US20180179944A1 - Cooling system for internal combustion engine and thermostat device - Google Patents

Cooling system for internal combustion engine and thermostat device Download PDF

Info

Publication number
US20180179944A1
US20180179944A1 US15/839,969 US201715839969A US2018179944A1 US 20180179944 A1 US20180179944 A1 US 20180179944A1 US 201715839969 A US201715839969 A US 201715839969A US 2018179944 A1 US2018179944 A1 US 2018179944A1
Authority
US
United States
Prior art keywords
coolant
thermostat device
water pump
thermostatic element
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/839,969
Inventor
Yoshiki Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDO, YOSHIKI
Publication of US20180179944A1 publication Critical patent/US20180179944A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/22Motor-cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements

Definitions

  • the disclosure relates to a cooling system for an internal combustion engine and a thermostat device.
  • a valve of the thermostat device i.e., a valve that opens and closes a return passage from the radiator
  • the coolant is circulated while bypassing the radiator, so as to achieve warm-up of the engine.
  • the valve of the thermostat device After completion of warm-up of the engine, the valve of the thermostat device is opened, and the coolant flowing out from a water jacket of the engine is caused to flow through the radiator, so that the coolant releases heat collected from the engine, to the atmosphere, and suppresses overheating of the engine.
  • This disclosure provide a cooling system for an internal combustion engine and a thermostat device, which is able to suppress overheating, while assuring early warm-up of the engine.
  • An example aspect of the present disclosure is a cooling system for an internal combustion engine.
  • the cooling system includes: a radiator connected with the internal combustion engine via a first outflow passage; a thermostat device connected with the radiator via a second outflow passage, connected with the internal combustion engine, the thermostat device being connected with the first outflow passage via a third outflow passage; an electric water pump configured to circulate a coolant.
  • the thermostat device includes a first inflow port connected with the second outflow passage, a second inflow port connected with the third outflow passage, a valve controlling a flow rate of the coolant from the radiator, a thermostatic element that opens and closes the valve according to a temperature of the coolant, an outflow portion through which the coolant flows to the internal combustion engine, a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element, a slit flowing out the coolant from between the guide portion and the thermostatic element to the outflow portion.
  • An example aspect of the present disclosure is a thermostat device for being provided in a cooling system that cools an internal combustion engine.
  • the cooling system includes a radiator connected with the internal combustion engine via a first outflow passage, a thermostat device connected with the radiator via a second outflow passage, connected with the internal combustion engine, the thermostat device being connected with the first outflow passage via a third outflow passage, and an electric water pump configured to circulate a coolant.
  • the thermostat device includes: a first inflow port connected with the second outflow passage; a second inflow port connected with the third outflow passage; a valve controlling a flow rate of the coolant from the radiator; a thermostatic element that opens and closes the valve according to a temperature of the coolant; an outflow portion through which the coolant flows to the internal combustion engine; a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element; a coil spring biasing the valve to close; and a frame supporting a lower end portion of the coil spring, having a slit that flows out the coolant from between the guide portion and the thermostatic element to the outflow portion.
  • the flow rate of the coolant discharged from the electric water pump is reduced, and the momentum of the coolant current is reduced, so that the coolant flowing through the second inflow port can flow out through the slit, before reaching the thermostatic element.
  • the warmed coolant is less likely or unlikely to hit or contact with the thermostatic element and open the valve; therefore, early warm-up can be achieved.
  • the flow rate of the coolant discharged from the electric water pump is increased, and the momentum of the coolant current is increased, so that the guide portion enables the coolant flowing through the second inflow port to reach the thermostatic element, and the warmed coolant can be brought into contact with the thermostatic element.
  • the valve can be opened with good response, after completion of warm-up, and overheating can be suppressed.
  • the electric water pump may be provided such that the coolant from the outflow portion of the thermostat device flows into the electric water pump. Also, the thermostat device may be mounted on upper portion of the electric water pump.
  • the thermostat device may include a coil spring that biases the valve to close, and a frame supports a lower end portion of the coil spring, and the slit may be provided on the frame.
  • FIG. 1 is a view schematically showing the configuration of a cooling system according to one embodiment
  • FIG. 2 is a cross-sectional view showing the internal structure of a thermostat device
  • FIG. 3 is a bottom view of the thermostat device
  • FIG. 4 is a view useful for explaining flow of coolant that flows into the thermostat device through a warm-up inflow port when the flow rate is high and when the flow rate is low.
  • FIG. 1 schematically shows the configuration of a cooling system 1 according to the embodiment.
  • the cooling system 1 includes a coolant circulation circuit 10 .
  • the coolant circulation circuit 10 includes an electric water pump 2 for circulating coolant or cooling water, a radiator 3 that cools the circulating coolant, and a thermostat device 4 directly mounted on upper portion of the electric water pump 2 .
  • the electric water pump 2 operates to circulate the coolant in the coolant circulation circuit 10 , so that an engine (internal combustion engine) 5 is cooled by the coolant.
  • the engine 5 is a gasoline engine or a diesel engine, for example, and includes a cylinder head 51 and a cylinder block 52 .
  • a head-side water jacket 51 a is formed inside the cylinder head 51
  • a block-side water jacket 52 a is formed inside the cylinder block 52 .
  • the head-side water jacket 51 a and the block-side water jacket 52 a communicate with each other.
  • the cooling system 1 includes a pump discharge passage 11 , engine outflow passage 12 (first outflow passage), radiator return passage 13 (second outflow passage), and a warm-up return passage 14 (third outflow passage), as coolant passages that connect respective devices included in the coolant circulation circuit 10 .
  • the pump discharge passage 11 connects a discharge port 21 of the electric water pump 2 with the block-side water jacket 52 a of the engine 5 .
  • the engine outflow passage 12 connects the head-side water jacket 51 a of the engine 5 with an upper tank 31 of the radiator 3 .
  • the radiator return passage 13 connects a lower tank 32 of the radiator 3 with a radiator-side inflow port 41 of the thermostat device 4 .
  • the warm-up return passage 14 connects the engine outflow passage 12 with a warm-up inflow port 42 of the thermostat device 4 .
  • the radiator-side inflow port 41 corresponds to the above-mentioned first inflow port (first inflow port into which the coolant flows from the radiator).
  • the warm-up inflow port 42 corresponds to the above-mentioned second inflow port (second inflow port into which the coolant that bypasses the radiator flows).
  • the electric water pump 2 generates water flow or water current for circulating the coolant in the coolant circulation circuit 10 .
  • the electric water pump 2 has a motor (not shown) that operates with electric power from a battery (not shown), and the discharge flow rate (discharge quantity of flow per unit time) of the coolant can be varied by controlling the rotational speed of the motor. Namely, the rotational speed of the electric water pump 2 is controlled according to a pump rotational speed command signal from an ECU 100 , so that the discharge flow rate is controlled.
  • the ECU 100 controls the rotational speed of the electric water pump 2 , by generating the pump rotational speed command signal according to the temperature of the coolant circulating in the coolant circulation circuit 10 . The control of the rotational speed of the electric water pump 2 will be described later.
  • the radiator 3 is of a down-flow type, for example, and includes a radiator core 33 disposed between the upper tank 31 and the lower tank 32 .
  • the radiator 3 performs heat exchange between the coolant and the outside air, so as to release heat of the coolant to the atmosphere.
  • the thermostat device 4 has a housing 43 formed of synthetic resin, and a thermostatic element unit 44 mounted in the center of the interior of the housing 43 .
  • the radiator-side inflow port 41 is formed in a side face (back side face in FIG. 2 ) in the vicinity of an upper end portion of the housing 43 , and a radiator return pipe 13 A that forms the radiator return passage 13 is connected to the radiator-side inflow port 41 .
  • an outflow portion 45 is provided in a lower end portion of the housing 43 .
  • the outflow portion 45 permits the coolant that has flowed through the interior of the thermostat device 4 to flow out toward the electric water pump 2 .
  • An opening 45 a through which the coolant flows out is formed in the middle of the outflow portion 45 .
  • Flanges 45 b , 45 b connected to an upper end portion of the electric water pump 2 are formed on the radially outer side of the opening 45 a .
  • the flanges 45 b , 45 b are provided with bolt insertion holes 45 c, 45 c.
  • the upper end portion of the electric water pump 2 is superimposed on the lower sides of the flanges 45 b , 45 b , and these members 2 , 45 b are integrally assembled by bolt fastening.
  • the opening 45 a of the outflow portion 45 of the thermostat device 4 is communicated with an admission port of the electric water pump 2 , and the coolant that has flowed through the thermostat device 4 is adapted to flow into the electric water pump 2 via the opening 45 a.
  • the coolant passes through the radiator return passage 13 and flows from the radiator-side inflow port 41 into the thermostat device 4 , the coolant flows from the upper side toward the lower side within the thermostat device 4 , and flows out from the opening 45 a of the outflow portion 45 , toward the electric water pump 2 .
  • the warm-up inflow port 42 is formed in a side face (a left side face in FIG. 2 ) in the vicinity of a lower end portion of the housing 43 , and a warm-up return pipe 14 A that forms the warm-up return passage 14 is connected to the warm-up inflow port 42 .
  • the coolant that has passed through the warm-up return passage 14 and entered the thermostat device 4 from the warm-up inflow port 42 flows in a lower portion of the interior of the thermostat device 4 , and flows out from the opening 45 a of the outflow portion 45 , into the electric water pump 2 .
  • the thermostatic element unit 44 includes a thermostatic element 44 a that incorporates a thermal expansion body (thermo-wax) that expands and contracts in response to the temperature of the coolant, and a piston 44 b that is advanced (or moves upward relative to the thermostatic element 44 a ) due to expansion of the thermal expansion body.
  • An upper end portion of the piston 44 b is fixed to a piston support portion 43 a formed by projecting an inner wall of an upper part of the housing 43 . Therefore, as the piston 44 b is advanced, the thermostatic element 44 a moves downward.
  • a disc-like valve 44 c is attached to the thermostatic element 44 a .
  • the valve 44 c is placed in a closed state when it comes into contact with a valve seat 43 b formed by reducing the diameter of the inner wall of the housing 43 .
  • the valve 44 c is provided for controlling the flow rate of the coolant from the radiator 3 .
  • the thermostatic element unit 44 also includes a coil spring 44 d that biases the valve 44 c in a valve-closing direction.
  • An upper end portion of the coil spring 44 d is in abutting contact with a lower surface of the valve 44 c .
  • a lower end portion of the coil spring 44 d is supported by a spring receiving frame 6 provided in the outflow portion 45 .
  • the coil spring 44 d is mounted in place such that it is compressed between the valve 44 c and the spring receiving frame 6 , so as to apply bias force to the valve 44 c in the valve-closing direction (upward direction).
  • the spring receiving frame 6 has engaging pieces 61 , 61 formed in its outer peripheral portion, at two positions having a phase difference of 180° in the circumferential direction.
  • the engaging pieces 61 , 61 are shaped to protrude radially outward, and are supported by support protrusions 43 c , 43 c formed on the inner circumferential surface of the housing 43 such that the engaging pieces 61 , 61 are inhibited from rotating.
  • One of the engaging pieces 61 is located on the side (left-hand side in FIG. 3 ) where the warm-up return pipe 14 A is mounted, and the other engaging piece 61 is located on the side (right-hand side in FIG. 3 ) opposite to the side where the warm-up return pipe 14 A is mounted.
  • thermostatic element unit 44 is incorporated in the housing 43 , such that the upper end portion of the piston 44 b is fixed to the piston support portion 43 a, and lower end portions of the coil spring 44 d and the thermostatic element 44 a are supported by the spring receiving frame 6 .
  • the outside diameter of its portions other than those where the engaging pieces 61 , 61 are formed is set to be smaller than the inside diameter of the opening 45 a . Therefore, spaces S, S that extend in the circumferential direction are formed between the inner edge of the opening 45 a and the outer edge of the spring receiving frame 6 . Also, slits 62 , 62 that extend through the spring receiving frame 6 in its thickness direction are formed in the engaging pieces 61 , 61 of the spring receiving frame 6 . The slits 62 , 62 are formed in the shape of long holes to extend in the circumferential direction. Therefore, in the outflow portion 45 , the spaces S, S and the slits 62 , 62 are formed as coolant flow passages that communicate the interior of the thermostat device 4 with the electric water pump 2 .
  • the ECU 100 outputs the pump rotational speed command signal according to the temperature of the coolant, and controls the rotational speed of the electric water pump 2 .
  • a water temperature sensor 101 that detects the temperature of the coolant and a pump rotational speed sensor 102 that detects the rotational speed of the electric water pump 2 , for example, are connected to the ECU 100 , and the ECU 100 receives output signals from the respective sensors 101 , 102 .
  • the water temperature sensor 101 is mounted on the outlet side of the thermostat device 4 , for example. However, the mounting position of the water temperature sensor 101 is not limited to this position.
  • the pump rotational speed sensor 102 is mounted in the electric water pump 2 .
  • the rotational speed of the electric water pump 2 is set low, and the discharge flow rate is reduced, during warm-up operation of the engine 5 .
  • the rotational speed of the electric water pump 2 is set high, and the discharge flow rate is increased. Namely, during warm-up, the discharge flow rate of the electric water pump 2 is made lower than that after completion of warm-up. After completion of warm-up, the discharge flow rate of the electric water pump 2 is made higher than that during warm-up.
  • the warm-up inflow port 42 is in the form of an opening that is open in the horizontal direction (to the left in FIG. 2 ).
  • the warm-up return pipe 14 A extends along the vertical direction at one side of the thermostat device 4 , and its lower-end position is set to the vicinity of a lower-end position of a side face of the thermostat device 4 .
  • the warm-up inflow port 42 is formed in a portion of the housing 43 with which a side face of the warm-up return pipe 14 A contacts. Therefore, the direction of the flow line of the coolant that flows through the warm-up return passage 14 within the warm-up return pipe 14 A changes from the downward direction in FIG. 2 to the rightward direction (toward the interior of the thermostat device 4 ), in a downstream end portion of the warm-up return passage 14 .
  • the warm-up return pipe 14 A has a guide function of guiding the coolant that has flowed through the warm-up return passage 14 , toward the thermostatic element 44 a.
  • a portion of an inner wall surface of a lower end portion of the warm-up return pipe 14 A which is located remote from the thermostat device 4 (or located on the left-hand side in FIG. 2 ), is formed as an inclined surface 14 a that is inclined downward toward the thermostat device 4 .
  • a bottom 14 c of the warm-up return pipe 14 A has a horizontal surface 14 b that extends in the horizontal direction from a lower edge of the inclined surface 14 a , and includes a guide portion 14 d as another guide function that extends toward the interior of the thermostat device 4 .
  • the horizontal dimension of the guide portion 14 d i.e., a dimension by which the guide portion 14 d protrudes toward the interior of the thermostat device 4 ) is set by experiment or simulation, so that, when the discharge flow rate of the electric water pump 2 is set high, the coolant that has flowed through the warm-up return passage 14 can reach the thermostatic element 44 a.
  • the corresponding slit 62 formed in this engaging piece 61 is also located on the side where the warm-up return pipe 14 A is mounted.
  • the slit 62 is located between the guide portion 14 d and the thermostatic element 44 a , and is located below the warm-up inflow port 42 .
  • the dimensions and location of the slit 62 are set by experiment or simulation, so that, when the discharge flow rate of the electric water pump 2 is set low, the coolant that has flowed through the warm-up return passage 14 can be discharged from the slit 62 , before reaching the thermostatic element 44 a.
  • the temperature of the coolant is low at the time of cold start of the engine 5 ; therefore, the thermal expansion body of the thermostatic element 44 a contracts, and the valve 44 c of the thermostat device 4 is closed.
  • the electric water pump 2 is operated, so that the coolant is circulated successively through the electric water pump 2 , pump discharge passage 11 , block-side water jacket 52 a , head-side water jacket 51 a , engine outflow passage 12 , warm-up return passage 14 , thermostat device 4 , and the electric water pump 2 , in the order of description.
  • the rotational speed of the electric water pump 2 is set low, so that the discharge flow rate is reduced, as described above.
  • the momentum of the coolant current is reduced, so that the coolant that flows in through the warm-up inflow port 42 of the thermostat device 4 flows out through the slit 62 before reaching the thermostatic element 44 a , as indicated by outlined arrow LF in FIG. 4 .
  • the coolant from the warm-up inflow port 42 flows down or drops from a distal end of the guide portion 14 d , and is directed toward the slit 62 .
  • the outflow portion 45 of the thermostat device 4 is connected with the admission port of the electric water pump 2 , the outflow of the coolant from the slit 62 is promoted, due to a negative pressure of the electric water pump 2 . Accordingly, the coolant warmed by the engine 5 is less likely or unlikely to hit or contact with the thermostatic element 44 a , and the valve 44 c can be made less likely or unlikely to be unnecessarily opened.
  • the rotational speed of the electric water pump 2 is set high, and the discharge flow rate is increased, as described above, as control of the electric water pump 2 after completion of warm-up.
  • the flow rate is high, the momentum of the coolant current is increased, so that the coolant flowing from the warm-up inflow port 42 of the thermostat device 4 is guided by the guide portion 14 d , and reaches the thermostatic element 44 a , as indicated by outlined arrow HF of FIG. 4 .
  • the coolant warmed by the engine 5 can be brought into contact with the thermostatic element 44 a , so that the valve 44 c can be opened with good response.
  • circulation of the coolant indicated by arrows of one-dot chain lines in FIG. 1 is performed, in addition to circulation of the coolant indicated by arrows of solid lines in FIG. 1 .
  • the coolant is also circulated successively through the electric water pump 2 , pump discharge passage 11 , block-side water jacket 52 a , head-side water jacket 51 a , engine outflow passage 12 , radiator 3 , radiator return passage 13 , thermostat device 4 , and the electric water pump 2 , in the order of description. Therefore, the coolant that has flowed through the warm-up return passage 14 and the coolant that has flowed through the radiator return passage 13 both flow into the thermostat device 4 . Then, a part of the coolant flows through the radiator 3 , and heat of the coolant is released to the atmosphere.
  • the cooling system includes the guide portion 14 d that guides the coolant flowing from the warm-up inflow port 42 toward the thermostatic element 44 a , and the slit 62 provided in the outflow portion 45 and located between the guide portion 14 d and the thermostatic element 44 a , as described above.
  • the coolant that has been warmed is less likely or unlikely to hit or contact with the thermostatic element 44 a and open the valve 44 c , so that early warm-up can be achieved. Accordingly, the fuel consumption rate can be improved.
  • the discharge flow rate of the electric water pump 2 is increased, and the momentum of the coolant current is increased, so that the coolant flowing from the warm-up inflow port 42 can reach the thermostatic element 44 a via the guide portion 14 d .
  • the warmed coolant can be brought into contact with the thermostatic element 44 a .
  • the valve 44 c can be opened with good response, after completion of warn-up, so that overheating can be suppressed. Consequently, it is possible to suppress overheating, while assuring early warm-up.
  • the coolant flows into the electric water pump 2 from the outflow portion 45 of the thermostat device 4 ; therefore, outflow of the coolant through the slit 62 is promoted due to a negative pressure of the electric water pump 22 , and the coolant warmed during warm-up can be made less likely or unlikely to hit or contact with the thermostatic element 44 a.
  • the disclosure is applied to the cooling system for the engine for the automobile in the illustrated embodiment, the disclosure may be applied to cooling systems other than those of engines for automobiles.
  • a heater core may be provided in the coolant circulation circuit 10 .
  • This disclosure may be used in a cooling system for an internal combustion engine including a thermostat device that switches flow of coolant of the engine which is circulated by an electric water pump.

Abstract

A cooling system for an internal combustion engine includes a thermostat device including: a first inflow port connected with a second outflow passage; a second inflow port connected with a third outlet passenger; a valve controlling a flow rate of the coolant from the radiator, a thermostatic element that opens and closes the valve according to a temperature of the coolant; an outflow portion through which the coolant flows to the internal combustion engine; a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element; a slit flowing out the coolant to the outflow portion from between the guide portion and the thermostatic element; and an electric water pump configured to circulate a coolant.

Description

    INCORPORATION BY REFERENCE
  • The disclosure of Japanese Patent Application No. 2016-250944 filed on Dec. 26, 2016 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
  • BACKGROUND 1. Technical Field
  • The disclosure relates to a cooling system for an internal combustion engine and a thermostat device.
  • 2. Description of Related Art
  • A cooling system of an engine (internal combustion engine) described in Japanese Patent Application Publication No. 2009-52506 (JP 2009-52506 A), for example, includes a coolant circulation circuit having a water pump, radiator, thermostat device, and so forth. At the time of cold start of the engine, a valve of the thermostat device (i.e., a valve that opens and closes a return passage from the radiator) is closed, so as to stop flow of the coolant through the radiator. Namely, the coolant is circulated while bypassing the radiator, so as to achieve warm-up of the engine. After completion of warm-up of the engine, the valve of the thermostat device is opened, and the coolant flowing out from a water jacket of the engine is caused to flow through the radiator, so that the coolant releases heat collected from the engine, to the atmosphere, and suppresses overheating of the engine.
  • SUMMARY
  • While it is desired to warm up the engine early after cold start of the engine, in order to improve the fuel consumption rate, it is necessary to suppress overheating after completion of warm-up.
  • This disclosure provide a cooling system for an internal combustion engine and a thermostat device, which is able to suppress overheating, while assuring early warm-up of the engine.
  • An example aspect of the present disclosure is a cooling system for an internal combustion engine. The cooling system includes: a radiator connected with the internal combustion engine via a first outflow passage; a thermostat device connected with the radiator via a second outflow passage, connected with the internal combustion engine, the thermostat device being connected with the first outflow passage via a third outflow passage; an electric water pump configured to circulate a coolant. The thermostat device includes a first inflow port connected with the second outflow passage, a second inflow port connected with the third outflow passage, a valve controlling a flow rate of the coolant from the radiator, a thermostatic element that opens and closes the valve according to a temperature of the coolant, an outflow portion through which the coolant flows to the internal combustion engine, a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element, a slit flowing out the coolant from between the guide portion and the thermostatic element to the outflow portion. An example aspect of the present disclosure is a thermostat device for being provided in a cooling system that cools an internal combustion engine. The cooling system includes a radiator connected with the internal combustion engine via a first outflow passage, a thermostat device connected with the radiator via a second outflow passage, connected with the internal combustion engine, the thermostat device being connected with the first outflow passage via a third outflow passage, and an electric water pump configured to circulate a coolant. The thermostat device includes: a first inflow port connected with the second outflow passage; a second inflow port connected with the third outflow passage; a valve controlling a flow rate of the coolant from the radiator; a thermostatic element that opens and closes the valve according to a temperature of the coolant; an outflow portion through which the coolant flows to the internal combustion engine; a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element; a coil spring biasing the valve to close; and a frame supporting a lower end portion of the coil spring, having a slit that flows out the coolant from between the guide portion and the thermostatic element to the outflow portion.
  • With the above arrangement, during warm-up of the engine, the flow rate of the coolant discharged from the electric water pump is reduced, and the momentum of the coolant current is reduced, so that the coolant flowing through the second inflow port can flow out through the slit, before reaching the thermostatic element. Thus, during warm-up, the warmed coolant is less likely or unlikely to hit or contact with the thermostatic element and open the valve; therefore, early warm-up can be achieved.
  • After completion of warm-up, the flow rate of the coolant discharged from the electric water pump is increased, and the momentum of the coolant current is increased, so that the guide portion enables the coolant flowing through the second inflow port to reach the thermostatic element, and the warmed coolant can be brought into contact with the thermostatic element. As a result, the valve can be opened with good response, after completion of warm-up, and overheating can be suppressed.
  • The electric water pump may be provided such that the coolant from the outflow portion of the thermostat device flows into the electric water pump. Also, the thermostat device may be mounted on upper portion of the electric water pump.
  • With the above arrangement, outflow of the coolant from the slit is promoted due to a negative pressure of the electric water pump, so that the coolant warmed during warm-up can be made less likely or unlikely to hit or contact with the thermostatic element.
  • The thermostat device may include a coil spring that biases the valve to close, and a frame supports a lower end portion of the coil spring, and the slit may be provided on the frame.
  • With the cooling system for the internal combustion engine according to the disclosure, it is possible to suppress overheating while assuring early warm-up.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features, advantages, and technical and industrial significance of exemplary embodiments of the disclosure will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
  • FIG. 1 is a view schematically showing the configuration of a cooling system according to one embodiment;
  • FIG. 2 is a cross-sectional view showing the internal structure of a thermostat device;
  • FIG. 3 is a bottom view of the thermostat device; and
  • FIG. 4 is a view useful for explaining flow of coolant that flows into the thermostat device through a warm-up inflow port when the flow rate is high and when the flow rate is low.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • One embodiment of the disclosure will be described based on the drawings. In this embodiment, the disclosure is applied to a cooling system for an engine for an automobile.
  • FIG. 1 schematically shows the configuration of a cooling system 1 according to the embodiment. As shown in FIG. 1, the cooling system 1 includes a coolant circulation circuit 10. The coolant circulation circuit 10 includes an electric water pump 2 for circulating coolant or cooling water, a radiator 3 that cools the circulating coolant, and a thermostat device 4 directly mounted on upper portion of the electric water pump 2. The electric water pump 2 operates to circulate the coolant in the coolant circulation circuit 10, so that an engine (internal combustion engine) 5 is cooled by the coolant.
  • The engine 5 is a gasoline engine or a diesel engine, for example, and includes a cylinder head 51 and a cylinder block 52. A head-side water jacket 51 a is formed inside the cylinder head 51, and a block-side water jacket 52 a is formed inside the cylinder block 52. In the engine 5 of this embodiment, the head-side water jacket 51 a and the block-side water jacket 52 a communicate with each other.
  • The cooling system 1 includes a pump discharge passage 11, engine outflow passage 12 (first outflow passage), radiator return passage 13 (second outflow passage), and a warm-up return passage 14 (third outflow passage), as coolant passages that connect respective devices included in the coolant circulation circuit 10.
  • The pump discharge passage 11 connects a discharge port 21 of the electric water pump 2 with the block-side water jacket 52 a of the engine 5. The engine outflow passage 12 connects the head-side water jacket 51 a of the engine 5 with an upper tank 31 of the radiator 3. The radiator return passage 13 connects a lower tank 32 of the radiator 3 with a radiator-side inflow port 41 of the thermostat device 4. The warm-up return passage 14 connects the engine outflow passage 12 with a warm-up inflow port 42 of the thermostat device 4. The radiator-side inflow port 41 corresponds to the above-mentioned first inflow port (first inflow port into which the coolant flows from the radiator). Also, the warm-up inflow port 42 corresponds to the above-mentioned second inflow port (second inflow port into which the coolant that bypasses the radiator flows).
  • The electric water pump 2 generates water flow or water current for circulating the coolant in the coolant circulation circuit 10. The electric water pump 2 has a motor (not shown) that operates with electric power from a battery (not shown), and the discharge flow rate (discharge quantity of flow per unit time) of the coolant can be varied by controlling the rotational speed of the motor. Namely, the rotational speed of the electric water pump 2 is controlled according to a pump rotational speed command signal from an ECU 100, so that the discharge flow rate is controlled. The ECU 100 controls the rotational speed of the electric water pump 2, by generating the pump rotational speed command signal according to the temperature of the coolant circulating in the coolant circulation circuit 10. The control of the rotational speed of the electric water pump 2 will be described later.
  • The radiator 3 is of a down-flow type, for example, and includes a radiator core 33 disposed between the upper tank 31 and the lower tank 32. When the coolant collected by the upper tank 31 flows down within the radiator core 33, toward the lower tank 32, the radiator 3 performs heat exchange between the coolant and the outside air, so as to release heat of the coolant to the atmosphere.
  • As shown in FIG. 2 (cross-sectional view showing the internal structure of the thermostat device 4), the thermostat device 4 has a housing 43 formed of synthetic resin, and a thermostatic element unit 44 mounted in the center of the interior of the housing 43.
  • The radiator-side inflow port 41 is formed in a side face (back side face in FIG. 2) in the vicinity of an upper end portion of the housing 43, and a radiator return pipe 13A that forms the radiator return passage 13 is connected to the radiator-side inflow port 41.
  • As shown in FIG. 3 (a bottom view of the thermostat device 4), an outflow portion 45 is provided in a lower end portion of the housing 43. The outflow portion 45 permits the coolant that has flowed through the interior of the thermostat device 4 to flow out toward the electric water pump 2. An opening 45 a through which the coolant flows out is formed in the middle of the outflow portion 45. Flanges 45 b, 45 b connected to an upper end portion of the electric water pump 2 are formed on the radially outer side of the opening 45 a. The flanges 45 b, 45 b are provided with bolt insertion holes 45c, 45c. Namely, the upper end portion of the electric water pump 2 is superimposed on the lower sides of the flanges 45 b, 45 b, and these members 2, 45 b are integrally assembled by bolt fastening. In this manner, the opening 45 a of the outflow portion 45 of the thermostat device 4 is communicated with an admission port of the electric water pump 2, and the coolant that has flowed through the thermostat device 4 is adapted to flow into the electric water pump 2 via the opening 45 a.
  • Therefore, when the coolant passes through the radiator return passage 13 and flows from the radiator-side inflow port 41 into the thermostat device 4, the coolant flows from the upper side toward the lower side within the thermostat device 4, and flows out from the opening 45 a of the outflow portion 45, toward the electric water pump 2.
  • The warm-up inflow port 42 is formed in a side face (a left side face in FIG. 2) in the vicinity of a lower end portion of the housing 43, and a warm-up return pipe 14A that forms the warm-up return passage 14 is connected to the warm-up inflow port 42.
  • Therefore, the coolant that has passed through the warm-up return passage 14 and entered the thermostat device 4 from the warm-up inflow port 42 flows in a lower portion of the interior of the thermostat device 4, and flows out from the opening 45 a of the outflow portion 45, into the electric water pump 2.
  • The thermostatic element unit 44 includes a thermostatic element 44 a that incorporates a thermal expansion body (thermo-wax) that expands and contracts in response to the temperature of the coolant, and a piston 44 b that is advanced (or moves upward relative to the thermostatic element 44 a) due to expansion of the thermal expansion body. An upper end portion of the piston 44 b is fixed to a piston support portion 43a formed by projecting an inner wall of an upper part of the housing 43. Therefore, as the piston 44 b is advanced, the thermostatic element 44 a moves downward.
  • A disc-like valve 44 c is attached to the thermostatic element 44 a. The valve 44 c is placed in a closed state when it comes into contact with a valve seat 43 b formed by reducing the diameter of the inner wall of the housing 43. The valve 44 c is provided for controlling the flow rate of the coolant from the radiator 3.
  • The thermostatic element unit 44 also includes a coil spring 44 d that biases the valve 44 c in a valve-closing direction. An upper end portion of the coil spring 44 d is in abutting contact with a lower surface of the valve 44 c. Also, a lower end portion of the coil spring 44 d is supported by a spring receiving frame 6 provided in the outflow portion 45. The coil spring 44 d is mounted in place such that it is compressed between the valve 44 c and the spring receiving frame 6, so as to apply bias force to the valve 44 c in the valve-closing direction (upward direction).
  • As shown in FIG. 3, the spring receiving frame 6 has engaging pieces 61, 61 formed in its outer peripheral portion, at two positions having a phase difference of 180° in the circumferential direction. The engaging pieces 61, 61 are shaped to protrude radially outward, and are supported by support protrusions 43 c, 43 c formed on the inner circumferential surface of the housing 43 such that the engaging pieces 61, 61 are inhibited from rotating. One of the engaging pieces 61 is located on the side (left-hand side in FIG. 3) where the warm-up return pipe 14A is mounted, and the other engaging piece 61 is located on the side (right-hand side in FIG. 3) opposite to the side where the warm-up return pipe 14A is mounted.
  • A lower end portion of the thermostatic element 44 a is inserted into an opening 63 formed in the center of the spring receiving frame 6. Therefore, the thermostatic element unit 44 is incorporated in the housing 43, such that the upper end portion of the piston 44 b is fixed to the piston support portion 43 a, and lower end portions of the coil spring 44 d and the thermostatic element 44 a are supported by the spring receiving frame 6.
  • In the spring receiving frame 6, the outside diameter of its portions other than those where the engaging pieces 61, 61 are formed is set to be smaller than the inside diameter of the opening 45 a. Therefore, spaces S, S that extend in the circumferential direction are formed between the inner edge of the opening 45 a and the outer edge of the spring receiving frame 6. Also, slits 62, 62 that extend through the spring receiving frame 6 in its thickness direction are formed in the engaging pieces 61, 61 of the spring receiving frame 6. The slits 62, 62 are formed in the shape of long holes to extend in the circumferential direction. Therefore, in the outflow portion 45, the spaces S, S and the slits 62, 62 are formed as coolant flow passages that communicate the interior of the thermostat device 4 with the electric water pump 2.
  • With the thermostat device 4 constructed as described above, when the temperature of the coolant flowing into the thermostat device 4 is low, the thermal expansion body incorporated in the thermostatic element 44 a is contracted, and the piston 44 b is retracted (i.e., moves downward relative to the thermostatic element 44 a). As a result, the valve 44 c attached to the thermostatic element 44 a moves relatively upward, and abuts against the valve seat 43 b, so as to be closed under the bias force of the coil spring 44 d. With the valve 44 c thus placed in the closed state, inflow of the coolant from the radiator return passage 13 is shut off. On the other hand, if the temperature of the coolant flowing into the thermostat device 4 rises, the thermal expansion body incorporated in the thermostatic element 44 a expands, and the piston 44 b is advanced (i.e., moves upward relative to the thermostatic element 44 a). As a result, the valve 44 c attached to the thermostatic element 44 a moves relatively downward, against the bias force of the coil spring 44 d, to be spaced apart from the valve seat 43 b, so that the valve 44 c is opened. With the valve 44 c thus placed in the open state, inflow of the coolant from the radiator return passage 13 is permitted.
  • As described above, the ECU 100 outputs the pump rotational speed command signal according to the temperature of the coolant, and controls the rotational speed of the electric water pump 2.
  • A water temperature sensor 101 that detects the temperature of the coolant and a pump rotational speed sensor 102 that detects the rotational speed of the electric water pump 2, for example, are connected to the ECU 100, and the ECU 100 receives output signals from the respective sensors 101, 102. The water temperature sensor 101 is mounted on the outlet side of the thermostat device 4, for example. However, the mounting position of the water temperature sensor 101 is not limited to this position. The pump rotational speed sensor 102 is mounted in the electric water pump 2.
  • As one example of rotational speed control of the electric water pump 2, the rotational speed of the electric water pump 2 is set low, and the discharge flow rate is reduced, during warm-up operation of the engine 5. On the other hand, after completion of warm-up of the engine 5, the rotational speed of the electric water pump 2 is set high, and the discharge flow rate is increased. Namely, during warm-up, the discharge flow rate of the electric water pump 2 is made lower than that after completion of warm-up. After completion of warm-up, the discharge flow rate of the electric water pump 2 is made higher than that during warm-up.
  • Some characteristic arrangements of this embodiment will be described.
  • As shown in FIG. 2, the warm-up inflow port 42 is in the form of an opening that is open in the horizontal direction (to the left in FIG. 2). The warm-up return pipe 14A extends along the vertical direction at one side of the thermostat device 4, and its lower-end position is set to the vicinity of a lower-end position of a side face of the thermostat device 4. Then, the warm-up inflow port 42 is formed in a portion of the housing 43 with which a side face of the warm-up return pipe 14A contacts. Therefore, the direction of the flow line of the coolant that flows through the warm-up return passage 14 within the warm-up return pipe 14A changes from the downward direction in FIG. 2 to the rightward direction (toward the interior of the thermostat device 4), in a downstream end portion of the warm-up return passage 14.
  • The warm-up return pipe 14A has a guide function of guiding the coolant that has flowed through the warm-up return passage 14, toward the thermostatic element 44 a.
  • More specifically, a portion of an inner wall surface of a lower end portion of the warm-up return pipe 14A, which is located remote from the thermostat device 4 (or located on the left-hand side in FIG. 2), is formed as an inclined surface 14 a that is inclined downward toward the thermostat device 4. With this arrangement, it is possible to change the direction of the flow line of the coolant as described above from the downward direction to a direction toward the interior of the thermostat device 4, while curbing reduction of the flow speed.
  • Also, a bottom 14 c of the warm-up return pipe 14A has a horizontal surface 14 b that extends in the horizontal direction from a lower edge of the inclined surface 14 a, and includes a guide portion 14 d as another guide function that extends toward the interior of the thermostat device 4. The horizontal dimension of the guide portion 14 d (i.e., a dimension by which the guide portion 14 d protrudes toward the interior of the thermostat device 4) is set by experiment or simulation, so that, when the discharge flow rate of the electric water pump 2 is set high, the coolant that has flowed through the warm-up return passage 14 can reach the thermostatic element 44 a.
  • Since one of the engaging pieces 61 is located on the side where the warm-up return pipe 14A is mounted, the corresponding slit 62 formed in this engaging piece 61 is also located on the side where the warm-up return pipe 14A is mounted. Namely, the slit 62 is located between the guide portion 14 d and the thermostatic element 44 a, and is located below the warm-up inflow port 42. Namely, the dimensions and location of the slit 62 are set by experiment or simulation, so that, when the discharge flow rate of the electric water pump 2 is set low, the coolant that has flowed through the warm-up return passage 14 can be discharged from the slit 62, before reaching the thermostatic element 44 a.
  • Next, the coolant circulating operation in the coolant circulation circuit 10 will be described.
  • Initially, the temperature of the coolant is low at the time of cold start of the engine 5; therefore, the thermal expansion body of the thermostatic element 44 a contracts, and the valve 44 c of the thermostat device 4 is closed.
  • Then, the electric water pump 2 is operated, so that the coolant is circulated successively through the electric water pump 2, pump discharge passage 11, block-side water jacket 52 a, head-side water jacket 51 a, engine outflow passage 12, warm-up return passage 14, thermostat device 4, and the electric water pump 2, in the order of description.
  • Thus, since the circulating coolant bypasses the radiator 3, the coolant is not cooled by the radiator 3, and the engine 5 is warmed up.
  • At this time, as control of the electric water pump 2, the rotational speed of the electric water pump 2 is set low, so that the discharge flow rate is reduced, as described above. When the flow rate is low, the momentum of the coolant current is reduced, so that the coolant that flows in through the warm-up inflow port 42 of the thermostat device 4 flows out through the slit 62 before reaching the thermostatic element 44 a, as indicated by outlined arrow LF in FIG. 4. Namely, when the flow rate is low, the coolant from the warm-up inflow port 42 flows down or drops from a distal end of the guide portion 14 d, and is directed toward the slit 62. Further, since the outflow portion 45 of the thermostat device 4 is connected with the admission port of the electric water pump 2, the outflow of the coolant from the slit 62 is promoted, due to a negative pressure of the electric water pump 2. Accordingly, the coolant warmed by the engine 5 is less likely or unlikely to hit or contact with the thermostatic element 44 a, and the valve 44 c can be made less likely or unlikely to be unnecessarily opened.
  • Then, if the coolant temperature detected based on the output signal of the water temperature sensor 101 is increased, and reaches a warm-up completion temperature, the rotational speed of the electric water pump 2 is set high, and the discharge flow rate is increased, as described above, as control of the electric water pump 2 after completion of warm-up. When the flow rate is high, the momentum of the coolant current is increased, so that the coolant flowing from the warm-up inflow port 42 of the thermostat device 4 is guided by the guide portion 14 d, and reaches the thermostatic element 44 a, as indicated by outlined arrow HF of FIG. 4. Namely, the coolant warmed by the engine 5 can be brought into contact with the thermostatic element 44 a, so that the valve 44 c can be opened with good response.
  • In this case, circulation of the coolant indicated by arrows of one-dot chain lines in FIG. 1 is performed, in addition to circulation of the coolant indicated by arrows of solid lines in FIG. 1. Namely, the coolant is also circulated successively through the electric water pump 2, pump discharge passage 11, block-side water jacket 52 a, head-side water jacket 51 a, engine outflow passage 12, radiator 3, radiator return passage 13, thermostat device 4, and the electric water pump 2, in the order of description. Therefore, the coolant that has flowed through the warm-up return passage 14 and the coolant that has flowed through the radiator return passage 13 both flow into the thermostat device 4. Then, a part of the coolant flows through the radiator 3, and heat of the coolant is released to the atmosphere.
  • In this embodiment, the cooling system includes the guide portion 14 d that guides the coolant flowing from the warm-up inflow port 42 toward the thermostatic element 44 a, and the slit 62 provided in the outflow portion 45 and located between the guide portion 14 d and the thermostatic element 44 a, as described above. With this arrangement, during warm-up, it is possible to permit the coolant to flow out through the slit 62, before the coolant flowing from the warm-up inflow port 42 reaches the thermostatic element 44 a, by reducing the discharge flow rate of the electric water pump 2, and reducing the momentum of the coolant current. Thus, during warm-up, the coolant that has been warmed is less likely or unlikely to hit or contact with the thermostatic element 44 a and open the valve 44 c, so that early warm-up can be achieved. Accordingly, the fuel consumption rate can be improved. After completion of warm-up, the discharge flow rate of the electric water pump 2 is increased, and the momentum of the coolant current is increased, so that the coolant flowing from the warm-up inflow port 42 can reach the thermostatic element 44 a via the guide portion 14 d. Thus, the warmed coolant can be brought into contact with the thermostatic element 44 a. As a result, the valve 44 c can be opened with good response, after completion of warn-up, so that overheating can be suppressed. Consequently, it is possible to suppress overheating, while assuring early warm-up.
  • Also, in this embodiment, the coolant flows into the electric water pump 2 from the outflow portion 45 of the thermostat device 4; therefore, outflow of the coolant through the slit 62 is promoted due to a negative pressure of the electric water pump 22, and the coolant warmed during warm-up can be made less likely or unlikely to hit or contact with the thermostatic element 44 a.
  • It is to be understood that the embodiment disclosed herein is exemplary in all aspects, and does not provide a basis for limited interpretation. Accordingly, the technical scope of this disclosure should not be interpreted solely based on the above-described embodiment, but is defined based on the statement of the appended claims. The technical scope of the disclosure also includes all changes within the meaning and range of the claims and equivalents thereof.
  • While the disclosure is applied to the cooling system for the engine for the automobile in the illustrated embodiment, the disclosure may be applied to cooling systems other than those of engines for automobiles.
  • In the illustrated embodiment, a heater core, and other devices, may be provided in the coolant circulation circuit 10.
  • This disclosure may be used in a cooling system for an internal combustion engine including a thermostat device that switches flow of coolant of the engine which is circulated by an electric water pump.

Claims (5)

What is claimed is:
1. A cooling system for an internal combustion engine comprising:
a radiator connected with the internal combustion engine via a first outflow passage;
a thermostat device connected with the radiator via a second outflow passage, connected with the internal combustion engine, the thermostat device being connected with the first outflow passage via a third outflow passage,
the thermostat device including
a first inflow port connected with the second outflow passage,
a second inflow port connected with the third outflow passage,
a valve controlling a flow rate of a coolant from the radiator,
a thermostatic element that opens and closes the valve according to a temperature of the coolant,
an outflow portion through which the coolant flows to the internal combustion engine,
a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element, and
a slit flowing out the coolant from between the guide portion and the thermostatic element to the outflow portion; and
an electric water pump configured to circulate the coolant.
2. The cooling system according to claim 1, wherein the electric water pump is provided such that the coolant from the outflow portion of the thermostat device flows into the electric water pump.
3. The cooling system according to claim 1, wherein
the thermostat device includes a coil spring that biases the valve to close, and a frame supports a lower end portion of the coil spring, and
the slit is provided on the frame.
4. The cooling system according to claim 2, wherein the thermostat device is mounted on upper portion of the electric water pump.
5. A thermostat device for being provided in a cooling system that cools an internal combustion engine,
the cooling system including
a radiator connected with the internal combustion engine via a first outflow passage,
a thermostat device connected with the radiator via a second outflow passage, connected with the internal combustion engine, the thermostat device being connected with the first outflow passage via a third outflow passage, and
an electric water pump configured to circulate a coolant,
the thermostat device comprising:
a first inflow port connected with the second outflow passage;
a second inflow port connected with the third outflow passage;
a valve controlling a flow rate of the coolant from the radiator;
a thermostatic element that opens and closes the valve according to a temperature of the coolant;
an outflow portion through which the coolant flows to the internal combustion engine;
a guide portion that guides the coolant flowing through the second inflow port toward the thermostatic element;
a coil spring biasing the valve to close; and
a frame supporting a lower end portion of the coil spring, having a slit that flows out the coolant from between the guide portion and the thermostatic element to the outflow portion.
US15/839,969 2016-12-26 2017-12-13 Cooling system for internal combustion engine and thermostat device Abandoned US20180179944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250944A JP6572879B2 (en) 2016-12-26 2016-12-26 Cooling device for internal combustion engine
JP2016-250944 2016-12-26

Publications (1)

Publication Number Publication Date
US20180179944A1 true US20180179944A1 (en) 2018-06-28

Family

ID=62629557

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/839,969 Abandoned US20180179944A1 (en) 2016-12-26 2017-12-13 Cooling system for internal combustion engine and thermostat device

Country Status (3)

Country Link
US (1) US20180179944A1 (en)
JP (1) JP6572879B2 (en)
CN (1) CN108361100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200217270A1 (en) * 2019-01-09 2020-07-09 Haier Us Appliance Solutions, Inc. Cooled piston and cylinder for compressors and engines

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211873B2 (en) * 2019-04-04 2023-01-24 日本サーモスタット株式会社 thermostat device
CN117469022A (en) 2022-07-22 2024-01-30 丰田自动车株式会社 Thermostat device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297365A1 (en) * 2007-08-28 2011-12-08 Toyota Jidosha Kabushiki Kaisha Cooling device for vehicle
US20130125856A1 (en) * 2011-11-18 2013-05-23 Honda Motor Co., Ltd. Accessory mounting structure for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059969A1 (en) * 2010-11-01 2012-05-10 トヨタ自動車株式会社 Cooling system for internal combustion engine
KR101338467B1 (en) * 2012-10-16 2013-12-10 기아자동차주식회사 Thermostat that the reactivity thereof is improved
US8820272B2 (en) * 2012-11-30 2014-09-02 Caterpillar Inc. Cooling system having shock reducing valve
JP2015161273A (en) * 2014-02-28 2015-09-07 ダイハツ工業株式会社 Cooling water control device of internal combustion engine
JP6160646B2 (en) * 2015-03-27 2017-07-12 トヨタ自動車株式会社 Engine cooling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297365A1 (en) * 2007-08-28 2011-12-08 Toyota Jidosha Kabushiki Kaisha Cooling device for vehicle
US20130125856A1 (en) * 2011-11-18 2013-05-23 Honda Motor Co., Ltd. Accessory mounting structure for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200217270A1 (en) * 2019-01-09 2020-07-09 Haier Us Appliance Solutions, Inc. Cooled piston and cylinder for compressors and engines
US10808646B2 (en) * 2019-01-09 2020-10-20 Haier Us Appliance Solutions, Inc. Cooled piston and cylinder for compressors and engines

Also Published As

Publication number Publication date
JP2018105184A (en) 2018-07-05
CN108361100A (en) 2018-08-03
JP6572879B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
US20160258341A1 (en) Engine cooling system having thermostat
US9261012B2 (en) Abnormality determination apparatus and abnormality determination method for coolant temperature sensor, and engine cooling system
KR101018538B1 (en) Vehicle cooling system
US6966278B2 (en) Electronically controlled thermostat
JP4998537B2 (en) Vehicle cooling device
US20180179944A1 (en) Cooling system for internal combustion engine and thermostat device
JP2006348793A (en) Exhaust gas recirculation device for internal combustion engine
US10968812B2 (en) Temperature responsive variable water pump and engine cooling system
JP2008138673A (en) Thermostat assembly for engine cooling system
JP4498636B2 (en) Thermostat device
US10287966B2 (en) Internal combustion engine with split cooling system
US20190078494A1 (en) Control method of cooling system having coolant control valve unit
JP2018105185A (en) Cooling device for internal combustion engine
CN212079449U (en) Thermoregulator assembly, engine and car
JP5665674B2 (en) Engine cooling system and control device
KR102041920B1 (en) System and method for turbo charger cooling
EP3561253B1 (en) Engine cooling apparatus
US20190186339A1 (en) Water pump for vehicle
JP2014145326A (en) Internal combustion engine
JP2013072350A (en) Cooling device of engine
US10968811B2 (en) Coolant flow control apparatus, cooling system provided with the same and control method for the same
JP3711837B2 (en) thermostat
JP5494357B2 (en) Cooling device for internal combustion engine
RU2182238C2 (en) Cooling system of internal combustion engine
JP5799530B2 (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENDO, YOSHIKI;REEL/FRAME:044850/0358

Effective date: 20171031

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION