US20180228214A1 - Container containing a nicotine solution - Google Patents
Container containing a nicotine solution Download PDFInfo
- Publication number
- US20180228214A1 US20180228214A1 US15/525,163 US201515525163A US2018228214A1 US 20180228214 A1 US20180228214 A1 US 20180228214A1 US 201515525163 A US201515525163 A US 201515525163A US 2018228214 A1 US2018228214 A1 US 2018228214A1
- Authority
- US
- United States
- Prior art keywords
- nicotine
- acid
- solution
- protonated
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 title claims abstract description 257
- 229960002715 nicotine Drugs 0.000 title claims abstract description 239
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 title claims abstract description 238
- 239000004743 Polypropylene Substances 0.000 claims abstract description 41
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 40
- 239000004417 polycarbonate Substances 0.000 claims abstract description 40
- 229920001155 polypropylene Polymers 0.000 claims abstract description 40
- -1 polypropylene Polymers 0.000 claims abstract description 35
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 48
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 claims description 40
- 239000002253 acid Substances 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 23
- 239000005711 Benzoic acid Substances 0.000 claims description 20
- 235000010233 benzoic acid Nutrition 0.000 claims description 20
- 229940040102 levulinic acid Drugs 0.000 claims description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 claims description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 8
- 230000008016 vaporization Effects 0.000 claims description 6
- 239000006200 vaporizer Substances 0.000 claims description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 4
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 claims description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- 239000005642 Oleic acid Substances 0.000 claims description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 4
- 235000011054 acetic acid Nutrition 0.000 claims description 4
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 4
- 235000015165 citric acid Nutrition 0.000 claims description 4
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 claims description 4
- 235000019253 formic acid Nutrition 0.000 claims description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 4
- 235000021313 oleic acid Nutrition 0.000 claims description 4
- 235000019260 propionic acid Nutrition 0.000 claims description 4
- 229940107700 pyruvic acid Drugs 0.000 claims description 4
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 4
- 239000004334 sorbic acid Substances 0.000 claims description 4
- 235000010199 sorbic acid Nutrition 0.000 claims description 4
- 229940075582 sorbic acid Drugs 0.000 claims description 4
- 239000011975 tartaric acid Substances 0.000 claims description 4
- 235000002906 tartaric acid Nutrition 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000000034 method Methods 0.000 description 19
- 239000003571 electronic cigarette Substances 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 230000000087 stabilizing effect Effects 0.000 description 10
- 239000012458 free base Substances 0.000 description 9
- 230000005588 protonation Effects 0.000 description 9
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 6
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229940041616 menthol Drugs 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000007958 cherry flavor Substances 0.000 description 5
- 239000000796 flavoring agent Substances 0.000 description 5
- 235000019634 flavors Nutrition 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 238000001142 circular dichroism spectrum Methods 0.000 description 4
- 241000208125 Nicotiana Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000001007 puffing effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 229930182840 (S)-nicotine Natural products 0.000 description 1
- VPKKBWBYGRMALQ-UHFFFAOYSA-N 1-$l^{1}-azanylpyrrolidine Chemical compound [N]N1CCCC1 VPKKBWBYGRMALQ-UHFFFAOYSA-N 0.000 description 1
- PFLYWCBTLWHPKA-UHFFFAOYSA-N 3-(1-methylpyrrolidin-2-yl)pyridine;propane-1,2,3-triol Chemical compound OCC(O)CO.CN1CCCC1C1=CC=CN=C1 PFLYWCBTLWHPKA-UHFFFAOYSA-N 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- QWTDNUCVQCZILF-UHFFFAOYSA-N CCC(C)C Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 1
- MXNMKOQEJHXPFO-UHFFFAOYSA-N COC1=CC=C(C(C)(C)C2=CC=C(OC(C)=O)C=C2)C=C1 Chemical compound COC1=CC=C(C(C)(C)C2=CC=C(OC(C)=O)C=C2)C=C1 MXNMKOQEJHXPFO-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 238000013494 PH determination Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- QTURRUUBGSWGJP-JYEZWMBDSA-S [H+].[H+].[H][C@@]1(C2=CC=CN=C2)CCCN1C.[H][C@@]1(C2=CC=CN=C2)CCC[NH+]1C.[H][C@@]1(C2=CC=C[NH+]=C2)CCC[NH+]1C Chemical compound [H+].[H+].[H][C@@]1(C2=CC=CN=C2)CCCN1C.[H][C@@]1(C2=CC=CN=C2)CCC[NH+]1C.[H][C@@]1(C2=CC=C[NH+]=C2)CCC[NH+]1C QTURRUUBGSWGJP-JYEZWMBDSA-S 0.000 description 1
- QTURRUUBGSWGJP-JYEZWMBDSA-Q [H][C@@]1(C2=CC=CN=C2)CCCN1C.[H][C@@]1(C2=CC=CN=C2)CCC[N+]1([H])C.[H][N+]1=CC([C@]2([H])CCC[N+]2([H])C)=CC=C1 Chemical compound [H][C@@]1(C2=CC=CN=C2)CCCN1C.[H][C@@]1(C2=CC=CN=C2)CCC[N+]1([H])C.[H][N+]1=CC([C@]2([H])CCC[N+]2([H])C)=CC=C1 QTURRUUBGSWGJP-JYEZWMBDSA-Q 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- A24F47/008—
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/28—Treatment of tobacco products or tobacco substitutes by chemical substances
- A24B15/30—Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/465—Nicotine; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2069/00—Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7142—Aerosol containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/7414—Smokers'' requisites, e.g. pipe cleaners
- B29L2031/7416—Smokers'' requisites, e.g. pipe cleaners for cigars or cigarettes
Definitions
- the present disclosure relates to containers which contain a nicotine solution and to electronic vapor provision systems such as electronic nicotine delivery systems (e.g. e-cigarettes) incorporating such containers.
- electronic nicotine delivery systems e.g. e-cigarettes
- Electronic vapor provision systems such as e-cigarettes generally contain a reservoir of liquid which is to be vaporized, typically containing nicotine.
- a heater is activated to vaporize a small amount of liquid, which is therefore inhaled by the user.
- the liquid to be vaporized in e-cigarettes is typically a solution containing nicotine.
- the solvent may be, for example, glycerol.
- the vaporizing part of the device is often designed for multiple uses, although single use devices do exist. In multiple and single use devices a container holding the nicotine solution is present. The container is stored for significant periods from the time of filling until use. This period includes the time of distribution, stocking by a retailer and storage by the end user before use. During this storage period, loss of nicotine content may occur.
- a contained nicotine solution comprising: (i) a container; and (ii) a nicotine solution contained within the container, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- an electronic vapor provision system comprising: a vaporizer for vaporizing liquid for inhalation by a user of the electronic vapor provision system; a power supply comprising a cell or battery for supplying power to the vaporizer; a container in which is contained a nicotine solution, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, and wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- a process for stabilizing a nicotine solution comprising: protonating the nicotine present in the solution such that at least 5 wt % of the nicotine present in the solution is in protonated form.
- FIG. 1 shows a graph
- the present disclosure relates to a container which may be used in an electronic vapor provision system, such as an e-cigarette.
- an electronic vapor provision system such as an e-cigarette.
- e-cigarette is used; however, this term may be used interchangeably with electronic vapor provision system.
- nicotine may exist in free base form, monoprotonated form or diprotonated form.
- monoprotonated form may exist in free base form, monoprotonated form or diprotonated form.
- the structures of each of these forms are given below.
- Reference in the specification to protonated form means both monoprotonated nicotine and diprotonated nicotine. Reference in the specification to amounts in the protonated form means the combined amount of monoprotonated nicotine and diprotonated nicotine.
- the present disclosure provides a container in which is contained a nicotine solution, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- Nicotine 3-(1-methylpyrrolidin-2-yl) pyridine
- pKa 3.12 for the pyridine ring
- 8.02 for the pyrrolidine ring. It can exist in pH-dependent protonated (mono- and di-) and non-protonated forms which have different bioavailability.
- the fraction of non-protonated nicotine will be predominant at high pH levels whilst a decrease in the pH will see an increase of the fraction of protonated nicotine (mono- or di- depending on the pH). If the relative fraction of protonated nicotine and the total amount of nicotine in the sample are known, the absolute amount of protonated nicotine can be calculated.
- the relative fraction of protonated nicotine in solution can be calculated by using the Henderson-Hasselbalch equation, which describes the pH as a derivation of the acid dissociation constant equation, and it is extensively employed in chemical and biological systems.
- [B] is the amount of non-protonated nicotine (i.e. free base)
- [BH+] the amount of protonated nicotine (i.e. conjugate acid)
- the relative fraction of protonated nicotine can be derived from the alpha value of the non-protonated nicotine calculated from the Henderson-Hasselbalch equation as:
- Determination of pKa values of nicotine solutions may be was carried out using the basic approach described in “Spectroscopic investigations into the acid-base properties of nicotine at different temperatures”, Peter M. Clayton, Carl A. Vas, Tam T. T. Bui, Alex F. Drake and Kevin McAdam, .Anal. Methods, 2013, 5, 81-88. This method is summarized below.
- polycarbonate it is meant a polymer containing the following repeating unit
- At least a portion of the container in contact with the nicotine solution is formed from polycarbonate. In one aspect the majority of the container which is in contact with the nicotine solution is formed from polycarbonate. In one aspect all the container which is in contact with the nicotine solution is formed from polycarbonate. In one aspect the container is formed entirely from polycarbonate.
- polypropylene it is meant a polymer containing the following repeating unit
- At least a portion of the container in contact with the nicotine solution is formed from polypropylene. In one aspect the majority of the container which is in contact with the nicotine solution is formed from polypropylene. In one aspect all the container which is in contact with the nicotine solution is formed from polypropylene. In one aspect the container is formed entirely from polypropylene.
- the majority of the container which is in contact with the nicotine solution is formed from polycarbonate, polypropylene or a combination thereof. In one aspect all the container which is in contact with the nicotine solution is formed from polycarbonate, polypropylene or a combination thereof. In one aspect the container is formed entirely from polycarbonate, polypropylene or a combination thereof.
- the container of the present disclosure is typically provided for the delivery of nicotine solution to or within an e-cigarette.
- the nicotine solution may be held within an e-cigarette or may be sold as a separate container for subsequent use with or in an e-cigarette.
- e-cigarettes typically contain a unit known as a cartomizer which comprises a reservoir of nicotine solution, a wick material and a heating element for vaporizing the nicotine.
- the container is a cartomizer or is part of a cartomizer.
- the container is not a cartomizer or part of a cartomizer and is a container, such as a tank, bottle or the like, which may be used to deliver nicotine solution to or within an e-cigarette.
- the container is part of an e-cigarette. Therefore in a further aspect the present disclosure provides an electronic vapor provision system comprising: a vaporizer for vaporizing liquid for inhalation by a user of the electronic vapor provision system; a power supply comprising a cell or battery for supplying power to the vaporizer; a container in which is contained a nicotine solution, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, and wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- contact may occur between the container and the nicotine solution by any means. Provided the body of the container is contacted with nicotine solution then the container and solution are in contact. It is envisaged that the nicotine solution could be ‘free’ in the sense that it is a liquid in direct contact with the walls of the container. In also envisaged, that the nicotine solution may be held within a matrix (such as a foam) and the foam is in contact with the body of the container.
- a matrix such as a foam
- the nicotine present in the solution is in protonated form. In one aspect at least 15 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 20 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 25 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 30 wt % of the nicotine present in the solution is in protonated form.
- At least 35 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 40 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 45 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 50 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 55 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 60 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 65 wt % of the nicotine present in the solution is in protonated form.
- At least 70 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 75 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 80 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 85 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 90 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 95 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 99 wt % of the nicotine present in the solution is in protonated form.
- the nicotine protonation may be provided in such a manner to achieve the desired degree of protonation of nicotine.
- the nicotine is protonated by an organic acid.
- the nicotine is protonated by a carboxylic acid.
- the carboxylic acid may be any suitable carboxylic acid.
- the nicotine is protonated by a mono-carboxylic acid.
- the nicotine is protonated by an acid selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, oleic acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof.
- an acid selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, oleic acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof.
- the nicotine is protonated by an acid selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof In one aspect the nicotine is protonated by levulinic acid. In one aspect the nicotine is protonated by benzoic acid. In one aspect the nicotine is protonated by a mixture of levulinic acid and benzoic acid.
- Nicotine may exist in free base form, monoprotonated form or diprotonated form. As discussed herein we have found that by protonating at least some of the nicotine present in a solution, the stability of the nicotine solution may be enhanced. We have found that solutions of nicotine when stored for significant periods suffer loss of nicotine content. Although problems of stability are particularly observed when nicotine solution is stored in contact with polycarbonate or polypropylene, the problems are not exclusive to those materials.
- the present disclosure therefore provides a novel process for stabilizing a nicotine solution.
- the present disclosure provides a process for stabilizing a nicotine solution, the process comprising the steps of protonating the nicotine present in the solution such that at least 5 wt % of the nicotine present in the solution is in protonated form.
- the nicotine solution may be in contact with polycarbonate or polypropylene.
- the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 7 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 14 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 21 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 28 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 2 months.
- the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 3 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 4 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 5 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 6 months.
- the present disclosure further provides a novel use for stabilizing a nicotine solution.
- the present disclosure provides use of protonation of nicotine for stabilizing a nicotine solution.
- the present disclosure provides use of protonation of nicotine for improving storage stability of a nicotine solution.
- the present disclosure provides use of protonation of nicotine for reducing evaporative loss of nicotine from a nicotine solution.
- the present disclosure provides use of protonated nicotine for stabilizing a solution containing nicotine free base. In one aspect the present disclosure provides use of protonated nicotine for improving storage stability of a solution containing nicotine free base. In one aspect the present disclosure provides use of protonated nicotine for reducing evaporative loss of nicotine from a nicotine free base solution. It will be understood that by ‘nicotine free base solution’ it may be meant a solution containing nicotine free base and protonated nicotine in an amount as described herein.
- the present disclosure provides use of an acid for stabilizing a nicotine solution. In one aspect the present disclosure provides use of an acid for improving storage stability of a nicotine solution.
- the acid is an organic acid. In one aspect of use in accordance with the present disclosure the acid is a carboxylic acid. In one aspect of use in accordance with the present disclosure the acid is a mono-carboxylic acid.
- the acid is selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, oleic acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof.
- the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof.
- the acid is levulinic acid.
- the acid is benzoic acid.
- the acid is a mixture of levulinic acid and benzoic acid.
- the present disclosure provides use of an acid for stabilizing a nicotine solution, wherein the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof.
- the present disclosure provides use of an acid for improving storage stability of a nicotine solution, wherein the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof.
- the present disclosure provides use of an acid for reducing evaporative loss of nicotine from a nicotine solution, wherein the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof.
- At least 5 wt % of the nicotine present in the nicotine solution may be in protonated form.
- the present disclosure provides use of protonation of nicotine for stabilizing a nicotine solution with respect to polycarbonate or polypropylene. In one aspect the present disclosure provides use of protonation of nicotine for improving storage stability of a nicotine solution with respect to polycarbonate or polypropylene.
- UV absorbance & CD spectra were measured between 300-200 nm region, with various pathlengths depending upon the nicotine concentration of the solution—10 mm, 5 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm and 0.01 mm pathlengths.
- the instrument was flushed continuously with pure evaporated nitrogen throughout the measurements. Throughout measurements spectra were recorded with a 0.5 nm step size, a 1 s measurement time-per-point and a spectral bandwidth of 2 nm. Where possible, all CD spectra were smoothed with a window factor of 4 using the Savitzky-Golay method for better presentation.
- Solutions of S-Nicotine in glycerol/water were pH titrated at 23° C. The pH of these solutions was raised towards alkaline by adding small aliquots of NaOH ( ⁇ pH10) and then lowered to pH2 by adding small aliquots of HCl. A series of 0.1M, 0.5M, 1M, 5M and 10M of HCl and NaOH solutions were used during the pH titration. pHs were measured at 23° C. using a Corning pH105 pH meter with a RMS pH electrode. The p s K a2 values changed systematically with nicotine concentration ( FIG. 1 ) and therefore values for p s K a2 were calculated at each nicotine concentration level (Table 1).
- Use of this p s K a2 value with the Henderson-Hasselbalch equation allows calculation of the degree of nicotine protonationm at any pH value.
- Example 1 The materials were formulated as described and the pH determined as described in Example 1. Based on the pKa of 7.26 determined in Example 1, the percentage of nicotine that was protonated was calculated using the Henderson-Hasselbalch equation. The results obtained are tabulated below.
- the absorption of nicotine by a number of materials suitable for use in e-cigarettes was studied. The objective of this study was to determine whether there was any absorption of nicotine from a liquid formulation into a variety of materials occurring over time.
- 5 g of a nicotine solution comprising 3.7 wt % nicotine, 9% water and 87.3% glycerol was loaded into 40m1 amber glass vials.
- Pieces of polypropylene and polycarbonate were added to solutions (except for control samples), the vials were sealed with screw caps and stored at ambient temperatures or at 40° C. in an oven for a period of eight weeks. Sampling was performed on day 1, then at 1 week, 2 weeks, 4 weeks and 8 weeks.
- polypropylene (PP) and polycarbonate (PC) both of which are desirable materials for use in e-cigarettes were found to result in significant loss of nicotine when stored in contact with a nicotine solution containing nicotine only in free base form.
- the effect on storage stability of protonating nicotine was studied by examining 3 nicotine solutions loaded into cartomizer e-cigarettes (“Device”) containing PP and PC.
- the three nicotine solutions were an acid free nicotine solution and two protonated solutions, one protonated with 1.0 Molar equivalent levulinic acid and one protonated with 1.0 Molar equivalent benzoic acid.
- a 2.5% w/w nicotine amount was used, together with 9% water and sufficient glycerol to make the solution to 100%.
- the stability protocol incorporated filling a series of e-cigarettes for each formulation, as well as loading a number of sealed glass vials (used as control samples) to understand the source of any observed nicotine losses.
- the e-cigarettes were puffed on a 20-channel linear smoking machine (SM450) compliant with ISO 3308, but using the following puffing parameters: 80 ml puff volume, 3 second puff duration and 30 second interpuff interval.
- SM450 20-channel linear smoking machine
- Each port of the smoking engine was fitted with a holder containing a Cambridge filter (CF) pad to trap particulate matter.
- TPM was determined as the weight difference of the CF before and after puffing, in accordance with ISO 4387.
- the CF pad containing trapped aerosol was extracted into 20 ml high purity propan-2-ol containing appropriate internal standards. Nicotine and water were determined by GC analysis containing combined FID/TCD detectors.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pulmonology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Manufacture Of Tobacco Products (AREA)
- Filling, Topping-Up Batteries (AREA)
Abstract
Description
- The present application is a National Phase entry of PCT Application No. PCT/GB2015/053369, filed Nov. 6, 2015, which claims priority from GB Patent Application No. 1419866.7, filed Nov. 7, 2014, each of which is hereby fully incorporated herein by reference in its entirety.
- The present disclosure relates to containers which contain a nicotine solution and to electronic vapor provision systems such as electronic nicotine delivery systems (e.g. e-cigarettes) incorporating such containers.
- Electronic vapor provision systems such as e-cigarettes generally contain a reservoir of liquid which is to be vaporized, typically containing nicotine. When a user inhales on the device, a heater is activated to vaporize a small amount of liquid, which is therefore inhaled by the user.
- The use of e-cigarettes in the UK has grown rapidly, and it has been estimated that there are now over a million people using them in the UK.
- The liquid to be vaporized in e-cigarettes is typically a solution containing nicotine. The solvent may be, for example, glycerol. The vaporizing part of the device is often designed for multiple uses, although single use devices do exist. In multiple and single use devices a container holding the nicotine solution is present. The container is stored for significant periods from the time of filling until use. This period includes the time of distribution, stocking by a retailer and storage by the end user before use. During this storage period, loss of nicotine content may occur.
- In one aspect there is provided a contained nicotine solution comprising: (i) a container; and (ii) a nicotine solution contained within the container, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- In one aspect there is provided an electronic vapor provision system comprising: a vaporizer for vaporizing liquid for inhalation by a user of the electronic vapor provision system; a power supply comprising a cell or battery for supplying power to the vaporizer; a container in which is contained a nicotine solution, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, and wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- In one aspect there is provided a process for stabilizing a nicotine solution, the process comprising: protonating the nicotine present in the solution such that at least 5 wt % of the nicotine present in the solution is in protonated form.
- In one aspect there is provided use of protonation of nicotine for stabilizing a nicotine solution.
- Embodiments will now be described with reference to the following non-limiting examples and with reference to the accompanying figure, in which:
-
FIG. 1 shows a graph. - As described above, the present disclosure relates to a container which may be used in an electronic vapor provision system, such as an e-cigarette. Throughout the following description the term “e-cigarette” is used; however, this term may be used interchangeably with electronic vapor provision system.
- We have found that by protonating at least some of the nicotine present in a solution, the stability of the nicotine solution may be enhanced. We have found that solutions of nicotine when stored for significant periods suffer loss of nicotine content. By protonating at least a portion of the nicotine, and specifically at least 5 wt. % of the nicotine present, loss of the nicotine during storage is reduced. It has been found that loss of nicotine is particularly observed when nicotine solution is stored in contact with polycarbonate or polypropylene. These materials are desirable for use in -e-cigarettes due to their cost and their feel when held by a user. However, loss of nicotine may prohibit their use without the stabilization of nicotine provided by the present disclosure.
- As is understood by one skilled in the art, nicotine may exist in free base form, monoprotonated form or diprotonated form. The structures of each of these forms are given below.
- Reference in the specification to protonated form means both monoprotonated nicotine and diprotonated nicotine. Reference in the specification to amounts in the protonated form means the combined amount of monoprotonated nicotine and diprotonated nicotine.
- For ease of reference, these and further aspects of the present disclosure are now discussed under appropriate section headings. However, the teachings under each section are not necessarily limited to each particular section.
- The present disclosure provides a container in which is contained a nicotine solution, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- The relevant amounts of nicotine which are present in the solution in protonated form are specified herein. These amounts may be readily calculated by one skilled in the art. Nicotine, 3-(1-methylpyrrolidin-2-yl) pyridine, is a diprotic base with pKa of 3.12 for the pyridine ring and 8.02 for the pyrrolidine ring. It can exist in pH-dependent protonated (mono- and di-) and non-protonated forms which have different bioavailability.
- The distribution of protonated and non-protonated nicotine will vary at various pH increments.
- The fraction of non-protonated nicotine will be predominant at high pH levels whilst a decrease in the pH will see an increase of the fraction of protonated nicotine (mono- or di- depending on the pH). If the relative fraction of protonated nicotine and the total amount of nicotine in the sample are known, the absolute amount of protonated nicotine can be calculated.
- The relative fraction of protonated nicotine in solution can be calculated by using the Henderson-Hasselbalch equation, which describes the pH as a derivation of the acid dissociation constant equation, and it is extensively employed in chemical and biological systems. Consider the following equilibrium:
- The Henderson-Hasselbalch equation for this equilibrium is:
-
- Where [B] is the amount of non-protonated nicotine (i.e. free base), [BH+] the amount of protonated nicotine (i.e. conjugate acid) and pKa is the reference pKa value for the pyrrolidine ring nitrogen of nicotine (pKa=8.02). The relative fraction of protonated nicotine can be derived from the alpha value of the non-protonated nicotine calculated from the Henderson-Hasselbalch equation as:
-
- Determination of pKa values of nicotine solutions may be was carried out using the basic approach described in “Spectroscopic investigations into the acid-base properties of nicotine at different temperatures”, Peter M. Clayton, Carl A. Vas, Tam T. T. Bui, Alex F. Drake and Kevin McAdam, .Anal. Methods, 2013, 5, 81-88. This method is summarized below.
- As will be understood by one skilled in the art, by polycarbonate it is meant a polymer containing the following repeating unit
- In one aspect at least a portion of the container in contact with the nicotine solution is formed from polycarbonate. In one aspect the majority of the container which is in contact with the nicotine solution is formed from polycarbonate. In one aspect all the container which is in contact with the nicotine solution is formed from polycarbonate. In one aspect the container is formed entirely from polycarbonate.
- As will be understood by one skilled in the art, by polypropylene it is meant a polymer containing the following repeating unit
- In one aspect at least a portion of the container in contact with the nicotine solution is formed from polypropylene. In one aspect the majority of the container which is in contact with the nicotine solution is formed from polypropylene. In one aspect all the container which is in contact with the nicotine solution is formed from polypropylene. In one aspect the container is formed entirely from polypropylene.
- In one aspect the majority of the container which is in contact with the nicotine solution is formed from polycarbonate, polypropylene or a combination thereof. In one aspect all the container which is in contact with the nicotine solution is formed from polycarbonate, polypropylene or a combination thereof. In one aspect the container is formed entirely from polycarbonate, polypropylene or a combination thereof.
- As discussed herein, the container of the present disclosure is typically provided for the delivery of nicotine solution to or within an e-cigarette. The nicotine solution may be held within an e-cigarette or may be sold as a separate container for subsequent use with or in an e-cigarette. As understood by one skilled in the art, e-cigarettes typically contain a unit known as a cartomizer which comprises a reservoir of nicotine solution, a wick material and a heating element for vaporizing the nicotine. In one aspect the container is a cartomizer or is part of a cartomizer. In one aspect the container is not a cartomizer or part of a cartomizer and is a container, such as a tank, bottle or the like, which may be used to deliver nicotine solution to or within an e-cigarette.
- In one aspect the container is part of an e-cigarette. Therefore in a further aspect the present disclosure provides an electronic vapor provision system comprising: a vaporizer for vaporizing liquid for inhalation by a user of the electronic vapor provision system; a power supply comprising a cell or battery for supplying power to the vaporizer; a container in which is contained a nicotine solution, wherein at least 5 wt % of the nicotine present in the solution is in protonated form, and wherein at least a portion of the container in contact with the nicotine solution is formed from polycarbonate or polypropylene.
- As will be understood by one skilled in the art, contact may occur between the container and the nicotine solution by any means. Provided the body of the container is contacted with nicotine solution then the container and solution are in contact. It is envisaged that the nicotine solution could be ‘free’ in the sense that it is a liquid in direct contact with the walls of the container. In also envisaged, that the nicotine solution may be held within a matrix (such as a foam) and the foam is in contact with the body of the container.
- As discussed herein, we have found that by protonating at least a portion of the nicotine, and specifically at least 5 wt. % of the nicotine present, loss of the nicotine during storage is reduced. In one aspect at least 10 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 15 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 20 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 25 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 30 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 35 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 40 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 45 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 50 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 55 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 60 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 65 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 70 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 75 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 80 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 85 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 90 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 95 wt % of the nicotine present in the solution is in protonated form. In one aspect at least 99 wt % of the nicotine present in the solution is in protonated form.
- The nicotine protonation may be provided in such a manner to achieve the desired degree of protonation of nicotine. In one aspect the nicotine is protonated by an organic acid. In one aspect the nicotine is protonated by a carboxylic acid. The carboxylic acid may be any suitable carboxylic acid. In one aspect the nicotine is protonated by a mono-carboxylic acid.
- In one aspect the nicotine is protonated by an acid selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, oleic acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof.
- In one aspect the nicotine is protonated by an acid selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof In one aspect the nicotine is protonated by levulinic acid. In one aspect the nicotine is protonated by benzoic acid. In one aspect the nicotine is protonated by a mixture of levulinic acid and benzoic acid.
- Nicotine may exist in free base form, monoprotonated form or diprotonated form. As discussed herein we have found that by protonating at least some of the nicotine present in a solution, the stability of the nicotine solution may be enhanced. We have found that solutions of nicotine when stored for significant periods suffer loss of nicotine content. Although problems of stability are particularly observed when nicotine solution is stored in contact with polycarbonate or polypropylene, the problems are not exclusive to those materials. The present disclosure therefore provides a novel process for stabilizing a nicotine solution. The present disclosure provides a process for stabilizing a nicotine solution, the process comprising the steps of protonating the nicotine present in the solution such that at least 5 wt % of the nicotine present in the solution is in protonated form.
- In the process of the present disclosure the nicotine solution may be in contact with polycarbonate or polypropylene.
- We have found that extended periods of storage are possible with the practice of the present disclosure. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 7 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 14 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 21 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 28 days. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 2 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 3 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 4 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 5 months. In one aspect the process provides for storage of the nicotine solution in contact with polycarbonate or polypropylene for a period of at least 6 months.
- The present disclosure further provides a novel use for stabilizing a nicotine solution. In one aspect the present disclosure provides use of protonation of nicotine for stabilizing a nicotine solution. In one aspect the present disclosure provides use of protonation of nicotine for improving storage stability of a nicotine solution. In one aspect the present disclosure provides use of protonation of nicotine for reducing evaporative loss of nicotine from a nicotine solution.
- In one aspect the present disclosure provides use of protonated nicotine for stabilizing a solution containing nicotine free base. In one aspect the present disclosure provides use of protonated nicotine for improving storage stability of a solution containing nicotine free base. In one aspect the present disclosure provides use of protonated nicotine for reducing evaporative loss of nicotine from a nicotine free base solution. It will be understood that by ‘nicotine free base solution’ it may be meant a solution containing nicotine free base and protonated nicotine in an amount as described herein.
- In one aspect the present disclosure provides use of an acid for stabilizing a nicotine solution. In one aspect the present disclosure provides use of an acid for improving storage stability of a nicotine solution. In one aspect of use in accordance with the present disclosure the acid is an organic acid. In one aspect of use in accordance with the present disclosure the acid is a carboxylic acid. In one aspect of use in accordance with the present disclosure the acid is a mono-carboxylic acid. In one aspect of use in accordance with the present disclosure the acid is selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, oleic acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof. In one aspect of use in accordance with the present disclosure the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof. In one aspect of use in accordance with the present disclosure the acid is levulinic acid. In one aspect of use in accordance with the present disclosure the acid is benzoic acid. In one aspect of use in accordance with the present disclosure the acid is a mixture of levulinic acid and benzoic acid.
- In one aspect the present disclosure provides use of an acid for stabilizing a nicotine solution, wherein the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof. In one aspect the present disclosure provides use of an acid for improving storage stability of a nicotine solution, wherein the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof. In one aspect the present disclosure provides use of an acid for reducing evaporative loss of nicotine from a nicotine solution, wherein the acid is selected from the group consisting of benzoic acid, levulinic acid, and mixtures thereof.
- In the use aspects of the present disclosure at least 5 wt % of the nicotine present in the nicotine solution may be in protonated form.
- In one aspect the present disclosure provides use of protonation of nicotine for stabilizing a nicotine solution with respect to polycarbonate or polypropylene. In one aspect the present disclosure provides use of protonation of nicotine for improving storage stability of a nicotine solution with respect to polycarbonate or polypropylene.
- The determination of pKa values of nicotine in glycerol/water systems was carried out using the basic approach described in “Spectroscopic investigations into the acid-base properties of nicotine at different temperatures”, Peter M. Clayton, Carl A. Vas, Tam T. T. Bui, Alex F. Drake and Kevin McAdam, Anal. Methods, 2013, 5, 81-88, and summarized below. Because the system is predominantly non-aqueous the parameter psKa2 was measured, where subscript s refers to the solvent composition in this largely non-aqueous system, and subscript 2 refers to the pKa value of the pyrrolidyl nitrogen.
- Further information on the determination of pKa values of nicotine in e-cigarette solutions is provided in “Use of chiroptical spectroscopy to determine the ionisation status of (S)-nicotine in e-cigarette formulations and snus”, Clayton et al, ST 49, CORESTA Congress, Québec City, Canada, 12-16 Oct. 2014 (available at http://www.bat-science.com/groupms/sites/BAT_9GVJXS.nsf/vwPagesWebLive/DO9PVC3G/$FILE/CORE STA_PC_2014.pdf).
- A range of glycerol/water/nicotine solutions were prepared, with the water concentration fixed at 9%, the nicotine concentration varying from 30 μg/ml to 3 mg/ml; and the glycerol content comprising the remainder of the solutions.
- Simultaneous UV & CD spectra of glycerol/s-nicotine/water solutions were measured on the Applied Photophysics Ltd (Leatherhead, UK) Chiracsan Plus spectrometer. The UV absorbance & CD spectra were measured between 300-200 nm region, with various pathlengths depending upon the nicotine concentration of the solution—10 mm, 5 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm and 0.01 mm pathlengths. The instrument was flushed continuously with pure evaporated nitrogen throughout the measurements. Throughout measurements spectra were recorded with a 0.5 nm step size, a 1 s measurement time-per-point and a spectral bandwidth of 2 nm. Where possible, all CD spectra were smoothed with a window factor of 4 using the Savitzky-Golay method for better presentation.
- Solutions of S-Nicotine in glycerol/water were pH titrated at 23° C. The pH of these solutions was raised towards alkaline by adding small aliquots of NaOH (˜pH10) and then lowered to pH2 by adding small aliquots of HCl. A series of 0.1M, 0.5M, 1M, 5M and 10M of HCl and NaOH solutions were used during the pH titration. pHs were measured at 23° C. using a Corning pH105 pH meter with a RMS pH electrode. The psKa2 values changed systematically with nicotine concentration (
FIG. 1 ) and therefore values for psKa2 were calculated at each nicotine concentration level (Table 1). Due to the viscosity of the solutions, and the optical density in the CD spectra of the high nicotine concentration solutions, very small path-length cells were required for nicotine concentrations above 3 mg/ml. Satisfactory sample preparation and spectroscopy could not be achieved with the necessary small cells at these concentrations, and therefore the psKa2 at higher concentrations were calculated from a regression fit toFIG. 1 . -
TABLE 1 psKa2 values measured at various nicotine concentrations in a 9% water, nicotine/glycerol system. conc psKa2 conc g/L) (mM) log10 [conc] 7.49 0.03 0.185 −0.732 7.34 0.06 0.370 −0.431 7.30 0.3 1.85 0.268 7.27 0.6 3.70 0.569 7.25 3 18.53 1.268 - Curve fitting, using the equation y=0.0233e(−(log 10[nicotine])/0.325)+7.26 provided a psKa2 value of 7.26 at 30 mg/ml nicotine concentration. Use of this psKa2 value with the Henderson-Hasselbalch equation allows calculation of the degree of nicotine protonationm at any pH value.
- The materials were formulated as described and the pH determined as described in Example 1. Based on the pKa of 7.26 determined in Example 1, the percentage of nicotine that was protonated was calculated using the Henderson-Hasselbalch equation. The results obtained are tabulated below.
-
Formation composition (% w/w) PG + Benzoic flavor acid Levulinic Average Average % Formulation Nicotine Glycerol Water level level acid level Flavors pH Temp (° C.) protonated 4% w/w Nicotine in glycerol/water 4 87 9 0 0.00 0.00 not present 9.21 22.1 1.1 4% w/w Nicotine in 4 62.00 9 25 0.00 0.00 not present 9.18 21.8 1.2 glycerol/water/PG 4% w/w Nicotine + Cherry flavor 4 62.00 9 25 0.00 0.00 present 8.23 22.7 9.7 4% w/w Nicotine + Cherry flavor + 4 60.80 9 25 1.20 0.00 present 7.16 21.0 55.7 0.4M Benzoic Acid 4% w/w Nicotine + Cherry flavor + 4 60.85 9 25 0.00 1.15 present 6.99 21.0 65.1 0.4M Levulinic Acid 1.8% w/w Nicotine + glycerol/water 1.86 89.2 9 0 0.00 0.00 not present 9.32 22.2 0.9 1.8% w/w Nicotine in 1.86 42.2 25 25 0.00 0.00 not present 9.21 22.2 1.1 glycerol/water/PG 1.8% w/w Nicotine + Cherry flavor 1.86 42.2 25 25 0.00 0.00 present 8.14 21.2 11.6 1.8% w/w Nicotine + Cherry flavor + 1.86 47.59 25 25 0.55 0.00 present 7.34 21.3 45.4 0.4M Benzoic Acid 1.8% w/w Nicotine + Cherry + 0.4M 1.86 47.62 25 25 0.00 0.52 present 7.08 21.2 60.2 Levulinic Acid 4% w/w Nicotine in glycerol/water 4 87 9 0 0.00 0.00 not present 9.21 22.1 1.1 4% w/w Nicotine in 4 52 9 35 0.00 0.00 not present 9.11 22.4 1.4 glycerol/water/PG 4% w/w Nicotine + Menthol 4 50.5 9 36.5 0.00 0.00 present 9.36 22.3 0.8 4% w/w Nicotine + Menthol + 0.4M 4 49.3 9 36.5 1.20 0.00 present 6.95 21.1 67.1 Benzoic Acid 4% w/w Nicotine + Menthol + 0.4M 4 49.35 9 36.5 0.00 1.15 present 6.81 21.1 73.8 Levulinic Acid 1.8% w/w Nicotine in glycerol/water 1.86 89.2 9 0 0.00 0.00 not present 9.32 22.2 0.9 1.8% w/w Nicotine in 1.86 38.14 25 35 0.00 0.00 not present 9.08 22.7 1.5 glycerol/water/PG 1.8% w/w Nicotine + Menthol 1.86 36.64 25 36.5 0.00 0.00 present 9.07 21.2 1.5 1.8% w/w Nicotine + Menthol + 1.86 36.09 25 36.5 0.55 0.00 present 7.13 21.1 57.4 0.4M Benzoic Acid 1.8% w/w Nicotine + Menthol + 1.86 36.145 25 36.5 0.00 0.50 present 6.95 21.4 67.1 0.4M Levulinic Acid 1.8% Nicotine, 25% Water, 25% PG 1.8 48.2 25 25 0.00 0.00 present 8.5 5.4 with Tobacco flavor “A” 1.8% Nicotine, 25% Water, 25% PG 1.8 47.79 25 25 0.41 0.00 present 7.4 42.0 with Tobacco flavor “A”, 0.3 Molar equivalent Benzoic 1.8% Nicotine, 25% Water, 25% PG 1.8 47.17 25 25 1.03 0.00 present 6.8 74.3 with Tobacco flavor “A” 0.75 Molar equivalent Benzoic N/N—H: Nicotine/Protonated nicotine PG: propylene glycol - The absorption of nicotine by a number of materials suitable for use in e-cigarettes was studied. The objective of this study was to determine whether there was any absorption of nicotine from a liquid formulation into a variety of materials occurring over time. 5 g of a nicotine solution comprising 3.7 wt % nicotine, 9% water and 87.3% glycerol was loaded into 40m1 amber glass vials. Pieces of polypropylene and polycarbonate were added to solutions (except for control samples), the vials were sealed with screw caps and stored at ambient temperatures or at 40° C. in an oven for a period of eight weeks. Sampling was performed on
day 1, then at 1 week, 2 weeks, 4 weeks and 8 weeks. - An accurately weighed aliquot of solution was removed from the vials using a Pasteur pipette and diluted with water (˜40 mg sample in 1 ml). The final solution weights were also recorded. Analysis for nicotine was performed by LC-UV using a Waters Acquity LC system incorporating a Diode Array detector.
- All analyses were performed using a 1000 ppm external nicotine standard prepared in water. Linearity of analysis of nicotine was checked at each time-point with 500 ppm, 1000 ppm and 2000 ppm standards.
- Time-Point Time in Storage Analysis Date
-
T = 0 1 day T = 1 1 week T = 2 2 weeks T = 4 4 weeks T = 8 8 weeks - The findings are reported below in tabulated format.
-
Container Temp T = 0 T = 1 T = 2 T = 3 T = 4 Control Ambient wt % 4.16 4.17 4.10 4.06 3.84 Nicotine % loss 0.25 −1.51 −2.39 −7.71 Control 40° C. wt % 4.16 4.18 4.05 4.10 3.97 Nicotine % loss 0.41 −2.62 −1.38 −4.68 PP Ambient wt % 4.20 4.16 4.03 4.07 3.61 Nicotine % loss −0.92 −3.98 −3.18 −14.05 PP 40° C. wt % 4.27 4.09 3.96 3.94 3.70 Nicotine % loss −4.24 −7.35 −7.80 −13.37 PC Ambient wt % 4.10 4.10 4.12 4.01 3.58 Nicotine % loss 0.03 0.60 −2.15 −12.57 PC 40° C. wt % 4.20 4.09 4.08 4.07 3.61 Nicotine % loss −2.66 −2.84 −3.16 −14.10 - As can be seen from the above Table, polypropylene (PP) and polycarbonate (PC) both of which are desirable materials for use in e-cigarettes were found to result in significant loss of nicotine when stored in contact with a nicotine solution containing nicotine only in free base form.
- The effect on storage stability of protonating nicotine was studied by examining 3 nicotine solutions loaded into cartomizer e-cigarettes (“Device”) containing PP and PC. The three nicotine solutions were an acid free nicotine solution and two protonated solutions, one protonated with 1.0 Molar equivalent levulinic acid and one protonated with 1.0 Molar equivalent benzoic acid. For each of the formulations manufactured a 2.5% w/w nicotine amount was used, together with 9% water and sufficient glycerol to make the solution to 100%. The stability protocol incorporated filling a series of e-cigarettes for each formulation, as well as loading a number of sealed glass vials (used as control samples) to understand the source of any observed nicotine losses.
- Over the duration of the study samples were stored at 25 deg Celsius/60% relative humidity and 40 deg Celsius/75% relative humidity for a total of 9 weeks, data was collected at
time points 1, 5 and 9 weeks. During the study time the e-cigarette solution was in contact with the internal materials of the cartomizer (including PP and PC) in a manner reflecting real-world use. In the table below, T0=1 week, T4=5 Weeks and T8=9 Weeks. - At each of the above time points the amount of nicotine present within formulation was determined as follows.
- For analysis of e-liquids: approximately 100 μl liquid was extracted into 20 ml extraction solvent and analyzed as described for aerosol determination.
- The e-cigarettes were puffed on a 20-channel linear smoking machine (SM450) compliant with ISO 3308, but using the following puffing parameters: 80 ml puff volume, 3 second puff duration and 30 second interpuff interval. Each port of the smoking engine was fitted with a holder containing a Cambridge filter (CF) pad to trap particulate matter. After puffing TPM was determined as the weight difference of the CF before and after puffing, in accordance with ISO 4387. The CF pad containing trapped aerosol was extracted into 20 ml high purity propan-2-ol containing appropriate internal standards. Nicotine and water were determined by GC analysis containing combined FID/TCD detectors.
- The data below reports the nicotine levels measured.
-
T0 (25° C./60% RH) Nicotine (% w/w) Formulation Vial Device Standard 2.36 2.11 +Levulinic 2.35 2.29 Acid +Benzoic 2.37 2.31 Acid T4 (25° C./60% RH) Nicotine (% w/w) Formulation Vial Device Standard 2.49 1.48 +Levulinic 2.51 2.03 Acid +Benzoic 2.53 2.12 Acid T4 (40° C./75% RH) Nicotine (% w/w) Formulation Vial Device Standard 2.49 0.94 +Levulinic 2.5 1.68 Acid +Benzoic 2.52 1.8 Acid T8 (25° C./60% RH) Nicotine (% w/w) Formulation Vial Device Standard 2.42 0.94 +Levulinic 2.4 1.55 Acid +Benzoic 2.43 1.7 Acid T8 (40° C./75% RH) Nicotine (% w/w) Formulation Vial Device Standard 2.41 0.18 +Levulinic 2.44 0.96 Acid +Benzoic 2.44 1.2 Acid - Various modifications and variations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry or related fields are intended to be within the scope of the following claims.
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1419866.7A GB2532062A (en) | 2014-11-07 | 2014-11-07 | Container |
GB1419866.7 | 2014-11-07 | ||
PCT/GB2015/053369 WO2016071706A1 (en) | 2014-11-07 | 2015-11-06 | Container containing a nicotine solution |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180228214A1 true US20180228214A1 (en) | 2018-08-16 |
Family
ID=52118166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/525,163 Pending US20180228214A1 (en) | 2014-11-07 | 2015-11-06 | Container containing a nicotine solution |
Country Status (20)
Country | Link |
---|---|
US (1) | US20180228214A1 (en) |
EP (4) | EP3491941B1 (en) |
JP (1) | JP6450002B2 (en) |
KR (2) | KR102035196B1 (en) |
CN (2) | CN109965357B (en) |
AR (2) | AR102579A1 (en) |
AU (1) | AU2015341517B2 (en) |
BR (1) | BR112017009258B1 (en) |
CA (1) | CA2964829C (en) |
CL (1) | CL2017001137A1 (en) |
ES (2) | ES2832751T3 (en) |
GB (1) | GB2532062A (en) |
HU (2) | HUE044286T2 (en) |
MX (2) | MX2017005939A (en) |
MY (1) | MY198202A (en) |
PH (1) | PH12017500837A1 (en) |
PL (2) | PL3491941T3 (en) |
RU (2) | RU2695839C2 (en) |
TR (1) | TR201904005T4 (en) |
WO (1) | WO2016071706A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021035103A1 (en) * | 2019-02-15 | 2021-02-25 | Bn Intellectual Properties, Inc. | Nicotine formulation for active mesh nebulizer |
WO2022180491A1 (en) * | 2021-02-24 | 2022-09-01 | Rai Strategic Holdings, Inc. | Aerosol precursor formulations |
US11583003B2 (en) | 2018-10-12 | 2023-02-21 | Rai Strategic Holdings, Inc. | Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system |
US11588287B2 (en) | 2018-10-12 | 2023-02-21 | Rai Strategic Holdings, Inc. | Aerosol delivery device with improved connectivity, airflow, and aerosol paths |
US11678700B2 (en) | 2018-10-12 | 2023-06-20 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
US11974603B2 (en) | 2018-10-12 | 2024-05-07 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160345631A1 (en) | 2005-07-19 | 2016-12-01 | James Monsees | Portable devices for generating an inhalable vapor |
US8991402B2 (en) | 2007-12-18 | 2015-03-31 | Pax Labs, Inc. | Aerosol devices and methods for inhaling a substance and uses thereof |
PL2672847T3 (en) | 2011-02-11 | 2015-10-30 | Batmark Ltd | Inhaler component |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
IL297399B2 (en) | 2013-05-06 | 2024-02-01 | Juul Labs Inc | Nicotine salt formulations for aerosol devices and methods thereof |
CN113142679A (en) | 2013-12-05 | 2021-07-23 | 尤尔实验室有限公司 | Nicotine liquid formulations for aerosol devices and methods thereof |
US10159282B2 (en) | 2013-12-23 | 2018-12-25 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
US10058129B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
US9549573B2 (en) | 2013-12-23 | 2017-01-24 | Pax Labs, Inc. | Vaporization device systems and methods |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
GB2560651B8 (en) | 2013-12-23 | 2018-12-19 | Juul Labs Uk Holdco Ltd | Vaporization device systems and methods |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
US20160366947A1 (en) | 2013-12-23 | 2016-12-22 | James Monsees | Vaporizer apparatus |
WO2015175979A1 (en) | 2014-05-16 | 2015-11-19 | Pax Labs, Inc. | Systems and methods for aerosolizing a smokeable material |
US9896429B2 (en) | 2014-05-27 | 2018-02-20 | R.J. Reynolds Tobacco Company | Nicotine salts, co-crystals, and salt co-crystal complexes |
US10508096B2 (en) | 2014-05-27 | 2019-12-17 | R.J. Reynolds Tobacco Company | Nicotine salts, co-crystals, and salt co-crystal complexes |
WO2015183801A1 (en) | 2014-05-27 | 2015-12-03 | R. J. Reynolds Tobacco Company | Nicotine salts, co-crystals, and salt co-crystal complexes |
GB2535427A (en) | 2014-11-07 | 2016-08-24 | Nicoventures Holdings Ltd | Solution |
GB2532062A (en) | 2014-11-07 | 2016-05-11 | Nicoventures Holdings Ltd | Container |
RU2709926C2 (en) | 2014-12-05 | 2019-12-23 | Джуул Лэбз, Инк. | Calibrated dose control |
MX2018009703A (en) | 2016-02-11 | 2019-07-08 | Juul Labs Inc | Securely attaching cartridges for vaporizer devices. |
UA125687C2 (en) | 2016-02-11 | 2022-05-18 | Джуул Лебз, Інк. | Fillable vaporizer cartridge and method of filling |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
USD848057S1 (en) | 2016-06-23 | 2019-05-07 | Pax Labs, Inc. | Lid for a vaporizer |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
US11660403B2 (en) | 2016-09-22 | 2023-05-30 | Juul Labs, Inc. | Leak-resistant vaporizer device |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
US12114688B2 (en) | 2017-10-24 | 2024-10-15 | Rai Strategic Holdings, Inc. | Method for formulating aerosol precursor for aerosol delivery device |
CN109171010A (en) * | 2018-09-10 | 2019-01-11 | 深圳市新宜康科技股份有限公司 | Liquid nicotine salt and preparation method thereof |
GB201817861D0 (en) | 2018-11-01 | 2018-12-19 | Nicoventures Trading Ltd | Gel and crystalline powder |
US11992038B2 (en) | 2018-12-31 | 2024-05-28 | Philip Morris Products S.A. | Liquid nicotine formulation comprising partially water-soluble solvent |
CN113840545A (en) * | 2019-05-31 | 2021-12-24 | 日本烟草国际股份有限公司 | Nicotine liquid formulations |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004076289A2 (en) * | 2003-02-28 | 2004-09-10 | Pfizer Health Ab | A container comprising nicotine and the use and manufacture thereof |
EP1618803A1 (en) * | 2003-04-29 | 2006-01-25 | Lik Hon | A flameless electronic atomizing cigarette |
US20060018840A1 (en) * | 2004-06-28 | 2006-01-26 | Nektar Therapeutics | Aerosolizable formulation comprising nicotine |
US20140345635A1 (en) * | 2013-05-22 | 2014-11-27 | Njoy, Inc. | Compositions, devices, and methods for nicotine aerosol delivery |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1502132A (en) * | 1975-05-27 | 1978-02-22 | Ici Ltd | Smoking materials |
GB2133691B (en) * | 1983-01-21 | 1986-05-21 | Leo Ab | Smoking substitutes for nasal administration |
GB8301659D0 (en) * | 1983-01-21 | 1983-02-23 | Leo Ab | Smoking substitutes |
US4597961A (en) | 1985-01-23 | 1986-07-01 | Etscorn Frank T | Transcutaneous application of nicotine |
US4800903A (en) * | 1985-05-24 | 1989-01-31 | Ray Jon P | Nicotine dispenser with polymeric reservoir of nicotine |
DE3884246T2 (en) * | 1987-02-10 | 1994-03-03 | Reynolds Tobacco Co R | Cigarette. |
US5031646A (en) * | 1990-01-16 | 1991-07-16 | R. J. Reynolds Tobacco Company | Cigarette |
DE69531488T2 (en) | 1994-03-07 | 2004-06-17 | Theratech Inc., Salt Lake City | MEDICINE-CONTAINING, ADHESIVE, ASSEMBLABLE, TRANSDERMAL DISPENSER |
SE9900215D0 (en) * | 1999-01-26 | 1999-01-26 | Pharmacia & Upjohn Ab | New use |
US8256433B2 (en) | 1999-07-16 | 2012-09-04 | Aradigm Corporation | Systems and methods for effecting cessation of tobacco use |
JP2004512907A (en) * | 2000-11-03 | 2004-04-30 | リカバリー ファーマシューティカルズ インコーポレーティッド | Device and method for smoking cessation |
JP2003024036A (en) * | 2001-07-18 | 2003-01-28 | Ikeda Denki Seisakusho:Kk | Smoking-prohibiting tool |
US7767698B2 (en) * | 2002-06-03 | 2010-08-03 | Mcneil Ab | Formulation and use thereof |
SE0201669D0 (en) * | 2002-06-03 | 2002-06-03 | Pharmacia Ab | New formulation and use thereof |
US20040182403A1 (en) | 2003-02-28 | 2004-09-23 | Sven-Borje Andersson | Container comprising nicotine and the use and manufacture thereof |
CN2719043Y (en) | 2004-04-14 | 2005-08-24 | 韩力 | Atomized electronic cigarette |
CN101437496A (en) * | 2006-03-16 | 2009-05-20 | 尼科诺瓦姆股份公司 | Chewing gum compositions providing rapid release of nicotine |
US8657843B2 (en) | 2006-05-03 | 2014-02-25 | Applied Medical Resources Corporation | Shield lockout for bladed obturator and trocars |
CN201067079Y (en) * | 2006-05-16 | 2008-06-04 | 韩力 | Simulation aerosol inhaler |
US7726320B2 (en) * | 2006-10-18 | 2010-06-01 | R. J. Reynolds Tobacco Company | Tobacco-containing smoking article |
US8991402B2 (en) | 2007-12-18 | 2015-03-31 | Pax Labs, Inc. | Aerosol devices and methods for inhaling a substance and uses thereof |
IN2012DN02325A (en) * | 2009-09-16 | 2015-08-21 | Philip Morris Products Sa | |
AT509046B1 (en) * | 2010-03-10 | 2011-06-15 | Helmut Dr Buchberger | FLAT EVAPORATOR |
SE535587C2 (en) * | 2011-03-29 | 2012-10-02 | Chill Of Sweden Ab | Product containing a free nicotine salt and a non-water-soluble bag |
US9351522B2 (en) | 2011-09-29 | 2016-05-31 | Robert Safari | Cartomizer e-cigarette |
US9282772B2 (en) | 2012-01-31 | 2016-03-15 | Altria Client Services Llc | Electronic vaping device |
US10004259B2 (en) | 2012-06-28 | 2018-06-26 | Rai Strategic Holdings, Inc. | Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article |
US20140261486A1 (en) | 2013-03-12 | 2014-09-18 | R.J. Reynolds Tobacco Company | Electronic smoking article having a vapor-enhancing apparatus and associated method |
US20140261474A1 (en) | 2013-03-15 | 2014-09-18 | Aradigm Corporation | Methods for inhalation of smoke-free nicotine |
US10799548B2 (en) | 2013-03-15 | 2020-10-13 | Altria Client Services Llc | Modifying taste and sensory irritation of smokeless tobacco and non-tobacco products |
GB2513637A (en) | 2013-05-02 | 2014-11-05 | Nicoventures Holdings Ltd | Electronic cigarette |
IL297399B2 (en) | 2013-05-06 | 2024-02-01 | Juul Labs Inc | Nicotine salt formulations for aerosol devices and methods thereof |
KR102378679B1 (en) | 2013-12-19 | 2022-03-28 | 필립모리스 프로덕츠 에스.에이. | Aerosol-generating system for generating and controlling the quantity of nicotine salt particles |
US9955726B2 (en) | 2014-05-23 | 2018-05-01 | Rai Strategic Holdings, Inc. | Sealed cartridge for an aerosol delivery device and related assembly method |
GB2535427A (en) | 2014-11-07 | 2016-08-24 | Nicoventures Holdings Ltd | Solution |
GB2532062A (en) | 2014-11-07 | 2016-05-11 | Nicoventures Holdings Ltd | Container |
-
2014
- 2014-11-07 GB GB1419866.7A patent/GB2532062A/en not_active Withdrawn
-
2015
- 2015-11-06 KR KR1020197014770A patent/KR102035196B1/en active IP Right Grant
- 2015-11-06 AU AU2015341517A patent/AU2015341517B2/en active Active
- 2015-11-06 EP EP18212381.0A patent/EP3491941B1/en not_active Revoked
- 2015-11-06 EP EP15794254.1A patent/EP3214957B1/en not_active Revoked
- 2015-11-06 PL PL18212381T patent/PL3491941T3/en unknown
- 2015-11-06 EP EP20183945.3A patent/EP3738447B1/en active Active
- 2015-11-06 JP JP2017523310A patent/JP6450002B2/en active Active
- 2015-11-06 ES ES18212381T patent/ES2832751T3/en active Active
- 2015-11-06 TR TR2019/04005T patent/TR201904005T4/en unknown
- 2015-11-06 RU RU2019100397A patent/RU2695839C2/en active
- 2015-11-06 PL PL15794254T patent/PL3214957T3/en unknown
- 2015-11-06 US US15/525,163 patent/US20180228214A1/en active Pending
- 2015-11-06 RU RU2017115501A patent/RU2677847C2/en active
- 2015-11-06 AR ARP150103631A patent/AR102579A1/en active IP Right Grant
- 2015-11-06 ES ES15794254T patent/ES2718222T3/en active Active
- 2015-11-06 CA CA2964829A patent/CA2964829C/en active Active
- 2015-11-06 MX MX2017005939A patent/MX2017005939A/en unknown
- 2015-11-06 EP EP24192713.6A patent/EP4430961A2/en active Pending
- 2015-11-06 KR KR1020177012228A patent/KR101984834B1/en active IP Right Grant
- 2015-11-06 BR BR112017009258-1A patent/BR112017009258B1/en active IP Right Grant
- 2015-11-06 HU HUE15794254 patent/HUE044286T2/en unknown
- 2015-11-06 CN CN201910110391.5A patent/CN109965357B/en active Active
- 2015-11-06 MY MYPI2017701451A patent/MY198202A/en unknown
- 2015-11-06 CN CN201580060720.XA patent/CN107072287B/en active Active
- 2015-11-06 HU HUE18212381A patent/HUE051844T2/en unknown
- 2015-11-06 WO PCT/GB2015/053369 patent/WO2016071706A1/en active Application Filing
-
2017
- 2017-05-05 PH PH12017500837A patent/PH12017500837A1/en unknown
- 2017-05-05 CL CL2017001137A patent/CL2017001137A1/en unknown
- 2017-05-08 MX MX2023011896A patent/MX2023011896A/en unknown
-
2020
- 2020-02-26 AR ARP200100515A patent/AR118187A2/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004076289A2 (en) * | 2003-02-28 | 2004-09-10 | Pfizer Health Ab | A container comprising nicotine and the use and manufacture thereof |
EP1618803A1 (en) * | 2003-04-29 | 2006-01-25 | Lik Hon | A flameless electronic atomizing cigarette |
US20060018840A1 (en) * | 2004-06-28 | 2006-01-26 | Nektar Therapeutics | Aerosolizable formulation comprising nicotine |
US20140345635A1 (en) * | 2013-05-22 | 2014-11-27 | Njoy, Inc. | Compositions, devices, and methods for nicotine aerosol delivery |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11583003B2 (en) | 2018-10-12 | 2023-02-21 | Rai Strategic Holdings, Inc. | Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system |
US11588287B2 (en) | 2018-10-12 | 2023-02-21 | Rai Strategic Holdings, Inc. | Aerosol delivery device with improved connectivity, airflow, and aerosol paths |
US11677201B2 (en) | 2018-10-12 | 2023-06-13 | Rai Strategic Holdings, Inc. | Aerosol delivery device with improved connectivity, airflow, and aerosol paths |
US11678700B2 (en) | 2018-10-12 | 2023-06-20 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
US11856988B2 (en) | 2018-10-12 | 2024-01-02 | Rai Strategic Holdings, Inc. | Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system |
US11967793B2 (en) | 2018-10-12 | 2024-04-23 | Rai Strategic Holdings, Inc. | Aerosol delivery device with improved connectivity, airflow, and aerosol paths |
US11974603B2 (en) | 2018-10-12 | 2024-05-07 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
WO2021035103A1 (en) * | 2019-02-15 | 2021-02-25 | Bn Intellectual Properties, Inc. | Nicotine formulation for active mesh nebulizer |
WO2022180491A1 (en) * | 2021-02-24 | 2022-09-01 | Rai Strategic Holdings, Inc. | Aerosol precursor formulations |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180228214A1 (en) | Container containing a nicotine solution | |
US20210045428A1 (en) | Solution comprising nicotine in unprotonated form and protonated form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NICOVENTURES HOLDINGS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCADAM, KEVIN GERARD;BRUTON, CONNOR;TRANI, MARINA;SIGNING DATES FROM 20170523 TO 20170524;REEL/FRAME:045875/0771 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: NICOVENTURES TRADING LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NICOVENTURES HOLDINGS LIMITED;REEL/FRAME:055424/0056 Effective date: 20200305 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL READY FOR REVIEW |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |