US20180250864A1 - Polymer extruders with a dual vacuum arrangement and related methods - Google Patents

Polymer extruders with a dual vacuum arrangement and related methods Download PDF

Info

Publication number
US20180250864A1
US20180250864A1 US15/910,853 US201815910853A US2018250864A1 US 20180250864 A1 US20180250864 A1 US 20180250864A1 US 201815910853 A US201815910853 A US 201815910853A US 2018250864 A1 US2018250864 A1 US 2018250864A1
Authority
US
United States
Prior art keywords
vacuum pump
pressure
millibars
polymer
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/910,853
Inventor
Thomas R. Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aladdin Manufacturing Corp
Original Assignee
Mohawk Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mohawk Industries Inc filed Critical Mohawk Industries Inc
Priority to US15/910,853 priority Critical patent/US20180250864A1/en
Assigned to MOHAWK INDUSTRIES, INC. reassignment MOHAWK INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLARK, THOMAS R.
Publication of US20180250864A1 publication Critical patent/US20180250864A1/en
Assigned to ALADDIN MANUFACTURING CORPORATION reassignment ALADDIN MANUFACTURING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOHAWK INDUSTRIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/426Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with consecutive casings or screws, e.g. for charging, discharging, mixing
    • B29C47/0881
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/487Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with consecutive casings or screws, e.g. for feeding, discharging, mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/006Degassing moulding material or draining off gas during moulding
    • B29C47/0014
    • B29C47/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • B29C48/2715Cleaning; Purging; Avoiding contamination of plasticising units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • B29C48/43Ring extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • D01D13/02Elements of machines in combination
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B2013/005Degassing undesirable residual components, e.g. gases, unreacted monomers, from material to be moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B2017/001Pretreating the materials before recovery
    • B29B2017/0015Washing, rinsing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92466Auxiliary unit, e.g. for external melt filtering, re-combining or transfer between units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92723Content, e.g. percentage of humidity, volatiles, contaminants or degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • B29C48/44Planetary screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/731Filamentary material, i.e. comprised of a single element, e.g. filaments, strands, threads, fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/732Floor coverings
    • B29L2031/7322Carpets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets

Definitions

  • Downtimes in polymer extrusion resulting from having to clean and maintain various components used during the extrusion process may lead to lost revenue. It may be desirable to reduce or eliminate downtime in the extrusion process to increase an output of material produced from the extrusion process. For example, when recycling polyethylene terephthalate (PET) into bulked continuous filament (BCF) for use in producing carpet, it may be desirable to reduce a downtime of a particular extruder that is extruding recycled PET in order to avoid a loss of BCF that could have been produced in the down time. Accordingly, there is a need for systems and methods that reduce downtimes in polymer extrusion.
  • PET polyethylene terephthalate
  • BCF bulked continuous filament
  • a method of manufacturing bulked continuous carpet filament comprises: (A) providing a multi-screw extruder that comprises an MRS Section comprising a plurality of satellite screws, each of the plurality of satellite screws mounted to rotate about its respective central axis; (B) providing a first vacuum pump configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars, the first vacuum pump being operatively coupled to the MRS Section via a first opening; (C) providing a second vacuum pump arranged in parallel with the first vacuum pump and configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars and cooperate with the first vacuum pump to maintain a pressure within the MRS Section between about 0 millibars and about 5 millibars; (D) using the first vacuum pump and the second vacuum pump to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; (E) passing a polymer melt comprising recycled
  • the method of manufacturing bulked continuous carpet filament further comprises: (A) providing a first spinning machine; (B) using the first spinning machine to produce bulked continuous carpet filament via the first polymer transfer line; (C) providing a second spinning machine; and (D) using the second spinning machine to produce bulked continuous carpet filament via the second polymer transfer line.
  • the method further includes shutting down the second vacuum pump for cleaning; and, while the second vacuum pump is shut down for cleaning, using the first vacuum pump to maintain the pressure within the MRS Section between about 20 millibars and about 40 millibars.
  • the method includes continuing to use the first and second spinning machines to produce bulked continuous carpet filament while the second vacuum pump is shut down for cleaning.
  • a method of manufacturing bulked continuous carpet filament comprises: (A) providing a multi-screw extruder that comprises: (1) an multi-rotating screw (MRS) section housing a plurality of satellite screws, each of the plurality of satellite screws being at least partially housed within a respective extruder barrel and mounted to rotate about its respective central axis; and (2) a satellite screw extruder support system that is adapted to orbitally rotate each of the plurality of satellite screws about a main axis as each of the plurality of satellite screws rotate about its respective central axis, the main axis being substantially parallel to each respective central axis; (B) providing a pressure regulation system configured to reduce a pressure within the multi-rotating screw section to between about 0 mbar and about 5 mbar, the pressure regulation system comprising at least a first catch pot and a second catch pot, wherein the first catch pot and the second catch pot are both configured to collect one or more volatile organics and other material removed from a polymer melt by a low-pressure
  • MRS multi-
  • the pressure regulation system comprises a first vacuum pump
  • at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump
  • the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump
  • cleaning at least the first catch pot comprises cleaning the first catch pot and the second catch pot.
  • the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump;
  • at least partially shutting down the pressure regulation system comprises mechanically isolating the first catch pot from the vacuum chamber of the first vacuum pump;
  • cleaning at least the first catch pot comprises cleaning the first catch pot;
  • the method further comprises, while the first catch pot is mechanically isolated from the vacuum chamber of the first vacuum pump: (1) continuing to use the pressure regulation system to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; and (2) continuing to pass the polymer melt comprising recycled PET through the multi-screw extruder while the pressure regulation system is maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars.
  • the second catch pot may be configured to collect the one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the pressure regulation system while the first catch pot is mechanically isolated from the vacuum
  • the pressure regulation system comprises a first vacuum pump and a second vacuum pump
  • at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump and using the second vacuum pump to maintain a pressure within the MRS Section of between about 20 mbar and about 40 mbar
  • cleaning at least the first catch pot comprises cleaning one or more components of the first vacuum pump.
  • at least partially shutting down the pressure regulation system further comprises mechanically isolating the first vacuum pump from the MRS Section. In some embodiments, continuing to produce bulked continuous carpet filament via the first and second polymer transfer lines while the pressure regulation system is at least partially shut down.
  • FIG. 1 depicts a process flow, according to a particular embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 2 depicts a process flow depicting the flow of polymer through a Multi-Rotating Screw (MRS) extruder with a dual vacuum arrangement according to a particular embodiment.
  • MRS Multi-Rotating Screw
  • FIG. 3 depicts a process flow, according to yet another embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 4 depicts a process flow, according to a particular embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 5 is a perspective view of an MRS extruder that is suitable for use in the process of FIG. 1 .
  • FIG. 6 is a cross-sectional view of an exemplary MRS section of the MRS extruder of FIG. 5 .
  • FIG. 7 depicts a process flow depicting the flow of polymer through an MRS extruder and filtration system according to a particular embodiment.
  • FIG. 8 is a high-level flow chart of a method, according to various embodiments, of manufacturing bulked continuous carpet filament.
  • New processes for making fiber from recycled polymer are described below.
  • these new processes utilize a dual vacuum arrangement (e.g., at least two vacuum pumps) operably coupled to the MRS section of an MRS extruder in order to remove one or more impurities from recycled polymer as the recycled polymer passes through the MRS section such that the new process: (1) is more effective than earlier processes in removing contaminates and water from the recycled polymer; (2) allows for an increased throughput through a single MRS extruder, which may, for example, result in a doubling of a number of thread lines produced from a single MRS extruder; (3) results in a desired intrinsic viscosity for the extruded recycled polymer at the increased throughput; and/or (4) reduces an amount of downtime of a particular production line that includes a single MRS extruder.
  • a dual vacuum arrangement e.g., at least two vacuum pumps
  • the improved process results in a recycled PET polymer having a polymer quality that is high enough that the PET polymer may be used in producing bulked continuous carpet filament from 100% recycled PET content (e.g., 100% from PET obtained from previously used PET bottles or other source of recycled PET).
  • a BCF (bulked continuous filament) manufacturing process may generally be broken down into three steps: (1) preparing flakes of PET polymer from post-consumer bottles for use in the process; (2) passing the flakes through an extruder that melts the flakes and purifies the resulting PET polymer; and (3) feeding the purified polymer into one or more spinning machines (e.g., two spinning machines, three spinning machines, four spinning machines, eight spinning machines, up to twenty spinning machines, or any other suitable number of spinning machines) that turn the polymer into filament for use in manufacturing carpets.
  • spinning machines e.g., two spinning machines, three spinning machines, four spinning machines, eight spinning machines, up to twenty spinning machines, or any other suitable number of spinning machines
  • a BCF manufacturing process utilizes a single MRS extruder to feed a single polymer transfer line.
  • the MRS extruder may feed two or more polymer transfer lines in order to increase an amount of BCF (e.g., or recycled polymer pellets) produced in a particular period of time using a single extrusion line.
  • MRS Extruder multi-rotating screw extruder
  • spinning machines e.g., two or more spinning machines.
  • the process may enable an increase in a total amount of BCF produced over systems that utilize a single MRS Extruder to feed a single polymer transfer line or spinning machine over the same period of time.
  • increasing a throughput in the MRS Extruder may increase a frequency with which a vacuum pump or other pressure regulation system that is configured to remove volatile organics and other contaminants present in the melted polymer as the melted polymer passes through the MRS Section of the MRS Extruder needs to be cleaned.
  • the process may require the vacuum pump or pressure regulation system to reduce a pressure within the MRS Section below about 5 millibars (e.g., below about 2 millibars) in order to sufficiently remove volatile organics and other contaminants from the recycled polymer.
  • a dirty vacuum pump or pressure regulation system may run less efficiently than a clean vacuum pump or pressure regulation system, such that the system may be unable to maintain a pressure within the MRS Section at a pressure that is sufficiently low to sufficiently remove the volatile organics and other contaminants from the recycled polymer.
  • the process is configured to produce recycled PET polymer that has an intrinsic viscosity of at least about 0.79 dL/g (e.g., of between about 0.79 dL/g and about 1.00 dL/g).
  • the process is configured to achieve the desired intrinsic viscosity by doubling an exposure time of the polymer melt to the vacuum in the MRS Section.
  • shutting down the MRS Extruder may result in lost production time due to an inability to produce BCF during the down-time required to clean the vacuum pump or other pressure regulation system.
  • the process may involve cleaning the vacuum pump every six or seven days.
  • the vacuum pump may require cleaning at any other suitable interval necessary to maintain the vacuum pump in a manner sufficient to reduce a pressure within the MRS Section below a suitable level.
  • cleaning a vacuum pump may take between about 15 minutes and about 1 hour.
  • cleaning a vacuum pump may include cleaning one or more catch pots that are configured to collect one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the vacuum pump (e.g., one or more vacuum pumps).
  • cleaning each particular catch pot may take between about three minutes and about five minute (e.g., about three minutes).
  • cleaning the vacuum pump may include cleaning one or more valves, elbows, pipes, etc. that make up the vacuum pump, or provide one or more connections between the vacuum pump, the MRS Extruder, the one or more catch pots, etc.
  • cleaning the pressure regulation system may take between about twenty minutes and about twenty five minutes).
  • reference to cleaning of a particular vacuum pump or particular pressure regulation system may refer to cleaning any particular component of the particular pump or pressure regulation system (e.g., one or more pipes, valves, elbows, catch pots, etc.).
  • a particular MRS Extruder may be configured to produce up to about 4,000 pounds of fiber per hour.
  • a particular spinning machine may produce up to about 36 fiber ends (e.g., 24 ends) via one or more spinnerets. Shutting down two spinning machines as a result of having to clean a vacuum pump, pressure regulation system, or other component thereof may result in having to shut down up to about 48 fiber ends (e.g., up to about 72 fiber ends) for a particular period of time. Accordingly, in light of the above, even a short amount of downtime may, for example, reduce a profitability of a particular MRS Extruder's BCF production line.
  • the process may utilize a plurality of vacuum pumps to reduce the pressure within the MRS Section below about 5 millibars (e.g., below about 2 millibars).
  • the plurality of vacuum pumps are arranged in series with one another.
  • the plurality of vacuum pumps are arranged in parallel.
  • the plurality of vacuum pumps comprise two vacuum pumps. In such embodiments, the two vacuum pumps may cooperate to maintain the pressure in the MRS Section below a suitable pressure for sufficiently removing volatile organics and other contaminants from the recycled polymer melt.
  • the use of a plurality of vacuum pumps may reduce a frequency with which each of the plurality of vacuum pumps requires cleaning.
  • the process may involve alternating cleaning of the two vacuum pumps in order to enable cleaning of each particular vacuum pump without having to shut down a particular MRS Extruder's production line in order to perform the cleaning (e.g., because the first vacuum pump is configured to independently maintain the pressure within the MRS Section below the threshold value while the second vacuum pump is cleaned).
  • each of the plurality of vacuums are independently configured for and capable of maintaining a pressure within the MRS section below about 5 millibars.
  • the system is configured such that while any one of the plurality of vacuums is offline for cleaning, any one or more of the remaining plurality of vacuum pumps is maintaining the desired pressure within the MRS Section (e.g., below about 5 millibars).
  • FIG. 1 depicts an exemplary process flow that utilizes a dual vacuum arrangement as described above.
  • the process begins by running PET 102 through an MRS extruder 100 .
  • PET 102 is used for exemplary purposes, and that other embodiments may utilize one or more other polymers in the process (e.g., one or more polymers other than PET).
  • the PET 102 may include PET 102 from any suitable source (e.g., recycled PET, virgin PET, etc.).
  • the PET 102 may include PET 102 that has gone through one or more suitable pre-processing steps (e.g., washing, drying, grinding, etc.).
  • these one or more suitable-preprocessing steps may include any suitable step described in U.S. Pat. No. 9,409,363 B2 entitled “Method of Manufacturing Bulked Continuous Filaments,” filed Apr. 18, 2014, which is incorporated herein by reference in its entirety.
  • the PET 102 comprises a polymer melt.
  • the MRS Extruder 100 includes any suitable MRS Extruder 100 , such as any suitable MRS extruder is described in U.S. Published Patent Application 2005/0047267, entitled “Extruder for Producing Molten Plastic Materials”, which was published on Mar. 3, 2005, and which is hereby incorporated herein in its entirety.
  • the PET 102 is fed into the MRS Extruder 100 where it melts into molten polymer.
  • the MRS Extruder 100 then separates the melt flow into a plurality of different streams (e.g., 4, 6, 8, or more streams) through respective open chambers. These streams, as shown in FIG. 2 , are subsequently fed, respectively, through a plurality of satellite screws in an MRS Section 120 (e.g., eight satellite screws).
  • the MRS Extruder 100 further comprises a first single screw section 110 that feeds the polymer into the MRS Section 120 and a second single screw section 130 that recombines the polymer stream into a single stream following the MRS Section 120 .
  • the MRS extruder's MRS Section 120 is fitted with one or more Vacuum Pumps (e.g., Vacuum Pump A 140 A and Vacuum Pump B 140 B) that are operatively coupled to the MRS section 120 so that Vacuum Pump A 140 A and Vacuum Pump B 140 B are each in communication with the interior of the MRS section 120 via a suitable respective opening in the MRS section's housing.
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are in operative communication with opposing portions of the MRS section 120 (e.g., via one or more respective openings).
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are operatively coupled to the MRS Extruder 100 and configured to maintain a pressure within the MRS Section 120 below a particular threshold pressure (e.g., using one or more suitable computer-controllers).
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are arranged in series with one another. In still other embodiments, Vacuum Pump A 140 A and Vacuum Pump B 140 B are arranged in parallel. Although in the embodiment shown in this Figure, a dual vacuum arrangement is shown, it should be understood in light of this disclosure that various other embodiments of a multi-vacuum extruder system may include any other suitable number of (e.g., 1, 3, 4, 5, 6, 7, etc.) vacuum pumps or pressure regulation systems in communication with the interior portion MRS section 120 in any suitable arrangement.
  • each particular Vacuum Pump is configured to maintain the pressure within the MRS Section 120 within a particular pressure range.
  • one or more of a plurality of Vacuum Pumps are configured to cooperate to maintain the pressure within the particular range.
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are configured to maintain a pressure within the MRS Section 120 below a particular pressure (e.g., or within a particular range of pressure), for example, using a suitable computer-controller.
  • a particular pressure e.g., or within a particular range of pressure
  • the particular pressure is below about 5 millibars.
  • the particular pressure is below about 2 millibars.
  • the particular pressure is a particular pressure within a particular pressure range between about 0 millibars and about 10 millibars.
  • the particular pressure or pressure range is any suitable pressure or pressure range utilized for any suitable application, such as in the production of BCF from recycled PET as described herein.
  • the low-pressure vacuum created by Vacuum Pump A 140 A and Vacuum Pump B 140 B in the MRS Section 120 may remove, for example: (1) volatile organics present in the melted polymer as the melted polymer passes through the MRS Section 120 ; and/or (2) at least a portion of any interstitial water that was present in the recycled polymer when it entered the MRS Extruder 100 .
  • the low-pressure vacuum removes substantially all (e.g., all) of the water and contaminants from the recycled polymer melt.
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B each comprise a jet vacuum pump fit to the MRS extruder 100 .
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B comprise one or more mechanical lobe pumps (which may, for example, require repeated cleaning due to volatiles coming off of and condensing on the lobes of the pump).
  • one or more of the Vacuum Pump A 140 A and Vacuum Pump B 140 B comprise a jet vacuum pump made by Arpuma GmbH of Bergheim, Germany.
  • the process includes splitting the resulting polymer melt into two polymer transfer lines (e.g., 108 A and 108 B) in order to feed at least two spinning machines (e.g., Spinning Machine A 112 A and Spinning Machine B 112 B).
  • the process may enable up to a doubling (or more) of an amount of BCF produced from the single MRS Extruder 100 .
  • the embodiment shown in this figure depicts a single extruder feeding two spinning machines, it should be understood that in other embodiments of the process described herein, the process may include feeding any other suitable number of spinning machines.
  • the extruder is configured to feed up to twenty-four spinning machines (e.g., two spinning machines, four spinning machines, six spinning machines, eight spinning machines, ten spinning machines, sixteen spinning machines, etc.).
  • the at least two spinning machines used in the process described above comprise at least two Sytec One spinning machines manufactured by Oerlikon Neumag of Neumuenster, Germany.
  • the Sytec One machine may be especially adapted for hard-to-run fibers, such as nylon or solution-dyed fibers, where the filaments are prone to breakage during processing.
  • the Sytec One machines keep the runs downstream of the spinneret as straight as possible, use only one threadline each, and are designed to be quick to rethread when there are filament breaks.
  • Such spinning machines may include, for example, any suitable one-threadline or three-threadline spinning machine made by Oerlikon Neumag of Neumuenster, Germany or any other company.
  • the process may be implemented in the context of a production line for producing BCF from recycled PET (e.g., recycled PET bottles).
  • the process includes a single MRS Extruder coupled to a first vacuum pump 140 A and a second vacuum pump 140 B.
  • the first vacuum pump and second vacuum pump are configured to cooperate to maintain a pressure within an MRS Section of the MRS Extruder below about 5 millibars during extrusion of the recycled PET.
  • the first and second vacuum pumps are further configured to independently maintain pressure within an MRS Section of the MRS Extruder below about 5 millibars during extrusion of the recycled PET (e.g., while the other vacuum pump may be offline for cleaning).
  • the first and second vacuum pump may alternately be cleaned according to a particular cleaning schedule such that for example, the first vacuum pump is cleaned at a first time and the second vacuum pump is cleaned at a second time that does not coincide with the first time.
  • the production line continues to produce BCF via the MRS Extruder and the second vacuum pump is configured to maintain the pressure within the MRS Section below about 5 millibars (e.g., while the first vacuum pump is offline for cleaning).
  • the production line continues to produce BCF via the MRS Extruder and the second vacuum pump is configured to maintain the pressure within the MRS Section at a pressure other than below about 5 millibars (e.g., while the first vacuum pump is offline for cleaning).
  • the process involves raising a pressure level within the MRS Section using the second vacuum pump while the first vacuum pump is offline for cleaning.
  • the system may be configured to maintain a pressure of up to about 40 mbar (e.g., up to about 25 mbar, up to about 30 mbar, etc.) within the MRS Section using the second vacuum pump while the first vacuum pump is offline for cleaning.
  • the process may be configured to continue to produce BCF while the first vacuum pump is offline.
  • the process may, for example, involve: (1) shutting down the first vacuum pump; (2) raising the pressure in the MRS Section using the second vacuum pump to about 25 mbar; (2) cleaning the first vacuum pump; (3) powering up the first vacuum pump after cleaning; and (4) reducing the pressure within the MRS Section back to below about 5 mbar using the first and second vacuum pumps.
  • the system may, in various embodiments, perform similar steps in order to independently clean the second vacuum pump.
  • the process may involve mechanically isolating either of the first vacuum pump or the second vacuum pump (e.g., before or after the first or second vacuum pumped has been shut down). In this way, the process may enable the remaining vacuum pump to achieve the desired pressure within the MRS Section without pulling air from the shut-off pump.
  • the process may allow for access to one or more components of the powered-off pump (e.g., one or more catch pots, valves, pipes, hoses, elbows, etc.) for cleaning without affecting the vacuum within the MRS Section.
  • the MRS Extruder feeds two polymer transfer lines (e.g., which feed two spinning machines), which may, for example, double a production capacity of the production line when compared to a production line that feeds a single spinning machine (e.g., via a single polymer transfer line).
  • the process may result in the process running without any downtime (e.g., with limited downtime) associated with or resulting from cleaning a vacuum pump (e.g., is configured to run substantially continuously).
  • the process may involve mechanically isolating a particular one of the vacuum pumps using: (1) one or more valves; (2) one or more plates or other mechanical components to at least temporarily mechanically seal off the particular vacuum pump from the MRS Section.
  • closing off the particular vacuum pump from the MRS Section may include sufficiently mechanically isolating the particular vacuum pump such that air cannot flow between a vacuum chamber of the vacuum pump and the MRS Section.
  • FIG. 3 depicts a process flow for producing BCF according to yet another embodiment.
  • the process includes a single vacuum pump 140 A operably coupled to the extruder 100 that is configured to remove at least a portion of volatile organics and interstitial water from the polymer melt as the melt passes through the extruder.
  • the Vacuum Pump 140 A includes a first catch pot 142 A and a second catch pot 142 B.
  • a vacuum pump 140 A may be equipped with any suitable number of catch pots (e.g., one catch pot, two catch pots, three catch pots, four catch pots, etc.).
  • each of the one or more catch pots e.g., the first catch pot 142 A and the second catch pot 142 B
  • each catch pot may be operably connected to the vacuum pump (e.g., a vacuum chamber of the vacuum pump) in any suitable manner (e.g., via one or more pipes, elbows, valves, etc.).
  • the process may include cleaning one or more of the individual catch pots (e.g., the first catch pot 142 A and/or the second catch pot 142 B) that make up part of the vacuum system.
  • the process involves shutting down the entire extrusion line in order to clean each of the catch pots (e.g., the first catch pot 142 A and/or the second catch pot 142 B) that make up part of the vacuum system while the extrusion line (e.g., and the vacuum pump 140 A) are offline).
  • the process may involve cleaning one or more of the catch pots (e.g., the first catch pot 142 A and/or the second catch pot 142 B) that make up part of the vacuum system while the extrusion line is still running.
  • the process may, for example, include the steps of: (1) mechanically isolating the first catch pot 142 A from the Vacuum Pump A 140 A; (2) continuing to maintain a desired pressure within the extruder 100 using the Vacuum Pump A 140 A (e.g., less than about 5 mbarr); (3) cleaning the first catch pot 142 A; and (4) ceasing mechanical isolation of the cleaned first catch pot 142 from the Vacuum Pump A 140 A.
  • the use of one or more additional catch pots may reduce a frequency with which a single vacuum pumped used as part of the process requires cleaning.
  • a dual or more catch pot arrangement may reduce a downtime of the process resulting from a need to clean one or more vacuum components.
  • any embodiment of a dual vacuum and/or dual catch-pot arrangement described herein may be used in the context of any suitable BCF (bulked continuous filament) manufacturing process described below.
  • any vacuum pump or pressure regulation technique described herein may be utilized in the any process flow described below with respect to a BCF extrusion line.
  • the process may feed any suitable number of polymer transfer lines (e.g., spinning machines) such as is described above.
  • a BCF (bulked continuous filament) manufacturing process may generally be broken down into three steps: (1) preparing flakes of PET polymer from post-consumer bottles for use in the process; (2) passing the flakes through an extruder that melts the flakes and purifies the resulting PET polymer; and (3) feeding the purified polymer into a spinning machine that turns the polymer into filament for use in manufacturing carpets. These three steps are described in greater detail below.
  • the step of preparing flakes of PET polymer from post-consumer bottles comprises: (A) sorting post-consumer PET bottles and grinding the bottles into flakes; (B) washing the flakes; and (C) identifying and removing any impurities or impure flakes.
  • bales of clear and mixed colored recycled post-consumer (e.g., “curbside”) PET bottles (or other containers) obtained from various recycling facilities make-up the post-consumer PET containers for use in the process.
  • the source of the post-consumer PET containers may be returned ‘deposit’ bottles (e.g., PET bottles whose price includes a deposit that is returned to a customer when the customer returns the bottle after consuming the bottle's contents).
  • the curbside or returned “post-consumer” or “recycled” containers may contain a small level of non-PET contaminates.
  • the contaminants in the containers may include, for example, non-PET polymeric contaminants (e.g., PVC, PLA, PP, PE, PS, PA, etc.), metal (e.g., ferrous and non-ferrous metal), paper, cardboard, sand, glass or other unwanted materials that may find their way into the collection of recycled PET.
  • non-PET polymeric contaminants e.g., PVC, PLA, PP, PE, PS, PA, etc.
  • metal e.g., ferrous and non-ferrous metal
  • paper e.g., cardboard, sand, glass or other unwanted materials that may find their way into the collection of recycled PET.
  • the non-PET contaminants may be removed from the desired PET components, for example, through one or more of the various processes described below.
  • smaller components and debris are removed from the whole bottles via a rotating trammel.
  • Various metal removal magnets and eddy current systems may be incorporated into the process to remove any metal contaminants.
  • Near Infra-Red optical sorting equipment such as the NRT Multi Sort IR machine from Bulk Handling Systems Company of Eugene, Oreg., or the Spyder IR machine from National Recovery Technologies of Nashville, Tenn., may be utilized to remove any loose polymeric contaminants that may be mixed in with the PET flakes (e.g., PVC, PLA, PP, PE, PS, and PA).
  • automated X-ray sorting equipment such as a VINYLCYCLE machine from National Recovery Technologies of Nashville, Tenn. may be utilized to remove remaining PVC contaminants.
  • a binary segregation of the clear materials from the colored materials is achieved using automated color sorting equipment equipped with a camera detection system (e.g., an Multisort ES machine from National Recovery Technologies of Nashville, Tenn.).
  • manual sorters are stationed at various points on the line to remove contaminants not removed by the sorter and any colored bottles.
  • the sorted material is taken through a granulation step (e.g., using a 50 B Granulator machine from Cumberland Engineering Corporation of New Berlin, Wis.) to size reduce (e.g., grind) the bottles down to a size of less than one half of an inch.
  • the bottle labels are removed from the resultant “dirty flake” (e.g., the PET flakes formed during the granulation step) via an air separation system prior to entering the wash process.
  • the “dirty flake” is then mixed into a series of wash tanks.
  • an aqueous density separation is utilized to separate the olefin bottle caps (which may, for example, be present in the “dirty flake” as remnants from recycled PET bottles) from the higher specific gravity PET flakes.
  • the flakes are washed in a heated caustic bath to about 190 degrees Fahrenheit.
  • the caustic bath is maintained at a concentration of between about 0.6% and about 1.2% sodium hydroxide.
  • soap surfactants as well as defoaming agents are added to the caustic bath, for example, to further increase the separation and cleaning of the flakes.
  • a double rinse system then washes the caustic from the flakes.
  • the flake is centrifugally dewatered and then dried with hot air to at least substantially remove any surface moisture.
  • the resultant “clean flake” is then processed through an electrostatic separation system (e.g., an electrostatic separator from Carpco, Inc. of Jacksonville, Fla.) and a flake metal detection system (e.g., an MSS Metal Sorting System) to further remove any metal contaminants that remain in the flake.
  • an air separation step removes any remaining label from the clean flake.
  • the flake is then taken through a flake color sorting step (e.g., using an OPTIMIX machine from TSM Control Systems of Dundalk, Ireland) to remove any remaining color contaminants remaining in the flake.
  • an electro-optical flake sorter based at least in part on Raman technology (e.g., a Powersort 200 from Unisensor Sensorsysteme GmbH of Düsseldorf, Germany) performs the final polymer separation to remove any non-PET polymers remaining in the flake. This step may also further remove any remaining metal contaminants and color contaminants.
  • Raman technology e.g., a Powersort 200 from Unisensor Sensorsysteme GmbH of Düsseldorf, Germany
  • the combination of these steps delivers substantially clean (e.g., clean) PET bottle flake comprising less than about 50 parts per million PVC (e.g., 25 ppm PVC) and less than about 15 parts per million metals for use in the downstream extrusion process described below.
  • substantially clean e.g., clean
  • PET bottle flake comprising less than about 50 parts per million PVC (e.g., 25 ppm PVC) and less than about 15 parts per million metals for use in the downstream extrusion process described below.
  • the flakes are fed down a conveyor and scanned with a high-speed laser system 300 .
  • particular lasers that make up the high-speed laser system 300 are configured to detect the presence of particular contaminates (e.g., PVC or Aluminum). Flakes that are identified as not consisting essentially of PET may be blown from the main stream of flakes with air jets. In various embodiments, the resulting level of non-PET flakes is less than 25 ppm.
  • the system is adapted to ensure that the PET polymer being processed into filament is substantially free of water (e.g., entirely free of water).
  • the flakes are placed into a pre-conditioner for between about 20 and about 40 minutes (e.g., about 30 minutes) during which the pre-conditioner blows the surface water off of the flakes.
  • interstitial water remains within the flakes.
  • these “wet” flakes e.g., flakes comprising interstitial water
  • an extruder is used to turn the wet flakes described above into a molten recycled PET polymer and to perform a number of purification processes to prepare the polymer to be turned into BCF for carpet.
  • the recycled PET polymer flakes are wet (e.g., surface water is substantially removed (e.g., fully removed) from the flakes, but interstitial water remains in the flakes).
  • these wet flakes are fed into a Multiple Rotating Screw (“MRS”) extruder 400 .
  • MRS Multiple Rotating Screw
  • the wet flakes are fed into any other suitable extruder (e.g., a twin screw extruder, a multiple screw extruder, a planetary extruder, or any other suitable extrusion system).
  • a twin screw extruder e.g., a twin screw extruder, a multiple screw extruder, a planetary extruder, or any other suitable extrusion system.
  • An exemplary MRS Extruder 400 is shown in FIGS. 5 and 6 .
  • a particular example of such an MRS extruder is described in U.S. Published Patent Application 2005/0047267, entitled “Extruder for Producing Molten Plastic Materials”, which was published on Mar. 3, 2005, and which is hereby incorporated herein by reference.
  • the MRS extruder includes a first single-screw extruder section 410 for feeding material into an MRS section 420 and a second single-screw extruder section 440 for transporting material away from the MRS section.
  • the wet flakes are fed directly into the MRS extruder 400 substantially immediately (e.g., immediately) following the washing step described above (e.g., without drying the flakes or allowing the flakes to dry).
  • a system that feeds the wet flakes directly into the MRS Extruder 400 substantially immediately (e.g., immediately) following the washing step described above may consume about 20% less energy than a system that substantially fully pre-dries the flakes before extrusion (e.g., a system that pre-dries the flakes by passing hot air over the wet flakes for a prolonged period of time).
  • a system that feeds the wet flakes directly into the MRS Extruder 400 substantially immediately (e.g., immediately) following the washing step described above avoids the need to wait a period of time (e.g., up to eight hours) generally required to fully dry the flakes (e.g., remove all of the surface and interstitial water from the flakes).
  • FIG. 7 depicts a process flow that illustrates the various processes performed by the MRS Extruder 400 in a particular embodiment.
  • the wet flakes are first fed through the MRS extruder's first single-screw extruder section 410 , which may, for example, generate sufficient heat (e.g., via shearing) to at least substantially melt (e.g., melt) the wet flakes.
  • the resultant polymer melt (e.g., comprising the melted flakes), in various embodiments, is then fed into the extruder's MRS section 420 , in which the extruder separates the melt flow into a plurality of different streams (e.g., 4, 6, 8, or more streams) through a plurality of open chambers.
  • FIG. 3 shows a detailed cutaway view of an MRS Section 420 according to a particular embodiment.
  • the MRS Section 420 separates the melt flow into eight different streams, which are subsequently fed through eight satellite screws 425 A-H.
  • these satellite screws are substantially parallel (e.g., parallel) to one other and to a primary screw axis of the MRS Machine 400 .
  • the satellite screws 425 A-H may, for example, rotate faster than (e.g., about four times faster than) in previous systems.
  • the satellite screws 425 A-H are arranged within a single screw drum 428 that is mounted to rotate about its central axis; and (2) the satellite screws 425 A-H are configured to rotate in a direction that is opposite to the direction in which the single screw drum rotates 428 .
  • the satellite screws 425 A-H and the single screw drum 428 rotate in the same direction.
  • the rotation of the satellite screws 425 A-H is driven by a ring gear.
  • the single screw drum 428 rotates about four times faster than each individual satellite screw 425 A-H.
  • the satellite screws 425 A-H rotate at substantially similar (e.g., the same) speeds.
  • the satellite screws 425 A-H are housed within respective extruder barrels, which may, for example be about 30% open to the outer chamber of the MRS section 420 .
  • the rotation of the satellite screws 425 A-H and single screw drum 428 increases the surface exchange of the polymer melt (e.g., exposes more surface area of the melted polymer to the open chamber than in previous systems).
  • the MRS section 420 creates a melt surface area that is, for example, between about twenty and about thirty times greater than the melt surface area created by a co-rotating twin screw extruder.
  • the MRS section 420 creates a melt surface area that is, for example, about twenty five times greater than the melt surface area created by a co-rotating twin screw extruder
  • the MRS extruder's MRS Section 420 is fitted with a Vacuum Pump 430 that is attached to a vacuum attachment portion 422 of the MRS section 420 so that the Vacuum Pump 430 is in communication with the interior of the MRS section via a suitable opening 424 in the MRS section's housing.
  • the MRS Section 420 is fitted with a series of Vacuum Pumps.
  • the Vacuum Pump 430 is configured to reduce the pressure within the interior of the MRS Section 420 to a pressure that is between about 0.5 millibars and about 5 millibars.
  • the Vacuum Pump 430 is configured to reduce the pressure in the MRS Section 420 to less than about 1.5 millibars (e.g., about 1 millibar or less).
  • the low-pressure vacuum created by the Vacuum Pump 430 in the MRS Section 420 may remove, for example: (1) volatile organics present in the melted polymer as the melted polymer passes through the MRS Section 420 ; and/or (2) at least a portion of any interstitial water that was present in the wet flakes when the wet flakes entered the MRS Extruder 400 .
  • the low-pressure vacuum removes substantially all (e.g., all) of the water and contaminants from the polymer stream.
  • the Vacuum Pump 430 comprises three mechanical lobe vacuum pumps (e.g., arranged in series) to reduce the pressure in the chamber to a suitable level (e.g., to a pressure of about 1.0 millibar).
  • the Vacuum Pump 430 includes a jet vacuum pump fit to the MRS extruder.
  • the jet vacuum pump is configured to achieve about 1 millibar of pressure in the interior of the MRS section 420 and about the same results described above regarding a resulting intrinsic viscosity of the polymer melt.
  • using a jet vacuum pump can be advantageous because jet vacuum pumps are steam powered and therefore substantially self-cleaning (e.g., self-cleaning), thereby reducing the maintenance required in comparison to mechanical lobe pumps (which may, for example, require repeated cleaning due to volatiles coming off and condensing on the lobes of the pump).
  • the Vacuum Pump 430 is a jet vacuum pump is made by Arpuma GmbH of Bergheim, Germany.
  • the streams of molten polymer are recombined and flow into the MRS extruder's second single screw section 440 .
  • the single stream of molten polymer is next run through a filtration system 450 that includes at least one filter.
  • the filtration system 450 includes two levels of filtration (e.g., a 40 micron screen filter followed by a 25 micron screen filter).
  • water and volatile organic impurities are removed during the vacuum process as discussed above, particulate contaminates such as, for example, aluminum particles, sand, dirt, and other contaminants may remain in the polymer melt.
  • this filtration step may be advantageous in removing particulate contaminates (e.g., particulate contaminates that were not removed in the MRS Section 420 ).
  • a viscosity sensor 460 (see FIG. 7 ) is used to sense the melt viscosity of the molten polymer stream following its passage through the filtration system 450 .
  • the viscosity sensor 460 measures the melt viscosity of the stream, for example, by measuring the stream's pressure drop across a known area.
  • the system in response to measuring an intrinsic viscosity of the stream that is below a predetermined level (e.g., below about 0.8 g/dL), the system may: (1) discard the portion of the stream with low intrinsic viscosity; and/or (2) lower the pressure in the MRS Section 420 in order to achieve a higher intrinsic viscosity in the polymer melt.
  • decreasing the pressure in the MRS Section 420 is executed in a substantially automated manner (e.g., automatically) using the viscosity sensor in a computer-controlled feedback control loop with the vacuum section 430 .
  • removing the water and contaminates from the polymer improves the intrinsic viscosity of the recycled PET polymer by allowing polymer chains in the polymer to reconnect and extend the chain length.
  • the recycled polymer melt has an intrinsic viscosity of at least about 0.79 dL/g (e.g., of between about 0.79 dL/g and about 1.00 dL/g).
  • passage through the low pressure MRS Section 420 purifies the recycled polymer melt (e.g., by removing the contaminants and interstitial water) and makes the recycled polymer substantially structurally similar to (e.g., structurally the same as) pure virgin PET polymer.
  • the water removed by the vacuum includes both water from the wash water used to clean the recycled PET bottles as described above, as well as from unreacted water generated by the melting of the PET polymer in the single screw heater 410 (e.g., interstitial water).
  • the majority of water present in the polymer is wash water, but some percentage may be unreacted water.
  • the resulting polymer is a recycled PET polymer (e.g., obtained 100% from post-consumer PET products, such as PET bottles or containers) having a polymer quality that is suitable for use in producing PET carpet filament using substantially only (e.g., only) PET from recycled PET products.
  • a recycled PET polymer e.g., obtained 100% from post-consumer PET products, such as PET bottles or containers
  • Step 3 Purified PET Polymer Fed into Spinning Machine to be Turned into Carpet Yarn
  • the resulting molten recycled PET polymer is fed directly into a BCF (or “spinning”) machine 500 that is configured to turn the molten polymer into bulked continuous filament.
  • a BCF or “spinning” machine 500 that is configured to turn the molten polymer into bulked continuous filament.
  • the output of the MRS extruder 400 is connected substantially directly (e.g., directly) to the input of the spinning machine 500 so that molten polymer from the extruder is fed directly into the spinning machine 500 .
  • This process may be advantageous because molten polymer may, in certain embodiments, not need to be cooled into pellets after extrusion (as it would need to be if the recycled polymer were being mixed with virgin PET polymer).
  • not cooling the recycled molten polymer into pellets serves to avoid potential chain scission in the polymer that might lower the polymer's intrinsic viscosity.
  • the spinning machine 500 extrudes molten polymer through small holes in a spinneret in order to produce carpet yarn filament from the polymer.
  • the molten recycled PET polymer cools after leaving the spinneret.
  • the carpet yarn is then taken up by rollers and ultimately turned into filaments that are used to produce carpet.
  • the carpet yarn produced by the spinning machine 500 may have a tenacity between about 3 gram-force per unit denier (gf/den) and about 9 gf/den.
  • the resulting carpet yarn has a tenacity of at least about 3 gf/den.
  • the spinning machine 500 used in the process described above is the Sytec One spinning machine manufactured by Oerlika Neumag of Neumuenster, Germany.
  • the Sytec One machine may be especially adapted for hard-to-run fibers, such as nylon or solution-dyed fibers, where the filaments are prone to breakage during processing.
  • the Sytec One machine keeps the runs downstream of the spinneret as straight as possible, uses only one threadline, and is designed to be quick to rethread when there are filament breaks.
  • Such spinning machines may include, for example, any suitable one-threadline or three-threadline spinning machine made by Oerlika Neumag of Neumuenster, Germany or any other company.
  • the improved strength of the recycled PET polymer generated using the process above allows it to be run at higher speeds through the spinning machine 500 than would be possible using pure virgin PET polymer. This may allow for higher processing speeds than are possible when using virgin PET polymer.
  • FIG. 8 provides a high-level summary of the method of manufacturing bulked continuous filament described above.
  • the method begins at Step 602 , where recycled PET bottles are ground into a group of flakes.
  • the group of flakes is washed to remove contaminants from the flakes' respective outer surfaces.
  • the group of flakes is scanned (e.g., using one or more of the methods discussed above) to identify impurities, including impure flakes. These impurities, and impure flakes, are then removed from the group of flakes.
  • the group of flakes is passed through an MRS extruder while maintaining the pressure within an MRS portion of the extruder below about 1.5 millibars.
  • the resulting polymer melt is passed through at least one filter having a micron rating of less than about 50 microns.
  • the recycled polymer is formed into bulked continuous carpet filament, which may be used in producing carpet. The method then ends at Step 614 .
  • the process described herein that utilizes a dual or other multi-vacuum arrangement with a single MRS Extruder may be used in the production of PET nurdles (e.g., from recycled PET).
  • the process may utilize a slower throughput in the MRS Extruder in order to remove a sufficient amount of impurities from the molten polymer such that the resultant extruded polymer melt is sufficiently free of impurities to be suitable for formation into PET nurdles.
  • the dual vacuum system discussed above is described in some embodiments as being configured to maintain the pressure in the open chambers of the MRS extruder to about 5 millibars, in other embodiments, the vacuum system may be adapted to maintain the pressure in the open chambers of the MRS extruder at pressures greater than, or less than, 1 millibars. For example, the vacuum system may be adapted to maintain this pressure at between about 0.5 millibars and about 12 millibars.
  • any numerical ranges described herein are intended to capture every integer and fractional value within the described range (e.g., every rational number value within the described range).
  • a range describing a pressure range of between about zero millibars and about ten millibars is intended to capture and disclose every rational number pressure between zero millibars and ten millibars (e.g., 1 millibars, 2 millibars, 3 millibars, 4 millibars, 2.1 millibars, 2.01 millibars, 2.001 millibars . . . . 9.999 millibars and so on).
  • substantially rectangular is intended to describe shapes that are both exactly rectangular (e.g., have four sides that meet at ninety degree angles) as well as shapes that are not quite exactly rectangular (e.g., shapes having four sides that meet at an angle in an acceptable tolerance of ninety degrees, such as 90°+/ ⁇ 4°.
  • the system may be adapted to produce carpet filament from a combination of recycled PET and virgin PET.
  • the resulting carpet filament may, for example, comprise, consist of, and/or consist essentially of between about 80% and about 100% recycled PET, and between about 0% and about 20% virgin PET.

Abstract

In particular embodiments, a process for producing bulked continuous carpet filament from recycled polymer utilizes two vacuum pumps in combination with a single extruder. In various embodiments, the dual vacuum arrangement (e.g., at least two vacuum pumps) operably coupled to the single extruder (e.g., MRS extruder) may be configured remove one or more impurities from recycled polymer as the recycled polymer passes through the extruder such that the process: (1) is more effective than earlier processes in removing contaminates and water from the recycled polymer; (2) allows for an increased throughput through a single extruder, which may result in a doubling of a number of thread lines produced from a single extruder; (3) results in a desired intrinsic viscosity for the extruded recycled polymer at the increased throughput; and/or (4) reduces an amount of downtime of a particular production line as a result of cleaning the two vacuum pumps.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 62/466,632, filed Mar. 3, 2017, entitled: “Polymer Extruders with a Dual Vacuum Arrangement and Related Methods,” which is hereby incorporated herein in its entirety.
  • BACKGROUND
  • Downtimes in polymer extrusion resulting from having to clean and maintain various components used during the extrusion process may lead to lost revenue. It may be desirable to reduce or eliminate downtime in the extrusion process to increase an output of material produced from the extrusion process. For example, when recycling polyethylene terephthalate (PET) into bulked continuous filament (BCF) for use in producing carpet, it may be desirable to reduce a downtime of a particular extruder that is extruding recycled PET in order to avoid a loss of BCF that could have been produced in the down time. Accordingly, there is a need for systems and methods that reduce downtimes in polymer extrusion.
  • SUMMARY
  • A method of manufacturing bulked continuous carpet filament, according to particular embodiments, comprises: (A) providing a multi-screw extruder that comprises an MRS Section comprising a plurality of satellite screws, each of the plurality of satellite screws mounted to rotate about its respective central axis; (B) providing a first vacuum pump configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars, the first vacuum pump being operatively coupled to the MRS Section via a first opening; (C) providing a second vacuum pump arranged in parallel with the first vacuum pump and configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars and cooperate with the first vacuum pump to maintain a pressure within the MRS Section between about 0 millibars and about 5 millibars; (D) using the first vacuum pump and the second vacuum pump to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; (E) passing a polymer melt comprising recycled PET through the multi-screw extruder while the first vacuum pump and the second vacuum pump are maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars; and (F) after the step of passing the polymer melt through the multi-screw extruder, feeding the polymer melt into a first polymer transfer line and a second polymer transfer line.
  • In various embodiments, the method of manufacturing bulked continuous carpet filament further comprises: (A) providing a first spinning machine; (B) using the first spinning machine to produce bulked continuous carpet filament via the first polymer transfer line; (C) providing a second spinning machine; and (D) using the second spinning machine to produce bulked continuous carpet filament via the second polymer transfer line. In some embodiments, the method further includes shutting down the second vacuum pump for cleaning; and, while the second vacuum pump is shut down for cleaning, using the first vacuum pump to maintain the pressure within the MRS Section between about 20 millibars and about 40 millibars. In some embodimnets, the method includes continuing to use the first and second spinning machines to produce bulked continuous carpet filament while the second vacuum pump is shut down for cleaning.
  • A method of manufacturing bulked continuous carpet filament, according to various embodiments, comprises: (A) providing a multi-screw extruder that comprises: (1) an multi-rotating screw (MRS) section housing a plurality of satellite screws, each of the plurality of satellite screws being at least partially housed within a respective extruder barrel and mounted to rotate about its respective central axis; and (2) a satellite screw extruder support system that is adapted to orbitally rotate each of the plurality of satellite screws about a main axis as each of the plurality of satellite screws rotate about its respective central axis, the main axis being substantially parallel to each respective central axis; (B) providing a pressure regulation system configured to reduce a pressure within the multi-rotating screw section to between about 0 mbar and about 5 mbar, the pressure regulation system comprising at least a first catch pot and a second catch pot, wherein the first catch pot and the second catch pot are both configured to collect one or more volatile organics and other material removed from a polymer melt by a low-pressure vacuum created by the pressure regulation system; (C) using the pressure regulation system to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; (D) passing a polymer melt comprising recycled PET through the multi-screw extruder while the pressure regulation system is maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars; (E) after the step of passing the polymer melt through the multi-screw extruder, feeding the polymer melt into a first polymer transfer line and a second polymer transfer line.; (F) providing a first spinning machine; (G) using the first spinning machine to produce bulked continuous carpet filament via the first polymer transfer line; (H) providing a second spinning machine; (I) using the second spinning machine to produce bulked continuous carpet filament via the second polymer transfer line; (J) at least partially shutting down the pressure regulation system; (K) while the pressure regulation system is at least partially shut down, cleaning at least the first catch pot; and (L) after cleaning at least the first catch pot, resuming full operation of the pressure regulation system.
  • In particular embodiments: (A) the pressure regulation system comprises a first vacuum pump; (B) at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump; (C) the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump; and (D) cleaning at least the first catch pot comprises cleaning the first catch pot and the second catch pot. In some embodiments: (A) the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump; (B) at least partially shutting down the pressure regulation system comprises mechanically isolating the first catch pot from the vacuum chamber of the first vacuum pump; (C)cleaning at least the first catch pot comprises cleaning the first catch pot; and (D) the method further comprises, while the first catch pot is mechanically isolated from the vacuum chamber of the first vacuum pump: (1) continuing to use the pressure regulation system to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; and (2) continuing to pass the polymer melt comprising recycled PET through the multi-screw extruder while the pressure regulation system is maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars. In any embodiment described herein, the second catch pot may be configured to collect the one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the pressure regulation system while the first catch pot is mechanically isolated from the vacuum chamber of the first vacuum pump.
  • In still other embodiments: (A) the pressure regulation system comprises a first vacuum pump and a second vacuum pump; (B) at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump and using the second vacuum pump to maintain a pressure within the MRS Section of between about 20 mbar and about 40 mbar; and (C) cleaning at least the first catch pot comprises cleaning one or more components of the first vacuum pump. In particular embodiments, at least partially shutting down the pressure regulation system further comprises mechanically isolating the first vacuum pump from the MRS Section. In some embodiments, continuing to produce bulked continuous carpet filament via the first and second polymer transfer lines while the pressure regulation system is at least partially shut down.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
  • FIG. 1 depicts a process flow, according to a particular embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 2 depicts a process flow depicting the flow of polymer through a Multi-Rotating Screw (MRS) extruder with a dual vacuum arrangement according to a particular embodiment.
  • FIG. 3 depicts a process flow, according to yet another embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 4 depicts a process flow, according to a particular embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 5 is a perspective view of an MRS extruder that is suitable for use in the process of FIG. 1.
  • FIG. 6 is a cross-sectional view of an exemplary MRS section of the MRS extruder of FIG. 5.
  • FIG. 7 depicts a process flow depicting the flow of polymer through an MRS extruder and filtration system according to a particular embodiment.
  • FIG. 8 is a high-level flow chart of a method, according to various embodiments, of manufacturing bulked continuous carpet filament.
  • DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS
  • Various embodiments will now be described in greater detail. It should be understood that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
  • I. Overview
  • New processes for making fiber from recycled polymer (e.g., recycled PET polymer) are described below. In various embodiments, these new processes utilize a dual vacuum arrangement (e.g., at least two vacuum pumps) operably coupled to the MRS section of an MRS extruder in order to remove one or more impurities from recycled polymer as the recycled polymer passes through the MRS section such that the new process: (1) is more effective than earlier processes in removing contaminates and water from the recycled polymer; (2) allows for an increased throughput through a single MRS extruder, which may, for example, result in a doubling of a number of thread lines produced from a single MRS extruder; (3) results in a desired intrinsic viscosity for the extruded recycled polymer at the increased throughput; and/or (4) reduces an amount of downtime of a particular production line that includes a single MRS extruder. In at least one embodiment, the improved process results in a recycled PET polymer having a polymer quality that is high enough that the PET polymer may be used in producing bulked continuous carpet filament from 100% recycled PET content (e.g., 100% from PET obtained from previously used PET bottles or other source of recycled PET).
  • A BCF (bulked continuous filament) manufacturing process, according to a particular embodiment, may generally be broken down into three steps: (1) preparing flakes of PET polymer from post-consumer bottles for use in the process; (2) passing the flakes through an extruder that melts the flakes and purifies the resulting PET polymer; and (3) feeding the purified polymer into one or more spinning machines (e.g., two spinning machines, three spinning machines, four spinning machines, eight spinning machines, up to twenty spinning machines, or any other suitable number of spinning machines) that turn the polymer into filament for use in manufacturing carpets. Various embodiments of such processes are described in U.S. Pat. No. 9,409,363 B2 entitled “Method of Manufacturing Bulked Continuous Filaments,” filed Apr. 18, 2014, which is hereby incorporated by reference in its entirety. In various embodiments, a BCF manufacturing process utilizes a single MRS extruder to feed a single polymer transfer line. In embodiments utilizing a dual vacuum arrangement or other process such as those described herein, the MRS extruder may feed two or more polymer transfer lines in order to increase an amount of BCF (e.g., or recycled polymer pellets) produced in a particular period of time using a single extrusion line.
  • II. More Detailed Discussion
  • A process for producing fiber (e.g., Bulked Continuous Filament or BCF) from recycled polymer (e.g., recycled PET polymer), in various embodiments, utilizes a single multi-rotating screw extruder (e.g., MRS Extruder) to feed a plurality of spinning machines (e.g., two or more spinning machines). In various embodiments, by feeding a plurality of spinning machines from a single MRS Extruder, the process may enable an increase in a total amount of BCF produced over systems that utilize a single MRS Extruder to feed a single polymer transfer line or spinning machine over the same period of time.
  • As may be understood by one skilled in the art, in order to maintain a similar production rate of BCF in a plurality of spinning machines (e.g., two spinning machines) as is possible in feeding a single spinning machine from a single MRS Extruder, it may be necessary to increase a throughput of the MRS Extruder. For example, in embodiments in which the single MRS Extruder is feeding two spinning machines instead of one, it may be necessary to double the throughput of the MRS Extruder in order to achieve a throughput in each of the two spinning machines that is substantially similar to (e.g., the same as) throughput would be for a single spinning machine fed by a single MRS Extruder.
  • As may be further understood by one skilled in the art, increasing a throughput in the MRS Extruder may increase a frequency with which a vacuum pump or other pressure regulation system that is configured to remove volatile organics and other contaminants present in the melted polymer as the melted polymer passes through the MRS Section of the MRS Extruder needs to be cleaned. In various embodiments, the process may require the vacuum pump or pressure regulation system to reduce a pressure within the MRS Section below about 5 millibars (e.g., below about 2 millibars) in order to sufficiently remove volatile organics and other contaminants from the recycled polymer. In particular embodiments, a dirty vacuum pump or pressure regulation system may run less efficiently than a clean vacuum pump or pressure regulation system, such that the system may be unable to maintain a pressure within the MRS Section at a pressure that is sufficiently low to sufficiently remove the volatile organics and other contaminants from the recycled polymer.
  • In various embodiments, the process is configured to produce recycled PET polymer that has an intrinsic viscosity of at least about 0.79 dL/g (e.g., of between about 0.79 dL/g and about 1.00 dL/g). In particular embodiments, the process is configured to achieve the desired intrinsic viscosity by doubling an exposure time of the polymer melt to the vacuum in the MRS Section.
  • Accordingly, in particular embodiments, it may be necessary to shut down the MRS Extruder periodically in order to clean the vacuum pump or other pressure regulation system. As may be understood in light of this disclosure, shutting down the MRS Extruder may result in lost production time due to an inability to produce BCF during the down-time required to clean the vacuum pump or other pressure regulation system. In particular embodiments, such as embodiments in which the MRS Extruder feeds a single spinning machine via a single polymer transfer line, the process may involve cleaning the vacuum pump every six or seven days. In other embodiments, such as embodiments in which the MRS Extruder feeds two spinning machines via two respective polymer transfer lines, the process may involve cleaning the vacuum pump every two or three days. In still other embodiments, the vacuum pump may require cleaning at any other suitable interval necessary to maintain the vacuum pump in a manner sufficient to reduce a pressure within the MRS Section below a suitable level.
  • In various embodiments, cleaning a vacuum pump may take between about 15 minutes and about 1 hour. In various embodiments, cleaning a vacuum pump may include cleaning one or more catch pots that are configured to collect one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the vacuum pump (e.g., one or more vacuum pumps). In particular embodiments, cleaning each particular catch pot may take between about three minutes and about five minute (e.g., about three minutes). In other embodiments, cleaning the vacuum pump may include cleaning one or more valves, elbows, pipes, etc. that make up the vacuum pump, or provide one or more connections between the vacuum pump, the MRS Extruder, the one or more catch pots, etc. In various embodiments, cleaning the pressure regulation system (e.g., one or more components that make up the pressure regulation system) may take between about twenty minutes and about twenty five minutes). In any embodiment described herein, reference to cleaning of a particular vacuum pump or particular pressure regulation system may refer to cleaning any particular component of the particular pump or pressure regulation system (e.g., one or more pipes, valves, elbows, catch pots, etc.).
  • In certain embodiments, a particular MRS Extruder may be configured to produce up to about 4,000 pounds of fiber per hour. In various embodiments, a particular spinning machine may produce up to about 36 fiber ends (e.g., 24 ends) via one or more spinnerets. Shutting down two spinning machines as a result of having to clean a vacuum pump, pressure regulation system, or other component thereof may result in having to shut down up to about 48 fiber ends (e.g., up to about 72 fiber ends) for a particular period of time. Accordingly, in light of the above, even a short amount of downtime may, for example, reduce a profitability of a particular MRS Extruder's BCF production line.
  • In particular embodiments, such as embodiments of the process described herein, the process may utilize a plurality of vacuum pumps to reduce the pressure within the MRS Section below about 5 millibars (e.g., below about 2 millibars). In exemplary embodiments, the plurality of vacuum pumps are arranged in series with one another. In other exemplary embodiments, the plurality of vacuum pumps are arranged in parallel. In particular embodiments, the plurality of vacuum pumps comprise two vacuum pumps. In such embodiments, the two vacuum pumps may cooperate to maintain the pressure in the MRS Section below a suitable pressure for sufficiently removing volatile organics and other contaminants from the recycled polymer melt. In such embodiments, the use of a plurality of vacuum pumps (e.g., two vacuum pumps) may reduce a frequency with which each of the plurality of vacuum pumps requires cleaning. In various embodiments, the process may involve alternating cleaning of the two vacuum pumps in order to enable cleaning of each particular vacuum pump without having to shut down a particular MRS Extruder's production line in order to perform the cleaning (e.g., because the first vacuum pump is configured to independently maintain the pressure within the MRS Section below the threshold value while the second vacuum pump is cleaned).
  • In various embodiments, each of the plurality of vacuums are independently configured for and capable of maintaining a pressure within the MRS section below about 5 millibars. In such embodiments, the system is configured such that while any one of the plurality of vacuums is offline for cleaning, any one or more of the remaining plurality of vacuum pumps is maintaining the desired pressure within the MRS Section (e.g., below about 5 millibars).
  • III. Exemplary Process Flow
  • FIG. 1 depicts an exemplary process flow that utilizes a dual vacuum arrangement as described above. As may be understood from this Figure, the process begins by running PET 102 through an MRS extruder 100. It should be understood that PET 102 is used for exemplary purposes, and that other embodiments may utilize one or more other polymers in the process (e.g., one or more polymers other than PET). As may be understood in light of this disclosure, the PET 102 may include PET 102 from any suitable source (e.g., recycled PET, virgin PET, etc.). In various embodiments, the PET 102 may include PET 102 that has gone through one or more suitable pre-processing steps (e.g., washing, drying, grinding, etc.). In particular embodiments, these one or more suitable-preprocessing steps may include any suitable step described in U.S. Pat. No. 9,409,363 B2 entitled “Method of Manufacturing Bulked Continuous Filaments,” filed Apr. 18, 2014, which is incorporated herein by reference in its entirety. In particular embodiments, the PET 102 comprises a polymer melt.
  • In various embodiments, the MRS Extruder 100 includes any suitable MRS Extruder 100, such as any suitable MRS extruder is described in U.S. Published Patent Application 2005/0047267, entitled “Extruder for Producing Molten Plastic Materials”, which was published on Mar. 3, 2005, and which is hereby incorporated herein in its entirety. In various embodinets, the PET 102 is fed into the MRS Extruder 100 where it melts into molten polymer.
  • In various embodiments, the MRS Extruder 100 then separates the melt flow into a plurality of different streams (e.g., 4, 6, 8, or more streams) through respective open chambers. These streams, as shown in FIG. 2, are subsequently fed, respectively, through a plurality of satellite screws in an MRS Section 120 (e.g., eight satellite screws). As may be further understood from FIG. 2, the MRS Extruder 100 further comprises a first single screw section 110 that feeds the polymer into the MRS Section 120 and a second single screw section 130 that recombines the polymer stream into a single stream following the MRS Section 120.
  • As may be understood from FIG. 2, in various embodiments, the MRS extruder's MRS Section 120 is fitted with one or more Vacuum Pumps (e.g., Vacuum Pump A 140A and Vacuum Pump B 140B) that are operatively coupled to the MRS section 120 so that Vacuum Pump A 140A and Vacuum Pump B 140B are each in communication with the interior of the MRS section 120 via a suitable respective opening in the MRS section's housing. In some embodiments, Vacuum Pump A 140A and Vacuum Pump B 140B are in operative communication with opposing portions of the MRS section 120 (e.g., via one or more respective openings). In particular embodiments, Vacuum Pump A 140A and Vacuum Pump B 140B are operatively coupled to the MRS Extruder 100 and configured to maintain a pressure within the MRS Section 120 below a particular threshold pressure (e.g., using one or more suitable computer-controllers).
  • In particular embodiments, Vacuum Pump A 140A and Vacuum Pump B 140B are arranged in series with one another. In still other embodiments, Vacuum Pump A 140A and Vacuum Pump B 140B are arranged in parallel. Although in the embodiment shown in this Figure, a dual vacuum arrangement is shown, it should be understood in light of this disclosure that various other embodiments of a multi-vacuum extruder system may include any other suitable number of (e.g., 1, 3, 4, 5, 6, 7, etc.) vacuum pumps or pressure regulation systems in communication with the interior portion MRS section 120 in any suitable arrangement.
  • In particular embodiments, each particular Vacuum Pump is configured to maintain the pressure within the MRS Section 120 within a particular pressure range. In other embodiments, one or more of a plurality of Vacuum Pumps are configured to cooperate to maintain the pressure within the particular range.
  • As discussed above, in the embodiment shown in FIGS. 1 and 2, Vacuum Pump A 140A and Vacuum Pump B 140B are configured to maintain a pressure within the MRS Section 120 below a particular pressure (e.g., or within a particular range of pressure), for example, using a suitable computer-controller. In particular embodiments, the particular pressure is below about 5 millibars. In various embodiments, the particular pressure is below about 2 millibars. In other embodiments, the particular pressure is a particular pressure within a particular pressure range between about 0 millibars and about 10 millibars. In still other embodiments, the particular pressure or pressure range is any suitable pressure or pressure range utilized for any suitable application, such as in the production of BCF from recycled PET as described herein.
  • In various embodiments, the low-pressure vacuum created by Vacuum Pump A 140A and Vacuum Pump B 140B in the MRS Section 120 may remove, for example: (1) volatile organics present in the melted polymer as the melted polymer passes through the MRS Section 120; and/or (2) at least a portion of any interstitial water that was present in the recycled polymer when it entered the MRS Extruder 100. In various embodiments, the low-pressure vacuum removes substantially all (e.g., all) of the water and contaminants from the recycled polymer melt.
  • In particular embodiments, the Vacuum Pump A 140A and Vacuum Pump B 140B each comprise a jet vacuum pump fit to the MRS extruder 100. In various embodiments, Vacuum Pump A 140A and Vacuum Pump B 140B comprise one or more mechanical lobe pumps (which may, for example, require repeated cleaning due to volatiles coming off of and condensing on the lobes of the pump). In a particular embodiment, one or more of the Vacuum Pump A 140A and Vacuum Pump B 140B comprise a jet vacuum pump made by Arpuma GmbH of Bergheim, Germany.
  • As may be understood from FIG. 1, following extrusion by the MRS Extruder 100, the process includes splitting the resulting polymer melt into two polymer transfer lines (e.g., 108A and 108B) in order to feed at least two spinning machines (e.g., Spinning Machine A 112A and Spinning Machine B 112B). As discussed above, by feeding at least two spinning machines from a single MRS Extruder 100, the process may enable up to a doubling (or more) of an amount of BCF produced from the single MRS Extruder 100. Although the embodiment shown in this figure depicts a single extruder feeding two spinning machines, it should be understood that in other embodiments of the process described herein, the process may include feeding any other suitable number of spinning machines. For example, in some embodiments, the extruder is configured to feed up to twenty-four spinning machines (e.g., two spinning machines, four spinning machines, six spinning machines, eight spinning machines, ten spinning machines, sixteen spinning machines, etc.).
  • In particular embodiments, the at least two spinning machines (e.g., Spinning Machine A 112A and Spinning Machine B 112B) used in the process described above comprise at least two Sytec One spinning machines manufactured by Oerlikon Neumag of Neumuenster, Germany. The Sytec One machine may be especially adapted for hard-to-run fibers, such as nylon or solution-dyed fibers, where the filaments are prone to breakage during processing. In various embodiments, the Sytec One machines keep the runs downstream of the spinneret as straight as possible, use only one threadline each, and are designed to be quick to rethread when there are filament breaks.
  • Although the example described above describes using the Sytec One spinning machine to produce carpet yarn filament from the polymer, it should be understood that any other suitable spinning machine may be used. Such spinning machines may include, for example, any suitable one-threadline or three-threadline spinning machine made by Oerlikon Neumag of Neumuenster, Germany or any other company.
  • IV. Exemplary Process Implementation
  • In particular embodiments, the process may be implemented in the context of a production line for producing BCF from recycled PET (e.g., recycled PET bottles). In a particular example, the process includes a single MRS Extruder coupled to a first vacuum pump 140A and a second vacuum pump 140B. In this example, the first vacuum pump and second vacuum pump are configured to cooperate to maintain a pressure within an MRS Section of the MRS Extruder below about 5 millibars during extrusion of the recycled PET. The first and second vacuum pumps are further configured to independently maintain pressure within an MRS Section of the MRS Extruder below about 5 millibars during extrusion of the recycled PET (e.g., while the other vacuum pump may be offline for cleaning).
  • In this example, the first and second vacuum pump may alternately be cleaned according to a particular cleaning schedule such that for example, the first vacuum pump is cleaned at a first time and the second vacuum pump is cleaned at a second time that does not coincide with the first time. In such embodiments, while the first vacuum pump is being cleaned (e.g., and offline), the production line continues to produce BCF via the MRS Extruder and the second vacuum pump is configured to maintain the pressure within the MRS Section below about 5 millibars (e.g., while the first vacuum pump is offline for cleaning).
  • In particular other embodiments, while the first vacuum pump is being cleaned (e.g., and offline), the production line continues to produce BCF via the MRS Extruder and the second vacuum pump is configured to maintain the pressure within the MRS Section at a pressure other than below about 5 millibars (e.g., while the first vacuum pump is offline for cleaning). For example, in a particular embodiment, the process involves raising a pressure level within the MRS Section using the second vacuum pump while the first vacuum pump is offline for cleaning. For example, the system may be configured to maintain a pressure of up to about 40 mbar (e.g., up to about 25 mbar, up to about 30 mbar, etc.) within the MRS Section using the second vacuum pump while the first vacuum pump is offline for cleaning. In such embodiments, the process may be configured to continue to produce BCF while the first vacuum pump is offline. In various embodiments, the process may, for example, involve: (1) shutting down the first vacuum pump; (2) raising the pressure in the MRS Section using the second vacuum pump to about 25 mbar; (2) cleaning the first vacuum pump; (3) powering up the first vacuum pump after cleaning; and (4) reducing the pressure within the MRS Section back to below about 5 mbar using the first and second vacuum pumps. The system may, in various embodiments, perform similar steps in order to independently clean the second vacuum pump.
  • In particular embodiments, the process may involve mechanically isolating either of the first vacuum pump or the second vacuum pump (e.g., before or after the first or second vacuum pumped has been shut down). In this way, the process may enable the remaining vacuum pump to achieve the desired pressure within the MRS Section without pulling air from the shut-off pump. By mechanically isolating the powered off pump, the process may allow for access to one or more components of the powered-off pump (e.g., one or more catch pots, valves, pipes, hoses, elbows, etc.) for cleaning without affecting the vacuum within the MRS Section.
  • In this example, the MRS Extruder feeds two polymer transfer lines (e.g., which feed two spinning machines), which may, for example, double a production capacity of the production line when compared to a production line that feeds a single spinning machine (e.g., via a single polymer transfer line). By utilizing the system described herein, the process may result in the process running without any downtime (e.g., with limited downtime) associated with or resulting from cleaning a vacuum pump (e.g., is configured to run substantially continuously). In various embodiments, the process may involve mechanically isolating a particular one of the vacuum pumps using: (1) one or more valves; (2) one or more plates or other mechanical components to at least temporarily mechanically seal off the particular vacuum pump from the MRS Section. In particular embodiments, closing off the particular vacuum pump from the MRS Section may include sufficiently mechanically isolating the particular vacuum pump such that air cannot flow between a vacuum chamber of the vacuum pump and the MRS Section.
  • FIG. 3 depicts a process flow for producing BCF according to yet another embodiment. In the embodiment shown in this figure, the process includes a single vacuum pump 140A operably coupled to the extruder 100 that is configured to remove at least a portion of volatile organics and interstitial water from the polymer melt as the melt passes through the extruder. As shown in FIG. 3, the Vacuum Pump 140A includes a first catch pot 142A and a second catch pot 142B. Although the embodiment shown in this figure depicts a vacuum pump 140A that utilizes two catch pots, it should be understood that in other embodiments of the process, a vacuum pump 140A may be equipped with any suitable number of catch pots (e.g., one catch pot, two catch pots, three catch pots, four catch pots, etc.). In particular embodiments, each of the one or more catch pots (e.g., the first catch pot 142A and the second catch pot 142B) are configured to collect one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the vacuum pump (e.g., one or more vacuum pumps). In various embodiments, each catch pot may be operably connected to the vacuum pump (e.g., a vacuum chamber of the vacuum pump) in any suitable manner (e.g., via one or more pipes, elbows, valves, etc.).
  • In particular embodiments, when cleaning a particular vacuum pump, the process may include cleaning one or more of the individual catch pots (e.g., the first catch pot 142A and/or the second catch pot 142B) that make up part of the vacuum system. In various embodiments, the process involves shutting down the entire extrusion line in order to clean each of the catch pots (e.g., the first catch pot 142A and/or the second catch pot 142B) that make up part of the vacuum system while the extrusion line (e.g., and the vacuum pump 140A) are offline). In other embodiment's, the process may involve cleaning one or more of the catch pots (e.g., the first catch pot 142A and/or the second catch pot 142B) that make up part of the vacuum system while the extrusion line is still running. In such embodiments, the process may, for example, include the steps of: (1) mechanically isolating the first catch pot 142A from the Vacuum Pump A 140A; (2) continuing to maintain a desired pressure within the extruder 100 using the Vacuum Pump A 140A (e.g., less than about 5 mbarr); (3) cleaning the first catch pot 142A; and (4) ceasing mechanical isolation of the cleaned first catch pot 142 from the Vacuum Pump A 140A.
  • In various embodiments, the use of one or more additional catch pots (e.g., two catch pots) may reduce a frequency with which a single vacuum pumped used as part of the process requires cleaning. As such, as described herein, a dual or more catch pot arrangement may reduce a downtime of the process resulting from a need to clean one or more vacuum components.
  • Any embodiment of a dual vacuum and/or dual catch-pot arrangement described herein may be used in the context of any suitable BCF (bulked continuous filament) manufacturing process described below. In particular embodiments, any vacuum pump or pressure regulation technique described herein may be utilized in the any process flow described below with respect to a BCF extrusion line. In various other embodiment described below, the process may feed any suitable number of polymer transfer lines (e.g., spinning machines) such as is described above.
  • A BCF (bulked continuous filament) manufacturing process (e.g., see FIG. 4), according to a particular embodiment, may generally be broken down into three steps: (1) preparing flakes of PET polymer from post-consumer bottles for use in the process; (2) passing the flakes through an extruder that melts the flakes and purifies the resulting PET polymer; and (3) feeding the purified polymer into a spinning machine that turns the polymer into filament for use in manufacturing carpets. These three steps are described in greater detail below.
  • STEP 1: Preparing Flakes of PET Polymer from Post-Consumer Bottles
  • In a particular embodiment, the step of preparing flakes of PET polymer from post-consumer bottles comprises: (A) sorting post-consumer PET bottles and grinding the bottles into flakes; (B) washing the flakes; and (C) identifying and removing any impurities or impure flakes.
  • A. Sorting Post-Consumer PET bottles and Grinding the Bottles into Flakes
  • In particular embodiments, bales of clear and mixed colored recycled post-consumer (e.g., “curbside”) PET bottles (or other containers) obtained from various recycling facilities make-up the post-consumer PET containers for use in the process. In other embodiments, the source of the post-consumer PET containers may be returned ‘deposit’ bottles (e.g., PET bottles whose price includes a deposit that is returned to a customer when the customer returns the bottle after consuming the bottle's contents). The curbside or returned “post-consumer” or “recycled” containers may contain a small level of non-PET contaminates. The contaminants in the containers may include, for example, non-PET polymeric contaminants (e.g., PVC, PLA, PP, PE, PS, PA, etc.), metal (e.g., ferrous and non-ferrous metal), paper, cardboard, sand, glass or other unwanted materials that may find their way into the collection of recycled PET. The non-PET contaminants may be removed from the desired PET components, for example, through one or more of the various processes described below.
  • In particular embodiments, smaller components and debris (e.g., components and debris greater than 2 inches in size) are removed from the whole bottles via a rotating trammel. Various metal removal magnets and eddy current systems may be incorporated into the process to remove any metal contaminants. Near Infra-Red optical sorting equipment such as the NRT Multi Sort IR machine from Bulk Handling Systems Company of Eugene, Oreg., or the Spyder IR machine from National Recovery Technologies of Nashville, Tenn., may be utilized to remove any loose polymeric contaminants that may be mixed in with the PET flakes (e.g., PVC, PLA, PP, PE, PS, and PA). Additionally, automated X-ray sorting equipment such as a VINYLCYCLE machine from National Recovery Technologies of Nashville, Tenn. may be utilized to remove remaining PVC contaminants.
  • In particular embodiments, a binary segregation of the clear materials from the colored materials is achieved using automated color sorting equipment equipped with a camera detection system (e.g., an Multisort ES machine from National Recovery Technologies of Nashville, Tenn.). In various embodiments, manual sorters are stationed at various points on the line to remove contaminants not removed by the sorter and any colored bottles. In particular embodiments, the sorted material is taken through a granulation step (e.g., using a 50B Granulator machine from Cumberland Engineering Corporation of New Berlin, Wis.) to size reduce (e.g., grind) the bottles down to a size of less than one half of an inch. In various embodiments, the bottle labels are removed from the resultant “dirty flake” (e.g., the PET flakes formed during the granulation step) via an air separation system prior to entering the wash process.
  • B. Washing the Flakes
  • In particular embodiments, the “dirty flake” is then mixed into a series of wash tanks. As part of the wash process, in various embodiments, an aqueous density separation is utilized to separate the olefin bottle caps (which may, for example, be present in the “dirty flake” as remnants from recycled PET bottles) from the higher specific gravity PET flakes. In particular embodiments, the flakes are washed in a heated caustic bath to about 190 degrees Fahrenheit. In particular embodiments, the caustic bath is maintained at a concentration of between about 0.6% and about 1.2% sodium hydroxide. In various embodiments, soap surfactants as well as defoaming agents are added to the caustic bath, for example, to further increase the separation and cleaning of the flakes. A double rinse system then washes the caustic from the flakes.
  • In various embodiments, the flake is centrifugally dewatered and then dried with hot air to at least substantially remove any surface moisture. The resultant “clean flake” is then processed through an electrostatic separation system (e.g., an electrostatic separator from Carpco, Inc. of Jacksonville, Fla.) and a flake metal detection system (e.g., an MSS Metal Sorting System) to further remove any metal contaminants that remain in the flake. In particular embodiments, an air separation step removes any remaining label from the clean flake. In various embodiments, the flake is then taken through a flake color sorting step (e.g., using an OPTIMIX machine from TSM Control Systems of Dundalk, Ireland) to remove any remaining color contaminants remaining in the flake. In various embodiments, an electro-optical flake sorter based at least in part on Raman technology (e.g., a Powersort 200 from Unisensor Sensorsysteme GmbH of Karlsruhe, Germany) performs the final polymer separation to remove any non-PET polymers remaining in the flake. This step may also further remove any remaining metal contaminants and color contaminants.
  • In various embodiments, the combination of these steps delivers substantially clean (e.g., clean) PET bottle flake comprising less than about 50 parts per million PVC (e.g., 25 ppm PVC) and less than about 15 parts per million metals for use in the downstream extrusion process described below.
  • C. Identifying and Removing Impurities and Impure Flakes
  • In particular embodiments, after the flakes are washed, they are fed down a conveyor and scanned with a high-speed laser system 300. In various embodiments, particular lasers that make up the high-speed laser system 300 are configured to detect the presence of particular contaminates (e.g., PVC or Aluminum). Flakes that are identified as not consisting essentially of PET may be blown from the main stream of flakes with air jets. In various embodiments, the resulting level of non-PET flakes is less than 25 ppm.
  • In various embodiments, the system is adapted to ensure that the PET polymer being processed into filament is substantially free of water (e.g., entirely free of water). In a particular embodiment, the flakes are placed into a pre-conditioner for between about 20 and about 40 minutes (e.g., about 30 minutes) during which the pre-conditioner blows the surface water off of the flakes. In particular embodiments, interstitial water remains within the flakes. In various embodiments, these “wet” flakes (e.g., flakes comprising interstitial water) may then be fed into an extruder (e.g., as described in Step 2 below), which includes a vacuum setup designed to remove—among other things—the interstitial water that remains present in the flakes following the quick-drying process described above.
  • STEP 2: Using an Extrusion System to Melt and Purify PET Flakes
  • In particular embodiments, an extruder is used to turn the wet flakes described above into a molten recycled PET polymer and to perform a number of purification processes to prepare the polymer to be turned into BCF for carpet. As noted above, in various embodiments, after STEP 1 is complete, the recycled PET polymer flakes are wet (e.g., surface water is substantially removed (e.g., fully removed) from the flakes, but interstitial water remains in the flakes). In particular embodiments, these wet flakes are fed into a Multiple Rotating Screw (“MRS”) extruder 400. In other embodiments, the wet flakes are fed into any other suitable extruder (e.g., a twin screw extruder, a multiple screw extruder, a planetary extruder, or any other suitable extrusion system). An exemplary MRS Extruder 400 is shown in FIGS. 5 and 6. A particular example of such an MRS extruder is described in U.S. Published Patent Application 2005/0047267, entitled “Extruder for Producing Molten Plastic Materials”, which was published on Mar. 3, 2005, and which is hereby incorporated herein by reference.
  • As may be understood from this figure, in particular embodiments, the MRS extruder includes a first single-screw extruder section 410 for feeding material into an MRS section 420 and a second single-screw extruder section 440 for transporting material away from the MRS section.
  • In various embodiments, the wet flakes are fed directly into the MRS extruder 400 substantially immediately (e.g., immediately) following the washing step described above (e.g., without drying the flakes or allowing the flakes to dry). In particular embodiments, a system that feeds the wet flakes directly into the MRS Extruder 400 substantially immediately (e.g., immediately) following the washing step described above may consume about 20% less energy than a system that substantially fully pre-dries the flakes before extrusion (e.g., a system that pre-dries the flakes by passing hot air over the wet flakes for a prolonged period of time). In various embodiments, a system that feeds the wet flakes directly into the MRS Extruder 400 substantially immediately (e.g., immediately) following the washing step described above avoids the need to wait a period of time (e.g., up to eight hours) generally required to fully dry the flakes (e.g., remove all of the surface and interstitial water from the flakes).
  • FIG. 7 depicts a process flow that illustrates the various processes performed by the MRS Extruder 400 in a particular embodiment. In the embodiment shown in this figure, the wet flakes are first fed through the MRS extruder's first single-screw extruder section 410, which may, for example, generate sufficient heat (e.g., via shearing) to at least substantially melt (e.g., melt) the wet flakes.
  • The resultant polymer melt (e.g., comprising the melted flakes), in various embodiments, is then fed into the extruder's MRS section 420, in which the extruder separates the melt flow into a plurality of different streams (e.g., 4, 6, 8, or more streams) through a plurality of open chambers. FIG. 3 shows a detailed cutaway view of an MRS Section 420 according to a particular embodiment. In particular embodiments, such as the embodiment shown in this figure, the MRS Section 420 separates the melt flow into eight different streams, which are subsequently fed through eight satellite screws 425A-H. As may be understood from FIG. 5, in particular embodiments, these satellite screws are substantially parallel (e.g., parallel) to one other and to a primary screw axis of the MRS Machine 400.
  • In the MRS section 420, in various embodiments, the satellite screws 425A-H may, for example, rotate faster than (e.g., about four times faster than) in previous systems. As shown in FIG. 6, in particular embodiments: (1) the satellite screws 425A-H are arranged within a single screw drum 428 that is mounted to rotate about its central axis; and (2) the satellite screws 425A-H are configured to rotate in a direction that is opposite to the direction in which the single screw drum rotates 428. In various other embodiments, the satellite screws 425A-H and the single screw drum 428 rotate in the same direction. In particular embodiments, the rotation of the satellite screws 425A-H is driven by a ring gear. Also, in various embodiments, the single screw drum 428 rotates about four times faster than each individual satellite screw 425A-H. In certain embodiments, the satellite screws 425A-H rotate at substantially similar (e.g., the same) speeds.
  • In various embodiments, as may be understood from FIG. 7, the satellite screws 425A-H are housed within respective extruder barrels, which may, for example be about 30% open to the outer chamber of the MRS section 420. In particular embodiments, the rotation of the satellite screws 425A-H and single screw drum 428 increases the surface exchange of the polymer melt (e.g., exposes more surface area of the melted polymer to the open chamber than in previous systems). In various embodiments, the MRS section 420 creates a melt surface area that is, for example, between about twenty and about thirty times greater than the melt surface area created by a co-rotating twin screw extruder. In a particular embodiment, the MRS section 420 creates a melt surface area that is, for example, about twenty five times greater than the melt surface area created by a co-rotating twin screw extruder
  • In various embodiments, the MRS extruder's MRS Section 420 is fitted with a Vacuum Pump 430 that is attached to a vacuum attachment portion 422 of the MRS section 420 so that the Vacuum Pump 430 is in communication with the interior of the MRS section via a suitable opening 424 in the MRS section's housing. In still other embodiments, the MRS Section 420 is fitted with a series of Vacuum Pumps. In particular embodiments, the Vacuum Pump 430 is configured to reduce the pressure within the interior of the MRS Section 420 to a pressure that is between about 0.5 millibars and about 5 millibars. In particular embodiments, the Vacuum Pump 430 is configured to reduce the pressure in the MRS Section 420 to less than about 1.5 millibars (e.g., about 1 millibar or less). The low-pressure vacuum created by the Vacuum Pump 430 in the MRS Section 420 may remove, for example: (1) volatile organics present in the melted polymer as the melted polymer passes through the MRS Section 420; and/or (2) at least a portion of any interstitial water that was present in the wet flakes when the wet flakes entered the MRS Extruder 400. In various embodiments, the low-pressure vacuum removes substantially all (e.g., all) of the water and contaminants from the polymer stream.
  • In a particular example, the Vacuum Pump 430 comprises three mechanical lobe vacuum pumps (e.g., arranged in series) to reduce the pressure in the chamber to a suitable level (e.g., to a pressure of about 1.0 millibar). In other embodiments, rather than the three mechanical lobe vacuum pump arrangement discussed above, the Vacuum Pump 430 includes a jet vacuum pump fit to the MRS extruder. In various embodiments, the jet vacuum pump is configured to achieve about 1 millibar of pressure in the interior of the MRS section 420 and about the same results described above regarding a resulting intrinsic viscosity of the polymer melt. In various embodiments, using a jet vacuum pump can be advantageous because jet vacuum pumps are steam powered and therefore substantially self-cleaning (e.g., self-cleaning), thereby reducing the maintenance required in comparison to mechanical lobe pumps (which may, for example, require repeated cleaning due to volatiles coming off and condensing on the lobes of the pump). In a particular embodiment, the Vacuum Pump 430 is a jet vacuum pump is made by Arpuma GmbH of Bergheim, Germany.
  • In particular embodiments, after the molten polymer is run the through the multi-stream
  • MRS Section 420, the streams of molten polymer are recombined and flow into the MRS extruder's second single screw section 440. In various embodiments, the single stream of molten polymer is next run through a filtration system 450 that includes at least one filter. In a particular embodiment, the filtration system 450 includes two levels of filtration (e.g., a 40 micron screen filter followed by a 25 micron screen filter). Although, in various embodiments, water and volatile organic impurities are removed during the vacuum process as discussed above, particulate contaminates such as, for example, aluminum particles, sand, dirt, and other contaminants may remain in the polymer melt. Thus, this filtration step may be advantageous in removing particulate contaminates (e.g., particulate contaminates that were not removed in the MRS Section 420).
  • In particular embodiments, a viscosity sensor 460 (see FIG. 7) is used to sense the melt viscosity of the molten polymer stream following its passage through the filtration system 450. In various embodiments, the viscosity sensor 460, measures the melt viscosity of the stream, for example, by measuring the stream's pressure drop across a known area. In particular embodiments, in response to measuring an intrinsic viscosity of the stream that is below a predetermined level (e.g., below about 0.8 g/dL), the system may: (1) discard the portion of the stream with low intrinsic viscosity; and/or (2) lower the pressure in the MRS Section 420 in order to achieve a higher intrinsic viscosity in the polymer melt. In particular embodiments, decreasing the pressure in the MRS Section 420 is executed in a substantially automated manner (e.g., automatically) using the viscosity sensor in a computer-controlled feedback control loop with the vacuum section 430.
  • In particular embodiments, removing the water and contaminates from the polymer improves the intrinsic viscosity of the recycled PET polymer by allowing polymer chains in the polymer to reconnect and extend the chain length. In particular embodiments, following its passage through the MRS Section 420 with its attached Vacuum Pump 430, the recycled polymer melt has an intrinsic viscosity of at least about 0.79 dL/g (e.g., of between about 0.79 dL/g and about 1.00 dL/g). In particular embodiments, passage through the low pressure MRS Section 420 purifies the recycled polymer melt (e.g., by removing the contaminants and interstitial water) and makes the recycled polymer substantially structurally similar to (e.g., structurally the same as) pure virgin PET polymer. In particular embodiments, the water removed by the vacuum includes both water from the wash water used to clean the recycled PET bottles as described above, as well as from unreacted water generated by the melting of the PET polymer in the single screw heater 410 (e.g., interstitial water). In particular embodiments, the majority of water present in the polymer is wash water, but some percentage may be unreacted water.
  • In particular embodiments, the resulting polymer is a recycled PET polymer (e.g., obtained 100% from post-consumer PET products, such as PET bottles or containers) having a polymer quality that is suitable for use in producing PET carpet filament using substantially only (e.g., only) PET from recycled PET products.
  • Step 3: Purified PET Polymer Fed into Spinning Machine to be Turned into Carpet Yarn
  • In particular embodiments, after the recycled PET polymer has been extruded and purified by the above-described extrusion process, the resulting molten recycled PET polymer is fed directly into a BCF (or “spinning”) machine 500 that is configured to turn the molten polymer into bulked continuous filament. For example, in various embodiments, the output of the MRS extruder 400 is connected substantially directly (e.g., directly) to the input of the spinning machine 500 so that molten polymer from the extruder is fed directly into the spinning machine 500. This process may be advantageous because molten polymer may, in certain embodiments, not need to be cooled into pellets after extrusion (as it would need to be if the recycled polymer were being mixed with virgin PET polymer). In particular embodiments, not cooling the recycled molten polymer into pellets serves to avoid potential chain scission in the polymer that might lower the polymer's intrinsic viscosity.
  • In particular embodiments, the spinning machine 500 extrudes molten polymer through small holes in a spinneret in order to produce carpet yarn filament from the polymer. In particular embodiments, the molten recycled PET polymer cools after leaving the spinneret. The carpet yarn is then taken up by rollers and ultimately turned into filaments that are used to produce carpet. In various embodiments, the carpet yarn produced by the spinning machine 500 may have a tenacity between about 3 gram-force per unit denier (gf/den) and about 9 gf/den. In particular embodiments, the resulting carpet yarn has a tenacity of at least about 3 gf/den.
  • In particular embodiments, the spinning machine 500 used in the process described above is the Sytec One spinning machine manufactured by Oerlika Neumag of Neumuenster, Germany. The Sytec One machine may be especially adapted for hard-to-run fibers, such as nylon or solution-dyed fibers, where the filaments are prone to breakage during processing. In various embodiments, the Sytec One machine keeps the runs downstream of the spinneret as straight as possible, uses only one threadline, and is designed to be quick to rethread when there are filament breaks.
  • Although the example described above describes using the Sytec One spinning machine to produce carpet yarn filament from the polymer, it should be understood that any other suitable spinning machine may be used. Such spinning machines may include, for example, any suitable one-threadline or three-threadline spinning machine made by Oerlika Neumag of Neumuenster, Germany or any other company.
  • In various embodiments, the improved strength of the recycled PET polymer generated using the process above allows it to be run at higher speeds through the spinning machine 500 than would be possible using pure virgin PET polymer. This may allow for higher processing speeds than are possible when using virgin PET polymer.
  • Summary of Exemplary Process
  • FIG. 8 provides a high-level summary of the method of manufacturing bulked continuous filament described above. As shown in the figure, the method begins at Step 602, where recycled PET bottles are ground into a group of flakes. Next, at Step 604, the group of flakes is washed to remove contaminants from the flakes' respective outer surfaces. Next, at Step 606, the group of flakes is scanned (e.g., using one or more of the methods discussed above) to identify impurities, including impure flakes. These impurities, and impure flakes, are then removed from the group of flakes.
  • Next, at Step 608, the group of flakes is passed through an MRS extruder while maintaining the pressure within an MRS portion of the extruder below about 1.5 millibars. At Step 610, the resulting polymer melt is passed through at least one filter having a micron rating of less than about 50 microns. Finally, at Step 612, the recycled polymer is formed into bulked continuous carpet filament, which may be used in producing carpet. The method then ends at Step 614.
  • Alternative Embodiments
  • Other embodiments of the process described herein may be utilized in one or more other applications in addition to those described. For example, in particular embodiments, the process described herein that utilizes a dual or other multi-vacuum arrangement with a single MRS Extruder may be used in the production of PET nurdles (e.g., from recycled PET). In such embodiments, the process may utilize a slower throughput in the MRS Extruder in order to remove a sufficient amount of impurities from the molten polymer such that the resultant extruded polymer melt is sufficiently free of impurities to be suitable for formation into PET nurdles.
  • In particular embodiments, for example, higher throughput rates described above that may be utilized in order to double production of BCF of a single MRS Extruder that is feeding two polymer transfer lines may result in an extruded polymer melt with physical properties that are unsuitable for pelletizing. By reducing the throughput in the MRS Extruder, the process may expose the polymer melt to the low pressure vacuum for a longer time, which may allow for removal of a great number of impurities. As may be understood in light of this disclosure, removal of more impurities may increase a frequency with which one or more vacuum pumps require cleaning. Accordingly, one or more processes for producing PET nurdles from recycled PET may utilize the process described herein in order to similarly reduce potential downtime and required vacuum cleaning frequency.
  • Conclusion
  • Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, although the dual vacuum system discussed above is described in some embodiments as being configured to maintain the pressure in the open chambers of the MRS extruder to about 5 millibars, in other embodiments, the vacuum system may be adapted to maintain the pressure in the open chambers of the MRS extruder at pressures greater than, or less than, 1 millibars. For example, the vacuum system may be adapted to maintain this pressure at between about 0.5 millibars and about 12 millibars.
  • In addition, it should be understood that various embodiments may omit any of the steps described above or add additional steps. Furthermore, any numerical ranges described herein are intended to capture every integer and fractional value within the described range (e.g., every rational number value within the described range). For example, it should be understood that a range describing a pressure range of between about zero millibars and about ten millibars is intended to capture and disclose every rational number pressure between zero millibars and ten millibars (e.g., 1 millibars, 2 millibars, 3 millibars, 4 millibars, 2.1 millibars, 2.01 millibars, 2.001 millibars . . . . 9.999 millibars and so on). Additionally, terms such as ‘about’, ‘substantially’, etc., when used to modify structural descriptions or numerical values are intended to capture the stated shape, value, etc. as well as account for slight variations as a result of, for example, manufacturing tolerances and/or limitations. For example, the term ‘substantially rectangular’ is intended to describe shapes that are both exactly rectangular (e.g., have four sides that meet at ninety degree angles) as well as shapes that are not quite exactly rectangular (e.g., shapes having four sides that meet at an angle in an acceptable tolerance of ninety degrees, such as 90°+/−4°.
  • Similarly, although various embodiments of the systems described above may be adapted to produce carpet filament from substantially only recycled PET (so the resulting carpet filament would comprise, consist of, and/or consist essentially of recycled PET), in other embodiments, the system may be adapted to produce carpet filament from a combination of recycled PET and virgin PET. The resulting carpet filament may, for example, comprise, consist of, and/or consist essentially of between about 80% and about 100% recycled PET, and between about 0% and about 20% virgin PET.
  • Also, while various embodiments are discussed above in regard to producing carpet filament from PET, similar techniques may be used to produce carpet filament from other polymers (e.g., PTT, polyester, etc.). Similarly, while various embodiments are discussed above in regard to producing carpet filament from PET, similar techniques may be used to produce other products from PET or other polymers.
  • In addition, it should be understood that various embodiments may omit any of the steps described above or add additional steps.
  • In light of the above, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.

Claims (20)

We claim:
1. A method of manufacturing bulked continuous carpet filament, the method comprising:
(A) providing a multi-screw extruder that comprises:
(i) an MRS Section comprising a plurality of satellite screws, each of the plurality of satellite screws mounted to rotate about its respective central axis;
(B) providing a first vacuum pump configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars, the first vacuum pump being operatively coupled to the MRS Section via a first opening;
(C) providing a second vacuum pump arranged in parallel with the first vacuum pump and configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars and cooperate with the first vacuum pump to maintain a pressure within the MRS Section between about 0 millibars and about 5 millibars;
(D) using the first vacuum pump and the second vacuum pump to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars;
(E) passing a polymer melt comprising recycled PET through the multi-screw extruder while the first vacuum pump and the second vacuum pump are maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars; and
(F) after the step of passing the polymer melt through the multi-screw extruder, feeding the polymer melt into a first polymer transfer line and a second polymer transfer line.
2. The method of claim 1, further comprising:
(G) providing a first spinning machine;
(H) using the first spinning machine to produce bulked continuous carpet filament via the first polymer transfer line;
(I) providing a second spinning machine; and
(J) using the second spinning machine to produce bulked continuous carpet filament via the second polymer transfer line.
3. The method of claim 2, further comprising:
(K) shutting down the second vacuum pump for cleaning; and
(L) while the second vacuum pump is shut down for cleaning, using the first vacuum pump to maintain the pressure within the MRS Section between about 20 millibars and about 40 millibars.
4. The method of claim 3, further comprising:
(M) continuing to use the first and second spinning machines to produce bulked continuous carpet filament while the second vacuum pump is shut down for cleaning.
5. The method of claim 3, further comprising:
(K) shutting down the first vacuum pump for cleaning; and
(L) while the first vacuum pump is shut down for cleaning, using the second vacuum pump to reduce the pressure within the MRS Section to between about 20 millibars and about 40 millibars.
6. The method of claim 5 further comprising:
while the first vacuum pump is shut down for cleaning, using the second vacuum pump to reduce the pressure within the MRS Section to about 30 millibars.
7. The method of claim 5, wherein shutting down the first vacuum pump for cleaning comprises mechanically isolating the first vacuum pump from the MRS Section.
8. The method of claim 5, further comprising:
while the first vacuum pump is shut down for cleaning, cleaning one or more components that make up the first vacuum pump;
9. The method of claim 8, wherein the one or more components are selected from the group consisting of:
one or more catch pots;
one or more pipes; and
one or more elbows.
10. The method of claim 3, further comprising:
grinding a plurality of recycled PET bottles into a group of polymer flakes;
washing the group of polymer flakes to remove at least a portion of one or more contaminants from a surface of the flakes, the group of flakes comprising a first plurality of flakes that consist essentially of PET and a second plurality of flakes that do not consist essentially of PET;
after the step of washing the first plurality of flakes:
(i) scanning the washed group of flakes to identify the second plurality of flakes; and
(ii) separating the second plurality of flakes from the first plurality of flakes; and
melting the first plurality of flakes into the polymer melt prior to passing the polymer melt through the multi-screw extruder.
11. A method of manufacturing bulked continuous carpet filament, the method comprising:
(A) providing a multi-screw extruder that comprises:
an multi-rotating screw (MRS) section housing a plurality of satellite screws, each of the plurality of satellite screws being at least partially housed within a respective extruder barrel and mounted to rotate about its respective central axis; and
a satellite screw extruder support system that is adapted to orbitally rotate each of the plurality of satellite screws about a main axis as each of the plurality of satellite screws rotate about its respective central axis, the main axis being substantially parallel to each respective central axis;
(B) providing a pressure regulation system configured to reduce a pressure within the multi-rotating screw section to between about 0 mbar and about 5 mbar, the pressure regulation system comprising at least a first catch pot and a second catch pot, wherein the first catch pot and the second catch pot are both configured to collect one or more volatile organics and other material removed from a polymer melt by a low-pressure vacuum created by the pressure regulation system;
(C) using the pressure regulation system to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars;
(D) passing a polymer melt comprising recycled PET through the multi-screw extruder while the pressure regulation system is maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars;
(E) after the step of passing the polymer melt through the multi-screw extruder, feeding the polymer melt into a first polymer transfer line and a second polymer transfer line;
(F) providing a first spinning machine;
(G) using the first spinning machine to produce bulked continuous carpet filament via the first polymer transfer line;
(H) providing a second spinning machine;
(I) using the second spinning machine to produce bulked continuous carpet filament via the second polymer transfer line;
(J) at least partially shutting down the pressure regulation system;
(K) while the pressure regulation system is at least partially shut down, cleaning at least the first catch pot; and
(L) after cleaning at least the first catch pot, resuming full operation of the pressure regulation system.
12. The method of claim 11, wherein:
the pressure regulation system comprises a first vacuum pump;
at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump;
the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump; and
cleaning at least the first catch pot comprises cleaning the first catch pot and the second catch pot.
13. The method of claim 11, wherein:
the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump;
at least partially shutting down the pressure regulation system comprises mechanically isolating the first catch pot from the vacuum chamber of the first vacuum pump;
cleaning at least the first catch pot comprises cleaning the first catch pot; and
the method further comprises:
while the first catch pot is mechanically isolated from the vacuum chamber of the first vacuum pump:
continuing to use the pressure regulation system to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; and
continuing to pass the polymer melt comprising recycled PET through the multi-screw extruder while the pressure regulation system is maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars, wherein:
the second catch pot is configured to collect the one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the pressure regulation system while the first catch pot is mechanically isolated from the vacuum chamber of the first vacuum pump.
14. The method of claim 11, wherein:
the pressure regulation system comprises a first vacuum pump and a second vacuum pump; at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump and using the second vacuum pump to maintain a pressure within the MRS Section of between about 20 mbar and about 40 mbar; and cleaning at least the first catch pot comprises cleaning one or more components of the first vacuum pump.
15. The method of claim 14, wherein at least partially shutting down the pressure regulation system further comprises mechanically isolating the first vacuum pump from the MRS Section.
16. The method of claim 14, the method further comprising:
continuing to produce bulked continuous carpet filament via the first and second polymer transfer lines while the pressure regulation system is at least partially shut down.
17. The method of claim 14, wherein at least partially shutting down the pressure regulation system comprises using the second vacuum pump to maintain the pressure within the MRS Section at about 30 mbar.
18. The method of Claim of claim 14, further comprising:
providing a viscosity sensor;
using the viscosity sensor to measure an intrinsic viscosity of the polymer melt after the polymer melt passes through the multi-screw extruder; and
using the second vacuum pump to reduce the pressure in the MRS Section in response to the viscosity sensor measuring the intrinsic viscosity to be below a particular viscosity level.
19. The method of claim 18, wherein the particular viscosity level is below about 0.79 dL/g.
20. The method of claim 11, wherein the pressure regulation system is configured to to remove the one or more volatile organics and other material from the polymer melt.
US15/910,853 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods Abandoned US20180250864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/910,853 US20180250864A1 (en) 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762466632P 2017-03-03 2017-03-03
US15/910,853 US20180250864A1 (en) 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods

Publications (1)

Publication Number Publication Date
US20180250864A1 true US20180250864A1 (en) 2018-09-06

Family

ID=61692102

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/910,853 Abandoned US20180250864A1 (en) 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods
US16/489,875 Active 2038-10-08 US11279071B2 (en) 2017-03-03 2018-03-02 Method of manufacturing bulked continuous carpet filament

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/489,875 Active 2038-10-08 US11279071B2 (en) 2017-03-03 2018-03-02 Method of manufacturing bulked continuous carpet filament

Country Status (5)

Country Link
US (2) US20180250864A1 (en)
EP (1) EP3589473A1 (en)
AU (1) AU2018227587A1 (en)
EA (1) EA201992067A1 (en)
WO (1) WO2018161021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250301A1 (en) * 2021-02-10 2022-08-11 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US11045979B2 (en) 2012-05-31 2021-06-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US9636860B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US10538016B2 (en) 2012-05-31 2020-01-21 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9630353B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US8597553B1 (en) 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
EP4219114A1 (en) 2017-01-30 2023-08-02 Aladdin Manufacturing Corporation Systems and methods for manufacturing items from colored recycled pet
EP3589473A1 (en) 2017-03-03 2020-01-08 Aladdin Manufactuing Corporation Method of manufacturing bulked continuous carpet filament
CA3073425A1 (en) 2017-09-15 2019-03-21 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring method and system for manufacturing a bulked continuous carpet filament
US11242622B2 (en) 2018-07-20 2022-02-08 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate
US20220305694A1 (en) * 2019-06-05 2022-09-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069655A1 (en) * 2012-05-31 2015-03-12 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US20150343672A1 (en) * 2013-01-10 2015-12-03 Brückner Maschinenbau Gmbh & Co.Kg Device for degassing polymer melts

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1490918A (en) 1922-09-22 1924-04-22 Gaede Wolfgang High-vacuum pump
CH170967A (en) 1933-03-18 1934-08-15 Duerst Sen Emanuel Process and extrusion press for degassing kneadable press material.
US2146532A (en) 1936-03-13 1939-02-07 Du Pont Extrusion process
NL286268A (en) 1961-12-06 1900-01-01
BE626177A (en) 1961-12-22 1900-01-01
CH430182A (en) 1964-12-18 1967-02-15 Spindler Wolfgang Device for controlling extruders for plastics processing
US3608001A (en) 1969-08-26 1971-09-21 Exxon Research Engineering Co Controlled degradation of polypropylene in extruder-reactor
DD98691A1 (en) 1971-09-10 1973-07-12
DE2158246C3 (en) 1971-11-24 1979-06-28 Eickhoff-Kleinewefers Kunststoffmaschinen Gmbh, 4630 Bochum Device for the preparation and extrusion of thermoplastics
US3865528A (en) 1973-11-01 1975-02-11 Moog Inc Extrusion apparatus having electronic interpolator
US3938924A (en) 1974-03-28 1976-02-17 Celanese Corporation Thermoplastic melt apparatus
FR2319479A1 (en) 1975-08-01 1977-02-25 Creusot Loire PLASTIC DEGASING DEVICE
DE2534724C3 (en) 1975-08-04 1981-08-13 Dynamit Nobel Ag, 5210 Troisdorf Device for extruding patterned webs or sheets made of thermoplastic plastics
US4057607A (en) 1975-12-19 1977-11-08 Celanese Corporation Process for preparing shear degradable particle-containing resin powders
JPS5399268A (en) 1977-02-12 1978-08-30 Shiyouki Chiyou Low temperature fabrication process of polyethylene telephthalate
DE2719095C2 (en) 1977-04-29 1984-07-05 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Screw press for processing plastic masses, in particular plastics and rubber
DE2732696A1 (en) 1977-07-20 1979-02-22 Leybold Heraeus Gmbh & Co Kg METHOD AND DEVICE FOR EVACUATING A RECIPIENT
GB1601699A (en) 1977-11-03 1981-11-04 Gen Eng Radcliffe Method and apparatus for dispersing a liquid additive throughout a plastics material
US4269798A (en) 1978-10-23 1981-05-26 Ives Frank E Method for producing a curable, filled resin composition, e.g., artificial marble
DE2900988C2 (en) 1979-01-12 1982-07-01 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Device for the preparation of thermoplastic masses
DE2906324C2 (en) 1979-02-19 1982-06-24 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Multi-stage device for plasticizing and extrusion of plastic masses
FI792972A (en) 1979-09-25 1981-03-26 Nokia Oy Ab FOERFARANDE FOER INSPRUTNING AV TILLSATSMEDEL I VAETSKEFORM I CYLINDERN VID EN PLASTPRESS
US4370302A (en) 1980-01-04 1983-01-25 Teijin Limited Machine for solid phase polymerization
DE3030541C2 (en) 1980-08-13 1988-09-08 Rudolf P. 7000 Stuttgart Fritsch Device for the continuous production of high molecular weight polymers
DE3315184C1 (en) 1983-04-27 1984-06-28 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Method and extrusion device for monitoring the production of profiles from one or more rubber or plastic mixtures
US4564349A (en) 1983-06-01 1986-01-14 Union Carbide Corporation Extruder assembly for extruding water-curable silane modified polymers
US4675378A (en) 1986-05-19 1987-06-23 Celanese Corporation Process control system
JPS63191823A (en) 1987-02-04 1988-08-09 Unitika Ltd Tank for continuous solid-state polymerization of polyester chip
DE3801574C2 (en) 1988-01-20 1998-05-07 Wilfried Ensinger Process and device for the extrusion, in particular extrusion, of hot plastic melts
NL8800904A (en) 1988-04-08 1989-11-01 Reko Bv PROCESS FOR PROCESSING A THERMOPLASTIC POLYCONDENSATION POLYMER
US4919872A (en) 1988-04-25 1990-04-24 E. I. Du Pont De Nemours And Company Process for metering color concentrates to thermoplastic polymer melts
DE4001986C1 (en) 1990-01-24 1991-09-19 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
US5306803A (en) 1990-06-02 1994-04-26 Bayer Aktiengesellschaft Process for cleaning thermoplasts by friction compacting
DE4034459A1 (en) 1990-10-30 1992-05-07 Hoechst Ag METHOD FOR TREATING THERMALLY STRESSED POLYESTER WASTE
US5143308A (en) 1991-03-26 1992-09-01 Plastic Recycling Alliance, Lp Recycling system
US5224383A (en) 1991-06-14 1993-07-06 Industrial Sensors, Inc. Melt pressure measurement and the like
JPH05222178A (en) 1992-02-14 1993-08-31 Fuji Photo Film Co Ltd Reaction control method
ZA933072B (en) 1992-05-01 1994-10-30 Hoechst Celanese Corp A tufted fabric.
DE4220473A1 (en) 1992-06-23 1994-01-05 Zimmer Ag Process for the production of polybutylene terephthalate from PET waste
US5549957A (en) 1992-07-08 1996-08-27 Negola; Edward J. Bulked continuous filament carpet yarn
ATE166950T1 (en) 1992-10-28 1998-06-15 Maag Pump Systems Ag METHOD AND STEP FOR TREATING THERMOPLASTIC MELTS USING A GEAR PUMP
DE4312249C1 (en) 1993-04-15 1994-03-17 Inventa Ag Planetary drive for multi-screw extruder and process - has housing with inner teeth, central shaft sun wheel, screws forming main planetary wheels and intermediate planetary wheels between them
AT401738B (en) 1993-05-07 1996-11-25 Blach Josef Alois DEVICE FOR CONTINUOUSLY PROCESSING VISCOSIC LIQUIDS AND MASSES
US5424013A (en) 1993-08-09 1995-06-13 Lieberman; Mark Thermoplastic closed loop recycling process
DE4328013C1 (en) 1993-08-20 1994-09-15 Krupp Ag Hoesch Krupp Method of separating a material mixture comprising a plurality of components in an extruder
CH687047A5 (en) 1993-11-30 1996-08-30 Hler Ag B A method for controlling a work machine
US5427881A (en) 1994-02-02 1995-06-27 Xerox Corporation Crosslinked polyesterimide toner compositions
US5503788A (en) 1994-07-12 1996-04-02 Lazareck; Jack Automobile shredder residue-synthetic plastic material composite, and method for preparing the same
US6060677A (en) 1994-08-19 2000-05-09 Tiedemanns-Jon H. Andresen Ans Determination of characteristics of material
US5613285A (en) 1994-11-01 1997-03-25 Basf Corporation Process for making multicolor multifilament non commingled yarn
US5497562A (en) 1995-03-03 1996-03-12 Hosokawa Bepex Corporation Radiant heater system for solid phase crystallization and polymerization of polymers
US6113825A (en) 1995-05-08 2000-09-05 Shell Oil Company Process for preparing poly(trimethylene terephthalate) carpet yarn
US5554657A (en) 1995-05-08 1996-09-10 Shell Oil Company Process for recycling mixed polymer containing polyethylene terephthalate
GB9523780D0 (en) 1995-11-21 1996-01-24 Amtico Co Floor coverings
TW329401B (en) 1995-12-13 1998-04-11 Ain Kotei Gigyutsu Kk Method of recycling and granulating a waste container made of resin materials
US5623012A (en) 1995-12-19 1997-04-22 Shell Oil Company Pelletizing aid for polymers
EP0788867B1 (en) 1996-02-06 1999-07-07 Josef A. Blach Apparatus for continuous processing of flowable materials
US5749649A (en) 1996-03-05 1998-05-12 Dynamic Mixers Inc. Satellite extruder arrangement for polymer melt mixing with a dynamic mixer
US5715584A (en) 1996-03-25 1998-02-10 Basf Corporation Continuous filament yarn with pixel color effect
DE19632375A1 (en) 1996-08-10 1998-02-19 Pfeiffer Vacuum Gmbh Gas friction pump
US5958548A (en) 1996-08-14 1999-09-28 Nyltec Inc. Carpet tufted with bulked continuous filament carpet face yarns utilizing new sheathed core filaments and related selection techniques to produce cost savings
US5945215A (en) 1996-09-16 1999-08-31 Bp Amoco Corporation Propylene polymer fibers and yarns
DK0855954T3 (en) 1996-10-21 2000-05-22 Gefinex Jackon Gmbh Plastic Text Glazing
US5804115A (en) 1996-12-13 1998-09-08 Basf Corporation One step, ready-to-tuft, mock space-dyed multifilament yarn
US5886058A (en) 1997-02-03 1999-03-23 Illinois Tool Works Inc. Inline solid state polymerization of pet flakes for manufacturing plastic strap
DE19722278A1 (en) 1997-05-28 1998-12-03 Zimmer Ag Degassing of hydrolysis sensitive polymers
JPH11172082A (en) 1997-11-10 1999-06-29 Teijin Ltd Continuous production of modified polyester
US5932691A (en) 1997-12-05 1999-08-03 Union Carbide Chemicals & Plastics Technology Corporation Process for devolatilization
MY119540A (en) 1998-04-24 2005-06-30 Ciba Spacialty Chemicals Holding Inc Increasing the molecular weight of polyesters
DE69913717T2 (en) 1998-10-02 2004-10-07 Du Pont METHOD FOR REGULATING THE EXTRUSION METHOD
DE19854689A1 (en) 1998-11-26 2000-06-08 Buehler Ag Method and device for processing a thermoplastic polycondensate
EP1156914B1 (en) 1999-02-04 2007-03-14 Bühler Ag Process for upgrading plastic material
JP3795255B2 (en) 1999-05-21 2006-07-12 旭貿易株式会社 Spinning raw material coloring equipment
WO2000073370A1 (en) 1999-05-28 2000-12-07 Hi-Tech Environmental Products, Llc. Synthetic thermoplastic compositions and articles made therefrom
US6394644B1 (en) 1999-06-21 2002-05-28 Koch-Glitsch, Inc. Stacked static mixing elements
DE19936827A1 (en) 1999-08-05 2001-03-08 Hosokawa Bepex Gmbh Device for extruding plastic masses
AUPQ294699A0 (en) 1999-09-17 1999-10-14 Visy Plastics Pty Ltd Process for preparing food contact grade polyethylene terephthalate resin from waste pet containers
AT411161B (en) 1999-09-22 2003-10-27 Bacher Helmut METHOD AND DEVICE FOR RECYCLING PET GOODS
US6620354B1 (en) 1999-11-29 2003-09-16 The Conair Group, Inc. Apparatus and method for producing and cutting extruded material using temperature feedback
AU2651701A (en) 2000-01-10 2001-07-24 Georg Michael Ickinger Method for introducing additives
US6492485B1 (en) 2000-04-11 2002-12-10 General Electric Company Redistributed polycarbonate resin
AU2001273255A1 (en) 2000-07-13 2002-01-30 Prisma Fibers, Inc. Apparent twist yarn system and apparatus and method for producing same
WO2002038276A1 (en) 2000-11-01 2002-05-16 Yash Vasant Joshi Method for direct recycling of plastic wastes
US6780941B2 (en) 2000-12-22 2004-08-24 Prisma Fibers, Inc. Process for preparing polymeric fibers based on blends of at least two polymers
GB0102658D0 (en) 2001-02-02 2001-03-21 Ineos Acrylics Uk Ltd Polymeric Fibres
DE10122462C1 (en) 2001-05-09 2002-10-10 3 & Extruder Gmbh Screw extruder has at least three parallel, intermeshing screws and casing with apertures in its side
DE10143570A1 (en) 2001-09-05 2003-03-20 Buehler Ag Degassing of flowable masses in a multi-screw extruder
DE10150627A1 (en) 2001-10-12 2003-05-15 Gneuss Kunststofftechnik Gmbh Extruder for the extraction of plastic melts
AT410942B (en) 2001-10-29 2003-08-25 Fellinger Markus METHOD AND DEVICE FOR INCREASING THE LIMIT VISCOSITY OF POLYESTER
US6773718B2 (en) 2001-11-15 2004-08-10 3M Innovative Properties Company Oil absorbent wipe with rapid visual indication
JP2005509700A (en) 2001-11-23 2005-04-14 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Polyolefin plastic pipe
DE10204954A1 (en) 2001-12-11 2003-06-18 Buehler Ag Spherical PET or PBT bead production from prepolymer or polymer melts involves a precrystallization stage where falling melt droplets are swirled around by a vibrated cloth in a hopper
ATE356842T1 (en) 2002-02-01 2007-04-15 Basf Corp OLIGOMERIC CHAIN EXTENDERS FOR THE TREATMENT, POST-TREATMENT AND RECYCLING OF CONDENSATION POLYMERS, COMPOSITIONS BASED THEREOF AND APPLICATIONS THEREOF
US20040053047A1 (en) 2002-09-17 2004-03-18 Jackson Craig A. Colorable filaments from polymer blend
EP1400332B1 (en) 2002-09-18 2010-11-17 Amcor Limited Method and apparatus for dosing an additive in the inlet of an injection moulding press, and injection moulding press fitted with a dosing apparatus
GB2394225A (en) 2002-10-16 2004-04-21 Colormatrix Europe Ltd Polymer colourant additive composition
US20040155374A1 (en) 2002-12-18 2004-08-12 Peter Hutchinson Method and apparatus for recycling R-PET and product produced thereby
US20040140248A1 (en) 2003-01-17 2004-07-22 Dauzvardis Matthew J. Plastic flake processing
CN1745201A (en) 2003-01-29 2006-03-08 苏拉有限及两合公司 Apparatus and method for melt spinning dyed yarn filaments
DE102004009320A1 (en) 2003-02-26 2004-11-18 Mold-Masters Ltd., Georgetown Hot runner system for controlling cross-sectional asymmetric condition of laminar flowing material comprises flow rotator having bending path for orienting outlet relative to inlet to divide equally the condition between two downstreams
GB0305738D0 (en) 2003-03-13 2003-04-16 Next Tec Ltd Recycling of plastics material
DE10315200B4 (en) 2003-04-03 2005-03-17 3+Extruder Gmbh Transmission for driving a multi-screw extruder
US7198400B2 (en) 2003-05-03 2007-04-03 Husky Injection Molding Systems Ltd. Static mixer and a method of manufacture thereof
US7354988B2 (en) 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
WO2005017007A1 (en) 2003-08-19 2005-02-24 Toyo Boseki Kabushiki Kaisya Polyester film
DE10341399A1 (en) 2003-09-05 2005-04-07 Nordson Corporation, Westlake Process for coating a raw carpet product by means of a slot die
US7204945B2 (en) 2003-09-16 2007-04-17 Eastman Chemical Company Direct coupling of melt polymerization and solid state processing for PET
JP4491553B2 (en) 2003-09-22 2010-06-30 エフテックス有限会社 Process for producing fusing sealable / heat-shrinkable packaging film made of polyethylene terephthalate block copolymer polyester
EP1671999B1 (en) 2003-10-10 2016-12-07 Asahi Kasei Kabushiki Kaisha Process for producing polyalkylene terephthalate, process for producing polyalkylene terephthalate molding and polyalkylene terephthalate molding
CA2482056A1 (en) 2003-10-10 2005-04-10 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
DE10348425B4 (en) 2003-10-14 2008-07-24 Bühler AG Process for producing a profile from a polycondensate
US7647886B2 (en) * 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
DE102004020839A1 (en) 2004-04-28 2005-11-24 Henkel Kgaa Process for the preparation of detergents or cleaners
ITFI20040127A1 (en) 2004-06-09 2004-09-09 Franco Fini PLANT AND PROCEDURE FOR THE PRODUCTION OF COMBUSTIBLE SUBSTANCES BY DEPOLYMERIZATION OF RUBBER PRODUCTS
US7902262B2 (en) 2004-06-15 2011-03-08 Close The Loop Technologies Pty Ltd. Method of recycling mixed streams of ewaste (WEEE)
DE102004031794A1 (en) 2004-07-01 2006-01-26 Mitsubishi Polyester Film Gmbh Process for the preparation of biaxially oriented films based on crystallizable thermoplastics using a condensed regenerate
KR20070083647A (en) 2004-10-11 2007-08-24 란세스 인크. Continuous extrusion process for producing grafted polymers
AT501154B8 (en) 2005-01-28 2007-02-15 Erema DEVICE FOR FILLING AN EXTRUDER WITH PRE-TREATED THERMOPLASTIC PLASTIC MATERIAL
DE102005007102B4 (en) 2005-02-16 2010-02-11 Gala Industries, Inc. diverter
US20070000947A1 (en) 2005-07-01 2007-01-04 Lewis Russell H Apparatus and methods for dispensing fluidic or viscous materials
DE102005034980A1 (en) 2005-07-22 2007-01-25 Basf Ag Fibers and liquid containers made of PET
JP2007186830A (en) 2006-01-16 2007-07-26 Eiheiji Sizing Kk Polyester fiber
US7935737B2 (en) 2006-01-27 2011-05-03 Sabic Innovative Plastics Ip B.V. Articles derived from compositions containing modified polybutylene terephthalate (PBT) random copolymers derived from polyethylene terephthalate (PET)
JP5079239B2 (en) 2006-02-02 2012-11-21 株式会社リコー Toner bottle molding method using recycled PET material
DE102006033089A1 (en) 2006-03-24 2007-10-04 Entex Rust & Mitschke Gmbh Operating planet roller extruder for degassing and drying thermoplastics, comprises cogging planet roller spindles together with central spindle toothing, and utilizing planet roller spindles and/or central spindles and/or housing teeth
WO2007110443A1 (en) 2006-03-29 2007-10-04 Nestle Waters Management & Technology Method for the direct production of polyester articles for packaging purposes and articles obtained therefrom
FR2899591B1 (en) 2006-04-10 2008-05-23 Rhodia Recherches & Tech PROCESS FOR PREPARING PARTICLES BASED ON THERMOPLASTIC POLYMER AND POWDER THUS OBTAINED
US7980834B2 (en) 2006-06-16 2011-07-19 Maguire Stephen B Liquid color injection pressure booster pump and pumping methods
GB0615765D0 (en) 2006-08-09 2006-09-20 Waste And Resources Action Pro Recycling process for polyethylene terephthalate (PET)
BRPI0714901A2 (en) 2006-08-28 2013-05-21 Invista Tech Sarl composition, articles, processes for the manufacture of a previous form of polyester resin and for the manufacture of pellets
ITMI20061694A1 (en) 2006-09-06 2008-03-07 Techint Spa EXTRUDER WITH TWO CONVERGENT SCREWS FOR THE EXTRUSION OF PLASTOMERS, ELASTOMERS AND VISCOUS LIQUIDS IN GENERAL
DE102006055974A1 (en) 2006-11-24 2008-05-29 Henkel Kgaa reactive adhesive
DE102007027543A1 (en) 2006-11-27 2008-05-29 Bühler AG Strand granulation method and apparatus and granules made therefrom
US20080139700A1 (en) 2006-12-11 2008-06-12 Roden Don R Methods for devolatilizing resin solutions and resins produced thereby
US9809907B2 (en) 2007-01-02 2017-11-07 Mohawk Carpet, Llc Carpet fiber polymeric blend
WO2008083820A1 (en) 2007-01-10 2008-07-17 Balta Industries Nv Production of soft yarns
US20080292831A1 (en) 2007-03-06 2008-11-27 Futuris Automotive Interiors (Us), Inc. Tufted pet fiber for automotive carpet applications
ATE538917T1 (en) 2007-03-12 2012-01-15 Airsec Sas METHOD AND APPARATUS FOR COMPOUNDING AND INJECTION MOLDING POLYMERS FILLED WITH DESICTANT
EP2025494A1 (en) 2007-08-10 2009-02-18 Motech GmbH Technology & Systems Method and device for producing a packaging belt
AT505595B1 (en) 2007-08-14 2009-04-15 Erema METHOD AND DEVICE FOR TREATING PLASTIC MATERIAL
US8017662B2 (en) 2007-09-20 2011-09-13 Universal Fibers, Inc. Method of separation and cleaning of post consumer carpet face yarn from carpet backing and yarn product produced therefrom
DE102008018686A1 (en) 2008-04-13 2009-10-15 Entex Rust & Mitschke Gmbh Extrusion unit for extruding property of multiple volatile components, such as plastic, has dosage unit, particularly in planet roller building method, modular structure and planet roller module
EP2268737B1 (en) 2008-04-18 2019-01-16 PepsiCo, Inc. Polyester compositions and method for preparing articles by extrusion blow molding
US7928150B2 (en) 2008-05-06 2011-04-19 Sabic Innovative Plastics Ip B.V. Process for the manufacture of lonomeric polybutylene terephthalate from polyethylene terephthalate, and compositions and articles thereof
WO2010021210A1 (en) 2008-08-18 2010-02-25 シャープ株式会社 Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
US9168718B2 (en) 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
MX2022000195A (en) 2008-09-30 2022-03-02 Shaw Ind Group Inc Recycled polyethylene terephthalate compositions, fibers and articles produced therefrom, and methods for producing same.
CA2883124C (en) 2008-09-30 2016-10-25 Shaw Industries Group, Inc. Recycled polyethylene terephthalate compositions, fibers and articles produced therefrom, and methods for producing same
US20100102475A1 (en) 2008-10-28 2010-04-29 Yongsoon Moon Expanded polystyrene recycling and heat extruding system
US20120064281A1 (en) 2009-05-18 2012-03-15 James Taylor Tufted Carpet for Automotive Applications
WO2011017457A2 (en) 2009-08-04 2011-02-10 The Xextex Corporation High efficiency low pressure drop synthetic fiber based air filter made completely from post consumer waste materials
US20110177283A1 (en) 2010-01-18 2011-07-21 Futuris Automotive Interiors (Us), Inc. PET Carpet With Additive
EP2526144A4 (en) 2010-01-18 2013-06-26 Invista Tech Sarl Processes to clean and recycle carpet fiber and thermoplastics made from such processes
DE102010007163A1 (en) 2010-02-08 2011-08-11 Automatik Plastics Machinery GmbH, 63762 Process for the preparation of granules of polyethylene terephthalate
JP5832733B2 (en) 2010-09-17 2015-12-16 富士フイルム株式会社 Production method of polyester film
CN201872322U (en) 2010-11-26 2011-06-22 马宏 Vacuum pumping device for rubber and plastic mixing and extrusion
AT511574B1 (en) 2011-03-10 2017-06-15 Next Generation Recyclingmaschinen Gmbh METHOD AND DEVICE FOR REMOVING CONTAMINATION FROM A PLASTIC MELT
CN202072825U (en) 2011-03-24 2011-12-14 浙江义乌金汇化纤有限公司 Terylene bulked continuous filament (BCF) continuous spinning machine
US20120279023A1 (en) 2011-05-06 2012-11-08 Avery Dennison Corporation Plastic Fastening Device Comprising a Recycled Thermoplastic Resin
US20130133697A1 (en) * 2011-06-29 2013-05-30 Paul A. STOCKMAN Prevention of post-pecvd vacuum and abatement system fouling using a fluorine containing cleaning gas chamber
CN102990903A (en) * 2011-09-09 2013-03-27 江苏南方涂装环保股份有限公司 Vacuum device for double-screw extruder
DE102011082769A1 (en) * 2011-09-15 2013-03-21 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Method and device for degassing a PET plastic melt in an extrusion plant
US9149955B2 (en) 2011-12-29 2015-10-06 Toray Plastics (America), Inc. Process for recycling immiscibles in PET film
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9636860B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US10532495B2 (en) 2012-05-31 2020-01-14 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
AU2014215998B2 (en) 2012-05-31 2016-06-30 Aladdin Manufacturing Corporation System and methods for manufacturing bulked continuous filament
US9636845B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing pet nurdles
US9630354B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US8597553B1 (en) 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US8795811B2 (en) 2012-06-29 2014-08-05 Toray Plastics (America), Inc. Recycled crosslinked vinyl-alcohol polymer coated films and methods to manufacture the same
AT513443B1 (en) 2012-09-12 2016-08-15 Next Generation Recyclingmaschinen Gmbh Method and apparatus for increasing the intrinsic viscosity of a polycondensate melt
CN202986059U (en) * 2012-12-14 2013-06-12 上海洛兴包装材料有限公司 Extruder oligomer waste gas treatment device for polystyrene sheets
DE102013003380B3 (en) 2013-03-01 2014-04-24 Gneuss Gmbh Extruder for production of plastic melts, has satellite-screw that is configured to accommodate respective gears and is removably connected with each other, and sprocket that is configured to receive evacuation drum
CN204265905U (en) 2014-11-11 2015-04-15 江苏江南高纤股份有限公司 Antiforge function polyester PET superbhort fiber preparation system
PL3221120T3 (en) 2014-11-18 2020-06-01 Mohawk Industries, Inc. Verfahren zur massenherstellung von endlosfilamenten
EP3424665B1 (en) 2014-11-18 2024-02-28 Aladdin Manufacturing Corporation Method for manufacturing bulked continuous filament
MX371054B (en) * 2014-11-18 2020-01-14 Aladdin Mfg Corp Systems and methods for manufacturing bulked continuous filament.
WO2016081568A1 (en) 2014-11-18 2016-05-26 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US10471697B2 (en) 2015-11-13 2019-11-12 R3 Printing, Inc. System and method for on-demand colorization for extrusion-based additive construction
DE102015226043B4 (en) 2015-12-18 2019-12-24 Gneuss Gmbh Process for setting predeterminable viscosity values when recycling polyester waste
US10767281B2 (en) 2016-03-25 2020-09-08 Aladdin Manufacturing Corporation Polyester fiber blends and methods of manufacturing same
US20180127893A1 (en) 2016-11-10 2018-05-10 Mohawk Industries, Inc. Polyethylene terephthalate coloring systems and related methods
US10751915B2 (en) 2016-11-10 2020-08-25 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
EP4219114A1 (en) 2017-01-30 2023-08-02 Aladdin Manufacturing Corporation Systems and methods for manufacturing items from colored recycled pet
EP3589473A1 (en) 2017-03-03 2020-01-08 Aladdin Manufactuing Corporation Method of manufacturing bulked continuous carpet filament
DE102017111275B4 (en) 2017-05-23 2020-02-13 Gneuss Gmbh Extruder screw for a multi-screw extruder for plastic extrusion and multi-screw extruder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069655A1 (en) * 2012-05-31 2015-03-12 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US20150343672A1 (en) * 2013-01-10 2015-12-03 Brückner Maschinenbau Gmbh & Co.Kg Device for degassing polymer melts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250301A1 (en) * 2021-02-10 2022-08-11 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes
US11787097B2 (en) * 2021-02-10 2023-10-17 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes

Also Published As

Publication number Publication date
US20200240042A1 (en) 2020-07-30
AU2018227587A1 (en) 2019-08-22
WO2018161021A1 (en) 2018-09-07
EA201992067A1 (en) 2020-03-27
US11279071B2 (en) 2022-03-22
EP3589473A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
US10744681B2 (en) Methods for manufacturing bulked continuous filament
US11279071B2 (en) Method of manufacturing bulked continuous carpet filament
AU2014215998B2 (en) System and methods for manufacturing bulked continuous filament
US9636845B2 (en) Method of manufacturing pet nurdles
AU2015350061A1 (en) Systems and methods for manufacturing bulked continuous filament
AU2016234917B2 (en) System and methods for manufacturing bulked continuous filament

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOHAWK INDUSTRIES, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLARK, THOMAS R.;REEL/FRAME:045094/0673

Effective date: 20180227

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ALADDIN MANUFACTURING CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOHAWK INDUSTRIES, INC.;REEL/FRAME:048779/0144

Effective date: 20190329

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION