US20180134900A1 - Carbon black reactor - Google Patents

Carbon black reactor Download PDF

Info

Publication number
US20180134900A1
US20180134900A1 US15/633,891 US201715633891A US2018134900A1 US 20180134900 A1 US20180134900 A1 US 20180134900A1 US 201715633891 A US201715633891 A US 201715633891A US 2018134900 A1 US2018134900 A1 US 2018134900A1
Authority
US
United States
Prior art keywords
reactor
carbon black
guide means
combustion
flow guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/633,891
Inventor
Juan Rodriguez
Bipul Sinha
Vivek Vitankar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aditya Birla Science and Technology Co Ltd
Aditya Birla Nuvo Ltd
Original Assignee
Aditya Birla Science and Technology Co Ltd
Aditya Birla Nuvo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aditya Birla Science and Technology Co Ltd, Aditya Birla Nuvo Ltd filed Critical Aditya Birla Science and Technology Co Ltd
Priority to US15/633,891 priority Critical patent/US20180134900A1/en
Publication of US20180134900A1 publication Critical patent/US20180134900A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black

Definitions

  • the present invention relates to a reactor for manufacturing carbon black.
  • the present invention relates to a reactor for better mixing carbonaceous feedstock and combustion air while manufacturing carbon black.
  • the process for manufacturing carbon black typically comprises, performing partial pyrolysis of a carbonaceous feedstock, where, the feedstock can be in the form of a gas or liquid. While several processes have been used to obtain carbon black, the most commonly used process is the furnace black process in which carbon black is produced by incomplete combustion of a liquid feedstock comprising heavy petroleum products such as FCC tar, coal tar, and ethylene cracking tar.
  • a hydrocarbon fuel such as natural gas or fuel oil is burned with an excess amount of oxygen typically supplied as a flow of air or an oxygen containing gas in a space having a lining of fire resistant material to produce hot combustion gas.
  • the liquid feedstock to be thermally decomposed and dehydrogenated is sprayed into the hot combustion gas to obtain an aerosol containing carbon black particles suspended in the gas.
  • the carbon black particles in the form of a fluffy powder are separated from the gas and collected.
  • the collected particles are subsequently pelletized by means of conventional pelletizing methods.
  • This carbon black is used in manufacturing pneumatic tires for automobiles and aircraft, as a reinforcing filler for an elastomer, as pigment or colorant for plastic, paint, and printing ink.
  • the reactors used for the furnace black process generally comprise, a combustion chamber, a mixing chamber, and a reaction chamber, arranged along the axis of the reactor to form a flow path for the reaction media from the combustion chamber through the mixing chamber to the reaction chamber.
  • the liquid feedstock is normally sprayed into the mixing chamber to achieve intensive mixing of the liquid feedstock with the hot combustion gases. This mixture then enters the reaction chamber where the actual carbon black formation process takes place. Finally, the reaction is stopped downstream by spraying water.
  • the factors that influence the carbon black formation are: the excess air/oxygen in the hot combustion gases, the temperature of the hot combustion gases, efficiency of combustion of the fuel, and the reaction or residence time from the mixing of the feedstock in the hot combustion gases to the completion of the reaction.
  • the combustion efficiency of the fuel depends largely on the mixing of the fuel with the combustion air/oxygen.
  • the combustion air is preheated to a temperature between 800° C. and mixed with the fuel in the combustion chamber to obtain the hot combustion gases.
  • An improvement in the mixing between the combustion air and the fuel results in increased combustion efficiency and thus higher temperature of hot combustion gases.
  • the higher the temperature of the hot combustion gases the smaller the particles of carbon black formed.
  • U.S. Pat. No. 7,625,527 discloses a carbon black reactor which increases the contact efficiency between hot combustion gases and feedstock to increase the conversion rate of the feedstock to carbon black.
  • the carbon black reactor comprises: a combustion zone for generating the hot combustion gases, a reaction zone having two or more points to introduce feedstock therein for producing carbon black by contacting the combustion gases with the feedstock introduced in a plurality of divided flows, a quench zone for stopping the reaction by injecting a coolant, where, the three zones are arrayed laterally in order.
  • the carbon black reactor gives carbon black having uniform characteristics, especially distribution of aggregation size.
  • CN Patent No. 2341708 discloses a reactor for a carbon black-surface oxidating and fluidizing bed.
  • the reactor comprises: a reactor body, a furnace black inlet, a furnace black outlet, a compound distributing board, an air chamber, an air inlet, and an air outlet, wherein, three to seven baffles are arranged in the reactor comprising four to eight fluidizing chambers to obtain a multi-stage mixed flow.
  • the reactor is simple to manufacture, low cost, and produces carbon black used for coloration in various industries.
  • U.S. Pat. No. 4,590,040 discloses a carbon black reactor which is adapted to reduce the pressure drop due to excessive turbulence in the pre-combustion zone.
  • the carbon black reactor comprises: a precombustion zone with a cylindrical sidewall and having an upstream end and a downstream end, a plurality of tunnels for conveying combustion gases, the tunnels opening tangentially into the precombustion zone through the sidewall, and a plurality of semicircular ramps positioned in the precombustion zone to define the upstream end for guiding the flow of the tangentially introduced stream of combustion gases.
  • the arrangement prevents a turbulent impact between other tangentially introduced gas streams to reduce the pressure drop therein.
  • U.S. Pat. No. 4,347,218 discloses an apparatus for producing carbon black grades of different fineness, while in particular preventing thermal overstressing of the reactor in the intake area of hydrocarbon and air.
  • the apparatus comprises: a reactor including a reaction chamber for forming carbon black, a plurality of unjacketed feed units for supplying air to the reaction chamber and spraying hydrocarbon into the air near a discharge end, and a heat exchanger for controlling the temperature of the reactor output gases and carbon black produced therein.
  • US Application No. 2004213728 discloses a process for the production of furnace black in a furnace black reactor having a flow axis.
  • the process comprises: introducing fuel and combustion air into a gas burner, jetting steam axially through the gas burner, producing thereby a flow of hot combustion gases in a combustion chamber; feeding the hot combustion gases along the flow axis from the combustion chamber through a narrow point into a reaction zone, mixing carbon black raw material into the flow of hot combustion gases upstream of, inside, or downstream of the narrow point; stopping the reaction downstream in the reaction zone by spraying water.
  • the process produces deep-colored furnace blacks in the furnace reactor.
  • the prior art listed above discloses carbon black reactors adapted to provide an increased process efficiency, enhanced process control or produce carbon black grades of different fineness.
  • the present invention provides one such carbon black reactor, mainly adapted to enhance mixing between the combustion air/oxygen and fuel, to increase the combustion efficiency and provide hot combustion gases having a higher temperature. Further, the present invention provides a carbon black reactor comprising means that allow higher feedstock flow rate through the reactor, while maintaining the quality parameters of the carbon black.
  • An object of the present invention is to provide a reactor for manufacturing carbon black.
  • Another object of the present invention is to provide a reactor for improved mixing of combustion air and fuel in the combustion chamber during the manufacturing of carbon black.
  • Yet another object of the present invention is to provide a reactor comprising means that permit higher feedstock flow rate through the reactor without any loss of quality.
  • Still another object of the present invention is to provide a reactor for manufacturing carbon black which provides improved process productivity and enhanced product quality.
  • a reactor for manufacturing carbon black using the furnace black process said reactor including:
  • the flow guide means is a set of annular cylinders.
  • the flow guide means is a set of tapering annular cylinders.
  • the flow guide means is at least one selected from the group consisting of uniform annular cylinders, tapering annular cylinders, baffles, vanes, fins, and the like.
  • the flow guide means is a set of annular cylinders provided with at least one means selected from baffles, vanes, and fines, along the operative length of the cylinders.
  • the process includes the step of manufacturing a carbon black grade selected from the group of grades consisting of hard black and soft black.
  • FIG. 1 illustrates a schematic diagram of the carbon black reactor showing the flow guide means in accordance with the present invention
  • FIGS. 2 a , 2 b , 2 c , and 2 f illustrate schematics of the alternative embodiments of the flow guide means wherein vanes or fins are placed on the inside of annular cylinders, in accordance with the present invention.
  • FIGS. 2 d and 2 e illustrate the vanes/fins in the various alternative embodiments of the flow guide means, in accordance with the present disclosure.
  • the present invention envisages a reactor for manufacturing carbon black and a furnace black process thereof.
  • the reactor of the present invention is adapted to enhance mixing between combustion air and a fuel in a combustion chamber so as to increase the fuel combustion efficiency and produce hot combustion gases having a temperature in the range of 1000-2200° C. These hot combustion gases are subsequently reacted with a carbonaceous feedstock in a reaction chamber to obtain carbon black.
  • the present invention provides up to 20% increase in the carbon black production.
  • the reactor 100 comprises: a combustion chamber 102 having a fuel burner 106 , an air inlet 108 , and flow guide means 110 ; and a reaction chamber 104 along the longitudinal flow axis of the reactor 100 subsequent to the combustion chamber 102 .
  • a hydrocarbon fuel such as fuel oil or natural gas is burned in the presence of an excess amount of oxygen typically supplied as a flow of air, referred hereto as combustion air, to produce hot combustion gases.
  • the fuel burner 106 is located along the operative longitudinal axis of the reactor 100 and the air inlet 108 is typically located orthogonal to the fuel burner 106 .
  • the combustion air enters at the air inlet 108 and traverses towards the fuel burner 106 .
  • the flow guide means 110 is positioned in the flow path of the combustion air between the fuel burner 106 and the air inlet 108 .
  • the flow guide means 110 are located along the operative longitudinal axis of the reactor 100 such as to be proximal to the fuel burner 106 than the air inlet 108 .
  • the combustion air that enters at the air inlet 108 follows the flow path denoted by 112 in the FIG. 1 .
  • the flow path 112 of the combustion air is altered by means of the flow guide means 110 before contacting the fuel at the fuel burner 106 . Due to the modification in the flow path 112 of the combustion air the mixing between the fuel and the combustion air is enhanced which results in increased fuel combustion efficiency and thereby providing hot combustion gases having a higher temperature, typically in the range of 1000-2200° C.
  • the flow guide means 110 further aid in stabilizing the flame of the fuel burner 106 and maintaining the flame along the operative longitudinal axis of the reactor 100 . This helps in increasing the life of the refractory lining 114 of the reactor
  • the flow guide means 110 is at least one selected from the group consisting of uniform annular cylinders, tapering annular cylinders, baffles, vanes, fins, and the like.
  • the flow guides means 110 may be a set of annular cylinders (as illustrated in FIG. 1 ) or a set of tapering annular cylinders (not shown in Figure). Further, these annular cylinders may be provided with a plurality of vanes, baffles or fins on the inside wall, along the length of the cylinders, a schematic of which is shown in FIG. 2 . Still further, a plurality of annular cylinders, tapering or uniform, may be provided with a plurality of vanes or fins on the inside of the innermost annular cylinder. Referring to FIG.
  • FIGS. 2 a , 2 b , 2 c , & 2 f the various alternative embodiments of the flow guide means 110 are illustrated in FIGS. 2 a , 2 b , 2 c , & 2 f , where, vanes or fines 204 are placed on the inside of annular cylinders 202 .
  • the vanes/fins 204 are illustrated in FIGS. 2 d & 2 e.
  • the temperature of the hot combustion gases is increased. These hot combustion gases traverse through the reactor 100 from the combustion chamber 102 to the reaction chamber 104 . In the reaction chamber 104 , these gases interact with a carbonaceous feedstock to produce carbon black. By using the flow guide means 110 , the carbon black production is increased by 5-20%.
  • the reactor of the present invention and the process thereof is suitable for manufacturing hard black or soft black grade carbon black.
  • a reactor for manufacturing carbon black comprises flow guide means located along the operative longitudinal axis of said reactor between a fuel burner and an air inlet being adapted to alter the flow path of combustion air entering at the air inlet to result in a better mixing between the fuel and the combustion air, thereby, producing higher temperature hot combustion gases which are subsequently received in a reaction chamber where they react with a carbonaceous feedstock to produce carbon black;
  • the reactor and process thereof as described in the present invention have several technical advantages including but not limited to the realization of:

Abstract

The present invention discloses a reactor (100) for manufacturing carbon black, said reactor (100) comprising flow guide means (110) provided between a fuel burner (106) and an air inlet (108) for altering the flow path of combustion air entering at the air inlet (108) to result in a better mixing between the fuel and the combustion air, thereby, producing higher temperature hot combustion gases which are subsequently received in a reaction chamber (104) where they react with a carbonaceous feedstock to produce carbon black. The reactor (100) of the present invention increases the carbon black production by 5-20%. Further, the positioning of the flow guise means (110) stabilizes the flame from the fuel burner (106) to maintain it along the reactor axis, thus, increasing the life of the refractory lining (114).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims the benefit of priority to U.S. application Ser. No. 13/642,951, filed Oct. 23, 2012, now U.S. Pat. No. 9,718,963, which application claims the benefit of priority to PCT Application No. PCT/IN2011/000262, filed Apr. 19, 2011, which application claims the benefit of Indian Patent Application No. 1344/MUM/2010, filed Apr. 27, 2010. The entire disclosure of these application serial numbers are incorporated herein by reference.
  • FIELD OF INVENTION
  • The present invention relates to a reactor for manufacturing carbon black.
  • Particularly, the present invention relates to a reactor for better mixing carbonaceous feedstock and combustion air while manufacturing carbon black.
  • BACKGROUND
  • The process for manufacturing carbon black typically comprises, performing partial pyrolysis of a carbonaceous feedstock, where, the feedstock can be in the form of a gas or liquid. While several processes have been used to obtain carbon black, the most commonly used process is the furnace black process in which carbon black is produced by incomplete combustion of a liquid feedstock comprising heavy petroleum products such as FCC tar, coal tar, and ethylene cracking tar.
  • In the furnace black process, a hydrocarbon fuel such as natural gas or fuel oil is burned with an excess amount of oxygen typically supplied as a flow of air or an oxygen containing gas in a space having a lining of fire resistant material to produce hot combustion gas. The liquid feedstock to be thermally decomposed and dehydrogenated is sprayed into the hot combustion gas to obtain an aerosol containing carbon black particles suspended in the gas. The carbon black particles in the form of a fluffy powder are separated from the gas and collected. The collected particles are subsequently pelletized by means of conventional pelletizing methods. This carbon black is used in manufacturing pneumatic tires for automobiles and aircraft, as a reinforcing filler for an elastomer, as pigment or colorant for plastic, paint, and printing ink.
  • The reactors used for the furnace black process generally comprise, a combustion chamber, a mixing chamber, and a reaction chamber, arranged along the axis of the reactor to form a flow path for the reaction media from the combustion chamber through the mixing chamber to the reaction chamber. The liquid feedstock is normally sprayed into the mixing chamber to achieve intensive mixing of the liquid feedstock with the hot combustion gases. This mixture then enters the reaction chamber where the actual carbon black formation process takes place. Finally, the reaction is stopped downstream by spraying water.
  • The factors that influence the carbon black formation are: the excess air/oxygen in the hot combustion gases, the temperature of the hot combustion gases, efficiency of combustion of the fuel, and the reaction or residence time from the mixing of the feedstock in the hot combustion gases to the completion of the reaction. The combustion efficiency of the fuel depends largely on the mixing of the fuel with the combustion air/oxygen. Typically, the combustion air is preheated to a temperature between 800° C. and mixed with the fuel in the combustion chamber to obtain the hot combustion gases. An improvement in the mixing between the combustion air and the fuel results in increased combustion efficiency and thus higher temperature of hot combustion gases. In general, the higher the temperature of the hot combustion gases, the smaller the particles of carbon black formed.
  • Several attempts have been made in the past to provide carbon black reactors which improve the furnace black process resulting in higher efficiency, a better process control, and produce carbon black grades having different fineness. Some of these disclosures are listed in the prior art below:
  • U.S. Pat. No. 7,625,527 discloses a carbon black reactor which increases the contact efficiency between hot combustion gases and feedstock to increase the conversion rate of the feedstock to carbon black. The carbon black reactor comprises: a combustion zone for generating the hot combustion gases, a reaction zone having two or more points to introduce feedstock therein for producing carbon black by contacting the combustion gases with the feedstock introduced in a plurality of divided flows, a quench zone for stopping the reaction by injecting a coolant, where, the three zones are arrayed laterally in order. The carbon black reactor gives carbon black having uniform characteristics, especially distribution of aggregation size.
  • CN Patent No. 2341708 discloses a reactor for a carbon black-surface oxidating and fluidizing bed. The reactor comprises: a reactor body, a furnace black inlet, a furnace black outlet, a compound distributing board, an air chamber, an air inlet, and an air outlet, wherein, three to seven baffles are arranged in the reactor comprising four to eight fluidizing chambers to obtain a multi-stage mixed flow. The reactor is simple to manufacture, low cost, and produces carbon black used for coloration in various industries.
  • U.S. Pat. No. 4,590,040 discloses a carbon black reactor which is adapted to reduce the pressure drop due to excessive turbulence in the pre-combustion zone. The carbon black reactor comprises: a precombustion zone with a cylindrical sidewall and having an upstream end and a downstream end, a plurality of tunnels for conveying combustion gases, the tunnels opening tangentially into the precombustion zone through the sidewall, and a plurality of semicircular ramps positioned in the precombustion zone to define the upstream end for guiding the flow of the tangentially introduced stream of combustion gases. The arrangement prevents a turbulent impact between other tangentially introduced gas streams to reduce the pressure drop therein.
  • U.S. Pat. No. 4,347,218 discloses an apparatus for producing carbon black grades of different fineness, while in particular preventing thermal overstressing of the reactor in the intake area of hydrocarbon and air. The apparatus comprises: a reactor including a reaction chamber for forming carbon black, a plurality of unjacketed feed units for supplying air to the reaction chamber and spraying hydrocarbon into the air near a discharge end, and a heat exchanger for controlling the temperature of the reactor output gases and carbon black produced therein.
  • US Application No. 2004213728 discloses a process for the production of furnace black in a furnace black reactor having a flow axis. The process comprises: introducing fuel and combustion air into a gas burner, jetting steam axially through the gas burner, producing thereby a flow of hot combustion gases in a combustion chamber; feeding the hot combustion gases along the flow axis from the combustion chamber through a narrow point into a reaction zone, mixing carbon black raw material into the flow of hot combustion gases upstream of, inside, or downstream of the narrow point; stopping the reaction downstream in the reaction zone by spraying water. The process produces deep-colored furnace blacks in the furnace reactor.
  • The prior art listed above discloses carbon black reactors adapted to provide an increased process efficiency, enhanced process control or produce carbon black grades of different fineness. The present invention provides one such carbon black reactor, mainly adapted to enhance mixing between the combustion air/oxygen and fuel, to increase the combustion efficiency and provide hot combustion gases having a higher temperature. Further, the present invention provides a carbon black reactor comprising means that allow higher feedstock flow rate through the reactor, while maintaining the quality parameters of the carbon black.
  • OBJECTS OF THE INVENTION
  • An object of the present invention is to provide a reactor for manufacturing carbon black.
  • Another object of the present invention is to provide a reactor for improved mixing of combustion air and fuel in the combustion chamber during the manufacturing of carbon black.
  • Yet another object of the present invention is to provide a reactor comprising means that permit higher feedstock flow rate through the reactor without any loss of quality.
  • Still another object of the present invention is to provide a reactor for manufacturing carbon black which provides improved process productivity and enhanced product quality.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, is disclosed a reactor for manufacturing carbon black using the furnace black process, said reactor including:
      • a combustion chamber for producing hot combustion gases, said combustion chamber comprising:
        • a fuel burner located along the operative longitudinal axis of said reactor;
        • an air inlet located orthogonal to said fuel burner for receiving combustion air;
        • flow guide means located along the operative longitudinal axis of said reactor positioned proximal to said fuel burner and between said fuel burner and said air inlet so as to be in the flow path of the combustion air for altering the flow path; and
      • a reaction chamber located along the operative longitudinal axis of said reactor subsequent to said combustion chamber, said reaction chamber being adapted to receive the hot combustion gases from said combustion chamber and a carbonaceous feedstock to effect carbon black formation.
  • Typically, in accordance with the present invention, the flow guide means is a set of annular cylinders.
  • Alternatively, in accordance with the present invention, the flow guide means is a set of tapering annular cylinders.
  • Preferably, in accordance with the present invention, the flow guide means is at least one selected from the group consisting of uniform annular cylinders, tapering annular cylinders, baffles, vanes, fins, and the like.
  • Alternatively, in accordance with the present invention, the flow guide means is a set of annular cylinders provided with at least one means selected from baffles, vanes, and fines, along the operative length of the cylinders.
  • In accordance with the present invention, is disclosed a process for manufacturing carbon black comprising the steps of:
      • burning a fuel in a fuel burner located along the operative longitudinal axis of a reactor for manufacturing the carbon black;
      • receiving combustion air through an air inlet located orthogonal to said fuel burner;
      • altering the flow path of the combustion air by means of flow guide means provided along the operative longitudinal axis of said reactor between said fuel burner and said air inlet proximal to said fuel burner;
      • effecting advanced mixing between the combustion air and fuel in a combustion chamber to produce hot combustion gases having temperature in the range of 1000-2200° C.; and
      • receiving the hot combustion gases in a reaction chamber located along the operative longitudinal axis of said reactor subsequent to said combustion chamber, which is fed with a carbonaceous feedstock to manufacture the carbon black.
  • Typically, in accordance with the present invention, the process includes the step of manufacturing a carbon black grade selected from the group of grades consisting of hard black and soft black.
  • BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
  • The invention will now be described with the help of the accompanying drawings, in which:
  • FIG. 1 illustrates a schematic diagram of the carbon black reactor showing the flow guide means in accordance with the present invention; and
  • FIGS. 2a, 2b, 2c, and 2f illustrate schematics of the alternative embodiments of the flow guide means wherein vanes or fins are placed on the inside of annular cylinders, in accordance with the present invention. FIGS. 2d and 2e illustrate the vanes/fins in the various alternative embodiments of the flow guide means, in accordance with the present disclosure.
  • DETAILED DESCRIPTION OF THE ACCOMPANYING DRAWINGS
  • The invention will now be described with reference to the accompanying drawings which do not limit the scope and ambit of the invention. The description provided is purely by way of example and illustration.
  • The present invention envisages a reactor for manufacturing carbon black and a furnace black process thereof. The reactor of the present invention is adapted to enhance mixing between combustion air and a fuel in a combustion chamber so as to increase the fuel combustion efficiency and produce hot combustion gases having a temperature in the range of 1000-2200° C. These hot combustion gases are subsequently reacted with a carbonaceous feedstock in a reaction chamber to obtain carbon black. The present invention provides up to 20% increase in the carbon black production.
  • Referring to FIG. 1, therein is illustrated a carbon black reactor in accordance with the present invention, the reactor is generally represented in FIG. 1 by numeral 100. The reactor 100 comprises: a combustion chamber 102 having a fuel burner 106, an air inlet 108, and flow guide means 110; and a reaction chamber 104 along the longitudinal flow axis of the reactor 100 subsequent to the combustion chamber 102. In the combustion chamber 102 a hydrocarbon fuel such as fuel oil or natural gas is burned in the presence of an excess amount of oxygen typically supplied as a flow of air, referred hereto as combustion air, to produce hot combustion gases. In the combustion chamber 102, the fuel burner 106 is located along the operative longitudinal axis of the reactor 100 and the air inlet 108 is typically located orthogonal to the fuel burner 106. The combustion air enters at the air inlet 108 and traverses towards the fuel burner 106.
  • The flow guide means 110 is positioned in the flow path of the combustion air between the fuel burner 106 and the air inlet 108. The flow guide means 110 are located along the operative longitudinal axis of the reactor 100 such as to be proximal to the fuel burner 106 than the air inlet 108. The combustion air that enters at the air inlet 108 follows the flow path denoted by 112 in the FIG. 1. The flow path 112 of the combustion air is altered by means of the flow guide means 110 before contacting the fuel at the fuel burner 106. Due to the modification in the flow path 112 of the combustion air the mixing between the fuel and the combustion air is enhanced which results in increased fuel combustion efficiency and thereby providing hot combustion gases having a higher temperature, typically in the range of 1000-2200° C. The flow guide means 110 further aid in stabilizing the flame of the fuel burner 106 and maintaining the flame along the operative longitudinal axis of the reactor 100. This helps in increasing the life of the refractory lining 114 of the reactor 100.
  • The flow guide means 110 is at least one selected from the group consisting of uniform annular cylinders, tapering annular cylinders, baffles, vanes, fins, and the like. The flow guides means 110 may be a set of annular cylinders (as illustrated in FIG. 1) or a set of tapering annular cylinders (not shown in Figure). Further, these annular cylinders may be provided with a plurality of vanes, baffles or fins on the inside wall, along the length of the cylinders, a schematic of which is shown in FIG. 2. Still further, a plurality of annular cylinders, tapering or uniform, may be provided with a plurality of vanes or fins on the inside of the innermost annular cylinder. Referring to FIG. 2, the various alternative embodiments of the flow guide means 110 are illustrated in FIGS. 2a, 2b, 2c , & 2 f, where, vanes or fines 204 are placed on the inside of annular cylinders 202. The vanes/fins 204 are illustrated in FIGS. 2d & 2 e.
  • Due to the flow guide means 110, the temperature of the hot combustion gases, thus obtained, is increased. These hot combustion gases traverse through the reactor 100 from the combustion chamber 102 to the reaction chamber 104. In the reaction chamber 104, these gases interact with a carbonaceous feedstock to produce carbon black. By using the flow guide means 110, the carbon black production is increased by 5-20%. The reactor of the present invention and the process thereof is suitable for manufacturing hard black or soft black grade carbon black.
  • Test Results
  • The invention will now be described with respect to the following examples which do not limit the scope and ambit of the invention in anyway and only exemplify the invention.
  • Example 1
  • TABLE 1
    Comparative analysis for a furnace black process with
    flow guide means 110 and without flow guide means.
    With flow guide Without flow Without flow
    means 110 guide means guide means
    Grade (N234) Run 1 Run 2 Run 3
    Process air Nm3/hr 16000 16000 16000
    Feedstock flow Kg/hr 4350 4100 3700
    Carbon Black Kg/hr 2349 2214 1998
    produced
    % increase in % 5.75
    production with
    respect to Run
    2
    % increase in % 14.94
    production with
    respect to Run
    3
  • It is observed from TABLE 1 that when the flow guide means 110 were used the carbon black production was increased by 5.75%, in comparison with when no flow guide means were used at a feedstock flow rate of 4100 kg/hr, and, the carbon black production was increased by 14.94% in comparison with when no flow guide means were used at a feedstock flow rate of 3700 kg/hr. Further, the fuel consumption was also reduced when the flow guide means 110 used.
  • Example 2
  • TABLE 2
    Comparative analysis for a furnace black process with
    flow guide means 110 and without flow guide means.
    With flow guide Without flow Without flow
    means 110 guide means guide means
    Grade (N375) Run A Run B Run C
    Process air Nm3/hr 16000 16000 16000
    Feedstock flow Kg/hr 4750 4350 4200
    Carbon black Kg/hr 2897.5 2653.5 2562
    produced
    % increase in % 9.195
    production with
    respect to Run
    B
    % increase in % 13.09
    production with
    respect to Run
    C
  • It is observed from TABLE 2 that when the flow guide means 110 were used the carbon black production was increased by 9.195%, in comparison with when no flow guide means were used at a feedstock flow rate of 4350 kg/hr, and, the carbon black production was increased by 13.09% in comparison with when no flow guide means were used at a feedstock flow rate of 4200 kg/hr. Further, the fuel consumption was also reduced when the flow guide means 110 used.
  • Technical Advantages
  • A reactor for manufacturing carbon black, in accordance with the present invention, comprises flow guide means located along the operative longitudinal axis of said reactor between a fuel burner and an air inlet being adapted to alter the flow path of combustion air entering at the air inlet to result in a better mixing between the fuel and the combustion air, thereby, producing higher temperature hot combustion gases which are subsequently received in a reaction chamber where they react with a carbonaceous feedstock to produce carbon black; the reactor and process thereof as described in the present invention have several technical advantages including but not limited to the realization of:
      • the reactor of the present invention increases the carbon black production by 5-20% in comparison with a reactor not comprising the flow guide means; and
      • the positioning of the flow guide means further helps in stabilizing the flame of the fuel burner by maintaining its direction along the operative longitudinal axis of the reactor, thereby, increasing the life of the reactor refractory lining.
      • the flow guide means increase the feedstock flow rate by 5-20% in comparison with a reactor not comprising the flow guide means
  • The numerical values mentioned for the various physical parameters, dimensions or quantities are only approximations and it is envisaged that the values higher/lower than the numerical values assigned to the parameters, dimensions or quantities fall within the scope of the invention, unless there is a statement in the specification specific to the contrary. Wherever a range of values is specified, a value up to 10% below and above the lowest and highest numerical value respectively, of the specified range, is included in the scope of the invention.
  • In view of the wide variety of embodiments to which the principles of the present invention can be applied, it should be understood that the illustrated embodiments are exemplary only. While considerable emphasis has been placed herein on the particular features of this invention, it will be appreciated that various modifications can be made, and that many changes can be made in the preferred embodiments without departing from the principle of the invention. These and other modifications in the nature of the invention or the preferred embodiments will be apparent to those skilled in the art from the disclosure herein, whereby it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the invention and not as a limitation.

Claims (7)

1. A reactor for manufacturing carbon black using the furnace black process, said reactor including:
a combustion chamber for producing hot combustion gases, said combustion chamber comprising:
a fuel burner located along the operative longitudinal axis of said reactor;
an air inlet located orthogonal to said fuel burner for receiving combustion air;
a flow guide means located along the operative longitudinal axis of said reactor positioned proximal to said fuel burner and between said fuel burner and said air inlet so as to be in the flow path of the combustion air for altering the flow path; and
a reaction chamber located along the operative longitudinal axis of said reactor subsequent to said combustion chamber, said reaction chamber being adapted to receive the hot combustion gases from said combustion chamber and a carbonaceous feedstock to effect carbon black formation.
2. The reactor of claim 1, wherein the flow guide means is a set of annular cylinders.
3. The reactor of claim 1, wherein the flow guide means is a set of tapering annular cylinders.
4. The reactor of claim 1, wherein the flow guide means is at least one selected from the group consisting of uniform annular cylinders, tapering annular cylinders, baffles, vanes, fins, and the like.
5. The reactor of claim 1, wherein the flow guide means is a set of annular cylinders provided with at least one means selected from baffles, vanes, and fines, along the operative length of the cylinders.
6. A process for manufacturing carbon black comprising the steps of:
burning a fuel in a fuel burner located along the operative longitudinal axis of a reactor for manufacturing the carbon black;
receiving combustion air through an air inlet located orthogonal to said fuel burner;
altering the flow path of the combustion air by means of flow guide means provided along the operative longitudinal axis of said reactor between said fuel burner and said air inlet proximal to said fuel burner;
effecting advanced mixing between the combustion air and fuel in a combustion chamber to produce hot combustion gases having temperature in the range of 1000-2200° C.; and
receiving the hot combustion gases in a reaction chamber located along the operative longitudinal axis of said reactor subsequent to said combustion chamber, which is fed with a carbonaceous feedstock to manufacture the carbon black.
7. The process of claim 6, which includes the step of manufacturing a carbon black grade selected from the group of grades consisting of hard black and soft black.
US15/633,891 2010-04-27 2017-06-27 Carbon black reactor Abandoned US20180134900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/633,891 US20180134900A1 (en) 2010-04-27 2017-06-27 Carbon black reactor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN1344/MUM/2010 2010-04-27
IN1344MU2010 2010-04-27
PCT/IN2011/000262 WO2011135579A2 (en) 2010-04-27 2011-04-19 Carbon black reactor
US201213642951A 2012-10-23 2012-10-23
US15/633,891 US20180134900A1 (en) 2010-04-27 2017-06-27 Carbon black reactor

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/642,951 Continuation US9718963B2 (en) 2010-04-27 2011-04-19 Carbon black reactor
PCT/IN2011/000262 Continuation WO2011135579A2 (en) 2010-04-27 2011-04-19 Carbon black reactor

Publications (1)

Publication Number Publication Date
US20180134900A1 true US20180134900A1 (en) 2018-05-17

Family

ID=44861978

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/642,951 Active 2031-06-27 US9718963B2 (en) 2010-04-27 2011-04-19 Carbon black reactor
US15/633,891 Abandoned US20180134900A1 (en) 2010-04-27 2017-06-27 Carbon black reactor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/642,951 Active 2031-06-27 US9718963B2 (en) 2010-04-27 2011-04-19 Carbon black reactor

Country Status (9)

Country Link
US (2) US9718963B2 (en)
EP (1) EP2563864B1 (en)
JP (2) JP6151178B2 (en)
KR (1) KR101864901B1 (en)
CN (2) CN106433228A (en)
BR (1) BR112012027379B1 (en)
ES (1) ES2822149T3 (en)
RU (1) RU2572893C2 (en)
WO (1) WO2011135579A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020232387A1 (en) * 2019-05-15 2020-11-19 Birla Carbon U.S.A. Inc. Simultaneous process for the production of carbon black and carbon nanostuctures

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927406B (en) * 2015-06-11 2017-05-24 无锡双诚炭黑科技股份有限公司 Carbon black reaction furnace
US11020719B2 (en) 2018-03-07 2021-06-01 Sabic Global Technologies B.V. Method and reactor for pyrolysis conversion of hydrocarbon gases
PL3757172T3 (en) 2019-06-25 2023-12-04 Orion Engineered Carbons Gmbh A process for producing carbon black and related furnace reactor
CN111484022B (en) * 2019-12-23 2022-12-06 浙江精功新材料技术有限公司 White carbon black combustion furnace structure
CN112358747A (en) * 2020-11-09 2021-02-12 江西省永固新能源炭黑有限公司 Low-energy-consumption high-pigment carbon black production method and production equipment thereof
EP4101899A1 (en) 2021-06-10 2022-12-14 Orion Engineered Carbons GmbH Homogeneous hot combustion gases for the production of carbon black

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172729A (en) 1965-03-09 Preheater
GB699406A (en) 1949-04-19 1953-11-04 Cabot Godfrey L Inc Process and apparatus for the production of carbon black
US2676127A (en) 1951-05-08 1954-04-20 Northrop Aircraft Inc Method of making a nonporous duct
US3256066A (en) 1963-03-27 1966-06-14 Continental Carbon Co Apparatus for producing carbon black
ES373174A1 (en) * 1968-11-15 1972-03-16 Continental Carbon Co Apparatus and process for producing carbon black
US3607058A (en) * 1968-11-15 1971-09-21 Continental Carbon Co Apparatus and process for producing carbon black
US3887690A (en) * 1968-11-15 1975-06-03 Continental Carbon Co Process for producing carbon black
US3922335A (en) * 1974-02-25 1975-11-25 Cabot Corp Process for producing carbon black
US4058590A (en) * 1976-04-14 1977-11-15 Sid Richardson Carbon & Gasoline Co. Carbon black reactor with turbofan
JPS5311895A (en) 1976-07-20 1978-02-02 Dousei Taneda Magneticcscreen oxygennenriching dry air system and operation
US4077761A (en) 1976-08-04 1978-03-07 Sid Richardson Carbon & Gasoline Co. Carbon black reactor with axial flow burner
US4198469A (en) * 1977-03-23 1980-04-15 Continental Carbon Company Method for the manufacture of carbon black
SU729222A1 (en) * 1977-03-28 1980-04-25 Всесоюзный Научно-Исследовательский Институт Технического Углерода Method and reactor for carbon black production
CH630948A5 (en) 1977-09-02 1982-07-15 Mura Anst SOOT PRODUCTION PLANT.
US4315902A (en) 1980-02-07 1982-02-16 Phillips Petroleum Company Method for producing carbon black
US4590040A (en) 1983-04-29 1986-05-20 Phillips Petroleum Company Carbon black reactor
SU1241697A1 (en) * 1984-05-30 1997-09-20 Л.И. Пищенко Black carbon production reactor
US4643880A (en) * 1984-12-14 1987-02-17 Phillips Petroleum Company Apparatus and process for carbon black production
US4988493A (en) 1987-11-04 1991-01-29 Witco Corporation Process for producing improved carbon blacks
US4927607A (en) * 1988-01-11 1990-05-22 Columbian Chemicals Company Non-cylindrical reactor for carbon black production
JP2931117B2 (en) 1991-02-18 1999-08-09 旭カーボン株式会社 Apparatus and method for producing carbon black
JPH04264195A (en) 1991-02-19 1992-09-18 Nkk Corp Production of coke
RU2077544C1 (en) * 1995-02-14 1997-04-20 Акционерное общество открытого типа "Ярославский технический углерод" Method and reactor for producing carbon black
US6099818A (en) * 1995-06-19 2000-08-08 Degussa-Huls Aktiengesellschaft Carbon blacks and process for producing them
JP3753397B2 (en) 1996-12-16 2006-03-08 旭カーボン株式会社 Production method of carbon black
US6358487B1 (en) 1997-08-28 2002-03-19 Mitsubishi Chemical Corporation Carbon black and process for producing the same
US5976484A (en) * 1997-09-23 1999-11-02 Teng; Chien-Lang Intermittent continuous method for recovering refined activated carbon from waste tires and the like and the device therefor
CN2341708Y (en) 1998-09-01 1999-10-06 中国科学院山西煤炭化学研究所 Reactor for carbon black surface oxidation and fluidizing bed by furnace method producing particles
JP4643790B2 (en) 2000-03-15 2011-03-02 旭カーボン株式会社 Carbon black manufacturing apparatus and manufacturing method
JP3859057B2 (en) 2001-06-22 2006-12-20 旭カーボン株式会社 Carbon black production equipment
BRPI0408333A (en) * 2003-03-13 2006-03-21 Columbian Chem innovative carbon blacks, methods and tools for preparing and using this
DE10318527A1 (en) 2003-04-24 2004-11-18 Degussa Ag Process for the production of furnace carbon black
JP5374007B2 (en) 2004-03-25 2013-12-25 株式会社ブリヂストン Rubber composition for tire tread and pneumatic tire using the same
RU2307140C2 (en) * 2005-08-12 2007-09-27 Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) Installation for production of the carbon black
JP2007277339A (en) 2006-04-04 2007-10-25 Asahi Carbon Kk Carbon black for compounding tire tread rubber
JP2009167288A (en) 2008-01-16 2009-07-30 Asahi Carbon Kk Carbon black production apparatus
CN101358042B (en) * 2008-07-29 2011-11-30 陈智贤 Pigment carbon black products and preparation technique thereof
BRPI0920883A2 (en) * 2008-10-16 2015-12-22 Evonik Carbon Black Gmbh c-14 high carbon black, its production processes and uses, polymer blends, rubbers and plastics, inks and printing inks comprising such carbon black, and use of such rubber blends.
JP2010144003A (en) 2008-12-17 2010-07-01 Asahi Carbon Kk Method of manufacturing carbon black, carbon black obtained by the method, and rubber composition containing the carbon black

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020232387A1 (en) * 2019-05-15 2020-11-19 Birla Carbon U.S.A. Inc. Simultaneous process for the production of carbon black and carbon nanostuctures

Also Published As

Publication number Publication date
JP2016053176A (en) 2016-04-14
EP2563864B1 (en) 2020-07-08
US9718963B2 (en) 2017-08-01
BR112012027379A2 (en) 2016-08-02
CN102892839B (en) 2016-11-16
RU2012150085A (en) 2014-06-10
WO2011135579A2 (en) 2011-11-03
CN106433228A (en) 2017-02-22
RU2572893C2 (en) 2016-01-20
EP2563864A2 (en) 2013-03-06
JP6151178B2 (en) 2017-06-21
JP2013527278A (en) 2013-06-27
CN102892839A (en) 2013-01-23
KR20130094708A (en) 2013-08-26
WO2011135579A3 (en) 2011-12-22
BR112012027379B1 (en) 2020-11-10
KR101864901B1 (en) 2018-06-05
EP2563864A4 (en) 2015-10-07
ES2822149T3 (en) 2021-04-29
US20130039840A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US20180134900A1 (en) Carbon black reactor
US4391789A (en) Carbon black process
US20040071626A1 (en) Reactor and method to produce a wide range of carbon blacks
US4228131A (en) Apparatus for the production of carbon black
CN113122026B (en) Method for controlling porosity of carbon black
US5252297A (en) Process for producing carbon black and apparatus therefor
CN102181178A (en) 40-thousand-ton hard carbon black reaction furnace and production process of carbon black
CZ293107B6 (en) Process for producing carbon black and apparatus for making the same
US3701827A (en) Process and apparatus for the production of large particle-size,low structure carbon black
CN114072467A (en) Method for producing carbon black and related furnace type reactor
CA1300343C (en) Apparatus and process for producing carbon black
CN102286221A (en) Hard carbon black reaction furnace
KR0181521B1 (en) Carbon black manufacturing method
KR950011798B1 (en) Process for the manufacture of carbon black
JPH0774315B2 (en) Carbon black production equipment
WO2005054378A1 (en) New reactor for producing low surface area high/low structure carbon black and simultaneously minimizing the formation of grit.
US4824643A (en) Apparatus for producing carbon black
US4601892A (en) Process for producing carbon black
CN103260737A (en) Method and device for producing acetylene and syngas
RU2394054C2 (en) Method of producing semi-active technical carbon and reactor for realising said method
JPH04264165A (en) Process and apparatus for producing carbon black
RU2389747C1 (en) Method of producing soot and reactor for realising said method
EP0206315A2 (en) Process and apparatus for producing carbon black
CN211814224U (en) Low-screen residue carbon black reaction furnace
CN103249669A (en) Process and apparatus for preparing acetylene and synthesis gas

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION