US20180122924A1 - Array substrate and method of manufacturing the same, and display device - Google Patents

Array substrate and method of manufacturing the same, and display device Download PDF

Info

Publication number
US20180122924A1
US20180122924A1 US15/707,827 US201715707827A US2018122924A1 US 20180122924 A1 US20180122924 A1 US 20180122924A1 US 201715707827 A US201715707827 A US 201715707827A US 2018122924 A1 US2018122924 A1 US 2018122924A1
Authority
US
United States
Prior art keywords
material film
contact structure
conductive material
pattern
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/707,827
Other versions
US10217851B2 (en
Inventor
Jing Niu
Shuang Sun
Fangzhen Zhang
Dongcan Mi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Assigned to BOE TECHNOLOGY GROUP CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MI, DONGCAN, NIU, Jing, SUN, Shuang, ZHANG, Fangzhen
Publication of US20180122924A1 publication Critical patent/US20180122924A1/en
Application granted granted Critical
Publication of US10217851B2 publication Critical patent/US10217851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/443Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/4763Deposition of non-insulating, e.g. conductive -, resistive -, layers on insulating layers; After-treatment of these layers
    • H01L21/47635After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO

Definitions

  • Embodiments of the present disclosure generally relate to the field of display technologies, and in particular, to a method of manufacturing an array substrate, an array substrate and a display device.
  • a silicon based material (including amorphous silicon and polysilicon), which has stable characteristics, excellent processability and the like, is generally used as a material for an active pattern of a thin film transistor (TFT).
  • TFT thin film transistor
  • the amorphous silicon has a lower mobility and the poly silicon has a higher mobility, but the thin film transistor made of the polysilicon has a poor uniformity, a low yield and a high unit cost.
  • technologies where a transparent oxide semiconductor film is used to manufacture a channel formation region of the thin film transistor and applied in electronic devices and optical devices have attracted considerable attention.
  • An existing array substrate which comprises an oxide thin film transistor having a top gate electrode configuration, comprises an active pattern, a gate insulation pattern, a gate electrode, a second insulation layer, a source electrode and a drain electrode, a passivation layer and a pixel electrode formed successively on a base substrate.
  • the source electrode and the drain electrode are each made of a metal material having a smaller resistance, arranged on the second insulation layer, and connected with the active pattern through via holes.
  • the pixel electrode is provided on the passivation layer, and the passivation layer is provided therein with a via hole, through which the pixel electrode is connected with the drain electrode.
  • the pixel electrode and the drain electrode are arranged with the passivation layer therebetween, a plurality of via holes needs to be provided in the passivation layer for ensuring connection between the pixel electrode and the drain electrode, which is difficult in process. If the pixel electrode is firstly formed and then the drain electrode is directly formed on the pixel electrode such that they are directly connected with each other, eliminating via holes for interconnecting the pixel electrode and the drain electrode, an etching solution used in a subsequent wet etching process made on the pixel electrode will adversely affect the active pattern.
  • existing processes of manufacturing an array substrate comprising an oxide thin film transistor include six patterning processes for forming the active pattern, the gate electrode, the second insulation layer and the via hole in the gate insulation pattern, data lines and the source electrode and the drain electrode, the passivation layer, and the pixel electrode respectively.
  • the numerous mask exposure patterning processes will increase difficulty in process of manufacturing the array substrate, and will easily produce defects and lead to reduction in product yield due to insufficient alignment accuracy.
  • the present disclosure is provided to overcome at least one of the above and other problems and defects in the prior arts.
  • a method of manufacturing an array substrate comprising steps of:
  • first contact structure comprising a portion located in the first contact hole and contacting the corresponding exposed portion of the active pattern
  • second contact structure comprising a portion located in the second contact hole and contacting the corresponding exposed portion of the active pattern
  • a third conductive material film to directly cover the second conductive material film and the first contact structure and the second contact structure, and processing the third conductive material film and the second conductive material film through a single patterning process so as to form a pixel electrode, a source electrode and a drain electrode, the source electrode and the drain electrode being in contact with the first contact structure and the second contact structure respectively.
  • the second conductive material film is formed from a transparent metal oxide
  • the step of forming an electrically conductive first contact structure and an electrically conductive second contact structure from portions of the second conductive material film comprises:
  • the metal oxide forming the second conductive material film is an indium tin oxide
  • the method comprises reducing the indium tin oxide of the portions of the second conductive material film exposed from the layer of photosensitive insulation film into indium metal by using a reducing gas.
  • the reducing gas includes H 2 or NH 3 .
  • the gate insulation pattern and the second insulation layer are made of a same material.
  • the pixel electrode and one of the first contact structure and the second contact structure are formed into a one-piece structure.
  • the step of processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode comprises:
  • the photoresist pattern comprising a first portion located directly on the gate electrode to be formed and second portions located on either side of the first portion, the first portion having a first thickness, the second portion having a second thickness less than the first thickness;
  • the mask used for exposure and development processes of the photoresist layer includes a halftone mask, the halftone mask comprising a photoresist fully-remained region corresponding to the first portion, a photoresist half-remained region corresponding to the second portions, and a photoresist fully-removed region which includes other regions of the halftone mask except the photoresist fully-remained region and the photoresist half-remained region.
  • the etching of the first conductive material film includes wet etching
  • the etching of the first insulation material film includes dry etching
  • the etching of the semiconductor material film includes wet etching
  • an array substrate comprising: an active pattern, a gate insulation pattern and a gate electrode, which are successively arranged on a base substrate in a stacked configuration; an second insulation layer covering the active pattern, the gate insulation pattern and the gate electrode; a pixel electrode on the second insulation layer; and a source electrode and a drain electrode above the second insulation layer
  • the array substrate further comprises a first contact structure and a second contact structure provided in the same layer as the pixel electrode, each of the first contact structure and the second contact structure penetrates through the second insulation layer and the gate insulation pattern so as to contact the active pattern, the first contact structure is located below the source electrode, and the second contact structure is located below the drain electrode, and the source electrode is electrically connected with the active pattern via the first contact structure, and the drain electrode is electrically connected with the active pattern and the pixel electrode via the second contact structure.
  • the second contact structure and the pixel electrode are formed into a one-piece structure.
  • the pixel electrode includes a transparent metal oxide, each of the first contact structure and the second contact structure is a metal structure, and the metal oxide of the pixel electrode has the same metal component as the metal structure.
  • the metal oxide includes an indium tin oxide
  • the metal structure includes an indium structure
  • the gate insulation pattern is arranged between the gate electrode and the active pattern, an orthographic projection of a portion, which is located directly on the active pattern, of the gate insulation pattern on the base substrate has an area larger than an area of an orthographic projection of the gate electrode on the base substrate and smaller than an area of an orthographic projection of the active pattern on the base substrate.
  • the gate insulation pattern only includes portions located directly on the active pattern.
  • an area of an orthographic projection of the active pattern on the base substrate is larger than an area of an orthographic projection of the gate electrode on the base substrate.
  • orthographic projections of the first contact hole and the second contact hole on the base substrate are located within an orthographic projection of the active pattern on the base substrate.
  • orthographic projections of the first contact structure and the second structure hole on the base substrate at least cover orthographic projections of the first contact hole and the second contact hole on the base substrate.
  • display device comprising the array substrate described in any of embodiments of the present disclosure.
  • FIG. 1 is a flow chart of a method of manufacturing an array substrate according to an exemplary embodiment of the present disclosure
  • FIG. 2A to FIG. 2I are schematic diagrams showing structures formed after respective steps of a method of manufacturing an array substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is structural schematic diagram showing an array substrate according to an exemplary embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method of manufacturing an array substrate.
  • the method mainly comprises following steps S 1 -S 4 :
  • step S 1 forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode.
  • an area of an orthographic projection of the active pattern on the base substrate is larger than an area of an orthographic projection of the gate electrode.
  • a semiconductor material film 20 , a first insulation material film 30 and a first conductive material film 40 are firstly deposited successively on a base substrate 1 , as shown in FIG. 2A ; then, a photoresist layer 100 is coated over the base substrate, and is processed through exposure and development processes so as to form a photoresist pattern, the photoresist pattern comprising a first portion 101 located directly on a gate electrode to be formed and second portions 102 located on either side of the first portion, the first portion 101 having a first thickness h 1 , the second portion 102 having a second thickness h 2 less than the first thickness; thereafter, the semiconductor material film 20 , the first insulation material film 30 and the first conductive material film 40 are etched by using the photoresist pattern as a mask, for example, the first conductive material film 40 is wet etched, the first insulation material film 30 is dry etched, and the semiconductor material film is wet etched, so as to obtain a structure
  • the gate insulation pattern may be only formed directly on the active pattern and does not cover all regions of the base substrate or not cover the whole active pattern.
  • areas of orthographic projections of the gate insulation pattern and the active pattern on the base substrate may be the same as or different from each other, which depends on the structure of the thin film transistor, process requirements and the like.
  • an appropriate mask may be used to perform exposure and development of the photoresist layer.
  • a halftone mask may be used, a region of the mask corresponding to (for example, aligned with, in patterning process) the pattern of the gate electrode 4 to be formed (that is, corresponding to the first portion) is a photoresist fully-remained region, a region of the mask (including a zone corresponding to the second regions) corresponding to (for example, aligned with, in patterning process) portions of the active pattern 2 except a portion thereof located directly below the gate electrode 4 , is a photoresist half-remained region, and other region of mask is a photoresist fully-removed region.
  • the semiconductor material film may be made of a metal oxide semiconductor material such as Indium Gallium Zinc Oxide (IGZO) or the like.
  • IGZO Indium Gallium Zinc Oxide
  • Field effect transistor made of amorphous In—Ga—Zn—O based materials ( ⁇ -IGZO) with composition elements of indium, gallium, zinc and oxide has a higher mobility and a larger switching ratio, and thus can obtain better performances.
  • Step S 2 forming a second insulation layer, and forming a first contact hole and a second contact hole in the gate insulation pattern and the second insulation layer through a single patterning process so as to expose the active pattern, orthographic projections of the first contact hole and the second contact hole on the base substrate being located within the orthographic projection of the active pattern on the base substrate.
  • a second insulation layer 5 is firstly formed (for example, deposited) above the base substrate, and a first contact hole 5 a and a second contact hole 5 b are each formed in the gate insulation pattern 3 and the second insulation layer 5 through a single patterning process so as to expose the active pattern 2 , as shown in FIG. 2D .
  • an orthographic projection of a portion, which is located directly above the active pattern 2 , of the second insulation layer 5 on the base substrate has substantially the same area as an orthographic projection of a portion, which is located directly on the active pattern 2 , of the gate insulation pattern 3 on the base substrate 1 .
  • the present disclosure is not limited to this, and in other embodiments, their orthographic projection areas may be different from each other, which depends on, for example, specific structures, positions, process requirements or the like of the contact holes, the second insulation layer and the gate insulation pattern.
  • the first contact hole 5 a and the second contact hole 5 b are located directly above the active pattern 2 and on either side of the gate insulation pattern 3 respectively.
  • the portion of the second insulation layer 5 located directly above the active pattern 2 covers the whole gate electrode 4 so as to provide better isolation to the gate electrode 4 .
  • the second insulation layer 5 has portions located between the gate electrode 4 and the first contact hole 5 a and the second contact hole 5 b.
  • orthographic projections of the first contact hole 5 a and the second contact hole 5 b on the base substrate 1 are located within the orthographic projection of the active pattern 2 on the base substrate 1 and do not coincide with the orthographic projection of the gate electrode 4 on the base substrate 1 , and an orthographic projection of a portion, which is located directly on the active pattern 2 , of the gate insulation pattern 3 on the base substrate 1 has an area larger than an area of the orthographic projection of the gate electrode 4 on the base substrate and smaller than an area of the orthographic projection of the active pattern 2 on the base substrate.
  • the present disclosure is not limited to this, and those skilled in the art could understand that this may be adjusted according to the specific structure of the thin film transistor and process requirements.
  • FIG. 2C Shown in FIG. 2C is an example where the first contact hole 5 a and the second contact hole 5 b are formed at end edges of the gate insulation pattern 3 . It will be understood that the first contact hole 5 a and the second contact hole 5 b may also be formed at non-edge positions of the gate insulation pattern 3 , such that portions of the gate insulation pattern 3 at sides of the first contact hole and second contact hole located away from the gate electrode 4 are remained and abut portions of the second insulation layer 5 on either side, for example, the gate insulation pattern has portions located between the second insulation layer and the first contact hole and the second contact hole.
  • the pattern of the mask may be designed such that the area of the orthographic projection of the portion, which is located directly on the active pattern 2 , of the gate insulation pattern 3 on the base substrate 1 is between the area of the orthographic projection of the gate electrode 4 on the base substrate and the area of the orthographic projection of the active pattern 2 on the base substrate, which is not particularly limited herein.
  • the gate insulation pattern and the second insulation layer may be made of a same material, which is beneficial in forming the first contact hole 5 a and the second contact hole 5 b at the same time, which penetrate through the gate insulation pattern 3 and the second insulation layer 5 , at a time in the patterning process.
  • Step S 3 forming a second conductive material film, which comprises an electrically conductive first contact structure and an electrically conductive second contact structure being in contact with the active pattern, the first contact structure comprising a portion located within the first contact hole, the second contact structure comprising a portion located within the second contact hole.
  • portions of the second conductive material film 80 located at either side of the gate electrode 4 are respectively formed into a first contact structure 8 a and a second contact structure 8 b, the first contact structure 8 a comprises a portion located in the first contact hole 5 a, and the second contact structure 8 b comprises a portion located in the second contact hole 5 b.
  • an orthographic projection of the first contact structure 8 a on the base substrate 1 fully covers the orthographic projection of the first contact hole 5 a on the base substrate
  • an orthographic projection of the second contact structure 8 b on the base substrate 1 fully covers the orthographic projection of the second contact hole 5 b on the base substrate.
  • the second conductive material film 80 is formed from a transparent conductive material (for example, metal oxide, including ITO).
  • the portion of the first contact structure 8 a located in the first contact hole 5 a has a substantially U shape defining a first center opening or hole 8 a 1
  • the portion of the second contact structure 8 b located in the second contact hole 5 b has a substantially U shape defining a second center opening or hole 8 b 1 .
  • the step of forming the first contact structure 8 a and the second contact structure 8 b of the second conductive material film 80 may comprise:
  • the layer of photosensitive insulation film may be a photoresist layer 100 , as shown in FIG. 2E ;
  • the first contact structure 8 a comprises a portion located in the first contact hole 5 a
  • the second contact structure 8 b comprises a portion located in the second contact hole 5 b, as shown in FIG. 2F .
  • the first contact structure 8 a and the second contact structure 8 b and the pixel electrode 8 are located in a same layer (that is, the second conductive material film) or formed from a same layer, and the portions of the second conductive material film 80 corresponding to the contact holes 5 a and 5 b are formed into the first contact structure 8 a and the second contact structure 8 b through reduction reaction.
  • the material from which the second conductive material film 80 is formed may include a transparent metal oxide, for example, indium tin oxide (ITO) or other metal oxide having a certain thickness in a range enabling a transparent state thereof.
  • ITO indium tin oxide
  • These metal oxides preferably include an oxidized metal material which can be easily reduced, for example, indium oxide component, so that the indium tin oxide may be reduced into indium metal through a process using reducing gas; in an example, the reducing gas includes H2 or NH3.
  • the layer of photosensitive insulation film may include various materials, which are photosensitive and not electrically conductive, including photoresist, and embodiments of the present disclosure will be described by taking the photoresist layer 100 as an example.
  • a transparent second conductive material film 80 and a photoresist layer 100 are formed directly, with portions of the second conductive material film being filled into the contact holes in the second insulation layer 5 , and the pattern of the photoresist layer 100 shown in FIG. 2E is obtained through a single patterning process (including exposure, development and the like), where the photoresist layer 100 is formed with openings at positions corresponding to the contact holes in the second insulation layer 5 and to a source electrode 6 and a drain electrode 7 to be formed (see FIG.
  • the portions (metal oxide) located in the contact holes and the portions (metal oxide) located within regions corresponding to the source electrode and the drain electrode to be formed, of the second conductive material film are processed into indium metal having a low resistance by using reducing gas (H2, NH3 or the like), without using any etching process, and then the photoresist layer 100 is directly peeled off, thereby obtaining the structure of the array substrate shown in FIG. 2F having the first contact structure 8 a and the second contact structure 8 b.
  • reducing gas H2, NH3 or the like
  • Step S 4 forming a third conductive material film over the second conductive material film comprising the first contact structure and the second contact structure, with portions of the third conductive material film being filled into the holes of the first contact structure and the second contact structure, and processing the third conductive material film and the second conductive material film through a single patterning process by using a mask so as to form a pixel electrode, a source electrode and a drain electrode, the source electrode and the drain electrode being located on and in contact with the first contact structure and the second contact structure respectively.
  • a region of the mask corresponding to (for example, aligned with or located directly above, in patterning process) the pattern of the source electrode 6 and the drain electrode 7 to be formed is a photoresist fully-remained region
  • a region of the mask corresponding to the pixel electrode 8 to be formed is a photoresist half-remained region
  • other region of mask is a photoresist fully-removed region.
  • the source electrode 6 and the drain electrode 7 are directly formed on the first contact structure 8 a and the second contact structure 8 b respectively, so that through low resistance of the first contact structure 8 a and the second contact structure 8 b, a better contact effect between the active pattern 2 and the source electrode 6 and the drain electrode 7 may be provided, and the channel effect of the thin film transistor when being turned on can be ensured.
  • the third conductive material film (for example, layer of metal film) 70 may be formed through a sputtering process, such that portions of the third conductive material film 70 are filled into the holes 8 a 1 and 8 b 1 of the first contact structure 8 a and the second contact structure 8 b, and a photoresist layer 200 is formed over the third conductive material film 70 , and then the photoresist layer 200 , the third conductive material film 70 and the second conductive material film 80 are processed through a single patterning process, thereby obtaining the structure of the array substrate shown in FIG. 2I .
  • the third conductive material film 70 may be etched (for example, wet etched) and the second conductive material film 80 may be etched (for example, wet etched), such that portions of the third conductive material film 70 and the second conductive material film 80 are removed (for example, portions of the third conductive material film 70 and the second conductive material film 80 except portions thereof located directly below the pattern of the photoresist layer 200 shown in FIG.
  • portions (for example, including a portion located directly above the pixel electrode to be formed) of the photoresist layer 100 are removed through an ashing process, thereby obtaining the structure of the array substrate shown in FIG. 2H , where the array substrate has been formed with a pattern of a separate source electrode 6 , a pattern of a portion of the pixel electrode and a pattern of a portion of the drain electrode; then, the third conductive material film 70 is again etched (for example, wet etched) by using the remained photoresist layer 100 shown in FIG. 2H as a mask so as to form the drain electrode 7 and the pixel electrode 8 , and finally the remained photoresist is removed, thereby obtaining the structure of the array substrate shown in FIG. 2I .
  • step S 4 the patterns of the source electrode 6 , the drain electrode 7 and the pixel electrode 8 are obtained through a single patterning process, and the pixel electrode 8 is electrically connected with the drain electrode 7 via the contact structure 8 b (for example, indium metal), thereby avoiding complex processes for providing numerous via holes in a passivation layer in prior arts; meanwhile, the source electrode 6 and the drain electrode 7 are electrically connected with the active pattern 2 via the contact structures 8 a, 8 b each having a low resistance, thereby ensuring a better contact effect.
  • the contact structure 8 b for example, indium metal
  • step S 4 may further comprise forming a pattern including data lines from other portions the third conductive material film, while forming patterns of the pixel electrode 8 , the source electrode 6 and the drain electrode 7 , thereby ensuring transmission effect of a data signal from the data line to the source electrode of the thin film transistor.
  • the second conductive material film 80 is directly formed (for example, deposited) after completing the pattern of the second insulation layer 5 , and materials of the portions of the second conductive material film 80 located in the contact holes and corresponding to the source electrode 6 and the drain electrode 7 are processed through reduction reaction (for example, through gas plasma treatment) so as to obtain a metal material layer (for example, indium) having a lower resistance; then, a third conductive material film 70 is directly formed (for example, deposited) on the processed second conductive material film such that portions of the third conductive material film are filled into the center holes of the first contact structure 8 a and the second contact structure 8 b, and the third conductive material film 70 and the second conductive material film 80 are processed through a single patterning process, so as to obtain the source electrode 6 , the drain electrode 7 and the pixel electrode 8 at the same time, thereby greatly simplifying process steps.
  • reduction reaction for example, through gas plasma treatment
  • the active pattern, the gate insulation pattern and the gate electrode are manufactured through a single patterning process by using an appropriate mask (for example, halftone mask), and the source electrode 6 , the drain electrode 7 and the pixel electrode 8 are manufactured through a single patterning process by using an appropriate mask (for example, halftone mask), thereby reducing the number of patterning processes (including mask exposure) by two when compared to a conventional manufacturing method.
  • an appropriate mask for example, halftone mask
  • Portions of the second conductive material film located directly below the source electrode and the drain electrode to be formed are processed through reduction reaction so as to be converted into metal structure (e.g., indium) of low resistance, thereby ensuring better ohmic contact between the active pattern and the source electrode and the drain electrode.
  • metal structure e.g., indium
  • a total of four patterning processes are used in the method of manufacturing an array substrate according to embodiments of the present disclosure, which, when compared to six patterning processes in the conventional method, greatly reduces process steps, reduces process complexity and difficulty, simplifies production process, and largely reduces product defects caused due to inaccurate alignment; further, the active pattern may be prevented from being adversely affected, the connection between the drain electrode and the pixel electrode is greatly simplified, and better interlayer contact can be ensured.
  • FIG. 3 is a partial cross sectional view showing a structure of an array substrate according to an exemplary embodiment of the present disclosure.
  • the array substrate comprises an active pattern 2 , a gate insulation pattern 3 , a gate electrode 4 , a second insulation layer 5 , a pixel electrode 8 , and a source electrode 6 and a drain electrode 7 located in a same layer, which are successively arranged on a base substrate 1 in a stacked configuration;
  • the array substrate further comprises a first contact structure 8 a and a second contact structure 8 b, which are electrically conductive (for example, metal), located below the source electrode 6 and the drain electrode 7 , and arranged in the same layer as the pixel electrode 8 (the pixel electrode 8 , the first contact structure 8 a and the second contact structure 8 b are formed simultaneously), that is, the first contact structure 8 a and the second contact structure 8 b and the pixel electrode 8 are arranged in a same layer or formed from a
  • the pixel electrode 8 includes a transparent metal oxide, and the first contact structure 8 a and the second contact structure 8 b include metal; the metal oxide of the pixel electrode 8 contains the same metal component as the first contact structure 8 a and the second contact structure 8 b.
  • the transparent metal oxide of forming the pixel electrode 8 may be indium tin oxide, and the metal of the first contact structure 8 a and the second contact structure 8 b may be indium.
  • the transparent metal oxide of forming the pixel electrode 8 may also include other metal oxide having a certain thickness in a range enabling a transparent state thereof.
  • These metal oxides preferably include an oxidated metal material which can be easily reduced, for example, indium oxide component, so that the indium tin oxide may be reduced into indium metal through a process using reducing gas.
  • the gate insulation pattern 3 is arranged between the gate electrode 4 and the active pattern 2 , and an orthographic projection of a portion, which is located directly on the active pattern 2 , of the gate insulation pattern 2 on the base substrate 1 has an area larger than an area of an orthographic projection of the gate electrode 4 on the base substrate and smaller than an area of an orthographic projection of the active pattern 2 on the base substrate, such that the gate insulation pattern 3 covers a portion of the active pattern 2 from above, thereby facilitating contacting of the active pattern 2 with the source electrode 6 and the drain electrode 7 located above the gate insulation pattern 3 .
  • the array substrate Compared to the thin film transistor of a conventional array substrate, the array substrate provided according to embodiments of the present disclosure comprises metal contact structure (for example, indium), which is located below both the source electrode and the drain electrode and through which the source electrode and the drain electrode are electrically connected with the active pattern and the pixel electrode respectively, thereby ensuring better contact effect between the active pattern and the source electrode and the drain electrode.
  • metal contact structure for example, indium
  • the active pattern is made of a metal oxide semiconductor material and thus has better characteristics, ensuing better characteristics (including switching characteristic) of the thin film transistor and thereby ensuring performances of the array substrate. Meanwhile, the array substrate has a simple structure and better interlayer contact performance.
  • An embodiment of the present disclosure further provides a display device, comprising the array substrate described above in any embodiment or the array substrate formed by the method described above in any embodiment.
  • the display device may be any product or component which has a display function, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a laptop, a digital photo frame, a navigator or the like.
  • a display function such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a laptop, a digital photo frame, a navigator or the like.
  • the display device comprises the above array substrate and thus has a better display performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

Embodiments of the disclosure provide an array substrate and a manufacturing method thereof, and a display device. The method includes: forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing these films through a single patterning process to form an active pattern, a gate insulation pattern and a gate electrode; forming a second insulation layer and forming two contact holes in the second insulation layer and gate insulation pattern; forming a second conductive material film and forming two contact structures from portions of this layer; and forming a third conductive material film, and processing this layer through a single patterning process to form a pixel electrode, and source and drain electrodes being in direct contact with the two contact structures respectively, the pixel electrode and one contact structure being integrated into one piece.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of the Chinese Patent Application No. 201610968576. 6 filed on Oct. 27, 2016 in the State Intellectual Property Office of China, the whole disclosure of which is incorporated herein by reference.
  • BACKGROUND Technical Field
  • Embodiments of the present disclosure generally relate to the field of display technologies, and in particular, to a method of manufacturing an array substrate, an array substrate and a display device.
  • Description of the Related Art
  • In the field of liquid crystal display, a silicon based material (including amorphous silicon and polysilicon), which has stable characteristics, excellent processability and the like, is generally used as a material for an active pattern of a thin film transistor (TFT). The amorphous silicon has a lower mobility and the poly silicon has a higher mobility, but the thin film transistor made of the polysilicon has a poor uniformity, a low yield and a high unit cost. In recent years, technologies where a transparent oxide semiconductor film is used to manufacture a channel formation region of the thin film transistor and applied in electronic devices and optical devices have attracted considerable attention.
  • An existing array substrate, which comprises an oxide thin film transistor having a top gate electrode configuration, comprises an active pattern, a gate insulation pattern, a gate electrode, a second insulation layer, a source electrode and a drain electrode, a passivation layer and a pixel electrode formed successively on a base substrate. The source electrode and the drain electrode are each made of a metal material having a smaller resistance, arranged on the second insulation layer, and connected with the active pattern through via holes. The pixel electrode is provided on the passivation layer, and the passivation layer is provided therein with a via hole, through which the pixel electrode is connected with the drain electrode. Further, since the pixel electrode and the drain electrode are arranged with the passivation layer therebetween, a plurality of via holes needs to be provided in the passivation layer for ensuring connection between the pixel electrode and the drain electrode, which is difficult in process. If the pixel electrode is firstly formed and then the drain electrode is directly formed on the pixel electrode such that they are directly connected with each other, eliminating via holes for interconnecting the pixel electrode and the drain electrode, an etching solution used in a subsequent wet etching process made on the pixel electrode will adversely affect the active pattern.
  • Meanwhile, existing processes of manufacturing an array substrate comprising an oxide thin film transistor include six patterning processes for forming the active pattern, the gate electrode, the second insulation layer and the via hole in the gate insulation pattern, data lines and the source electrode and the drain electrode, the passivation layer, and the pixel electrode respectively. The numerous mask exposure patterning processes will increase difficulty in process of manufacturing the array substrate, and will easily produce defects and lead to reduction in product yield due to insufficient alignment accuracy.
  • SUMMARY
  • The present disclosure is provided to overcome at least one of the above and other problems and defects in the prior arts.
  • According to an embodiment of an aspect of the present disclosure, there is provided a method of manufacturing an array substrate, comprising steps of:
  • forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode;
  • forming a second insulation layer over the active pattern, the gate insulation pattern and the gate electrode, and forming a first contact hole and a second contact hole through a single patterning process, each of the first contact hole and the second contact hole penetrating through the gate insulation pattern and the second insulation layer so as to expose portions of the active pattern;
  • forming a second conductive material film with portions thereof being filled into the first contact hole and the second contact hole, and forming an electrically conductive first contact structure and an electrically conductive second contact structure from portions of the second conductive material film, the first contact structure comprising a portion located in the first contact hole and contacting the corresponding exposed portion of the active pattern, the second contact structure comprising a portion located in the second contact hole and contacting the corresponding exposed portion of the active pattern; and
  • forming a third conductive material film to directly cover the second conductive material film and the first contact structure and the second contact structure, and processing the third conductive material film and the second conductive material film through a single patterning process so as to form a pixel electrode, a source electrode and a drain electrode, the source electrode and the drain electrode being in contact with the first contact structure and the second contact structure respectively.
  • In one embodiment, the second conductive material film is formed from a transparent metal oxide, and the step of forming an electrically conductive first contact structure and an electrically conductive second contact structure from portions of the second conductive material film comprises:
  • forming a layer of photosensitive insulation film over the second conductive material film, and removing, through a single patterning process, portions of the layer of photosensitive insulation film corresponding to the first contact structure and the second contact structure to be formed, so as to expose portions of the second conductive material film for forming the first contact structure and the second contact structure; and
  • reducing the metal oxide of the portions of the second conductive material film exposed from the layer of photosensitive insulation film into a metal, such that the exposed portion of the second conductive material film corresponding to the first contact hole is formed into the first contact structure and the exposed portion of the second conductive material film corresponding to the second contact hole is formed into the second contact structure.
  • In one embodiment, the metal oxide forming the second conductive material film is an indium tin oxide, and the method comprises reducing the indium tin oxide of the portions of the second conductive material film exposed from the layer of photosensitive insulation film into indium metal by using a reducing gas.
  • In one embodiment, the reducing gas includes H2 or NH3.
  • In one embodiment, the gate insulation pattern and the second insulation layer are made of a same material.
  • In one embodiment, the pixel electrode and one of the first contact structure and the second contact structure are formed into a one-piece structure.
  • In one embodiment, the step of processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode comprises:
  • coating a photoresist layer over the first conductive material film;
  • processing the photoresist layer through exposure and development processes by using a mask so as to form a photoresist pattern, the photoresist pattern comprising a first portion located directly on the gate electrode to be formed and second portions located on either side of the first portion, the first portion having a first thickness, the second portion having a second thickness less than the first thickness;
  • etching the semiconductor material film, the first insulation material film and the first conductive material film by using the photoresist pattern as a mask so as to form the active pattern and the gate insulation pattern;
  • removing the second portions of the photoresist layer so as to expose portions of the first conductive material film on either side of the gate electrode to be formed; and
  • etching and removing the portions of the first conductive material film on either side of the gate electrode to be formed by using remained portions of the photoresist layer as a mask, so as to form the gate electrode.
  • In one embodiment, the mask used for exposure and development processes of the photoresist layer includes a halftone mask, the halftone mask comprising a photoresist fully-remained region corresponding to the first portion, a photoresist half-remained region corresponding to the second portions, and a photoresist fully-removed region which includes other regions of the halftone mask except the photoresist fully-remained region and the photoresist half-remained region.
  • In one embodiment, the etching of the first conductive material film includes wet etching, the etching of the first insulation material film includes dry etching, and the etching of the semiconductor material film includes wet etching.
  • According to an embodiment of another aspect of the present disclosure, there is provided an array substrate, comprising: an active pattern, a gate insulation pattern and a gate electrode, which are successively arranged on a base substrate in a stacked configuration; an second insulation layer covering the active pattern, the gate insulation pattern and the gate electrode; a pixel electrode on the second insulation layer; and a source electrode and a drain electrode above the second insulation layer, the array substrate further comprises a first contact structure and a second contact structure provided in the same layer as the pixel electrode, each of the first contact structure and the second contact structure penetrates through the second insulation layer and the gate insulation pattern so as to contact the active pattern, the first contact structure is located below the source electrode, and the second contact structure is located below the drain electrode, and the source electrode is electrically connected with the active pattern via the first contact structure, and the drain electrode is electrically connected with the active pattern and the pixel electrode via the second contact structure.
  • In one embodiment, the second contact structure and the pixel electrode are formed into a one-piece structure.
  • In one embodiment, the pixel electrode includes a transparent metal oxide, each of the first contact structure and the second contact structure is a metal structure, and the metal oxide of the pixel electrode has the same metal component as the metal structure.
  • In one embodiment, the metal oxide includes an indium tin oxide, and the metal structure includes an indium structure.
  • In one embodiment, the gate insulation pattern is arranged between the gate electrode and the active pattern, an orthographic projection of a portion, which is located directly on the active pattern, of the gate insulation pattern on the base substrate has an area larger than an area of an orthographic projection of the gate electrode on the base substrate and smaller than an area of an orthographic projection of the active pattern on the base substrate.
  • In one embodiment, the gate insulation pattern only includes portions located directly on the active pattern.
  • In one embodiment, an area of an orthographic projection of the active pattern on the base substrate is larger than an area of an orthographic projection of the gate electrode on the base substrate.
  • In one embodiment, orthographic projections of the first contact hole and the second contact hole on the base substrate are located within an orthographic projection of the active pattern on the base substrate.
  • In one embodiment, orthographic projections of the first contact structure and the second structure hole on the base substrate at least cover orthographic projections of the first contact hole and the second contact hole on the base substrate.
  • According to an embodiment of a further aspect of the present disclosure, there is provided display device, comprising the array substrate described in any of embodiments of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart of a method of manufacturing an array substrate according to an exemplary embodiment of the present disclosure;
  • FIG. 2A to FIG. 2I are schematic diagrams showing structures formed after respective steps of a method of manufacturing an array substrate according to an exemplary embodiment of the present disclosure; and
  • FIG. 3 is structural schematic diagram showing an array substrate according to an exemplary embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • In order to make objects, technical schemes and advantages of the present disclosure clearer, the disclosure will be described in further detail with reference to the accompanying drawings. Obviously, the described embodiments are merely a part of embodiments of the disclosure, rather than being all embodiments thereof. Based on the embodiments of the disclosure, all other embodiments arrived at by those ordinary skilled in the art without any inventive step will fall within the scope of the disclosure.
  • Further, in the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
  • An embodiment of the present disclosure provides a method of manufacturing an array substrate. With reference to FIG. 1-2H, the method mainly comprises following steps S1-S4:
  • step S1: forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode. In some example, an area of an orthographic projection of the active pattern on the base substrate is larger than an area of an orthographic projection of the gate electrode.
  • Exemplarily, in this step, a semiconductor material film 20, a first insulation material film 30 and a first conductive material film 40 (for example, a metal film) are firstly deposited successively on a base substrate 1, as shown in FIG. 2A; then, a photoresist layer 100 is coated over the base substrate, and is processed through exposure and development processes so as to form a photoresist pattern, the photoresist pattern comprising a first portion 101 located directly on a gate electrode to be formed and second portions 102 located on either side of the first portion, the first portion 101 having a first thickness h1, the second portion 102 having a second thickness h2 less than the first thickness; thereafter, the semiconductor material film 20, the first insulation material film 30 and the first conductive material film 40 are etched by using the photoresist pattern as a mask, for example, the first conductive material film 40 is wet etched, the first insulation material film 30 is dry etched, and the semiconductor material film is wet etched, so as to obtain a structure of the array substrate shown in FIG. 2B, forming an active pattern 2 (formed from the semiconductor material film) and a gate insulation pattern 3 (formed from the first insulation material film); subsequently, the second portions of the photoresist layer 100 is removed through an ashing process so as to expose a portion of the first conductive material film 40, then the first conductive material film 40 is etched (for example, wet etched) again by using remained photoresist, so as to form a gate electrode 4, and finally the photoresist is removed, obtaining a structure of the array substrate shown in FIG. 2C. In some embodiments, the gate insulation pattern may be only formed directly on the active pattern and does not cover all regions of the base substrate or not cover the whole active pattern. Of course, it may be appreciated that in other embodiments, areas of orthographic projections of the gate insulation pattern and the active pattern on the base substrate may be the same as or different from each other, which depends on the structure of the thin film transistor, process requirements and the like.
  • In some embodiments, an appropriate mask may be used to perform exposure and development of the photoresist layer. For example, a halftone mask may be used, a region of the mask corresponding to (for example, aligned with, in patterning process) the pattern of the gate electrode 4 to be formed (that is, corresponding to the first portion) is a photoresist fully-remained region, a region of the mask (including a zone corresponding to the second regions) corresponding to (for example, aligned with, in patterning process) portions of the active pattern 2 except a portion thereof located directly below the gate electrode 4, is a photoresist half-remained region, and other region of mask is a photoresist fully-removed region.
  • Exemplarily, the semiconductor material film may be made of a metal oxide semiconductor material such as Indium Gallium Zinc Oxide (IGZO) or the like. Field effect transistor made of amorphous In—Ga—Zn—O based materials (α-IGZO) with composition elements of indium, gallium, zinc and oxide has a higher mobility and a larger switching ratio, and thus can obtain better performances.
  • Step S2: forming a second insulation layer, and forming a first contact hole and a second contact hole in the gate insulation pattern and the second insulation layer through a single patterning process so as to expose the active pattern, orthographic projections of the first contact hole and the second contact hole on the base substrate being located within the orthographic projection of the active pattern on the base substrate.
  • In this step S2, exemplarily, a second insulation layer 5 is firstly formed (for example, deposited) above the base substrate, and a first contact hole 5 a and a second contact hole 5 b are each formed in the gate insulation pattern 3 and the second insulation layer 5 through a single patterning process so as to expose the active pattern 2, as shown in FIG. 2D. In an exemplary embodiment, as shown in FIG. 2D, an orthographic projection of a portion, which is located directly above the active pattern 2, of the second insulation layer 5 on the base substrate has substantially the same area as an orthographic projection of a portion, which is located directly on the active pattern 2, of the gate insulation pattern 3 on the base substrate 1. The present disclosure, however, is not limited to this, and in other embodiments, their orthographic projection areas may be different from each other, which depends on, for example, specific structures, positions, process requirements or the like of the contact holes, the second insulation layer and the gate insulation pattern. The first contact hole 5 a and the second contact hole 5 b are located directly above the active pattern 2 and on either side of the gate insulation pattern 3 respectively. In illustrated example, the portion of the second insulation layer 5 located directly above the active pattern 2 covers the whole gate electrode 4 so as to provide better isolation to the gate electrode 4. For example, the second insulation layer 5 has portions located between the gate electrode 4 and the first contact hole 5 a and the second contact hole 5 b.
  • In some embodiments, as shown in FIG. 2D, orthographic projections of the first contact hole 5 a and the second contact hole 5 b on the base substrate 1 are located within the orthographic projection of the active pattern 2 on the base substrate 1 and do not coincide with the orthographic projection of the gate electrode 4 on the base substrate 1, and an orthographic projection of a portion, which is located directly on the active pattern 2, of the gate insulation pattern 3 on the base substrate 1 has an area larger than an area of the orthographic projection of the gate electrode 4 on the base substrate and smaller than an area of the orthographic projection of the active pattern 2 on the base substrate. The present disclosure, however, is not limited to this, and those skilled in the art could understand that this may be adjusted according to the specific structure of the thin film transistor and process requirements.
  • Shown in FIG. 2C is an example where the first contact hole 5 a and the second contact hole 5 b are formed at end edges of the gate insulation pattern 3. It will be understood that the first contact hole 5 a and the second contact hole 5 b may also be formed at non-edge positions of the gate insulation pattern 3, such that portions of the gate insulation pattern 3 at sides of the first contact hole and second contact hole located away from the gate electrode 4 are remained and abut portions of the second insulation layer 5 on either side, for example, the gate insulation pattern has portions located between the second insulation layer and the first contact hole and the second contact hole. Correspondingly, in step 51, the pattern of the mask may be designed such that the area of the orthographic projection of the portion, which is located directly on the active pattern 2, of the gate insulation pattern 3 on the base substrate 1 is between the area of the orthographic projection of the gate electrode 4 on the base substrate and the area of the orthographic projection of the active pattern 2 on the base substrate, which is not particularly limited herein.
  • In one exemplary embodiment, the gate insulation pattern and the second insulation layer may be made of a same material, which is beneficial in forming the first contact hole 5 a and the second contact hole 5 b at the same time, which penetrate through the gate insulation pattern 3 and the second insulation layer 5, at a time in the patterning process.
  • Step S3: forming a second conductive material film, which comprises an electrically conductive first contact structure and an electrically conductive second contact structure being in contact with the active pattern, the first contact structure comprising a portion located within the first contact hole, the second contact structure comprising a portion located within the second contact hole.
  • In this step, referring to FIG. 2E and 2F, portions of the second conductive material film 80 located at either side of the gate electrode 4 are respectively formed into a first contact structure 8 a and a second contact structure 8 b, the first contact structure 8 a comprises a portion located in the first contact hole 5 a, and the second contact structure 8 b comprises a portion located in the second contact hole 5 b. Exemplarily, as shown in the figures, an orthographic projection of the first contact structure 8 a on the base substrate 1 fully covers the orthographic projection of the first contact hole 5 a on the base substrate, and an orthographic projection of the second contact structure 8 b on the base substrate 1 fully covers the orthographic projection of the second contact hole 5 b on the base substrate. In an example, the second conductive material film 80 is formed from a transparent conductive material (for example, metal oxide, including ITO).
  • In some embodiments of the present disclosure, as shown in FIG. 2E and 2F, the portion of the first contact structure 8 a located in the first contact hole 5 a has a substantially U shape defining a first center opening or hole 8 a 1, and the portion of the second contact structure 8 b located in the second contact hole 5 b has a substantially U shape defining a second center opening or hole 8 b 1.
  • In one embodiment, the step of forming the first contact structure 8 a and the second contact structure 8 b of the second conductive material film 80 may comprise:
  • forming a layer of photosensitive insulation film over the second conductive material film 80, and removing, through a single patterning process, portions of the layer of photosensitive insulation film corresponding to the first contact hole 5 a and the second contact hole 5 b; for example, the layer of photosensitive insulation film may be a photoresist layer 100, as shown in FIG. 2E;
  • reducing the metal oxide of at least the portions of the second conductive material film 80 corresponding to the first contact hole 5 a and the second contact hole 5 b (including the portions located in the first contact hole 5 a and the second contact hole 5 b) into a metal, such that the portion of the second conductive material film 80 corresponding to the first contact hole 5 a is formed into the conductive first contact structure 8 a and the portion of the second conductive material film 80 corresponding to the second contact hole 5 b is formed into the conductive second contact structure 8 b, the first contact structure 8 a comprises a portion located in the first contact hole 5 a, and the second contact structure 8 b comprises a portion located in the second contact hole 5 b, as shown in FIG. 2F. As can be seen from FIG. 2F, the first contact structure 8 a and the second contact structure 8 b and the pixel electrode 8(see FIG. 2I) are located in a same layer (that is, the second conductive material film) or formed from a same layer, and the portions of the second conductive material film 80 corresponding to the contact holes 5 a and 5 b are formed into the first contact structure 8 a and the second contact structure 8 b through reduction reaction.
  • Exemplarily, the material from which the second conductive material film 80 is formed may include a transparent metal oxide, for example, indium tin oxide (ITO) or other metal oxide having a certain thickness in a range enabling a transparent state thereof. These metal oxides preferably include an oxidized metal material which can be easily reduced, for example, indium oxide component, so that the indium tin oxide may be reduced into indium metal through a process using reducing gas; in an example, the reducing gas includes H2 or NH3. The layer of photosensitive insulation film may include various materials, which are photosensitive and not electrically conductive, including photoresist, and embodiments of the present disclosure will be described by taking the photoresist layer 100 as an example.
  • In this step, after completing the pattern of the second insulation layer 5, a transparent second conductive material film 80 and a photoresist layer 100 are formed directly, with portions of the second conductive material film being filled into the contact holes in the second insulation layer 5, and the pattern of the photoresist layer 100 shown in FIG. 2E is obtained through a single patterning process (including exposure, development and the like), where the photoresist layer 100 is formed with openings at positions corresponding to the contact holes in the second insulation layer 5 and to a source electrode 6 and a drain electrode 7 to be formed (see FIG. 2I); then, the portions (metal oxide) located in the contact holes and the portions (metal oxide) located within regions corresponding to the source electrode and the drain electrode to be formed, of the second conductive material film are processed into indium metal having a low resistance by using reducing gas (H2, NH3 or the like), without using any etching process, and then the photoresist layer 100 is directly peeled off, thereby obtaining the structure of the array substrate shown in FIG. 2F having the first contact structure 8 a and the second contact structure 8 b.
  • Step S4: forming a third conductive material film over the second conductive material film comprising the first contact structure and the second contact structure, with portions of the third conductive material film being filled into the holes of the first contact structure and the second contact structure, and processing the third conductive material film and the second conductive material film through a single patterning process by using a mask so as to form a pixel electrode, a source electrode and a drain electrode, the source electrode and the drain electrode being located on and in contact with the first contact structure and the second contact structure respectively.
  • In some embodiments, in the mask used for forming the pixel electrode 8, the source electrode 6 and the drain electrode 7, a region of the mask corresponding to (for example, aligned with or located directly above, in patterning process) the pattern of the source electrode 6 and the drain electrode 7 to be formed is a photoresist fully-remained region, a region of the mask corresponding to the pixel electrode 8 to be formed is a photoresist half-remained region, and other region of mask is a photoresist fully-removed region. As shown in FIG. 2I, the source electrode 6 and the drain electrode 7 are directly formed on the first contact structure 8 a and the second contact structure 8 b respectively, so that through low resistance of the first contact structure 8 a and the second contact structure 8 b, a better contact effect between the active pattern 2 and the source electrode 6 and the drain electrode 7 may be provided, and the channel effect of the thin film transistor when being turned on can be ensured.
  • In this step, the third conductive material film (for example, layer of metal film) 70 may be formed through a sputtering process, such that portions of the third conductive material film 70 are filled into the holes 8 a 1 and 8 b 1 of the first contact structure 8 a and the second contact structure 8 b, and a photoresist layer 200 is formed over the third conductive material film 70, and then the photoresist layer 200, the third conductive material film 70 and the second conductive material film 80 are processed through a single patterning process, thereby obtaining the structure of the array substrate shown in FIG. 2I. Exemplarily, after forming the pattern of the photoresist layer 200 (including portions located directly above the source electrode, the drain electrode and the pixel electrode to be formed) as shown in FIG. 2G, the third conductive material film 70 may be etched (for example, wet etched) and the second conductive material film 80 may be etched (for example, wet etched), such that portions of the third conductive material film 70 and the second conductive material film 80 are removed (for example, portions of the third conductive material film 70 and the second conductive material film 80 except portions thereof located directly below the pattern of the photoresist layer 200 shown in FIG. 2G, including the right portion in the figure and the portion above the gate electrode 4); next, portions (for example, including a portion located directly above the pixel electrode to be formed) of the photoresist layer 100 are removed through an ashing process, thereby obtaining the structure of the array substrate shown in FIG. 2H, where the array substrate has been formed with a pattern of a separate source electrode 6, a pattern of a portion of the pixel electrode and a pattern of a portion of the drain electrode; then, the third conductive material film 70 is again etched (for example, wet etched) by using the remained photoresist layer 100 shown in FIG. 2H as a mask so as to form the drain electrode 7 and the pixel electrode 8, and finally the remained photoresist is removed, thereby obtaining the structure of the array substrate shown in FIG. 2I.
  • In step S4, the patterns of the source electrode 6, the drain electrode 7 and the pixel electrode 8 are obtained through a single patterning process, and the pixel electrode 8 is electrically connected with the drain electrode 7 via the contact structure 8 b (for example, indium metal), thereby avoiding complex processes for providing numerous via holes in a passivation layer in prior arts; meanwhile, the source electrode 6 and the drain electrode 7 are electrically connected with the active pattern 2 via the contact structures 8 a, 8 b each having a low resistance, thereby ensuring a better contact effect. With this configuration, not only a better electrical connection between the drain electrode 7 and the pixel electrode 8 can be achieved, but also the metal oxide material of the active pattern may be prevented from being corroded by any etching solution when manufacturing the pixel electrode, thereby ensuring stability of characteristics of the active pattern.
  • It will be understood that the step S4 may further comprise forming a pattern including data lines from other portions the third conductive material film, while forming patterns of the pixel electrode 8, the source electrode 6 and the drain electrode 7, thereby ensuring transmission effect of a data signal from the data line to the source electrode of the thin film transistor.
  • During the above processes described in embodiments of the present disclosure, the second conductive material film 80 is directly formed (for example, deposited) after completing the pattern of the second insulation layer 5, and materials of the portions of the second conductive material film 80 located in the contact holes and corresponding to the source electrode 6 and the drain electrode 7 are processed through reduction reaction (for example, through gas plasma treatment) so as to obtain a metal material layer (for example, indium) having a lower resistance; then, a third conductive material film 70 is directly formed (for example, deposited) on the processed second conductive material film such that portions of the third conductive material film are filled into the center holes of the first contact structure 8 a and the second contact structure 8 b, and the third conductive material film 70 and the second conductive material film 80 are processed through a single patterning process, so as to obtain the source electrode 6, the drain electrode 7 and the pixel electrode 8 at the same time, thereby greatly simplifying process steps.
  • In the method of manufacturing an array substrate including a top gate electrode type thin film transistor according to embodiments of the present disclosure, the active pattern, the gate insulation pattern and the gate electrode are manufactured through a single patterning process by using an appropriate mask (for example, halftone mask), and the source electrode 6, the drain electrode 7 and the pixel electrode 8 are manufactured through a single patterning process by using an appropriate mask (for example, halftone mask), thereby reducing the number of patterning processes (including mask exposure) by two when compared to a conventional manufacturing method. Portions of the second conductive material film located directly below the source electrode and the drain electrode to be formed are processed through reduction reaction so as to be converted into metal structure (e.g., indium) of low resistance, thereby ensuring better ohmic contact between the active pattern and the source electrode and the drain electrode.
  • A total of four patterning processes are used in the method of manufacturing an array substrate according to embodiments of the present disclosure, which, when compared to six patterning processes in the conventional method, greatly reduces process steps, reduces process complexity and difficulty, simplifies production process, and largely reduces product defects caused due to inaccurate alignment; further, the active pattern may be prevented from being adversely affected, the connection between the drain electrode and the pixel electrode is greatly simplified, and better interlayer contact can be ensured.
  • Further, an embodiment of the present disclosure provides an array substrate. FIG. 3 is a partial cross sectional view showing a structure of an array substrate according to an exemplary embodiment of the present disclosure. As shown in FIG. 3, the array substrate comprises an active pattern 2, a gate insulation pattern 3, a gate electrode 4, a second insulation layer 5, a pixel electrode 8, and a source electrode 6 and a drain electrode 7 located in a same layer, which are successively arranged on a base substrate 1 in a stacked configuration; the array substrate further comprises a first contact structure 8 a and a second contact structure 8 b, which are electrically conductive (for example, metal), located below the source electrode 6 and the drain electrode 7, and arranged in the same layer as the pixel electrode 8 (the pixel electrode 8, the first contact structure 8 a and the second contact structure 8 b are formed simultaneously), that is, the first contact structure 8 a and the second contact structure 8 b and the pixel electrode 8 are arranged in a same layer or formed from a same layer; the source electrode 6 is electrically connected with the active pattern 2 via the first contact structure 8 a, and the drain electrode 7 is electrically connected with the active pattern 2 and the pixel electrode 8 via the second contact structure 8 b. The array substrate has a simple structure, and can reduce process complexity and reduce product defects caused due to inaccurate interlayer alignment of the contact holes.
  • Exemplarily, the pixel electrode 8 includes a transparent metal oxide, and the first contact structure 8 a and the second contact structure 8 b include metal; the metal oxide of the pixel electrode 8 contains the same metal component as the first contact structure 8 a and the second contact structure 8 b. For example, the transparent metal oxide of forming the pixel electrode 8 may be indium tin oxide, and the metal of the first contact structure 8 a and the second contact structure 8 b may be indium. Of course, the transparent metal oxide of forming the pixel electrode 8 may also include other metal oxide having a certain thickness in a range enabling a transparent state thereof. These metal oxides preferably include an oxidated metal material which can be easily reduced, for example, indium oxide component, so that the indium tin oxide may be reduced into indium metal through a process using reducing gas.
  • In some embodiments, the gate insulation pattern 3 is arranged between the gate electrode 4 and the active pattern 2, and an orthographic projection of a portion, which is located directly on the active pattern 2, of the gate insulation pattern 2 on the base substrate 1 has an area larger than an area of an orthographic projection of the gate electrode 4 on the base substrate and smaller than an area of an orthographic projection of the active pattern 2 on the base substrate, such that the gate insulation pattern 3 covers a portion of the active pattern 2 from above, thereby facilitating contacting of the active pattern 2 with the source electrode 6 and the drain electrode 7 located above the gate insulation pattern 3. Compared to the thin film transistor of a conventional array substrate, the array substrate provided according to embodiments of the present disclosure comprises metal contact structure (for example, indium), which is located below both the source electrode and the drain electrode and through which the source electrode and the drain electrode are electrically connected with the active pattern and the pixel electrode respectively, thereby ensuring better contact effect between the active pattern and the source electrode and the drain electrode.
  • In the array substrate comprising a top gate electrode type thin film transistor according to embodiments of the present disclosure, the active pattern is made of a metal oxide semiconductor material and thus has better characteristics, ensuing better characteristics (including switching characteristic) of the thin film transistor and thereby ensuring performances of the array substrate. Meanwhile, the array substrate has a simple structure and better interlayer contact performance.
  • An embodiment of the present disclosure further provides a display device, comprising the array substrate described above in any embodiment or the array substrate formed by the method described above in any embodiment.
  • Exemplarily, the display device may be any product or component which has a display function, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a laptop, a digital photo frame, a navigator or the like.
  • The display device comprises the above array substrate and thus has a better display performance.
  • It should be appreciated that the above described contents are only exemplary embodiments for illuminating inventive concepts of the present disclosure, and are not intended to limit the present disclosure. Various changes or modifications may be made by those skilled in the art without departing from the principle and spirit of the present disclosure and shall fall within the scope of the present disclosure.

Claims (20)

What is claimed is:
1. A method of manufacturing an array substrate, comprising steps of:
forming a semiconductor material film, a first insulation material film and a first conductive material film successively on a base substrate, and processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode;
forming a second insulation layer over the active pattern, the gate insulation pattern and the gate electrode, and forming a first contact hole and a second contact hole through a single patterning process, each of the first contact hole and the second contact hole penetrating through the gate insulation pattern and the second insulation layer so as to expose portions of the active pattern;
forming a second conductive material film with portions thereof being filled into the first contact hole and the second contact hole, and forming an electrically conductive first contact structure and an electrically conductive second contact structure from portions of the second conductive material film, the first contact structure comprising a portion located in the first contact hole and contacting the corresponding exposed portion of the active pattern, the second contact structure comprising a portion located in the second contact hole and contacting the corresponding exposed portion of the active pattern; and
forming a third conductive material film to directly cover the second conductive material film and the first contact structure and the second contact structure, and processing the third conductive material film and the second conductive material film through a single patterning process so as to form a pixel electrode, a source electrode and a drain electrode, the source electrode and the drain electrode being in direct contact with the first contact structure and the second contact structure respectively.
2. The method according to claim 1, wherein the second conductive material film is formed from a transparent metal oxide, and the step of forming an electrically conductive first contact structure and an electrically conductive second contact structure from portions of the second conductive material film comprises:
forming a layer of photosensitive insulation film over the second conductive material film, and removing, through a single patterning process, portions of the layer of photosensitive insulation film corresponding to the first contact structure and the second contact structure to be formed, so as to expose portions of the second conductive material film for forming the first contact structure and the second contact structure; and
reducing the metal oxide of the portions of the second conductive material film exposed from the layer of photosensitive insulation film into a metal, such that the exposed portion of the second conductive material film corresponding to the first contact hole is formed into the first contact structure and the exposed portion of the second conductive material film corresponding to the second contact hole is formed into the second contact structure.
3. The method according to claim 2, wherein the metal oxide forming the second conductive material film is an indium tin oxide, and the method comprises reducing the indium tin oxide of the portions of the second conductive material film exposed from the layer of photosensitive insulation film into indium metal by using a reducing gas.
4. The method according to claim 3, wherein the reducing gas includes H2 or NH3.
5. The method according to claim 1, wherein the gate insulation pattern and the second insulation layer are made of a same material.
6. The method according to claim 2, wherein the gate insulation pattern and the second insulation layer are made of a same material.
7. The method according to claim 3, wherein the pixel electrode and one of the first contact structure and the second contact structure are formed into a one-piece structure.
8. The method according to claim 1, wherein the step of processing the semiconductor material film, the first insulation material film and the first conductive material film through a single patterning process so as to form an active pattern, a gate insulation pattern and a gate electrode comprises:
coating a photoresist layer over the first conductive material film;
processing the photoresist layer through exposure and development processes by using a mask so as to form a photoresist pattern, the photoresist pattern comprising a first portion located directly on the gate electrode to be formed and second portions located on either side of the first portion, the first portion having a first thickness, the second portions having a second thickness less than the first thickness;
etching the semiconductor material film, the first insulation material film and the first conductive material film by using the photoresist pattern as a mask so as to form the active pattern and the gate insulation pattern;
removing the second portions of the photoresist layer so as to expose portions of the first conductive material film on either side of the gate electrode to be formed; and
etching and removing the portions of the first conductive material film on either side of the gate electrode to be formed by using remained portions of the photoresist layer as a mask, so as to form the gate electrode.
9. The method according to claim 8, wherein the mask used for exposure and development processes of the photoresist layer includes a halftone mask, the halftone mask comprising a photoresist fully-remained region corresponding to the first portion, a photoresist half-remained region corresponding to the second portions, and a photoresist fully-removed region which includes other regions of the halftone mask except the photoresist fully-remained region and the photoresist half-remained region.
10. The method according to claim 8, wherein the etching of the first conductive material film includes wet etching, the etching of the first insulation material film includes dry etching, and the etching of the semiconductor material film includes wet etching.
11. An array substrate, comprising:
an active pattern, a gate insulation pattern and a gate electrode, which are successively arranged on a base substrate in a stacked configuration;
a second insulation layer covering the active pattern, the gate insulation pattern and the gate electrode;
a pixel electrode on the second insulation layer; and
a source electrode and a drain electrode above the second insulation layer,
wherein:
the array substrate further comprises a first contact structure and a second contact structure provided in the same layer as the pixel electrode,
each of the first contact structure and the second contact structure penetrates through the second insulation layer and the gate insulation pattern so as to contact the active pattern,
the first contact structure is located below the source electrode, and the second contact structure is located below the drain electrode, and
the source electrode is electrically connected with the active pattern via the first contact structure, and the drain electrode is electrically connected with the active pattern and the pixel electrode via the second contact structure.
12. The array substrate according to claim 11, wherein the second contact structure and the pixel electrode are formed into a one-piece structure.
13. The array substrate according to claim 11, wherein the pixel electrode includes a transparent metal oxide, each of the first contact structure and the second contact structure is a metal structure, and the metal oxide of the pixel electrode has the same metal component as the metal structure.
14. The array substrate according to claim 13, wherein the metal oxide includes indium tin oxide, and the metal structure includes an indium structure.
15. The array substrate according to claim 11, wherein:
the gate insulation pattern is arranged between the gate electrode and the active pattern, and
an orthographic projection of a portion, which is located directly on the active pattern, of the gate insulation pattern on the base substrate has an area larger than an area of an orthographic projection of the gate electrode on the base substrate and smaller than an area of an orthographic projection of the active pattern on the base substrate.
16. The array substrate according to claim 15, wherein the gate insulation pattern only includes portions located directly on the active pattern.
17. The array substrate according to claim 11, wherein an area of an orthographic projection of the active pattern on the base substrate is larger than an area of an orthographic projection of the gate electrode on the base substrate.
18. The array substrate according to claim 11, wherein orthographic projections of the first contact hole and the second contact hole on the base substrate are located within an orthographic projection of the active pattern on the base substrate.
19. The array substrate according to claim 11, wherein orthographic projections of the first contact structure and the second contact structure on the base substrate at least cover orthographic projections of the first contact hole and the second contact hole on the base substrate.
20. A display device, comprising the array substrate of claim 11.
US15/707,827 2016-10-27 2017-09-18 Array substrate and method of manufacturing the same, and display device Active US10217851B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610968576 2016-10-27
CN201610968576.6 2016-10-27
CN201610968576.6A CN106373967B (en) 2016-10-27 2016-10-27 Array base palte and preparation method thereof, display device

Publications (2)

Publication Number Publication Date
US20180122924A1 true US20180122924A1 (en) 2018-05-03
US10217851B2 US10217851B2 (en) 2019-02-26

Family

ID=57892851

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/707,827 Active US10217851B2 (en) 2016-10-27 2017-09-18 Array substrate and method of manufacturing the same, and display device

Country Status (2)

Country Link
US (1) US10217851B2 (en)
CN (1) CN106373967B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190157303A1 (en) * 2017-11-20 2019-05-23 Boe Technology Group Co., Ltd. Manufacture method of array substrate, array substrate, and display apparatus
US10418391B2 (en) * 2017-08-30 2019-09-17 Boe Technology Group Co., Ltd. Display substrate, manufacture method thereof, and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911458A (en) * 2019-11-13 2020-03-24 深圳市华星光电半导体显示技术有限公司 Array substrate, preparation method thereof and display panel
CN113838758B (en) * 2021-11-30 2022-02-11 晶芯成(北京)科技有限公司 Semiconductor device and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103610A1 (en) * 2005-11-09 2007-05-10 Lg.Philips Lcd Co., Ltd. Array substrate for liquid crystal display device and method of fabricating the same
US20090278131A1 (en) * 2008-05-06 2009-11-12 Kwon Do-Hyun Thin film transistor array arrangement, organic light emitting display device having the same, and manufacturing method thereof
US20120171822A1 (en) * 2010-12-29 2012-07-05 Boe Technology Group Co., Ltd. Manufacturing method for ltps tft array substrate
US20120193624A1 (en) * 2011-02-01 2012-08-02 Samsung Mobile Display Co., Ltd. Thin-Film Transistor Array Substrate and Method of Fabricating the Same
US20130015457A1 (en) * 2011-07-11 2013-01-17 Chun-Gi You Organic light emitting display device and method of manufacturing the same
US20150221677A1 (en) * 2012-09-24 2015-08-06 Sharp Kabushiki Kaisha Active matrix substrate, display device, and production method therefor
US20150221774A1 (en) * 2014-02-05 2015-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20150303222A1 (en) * 2013-12-02 2015-10-22 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and method for fabricating the same, and display device
US9804463B2 (en) * 2012-07-26 2017-10-31 Boe Technology Group Co., Ltd. Array substrate and fabrication method thereof and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002858B1 (en) * 2012-08-10 2019-10-02 삼성디스플레이 주식회사 Thin-film transistor substrate and method of manufacturing the same
CN103715094B (en) * 2013-12-27 2017-02-01 京东方科技集团股份有限公司 Thin film thyristor and manufacturing method thereof, array substrate and manufacturing method thereof and display device
CN106024706B (en) * 2016-06-22 2019-02-19 深圳市华星光电技术有限公司 Array substrate and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103610A1 (en) * 2005-11-09 2007-05-10 Lg.Philips Lcd Co., Ltd. Array substrate for liquid crystal display device and method of fabricating the same
US20090278131A1 (en) * 2008-05-06 2009-11-12 Kwon Do-Hyun Thin film transistor array arrangement, organic light emitting display device having the same, and manufacturing method thereof
US20120171822A1 (en) * 2010-12-29 2012-07-05 Boe Technology Group Co., Ltd. Manufacturing method for ltps tft array substrate
US20120193624A1 (en) * 2011-02-01 2012-08-02 Samsung Mobile Display Co., Ltd. Thin-Film Transistor Array Substrate and Method of Fabricating the Same
US20130015457A1 (en) * 2011-07-11 2013-01-17 Chun-Gi You Organic light emitting display device and method of manufacturing the same
US9804463B2 (en) * 2012-07-26 2017-10-31 Boe Technology Group Co., Ltd. Array substrate and fabrication method thereof and display device
US20150221677A1 (en) * 2012-09-24 2015-08-06 Sharp Kabushiki Kaisha Active matrix substrate, display device, and production method therefor
US20150303222A1 (en) * 2013-12-02 2015-10-22 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and method for fabricating the same, and display device
US20150221774A1 (en) * 2014-02-05 2015-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418391B2 (en) * 2017-08-30 2019-09-17 Boe Technology Group Co., Ltd. Display substrate, manufacture method thereof, and display device
US20190157303A1 (en) * 2017-11-20 2019-05-23 Boe Technology Group Co., Ltd. Manufacture method of array substrate, array substrate, and display apparatus
US10756122B2 (en) * 2017-11-20 2020-08-25 Boe Technology Group Co., Ltd. Production method of an array substrate of a display device using TFT as a pixel control unit

Also Published As

Publication number Publication date
US10217851B2 (en) 2019-02-26
CN106373967A (en) 2017-02-01
CN106373967B (en) 2017-12-22

Similar Documents

Publication Publication Date Title
US11257957B2 (en) Thin film transistor, method of fabricating the same, array substrate and display device
US10205027B2 (en) Coplanar double gate electrode oxide thin film transistor and manufacture method thereof
US11189646B2 (en) Display substrate including signal line electrically connected to conductive pattern through the plurality of via holes
CN106783737B (en) Array substrate, manufacturing method thereof, display panel and display device
US10217851B2 (en) Array substrate and method of manufacturing the same, and display device
US11075230B2 (en) Thin film transistor, manufacturing method thereof, array substrate and display device
CN109509707B (en) Display panel, array substrate, thin film transistor and manufacturing method thereof
WO2014127579A1 (en) Thin film transistor array substrate, manufacturing method and display device
US11961848B2 (en) Display substrate and manufacturing method therefor, and display device
US10121901B2 (en) Pixel structure with isolator and method for fabricating the same
US10833107B2 (en) Thin film transistor, manufacturing method therefor, array substrate and display device
CN111293127B (en) Display panel and preparation method thereof
US20230317826A1 (en) Method for manufacturing thin film transistor, and thin film transistor
WO2017140058A1 (en) Array substrate, manufacturing method therefor, display panel and display apparatus
WO2013127201A1 (en) Array substrate, manufacturing method and display device thereof
CN112002636A (en) Array substrate, preparation method thereof and display panel
WO2015143818A1 (en) Array substrate and method for fabrication and display device thereof
US11437409B2 (en) Array substrate and manufacturing method thereof, and display device
CN113687548B (en) Array substrate, manufacturing method thereof and display panel
CN110854205A (en) Thin film transistor, manufacturing method, display panel and display device
CN108447916B (en) Thin film transistor, preparation method thereof, array substrate and display device
WO2021179330A1 (en) Array substrate and manufacturing method therefor
US9494837B2 (en) Manufacturing method of TFT array substrate, TFT array substrate and display device
US10818798B2 (en) Display panel, array substrate, thin film transistor and method for manufacturing the same
CN109037241B (en) LTPS array substrate, manufacturing method thereof and display panel

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIU, JING;SUN, SHUANG;ZHANG, FANGZHEN;AND OTHERS;SIGNING DATES FROM 20170905 TO 20170907;REEL/FRAME:044506/0250

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4