US20180213820A1 - Producing edible residues from ethanol production - Google Patents
Producing edible residues from ethanol production Download PDFInfo
- Publication number
- US20180213820A1 US20180213820A1 US15/937,201 US201815937201A US2018213820A1 US 20180213820 A1 US20180213820 A1 US 20180213820A1 US 201815937201 A US201815937201 A US 201815937201A US 2018213820 A1 US2018213820 A1 US 2018213820A1
- Authority
- US
- United States
- Prior art keywords
- feedstock
- unit
- ethanol
- irradiating
- fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 238000004519 manufacturing process Methods 0.000 title abstract description 22
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 14
- 229940088710 antibiotic agent Drugs 0.000 claims abstract description 13
- 230000001678 irradiating effect Effects 0.000 claims abstract description 11
- 238000000855 fermentation Methods 0.000 claims description 14
- 230000004151 fermentation Effects 0.000 claims description 14
- 238000010364 biochemical engineering Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000010411 cooking Methods 0.000 claims description 3
- 239000010908 plant waste Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000004821 distillation Methods 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 238000004880 explosion Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000002808 molecular sieve Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 2
- 238000000527 sonication Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 2
- 230000003115 biocidal effect Effects 0.000 abstract description 16
- 241000894006 Bacteria Species 0.000 abstract description 15
- 235000013339 cereals Nutrition 0.000 description 23
- 244000005700 microbiome Species 0.000 description 23
- 238000000034 method Methods 0.000 description 21
- 239000000835 fiber Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 10
- 240000008042 Zea mays Species 0.000 description 8
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 235000005822 corn Nutrition 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 7
- 229920002678 cellulose Polymers 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 239000000123 paper Substances 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 244000144972 livestock Species 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000001461 cytolytic effect Effects 0.000 description 3
- 238000009837 dry grinding Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 2
- 241000722955 Anaerobiospirillum Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000186339 Thermoanaerobacter Species 0.000 description 2
- 241001603561 Thermoanaerobacter mathranii Species 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- -1 e.g. Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000012978 lignocellulosic material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010817 post-consumer waste Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 241000186426 Acidipropionibacterium acidipropionici Species 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000193171 Clostridium butyricum Species 0.000 description 1
- 241000193161 Clostridium formicaceticum Species 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000933069 Lachnoclostridium phytofermentans Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 241000178985 Moorella Species 0.000 description 1
- 241000193459 Moorella thermoacetica Species 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- MVTQIFVKRXBCHS-SMMNFGSLSA-N N-[(3S,6S,12R,15S,16R,19S,22S)-3-benzyl-12-ethyl-4,16-dimethyl-2,5,11,14,18,21,24-heptaoxo-19-phenyl-17-oxa-1,4,10,13,20-pentazatricyclo[20.4.0.06,10]hexacosan-15-yl]-3-hydroxypyridine-2-carboxamide (10R,11R,12E,17E,19E,21S)-21-hydroxy-11,19-dimethyl-10-propan-2-yl-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.03,7]octacosa-1(27),6,12,17,19,25(28)-hexaene-2,8,14,23-tetrone Chemical compound CC(C)[C@H]1OC(=O)C2=CCCN2C(=O)c2coc(CC(=O)C[C@H](O)\C=C(/C)\C=C\CNC(=O)\C=C\[C@H]1C)n2.CC[C@H]1NC(=O)[C@@H](NC(=O)c2ncccc2O)[C@@H](C)OC(=O)[C@@H](NC(=O)[C@@H]2CC(=O)CCN2C(=O)[C@H](Cc2ccccc2)N(C)C(=O)[C@@H]2CCCN2C1=O)c1ccccc1 MVTQIFVKRXBCHS-SMMNFGSLSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 1
- 241000235060 Scheffersomyces stipitis Species 0.000 description 1
- 241000204649 Thermoanaerobacter kivui Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 108010080702 Virginiamycin Proteins 0.000 description 1
- 239000004188 Virginiamycin Substances 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000010828 animal waste Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000003403 homoacetogenic effect Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000005360 mashing Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001937 non-anti-biotic effect Effects 0.000 description 1
- 235000021232 nutrient availability Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229960003842 virginiamycin Drugs 0.000 description 1
- 235000019373 virginiamycin Nutrition 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
- C12P7/10—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
- A23K10/37—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
- A23K10/38—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material from distillers' or brewers' waste
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/30—Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H8/00—Macromolecular compounds derived from lignocellulosic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y02E50/17—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
-
- Y02P60/873—
Definitions
- This invention relates to producing edible residues from ethanol production, e.g., distillers grains and residues from cellulosic ethanol production.
- Distillers grains also referred to as distillers grains and solubles (DGS) or dry distillers grains (DDGS)
- DGS distillers grains and solubles
- DDGS dry distillers grains
- Antibiotics such as penicillin and virginiamycin are used to control bacteria that compete with yeast during fermentation, converting sugar into lactic acid rather than ethanol. If restrictions on the sale or use of distillers grains are imposed due to concerns over antibiotic content, this will further damage the profit margins of ethanol producers, as well as depriving livestock farmers of a good source of livestock feed.
- this invention relates to edible residues from ethanol production, and to methods of producing edible residues that are low in antibiotic content, or, in preferred embodiments, substantially free of antibiotics.
- low in antibiotic content or “substantially free of antibiotics,” we mean that the edible residue contains little or no active antibiotic, e.g., less than 100 ppm; the edible residue may contain inactivated antibiotics, as will be discussed herein.
- the edible residue may be, for example, distillers dry grains (DDG), in the case of corn ethanol production, or a mixture of lignin, unfermented sugars (e.g., xylose, arabinose), minerals (e.g., clay, silica, silicates), and in some cases undigested cellulose.
- DDG distillers dry grains
- unfermented sugars e.g., xylose, arabinose
- minerals e.g., clay, silica, silicates
- the edible residue contains less than 50 ppm by weight active antibiotic, e.g., less than 25 ppm, less than 10 ppm, or even less than 1ppm.
- the invention features a method comprising irradiating edible residues that have been produced as a by-product of an ethanol manufacturing process.
- the edible residues comprise distillers grains and solubles, e.g., from a corn ethanol process.
- the edible residues may comprise lignin, xylose and minerals, and in some cases undigested cellulose, for example when the ethanol manufacturing process utilizes a cellulosic feedstock and/or a lignocellulosic feedstock.
- the edible residues contain an antibiotic, and irradiating is performed under conditions that are selected to inactivate or destroy the antibiotic, e.g., by changing the molecular structure of the antibiotic.
- the edible residues can contain less than 100 ppm, such as less than 50, 25, 10, or 1 ppm, by weight of active antibiotic, or can be substantially free of active antibiotic.
- the edible residues prior to irradiation contain from about 500 ppm to about 10,000 ppm by weight of active antibiotic.
- the ethanol manufacturing process may be conducted without addition of antibiotics.
- the edible residues may contain bacteria, and irradiation is performed under conditions that destroy bacteria.
- irradiation is delivered at a dose of greater than about 0.5 MRad, and/or less than about 5 Mrad, e.g., at a dose of from about 1 to about 3 Mrad.
- the distillers grains and solubles may be dried, producing dried distillers grains and solubles (DDGS). Drying may be performed prior to, during or after irradiation.
- FIG. 1 is a schematic diagram illustrating a process for making ethanol and distillers grains.
- a plant for manufacturing ethanol can include, for example, one or more operating units ( 10 ) for receiving and physically treating a feedstock, which in a typical grain-based (e.g., corn or grain) ethanol plant generally includes grain receiving equipment and a hammermill.
- the feedstock to be used is a non-grain cellulosic or lignocellulosic material
- the operating units 10 may be configured to reduce the size of the feedstock in a manner that exposes internal fibers of the feedstock, e.g., as disclosed in U.S. Pat. No. 7,470,463, the full disclosure of which is incorporated herein by reference.
- the plant may include an optional operating unit configured to treat the feedstock to reduce its recalcitrance.
- recalcitrance is reduced by at least 5%, or at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95%.
- Treatment processes utilized by the recalcitrance reducing operating unit can include one or more of irradiation, sonication, oxidation, pyrolysis, and steam explosion.
- Treatment methods can be used in combinations of two, three, four, or even all of these technologies (in any order). Operating units that pretreat feedstocks to reduce recalcitrance are described in WO 2008/073186, the full disclosure of which is incorporated herein by reference.
- the feedstock can then be processed in a series of cooking devices ( 12 ), as is well known, subjected to liquefaction ( 14 ), and cooled ( 16 ) to a suitable temperature for contact with microorganisms such as yeasts.
- the cooled stream then flows to a bio-processing system ( 18 ) where it is bio-processed, e.g., fermented, to produce a crude ethanol mixture which flows into a holding tank ( 20 ).
- the bio-processing system may in some cases utilize antibiotics to prevent excessive generation of lactic acid by bacteria in the mixture.
- antibiotic may be added in a concentration of from about 500 ppm to about 10,000 ppm by weight of the feedstock.
- antibiotics may be avoided, for example by cleaning the feedstock and processing equipment, running the process at low pH levels, and maintaining high throughput during steeping, mashing and fermentation.
- Non-antibiotic additives may also be used, for example the hop extract sold by BetaTec Hop Products under the tradename IsoStabTM. If these alternatives are used, it is desirable to sterilize the edible residues of the process, to ensure their safety.
- a stripping column 22
- the ethanol is then distilled using a distillation unit ( 24 ), e.g., a rectifier.
- the ethanol can be dried using a molecular sieve ( 26 ), denatured if necessary, and output to a desired shipping method.
- Another stream comes off of the bottom of stripping column ( 22 ) and is passed through a centrifuge ( 28 ).
- a liquid fraction, or “thin stillage (backset)” is then returned to the process, generally prior to the cooking devices ( 12 ).
- the solids (“wet cake”) are subjected to further processing, including drying, in an evaporator/dryer operating unit ( 30 ), resulting in the production of an edible residue, e.g., dried Distillers Grains and Solubles (DDGS) if the feedstock was corn.
- DDGS dried Distillers Grains and Solubles
- the edible residue is then irradiated, using an irradiating unit ( 32 ). Irradiation serves both to inactivate any antibiotic present in the edible residue from the fermentation process, e.g., by changing the molecular structure of the antibiotic, and to sterilize the edible residue, killing any undesirable bacteria or other microorganisms present in the edible residue.
- Irradiation can be performed using any suitable device. If the edible residue is in the form of a thin section, e.g., small pellets, electron beam irradiation may be preferred to provide high throughput. If deeper penetration is required, e.g., if the edible residue is in the form of a thick cake, gamma radiation can be used.
- the radiation may be delivered in any dose that is sufficient to inactivate the antibiotic and/or destroy bacteria and undesirable microorganisms, without deleteriously affecting the nutrient availability of the edible residue.
- the dose may be from about 0.5 MRad to about 5 MRad, e.g., about 1 MRad to about 3 MRad.
- Drying of the edible residue may be performed before (as shown), during, or after irradiation, or may be omitted if desired.
- the feedstock can be a cellulosic or lignocellulosic material that has been physically treated and optionally pre-treated at a remote location and then shipped to the plant, e.g., by rail, truck, ship (e.g., barge or supertanker), or air.
- the material may be shipped in a densified state for volume efficiency.
- the feedstock can be physically treated, e.g., using the size reduction techniques described below, to a bulk density of less than about 0.35 g/cc, and then densified to have a bulk density of at least about 0.5 g/cc.
- the densified material can have a bulk density of at least 0.6, 0.7, 0.8, or 0.85 g/cc.
- Fibrous materials can be densified using any suitable process, e.g., as disclosed in WO 2008/073186.
- Fiber sources include cellulosic fiber sources, including paper and paper products (e.g., polycoated paper and Kraft paper), and lignocellulosic fiber sources, including wood, and wood-related materials, e.g., particle board.
- Other suitable fiber sources include natural fiber sources, e.g., grasses, rice hulls, bagasse, cotton, jute, hemp, flax, bamboo, sisal, abaca, straw, corn cobs, rice hulls, coconut hair; fiber sources high in ⁇ -cellulose content, e.g., cotton.
- Fiber sources can be obtained from virgin scrap textile materials, e.g., remnants, post consumer waste, e.g., rags.
- paper products When paper products are used as fiber sources, they can be virgin materials, e.g., scrap virgin materials, or they can be post-consumer waste. Aside from virgin raw materials, post-consumer, industrial (e.g., offal), and processing waste (e.g., effluent from paper processing) can also be used as fiber sources. Also, the fiber source can be obtained or derived from human (e.g., sewage), animal or plant wastes. Additional fiber sources have been described in U.S. Pat. Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105.
- the sugars liberated during bioprocessing can be converted into a variety of products, such as alcohols or organic acids.
- the product obtained depends upon the microorganism utilized and the conditions under which the bio-processing occurs. These steps can be performed utilizing the existing equipment of the grain-based ethanol manufacturing facility, with little or no modification.
- a xylose (C5) stream may be produced during bio-processing, if hemi-cellulose is present in the feedstock, and thus in some cases provision is made for removing this stream after the stripping column.
- the microorganism utilized in bioprocessing can be a natural microorganism or an engineered microorganism.
- the microorganism can be a bacterium, e.g., a cellulolytic bacterium, a fungus, e.g., a yeast, a plant or a protist, e.g., an algae, a protozoa or a fungus-like protist, e.g., a slime mold.
- a protist e.g., an algae, a protozoa or a fungus-like protist, e.g., a slime mold.
- the microorganism can be an aerobe or an anaerobe.
- the microorganism can be a homofermentative microorganism (produces a single or a substantially single end product).
- the microorganism can be a homoacetogenic microorganism, a homolactic microorganism, a propionic acid bacterium, a butyric acid bacterium, a succinic acid bacterium or a 3-hydroxypropionic acid bacterium.
- the microorganism can be of a genus selected from the group Clostridium, Lactobacillus, Moorella, Thermoanaerobacter, Proprionibacterium, Propionispera, Anaerobiospirillum, and Bacteriodes.
- the microorganism can be Clostridium formicoaceticum, Clostridium butyricum, Moorella thermoacetica, Thermoanaerobacter kivui, Lactobacillus delbrukii, Propionibacterium acidipropionici, Propionispera arboris, Anaerobiospirillum succinicproducens, Bacteriodes amylophilus or Bacteriodes ruminicola.
- the microorganism can be a recombinant microorganism engineered to produce a desired product, such as a recombinant Escherichia coli transformed with one or more genes capable of encoding proteins that direct the production of the desired product is used (see, e.g., U.S. Pat. No. 6,852,517, issued Feb. 8, 2005).
- Bacteria that can ferment biomass to ethanol and other products include, e.g., Zymomonas mobilis and Clostridium thermocellum (Philippidis, 1996, supra). Leschine et al. ( International Journal of Systematic and Evolutionary Microbiology 2002, 52, 1155-1160) isolated an anaerobic, mesophilic, cellulolytic bacterium from forest soil, Clostridium phytofermentans sp. nov., which converts cellulose to ethanol.
- Bio-processing e.g., fermentation, of biomass to ethanol and other products may be carried out using certain types of thermophilic or genetically engineered microorganisms, such Thermoanaerobacter species, including T. mathranii, and yeast species such as Pichia species.
- Thermoanaerobacter species including T. mathranii, and yeast species such as Pichia species.
- T. mathranii An example of a strain of T. mathranii is A3M4 described in Sonne-Hansen et al. ( Applied Microbiology and Biotechnology 1993, 38, 537-541) or Ahring et al. ( Arch. Microbiol. 1997, 168, 114-119).
- one or more enzymes e.g., a cellulolytic enzyme can be utilized.
- the materials that include the cellulose are first treated with the enzyme, e.g., by combining the material and the enzyme in an aqueous solution. This material can then be combined with any microorganism described herein.
- the materials that include the cellulose, the one or more enzymes and the microorganism are combined concurrently, e.g., by combining in an aqueous solution.
- the carboxylic acid groups in these products generally lower the pH of the fermentation solution, tending to inhibit fermentation with some microorganisms, such as Pichia stipitis. Accordingly, it is in some cases desirable to add base and/or a buffer, before or during fermentation, to bring up the pH of the solution. For example, sodium hydroxide or lime can be added to the fermentation medium to elevate the pH of the medium to range that is optimum for the microorganism utilized.
- Fermentation is generally conducted in an aqueous growth medium, which can contain a nitrogen source or other nutrient source, e.g., urea, along with vitamins and trace minerals and metals. It is generally preferable that the growth medium be sterile, or at least have a low microbial load, e.g., bacterial count. Sterilization of the growth medium may be accomplished in any desired manner. However, in preferred implementations, sterilization is accomplished by irradiating the growth medium or the individual components of the growth medium prior to mixing. The dosage of radiation is generally as low as possible while still obtaining adequate results, in order to minimize energy consumption and resulting cost.
- the growth medium itself or components of the growth medium can be treated with a radiation dose of less than 5 Mrad, such as less than 4, 3, 2 or 1 Mrad.
- the growth medium is treated with a dose of between about 1 and 3 Mrad.
- DDGS dried distillers grains and solubles
- WDGS wet distillers grains and solubles
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Food Science & Technology (AREA)
- Physiology (AREA)
- Animal Husbandry (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Nutrition Science (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Fodder In General (AREA)
- Processing Of Solid Wastes (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Compounds Of Unknown Constitution (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Edible residues of ethanol production, e.g., distillers grains and solubles, are produced that are low in, or substantially free from, antibiotic residues. Antibiotics or bacteria present in edible residues resulting from ethanol production are inactivated by irradiating the edible residues.
Description
- This application is a Continuation of U.S. patent application Ser. No. 13/440,107, filed Apr. 5, 2012, which is a Continuation of International Application No. PCT/US2010/052382, filed Oct. 12, 2010, which claims priority to U.S. Provisional Application Ser. No. 61/251,610, filed Oct. 14, 2009. The entirety of each of these applications is incorporated herein by reference.
- This invention relates to producing edible residues from ethanol production, e.g., distillers grains and residues from cellulosic ethanol production.
- Manufacturing plants exist for the production of ethanol from grains, e.g., corn, and from sugars. Ethanol manufacturing is discussed in many sources, e.g., in The Alcohol Textbook, 4th Ed., ed. K. A. Jacques, et al., Nottingham University Press, 2003. Distillers grains (also referred to as distillers grains and solubles (DGS) or dry distillers grains (DDGS)) are a by-product of ethanol production. Distillers grains are a valuable by-product, as they are a major source of low-cost livestock feed. However, recently concerns have arisen due to the presence of antibiotics in distillers grains. The antibiotics in the distillers grains are generally present as a result of the use of antibiotics in the ethanol manufacturing process. Antibiotics such as penicillin and virginiamycin are used to control bacteria that compete with yeast during fermentation, converting sugar into lactic acid rather than ethanol. If restrictions on the sale or use of distillers grains are imposed due to concerns over antibiotic content, this will further damage the profit margins of ethanol producers, as well as depriving livestock farmers of a good source of livestock feed.
- U.S. Patent Application No. 20060127999, “Process for producing ethanol from corn dry milling,” and U.S. Patent Application No. 20030077771, “Process for producing ethanol,” are each incorporated by reference herein in their entireties. In addition, U.S. Pat. No. 7,351,559 “Process for producing ethanol,” U.S. Pat. No. 7,074,603, “Process for producing ethanol from corn dry milling” and U.S. Pat. No. 6,509,180, “Process for producing ethanol” are each incorporated by reference herein in their entireties.
- Generally, this invention relates to edible residues from ethanol production, and to methods of producing edible residues that are low in antibiotic content, or, in preferred embodiments, substantially free of antibiotics. By “low in antibiotic content,” or “substantially free of antibiotics,” we mean that the edible residue contains little or no active antibiotic, e.g., less than 100 ppm; the edible residue may contain inactivated antibiotics, as will be discussed herein.
- The edible residue may be, for example, distillers dry grains (DDG), in the case of corn ethanol production, or a mixture of lignin, unfermented sugars (e.g., xylose, arabinose), minerals (e.g., clay, silica, silicates), and in some cases undigested cellulose.
- In some implementations, the edible residue contains less than 50 ppm by weight active antibiotic, e.g., less than 25 ppm, less than 10 ppm, or even less than 1ppm.
- In one aspect, the invention features a method comprising irradiating edible residues that have been produced as a by-product of an ethanol manufacturing process.
- Some implementations include one or more of the following features. The edible residues comprise distillers grains and solubles, e.g., from a corn ethanol process. Alternatively, the edible residues may comprise lignin, xylose and minerals, and in some cases undigested cellulose, for example when the ethanol manufacturing process utilizes a cellulosic feedstock and/or a lignocellulosic feedstock.
- In some cases, the edible residues contain an antibiotic, and irradiating is performed under conditions that are selected to inactivate or destroy the antibiotic, e.g., by changing the molecular structure of the antibiotic. In such cases, after irradiation the edible residues can contain less than 100 ppm, such as less than 50, 25, 10, or 1 ppm, by weight of active antibiotic, or can be substantially free of active antibiotic. In some implementations, prior to irradiation the edible residues contain from about 500 ppm to about 10,000 ppm by weight of active antibiotic.
- In other cases, the ethanol manufacturing process may be conducted without addition of antibiotics. In such cases, prior to irradiation the edible residues may contain bacteria, and irradiation is performed under conditions that destroy bacteria. In some implementations, irradiation is delivered at a dose of greater than about 0.5 MRad, and/or less than about 5 Mrad, e.g., at a dose of from about 1 to about 3 Mrad.
- If the edible residues are distillers grains and solubles, the distillers grains and solubles may be dried, producing dried distillers grains and solubles (DDGS). Drying may be performed prior to, during or after irradiation.
- All publications, patent applications, patents, and other references mentioned herein or attached hereto are incorporated by reference in their entirety for all that they contain.
-
FIG. 1 is a schematic diagram illustrating a process for making ethanol and distillers grains. - Referring to
FIG. 1 , a plant for manufacturing ethanol can include, for example, one or more operating units (10) for receiving and physically treating a feedstock, which in a typical grain-based (e.g., corn or grain) ethanol plant generally includes grain receiving equipment and a hammermill. If the feedstock to be used is a non-grain cellulosic or lignocellulosic material theoperating units 10 may be configured to reduce the size of the feedstock in a manner that exposes internal fibers of the feedstock, e.g., as disclosed in U.S. Pat. No. 7,470,463, the full disclosure of which is incorporated herein by reference. - In some cases, for instance if the feedstock includes a material that is difficult to treat by fermentation, e.g., crop residues or other lignocellulosic feedstocks, the plant may include an optional operating unit configured to treat the feedstock to reduce its recalcitrance. In some implementations, recalcitrance is reduced by at least 5%, or at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95%. In some cases recalcitrance is substantially completely eliminated. Treatment processes utilized by the recalcitrance reducing operating unit can include one or more of irradiation, sonication, oxidation, pyrolysis, and steam explosion. Treatment methods can be used in combinations of two, three, four, or even all of these technologies (in any order). Operating units that pretreat feedstocks to reduce recalcitrance are described in WO 2008/073186, the full disclosure of which is incorporated herein by reference.
- The feedstock can then be processed in a series of cooking devices (12), as is well known, subjected to liquefaction (14), and cooled (16) to a suitable temperature for contact with microorganisms such as yeasts. The cooled stream then flows to a bio-processing system (18) where it is bio-processed, e.g., fermented, to produce a crude ethanol mixture which flows into a holding tank (20).
- The bio-processing system may in some cases utilize antibiotics to prevent excessive generation of lactic acid by bacteria in the mixture. For example, antibiotic may be added in a concentration of from about 500 ppm to about 10,000 ppm by weight of the feedstock.
- Alternatively, the use of antibiotics may be avoided, for example by cleaning the feedstock and processing equipment, running the process at low pH levels, and maintaining high throughput during steeping, mashing and fermentation. Non-antibiotic additives may also be used, for example the hop extract sold by BetaTec Hop Products under the tradename IsoStab™. If these alternatives are used, it is desirable to sterilize the edible residues of the process, to ensure their safety.
- Water or other solvent, and other non-ethanol components, are stripped from the crude ethanol mixture using a stripping column (22), and the ethanol is then distilled using a distillation unit (24), e.g., a rectifier. Finally, the ethanol can be dried using a molecular sieve (26), denatured if necessary, and output to a desired shipping method.
- Another stream comes off of the bottom of stripping column (22) and is passed through a centrifuge (28). A liquid fraction, or “thin stillage (backset)” is then returned to the process, generally prior to the cooking devices (12). The solids (“wet cake”) are subjected to further processing, including drying, in an evaporator/dryer operating unit (30), resulting in the production of an edible residue, e.g., dried Distillers Grains and Solubles (DDGS) if the feedstock was corn.
- The edible residue is then irradiated, using an irradiating unit (32). Irradiation serves both to inactivate any antibiotic present in the edible residue from the fermentation process, e.g., by changing the molecular structure of the antibiotic, and to sterilize the edible residue, killing any undesirable bacteria or other microorganisms present in the edible residue.
- Irradiation can be performed using any suitable device. If the edible residue is in the form of a thin section, e.g., small pellets, electron beam irradiation may be preferred to provide high throughput. If deeper penetration is required, e.g., if the edible residue is in the form of a thick cake, gamma radiation can be used.
- The radiation may be delivered in any dose that is sufficient to inactivate the antibiotic and/or destroy bacteria and undesirable microorganisms, without deleteriously affecting the nutrient availability of the edible residue. For example, the dose may be from about 0.5 MRad to about 5 MRad, e.g., about 1 MRad to about 3 MRad.
- Drying of the edible residue may be performed before (as shown), during, or after irradiation, or may be omitted if desired.
- Generally, all of the processing equipment used in the process described above is typically utilized in existing ethanol manufacturing plants, with the exception of optional recalcitrance reducing operating unit and the device used to irradiate the edible residue.
- In some cases, the feedstock can be a cellulosic or lignocellulosic material that has been physically treated and optionally pre-treated at a remote location and then shipped to the plant, e.g., by rail, truck, ship (e.g., barge or supertanker), or air. In such cases, the material may be shipped in a densified state for volume efficiency. For example, the feedstock can be physically treated, e.g., using the size reduction techniques described below, to a bulk density of less than about 0.35 g/cc, and then densified to have a bulk density of at least about 0.5 g/cc. In some implementations, the densified material can have a bulk density of at least 0.6, 0.7, 0.8, or 0.85 g/cc. Fibrous materials can be densified using any suitable process, e.g., as disclosed in WO 2008/073186.
- The feedstock can in some cases be fibrous in nature. Fiber sources include cellulosic fiber sources, including paper and paper products (e.g., polycoated paper and Kraft paper), and lignocellulosic fiber sources, including wood, and wood-related materials, e.g., particle board. Other suitable fiber sources include natural fiber sources, e.g., grasses, rice hulls, bagasse, cotton, jute, hemp, flax, bamboo, sisal, abaca, straw, corn cobs, rice hulls, coconut hair; fiber sources high in α-cellulose content, e.g., cotton. Fiber sources can be obtained from virgin scrap textile materials, e.g., remnants, post consumer waste, e.g., rags. When paper products are used as fiber sources, they can be virgin materials, e.g., scrap virgin materials, or they can be post-consumer waste. Aside from virgin raw materials, post-consumer, industrial (e.g., offal), and processing waste (e.g., effluent from paper processing) can also be used as fiber sources. Also, the fiber source can be obtained or derived from human (e.g., sewage), animal or plant wastes. Additional fiber sources have been described in U.S. Pat. Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105.
- The sugars liberated during bioprocessing can be converted into a variety of products, such as alcohols or organic acids. The product obtained depends upon the microorganism utilized and the conditions under which the bio-processing occurs. These steps can be performed utilizing the existing equipment of the grain-based ethanol manufacturing facility, with little or no modification. A xylose (C5) stream may be produced during bio-processing, if hemi-cellulose is present in the feedstock, and thus in some cases provision is made for removing this stream after the stripping column.
- The microorganism utilized in bioprocessing can be a natural microorganism or an engineered microorganism. For example, the microorganism can be a bacterium, e.g., a cellulolytic bacterium, a fungus, e.g., a yeast, a plant or a protist, e.g., an algae, a protozoa or a fungus-like protist, e.g., a slime mold. When the organisms are compatible, mixtures of organisms can be utilized. The microorganism can be an aerobe or an anaerobe. The microorganism can be a homofermentative microorganism (produces a single or a substantially single end product). The microorganism can be a homoacetogenic microorganism, a homolactic microorganism, a propionic acid bacterium, a butyric acid bacterium, a succinic acid bacterium or a 3-hydroxypropionic acid bacterium. The microorganism can be of a genus selected from the group Clostridium, Lactobacillus, Moorella, Thermoanaerobacter, Proprionibacterium, Propionispera, Anaerobiospirillum, and Bacteriodes. In specific instances, the microorganism can be Clostridium formicoaceticum, Clostridium butyricum, Moorella thermoacetica, Thermoanaerobacter kivui, Lactobacillus delbrukii, Propionibacterium acidipropionici, Propionispera arboris, Anaerobiospirillum succinicproducens, Bacteriodes amylophilus or Bacteriodes ruminicola. For example, the microorganism can be a recombinant microorganism engineered to produce a desired product, such as a recombinant Escherichia coli transformed with one or more genes capable of encoding proteins that direct the production of the desired product is used (see, e.g., U.S. Pat. No. 6,852,517, issued Feb. 8, 2005).
- Bacteria that can ferment biomass to ethanol and other products include, e.g., Zymomonas mobilis and Clostridium thermocellum (Philippidis, 1996, supra). Leschine et al. (International Journal of Systematic and Evolutionary Microbiology 2002, 52, 1155-1160) isolated an anaerobic, mesophilic, cellulolytic bacterium from forest soil, Clostridium phytofermentans sp. nov., which converts cellulose to ethanol.
- Bio-processing, e.g., fermentation, of biomass to ethanol and other products may be carried out using certain types of thermophilic or genetically engineered microorganisms, such Thermoanaerobacter species, including T. mathranii, and yeast species such as Pichia species. An example of a strain of T. mathranii is A3M4 described in Sonne-Hansen et al. (Applied Microbiology and Biotechnology 1993, 38, 537-541) or Ahring et al. (Arch. Microbiol. 1997, 168, 114-119).
- To aid in the breakdown of the materials that include the cellulose (treated by any method described herein or even untreated), one or more enzymes, e.g., a cellulolytic enzyme can be utilized. In some embodiments, the materials that include the cellulose are first treated with the enzyme, e.g., by combining the material and the enzyme in an aqueous solution. This material can then be combined with any microorganism described herein. In other embodiments, the materials that include the cellulose, the one or more enzymes and the microorganism are combined concurrently, e.g., by combining in an aqueous solution.
- The carboxylic acid groups in these products generally lower the pH of the fermentation solution, tending to inhibit fermentation with some microorganisms, such as Pichia stipitis. Accordingly, it is in some cases desirable to add base and/or a buffer, before or during fermentation, to bring up the pH of the solution. For example, sodium hydroxide or lime can be added to the fermentation medium to elevate the pH of the medium to range that is optimum for the microorganism utilized.
- Fermentation is generally conducted in an aqueous growth medium, which can contain a nitrogen source or other nutrient source, e.g., urea, along with vitamins and trace minerals and metals. It is generally preferable that the growth medium be sterile, or at least have a low microbial load, e.g., bacterial count. Sterilization of the growth medium may be accomplished in any desired manner. However, in preferred implementations, sterilization is accomplished by irradiating the growth medium or the individual components of the growth medium prior to mixing. The dosage of radiation is generally as low as possible while still obtaining adequate results, in order to minimize energy consumption and resulting cost. For example, in many instances, the growth medium itself or components of the growth medium can be treated with a radiation dose of less than 5 Mrad, such as less than 4, 3, 2 or 1 Mrad. In specific instances, the growth medium is treated with a dose of between about 1 and 3 Mrad.
- A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure.
- For example, while the production of dried distillers grains and solubles (DDGS) is discussed above, in some cases the end product may instead be wet distillers grains and solubles (WDGS). While WDGS, with its high moisture content, is generally expensive to transport and subject to spoilage, in some cases it may be used, for instance where the livestock feed is to be used close to the ethanol manufacturing facility. Such applications are described, for example, in U.S. Pat. No. 6,355,456, the full disclosure of which is incorporated herein by reference.
- Either wet-milling or dry-milling processes may be used in the methods disclosed herein.
- Accordingly, other embodiments are within the scope of the following claims.
Claims (15)
1. A system for producing edible residues, the system comprising:
(a) one or more operating units for receiving and physically treating a feedstock, wherein at least one of the one or more operating units is a recalcitrance reducing operating unit comprising a first irradiating unit for irradiating the feedstock to reduce recalcitrance;
(b) one or more cooking devices for processing the feedstock prior to fermentation;
(c) a bio-processing unit for fermentation, wherein the bio-processing unit utilizes one or more antibiotics;
(d) an evaporator/dryer operating unit; and
(e) a second irradiating unit for irradiating an edible residue.
2. The system of claim 1 , wherein the feedstock is lignocellulosic or cellulosic.
3. The system of claim 1 , wherein the feedstock comprises a crop residue.
4. The system of claim 1 , wherein the one or more operating units for physically treating a feedstock is for sonication, oxidation, pyrolysis, or steam explosion of the feedstock.
5. The system of claim 1 , further comprising a liquefaction unit.
6. The system of claim 5 , further comprising a cooling unit for cooling the processed feedstock prior to fermentation.
7. The system of claim 1 , further comprising a holding tank for holding a crude ethanol mixture produced from fermentation.
8. The system of claim 7 , further comprising a stripping column for stripping water or other non-ethanol components from the crude ethanol mixture.
9. The system of claim 8 , further comprising a distillation unit for distilling ethanol.
10. The system of claim 9 , further comprising a molecular sieve for drying ethanol.
11. The system of claim 10 , further comprising a centrifuge to produce a liquid fraction and a solid fraction.
12. The system of claim 11 , wherein the solid fraction is dried in the evaporator/dryer operating unit to produce a dried edible residue.
13. The system of claim 12 , wherein the dried edible residue is dried Distillers Grains and Solubles (DDGS).
14. The system of claim 1 , wherein the first and second irradiating units deliver electron beam irradiation or gamma radiation.
15. The system of claim 1 , wherein the second irradiating unit delivers irradiation to inactivate or destroy the one or more antibiotics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/937,201 US20180213820A1 (en) | 2009-10-14 | 2018-03-27 | Producing edible residues from ethanol production |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25161009P | 2009-10-14 | 2009-10-14 | |
PCT/US2010/052382 WO2011046967A1 (en) | 2009-10-14 | 2010-10-12 | Producing edible residues from ethanol production |
US13/440,107 US9961921B2 (en) | 2009-10-14 | 2012-04-05 | Producing edible residues from ethanol production |
US15/937,201 US20180213820A1 (en) | 2009-10-14 | 2018-03-27 | Producing edible residues from ethanol production |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/440,107 Continuation US9961921B2 (en) | 2009-10-14 | 2012-04-05 | Producing edible residues from ethanol production |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180213820A1 true US20180213820A1 (en) | 2018-08-02 |
Family
ID=43876490
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/440,107 Expired - Fee Related US9961921B2 (en) | 2009-10-14 | 2012-04-05 | Producing edible residues from ethanol production |
US15/937,201 Abandoned US20180213820A1 (en) | 2009-10-14 | 2018-03-27 | Producing edible residues from ethanol production |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/440,107 Expired - Fee Related US9961921B2 (en) | 2009-10-14 | 2012-04-05 | Producing edible residues from ethanol production |
Country Status (25)
Country | Link |
---|---|
US (2) | US9961921B2 (en) |
EP (3) | EP3354741B1 (en) |
JP (3) | JP6076090B2 (en) |
KR (3) | KR101856915B1 (en) |
CN (2) | CN105341355A (en) |
AP (1) | AP4003A (en) |
AU (1) | AU2010306924B2 (en) |
BR (1) | BR112012008791B1 (en) |
CA (1) | CA2774600C (en) |
DK (2) | DK3168308T3 (en) |
EA (3) | EA027766B1 (en) |
ES (2) | ES2671798T3 (en) |
HU (2) | HUE030886T2 (en) |
IL (4) | IL218746A (en) |
IN (1) | IN2012DN02682A (en) |
LT (2) | LT3168308T (en) |
MX (2) | MX353564B (en) |
MY (3) | MY171299A (en) |
NO (1) | NO3168308T3 (en) |
NZ (5) | NZ612228A (en) |
PL (3) | PL3354741T3 (en) |
SG (1) | SG10201802682QA (en) |
SI (2) | SI2488048T1 (en) |
UA (2) | UA119851C2 (en) |
WO (1) | WO2011046967A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6076090B2 (en) | 2009-10-14 | 2017-02-08 | キシレコ インコーポレイテッド | Process for producing edible residues from ethanol production |
EP2407433A1 (en) | 2010-07-15 | 2012-01-18 | Da Volterra | Methods for the inactivation of antibiotics |
EP2868632A1 (en) | 2013-10-31 | 2015-05-06 | Da Volterra | Method for the inactivation of virginiamycin |
WO2016164616A1 (en) | 2015-04-07 | 2016-10-13 | Xyleco, Inc. | Monitoring methods and systems for processing biomass |
US20200221739A1 (en) * | 2016-03-28 | 2020-07-16 | The King Abdulaziz City For Science And Technology | Method for removal of antibiotic residues from food products |
EA037782B1 (en) * | 2017-03-20 | 2021-05-20 | Ланцатек, Инк. | Process and system for product recovery and cell recycle |
Citations (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663667A (en) * | 1949-02-24 | 1953-12-22 | Brown Forman Distillers Corp | Yeast fermentation process |
US3586515A (en) * | 1968-10-22 | 1971-06-22 | Marine Technology Inc | Method and apparatus for converting bodies into particulate matter |
US3873734A (en) * | 1972-02-04 | 1975-03-25 | Allied Chem | Method of producing a pelleted slow-release NPN feed for ruminants |
US3993739A (en) * | 1975-01-23 | 1976-11-23 | Phillips Petroleum Company | Process for producing carbon black pellets |
US4055001A (en) * | 1971-11-18 | 1977-10-25 | Exxon Research & Engineering Co. | Microwave drying process for synthetic polymers |
US4109019A (en) * | 1975-11-18 | 1978-08-22 | William Percy Moore | Process for improved ruminant feed supplements |
US4138332A (en) * | 1976-07-26 | 1979-02-06 | Schloeffel Paul | Method and device for dewatering solid suspensions |
US4185680A (en) * | 1976-01-28 | 1980-01-29 | Victor Lawson | Process for producing useful concentrated slurries from waste material |
US4380551A (en) * | 1980-07-31 | 1983-04-19 | Jacek Dlugolecki | Methods of producing foodstuff by malting seeds |
US4464402A (en) * | 1978-04-24 | 1984-08-07 | F.I.N.D. Research Corporation | Process for manufacturing a high protein food material |
US4552775A (en) * | 1981-06-22 | 1985-11-12 | Alfa-Laval Ab | Process for the production of animal feed stuff from a liquid residue obtained by fermentation and distillation of grain raw material |
US4662990A (en) * | 1984-12-19 | 1987-05-05 | Hanover Research Corporation | Apparatus for recovering dry solids from aqueous solids mixtures |
US4952504A (en) * | 1987-07-28 | 1990-08-28 | Pavilon Stanley J | Method for producing ethanol from biomass |
US5006204A (en) * | 1988-08-10 | 1991-04-09 | A/S Niro Atomizer | Apparatus for crystallizing whey |
US5076895A (en) * | 1990-06-21 | 1991-12-31 | Hanover Research Corporation | Process and apparatus for recovering clean water and solids from aqueous solids using mechanical vapor recompression evaporators |
US5106634A (en) * | 1989-09-11 | 1992-04-21 | Clovis Grain Processing, Ltd. | Process for the co-production of ethanol and an improved human food product from cereal grains |
US5182127A (en) * | 1991-09-23 | 1993-01-26 | General Mills, Inc. | Microwave tempering of cooked cereal pellets or pieces |
US5196069A (en) * | 1991-07-05 | 1993-03-23 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Apparatus and method for cellulose processing using microwave pretreatment |
US5328707A (en) * | 1992-07-01 | 1994-07-12 | Industrial Technology Research Institute | Recovery of waste liquid from production of rice liquor |
US5423993A (en) * | 1993-08-06 | 1995-06-13 | John A. Boney | Fiber recovery system and process |
US5593600A (en) * | 1995-09-05 | 1997-01-14 | Solomon; William E. | Method of desanding, desalting and concentrating organic wastes |
US5902615A (en) * | 1996-07-18 | 1999-05-11 | Roquette Freres | Nutritional composition resulting from maize steeping |
US5912415A (en) * | 1996-05-16 | 1999-06-15 | Regents Of The University Of Minnesota | Arabidopsis spindly gene, methods of identification and use |
US5928469A (en) * | 1991-06-26 | 1999-07-27 | Inhale Therapeutic Systems | Process for storage of materials |
US5958233A (en) * | 1995-08-29 | 1999-09-28 | Willgohs; Ralph H. | Apparatus for efficiently dewatering corn stillage solids and other materials |
US6274178B1 (en) * | 1997-05-28 | 2001-08-14 | Primary Applications Pty. Limited | Enhancement of industrial enzymes |
US20020046474A1 (en) * | 2000-08-16 | 2002-04-25 | Novak John F. | Method and apparatus for microwave utilization |
US6379723B1 (en) * | 1994-10-13 | 2002-04-30 | Akzo Nobel, N.V. | Animal feed of higher nutritive value, method for production thereof and use of a polyethylene glycol compound |
US6409788B1 (en) * | 1998-01-23 | 2002-06-25 | Crystal Peak Farms | Methods for producing fertilizers and feed supplements from agricultural and industrial wastes |
US20020098265A1 (en) * | 2000-10-20 | 2002-07-25 | Konishi Fermentation Research Lab. Pty., Ltd. | Method of processing starch grain material and method of manufacturing fermented product using the processed material |
US20020150617A1 (en) * | 2000-08-16 | 2002-10-17 | Rexall Sundown, Inc. | Method of making tablets and tablet compositions produced therefrom |
US6508078B2 (en) * | 2000-10-26 | 2003-01-21 | Crystal Peak Farms | Separation of purified water and nutrients from agricultural and farm wastes |
US20030019736A1 (en) * | 2001-06-06 | 2003-01-30 | Garman Daniel T. | System and method for producing energy from distilled dry grains and solubles |
US20030047087A1 (en) * | 2001-05-07 | 2003-03-13 | Phebus Randall K. | System for handling processed meat and poultry products |
US6534105B2 (en) * | 2001-03-01 | 2003-03-18 | Food Development Corporation | Process for preparation of animal feed from food waste |
US6555350B2 (en) * | 2000-02-17 | 2003-04-29 | Forskningscenter Riso | Method for processing lignocellulosic material |
US6616953B2 (en) * | 2001-01-02 | 2003-09-09 | Abbott Laboratories | Concentrated spent fermentation beer or saccharopolyspora erythraea activated by an enzyme mixture as a nutritional feed supplement |
US6635297B2 (en) * | 2001-10-16 | 2003-10-21 | Nutracycle Llc | System and process for producing animal feed from food waste |
US20040185148A1 (en) * | 2003-03-19 | 2004-09-23 | Said Nabil W. | Extrusion processing of distillers grains with solubles and the products thereof |
US20040234649A1 (en) * | 2003-03-10 | 2004-11-25 | Broin And Associates, Inc. | Method for producing ethanol using raw starch |
US20050101700A1 (en) * | 2003-06-13 | 2005-05-12 | Agri-Polymerix, Llc | Biopolymer and methods of making it |
US6892471B2 (en) * | 2003-07-02 | 2005-05-17 | Anders T. Ragnarsson | Sludge dryer |
US20050274035A1 (en) * | 2004-06-04 | 2005-12-15 | Wastech International, Inc. | Waste handling system |
US20060088922A1 (en) * | 2003-03-19 | 2006-04-27 | Bin Yang | Lignin blockers and uses thereof |
US20060150278A1 (en) * | 2002-02-26 | 2006-07-06 | Planttec Biotechnologie Gmbh Forschung & Entwicklung | Method for generating maize plants with an increased leaf starch content, and their use for making maize silage |
US20060251764A1 (en) * | 2005-04-19 | 2006-11-09 | Archer-Daniels-Midland Company | Process for the production of animal feed and ethanol and novel animal feed |
US20060286628A1 (en) * | 2005-06-17 | 2006-12-21 | Everett Rollo J | Heat recovery from a biomass heat source |
US20070037259A1 (en) * | 2005-04-12 | 2007-02-15 | Hennessey Susan M | Integration of alternative feedstreams for biomass treatment and utilization |
US20070128334A1 (en) * | 2005-12-04 | 2007-06-07 | William Pittman | Additives to enhance various distillers grains |
US20070148107A1 (en) * | 2005-12-23 | 2007-06-28 | Mars, Incorporated | Skin protection and improvement |
US20070161095A1 (en) * | 2005-01-18 | 2007-07-12 | Gurin Michael H | Biomass Fuel Synthesis Methods for Increased Energy Efficiency |
US20070172540A1 (en) * | 2006-01-25 | 2007-07-26 | Neece Charles E | High density, energy component-added pelletized agricultural processing byproducts for animal feed |
US20070250961A1 (en) * | 2006-02-27 | 2007-10-25 | Blaylock Michael J | Energy crops for improved biofuel feedstocks |
US20080026101A1 (en) * | 2007-06-14 | 2008-01-31 | Gary Nickel | Food products |
US20080131947A1 (en) * | 2006-12-01 | 2008-06-05 | Cellencor, Inc. | Treatment of Cellulosic Material for Ethanol Production |
US20080220125A1 (en) * | 2007-03-05 | 2008-09-11 | Charles Abbas | Method of Preparing More Digestible Animal Feed |
US20080260896A1 (en) * | 2007-04-23 | 2008-10-23 | Michael Cecava | Application of Crude Glycerin for Improved Livestock Production |
US20080317731A1 (en) * | 2002-04-19 | 2008-12-25 | Diversa Corporation | Phospholipases, Nucleic Acids Encoding Them and Methods for Making and Using Them |
US20090029432A1 (en) * | 2007-07-25 | 2009-01-29 | Charles Abbas | Dry fractionation of corn |
US20090071066A1 (en) * | 2007-09-17 | 2009-03-19 | Russell Meier | Method of Producing Dried Distillers Grain with Solubles Agglomerated Particles |
US20090093027A1 (en) * | 2007-10-03 | 2009-04-09 | Board Of Trustees Of Michigan State University | Process for producing sugars and ethanol using corn stillage |
US20090104157A1 (en) * | 2007-10-05 | 2009-04-23 | E. I. Du Pont De Nemours And Company | Utilization of bacteriophage to control bacterial contamination in fermentation processes |
US20090119800A1 (en) * | 2007-11-05 | 2009-05-07 | Syngenta Participations Ag | Methods for increasing starch content in plants |
US20090134152A1 (en) * | 2005-10-27 | 2009-05-28 | Sedlmayr Steven R | Microwave nucleon-electron-bonding spin alignment and alteration of materials |
US20090263356A1 (en) * | 2005-09-26 | 2009-10-22 | Sanwa Shurui Co., Ltd. | Anti-angiogenic composition comprising grain-derived component as active ingredient |
US7846295B1 (en) * | 2008-04-30 | 2010-12-07 | Xyleco, Inc. | Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials |
US7867359B2 (en) * | 2008-04-30 | 2011-01-11 | Xyleco, Inc. | Functionalizing cellulosic and lignocellulosic materials |
US7900857B2 (en) * | 2008-07-17 | 2011-03-08 | Xyleco, Inc. | Cooling and processing materials |
US7932065B2 (en) * | 2006-10-26 | 2011-04-26 | Xyleco, Inc. | Processing biomass |
US8142620B2 (en) * | 2008-04-30 | 2012-03-27 | Xyleco, Inc. | Processing biomass |
US8147655B2 (en) * | 2008-06-18 | 2012-04-03 | Xyleco, Inc. | Processing materials with ion beams |
US8716537B2 (en) * | 2008-04-30 | 2014-05-06 | Xyleco, Inc. | Processing biomass |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB880456A (en) | 1958-06-10 | 1961-10-25 | Pierre Vidal | Pasteurization and sterilization methods by means of ionizing radiations |
SU869742A2 (en) * | 1979-12-21 | 1981-10-07 | Ордена Трудового Красного Знамени Институт Химии Древесины Ан Латсср | Method of obtaining protein food |
JPS63133997A (en) * | 1986-11-26 | 1988-06-06 | Japan Atom Energy Res Inst | Method for turning cellulose agricultural and forestry waste into feed and saccharification |
RU2085590C1 (en) * | 1995-05-16 | 1997-07-27 | Всероссийский научно-исследовательский институт крахмалопродуктов | Method of preparing the sugary products from rye |
US6448307B1 (en) | 1997-09-02 | 2002-09-10 | Xyleco, Inc. | Compositions of texturized fibrous materials |
US20020010229A1 (en) | 1997-09-02 | 2002-01-24 | Marshall Medoff | Cellulosic and lignocellulosic materials and compositions and composites made therefrom |
US5952105A (en) | 1997-09-02 | 1999-09-14 | Xyleco, Inc. | Poly-coated paper composites |
US5973035A (en) | 1997-10-31 | 1999-10-26 | Xyleco, Inc. | Cellulosic fiber composites |
US7074603B2 (en) | 1999-03-11 | 2006-07-11 | Zeachem, Inc. | Process for producing ethanol from corn dry milling |
ES2400285T3 (en) | 1999-03-11 | 2013-04-08 | Zeachem, Inc. | Process to produce ethanol |
JP2001029438A (en) * | 1999-07-16 | 2001-02-06 | Nuclear Fuel Ind Ltd | Sterilization method of livestock feed and livestock feed obtained by the sterilization method |
US6852517B1 (en) | 1999-08-30 | 2005-02-08 | Wisconsin Alumni Research Foundation | Production of 3-hydroxypropionic acid in recombinant organisms |
US6355456B1 (en) | 2000-01-19 | 2002-03-12 | Dakota Ag Energy, Inc. | Process of using wet grain residue from ethanol production to feed livestock for methane production |
JP2002228536A (en) * | 2001-02-06 | 2002-08-14 | Shinichiro Hayashi | Reclamation facility |
EP1773992A4 (en) | 2004-07-09 | 2009-01-28 | Earnest Stuart | Effect of radiation on cellulase enzymes |
KR100601113B1 (en) * | 2005-12-29 | 2006-07-19 | 한국원자력연구소 | Decomposition of Antimicrobial Agents Using Radiation |
CN2930114Y (en) | 2006-06-29 | 2007-08-01 | 武汉电信器件有限公司 | Photoelectric module pull ring type de-locking device |
US20100124583A1 (en) * | 2008-04-30 | 2010-05-20 | Xyleco, Inc. | Processing biomass |
KR100873700B1 (en) * | 2007-06-25 | 2008-12-12 | 사단법인 한국가속기 및 플라즈마 연구협회 | Biofuel Manufacturing Method Using Electron Beam |
JP6076090B2 (en) | 2009-10-14 | 2017-02-08 | キシレコ インコーポレイテッド | Process for producing edible residues from ethanol production |
-
2010
- 2010-10-12 JP JP2012534297A patent/JP6076090B2/en not_active Expired - Fee Related
- 2010-10-12 LT LTEP16205033.0T patent/LT3168308T/en unknown
- 2010-10-12 EP EP18161151.8A patent/EP3354741B1/en not_active Not-in-force
- 2010-10-12 SI SI201031408A patent/SI2488048T1/en unknown
- 2010-10-12 NZ NZ612228A patent/NZ612228A/en not_active IP Right Cessation
- 2010-10-12 MX MX2014014617A patent/MX353564B/en unknown
- 2010-10-12 LT LTEP10823967.4T patent/LT2488048T/en unknown
- 2010-10-12 WO PCT/US2010/052382 patent/WO2011046967A1/en active Application Filing
- 2010-10-12 PL PL18161151T patent/PL3354741T3/en unknown
- 2010-10-12 NZ NZ730579A patent/NZ730579A/en not_active IP Right Cessation
- 2010-10-12 PL PL10823967T patent/PL2488048T3/en unknown
- 2010-10-12 EA EA201401237A patent/EA027766B1/en not_active IP Right Cessation
- 2010-10-12 MY MYPI2013004687A patent/MY171299A/en unknown
- 2010-10-12 SG SG10201802682QA patent/SG10201802682QA/en unknown
- 2010-10-12 EA EA201270548A patent/EA021751B1/en not_active IP Right Cessation
- 2010-10-12 NZ NZ713100A patent/NZ713100A/en not_active IP Right Cessation
- 2010-10-12 HU HUE10823967A patent/HUE030886T2/en unknown
- 2010-10-12 AU AU2010306924A patent/AU2010306924B2/en not_active Ceased
- 2010-10-12 CN CN201510869956.XA patent/CN105341355A/en active Pending
- 2010-10-12 NZ NZ702186A patent/NZ702186A/en not_active IP Right Cessation
- 2010-10-12 AP AP2012006209A patent/AP4003A/en active
- 2010-10-12 PL PL16205033T patent/PL3168308T3/en unknown
- 2010-10-12 EP EP16205033.0A patent/EP3168308B1/en not_active Not-in-force
- 2010-10-12 BR BR112012008791A patent/BR112012008791B1/en not_active IP Right Cessation
- 2010-10-12 EP EP10823967.4A patent/EP2488048B1/en not_active Not-in-force
- 2010-10-12 NO NO16205033A patent/NO3168308T3/no unknown
- 2010-10-12 MX MX2012004423A patent/MX2012004423A/en active IP Right Grant
- 2010-10-12 ES ES16205033.0T patent/ES2671798T3/en active Active
- 2010-10-12 MY MYPI2012001312A patent/MY156694A/en unknown
- 2010-10-12 UA UAA201602350A patent/UA119851C2/en unknown
- 2010-10-12 ES ES10823967.4T patent/ES2616691T3/en active Active
- 2010-10-12 NZ NZ598995A patent/NZ598995A/en not_active IP Right Cessation
- 2010-10-12 CA CA2774600A patent/CA2774600C/en not_active Expired - Fee Related
- 2010-10-12 DK DK16205033.0T patent/DK3168308T3/en active
- 2010-10-12 KR KR1020177008533A patent/KR101856915B1/en not_active Expired - Fee Related
- 2010-10-12 KR KR1020127009385A patent/KR101738114B1/en not_active Expired - Fee Related
- 2010-10-12 SI SI201031677T patent/SI3168308T1/en unknown
- 2010-10-12 EA EA201790746A patent/EA201790746A3/en unknown
- 2010-10-12 DK DK10823967.4T patent/DK2488048T3/en active
- 2010-10-12 CN CN201080046116.9A patent/CN102573511B/en not_active Expired - Fee Related
- 2010-10-12 KR KR1020187012037A patent/KR102071512B1/en not_active Expired - Fee Related
- 2010-10-12 HU HUE16205033A patent/HUE038897T2/en unknown
- 2010-12-10 UA UAA201205718A patent/UA112053C2/en unknown
-
2012
- 2012-03-20 IL IL218746A patent/IL218746A/en not_active IP Right Cessation
- 2012-03-28 IN IN2682DEN2012 patent/IN2012DN02682A/en unknown
- 2012-04-05 US US13/440,107 patent/US9961921B2/en not_active Expired - Fee Related
-
2016
- 2016-02-03 IL IL243929A patent/IL243929A/en not_active IP Right Cessation
- 2016-08-09 JP JP2016156341A patent/JP6377107B2/en not_active Expired - Fee Related
-
2017
- 2017-03-14 IL IL251159A patent/IL251159B/en not_active IP Right Cessation
-
2018
- 2018-03-27 US US15/937,201 patent/US20180213820A1/en not_active Abandoned
- 2018-07-24 JP JP2018138140A patent/JP6684321B2/en not_active Expired - Fee Related
- 2018-08-28 IL IL261425A patent/IL261425A/en unknown
- 2018-10-23 MY MYPI2018001789A patent/MY198870A/en unknown
Patent Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663667A (en) * | 1949-02-24 | 1953-12-22 | Brown Forman Distillers Corp | Yeast fermentation process |
US3586515A (en) * | 1968-10-22 | 1971-06-22 | Marine Technology Inc | Method and apparatus for converting bodies into particulate matter |
US4055001A (en) * | 1971-11-18 | 1977-10-25 | Exxon Research & Engineering Co. | Microwave drying process for synthetic polymers |
US3873734A (en) * | 1972-02-04 | 1975-03-25 | Allied Chem | Method of producing a pelleted slow-release NPN feed for ruminants |
US3993739A (en) * | 1975-01-23 | 1976-11-23 | Phillips Petroleum Company | Process for producing carbon black pellets |
US4109019A (en) * | 1975-11-18 | 1978-08-22 | William Percy Moore | Process for improved ruminant feed supplements |
US4185680A (en) * | 1976-01-28 | 1980-01-29 | Victor Lawson | Process for producing useful concentrated slurries from waste material |
US4138332A (en) * | 1976-07-26 | 1979-02-06 | Schloeffel Paul | Method and device for dewatering solid suspensions |
US4464402A (en) * | 1978-04-24 | 1984-08-07 | F.I.N.D. Research Corporation | Process for manufacturing a high protein food material |
US4380551A (en) * | 1980-07-31 | 1983-04-19 | Jacek Dlugolecki | Methods of producing foodstuff by malting seeds |
US4552775A (en) * | 1981-06-22 | 1985-11-12 | Alfa-Laval Ab | Process for the production of animal feed stuff from a liquid residue obtained by fermentation and distillation of grain raw material |
US4662990A (en) * | 1984-12-19 | 1987-05-05 | Hanover Research Corporation | Apparatus for recovering dry solids from aqueous solids mixtures |
US4952504A (en) * | 1987-07-28 | 1990-08-28 | Pavilon Stanley J | Method for producing ethanol from biomass |
US5006204A (en) * | 1988-08-10 | 1991-04-09 | A/S Niro Atomizer | Apparatus for crystallizing whey |
US5106634A (en) * | 1989-09-11 | 1992-04-21 | Clovis Grain Processing, Ltd. | Process for the co-production of ethanol and an improved human food product from cereal grains |
US5076895A (en) * | 1990-06-21 | 1991-12-31 | Hanover Research Corporation | Process and apparatus for recovering clean water and solids from aqueous solids using mechanical vapor recompression evaporators |
US5928469A (en) * | 1991-06-26 | 1999-07-27 | Inhale Therapeutic Systems | Process for storage of materials |
US5196069A (en) * | 1991-07-05 | 1993-03-23 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Apparatus and method for cellulose processing using microwave pretreatment |
US5182127A (en) * | 1991-09-23 | 1993-01-26 | General Mills, Inc. | Microwave tempering of cooked cereal pellets or pieces |
US5328707A (en) * | 1992-07-01 | 1994-07-12 | Industrial Technology Research Institute | Recovery of waste liquid from production of rice liquor |
US5423993A (en) * | 1993-08-06 | 1995-06-13 | John A. Boney | Fiber recovery system and process |
US6379723B1 (en) * | 1994-10-13 | 2002-04-30 | Akzo Nobel, N.V. | Animal feed of higher nutritive value, method for production thereof and use of a polyethylene glycol compound |
US5958233A (en) * | 1995-08-29 | 1999-09-28 | Willgohs; Ralph H. | Apparatus for efficiently dewatering corn stillage solids and other materials |
US5593600A (en) * | 1995-09-05 | 1997-01-14 | Solomon; William E. | Method of desanding, desalting and concentrating organic wastes |
US5912415A (en) * | 1996-05-16 | 1999-06-15 | Regents Of The University Of Minnesota | Arabidopsis spindly gene, methods of identification and use |
US5902615A (en) * | 1996-07-18 | 1999-05-11 | Roquette Freres | Nutritional composition resulting from maize steeping |
US6274178B1 (en) * | 1997-05-28 | 2001-08-14 | Primary Applications Pty. Limited | Enhancement of industrial enzymes |
US6409788B1 (en) * | 1998-01-23 | 2002-06-25 | Crystal Peak Farms | Methods for producing fertilizers and feed supplements from agricultural and industrial wastes |
US6555350B2 (en) * | 2000-02-17 | 2003-04-29 | Forskningscenter Riso | Method for processing lignocellulosic material |
US20020046474A1 (en) * | 2000-08-16 | 2002-04-25 | Novak John F. | Method and apparatus for microwave utilization |
US20020150617A1 (en) * | 2000-08-16 | 2002-10-17 | Rexall Sundown, Inc. | Method of making tablets and tablet compositions produced therefrom |
US20020098265A1 (en) * | 2000-10-20 | 2002-07-25 | Konishi Fermentation Research Lab. Pty., Ltd. | Method of processing starch grain material and method of manufacturing fermented product using the processed material |
US6508078B2 (en) * | 2000-10-26 | 2003-01-21 | Crystal Peak Farms | Separation of purified water and nutrients from agricultural and farm wastes |
US6616953B2 (en) * | 2001-01-02 | 2003-09-09 | Abbott Laboratories | Concentrated spent fermentation beer or saccharopolyspora erythraea activated by an enzyme mixture as a nutritional feed supplement |
US6534105B2 (en) * | 2001-03-01 | 2003-03-18 | Food Development Corporation | Process for preparation of animal feed from food waste |
US20030047087A1 (en) * | 2001-05-07 | 2003-03-13 | Phebus Randall K. | System for handling processed meat and poultry products |
US20030019736A1 (en) * | 2001-06-06 | 2003-01-30 | Garman Daniel T. | System and method for producing energy from distilled dry grains and solubles |
US6635297B2 (en) * | 2001-10-16 | 2003-10-21 | Nutracycle Llc | System and process for producing animal feed from food waste |
US20060150278A1 (en) * | 2002-02-26 | 2006-07-06 | Planttec Biotechnologie Gmbh Forschung & Entwicklung | Method for generating maize plants with an increased leaf starch content, and their use for making maize silage |
US20080317731A1 (en) * | 2002-04-19 | 2008-12-25 | Diversa Corporation | Phospholipases, Nucleic Acids Encoding Them and Methods for Making and Using Them |
US20040234649A1 (en) * | 2003-03-10 | 2004-11-25 | Broin And Associates, Inc. | Method for producing ethanol using raw starch |
US20040185148A1 (en) * | 2003-03-19 | 2004-09-23 | Said Nabil W. | Extrusion processing of distillers grains with solubles and the products thereof |
US20060088922A1 (en) * | 2003-03-19 | 2006-04-27 | Bin Yang | Lignin blockers and uses thereof |
US20050101700A1 (en) * | 2003-06-13 | 2005-05-12 | Agri-Polymerix, Llc | Biopolymer and methods of making it |
US6892471B2 (en) * | 2003-07-02 | 2005-05-17 | Anders T. Ragnarsson | Sludge dryer |
US20050274035A1 (en) * | 2004-06-04 | 2005-12-15 | Wastech International, Inc. | Waste handling system |
US20070161095A1 (en) * | 2005-01-18 | 2007-07-12 | Gurin Michael H | Biomass Fuel Synthesis Methods for Increased Energy Efficiency |
US20070037259A1 (en) * | 2005-04-12 | 2007-02-15 | Hennessey Susan M | Integration of alternative feedstreams for biomass treatment and utilization |
US20060251764A1 (en) * | 2005-04-19 | 2006-11-09 | Archer-Daniels-Midland Company | Process for the production of animal feed and ethanol and novel animal feed |
US20060286628A1 (en) * | 2005-06-17 | 2006-12-21 | Everett Rollo J | Heat recovery from a biomass heat source |
US20090263356A1 (en) * | 2005-09-26 | 2009-10-22 | Sanwa Shurui Co., Ltd. | Anti-angiogenic composition comprising grain-derived component as active ingredient |
US20090134152A1 (en) * | 2005-10-27 | 2009-05-28 | Sedlmayr Steven R | Microwave nucleon-electron-bonding spin alignment and alteration of materials |
US20070128334A1 (en) * | 2005-12-04 | 2007-06-07 | William Pittman | Additives to enhance various distillers grains |
US20070148107A1 (en) * | 2005-12-23 | 2007-06-28 | Mars, Incorporated | Skin protection and improvement |
US20070172540A1 (en) * | 2006-01-25 | 2007-07-26 | Neece Charles E | High density, energy component-added pelletized agricultural processing byproducts for animal feed |
US20070250961A1 (en) * | 2006-02-27 | 2007-10-25 | Blaylock Michael J | Energy crops for improved biofuel feedstocks |
US8168038B2 (en) * | 2006-10-26 | 2012-05-01 | Xyleco, Inc. | Processing biomass |
US7932065B2 (en) * | 2006-10-26 | 2011-04-26 | Xyleco, Inc. | Processing biomass |
US20080131947A1 (en) * | 2006-12-01 | 2008-06-05 | Cellencor, Inc. | Treatment of Cellulosic Material for Ethanol Production |
US20080220125A1 (en) * | 2007-03-05 | 2008-09-11 | Charles Abbas | Method of Preparing More Digestible Animal Feed |
US20080260896A1 (en) * | 2007-04-23 | 2008-10-23 | Michael Cecava | Application of Crude Glycerin for Improved Livestock Production |
US20080026101A1 (en) * | 2007-06-14 | 2008-01-31 | Gary Nickel | Food products |
US20090029432A1 (en) * | 2007-07-25 | 2009-01-29 | Charles Abbas | Dry fractionation of corn |
US20090071066A1 (en) * | 2007-09-17 | 2009-03-19 | Russell Meier | Method of Producing Dried Distillers Grain with Solubles Agglomerated Particles |
US7695747B2 (en) * | 2007-09-17 | 2010-04-13 | Russell Meier | Method of producing dried distillers grain agglomerated particles |
US20090093027A1 (en) * | 2007-10-03 | 2009-04-09 | Board Of Trustees Of Michigan State University | Process for producing sugars and ethanol using corn stillage |
US20090104157A1 (en) * | 2007-10-05 | 2009-04-23 | E. I. Du Pont De Nemours And Company | Utilization of bacteriophage to control bacterial contamination in fermentation processes |
US20090119800A1 (en) * | 2007-11-05 | 2009-05-07 | Syngenta Participations Ag | Methods for increasing starch content in plants |
US7867359B2 (en) * | 2008-04-30 | 2011-01-11 | Xyleco, Inc. | Functionalizing cellulosic and lignocellulosic materials |
US7935219B2 (en) * | 2008-04-30 | 2011-05-03 | Xyleco, Inc. | Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials |
US8052838B2 (en) * | 2008-04-30 | 2011-11-08 | Xyleco, Inc. | Functionalizing cellulosic and lignocellulosic materials |
US8070912B2 (en) * | 2008-04-30 | 2011-12-06 | Xyleco, Inc. | Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials |
US8142620B2 (en) * | 2008-04-30 | 2012-03-27 | Xyleco, Inc. | Processing biomass |
US7846295B1 (en) * | 2008-04-30 | 2010-12-07 | Xyleco, Inc. | Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials |
US8212087B2 (en) * | 2008-04-30 | 2012-07-03 | Xyleco, Inc. | Processing biomass |
US8221585B2 (en) * | 2008-04-30 | 2012-07-17 | Xyleco, Inc. | Functionalizing cellulosic and lignocellulosic materials |
US8277607B2 (en) * | 2008-04-30 | 2012-10-02 | Xyleco, Inc. | Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials |
US8716537B2 (en) * | 2008-04-30 | 2014-05-06 | Xyleco, Inc. | Processing biomass |
US8147655B2 (en) * | 2008-06-18 | 2012-04-03 | Xyleco, Inc. | Processing materials with ion beams |
US7900857B2 (en) * | 2008-07-17 | 2011-03-08 | Xyleco, Inc. | Cooling and processing materials |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180213820A1 (en) | Producing edible residues from ethanol production | |
EP2955231B1 (en) | Processes using antibiotic alternatives in bioethanol production | |
RU2649366C1 (en) | Biomass treatment | |
AU2017202739B2 (en) | Producing edible residues from ethanol production | |
AU2015202275B2 (en) | Producing edible residues from ethanol production | |
AU2014202673B2 (en) | Producing edible residues from ethanol production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: XYLECO, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDOFF, MARSHALL;REEL/FRAME:045432/0034 Effective date: 20130402 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |