US20180237254A1 - Ejecting windowed and non-windowed media - Google Patents

Ejecting windowed and non-windowed media Download PDF

Info

Publication number
US20180237254A1
US20180237254A1 US15/437,907 US201715437907A US2018237254A1 US 20180237254 A1 US20180237254 A1 US 20180237254A1 US 201715437907 A US201715437907 A US 201715437907A US 2018237254 A1 US2018237254 A1 US 2018237254A1
Authority
US
United States
Prior art keywords
media
ejection
infeed module
infeed
windowed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/437,907
Other versions
US10364122B2 (en
Inventor
Benjamin T. Widsten
Husameldin Ibrahim
Matthew Gordon Sonnenberg
Yunus Tatar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citibank NA
JPMorgan Chase Bank NA
Original Assignee
NCR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NCR Corp filed Critical NCR Corp
Priority to US15/437,907 priority Critical patent/US10364122B2/en
Assigned to NCR CORPORATION reassignment NCR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SONNENBERG, MATTHEW GORDON, IBRAHIM, Husameldin, TATAR, Yunus, WIDSTEN, BENJAMIN T.
Priority to EP18156115.0A priority patent/EP3364380A1/en
Priority to CN201810152260.9A priority patent/CN108470395B/en
Publication of US20180237254A1 publication Critical patent/US20180237254A1/en
Application granted granted Critical
Publication of US10364122B2 publication Critical patent/US10364122B2/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NCR CORPORATION
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS SECTION TO REMOVE PATENT APPLICATION: 15000000 PREVIOUSLY RECORDED AT REEL: 050874 FRAME: 0063. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: NCR CORPORATION
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NCR ATLEOS CORPORATION
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDTRONICS USA, LLC, NCR ATLEOS CORPORATION
Assigned to NCR VOYIX CORPORATION reassignment NCR VOYIX CORPORATION RELEASE OF PATENT SECURITY INTEREST Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. CORRECTIVE ASSIGNMENT TO CORRECT THE DOCUMENT DATE AND REMOVE THE OATH/DECLARATION (37 CFR 1.63) PREVIOUSLY RECORDED AT REEL: 065331 FRAME: 0297. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: NCR ATLEOS CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H43/00Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable
    • B65H43/02Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable detecting, or responding to, absence of articles
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/2016Testing patterns thereon using feature extraction, e.g. segmentation, edge detection or Hough-transformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H43/00Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/24Pile receivers multiple or compartmented, e.d. for alternate, programmed, or selective filling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/04Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to absence of articles, e.g. exhaustion of pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H83/00Combinations of piling and depiling operations, e.g. performed simultaneously, of interest apart from the single operation of piling or depiling as such
    • B65H83/02Combinations of piling and depiling operations, e.g. performed simultaneously, of interest apart from the single operation of piling or depiling as such performed on the same pile or stack
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/20Controlling or monitoring the operation of devices; Data handling
    • G07D11/22Means for sensing or detection
    • G07D11/235Means for sensing or detection for monitoring or indicating operating conditions; for detecting malfunctions
    • G07D11/237Means for sensing or detection for monitoring or indicating operating conditions; for detecting malfunctions for detecting transport malfunctions, e.g. jams or misfeeds
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F19/00Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
    • G07F19/20Automatic teller machines [ATMs]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2402/00Constructional details of the handling apparatus
    • B65H2402/40Details of frames, housings or mountings of the whole handling apparatus
    • B65H2402/45Doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1912Banknotes, bills and cheques or the like
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/10Mechanical details
    • G07D11/14Inlet or outlet ports
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/10Mechanical details
    • G07D11/16Handling of valuable papers

Definitions

  • windowed media when the windowed (transparent) portion of the media is in the path of an optical sensor, the track sensor falsely reports the unblocked condition indicating the absence of any media.
  • a method for ejection processing of windowed and non-windowed media is presented. Specifically, media edge detection is selectively ignored from sensors during ejection processing for media being ejected from an infeed module. The media edge detection is enabled during the ejection processing after a shutter opens for the infeed module based on detection of the media from at least one of the sensors. Next, the media is advanced within the infeed module a present distance in a direction towards the shutter during the ejection processing.
  • FIG. 1 is a diagram depicting a deposit module of a Self-Service Terminal (SST) having an infeed module, according to an example embodiment.
  • SST Self-Service Terminal
  • FIG. 2 is a diagram depicting an infeed module, according to an example embodiment.
  • FIGS. 3A-3J illustrate ejection processing scenarios for windowed and non-windowed media performed by the infeed module of the FIG. 2 , according to example embodiments.
  • FIG. 4 is a diagram of a method for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment.
  • FIG. 5 is a diagram of another method for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment.
  • FIG. 6 is a diagram of a valuable media depository, according to an example embodiment.
  • FIG. 1 is a diagram depicting a one-sided view of a valuable media depository 100 , according to an example embodiment (also referred to as a deposit module). It is to be noted that the valuable media depository is shown with only those components relevant to understanding what has been added and modified to a conventional depository for purposes of providing adaptive pressure media feeding and processing within the depository 100 .
  • the depository 100 is suitable for use within an Automated Teller Machine (ATM), which can be utilized to process deposited banknotes and checks (valuable media as a mixed bunch if desired).
  • the deposit module 100 has an access mouth (media or document infeed) where a novel configured infeed module 101 (discussed in detail below with reference to the FIGS. 2, 3A-3J, and 4-6 ) processes and through which incoming checks and/or banknotes (windowed and non-windowed) are deposited or outgoing checks and/or banknotes are dispensed.
  • This mouth is aligned with an infeed aperture in the fascia of the ATM in which the depository 100 is located, which thus provides an input/output slot to the customer.
  • a bunch (stack) of one or more items (valuable media) is input or output.
  • Incoming checks and/or banknotes follow a first transport path 102 away from the mouth in a substantially horizontal direction from right to left shown in the FIG. 1A . They then pass through a separator module 103 and from the separator 103 to a deskew module 104 along another pathway portion 105 , which is also substantially horizontal and right to left.
  • the items are now de-skewed and aligned for reading by imaging cameras 106 and a Magnetic Ink Character Recognition (MICR) reader 107 .
  • MICR Magnetic Ink Character Recognition
  • nip rollers 108 Items are then directed substantially vertically downwards to a point between two nip rollers 108 .
  • These nip rollers cooperate and are rotated in opposite directions with respect to each other to either draw deposited checks and/or banknotes inwards (and urge those checks and/or banknotes towards the right hand side in the FIG. 1 ), or during another mode of operation, the rollers can be rotated in an opposite fashion to direct processed checks and/or banknotes downwards in the direction shown by arrow A in the FIG. 1 into a check or banknote bin 110 .
  • Incoming checks and/or banknotes which are moved by the nip rollers 108 towards the right, enter a diverter mechanism 120 .
  • the diverter mechanism 120 can either divert the incoming checks and/or banknotes upwards (in the FIG. 1 ) into a re-buncher unit 125 , or downwards in the direction of arrow B in the FIG. 1 into a cash bin 130 , or to the right hand side shown in the FIG. 1 into an escrow 140 . Items of media from the escrow 140 can selectively be removed from the drum and re-processed after temporary storage. This results in items of media moving from the escrow 140 towards the left hand side of the FIG. 1 where again they will enter the diverter mechanism 120 .
  • the diverter mechanism 120 can be utilized to allow the transported checks (a type of valuable media/document) and/or banknotes (another type of valuable media/document) to move substantially unimpeded towards the left hand side and thus the nip rollers 108 or upwards towards the re-buncher 125 .
  • Currency notes from the escrow can be directed to the re-buncher 125 or downwards into the banknote bin 130 .
  • valuable media refers to media of value, such as currency, coupons, checks, negotiable instruments, value tickets, and the like.
  • “valuable media” is referred to as currency and the “valuable media depository” is referred to as a “depository.” Additionally, valuable media may be referred to as a “document” herein.
  • FIG. 2 is a diagram depicting an infeed module 101 , according to an example embodiment.
  • the infeed mouth 101 A is the opening and path within the valuable media depository 100 for an incoming document.
  • a pair of track sensors are labeled as TS 1 and TS 2 (also labeled as such in the FIGS. 3A-3J below).
  • the infeed module 101 is configured for processing a debounce algorithm that is applied to those sensors TS 1 and/or TS 2 reporting an unblocked condition (no presence of media under the sensors TS 1 and/or TS 2 ).
  • a debounce algorithm that is applied to those sensors TS 1 and/or TS 2 reporting an unblocked condition (no presence of media under the sensors TS 1 and/or TS 2 ).
  • an algorithm is processed for the sensors TS 1 and TS 2 reporting for ensuring a sensor TS 1 or TS 2 is unblocked sufficiently long enough (configured within the algorithm) for the windowed portion (transparent portion) to pass before the sensor TS 1 or TS 2 reports an unblocked condition. This ensures the unblocked condition reading correctly indicates the absence of media.
  • This approach works when the maximum window (transparency) size and the document throughput processing are known.
  • the media While ejecting media to the customer, the media is presented using a programmable “present distance” (the distance the media is positioned and held away from the shutter) and completely stopped over the sensors TS 1 and TS 2 .
  • the infeed module 101 waits a programmable “present delay” period while waiting for the customer to take the media from the infeed mouth.
  • the customer can influence the document speed and direction at any time during the processing, since the document speed is unknown because of this situation, the traditional debounce algorithm has limited assistance in this scenario.
  • the ejection procedure combined with processing of the debounce algorithm works with some windowed media.
  • the non-windowed ejection procedure is as follows:
  • Windowed media is dimensioned, such that when the media was presented and stopped, an opaque portion of the document appears over TS 1 and/or TS 2 .
  • the track sensors report a block condition indicating the presence of the media. Therefore, relying on TS 1 and TS 2 to report an unblocked condition gives a correct indication of media being removed by the customer.
  • TS 1 and TS 2 falsely report an unblocked condition falsely indicating the absence of media and giving a false indication that the customer has removed the media. This causes the ejection procedure to instantly move from step 3(a) back to step 1), which ultimately ejects the media directly out of the infeed mouth 101 A and onto the floor. The customer has no chance to take the media before it is ejected. This results in unacceptable and undesirable behaviors and delivers a poor customer experience.
  • the sensors report a blocked condition correctly indicating the presence of the media (document). If the customer does not take the media within the present delay period, the media is retracted back into the infeed module 101 to then be re-presented. During the retract process, larger windowed sized media will unblock TS 1 and TS 2 causing a false indication of the absence of media and indicating to the infeed module 101 that the media has been fully retracted into the infeed module 101 . This results in the retraction processing stopping prematurely with a portion of the media still sitting outside the shutter of the infeed mouth 101 A. The media is then presented a set distance from this point, but since the media was not completely retracted, the present distance causes the media to again be undesirably ejected onto the floor.
  • Embodiments presented herein process a novel “edge-direction detection” algorithm to the above-mentioned ejection procedure for universally ejecting all transparent windowed (regardless of window size and location) and non-windowed media. This results in a new, modified, and novel ejection procedure.
  • the edge-direction detection algorithm tracks the directions of document edges at all times during the ejection procedure. However, the edge-direction detection status is only used at selective times during the ejection procedure and the status is ignored at other times. This allows windows to pass over and/or stop at TS 1 and TS 2 . Even though the track sensors may report an unblocked condition, the edge-direction detection algorithm allows the ejection procedure to correctly determine if the document has been removed or if a window has been passed and the document is still present within the infeed module 101 .
  • the novel edge-direction detection algorithm proceeds as follows:
  • TS 1 and TS 2 report a block condition
  • a status becomes “media at TS 1 and TS 2 .”
  • media is blocking TS 1 and TS 2 but the direction of the media is not yet known, this is illustrated in the FIG. 3A .
  • TS 1 reports an unblocked condition and the status is changed to “media exited” since the document is now completely out of the infeed module 101 , as shown in the FIG. 3D .
  • the ejection procedure recited above is further modified for selectively processing the edge-direction detection status and proceeds as follows:
  • the above modified and novel ejection processing for an infeed module 101 allows for windowed and non-windowed media to be presented, retracted, and re-presented with or without TS 1 and/or TS 2 changing states due to any windowed portions within the media.
  • the processing allows for consistent and correct ejection behavior of the infeed module 101 for both transparent (including any windowed media with larger windowed areas than are presently available today within the industry) and non-windowed media.
  • a firmware upgrade can provide the novel modified ejection processing so as to enhance existing infeed modules to perform the processing of the infeed module 101 (within a valuable media depository 100 ) ensuring that the valuable media depository 100 can properly perform ejection processing and media detection on both windowed media and non-windowed media.
  • the novel ejection processing solves the industry problem associated with being unable to properly eject new types of media with larger windows.
  • This single universal processing approach provides accurate and consistent behavior between both windowed and non-windowed media during ejection processing regardless of windowed dimensions.
  • there is consistent behavior between both windowed and non-windowed media while providing a familiar “customer feel and experience” regardless of the media type (windowed or non-windowed).
  • the infeed module 101 is a peripheral device integrated into the valuable media depository 100 .
  • the valuable media depository 100 is an SST.
  • the SST is an ATM.
  • the SST is a kiosk.
  • the valuable media depository 100 is Point-Of-Sale (POS) terminal.
  • POS Point-Of-Sale
  • FIG. 4 is a diagram of a method 400 for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment.
  • the method 400 when processed controls ejection operations for infeed module integrated into a valuable media depository.
  • the method 200 is implemented as executable instructions representing one or more software modules referred to as a “media ejection controller.”
  • the instructions reside in a non-transitory computer-readable medium and are executed by one or more processors of the valuable media depository and/or an infeed module.
  • the media ejection controller is executed by one or more processors of the valuable media depository 100 .
  • the media ejection controller is executed by one or more processors of the infeed module 101 .
  • the media ejection controller performs the ejection processing discussed above with the FIGS. 2 and 3A-3J .
  • the valuable media depository is a deposit module.
  • the valuable media depository is a recycler module.
  • the valuable media depository is a peripheral device integrated into an SST.
  • the SST is an ATM.
  • the SST is a kiosk.
  • the valuable media depository is a peripheral device integrated into a Point-Of-Sale (POS) terminal.
  • POS Point-Of-Sale
  • the media ejection controller selectively disables media edge detection processing during ejection processing for media being ejected from an infeed module.
  • the media edge detection processing is the edge-direction detection processing discussed above with the FIGS. 2 and 3A-3J .
  • the ejection processing is the ejection processing discussed above with the FIGS. 2 and 3A-3J .
  • the media ejection controller urges the media along a transport path until a first sensor closest to a shutter of the infeed module at an infeed mouth reports a blocked condition (indicating that an opaque portion of the media is under the first sensor). In response to this blocked condition from the first sensor, the media ejection controller activates the shutter at the infeed mouth to open the shutter so that the media can be partially pushed out the infeed mouth.
  • the media ejection controller enables the media edge detection processing when the shutter opens based on detection by the first sensor (closest to the shutter and closer to the shutter than a second sensor) of the presence of the media at the first sensor. This is shown in the FIG. 3E .
  • the media ejection controller urges the media along the transport path a present distance and then stops the transport path preventing any further traveling of the media within the infeed module along the transport path.
  • the present distance is a configured distance based on a size (dimension of the media). At this point the direction of travel of the media may still be unknown and the media may be traveling out the infeed mouth for acquisition by a customer or may be traveling back into the infeed mouth after a failed acquisition by the customer. This is shown in the FIG. 3F .
  • the media ejection controller sets the status to “media at both of the two sensors” when the first sensor and the second sensor are both reporting a blocked condition (indicating that an opaque portion of the media is under the two sensors). This detected condition is shown above in the FIG. 3A .
  • the media ejection controller changes the status to “media being retracted into the infeed module” when the first sensor reports an unblocked condition while the second sensor reports the blocked condition.
  • the direction of travel of the media is known to be back within the infeed module for a second attempt to eject the media from the infeed module. This detected condition is shown above in the FIG. 3B .
  • the media ejection controller maintains the status as unchanged when the first sensor continues reporting the blocked condition while the second sensor reports the unblocked condition until the first sensor reports the unblocked condition.
  • the media ejection controller changes the status to “media exited” indicating that a customer has obtained the media and pulled it from the infeed mouth of the infeed module.
  • the media direction of travel is resolved to be a direction that is out of the infeed module through the infeed mouth. This detected condition is illustrated in the FIG. 3C .
  • the media ejection controller delays for a present delay period of time for determining whether the media is successfully removed from the infeed mount of the infeed module by a customer. This detected condition is illustrated in the FIG. 3D .
  • the media ejection controller determines whether the media has exited the infeed module or whether the media has been fully retracted back within the infeed module based on status produced from the media edge detection processing.
  • the media ejection controller delays for an additional period of time when the status changes at the end of the present delay period of time to “media exited” and when the status remains unchanged the media ejection controller determines that the media has successfully ejected and taken by a customer from the infeed mouth.
  • the media ejection controller determines if additional media is present for ejection and if so, the processing resumes back at 410 to perform ejection processing on the additional media (this continues until all of the media that is to be ejected through the infeed mouth of the infeed module has been successfully ejected). This is shown in the FIG. 3G .
  • the media ejection controller determines whether either the first sensor or the second sensor report the blocked condition during any portion of the additional period of delay (defined at 431 ). If this condition is found, then the media ejection controller resumes processing at 425 . This is illustrated in the FIG. 3H .
  • the media ejection controller disables the media edge detection when the status remains unchanged during the present delay period (defined at 425 ) and, in response to such a condition, the media ejection controller urges the media back into the infeed module in a direction away from the shutter (infeed mouth) for a distance that is less than the present distance.
  • the media ejection controller re-enables the media edge detection processing while the media is being urged in the direction.
  • the media ejection controller halts travel of the media by halting or stopping the transport path when the status changes to “media entered.” This is a failed ejection attempt indicating that the customer did not pull the media out of the infeed mouth; the media ejection controller pulls the media back within the infeed module to try again to eject the media out the infeed mouth, so the processing resumes back at 410 .
  • FIGS. 3I and 3J These conditions are illustrated in the FIGS. 3I and 3J .
  • FIG. 5 is a diagram of another method 500 for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment.
  • the method 500 when processed controls media ejection processing within a valuable media depository by controlling ejection operations of an infeed module of the valuable media depository.
  • the method 500 is implemented as executed instructions representing one or more software modules referred to as a media ejection manager.
  • the instructions reside in a non-transitory computer-readable medium and are executed by one or more processors of the valuable media depository and/or the infeed module.
  • the media ejection manager is executed by one or more processors of the valuable media depository 100 .
  • the media ejection manager is executed by one or more processors of the infeed module 101 .
  • the media ejection manager is another perspective of and includes the processing of the media ejection controller of the FIG. 4 .
  • the media ejection manager performs the ejection processing discussed above with the FIGS. 2 and 3A-3J .
  • the valuable media depository is a deposit module.
  • the valuable media depository is a recycler module.
  • the valuable media depository is a peripheral device integrated into an SST.
  • the SST is an ATM.
  • the SST is a kiosk.
  • the valuable media depository is a peripheral device integrated into a Point-Of-Sale (POS) terminal.
  • POS Point-Of-Sale
  • the media ejection manager modifies an existing ejection procedure for an infeed module of a valuable media depository by selectively activating and deactivating edge detection (edge-direction detection processing discussed above with the FIGS. 2 and 3A-3J ) of media.
  • the media includes at least one windowed portion (transparent portions) and non-windowed portions (opaque portions), and the media is being ejected from the infeed module.
  • the media ejection manager disables the edge detection until a sensor nearest to a shutter at an infeed mouth of the infeed module is blocked by the media. In response to this condition, the media ejection manager opens the shutter, advances the media along a transport path of the infeed module a present distance, and enables the edge detection processing.
  • the media ejection manager determines, based on the modified ejection procedure, whether the media is completely ejected (taken from the infeed mouth by a customer) or whether the media is fully retracted back into the infeed module away from the infeed mouth from a failed ejection attempt (failed because the media was presented through the infeed mouth and the customer failed to remove the media from the infeed mouth).
  • the media ejection manager maintains a changing status produced by the modified ejection procedure that accounts for a direction of travel of the media within the infeed module (the direction can be towards the infeed mouth or back into the infeed module following the failed ejection attempt).
  • the media ejection manager processes the changing status in combination with whether a first sensor nearest to the shutter and a second sensor (farther from the shutter than the first sensor) are blocked and unblocked as indicated by the changing status.
  • the media ejection manager selectively delays a checking for the changing status for a configured period of time.
  • the media ejection manager selectively moves the media in the direction for a configured distance during the configured period of time for the delay.
  • the media ejection manager resumes processing back at 510 when a determination is made that the media is fully retracted back into the infeed module from the failed ejection attempt (the customer did not pull the media out of the infeed mouth of the infeed module).
  • the media ejection manager resumes processing at 510 until all additional media that is to be ejected has been properly and successfully ejected from the infeed module (successfully taken by the customer from the infeed mouth of the infeed module).
  • at least one of the additional media includes no windowed portions.
  • FIG. 6 is a media depository 600 with an infeed module, according to an example embodiment.
  • the valuable media depository 600 processes valuable media and includes a variety of mechanical, electrical, and software/firmware components, some of which were discussed above with reference to the FIGS. 1-2, 3A-3J, and 4-5 .
  • the valuable media depository 600 is a deposit module.
  • the valuable media depository 600 is a recycler module.
  • the valuable media depository 600 is the depository 100 .
  • the valuable media depository 600 is the depository that performs: any or, some combination of, or all of the processing discussed above in the FIGS. 1-2, 3A-3J, and 4-5 .
  • the valuable media depository 600 is a peripheral device integrated into an SST.
  • the SST is an ATM.
  • the SST is a kiosk.
  • the valuable media depository 600 is a peripheral device integrated into a Point-Of-Sale (POS) terminal.
  • POS Point-Of-Sale
  • the valuable media depository 600 includes an infeed module 601 including a controller 602 operable to control media ejection processing for the infeed module 601 .
  • the infeed module 601 is the infeed module 101 .
  • the controller 602 is configured, adapted, and operable to control ejection of both non-windowed media and windowed media (media with at least one transparent or see-through portion).
  • the controller 602 is further configured, adapted, and operable to selectively enable and disable edge direction detection status processing based on blocked and unblocked conditions reported from at least two track sensors of the infeed module 601 and in response to changing statuses determining when any currently processed media is properly ejected from the infeed module 601 or is properly retracted within the infeed module 601 based on a failed ejection attempt
  • the edge direction detection status is the edge-direction detection status processing (and resulting status values) discussed above with the FIGS. 2 and 3A-3J .
  • controller 602 is one of or some combination of: 1) the processing discussed above with the FIGS. 2 and 3A-3J , the method 400 , and/or the method 500 .
  • the controller 602 drives the electromechanical components of the infeed module 101 as discussed in the FIGS. 2, 3A-3J, and 4-5 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

An infeed module of a valuable media depository is configured to track media edge detection during ejection processing. When sensors of the infeed module report conditions that would otherwise indicate that media has exited or been retracted back into the infeed module during ejection processing, reporting of the conditions are delayed or modified based on a tracked edge detection status. Thereby permitting the infeed module to perform proper ejection processing on both windowed and non-windowed media regardless of the dimensions present for any windowed portions of the media.

Description

    BACKGROUND
  • Media handing devices that process media rely on optical (track) sensors situated throughout the devices for purposes of tracking the media and/or verifying the authenticity of the media. This is particularly relevant for currency notes. Many foreign governments have started printing currency with windowed sections. This is being done to thwart counterfeiters.
  • Furthermore, governments keep introducing these windowed portions as different sections of the media from what has previously been noted in the industry, which makes accounting for all the different variations and permutations extremely difficult. That is, when a government introduces a middle section of a currency note as being transparent and proper configuration of media handling devices are achieved, the same government or a different government may introduce a currency note where the first section of a currency note is transparent and additional configuration is needed. Another complication is that the consumer can insert currency notes in any orientation meaning upside down, backend first, and the like; such that configurations of the media handling devices have to be configured to handle the various orientations that the consumer may insert a windowed note into the devices.
  • This presents some challenges for existing optical sensors within existing media devices because the optical sensors fail to detect the presence of the windowed portion of the currency note. When an opaque document is in the path of an optical track sensor, the track sensor reports a blocked condition indicating the presence of media (such as a currency note or a check). When the document passes over and by the optical sensor, the track sensors report an unblocked condition indicating that the track no longer has media above and/or below the track sensors.
  • With windowed media, when the windowed (transparent) portion of the media is in the path of an optical sensor, the track sensor falsely reports the unblocked condition indicating the absence of any media. These false readings due to portions of a media document being windowed make it difficult for determining whether a windowed portion of a media document has passed over the sensor or whether the entire media document has passed over the sensor, which makes the task of locating and tracking windowed media extremely difficult.
  • SUMMARY
  • In various embodiments, methods and a valuable media depository for ejection processing of windowed and non-windowed media within are provided.
  • According to an embodiment, a method for ejection processing of windowed and non-windowed media is presented. Specifically, media edge detection is selectively ignored from sensors during ejection processing for media being ejected from an infeed module. The media edge detection is enabled during the ejection processing after a shutter opens for the infeed module based on detection of the media from at least one of the sensors. Next, the media is advanced within the infeed module a present distance in a direction towards the shutter during the ejection processing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram depicting a deposit module of a Self-Service Terminal (SST) having an infeed module, according to an example embodiment.
  • FIG. 2 is a diagram depicting an infeed module, according to an example embodiment.
  • FIGS. 3A-3J illustrate ejection processing scenarios for windowed and non-windowed media performed by the infeed module of the FIG. 2, according to example embodiments.
  • FIG. 4 is a diagram of a method for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment.
  • FIG. 5 is a diagram of another method for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment.
  • FIG. 6 is a diagram of a valuable media depository, according to an example embodiment.
  • DETAILED DESCRIPTION
  • FIG. 1 is a diagram depicting a one-sided view of a valuable media depository 100, according to an example embodiment (also referred to as a deposit module). It is to be noted that the valuable media depository is shown with only those components relevant to understanding what has been added and modified to a conventional depository for purposes of providing adaptive pressure media feeding and processing within the depository 100.
  • The depository 100 is suitable for use within an Automated Teller Machine (ATM), which can be utilized to process deposited banknotes and checks (valuable media as a mixed bunch if desired). The deposit module 100 has an access mouth (media or document infeed) where a novel configured infeed module 101 (discussed in detail below with reference to the FIGS. 2, 3A-3J, and 4-6) processes and through which incoming checks and/or banknotes (windowed and non-windowed) are deposited or outgoing checks and/or banknotes are dispensed. This mouth is aligned with an infeed aperture in the fascia of the ATM in which the depository 100 is located, which thus provides an input/output slot to the customer. A bunch (stack) of one or more items (valuable media) is input or output. Incoming checks and/or banknotes follow a first transport path 102 away from the mouth in a substantially horizontal direction from right to left shown in the FIG. 1A. They then pass through a separator module 103 and from the separator 103 to a deskew module 104 along another pathway portion 105, which is also substantially horizontal and right to left. The items are now de-skewed and aligned for reading by imaging cameras 106 and a Magnetic Ink Character Recognition (MICR) reader 107.
  • Items are then directed substantially vertically downwards to a point between two nip rollers 108. These nip rollers cooperate and are rotated in opposite directions with respect to each other to either draw deposited checks and/or banknotes inwards (and urge those checks and/or banknotes towards the right hand side in the FIG. 1), or during another mode of operation, the rollers can be rotated in an opposite fashion to direct processed checks and/or banknotes downwards in the direction shown by arrow A in the FIG. 1 into a check or banknote bin 110. Incoming checks and/or banknotes, which are moved by the nip rollers 108 towards the right, enter a diverter mechanism 120. The diverter mechanism 120 can either divert the incoming checks and/or banknotes upwards (in the FIG. 1) into a re-buncher unit 125, or downwards in the direction of arrow B in the FIG. 1 into a cash bin 130, or to the right hand side shown in the FIG. 1 into an escrow 140. Items of media from the escrow 140 can selectively be removed from the drum and re-processed after temporary storage. This results in items of media moving from the escrow 140 towards the left hand side of the FIG. 1 where again they will enter the diverter mechanism 120. The diverter mechanism 120 can be utilized to allow the transported checks (a type of valuable media/document) and/or banknotes (another type of valuable media/document) to move substantially unimpeded towards the left hand side and thus the nip rollers 108 or upwards towards the re-buncher 125. Currency notes from the escrow can be directed to the re-buncher 125 or downwards into the banknote bin 130.
  • As used herein, the phrase “valuable media” refers to media of value, such as currency, coupons, checks, negotiable instruments, value tickets, and the like.
  • For purposes of the discussions that follow with respect to the FIGS. 1-2, 3A-3J, and 4-6, “valuable media” is referred to as currency and the “valuable media depository” is referred to as a “depository.” Additionally, valuable media may be referred to as a “document” herein.
  • FIG. 2 is a diagram depicting an infeed module 101, according to an example embodiment.
  • The infeed mouth 101A is the opening and path within the valuable media depository 100 for an incoming document. A pair of track sensors are labeled as TS1 and TS2 (also labeled as such in the FIGS. 3A-3J below).
  • Typically, the infeed module 101 is configured for processing a debounce algorithm that is applied to those sensors TS1 and/or TS2 reporting an unblocked condition (no presence of media under the sensors TS1 and/or TS2). When a maximum window size for a document (media) and a speed of the document along the infeed path for the infeed module 101 are known, an algorithm is processed for the sensors TS1 and TS2 reporting for ensuring a sensor TS1 or TS2 is unblocked sufficiently long enough (configured within the algorithm) for the windowed portion (transparent portion) to pass before the sensor TS1 or TS2 reports an unblocked condition. This ensures the unblocked condition reading correctly indicates the absence of media. This approach works when the maximum window (transparency) size and the document throughput processing are known.
  • While ejecting media to the customer, the media is presented using a programmable “present distance” (the distance the media is positioned and held away from the shutter) and completely stopped over the sensors TS1 and TS2. The infeed module 101 waits a programmable “present delay” period while waiting for the customer to take the media from the infeed mouth. The customer can influence the document speed and direction at any time during the processing, since the document speed is unknown because of this situation, the traditional debounce algorithm has limited assistance in this scenario.
  • For non-windowed media, the ejection procedure combined with processing of the debounce algorithm works with some windowed media. The non-windowed ejection procedure is as follows:
  • 1) drive media until the TS1 is blocked and then open the infeed mouth shutter;
  • 2) drive the media out the present distance, then stop and hold the media; and
  • 3) delay for the present delay, while waiting for the customer to take the media:
  • (a) if the TS1 and TS2 report an unblocked condition; the media has been taken, so return to step 1) until no more media is found for ejection processing; or
  • (b) if the TS1 and TS2 stay blocked for the entire present delay, the media has not been taken; the media is retracted by driving the media back into the infeed module 101 until TS1 and TS2 indicate an unblocked condition; then, return to step 1 for re-presenting the media to the customer.
  • Windowed media is dimensioned, such that when the media was presented and stopped, an opaque portion of the document appears over TS1 and/or TS2. The track sensors report a block condition indicating the presence of the media. Therefore, relying on TS1 and TS2 to report an unblocked condition gives a correct indication of media being removed by the customer.
  • However, recently new dimensioned windowed media has been introduced by some governments with larger windows and dimensions such that when the media is presented, a windowed portion of the document may be over both TS1 and TS2. The track sensors (TS1 and TS2) falsely report an unblocked condition falsely indicating the absence of media and giving a false indication that the customer has removed the media. This causes the ejection procedure to instantly move from step 3(a) back to step 1), which ultimately ejects the media directly out of the infeed mouth 101A and onto the floor. The customer has no chance to take the media before it is ejected. This results in unacceptable and undesirable behaviors and delivers a poor customer experience.
  • If the presented media is oriented such that a windowed portion of the document is not over TS1 and TS2, the sensors report a blocked condition correctly indicating the presence of the media (document). If the customer does not take the media within the present delay period, the media is retracted back into the infeed module 101 to then be re-presented. During the retract process, larger windowed sized media will unblock TS1 and TS2 causing a false indication of the absence of media and indicating to the infeed module 101 that the media has been fully retracted into the infeed module 101. This results in the retraction processing stopping prematurely with a portion of the media still sitting outside the shutter of the infeed mouth 101A. The media is then presented a set distance from this point, but since the media was not completely retracted, the present distance causes the media to again be undesirably ejected onto the floor.
  • Embodiments presented herein, process a novel “edge-direction detection” algorithm to the above-mentioned ejection procedure for universally ejecting all transparent windowed (regardless of window size and location) and non-windowed media. This results in a new, modified, and novel ejection procedure.
  • As will be explained more completely herein and below, the edge-direction detection algorithm tracks the directions of document edges at all times during the ejection procedure. However, the edge-direction detection status is only used at selective times during the ejection procedure and the status is ignored at other times. This allows windows to pass over and/or stop at TS1 and TS2. Even though the track sensors may report an unblocked condition, the edge-direction detection algorithm allows the ejection procedure to correctly determine if the document has been removed or if a window has been passed and the document is still present within the infeed module 101.
  • The novel edge-direction detection algorithm proceeds as follows:
  • 1) If TS1 and TS2 report a block condition, a status becomes “media at TS1 and TS2.” Here, media is blocking TS1 and TS2 but the direction of the media is not yet known, this is illustrated in the FIG. 3A.
  • 2) If TS1 reports an unblocked condition, the status is changed to “media encountered” as the direction for the media is now known to be inside the infeed module 101, this is shown in the FIG. 3B.
  • 3) Otherwise, if TS2 reports an unblocked condition, the status does not immediately get changed. This is a situation where the direction is known, but the media has not yet completely left the infeed module 101, as shown in the FIG. 3C.
  • 4) If the document (media) continues to travel out the infeed module 101, TS1 reports an unblocked condition and the status is changed to “media exited” since the document is now completely out of the infeed module 101, as shown in the FIG. 3D.
  • The ejection procedure recited above is further modified for selectively processing the edge-direction detection status and proceeds as follows:
  • 1) Disable the edge-direction detection (the reason for which is discussed below at 4).
  • 2) Drive the media until TS1 reports a blocked condition, then open the infeed shutter, as shown in the FIG. 3E.
  • 3) Drive the media out the present distance, then stop and hold the media, as shown in the FIG. 3F.
  • 4) Enable edge-direction detection (the reason the edge-direction detection was disabled until now is because between steps 2 and 3 a window could have passed over TS1 and TS2, which could have triggered a status of “media exited” but this is ignored because the edge-direction detection was disabled until here); this allows the windowed media to be properly presented;
  • 5) Delay for the present delay period and wait until the customer takes the media from the infeed mouth 101A; this entails the following processing:
      • (a) If the edge-direction detection status changes to “media exited,” the media may have been taken or a window may have passed so:
        • a.1) Wait a small delay period to check for a blocking condition reported from either TS1 or TS2. This scenario is depicted in the FIG. 3G. Then, loop back to step 1) until no more media is found for ejection processing.
        • a.2) If TS1 or TS2 reports a block condition within the present delay period, a windowed portion of the media has passed over TS1 and TS2. This scenario is shown in the FIG. 3H. So, return to 5(a) and resume the present delay.
      • (b) If the edge-direction detection status does not change for the entire present delay period, the media has not been taken from the infeed mouth 101A of the infeed module 101 by the customer so:
        • b.1) Disable edge-direction detection.
        • b.2) Drive the media back into the infeed module 101 slightly less than (a configured amount) the present distance. This allows any windows present to pass over TS1 and TS2, as shown in the FIG. 3I.
        • b.3) Enable edge-direction detection while the media is still being driven back into the infeed module 101 and during 5(b.2), a window could have passed over TS1 and TS2, which could have triggered a “media encountered” status change but was ignored since the edge-direction detection processing was disabled. This allows windowed media to be properly retracted within the infeed module 101.
        • b.4) Stop driving the media when the edge-direction status changes to “media encountered.” This indicates the media has been completely retracted into the infeed module 101 (see the FIG. 3J). Next, go to step 1) for re-presenting the media (re-presentation processing).
  • The above modified and novel ejection processing for an infeed module 101 allows for windowed and non-windowed media to be presented, retracted, and re-presented with or without TS1 and/or TS2 changing states due to any windowed portions within the media. The processing allows for consistent and correct ejection behavior of the infeed module 101 for both transparent (including any windowed media with larger windowed areas than are presently available today within the industry) and non-windowed media.
  • Furthermore, a firmware upgrade can provide the novel modified ejection processing so as to enhance existing infeed modules to perform the processing of the infeed module 101 (within a valuable media depository 100) ensuring that the valuable media depository 100 can properly perform ejection processing and media detection on both windowed media and non-windowed media. The novel ejection processing solves the industry problem associated with being unable to properly eject new types of media with larger windows. This single universal processing approach provides accurate and consistent behavior between both windowed and non-windowed media during ejection processing regardless of windowed dimensions. Moreover, there is consistent behavior between both windowed and non-windowed media while providing a familiar “customer feel and experience” regardless of the media type (windowed or non-windowed). This is especially significant for existing customers that are used to non-windowed media but are now starting to use windowed media. This approach also reduces engineering designing, testing, and maintenance complexity. Furthermore, the approach does not necessitate new hardware as it can be implemented with a firmware upgrade to the controller board of the valuable media depository 100 and/or the infeed module 101.
  • In an embodiment, the infeed module 101 is a peripheral device integrated into the valuable media depository 100.
  • In an embodiment, the valuable media depository 100 is an SST. In an embodiment, the SST is an ATM. In an embodiment, the SST is a kiosk.
  • In an embodiment, the valuable media depository 100 is Point-Of-Sale (POS) terminal.
  • The embodiments discussed above and other embodiments are now discussed with reference to the FIGS. 4-6.
  • FIG. 4 is a diagram of a method 400 for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment. The method 400 when processed controls ejection operations for infeed module integrated into a valuable media depository. The method 200 is implemented as executable instructions representing one or more software modules referred to as a “media ejection controller.” The instructions reside in a non-transitory computer-readable medium and are executed by one or more processors of the valuable media depository and/or an infeed module.
  • In an embodiment, the media ejection controller is executed by one or more processors of the valuable media depository 100.
  • In an embodiment, the media ejection controller is executed by one or more processors of the infeed module 101.
  • In an embodiment, the media ejection controller performs the ejection processing discussed above with the FIGS. 2 and 3A-3J.
  • In an embodiment, the valuable media depository is a deposit module.
  • In an embodiment, the valuable media depository is a recycler module.
  • In an embodiment, the valuable media depository is a peripheral device integrated into an SST. In an embodiment, the SST is an ATM. In an embodiment, the SST is a kiosk.
  • In an embodiment, the valuable media depository is a peripheral device integrated into a Point-Of-Sale (POS) terminal.
  • At 410, the media ejection controller selectively disables media edge detection processing during ejection processing for media being ejected from an infeed module.
  • In an embodiment, the media edge detection processing is the edge-direction detection processing discussed above with the FIGS. 2 and 3A-3J. In an embodiment, the ejection processing is the ejection processing discussed above with the FIGS. 2 and 3A-3J.
  • According to an embodiment, at 411, the media ejection controller urges the media along a transport path until a first sensor closest to a shutter of the infeed module at an infeed mouth reports a blocked condition (indicating that an opaque portion of the media is under the first sensor). In response to this blocked condition from the first sensor, the media ejection controller activates the shutter at the infeed mouth to open the shutter so that the media can be partially pushed out the infeed mouth.
  • At 420, the media ejection controller enables the media edge detection processing when the shutter opens based on detection by the first sensor (closest to the shutter and closer to the shutter than a second sensor) of the presence of the media at the first sensor. This is shown in the FIG. 3E.
  • According to an embodiment of 420 and 411, at 421, the media ejection controller urges the media along the transport path a present distance and then stops the transport path preventing any further traveling of the media within the infeed module along the transport path. The present distance is a configured distance based on a size (dimension of the media). At this point the direction of travel of the media may still be unknown and the media may be traveling out the infeed mouth for acquisition by a customer or may be traveling back into the infeed mouth after a failed acquisition by the customer. This is shown in the FIG. 3F.
  • In an embodiment of 421 and at 422, the media ejection controller sets the status to “media at both of the two sensors” when the first sensor and the second sensor are both reporting a blocked condition (indicating that an opaque portion of the media is under the two sensors). This detected condition is shown above in the FIG. 3A.
  • In an embodiment of 421 and at 423, the media ejection controller changes the status to “media being retracted into the infeed module” when the first sensor reports an unblocked condition while the second sensor reports the blocked condition. The direction of travel of the media is known to be back within the infeed module for a second attempt to eject the media from the infeed module. This detected condition is shown above in the FIG. 3B.
  • In an embodiment of 421 and at 424, the media ejection controller maintains the status as unchanged when the first sensor continues reporting the blocked condition while the second sensor reports the unblocked condition until the first sensor reports the unblocked condition. In response to this situation, the media ejection controller changes the status to “media exited” indicating that a customer has obtained the media and pulled it from the infeed mouth of the infeed module. Here, the media direction of travel is resolved to be a direction that is out of the infeed module through the infeed mouth. This detected condition is illustrated in the FIG. 3C.
  • In an embodiment of 421 and at 425, the media ejection controller delays for a present delay period of time for determining whether the media is successfully removed from the infeed mount of the infeed module by a customer. This detected condition is illustrated in the FIG. 3D.
  • At 430, the media ejection controller determines whether the media has exited the infeed module or whether the media has been fully retracted back within the infeed module based on status produced from the media edge detection processing.
  • According to an embodiment of 430 and 425, at 431, the media ejection controller delays for an additional period of time when the status changes at the end of the present delay period of time to “media exited” and when the status remains unchanged the media ejection controller determines that the media has successfully ejected and taken by a customer from the infeed mouth. The media ejection controller determines if additional media is present for ejection and if so, the processing resumes back at 410 to perform ejection processing on the additional media (this continues until all of the media that is to be ejected through the infeed mouth of the infeed module has been successfully ejected). This is shown in the FIG. 3G.
  • In an embodiment of 431 and 425, at 432, the media ejection controller determines whether either the first sensor or the second sensor report the blocked condition during any portion of the additional period of delay (defined at 431). If this condition is found, then the media ejection controller resumes processing at 425. This is illustrated in the FIG. 3H.
  • In an embodiment of 431 and at 433, the media ejection controller disables the media edge detection when the status remains unchanged during the present delay period (defined at 425) and, in response to such a condition, the media ejection controller urges the media back into the infeed module in a direction away from the shutter (infeed mouth) for a distance that is less than the present distance. Next, the media ejection controller re-enables the media edge detection processing while the media is being urged in the direction. Then, the media ejection controller, halts travel of the media by halting or stopping the transport path when the status changes to “media entered.” This is a failed ejection attempt indicating that the customer did not pull the media out of the infeed mouth; the media ejection controller pulls the media back within the infeed module to try again to eject the media out the infeed mouth, so the processing resumes back at 410. These conditions are illustrated in the FIGS. 3I and 3J.
  • FIG. 5 is a diagram of another method 500 for ejection processing of windowed and non-windowed media performed by an infeed module of a valuable media depository, according to an example embodiment. The method 500 when processed controls media ejection processing within a valuable media depository by controlling ejection operations of an infeed module of the valuable media depository. The method 500 is implemented as executed instructions representing one or more software modules referred to as a media ejection manager. The instructions reside in a non-transitory computer-readable medium and are executed by one or more processors of the valuable media depository and/or the infeed module.
  • In an embodiment, the media ejection manager is executed by one or more processors of the valuable media depository 100.
  • In an embodiment, the media ejection manager is executed by one or more processors of the infeed module 101.
  • In an embodiment, the media ejection manager is another perspective of and includes the processing of the media ejection controller of the FIG. 4.
  • In an embodiment, the media ejection manager performs the ejection processing discussed above with the FIGS. 2 and 3A-3J.
  • In an embodiment, the valuable media depository is a deposit module.
  • In an embodiment, the valuable media depository is a recycler module.
  • In an embodiment, the valuable media depository is a peripheral device integrated into an SST. In an embodiment, the SST is an ATM. In an embodiment, the SST is a kiosk.
  • In an embodiment, the valuable media depository is a peripheral device integrated into a Point-Of-Sale (POS) terminal.
  • At 510, the media ejection manager modifies an existing ejection procedure for an infeed module of a valuable media depository by selectively activating and deactivating edge detection (edge-direction detection processing discussed above with the FIGS. 2 and 3A-3J) of media. The media includes at least one windowed portion (transparent portions) and non-windowed portions (opaque portions), and the media is being ejected from the infeed module.
  • According to an embodiment, at 511, the media ejection manager disables the edge detection until a sensor nearest to a shutter at an infeed mouth of the infeed module is blocked by the media. In response to this condition, the media ejection manager opens the shutter, advances the media along a transport path of the infeed module a present distance, and enables the edge detection processing.
  • At 520, the media ejection manager determines, based on the modified ejection procedure, whether the media is completely ejected (taken from the infeed mouth by a customer) or whether the media is fully retracted back into the infeed module away from the infeed mouth from a failed ejection attempt (failed because the media was presented through the infeed mouth and the customer failed to remove the media from the infeed mouth).
  • In an embodiment of 520 and 511, at 521, the media ejection manager maintains a changing status produced by the modified ejection procedure that accounts for a direction of travel of the media within the infeed module (the direction can be towards the infeed mouth or back into the infeed module following the failed ejection attempt). Next, the media ejection manager processes the changing status in combination with whether a first sensor nearest to the shutter and a second sensor (farther from the shutter than the first sensor) are blocked and unblocked as indicated by the changing status.
  • In an embodiment of 521 and at 522, the media ejection manager selectively delays a checking for the changing status for a configured period of time.
  • In an embodiment of 522 and at 523, the media ejection manager selectively moves the media in the direction for a configured distance during the configured period of time for the delay.
  • In an embodiment, at 524, the media ejection manager resumes processing back at 510 when a determination is made that the media is fully retracted back into the infeed module from the failed ejection attempt (the customer did not pull the media out of the infeed mouth of the infeed module).
  • According to an embodiment, at 530, the media ejection manager resumes processing at 510 until all additional media that is to be ejected has been properly and successfully ejected from the infeed module (successfully taken by the customer from the infeed mouth of the infeed module). In an embodiment, at least one of the additional media includes no windowed portions.
  • FIG. 6 is a media depository 600 with an infeed module, according to an example embodiment. The valuable media depository 600 processes valuable media and includes a variety of mechanical, electrical, and software/firmware components, some of which were discussed above with reference to the FIGS. 1-2, 3A-3J, and 4-5.
  • In an embodiment, the valuable media depository 600 is a deposit module.
  • In an embodiment, the valuable media depository 600 is a recycler module.
  • In an embodiment, the valuable media depository 600 is the depository 100.
  • In an embodiment, the valuable media depository 600 is the depository that performs: any or, some combination of, or all of the processing discussed above in the FIGS. 1-2, 3A-3J, and 4-5.
  • In an embodiment, the valuable media depository 600 is a peripheral device integrated into an SST. In an embodiment, the SST is an ATM. In an embodiment, the SST is a kiosk.
  • In an embodiment, the valuable media depository 600 is a peripheral device integrated into a Point-Of-Sale (POS) terminal.
  • The valuable media depository 600 includes an infeed module 601 including a controller 602 operable to control media ejection processing for the infeed module 601.
  • In an embodiment, the infeed module 601 is the infeed module 101.
  • The controller 602 is configured, adapted, and operable to control ejection of both non-windowed media and windowed media (media with at least one transparent or see-through portion).
  • The controller 602 is further configured, adapted, and operable to selectively enable and disable edge direction detection status processing based on blocked and unblocked conditions reported from at least two track sensors of the infeed module 601 and in response to changing statuses determining when any currently processed media is properly ejected from the infeed module 601 or is properly retracted within the infeed module 601 based on a failed ejection attempt
  • In an embodiment, the edge direction detection status is the edge-direction detection status processing (and resulting status values) discussed above with the FIGS. 2 and 3A-3J.
  • In an embodiment the controller 602 is one of or some combination of: 1) the processing discussed above with the FIGS. 2 and 3A-3J, the method 400, and/or the method 500.
  • In an embodiment, the controller 602 drives the electromechanical components of the infeed module 101 as discussed in the FIGS. 2, 3A-3J, and 4-5.
  • The above description is illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of embodiments should therefore be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • In the foregoing description of the embodiments, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting that the claimed embodiments have more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Description of the Embodiments, with each claim standing on its own as a separate exemplary embodiment.

Claims (20)

1. A method, comprising:
(i) disabling media edge detection during ejection processing by a media ejection controller for media being ejected from an infeed module;
(ii) enabling the media edge detection by the media ejection controller when a shutter opens for the infeed module based on detection of the media at a first sensor closer to the shutter than a second sensor; and
(iii) determining by the media ejection controller whether the media has exited the infeed module or whether the media has been fully retracted back within the infeed module based on a media status produced from the media edge detection by the media ejection controller.
2. The method of claim 1, wherein (i) further includes urging the media along a transport path by a media transport under control of the media ejection controller until the first sensor reports a blocked condition and then activating opening the shutter and halting the media transport by the media ejection controller.
3. The method of claim 2, wherein halting further includes urging the media along the transport path a present distance by the media transport and stopping the media transport.
4. The method of claim 3, wherein (ii) further includes (a) setting the media status to: “media at both of the sensors” by the media ejection controller when the first sensor and the second sensor are both reporting the blocked condition.
5. The method of claim 4, wherein (ii) further includes (b) changing the media status to: “media being retracted into the infeed module” by the media ejection controller when the first sensor reports an unblocked condition while the second sensor is reporting the blocked condition.
6. The method of claim 5, wherein (ii) further includes (c) maintaining the media status unchanged by the media ejection controller when the first sensor continues to report the blocked condition while the second sensor reports the unblocked condition until the first sensor reports the unblocked condition and then changing by the media ejection controller the media status to “media exited” indicating the media has exited the infeed module.
7. The method of claim 3, wherein halting further includes (iv) delaying for a present delay period of time for determining whether the media is removed from an infeed mouth of the infeed module.
8. The method of claim 7, wherein (iii) further includes delaying an additional period of time by the media ejection controller when the media status changes at an end of the present delay period to “media exited”, and when the media status remains unchanged determining by the media ejection controller that the media has successfully ejected from the infeed module and when additional media is present for ejecting from the infeed module returning to step (i).
9. The method of claim 8, wherein (iii) further includes determining by the media ejection controller whether either the first sensor or the second sensor report the blocked condition during any portion of the additional period of time and when determined to be the case returning to step (iv).
10. The method of claim 7, wherein (iii) further includes disabling the media edge detection processing by the media ejection controller when the media status remains unchanged at an end of the present delay period, and urging by the media ejection controller the media back into the infeed module in a direction away from the shutter for a distance that is less than a present distance, enabling by the media ejection controller the media edge detection processing while urging the media in the direction, halting the media transport by the media ejection controller path when the media status changes to “media entered”, and returning to step (i).
11. A method, comprising:
(i) modifying an existing ejection procedure for an infeed module by selectively activating and deactivating edge detection of media that includes windowed and non-windowed portions and that is being ejected from the infeed module; and
(ii) determining based on the modified ejection procedure whether the media is completely ejected or whether the media is fully retracted from a failed ejection attempt.
12. The method of claim 11, wherein (i) further includes disabling the edge detection until a sensor nearest to a shutter of the infeed module is blocked and in response thereto opening the shutter, advancing the media along a transport path a present distance, and enabling the edge detection.
13. The method of claim 12, wherein (ii) further includes maintaining a changing status produced by the modified ejection procedure that accounts for a direction of travel of the media within the infeed module and processing the changing status in combination with whether a first sensor nearest to the shutter of the infeed module and a second sensor are blocked and unblocked with the changing status.
14. The method of claim 13, wherein maintaining further includes selectively delaying a checking for the changing status for a configured period of time.
15. The method of claim 14, wherein selective delaying further includes selecting moving the media in the direction a configured distance during the configured period of time.
16. The method of claim 11, wherein (ii) further includes resuming processing at (i) when a determination is made that the media is fully retracted within the infeed module from the failed ejection attempt.
17. The method of claim 11 further comprising, (iii) resume processing at (i) until all additional media is properly ejected from the infeed module.
18. The method of claim 17, wherein (iii) further includes processing at least some of the additional media as non-windowed media that lacks any windowed portion within that non-windowed media.
19. A depository, comprising:
an infeed module; and
a controller operable to control ejection of both non-windowed media and windowed media;
wherein the controller is configured to selectively enable and disable edge direction detection status processing based on blocked and unblocked conditions reported from at least two track sensors of the infeed module and in response to changing statuses determining when any currently processed media is properly ejected from the infeed module or is properly retracted within the infeed module based on a failed ejection attempt.
20. The depository of claim 16, wherein the depository is one of: a deposit module and a recycler module.
US15/437,907 2017-02-21 2017-02-21 Ejecting windowed and non-windowed media Active US10364122B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/437,907 US10364122B2 (en) 2017-02-21 2017-02-21 Ejecting windowed and non-windowed media
EP18156115.0A EP3364380A1 (en) 2017-02-21 2018-02-09 Ejecting windowed and non-windowed media
CN201810152260.9A CN108470395B (en) 2017-02-21 2018-02-14 Pop-up windowed and non-windowed media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/437,907 US10364122B2 (en) 2017-02-21 2017-02-21 Ejecting windowed and non-windowed media

Publications (2)

Publication Number Publication Date
US20180237254A1 true US20180237254A1 (en) 2018-08-23
US10364122B2 US10364122B2 (en) 2019-07-30

Family

ID=61189362

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/437,907 Active US10364122B2 (en) 2017-02-21 2017-02-21 Ejecting windowed and non-windowed media

Country Status (3)

Country Link
US (1) US10364122B2 (en)
EP (1) EP3364380A1 (en)
CN (1) CN108470395B (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648494A (en) * 1987-07-01 1989-01-12 Oki Electric Ind Co Ltd Automatic transactor
US7520505B2 (en) * 2005-09-29 2009-04-21 Xerox Corporation High speed vertical reciprocating sheet trail edge stacking assistance system
US20080136657A1 (en) 2006-12-08 2008-06-12 Barrie Clark Automated teller machine
GB0702191D0 (en) * 2007-02-05 2007-03-14 Innovative Technology Ltd Improvements Relating to Banknote Validation
US9014845B2 (en) * 2008-10-22 2015-04-21 Ncr Corporation Item verification apparatus and method
JP5317815B2 (en) 2009-04-28 2013-10-16 京セラドキュメントソリューションズ株式会社 Paper conveying apparatus and image forming apparatus
CN101996434B (en) * 2009-08-20 2012-08-01 深圳贝斯特机械电子有限公司 Portable money identifier and paper money identifying method thereof
JP5387514B2 (en) * 2010-06-11 2014-01-15 沖電気工業株式会社 Banknote handling equipment
CN102760325B (en) * 2011-04-29 2014-11-05 山东新北洋信息技术股份有限公司 Paper currency processing unit and paper currency delivery state detecting method
JP5795990B2 (en) 2012-05-14 2015-10-14 日立オムロンターミナルソリューションズ株式会社 Paper sheet handling equipment and automatic transaction equipment
GB2517983B (en) * 2013-09-09 2016-03-16 Ibm Security apparatus for an automated teller machine
CN103996240B (en) * 2014-05-06 2016-08-24 上海古鳌电子科技股份有限公司 A kind of bank note turnover money system
CN105006062B (en) * 2015-07-29 2018-06-29 深圳怡化电脑股份有限公司 A kind of method and deposit and withdrawal device for identifying bank note

Also Published As

Publication number Publication date
CN108470395A (en) 2018-08-31
US10364122B2 (en) 2019-07-30
EP3364380A1 (en) 2018-08-22
CN108470395B (en) 2020-12-22

Similar Documents

Publication Publication Date Title
US9472040B2 (en) Bill recognizing and counting apparatus
US7131539B2 (en) Paper sheets corner fold detection method and paper sheets corner fold detection program
US8523235B2 (en) Cash and cheque automatic depositing apparatus
US8708128B2 (en) Paper currency deposit-withdrawal mechanism
US20090066017A1 (en) Papaer sheet storage device, and control method and control program for paper sheet storage device
AU2016358270B2 (en) Paper sheet processing device and paper sheet processing method
JP5013909B2 (en) Banknote handling equipment
US10364122B2 (en) Ejecting windowed and non-windowed media
US9969583B2 (en) Ejecting damaged/deformed media
US10167152B2 (en) Folded media detection and processing
CN108061919B (en) Media feeder metal detection
US20180029814A1 (en) Double feed recovery and processing
JP2018045568A (en) Bill identification storage device
JPH09221266A (en) Paper stacking device
US20130341850A1 (en) Method for separating a stack of value documents
US20170305698A1 (en) Deskewing media
JP3594352B2 (en) Paper handling equipment
US20220301382A1 (en) Banknote handling apparatus, conveyance control method, and non-transitory computer-readable recording medium
US11995940B2 (en) Banknote handling apparatus, conveyance control method, and non-transitory computer-readable recording medium
KR20070079636A (en) Two papers detecting system of an auto bills treatment machine
KR100978116B1 (en) Giro paper treating method
JP2008305309A (en) Conveying device and money processor
JPH05229283A (en) Automatic page feed apparatus
JPH07157145A (en) Device for correcting condition of paper sheet
JPH06187535A (en) Automatic paper money paying device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NCR CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WIDSTEN, BENJAMIN T.;IBRAHIM, HUSAMELDIN;SONNENBERG, MATTHEW GORDON;AND OTHERS;SIGNING DATES FROM 20170127 TO 20170209;REEL/FRAME:041318/0750

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:NCR CORPORATION;REEL/FRAME:050874/0063

Effective date: 20190829

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:NCR CORPORATION;REEL/FRAME:050874/0063

Effective date: 20190829

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS SECTION TO REMOVE PATENT APPLICATION: 15000000 PREVIOUSLY RECORDED AT REEL: 050874 FRAME: 0063. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:NCR CORPORATION;REEL/FRAME:057047/0161

Effective date: 20190829

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS SECTION TO REMOVE PATENT APPLICATION: 150000000 PREVIOUSLY RECORDED AT REEL: 050874 FRAME: 0063. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:NCR CORPORATION;REEL/FRAME:057047/0161

Effective date: 20190829

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:NCR ATLEOS CORPORATION;REEL/FRAME:065331/0297

Effective date: 20230927

AS Assignment

Owner name: NCR VOYIX CORPORATION, GEORGIA

Free format text: RELEASE OF PATENT SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:065346/0531

Effective date: 20231016

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNORS:NCR ATLEOS CORPORATION;CARDTRONICS USA, LLC;REEL/FRAME:065346/0367

Effective date: 20231016

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE DOCUMENT DATE AND REMOVE THE OATH/DECLARATION (37 CFR 1.63) PREVIOUSLY RECORDED AT REEL: 065331 FRAME: 0297. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:NCR ATLEOS CORPORATION;REEL/FRAME:065627/0332

Effective date: 20231016