-28 | 2016-10-26 | 中国人民解放军第二军医大学 | A kind of foreign body in bladder extractor |
CN104622845A (en) * | 2015-01-02 | 2015-05-20 | 吉林大学 | Preparation method of chitosan microcapsules containing magnetic nano particles inside |
CN104914243A (en) * | 2015-05-25 | 2015-09-16 | 苏州万纳生物科技有限公司 | Magnetic nanoparticle biological probe, preparation method and application thereof |
CN106552296B (en) | 2015-09-29 | 2020-08-14 | 上海氪励铵勤科技发展有限公司 | Nano particles, preparation method thereof, calculus removing device and application |
GB201520959D0 (en) | 2015-11-27 | 2016-01-13 | Astrazeneca Ab And Cancer Res Technology Ltd | Bis-pyridazine compounds and their use in treating cancer |
-
2015
- 2015-09-29 CN CN201510631394.5A patent/CN106552296B/en active Active
-
2016
- 2016-09-26 US US15/763,639 patent/US11331417B2/en active Active
- 2016-09-29 WO PCT/CN2016/100782 patent/WO2017054750A1/en active Application Filing
- 2016-09-29 CN CN201680044569.5A patent/CN107921181B/en active Active
- 2016-09-29 US US15/763,611 patent/US20180271609A1/en not_active Abandoned
- 2016-09-29 WO PCT/CN2016/100804 patent/WO2017054753A1/en active Application Filing
- 2016-09-29 RU RU2018115691A patent/RU2723259C1/en not_active IP Right Cessation
- 2016-09-29 EP EP16850377.9A patent/EP3348287A4/en not_active Withdrawn
- 2016-09-29 KR KR1020187012062A patent/KR102164560B1/en active IP Right Grant
- 2016-09-29 CN CN201680044568.0A patent/CN108025115B/en active Active
- 2016-09-29 JP JP2018535224A patent/JP6719565B2/en not_active Expired - Fee Related
- 2016-09-29 JP JP2018535225A patent/JP2018532526A/en active Pending
- 2016-09-29 RU RU2018111957A patent/RU2727236C1/en active
- 2016-09-29 CN CN201680044578.4A patent/CN108348283A/en active Pending
- 2016-09-29 WO PCT/CN2016/100776 patent/WO2017054749A1/en active Application Filing
- 2016-09-29 KR KR1020187012114A patent/KR102112744B1/en active IP Right Grant
- 2016-09-29 KR KR1020187012108A patent/KR102169606B1/en active IP Right Grant
- 2016-09-29 US US15/763,625 patent/US20180289866A1/en not_active Abandoned
- 2016-09-29 RU RU2018114445A patent/RU2694471C1/en not_active IP Right Cessation
- 2016-09-29 EP EP16850374.6A patent/EP3357521A4/en not_active Withdrawn
- 2016-09-29 EP EP16850373.8A patent/EP3348215A4/en not_active Withdrawn
- 2016-09-29 JP JP2018535226A patent/JP6669876B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110483709A (en) * | 2019-08-30 | 2019-11-22 | 陕西师范大学 | Responsiveness cross-linked polymer micella and its preparation method and application based on multiple hydrogen bonding interaction |
CN113281573A (en) * | 2021-05-21 | 2021-08-20 | 哈尔滨理工大学 | Method for testing electromagnetic performance of nano ferroferric oxide |
CN113604293A (en) * | 2021-08-31 | 2021-11-05 | 浙江雅澜洗涤有限公司 | Composite cleaning agent and preparation method thereof |
EP4144308A1 (en) * | 2021-09-07 | 2023-03-08 | Srinivasan, Shyam | Magnetic device and system for urinary stone extraction using magnet |
WO2023036817A1 (en) * | 2021-09-07 | 2023-03-16 | Dymium Gmbh | Magnetic device and system for urinary stone extraction using magnet |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180271609A1 (en) | Use of a magnetic material in removal of stones | |
JP2018531126A6 (en) | Magnetic target separation instrument and use | |
Wu et al. | Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications | |
Roy et al. | Stimuli-responsive poly (N-isopropyl acrylamide)-co-tyrosine@ gadolinium: Iron oxide nanoparticle-based nanotheranostic for cancer diagnosis and treatment | |
RU2541538C1 (en) | Biocompatible agent for dispersing nanoparticles in water medium with application of polymer imitating adhesive protein of mussel | |
Qin et al. | Rationally separating the corona and membrane functions of polymer vesicles for enhanced T2 MRI and drug delivery | |
Wagner et al. | Synthesis of oligonucleotide‐functionalized magnetic nanoparticles and study on their in vitro cell uptake | |
Peng et al. | Multifunctional PEGylated nanoclusters for biomedical applications | |
CN104151764B (en) | A kind of magnetic composite microsphere of polymer brush modification and preparation method and application | |
KR102372367B1 (en) | Magnetic nanostructure and preparation method thereof | |
Govindaiah et al. | Synthesis and characterization of multifunctional Fe3O4/poly (fluorescein O-methacrylate) core/shell nanoparticles | |
Saengruengrit et al. | Effective gene delivery into primary dendritic cells using synthesized PDMAEMA-iron oxide nanocubes | |
Nguyen et al. | Rational design of stimuli‐responsive magnetic polymer hybrid (nano) materials | |
KR20210130358A (en) | Nano particle for treatment of cancer | |
Karnas-Janota | Surface-modified superparamagnetic iron oxide nanoparticles (SPIONs) for application in modern anti-cancer therapies | |
Tunca | Dual reactive polymer brush coated magnetic nanoparticles | |
Karimi et al. | 3-(Propylcarbamoyl) acrylic Acid Functionalized Magnetic Nanoparticles Grafted to Poly (N-isopropylacrylamide-co-Acrylic Acid) Hydrogel: LCST and Drug Release | |
TWI462746B (en) | Preparation of poly(ethylene glycol)-b-poly-(ε-caprolactone)-poly(acrylic acid) and its applications | |
Petricenko et al. | Properties of dextran coated magnetic nanoparticles | |
Koppolu | Development of Novel Multilayered Particles for Drug Delivery and Cell Isolation applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHANGHAI CLINICAL ENGINE TECHNOLOGY DEVELOPMENT CO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUN, YINGHAO;REEL/FRAME:046143/0904 Effective date: 20180327 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |