US20180177244A1 - Hip protective undergarments - Google Patents

Hip protective undergarments Download PDF

Info

Publication number
US20180177244A1
US20180177244A1 US15/905,478 US201815905478A US2018177244A1 US 20180177244 A1 US20180177244 A1 US 20180177244A1 US 201815905478 A US201815905478 A US 201815905478A US 2018177244 A1 US2018177244 A1 US 2018177244A1
Authority
US
United States
Prior art keywords
hip
pad
hip pad
protective garment
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/905,478
Inventor
Natasha R. WILLIAMS
Daniel M. Wyner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G Form LLC
Original Assignee
G Form LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G Form LLC filed Critical G Form LLC
Priority to US15/905,478 priority Critical patent/US20180177244A1/en
Publication of US20180177244A1 publication Critical patent/US20180177244A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B9/00Undergarments
    • A41B9/12Protective undergarments
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/015Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with shock-absorbing means
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/0506Hip

Definitions

  • the disclosure relates to undergarments comprising integrated hip protectors, methods of making and methods of using.
  • Hip fractures are serious fall injuries that often result in long-term functional impairment, nursing home admission and increased mortality.
  • Some reported statistics show that the leading cause of hip fractures in the elderly, are falls, with the majority of hip fractures occurring in those over 65 years of age. Some report that as much as 20% of those who suffer a hip fracture die within 12 months of the hip fracture. For survivors, loss of function and independence is profound, with as much as 40% being unable to walk, or requiring assistance a year later.
  • hip fracture rates increase exponentially with age. People 85 and older are 10 to 15 times more likely to sustain hip fractures than are those at age 60 to 65. Osteoporosis, a disease that makes bones porous, increases a person's risk of sustaining a hip fracture. The National Osteoporosis Foundation estimates that more than 10 million people over age 50 in the U.S. have osteoporosis and another 34 million are at risk for the disease.
  • a large proportion of fall deaths are due to complications following a hip fracture.
  • One out of five hip fracture patients dies within a year of their injury.
  • Treatment typically includes surgery and hospitalization, usually for about one week, and is frequently followed by admission to a nursing home and extensive rehabilitation. Up to one in four adults who lived independently before their hip fracture remain in a nursing home for at least a year after their injury.
  • hip protectors have been commercialized, in an attempt to minimize the number, severity and debilitation of hip fracture.
  • impact protection can be heavy, non-breathable or restrictive, or may not accurately target the hip joint, or if it does so, only inconsistently.
  • hip protector is a padded belt that is worn over the user's clothing, which is bulky and conspicuous.
  • Another type of hip protector is an undergarment with pockets for receiving a removable hip shield.
  • this type of hip protector is less conspicuous than the external belts, they still may add unattractive bulk to the hip region.
  • the present disclosure is directed to, in one embodiment, a hip protective garment, comprising a form-fitted body portion and a hip pad disposed on the body portion.
  • the hip pad comprises a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip.
  • the hip pad can comprise an integrated locator device that allows the user to verify the position of the center of the hip pad relative to the upper trochanter region of the user's hip.
  • the hip pad can comprise a removable impact sensor adapted to measure the force of an impact.
  • the hip pad can comprise an energy absorbing foam material, such as an energy absorbing polyurethane foam.
  • the hip pad can comprise a central region of uniform thickness extending radially from the center of the hip pad.
  • the central region of uniform thickness can extend radially from the center of the hip pad by about 1 cm to about 10 cm.
  • the central region can comprise a thickness ranging from about 1 mm to about 30 mm.
  • the hip pad can have an impact-resistance of up to about 10,000 newtons.
  • a hip protective garment comprising a hip pad disposed on the garment, the hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip.
  • the hip pad can comprises a polyurethane foam with a density of about 20 pcf, a thickness of about 15 mm, and that is capable of absorbing about 7000 newtons of force.
  • a hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip.
  • the hip pad can comprises a polyurethane foam with a density of about 20 pcf, a thickness of about 15 mm, and that is capable of absorbing about 7000 newtons of force.
  • the foregoing hip pad can be placed in a pocket at the hip to provide hip impact resistance.
  • FIG. 1 shows a partial view of a user wearing an exemplary padded undergarment according to the present disclosure, in a standing position;
  • FIG. 2 is a front view of the user in FIG. 1 , showing the pad spaced apart from the undergarment, and the disposition of the pad on the undergarment, relative to the user's hip joint, specifically, the upper trochanter;
  • FIG. 3 is a front view of the user in FIG. 1 , showing the pad disposed on the undergarment in a protective position relative to the user's hip joint, specifically, the upper trochanter;
  • FIG. 4 shows the user of FIG. 1 , in a seated position, showing the relative orientation of the pad relative to the greater trochanter during movement;
  • FIG. 5 is a top view of a portion of the padded undergarment shown in FIG. 1 ;
  • FIG. 6 is a schematic side view of a portion of the hip pad and body portion shown in FIG. 5 , through line 4 - 4 ;
  • FIG. 7 is a schematic side view of the hip pad shown in FIG. 5 , without the body portion;
  • FIG. 8 is a schematic side view of another embodiment of the hip pad and body portion shown in FIG. 6 ;
  • FIG. 9 is a schematic side view of the hip protector pad shown in FIG. 6 , without the body portion.
  • the present disclosure is directed to garments, particularly undergarments, which comprise improved, self-orienting and conformable hip protection pads.
  • the garments are lightweight, soft, flexible and breathable, resulting in improved compliance by users.
  • the integrated pads are designed to provide sufficient impact-resistance to prevent a hip fractures.
  • the pads can withstand forces in the range of about 7000 newtons (“N”).
  • N newtons
  • FIG. 1 shows a partial view of a user wearing a hip protective undergarment 10 according to the present disclosure.
  • Undergarment 10 comprises a body portion 20 and a padded hip protector portion 30 (hereinafter “pad 30 ”) attached to the body portion 20 at the hip region, adjacent to the greater trochanter of the femur bone.
  • pad 30 a padded hip protector portion 30 attached to the body portion 20 at the hip region, adjacent to the greater trochanter of the femur bone.
  • Undergarment 10 is selected to be form-fitted, rather than loose.
  • the term “form-fitted” or “form-fitting,” as used herein, means that the garment tightly follows the contours of the part of the body being covered, or that is held to the skin by elastic tension.
  • undergarment 10 is selected to closely conform to the user's body and to minimize the amount of lateral movement, longitudinal movement and twisting of the undergarment relative to the user's body, when in use.
  • Suitable materials for the body portion include knits, woven and nonwoven fabrics, leather, vinyl or any other suitable material.
  • a variety of natural and/or synthetic materials can be used for the body portion including, but are not limited to, knits, woven and nonwoven fabrics, leather, vinyl or any other suitable materials that include elastane or an equivalent thereof. Such materials provide a smooth line as well strength when pulled tightly.
  • Other suitable materials include functional materials with repellent and/or absorbent characteristics, such as the type disclosed in U.S. Publication No. 2010/0249736, the disclosure of which is incorporated herein by reference in its entirety.
  • the garments can also be made from a wicking fabric that is designed to move moisture away from the skin layer.
  • FIGS. 5-9 show exemplary hip pad 30 according to the present disclosure in greater detail.
  • Pad 30 has a shape, size and configuration adapted to the contours of the outer hip section, including a central oval shape, and “wings” extending from the left and right sides of the oval. It should be understood that the pad can comprise any shape, size, thickness or configuration as is practical or desired to prevent or minimize hip fractures.
  • the hip pad includes cushioning regions of various shapes, sizes, configurations and thicknesses.
  • the terms “cushioning region” and “medallion” will be used interchangeably throughout the description.
  • Various materials can be used for the medallions, as will be described below.
  • the medallions are spaced apart by channels of various depths and configurations, which define the perimeter of the medallions.
  • the upper surface of the medallions may include grooves of various depths and configurations, which define, in part, the contours of the medallions.
  • a perimeter flange is provided, spaced apart from the perimeter of the pad.
  • pad 30 comprises a cushioning layer 15 disposed between optional outer and inner layers 16 , 17 , which together define a front surface 10 , a back surface 12 and a perimeter 14 .
  • Suitable materials for the cushioning layer 15 , and optional outer and inner layers 16 , 17 are disclosed in co-pending and commonly owned U.S. Publication No. 2012/0084896 and U.S. Publication No. 2013/0061377, both of which are incorporated herein by reference in their entirety.
  • Pad 30 comprises one or more channels 38 , which define spaced apart medallions regions 50 , 60 a,b and wing medallions 70 a,b .
  • channels 38 have a width “W 1 ” defined by the spacing between the perimeter of adjacent medallions, a depth “D 1 ” defined by the spacing between the upper surface of the medallions and the upper surface of the pad 30 , and a thickness “T 1 ” defined by the combined thicknesses of the inner and outer layers 16 , 17 and the cushioning material 15 disposed between the layers.
  • W 1 the spacing between the perimeter of adjacent medallions
  • D 1 defined by the spacing between the upper surface of the medallions and the upper surface of the pad 30
  • T 1 a thickness defined by the combined thicknesses of the inner and outer layers 16 , 17 and the cushioning material 15 disposed between the layers.
  • the “channels” will be referred to hereinafter as hinges throughout the description, without intending to limit the fact that the grooves also function as hinging elements.
  • the width W 1 of the hinges can be varied as desired or needed, and can range from as narrow as about 1 mil to about 1000 mils, or more.
  • the hinges 38 may be linear or curved, and the depth of the hinges between the medallions may be the same or different, and may vary along the hinge. Both curved and linear hinges may be used in combination in the pads, as in the present embodiment, and may include a combination of curved and linear hinged areas. In the present embodiment, the hinges function as locators ensuring that the pad is lined up properly with the intersection of the X and Y axes of the user's hip joint and/or with the user's greater trochanter, as shown in FIGS. 2 and 3 .
  • An optional perimeter flange 40 may be defined in the upper surface 10 to maintain the medallions in spaced apart relation from the perimeter of the pad.
  • the optional perimeter flange 40 has a width “W 2 ” defined by the spacing between the perimeter of the outermost medallions and the perimeter 14 of the pad 30 .
  • the width W 2 of the perimeter flange 40 may vary, as desired.
  • the perimeter flange 40 is thinner than the medallions, allowing the pad to be attached to items such as clothing along the flange area using a variety of techniques, such as by sewing, gluing, bonding, and the like.
  • the pad When integrated with the body portion, the pad can be sewn, glued or otherwise attached to the outside of the sleeve fabric, or it can be sewn or attached to the interior surface of the sleeve, and exposed through a corresponding opening in the sleeve.
  • center medallion 50 can comprise a central region “R” extending radially from center point P, with a substantially uniform thickness, and the thickness of the remaining medallions can decrease radially from R toward the perimeter of the pad 30 .
  • the upper surface of a medallion may comprise a surface that is defined by a thickness that generally decreases radially toward the perimeter of the medallion, or toward the perimeter of the pad.
  • one or more grooves 42 may be formed in the upper surface of the medallions.
  • the grooves 42 increase the flexibility of the pad, and as the thickness of the cushioning layer 15 in the grooves 42 is decreased, the flexibility of the grooves 42 , and pad 100 , increases.
  • the width, depth, orientation and position of the grooves 42 in the upper surfaces of the medallions may be varied, depending on a number of factors including, but not limited to, the desired direction and amount of flexibility, and the like.
  • the grooves 42 may be curved grooves, or linear grooves that are disposed along parallel and/or intersecting axes. Both curved and linear grooves may be used in combination, and the grooves may include both curved and linear regions.
  • the hip pad 30 comprises a center point P disposed at the intersection of horizontal and vertical axes X and Y.
  • the greater trochanter of the user corresponds to P′ at the intersection of the horizontal and vertical axes X′ and Y′ on the user.
  • the pad 30 is attached to the body portion 20 , such that in use, the position P of the center medallion 50 corresponds to the user's greater trochanter, corresponding to P′.
  • the center of the hip pad 30 is maintained in the same position relative to the greater trochanter during movement, such as when the user is in a seated position, as shown in FIG. 4 .
  • pad 30 is attached to the body portion 20 by stitching the perimeter flange 40 to the body portion 20 , such that the center of the hip pad corresponds to the greater trochanter of the femur.
  • the combination of the flexible hinges 38 and grooves 42 allow the pad 30 to conform to the user's body, particularly the hip region, thereby maintaining the pad 30 in close proximity to the user's body and maximizing the impact-absorption capability of the pad 30 when the user falls.
  • FIGS. 7 and 8 illustrates another embodiment of an exemplary cushioning pad 30 ′ according to the present disclosure.
  • Pad 30 ′ has a similar structure to pad 30 , other than that the thickness of the cushioning layer 15 disposed between the upper and lower layers 16 , 17 in hinges 38 , 50 is maximized during the manufacturing process, to provide greater impact resistance.
  • the size, shape, configuration, and dimensions of the pad, medallions, medallion contours, hinges, grooves and flange; and the thickness, density and type of material; may be varied as desired in order to achieve the desired functional characteristics for the hip pad, that is, to prevent or minimize hip fractures by maximizing the impact resistance to the force that a user would cause a hip fracture from a fall, which has been estimated to be in the 7000 newton range. All of the foregoing features, alone or in combination, are designed to facilitate the flexibility of the pad either inwardly or outwardly to conform to a user's body during movement.
  • the pads are designed to provide a variety of characteristics such as, but not limited to, cushioning, vibration dampening and/or impact absorption, and the like.
  • the characteristics of the pad may be varied by changing the thickness and/or material type of cushioning layer 15 in the medallions, changing the spacing between the medallions (i.e., the width of the hinges), and/or changing the contours of the medallions, and the like.
  • using a gel for cushioning layer 15 provides a pad with cushioning and vibration dampening characteristics; using a foam decreases the weight of the pad; using a rate dependent or impact absorbing foam increases the impact absorption of the pad; etc.
  • increasing the thickness of the cushioning layer 15 in the medallions generally increases the foregoing characteristics; and using a combination of materials for cushioning layer 15 may provide a combination of characteristics.
  • the cushioning material 15 may comprise a foam material, such as a low-density foam material.
  • suitable low-density foams include polyester and polyether polyurethane foams.
  • Various types of impact absorbing materials have been found suitable for the cushioning material, particularly energy absorbing materials, which are those that are soft to the touch, and temporarily harden on impact as they absorb the energy of the impact (rather than transmitting the energy, in this instance, to the body), after which they revert to their initial state.
  • One suitable rate dependent foam is available from Rogers Corporation under the brand names PORON® and PORON XRD®, which is a microcellular polyurethane foam.
  • Desirable densities for such foams can range from about 5 to about 35 pounds per cubic foot (pcf), more particularly from about 10 to about 30 pcf, and more particularly still from about 15 to about 25 pcf. Desirable thicknesses for such foams can range from about 3 mm to about 20 mm, more particularly about 6 mm to about 17 mm, more particularly still about 10-15 mm.

Abstract

Disclosed herein is an undergarment with a self-orienting, integrated, conformable hip protection pad.

Description

    CROSS-REFERENCE TO RELATED CASES
  • This application is a continuation of commonly-owned and co-pending U.S. application Ser. No. 14/891,676, filed on Nov. 16, 2015; which in turn claims priority under 35 U.S.C. § 119(e) to commonly-owned and co-pending U.S. Provisional Application No. 61/802,598, filed on Mar. 16, 2013; both of which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The disclosure relates to undergarments comprising integrated hip protectors, methods of making and methods of using.
  • BACKGROUND
  • Elbows, knees, shoulders, ankles, hips and other joints can be especially susceptible to impact damage and yet are challenging to protect without restricting the range of motion and movement of the individual. Hip fractures are serious fall injuries that often result in long-term functional impairment, nursing home admission and increased mortality. Some reported statistics show that the leading cause of hip fractures in the elderly, are falls, with the majority of hip fractures occurring in those over 65 years of age. Some report that as much as 20% of those who suffer a hip fracture die within 12 months of the hip fracture. For survivors, loss of function and independence is profound, with as much as 40% being unable to walk, or requiring assistance a year later.
  • The CDC reports that in 2007, there were 281,000 hospital admissions for hip fractures among people age 65 and older, and that over 90% of hip fractures were caused by falling, most often by falling sideways onto the hip. However, women sustain three-quarters of all hip fractures. In 1991, Medicare costs for hip fractures were estimated to be $2.9 billion.
  • In both men and women, hip fracture rates increase exponentially with age. People 85 and older are 10 to 15 times more likely to sustain hip fractures than are those at age 60 to 65. Osteoporosis, a disease that makes bones porous, increases a person's risk of sustaining a hip fracture. The National Osteoporosis Foundation estimates that more than 10 million people over age 50 in the U.S. have osteoporosis and another 34 million are at risk for the disease.
  • A large proportion of fall deaths are due to complications following a hip fracture. One out of five hip fracture patients dies within a year of their injury. Treatment typically includes surgery and hospitalization, usually for about one week, and is frequently followed by admission to a nursing home and extensive rehabilitation. Up to one in four adults who lived independently before their hip fracture remain in a nursing home for at least a year after their injury.
  • As a result, various types of hip protectors have been commercialized, in an attempt to minimize the number, severity and debilitation of hip fracture. However, such impact protection can be heavy, non-breathable or restrictive, or may not accurately target the hip joint, or if it does so, only inconsistently.
  • One type of hip protector is a padded belt that is worn over the user's clothing, which is bulky and conspicuous. Another type of hip protector is an undergarment with pockets for receiving a removable hip shield. Although this type of hip protector is less conspicuous than the external belts, they still may add unattractive bulk to the hip region. Although each of the foregoing are somewhat effective, compliance is often low, because they are conspicuous and/or uncomfortable. As a result, compliance is low, reducing their effectiveness.
  • A need exists for improved hip protection.
  • SUMMARY
  • The present disclosure is directed to, in one embodiment, a hip protective garment, comprising a form-fitted body portion and a hip pad disposed on the body portion. The hip pad comprises a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip.
  • In one embodiment, the hip pad can comprise an integrated locator device that allows the user to verify the position of the center of the hip pad relative to the upper trochanter region of the user's hip.
  • In one embodiment, the hip pad can comprise a removable impact sensor adapted to measure the force of an impact.
  • In one embodiment, the hip pad can comprise an energy absorbing foam material, such as an energy absorbing polyurethane foam.
  • In one embodiment, the hip pad can comprise a central region of uniform thickness extending radially from the center of the hip pad. The central region of uniform thickness can extend radially from the center of the hip pad by about 1 cm to about 10 cm. The central region can comprise a thickness ranging from about 1 mm to about 30 mm.
  • In some embodiments, the hip pad can have an impact-resistance of up to about 10,000 newtons.
  • Another embodiment is directed to a hip protective garment, comprising a hip pad disposed on the garment, the hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip. The hip pad can comprises a polyurethane foam with a density of about 20 pcf, a thickness of about 15 mm, and that is capable of absorbing about 7000 newtons of force.
  • Another aspect of the disclosure is a hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip. The hip pad can comprises a polyurethane foam with a density of about 20 pcf, a thickness of about 15 mm, and that is capable of absorbing about 7000 newtons of force. The foregoing hip pad can be placed in a pocket at the hip to provide hip impact resistance.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features and advantages will be apparent from the following more particular description of exemplary embodiments of the disclosure, as illustrated in the accompanying drawings, in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.
  • FIG. 1 shows a partial view of a user wearing an exemplary padded undergarment according to the present disclosure, in a standing position;
  • FIG. 2 is a front view of the user in FIG. 1, showing the pad spaced apart from the undergarment, and the disposition of the pad on the undergarment, relative to the user's hip joint, specifically, the upper trochanter;
  • FIG. 3 is a front view of the user in FIG. 1, showing the pad disposed on the undergarment in a protective position relative to the user's hip joint, specifically, the upper trochanter;
  • FIG. 4 shows the user of FIG. 1, in a seated position, showing the relative orientation of the pad relative to the greater trochanter during movement;
  • FIG. 5 is a top view of a portion of the padded undergarment shown in FIG. 1;
  • FIG. 6 is a schematic side view of a portion of the hip pad and body portion shown in FIG. 5, through line 4-4;
  • FIG. 7 is a schematic side view of the hip pad shown in FIG. 5, without the body portion;
  • FIG. 8 is a schematic side view of another embodiment of the hip pad and body portion shown in FIG. 6; and
  • FIG. 9 is a schematic side view of the hip protector pad shown in FIG. 6, without the body portion.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The present disclosure is directed to garments, particularly undergarments, which comprise improved, self-orienting and conformable hip protection pads. The garments are lightweight, soft, flexible and breathable, resulting in improved compliance by users. The integrated pads are designed to provide sufficient impact-resistance to prevent a hip fractures. In some embodiments, the pads can withstand forces in the range of about 7000 newtons (“N”). As such, the present garments provide sufficient impact-resistance to reduce hip fractures both because they are designed to withstand the force of a fall that would otherwise result in a hip fracture and due to increased compliance.
  • FIG. 1 shows a partial view of a user wearing a hip protective undergarment 10 according to the present disclosure. Undergarment 10 comprises a body portion 20 and a padded hip protector portion 30 (hereinafter “pad 30”) attached to the body portion 20 at the hip region, adjacent to the greater trochanter of the femur bone.
  • Undergarment 10 is selected to be form-fitted, rather than loose. The term “form-fitted” or “form-fitting,” as used herein, means that the garment tightly follows the contours of the part of the body being covered, or that is held to the skin by elastic tension. Thus, undergarment 10 is selected to closely conform to the user's body and to minimize the amount of lateral movement, longitudinal movement and twisting of the undergarment relative to the user's body, when in use. Suitable materials for the body portion include knits, woven and nonwoven fabrics, leather, vinyl or any other suitable material. A variety of natural and/or synthetic materials can be used for the body portion including, but are not limited to, knits, woven and nonwoven fabrics, leather, vinyl or any other suitable materials that include elastane or an equivalent thereof. Such materials provide a smooth line as well strength when pulled tightly. Other suitable materials include functional materials with repellent and/or absorbent characteristics, such as the type disclosed in U.S. Publication No. 2010/0249736, the disclosure of which is incorporated herein by reference in its entirety. The garments can also be made from a wicking fabric that is designed to move moisture away from the skin layer.
  • FIGS. 5-9 show exemplary hip pad 30 according to the present disclosure in greater detail. Pad 30 has a shape, size and configuration adapted to the contours of the outer hip section, including a central oval shape, and “wings” extending from the left and right sides of the oval. It should be understood that the pad can comprise any shape, size, thickness or configuration as is practical or desired to prevent or minimize hip fractures. The hip pad includes cushioning regions of various shapes, sizes, configurations and thicknesses. For ease of discussion, the terms “cushioning region” and “medallion” will be used interchangeably throughout the description. Various materials can be used for the medallions, as will be described below. The medallions are spaced apart by channels of various depths and configurations, which define the perimeter of the medallions. The upper surface of the medallions may include grooves of various depths and configurations, which define, in part, the contours of the medallions. In some instances, a perimeter flange is provided, spaced apart from the perimeter of the pad.
  • As shown in cross-section in FIGS. 6 and 7, pad 30 comprises a cushioning layer 15 disposed between optional outer and inner layers 16,17, which together define a front surface 10, a back surface 12 and a perimeter 14. Suitable materials for the cushioning layer 15, and optional outer and inner layers 16,17 are disclosed in co-pending and commonly owned U.S. Publication No. 2012/0084896 and U.S. Publication No. 2013/0061377, both of which are incorporated herein by reference in their entirety.
  • Pad 30 comprises one or more channels 38, which define spaced apart medallions regions 50, 60 a,b and wing medallions 70 a,b. As shown, channels 38 have a width “W1” defined by the spacing between the perimeter of adjacent medallions, a depth “D1” defined by the spacing between the upper surface of the medallions and the upper surface of the pad 30, and a thickness “T1” defined by the combined thicknesses of the inner and outer layers 16,17 and the cushioning material 15 disposed between the layers. For ease of discussion, the “channels” will be referred to hereinafter as hinges throughout the description, without intending to limit the fact that the grooves also function as hinging elements.
  • The width W1 of the hinges can be varied as desired or needed, and can range from as narrow as about 1 mil to about 1000 mils, or more. The hinges 38 may be linear or curved, and the depth of the hinges between the medallions may be the same or different, and may vary along the hinge. Both curved and linear hinges may be used in combination in the pads, as in the present embodiment, and may include a combination of curved and linear hinged areas. In the present embodiment, the hinges function as locators ensuring that the pad is lined up properly with the intersection of the X and Y axes of the user's hip joint and/or with the user's greater trochanter, as shown in FIGS. 2 and 3.
  • An optional perimeter flange 40 (hereinafter “flange”) may be defined in the upper surface 10 to maintain the medallions in spaced apart relation from the perimeter of the pad. In the present embodiment, the optional perimeter flange 40 has a width “W2” defined by the spacing between the perimeter of the outermost medallions and the perimeter 14 of the pad 30. The width W2 of the perimeter flange 40 may vary, as desired. As will be described in greater detail below, the perimeter flange 40 is thinner than the medallions, allowing the pad to be attached to items such as clothing along the flange area using a variety of techniques, such as by sewing, gluing, bonding, and the like. When integrated with the body portion, the pad can be sewn, glued or otherwise attached to the outside of the sleeve fabric, or it can be sewn or attached to the interior surface of the sleeve, and exposed through a corresponding opening in the sleeve.
  • In some embodiments, center medallion 50 can comprise a central region “R” extending radially from center point P, with a substantially uniform thickness, and the thickness of the remaining medallions can decrease radially from R toward the perimeter of the pad 30. Alternatively, the upper surface of a medallion may comprise a surface that is defined by a thickness that generally decreases radially toward the perimeter of the medallion, or toward the perimeter of the pad.
  • Optionally, one or more grooves 42 may be formed in the upper surface of the medallions. Like the hinges 38, the grooves 42 increase the flexibility of the pad, and as the thickness of the cushioning layer 15 in the grooves 42 is decreased, the flexibility of the grooves 42, and pad 100, increases. The width, depth, orientation and position of the grooves 42 in the upper surfaces of the medallions may be varied, depending on a number of factors including, but not limited to, the desired direction and amount of flexibility, and the like.
  • Like hinges 38, the grooves 42 may be curved grooves, or linear grooves that are disposed along parallel and/or intersecting axes. Both curved and linear grooves may be used in combination, and the grooves may include both curved and linear regions.
  • As shown in FIG. 1, the hip pad 30 comprises a center point P disposed at the intersection of horizontal and vertical axes X and Y. Similarly, the greater trochanter of the user corresponds to P′ at the intersection of the horizontal and vertical axes X′ and Y′ on the user. As shown, the pad 30 is attached to the body portion 20, such that in use, the position P of the center medallion 50 corresponds to the user's greater trochanter, corresponding to P′. As a result, the center of the hip pad 30 is maintained in the same position relative to the greater trochanter during movement, such as when the user is in a seated position, as shown in FIG. 4.
  • As shown, pad 30 is attached to the body portion 20 by stitching the perimeter flange 40 to the body portion 20, such that the center of the hip pad corresponds to the greater trochanter of the femur. In use, the combination of the flexible hinges 38 and grooves 42 allow the pad 30 to conform to the user's body, particularly the hip region, thereby maintaining the pad 30 in close proximity to the user's body and maximizing the impact-absorption capability of the pad 30 when the user falls.
  • FIGS. 7 and 8 illustrates another embodiment of an exemplary cushioning pad 30′ according to the present disclosure. Pad 30′ has a similar structure to pad 30, other than that the thickness of the cushioning layer 15 disposed between the upper and lower layers 16,17 in hinges 38,50 is maximized during the manufacturing process, to provide greater impact resistance.
  • The size, shape, configuration, and dimensions of the pad, medallions, medallion contours, hinges, grooves and flange; and the thickness, density and type of material; may be varied as desired in order to achieve the desired functional characteristics for the hip pad, that is, to prevent or minimize hip fractures by maximizing the impact resistance to the force that a user would cause a hip fracture from a fall, which has been estimated to be in the 7000 newton range. All of the foregoing features, alone or in combination, are designed to facilitate the flexibility of the pad either inwardly or outwardly to conform to a user's body during movement. However, it should be understood that in each of the foregoing embodiments, and in any pad according to the present disclosure, all of the foregoing measurements can vary depending on the desired characteristics and design of the pad. For example, the pads are designed to provide a variety of characteristics such as, but not limited to, cushioning, vibration dampening and/or impact absorption, and the like. The characteristics of the pad may be varied by changing the thickness and/or material type of cushioning layer 15 in the medallions, changing the spacing between the medallions (i.e., the width of the hinges), and/or changing the contours of the medallions, and the like. For example, using a gel for cushioning layer 15 provides a pad with cushioning and vibration dampening characteristics; using a foam decreases the weight of the pad; using a rate dependent or impact absorbing foam increases the impact absorption of the pad; etc. In general, increasing the thickness of the cushioning layer 15 in the medallions generally increases the foregoing characteristics; and using a combination of materials for cushioning layer 15 may provide a combination of characteristics.
  • The cushioning material 15 may comprise a foam material, such as a low-density foam material. Examples of suitable low-density foams include polyester and polyether polyurethane foams. Various types of impact absorbing materials have been found suitable for the cushioning material, particularly energy absorbing materials, which are those that are soft to the touch, and temporarily harden on impact as they absorb the energy of the impact (rather than transmitting the energy, in this instance, to the body), after which they revert to their initial state. One suitable rate dependent foam is available from Rogers Corporation under the brand names PORON® and PORON XRD®, which is a microcellular polyurethane foam. Desirable densities for such foams can range from about 5 to about 35 pounds per cubic foot (pcf), more particularly from about 10 to about 30 pcf, and more particularly still from about 15 to about 25 pcf. Desirable thicknesses for such foams can range from about 3 mm to about 20 mm, more particularly about 6 mm to about 17 mm, more particularly still about 10-15 mm.
  • It should be noted that the terms “first,” “second,” and the like herein do not denote any order or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. Similarly, it is noted that the terms “bottom” and “top” are used herein, unless otherwise noted, merely for convenience of description, and are not limited to any one position or spatial orientation. In addition, the modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity). Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this disclosure belongs.
  • While the disclosure has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.

Claims (28)

What is claimed is:
1. A hip protective garment, comprising:
a form-fitted body portion; and
a conformable hip pad disposed on and integral with the body portion of the garment, the hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip,
wherein the conformable hip pad comprises a plurality of cushioning regions separated by one or more channels defining one or more hinges between the cushioning regions whereby the hip pad may conform to the contours of the user's hip when the garment is worn.
2. The hip protective garment of claim 1, wherein the hip pad comprises an integrated locator device that allows the user to verify the position of the center of the hip pad relative to the upper trochanter region of the user's hip.
3. The hip protective garment of claim 1, wherein the hip pad comprises a removable impact sensor adapted to measure the force of an impact.
4. The hip protective garment of claim 1, wherein at least a portion the body portion comprises an absorbent material.
5. The hip protective garment of claim 1, wherein the hip pad comprises an energy absorbing foam material.
6. The hip protective garment of claim 5, wherein the energy absorbing foam material is a polyurethane foam.
7. The hip protective garment of claim 6, wherein the polyurethane foam has a density of from 160 kg/m3 to 480 kg/m3.
8. The hip protective garment of claim 7, wherein the polyurethane foam has a density of from 240 kg/m3 to 400 kg/m3.
9. The hip protective garment of claim 1, wherein the hip pad has a central region of uniform thickness extending radially from the center of the hip pad.
10. The hip protective garment of claim 1, wherein the hip pad has a central region of uniform thickness extending radially from the center of the hip pad by from 1 cm to 10 cm.
11. The hip protective garment of claim 1, wherein the hip pad has a central region of uniform thickness extending radially from the center of the hip pad by from 3 cm to 8 cm.
12. The hip protective garment of claim 1, wherein the hip pad has a central region of uniform thickness extending radially from the center of the hip pad by about 5 cm.
13. The hip protective garment of claim 1, wherein the central region of uniform thickness has a thickness ranging from 1 mm to 30 mm.
14. The hip protective garment of claim 13, wherein the central region of uniform thickness has a thickness ranging from 5 mm to 25 mm.
15. The hip protective garment of claim 14, wherein the central region of uniform thickness has a thickness ranging from 10 mm to 20 mm.
16. The hip protective garment of claim 15, wherein the central region of uniform thickness has a thickness of about 15 mm.
17. The hip protective garment of claim 1, wherein the hip pad comprises an impact-resistance of up to 10,000 Newtons.
18. The hip protective garment of claim 1, wherein the hip pad comprises an impact-resistance of up to 7000 Newtons.
19. The hip protective garment of claim 1, wherein the hip pad comprises an impact-resistance of up to 5000 Newtons.
20. The hip protective garment of claim 1, wherein the hip pad comprises an impact-resistance of up to 3000 Newtons.
21. The hip protective garment of claim 1, comprising:
a form-fitted body portion; and
a conformable hip pad disposed on and integrated with the body portion of the garment, the hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip;
wherein the hip pad comprises a polyurethane foam with a density of about 320 kg/m3 a thickness of about 15 mm, and that is capable of absorbing about 7000 Newtons of force.
22. A conformable hip pad comprising a center for use with a garment, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip, wherein the conformable pad comprises a plurality of cushioning regions separated by one or more channels defining one or more hinge regions between the cushioning regions, whereby the hip pad may conform to contours of the user's hip when the garment is worn, wherein the hip pad comprises a foam material having a density of from 240 to 400 kg/m3 and a thickness of from 10 to 20 mm and that is capable of absorbing about 7000 Newtons of force.
23. The conformable hip pad of claim 22, wherein the foam material is a rate-dependent foam.
24. The conformable hip pad of claim 22, wherein the foam material is a microcellular polyurethane foam.
25. The conformable hip pad of claim 22, wherein the hip pad has a center cushioning region comprising a central region extending radially from a center point with a substantially uniform thickness and wherein the thickness of further cushioning regions decreases radially from the central region toward a perimeter of the hip pad.
26. The conformable hip pad of claim 22, wherein an upper surface of the cushioning region comprises a surface defined by a thickness of the cushioning region that generally decreases radially toward a perimeter of the hip pad.
27. The conformable hip pad of claim 22, for disposing in a pocket of a form-fitted body portion of a hip protective garment, the hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip;
wherein the hip pad comprises a polyurethane foam with a density of about 320 kg/m3, a thickness of about 15 mm, and that is capable of absorbing about 7000 Newtons of force.
28. The conformable hip pad of claim 22, for providing on and integral with a form-fitted body portion of a hip protective garment, the hip pad comprising a center, such that when the garment is disposed on the user, the center of the hip pad is disposed adjacent to the upper trochanter region of the user's hip;
wherein the hip pad comprises a polyurethane foam with a density of about 320 kg/m3, a thickness of about 15 mm, and that is capable of absorbing about 7000 Newtons of force.
US15/905,478 2013-03-16 2018-02-26 Hip protective undergarments Abandoned US20180177244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/905,478 US20180177244A1 (en) 2013-03-16 2018-02-26 Hip protective undergarments

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361802598P 2013-03-16 2013-03-16
PCT/US2014/030849 WO2014153300A2 (en) 2013-03-16 2014-03-17 Hip protective undergarments
US201514891676A 2015-11-16 2015-11-16
US15/905,478 US20180177244A1 (en) 2013-03-16 2018-02-26 Hip protective undergarments

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/030849 Continuation WO2014153300A2 (en) 2013-03-16 2014-03-17 Hip protective undergarments
US14/891,676 Continuation US20160192714A1 (en) 2013-03-16 2014-03-17 Hip protective undergarments

Publications (1)

Publication Number Publication Date
US20180177244A1 true US20180177244A1 (en) 2018-06-28

Family

ID=51581785

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/891,676 Abandoned US20160192714A1 (en) 2013-03-16 2014-03-17 Hip protective undergarments
US15/905,478 Abandoned US20180177244A1 (en) 2013-03-16 2018-02-26 Hip protective undergarments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/891,676 Abandoned US20160192714A1 (en) 2013-03-16 2014-03-17 Hip protective undergarments

Country Status (9)

Country Link
US (2) US20160192714A1 (en)
EP (1) EP2967163A4 (en)
JP (2) JP2016516919A (en)
KR (1) KR20160021750A (en)
AU (2) AU2014236128A1 (en)
CA (2) CA2942916A1 (en)
GB (2) GB2527464B (en)
SG (1) SG11201507638XA (en)
WO (1) WO2014153300A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA028487B1 (en) 2010-08-11 2017-11-30 ДЖИ-ФОРМ, ЭлЭлСи Cushioning pad
ITVR20130084A1 (en) * 2013-04-08 2014-10-09 Technogel Italia Srl PADDING ELEMENT FOR SEATING AND METHOD FOR ITS REALIZATION
USD741045S1 (en) * 2014-01-21 2015-10-20 Ass Armor, LLC Protective garment
US9642402B1 (en) * 2014-01-21 2017-05-09 Ass Armor, LLC Protecting an athletic participant against impact injury
US10201196B2 (en) * 2014-10-27 2019-02-12 Wm. T. Burnett Ip, Llc Protective sports shin guard
US10212974B1 (en) 2015-11-19 2019-02-26 Cyrus K. Joshi Garment for protecting the human body
JP6624625B1 (en) * 2019-07-04 2019-12-25 一般社団法人Lgb.T Lower body clothing
WO2022236334A1 (en) * 2021-05-06 2022-11-10 Thin Gold Line, Inc. Garment spacer comprising radially fenestrated concentric walls and garment system comprising such garment spacer and a plurality of coupling features

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573216A (en) * 1982-07-10 1986-03-04 Walter Wortberg Impact dissipator
US6093468A (en) * 1997-03-14 2000-07-25 The Procter & Gamble Company Flexible lightweight protective pad with energy absorbing inserts
US6347413B1 (en) * 2001-04-16 2002-02-19 Daniel C. Sciscente Hip pads
US20050203454A1 (en) * 2004-03-03 2005-09-15 Fallgard, Llc Hip protection device
US20080282456A1 (en) * 2007-05-15 2008-11-20 Pang-Ching Chiang Protective hip pad
US20090307829A1 (en) * 2008-06-13 2009-12-17 Comfihips, Llc Compliant impact protection pad
US7891026B1 (en) * 2007-01-08 2011-02-22 Nike, Inc. Athletic garment with articulated body protective underlayer
US20110067160A1 (en) * 2009-09-24 2011-03-24 Nike, Inc. Apparel Incorporating A Protective Element
US20110277226A1 (en) * 2009-06-23 2011-11-17 Nike, Inc. Apparel Incorporating A Protective Element
US20120052249A1 (en) * 2010-04-07 2012-03-01 Nike, Inc. Cushioning Elements For Apparel And Other Products And Methods Of Manufacturing The Cushioning Elements
US20120084896A1 (en) * 2010-08-11 2012-04-12 G-Form, LLC Flexible cushioning pads, items incorporating such pads, and methods of making and using
US20120174301A1 (en) * 2008-06-13 2012-07-12 Comfihips, Llc Compliant impact protection pad
US20120216327A1 (en) * 2011-02-25 2012-08-30 Nike, Inc. Articles Of Apparel Incorporating Cushioning Elements And Methods Of Manufacturing The Articles Of Apparel
US20130000008A1 (en) * 2010-03-08 2013-01-03 Uni-Charm Corporation Protector
US20130192336A1 (en) * 2009-10-06 2013-08-01 Delloch Limited Protective device
US20140215679A1 (en) * 2013-02-01 2014-08-07 Tolga U. HABIP Padded pants
US20140259335A1 (en) * 2011-10-20 2014-09-18 Delloch Limited Protective Devices, Components Thereof, and Their Methods of Use

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537911U (en) * 1991-10-28 1993-05-21 正道 丸山 Underwear protective clothing
US5636377A (en) * 1992-08-19 1997-06-10 Hipco, Inc. Hip protection device for the elderly
US5599290A (en) * 1992-11-20 1997-02-04 Beth Israel Hospital Bone fracture prevention garment and method
FI103862B1 (en) * 1993-10-19 1999-10-15 Fashion Group Oy L Protection
US5497511A (en) * 1994-03-08 1996-03-12 Zade; Isimail Y. Protective pants for the hip
US5717997A (en) * 1994-05-09 1998-02-17 Prevent Products, Inc. Hip pad for protecting greater trochanter from impact
ATE172080T1 (en) * 1995-01-05 1998-10-15 Tytex As PANTS WITH HIP PROTECTION
US5918310A (en) * 1997-05-09 1999-07-06 Farahany; Amir H. Body protective garment
JP2003003004A (en) * 2001-06-20 2003-01-08 Gunze Ltd Wear with impact absorbing pad
US6859948B2 (en) * 2002-09-16 2005-03-01 Michael Melts Hip protector system
JP2007131990A (en) * 2005-10-11 2007-05-31 Sumitomo Rubber Ind Ltd Human body protecting tool

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573216A (en) * 1982-07-10 1986-03-04 Walter Wortberg Impact dissipator
US6093468A (en) * 1997-03-14 2000-07-25 The Procter & Gamble Company Flexible lightweight protective pad with energy absorbing inserts
US6347413B1 (en) * 2001-04-16 2002-02-19 Daniel C. Sciscente Hip pads
US20050203454A1 (en) * 2004-03-03 2005-09-15 Fallgard, Llc Hip protection device
US7891026B1 (en) * 2007-01-08 2011-02-22 Nike, Inc. Athletic garment with articulated body protective underlayer
US20080282456A1 (en) * 2007-05-15 2008-11-20 Pang-Ching Chiang Protective hip pad
US20090307829A1 (en) * 2008-06-13 2009-12-17 Comfihips, Llc Compliant impact protection pad
US20120174301A1 (en) * 2008-06-13 2012-07-12 Comfihips, Llc Compliant impact protection pad
US20110277226A1 (en) * 2009-06-23 2011-11-17 Nike, Inc. Apparel Incorporating A Protective Element
US20110067160A1 (en) * 2009-09-24 2011-03-24 Nike, Inc. Apparel Incorporating A Protective Element
US20130192336A1 (en) * 2009-10-06 2013-08-01 Delloch Limited Protective device
US20130000008A1 (en) * 2010-03-08 2013-01-03 Uni-Charm Corporation Protector
US20120052249A1 (en) * 2010-04-07 2012-03-01 Nike, Inc. Cushioning Elements For Apparel And Other Products And Methods Of Manufacturing The Cushioning Elements
US20120084896A1 (en) * 2010-08-11 2012-04-12 G-Form, LLC Flexible cushioning pads, items incorporating such pads, and methods of making and using
US20120216327A1 (en) * 2011-02-25 2012-08-30 Nike, Inc. Articles Of Apparel Incorporating Cushioning Elements And Methods Of Manufacturing The Articles Of Apparel
US20140259335A1 (en) * 2011-10-20 2014-09-18 Delloch Limited Protective Devices, Components Thereof, and Their Methods of Use
US20140215679A1 (en) * 2013-02-01 2014-08-07 Tolga U. HABIP Padded pants

Also Published As

Publication number Publication date
CA3036521A1 (en) 2014-09-25
GB201713164D0 (en) 2017-09-27
GB2527464B (en) 2017-12-27
WO2014153300A3 (en) 2014-12-24
KR20160021750A (en) 2016-02-26
SG11201507638XA (en) 2015-10-29
WO2014153300A2 (en) 2014-09-25
AU2014236128A1 (en) 2015-11-12
EP2967163A2 (en) 2016-01-20
GB2551661A (en) 2017-12-27
US20160192714A1 (en) 2016-07-07
GB2551661B (en) 2018-04-04
AU2018211311A1 (en) 2018-08-23
GB2527464A (en) 2015-12-23
JP2016516919A (en) 2016-06-09
JP2020023778A (en) 2020-02-13
EP2967163A4 (en) 2016-12-07
CA2942916A1 (en) 2014-09-25
GB201518355D0 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
US20180177244A1 (en) Hip protective undergarments
US6859948B2 (en) Hip protector system
US6083080A (en) Protective brassiere with local energy absorption
US5675844A (en) Cushioned protective apparel
EP2967159B1 (en) Protective ankle and calf sleeve
JP5539757B2 (en) Protector
CA2923137A1 (en) Protective sheath
JPH10512016A (en) Trousers with hip protector
US9254215B2 (en) Knee brace
JP5733713B2 (en) Shock absorber
US20050234380A1 (en) Proection pad for the trochantheric region and device comprising the pad
US20120005798A1 (en) Athletic pants
US20140259335A1 (en) Protective Devices, Components Thereof, and Their Methods of Use
US20230000185A1 (en) Article of apparel including protective panels
JP4178171B2 (en) Shock absorbing member and clothing with shock absorbing member
EP2961290A1 (en) Knee brace
JP2003116896A (en) Protective belt for fracture prevention
JP3118113U (en) Work inner pants
US20180168245A1 (en) Hip protectors
CN219396354U (en) Outdoor exercises protective equipment
KR20120007048U (en) protective pad for hip of old person
JP3217668U (en) Fall fracture prevention device
CN203182052U (en) Hip joint protecting trousers
KR20210073040A (en) Hip joint protection bottoms
US7137392B1 (en) Bed sore prevention assembly

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION