US20180122029A1 - System and method for processing a multiple prescription order - Google Patents

System and method for processing a multiple prescription order Download PDF

Info

Publication number
US20180122029A1
US20180122029A1 US15/644,790 US201715644790A US2018122029A1 US 20180122029 A1 US20180122029 A1 US 20180122029A1 US 201715644790 A US201715644790 A US 201715644790A US 2018122029 A1 US2018122029 A1 US 2018122029A1
Authority
US
United States
Prior art keywords
multiple prescription
order
prescription
containers
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/644,790
Inventor
Robert A. Luciano, Jr.
Lawrence W. Luciano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edge Medical Properties LLC
Edge Medical LLC
Original Assignee
Edge Medical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/241,783 external-priority patent/US8123036B2/en
Application filed by Edge Medical LLC filed Critical Edge Medical LLC
Priority to US15/644,790 priority Critical patent/US20180122029A1/en
Publication of US20180122029A1 publication Critical patent/US20180122029A1/en
Assigned to EDGE MEDICAL PROPERTIES, LLC reassignment EDGE MEDICAL PROPERTIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUCIANO, ROBERT A., JR., LUCIANO, LAWRENCE W.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J7/00Devices for administering medicines orally, e.g. spoons; Pill counting devices; Arrangements for time indication or reminder for taking medicine
    • A61J7/0069Trays for holding or distributing medicines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • B65D75/32Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents
    • B65D75/36Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents one sheet or blank being recessed and the other formed of relatively stiff flat sheet material, e.g. blister packages, the recess or recesses being preformed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/527Tear-lines for separating a package into individual packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5888Tear-lines for removing successive sections of a package
    • G06F19/3462
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/13ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered from dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2577/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks, bags
    • B65D2577/10Container closures formed after filling
    • B65D2577/20Container closures formed after filling by applying separate lids or covers
    • B65D2577/2075Lines of weakness or apertures
    • B65D2577/2083Lines of weakness or apertures in container flange
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation

Definitions

  • the description relates to the field of tablet packaging and delivery systems. More particularly, the description relates to ordering and filling a prescription comprising a plurality of different medications.
  • the fear of taking improper dosages of prescribed medication can be particularly acute in the elderly, many of whom have some degree of mental dementia and can easily be confused as to whether they have taken all of their medications at the correct time. Some patients, with curtailed mental capabilities, have difficulty just in sorting out the medications preparatory to taking them, let alone taking the medication in a timely manner. Providing medications to disabled and/or incapacitated individuals can also be a problem for caregivers, particularly those in hospitals and assisted living facilities where one caregiver may oversee the medication of many patients.
  • a tablet packaging and delivery system which could decrease the possibility of human error and provide an easy to use set-up for the correct selection and delivery of multi-tablet/multi-time medications would be welcomed by the pharmaceutical and medical communities.
  • Vitamin supplements are also often used in the same manner as many prescribed drug regiments with many of the same problems and inconveniences. Therefore a delivery system that addresses the needs of multi-prescription administration also contains many benefits for, and can be applied to, the vitamin and herbal supplement market.
  • One solution to the problem of taking multiple medications is to pre-package the multiple medications so that users can take the pre-packaged medications at a predetermined time.
  • these methods of pre-packaging medications are targeted to patients that may lack maturity and/or mental capacity to take the correct medications at the correct time.
  • young children in a school or campground, and elderly individuals in elder care centers, or nursing homes are target groups for the pre-packaging of medications.
  • Some of the pre-packaged medications are placed in a small plastic bag, which may be easily misplaced and is not child proof.
  • Other pre-packaged medications are placed in sealed cups that are difficult to open and which can not be made child proof.
  • the pre-packaging of multiple medications is also limited by distributing pre-packaged medications to a limited geographical location.
  • the pre-packaging of multiple medications is only provided in hospitals, medical institutions, campgrounds, or schools.
  • the geographic limitation makes it difficult to effectively distribute the pre-packaged medications to a broad group of people over a broad geographic area.
  • pre-packaged multiple medications are difficult to order because the pre-packaging of multiple medications is a specialty service that has not been automated.
  • the manual processing of prescription orders is expensive because the process lacks automation. Therefore, there is a need for an automated ordering system and process that is simple and cost effective for a patient or a pharmacist to use.
  • An automated system and method for receiving orders would make it substantially easier to process a multiple prescription order, which would in turn make the process much more cost effective.
  • the current pre-packaging of multiple medications does not provide a simplified labeling technique that permits a caregiver to efficiently monitor the dispensing of different medications at pre-determined intervals.
  • the current techniques for dispensing medications do not provide summaries of the medications being taken by a patient.
  • a pharmacist may provide information about drug interactions, there is no simple and clear record that describes drug interactions in a patient-friendly manner.
  • the following description provides a convenient and efficient way for patients, pharmacists, and physicians to order multi-drug prescriptions from a pharmaceutical dispensing system which produces multi-dose prescriptions. This description allows for prescriptions to be placed from a computer, telephone, facsimile, mail, or any combination thereof.
  • the ordering system comprises a Graphical User Interface, a transactional component, a production facility, a detailed labeling component, and a distribution point.
  • the GUI is configured to receive at least one prescription order that is associated with a particular patient wherein the at least one prescription order comprises at least two different medications.
  • the transactional component charges for processing the prescription order.
  • the production facility receives the prescription order and fills a plurality of multiple prescription containers. Each of the multiple prescription containers is associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval.
  • the detailed labeling component is associated with the production facility, and the detailed labeling component is configured to generate a detailed label that provides a plurality of medical information regarding the medications to the patient.
  • the distribution point provides the multiple prescription containers and the detailed label to the particular patient.
  • the means for receiving the multiple prescription order includes from a networked computer, a telephone order, a mail order, a scanned order, or any combination thereof.
  • a method for processing a multiple prescription order that comprises a plurality of different medications comprises receiving a multiple prescription order that is associated with a particular patient.
  • the multiple prescription order comprises at least two different medications that are to be consumed at the same prescribed interval determined by the multiple prescription order.
  • the method also comprises initiating a transaction that charges for filling the multiple prescription order.
  • the multiple prescription containers are filled so that each multiple prescription is associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval.
  • a detailed label is generated that comprises medical information regarding the medications to the particular patient.
  • the multiple prescription containers and the detailed label are then distributed to the particular patient.
  • FIG. 1 is an illustrative flowchart showing a method for receiving and processing at least one prescription.
  • FIG. 2 is an illustrative high-level flowchart of a production facility processing a prescription order.
  • FIG. 3 is a more detailed flowchart showing how a multiple prescription order is processed within the production facility.
  • FIG. 4 shows an illustrative graphical user interface (GUI) for receiving an order.
  • GUI graphical user interface
  • FIG. 5 shows an illustrative label that is generated by the production facility.
  • FIG. 6 is an illustrative summary label that may be generated by the production facility.
  • FIG. 7 is an alternative summary label that may be generated by the production facility.
  • FIG. 8 is a block diagram of an illustrative system that receives a pill order via the Internet.
  • FIG. 9 is a block diagram of a client server architecture that out-sources the filling of the multiple prescription order to a production facility.
  • FIG. 10 is a flowchart showing a prescription validation process.
  • FIG. 11 is a flowchart showing a transaction being processed.
  • FIG. 12 is a diagram showing an illustrative multiple prescription container having various depths.
  • FIG. 13A and FIG. 13B shows a top view and a bottom view of a multiple prescription container assembly.
  • FIG. 14 is an exploded isometric view of the sleeve for the multiple prescription container assembly before it is slidably coupled to the sealed containers.
  • FIG. 15 is an isometric view of the sealed containers slidably coupled to the sleeve for sequential dispensing.
  • FIG. 16 is an exploded view of an illustrative child protective feature for a multiple prescription container assembly.
  • FIG. 17 is an illustrative embodiment of a plurality of dispensing sleeves that are connected to one another.
  • FIG. 18 shows illustrative notches of interlocking elements for an illustrative dispensing sleeve.
  • FIG. 19 is an illustrative top view of multiple sleeves coupled to one another and depicting the sequential dispensing of a container.
  • FIG. 20A there is a top view of a dispensing sleeve housing a plurality of rounded multiple prescription containers.
  • FIG. 20B is a bottom view of the dispensing sleeve housing the rounded containers described in FIG. 20A .
  • FIG. 21A is the dispensing sleeve housing the rounded containers having a first lid and a cover.
  • FIG. 22 shows an alternative sleeve that does not comprise a rim.
  • FIGS. 23A and 23B show two separate perspective views of a plurality of stacked rounded multiple prescription container assemblies.
  • FIG. 24A is a perspective view of a circular multiple prescription container assembly.
  • FIG. 24B is an illustrative embodiment in which the lid has printed information.
  • FIG. 25 provides a more detailed view of a patient or caregiver removing the lid from the circular multiple prescription container in FIGS. 24A and 24B .
  • FIG. 26 is a flowchart showing an illustrative embodiment of the method for dispensing tablets which utilizes a secondary package or sleeve for receiving a multiple prescription container.
  • FIG. 27 is a flowchart showing the processes and systems used by a production facility to fill a prescription order.
  • FIG. 28 is a top view of an illustrative manufacturing floor that fills the prescription order.
  • FIG. 29 is an isometric view of an illustrative tabletop system that can also fill the prescription order.
  • FIG. 30 is a block diagram of an illustrative order processing system.
  • FIG. 31 is a flowchart of an illustrative container selection process.
  • FIG. 32 is a block diagram of an illustrative pill management system.
  • FIG. 33 is a side view of an illustrative refill module.
  • FIG. 34 is a flowchart of an illustrative container filling process.
  • FIG. 35 is an isometric view of an illustrative tabletop system including order processing, pill management, container selection, container inspection, and container filling.
  • FIG. 36 is a flowchart showing the inspection of filled multiple prescription containers.
  • FIG. 37 is a flowchart showing an illustrative lid assembly process.
  • FIG. 38 is a flowchart of an illustrative sleeve assembly process.
  • FIG. 40 is an isometric view of the illustrative tabletop system with filled container inspection, lid assembly, sleeve assembly, and inspection of sleeved and sealed containers.
  • FIG. 41 is a block diagram of a tote assembly system.
  • FIG. 42 is a block diagram showing the combining of the tote and sealed multiple prescription containers.
  • a prescription generally comprises at least one medication that is dispensed as a tablet.
  • the method may be initiated with a consumer having a doctor's prescription at block 12 .
  • a consumer may be a patient or caregiver.
  • a consumer may also be a person or entity authorized to conduct a transaction for at least one product that includes prescription medication, over-the-counter medication, vitamins, supplements, herbs, oils, or any such substances.
  • a prescription may not be required for processing a prescription order.
  • a prescription may not required for dispensing certain tablets such as vitamins, herbs, oils, over-the-counter medications, supplements, and other such products. Additionally, in some jurisdictions a prescription for dispensing medications may not be required.
  • a direct order may then be placed at decision diamond 14 .
  • a “direct order” is an order that must be placed by a pharmacist.
  • the order is placed using a graphical user interface (GUI) resident on a browser running on a computer that is in communication with the Internet by a pharmacist, patient or caregiver.
  • GUI graphical user interface
  • the method proceeds to block 16 where a pharmacist places the order for the appropriate medications. After block 16 , the method proceeds to block 17 in which the pharmacist may be prompted for at least one packaging option.
  • the packaging options may comprise at least one multiple prescription container as described in further detail below.
  • the order may also be placed by telephone, fax, mail, scanned order, or any other such means for placing an order that does not employ a graphical user interface.
  • the method proceeds to block 19 where the user is prompted to select at least one packaging option.
  • the user is either a patient or a caregiver.
  • a variety of packaging options may be provided to the caregiver or consumer. The various packaging options are described throughout this specification.
  • the order may also be placed on-line, by telephone, fax, mail, or other such means for communicating the order.
  • a multiple prescription order or “Multi-Script” order is an order that comprises two or more tablets or medications wherein a first tablet or medication is different from a second tablet or medication. Generally, a multiple prescription order requires taking multiple tablets or medications at approximately the same time. If the order is not a multiple prescription order, the method proceeds to block 24 , in which a single vial is prepared with a simple label. However, if the order is a multiple prescription order, the method proceeds to block 26 where a multiple prescription container is selected and the appropriate label is generated. At block 28 , either the simple vial or the multiple prescription container is filled.
  • a plurality of written information may also be generated.
  • This plurality of information may include information related to each medication, summary information about each medication, appropriate labeling, some summary information about the patient, a drug interaction report, or any such combination thereof.
  • the drug interaction report may provide information to help individuals properly take the prescribed medication.
  • the drug interaction report includes information about the various drug interactions that may be associated with each prescription. For example, certain foods may interact with a particular prescription. Additionally, there may be a group of particular drugs that may interact with the prescription, and this information may not be readily available to the patient or the patient's caregiver.
  • the drug interaction report may be used to help identify foods, medications, vitamins, supplements, or any combination thereof that may interact with the patient's filled prescription.
  • the written information may also include a summary of the medications being taken as described in further detail below.
  • the method then proceeds to decision diamond 32 where a decision is made about how to distribute the filled order. If the filled order must be distributed to a pharmacist 36 , the pharmacist 36 provides the prescription to the consumer 34 that may be a patient or caregiver. Alternatively, the filled prescription may be distributed directly to the particular consumer 34 .
  • FIG. 2 there is shown an illustrative high-level flowchart of a production facility processing a prescription order.
  • FIG. 1 describes a general method for receiving and processing a prescription order.
  • FIG. 2 provides an illustrative flowchart from the perspective of a production facility processing a verified prescription order.
  • the method is initiated at block 52 where the production facility receives a verified prescription order.
  • a verified prescription order is an order that has been “verified” according to local jurisdictional requirements, insurance requirements, co-pay requirements, transactional requirements, or a combination thereof.
  • a verified prescription order may require a medical doctor's signature, and may have to be processed by a pharmacist. Additionally, a verified order may require approval from an insurance company, Medicare or any such entity.
  • the only form of verification may include confirming that funds are available from the particular individual or organization charged, which satisfies transactional requirements.
  • verification of the availability of funds may include simply receiving authorization to charge a credit card and confirming that the credit card is a valid card.
  • the method then proceeds to decision diamond 54 where a determination is made if the verified order was a multiple prescription order. If the order is not a multiple prescription order, the method proceeds to block 56 where a single prescription order is processed, and then subsequently the filled prescription is sent to a pharmacy or customer as shown in block 64 .
  • the method proceeds to block 58 where the facility determines the filling procedure to use.
  • the filling procedure will depend on a host of variables such as the type of user selectable packaging.
  • the method then proceeds to block 60 where the production facility inspects the tablets that have been placed in the multiple prescription containers.
  • the type of inspection depends on the particular design of the production facility. For example the inspection may be conducted by tablet counters, RFID counters, by using X-ray or near IR technology, or other such technology capable of inspecting the multiple prescription containers.
  • Alternative methods of inspecting the filled multiple prescription will readily suggest themselves to those of ordinary skill in the art.
  • the production facility After completing the inspection, the production facility generates the plurality of written information shown in block 62 .
  • the written information may also be referred to as packaging information.
  • the written information may comprise information about each substance, appropriate labeling, summary information as described below, a drug interaction report as described in this specification, or a combination thereof.
  • the filled prescription order is then sent to a designated entity or individual including, but not limited to, the patient, the caregiver, the pharmacist, the user, or the consumer.
  • FIG. 3 there is shown a more detailed flowchart of a multiple prescription order being processed within the production facility.
  • a more detailed view of block 58 is shown in FIG. 3 , which includes a description of the user selectable packaging that may be determined by the user, consumer, patient, caregiver, or pharmacist.
  • the verified prescription order may include 10 tablets taken three times per day, which requires mid-size multiple prescription containers.
  • the patient and/or user may desire a package design that may be easily used by a caregiver.
  • the patient may want a package design that is small and portable. Based on the patients needs, the appropriate user selectable options may be provided.
  • the containers may be stacked.
  • the containers may be placed on a conveyer belt system which allows the containers to travel along the conveyor system to the designated filler module containing the correct medications.
  • the containers may also be placed on trays configured to hold a plurality of containers and situated on a conveyor system which allows the filling facility to track the position of each container within the filling facility.
  • a more detailed view of block 60 where the production facility inspects the containers is also described.
  • the inspection may be conducted either before the multiple prescription containers are sealed as represented by block 72 .
  • a label may then be printed on lidstock 74 and the multiple prescription container may then be sealed 76 .
  • the medications within the multiple prescription container may be inspected after the multiple prescription containers are sealed as represented by block 78 .
  • the filled multiple prescription container may be inspected either before the multiple prescription containers is sealed, after the multiple prescription container is sealed, or both.
  • a more detailed view of block 62 is also presented in FIG. 3 where after the inspection 60 , the production facility generates the plurality of written information.
  • the written information may also be referred to as packaging information.
  • the written information may comprise information about each substance which is described in the multiple prescription tote 80 .
  • the written information may also include summary information about the various medications and is represented by block 82 .
  • a drug interaction report may also be generated at block 84 .
  • GUI graphical user interface
  • the illustrative GUI 100 embodiment is configured to receive a prescription order, a direct order, or any such order related to medications, vitamins, supplements, herbs, oils, or any such substance that is associated with a particular patient.
  • the illustrative GUI 100 includes fields for the name of the patient 102 and the patient's address 104 . Additional information about the individual placing the order may also be requested, such as the individual's telephone number 106 and e-mail address 108 . Information about the patient such as date of birth 110 , height 112 , weight 114 , and sex 116 can also provided to the illustrative GUI 100 .
  • the user can input information about the patient's particular medical condition 120 , information about the patient's doctor 122 , allergies 124 , and current medications 126 being taken by the patient.
  • the user may provide specific ordering options such as instructing about the type of user selectable packaging.
  • a plurality of single packages 128 may be requested for multiple medications.
  • a multiple prescription package 130 or “multi-script” package may be requested.
  • the multiple prescription package may include a variety of user selectable options such as type of package, size of package, and child resistant packaging.
  • the type of package may include a sleeved package or a circular package as described below.
  • the packaging may employ other packaging techniques such as grid packaging or the use of plastic bags.
  • the size of package may also vary and may come in three different sizes: travel (small), notebook (medium), and companion (large).
  • Data fields are also provided for identifying the requested medications 132 that include a description of the product 134 , the dosage 136 , the quantity 138 , and the type of drug 140 .
  • the type of drug 140 may include information about whether the drug is generic or name brand. If the product is available, the on-line ordering system would then provide a price 142 for the product. A sub-total 144 is then provided, and shipping costs 146 are identified. A final order total 148 is then presented to the user. The patient may then provide a card 150 such as a credit card, a debit card or any other such information for conducting an on-line transaction. The name, the card number, the type of card and the expiration date of the card are requested in the illustrative embodiment.
  • the illustrative label 160 may contain written information that is related to each medication such as summary information about each medication, summary information about the patient, the name of the patient, a picture of the patient, pictures of the first tablet and the second tablet that are to scale, a drug interaction description, or any combination thereof.
  • the illustrative label may be folded and conveniently coupled to a multiple prescription container.
  • the illustrative label 160 can be coupled to a dispensing sleeve, which is described in further detail below.
  • the illustrative label 160 includes a picture 162 of the particular patient, and the name and address 164 of the patient. Furthermore, there may be additional unique information about the patient printed on the label, such as the doctor's name 166 and telephone number, and health insurance information.
  • the label 160 also includes pictures 168 of the pills that have been prescribed. Additionally, there may be a particular description 170 about each pill on the folded label that may include manufacturer's latest labeling information, a summary of expected side effects 172 , and a short description of possible drug interactions 174 . This information may be presented in a manner similar to the Physician's Desk Reference, which includes a color picture of the pill with summary information about each pill. Additionally, information about how to administer products 176 may be provided. This information may be used by a caregiver, to help in dispensing the appropriate medications.
  • the summary label 180 may be conveniently configured to fit into a wallet, or may be configured to be attached to the back of an insurance card or driver's license.
  • the illustrative label 180 comprises a picture 182 of the patient, pictures of the first tablet and the second tablet that are to scale, his name and address 184 , and other such information.
  • Information about the prescriptions and dosages may be provided with information about the patient's doctors and other health information.
  • an alternative summary label 190 is shown that includes the patient's name, name of the patient's doctors, insurance, and insurance number.
  • summary label 190 includes information about the patient's allergies 192 , the patient's prescriptions 194 , and a warning about possible drug interactions 196 .
  • the particular summary label may be dependent on the patient's condition, the patient's caregiver, a physician's recommendation, statutory requirements, or any other such entity charged with assisting the patient.
  • FIG. 1 through FIG. 7 provide an overview of the systems and methods for processing a multiple prescription order.
  • an emphasis was placed on performing an on-line transaction.
  • the on-line systems and methods for processing the prescription order are described in further detail in FIG. 8 through FIG. 12 .
  • These on-line systems may be open and use the Internet or may be networked using alternative networking architectures as described below.
  • FIG. 8 there is shown a block diagram of an illustrative system 200 configured to receive a pill order via the Internet.
  • the illustrative patient's personal computer (PC) or “client” 202 displays the illustrative GUI 100 .
  • the illustrative client 202 is communicatively coupled to the Internet 204 .
  • a standard off-the-shelf personal computer and operating system would operate as a client.
  • the PC 202 is configured to remotely communicate with an online ordering server 206 .
  • the online server 206 is behind a firewall and is part of a secure local area network (LAN) 208 located at a production facility.
  • LAN secure local area network
  • the production facility is configured to generate a filled multiple prescription order as described throughout this specification.
  • the secure LAN also comprises a production server 210 .
  • the production server 210 and online server 206 are both housed in the production facility.
  • An alternative embodiment in which the online server is located in a separate location is described below in FIG. 9 .
  • the online ordering server 206 is communicatively coupled to the production server 210 .
  • the online ordering server 206 is configured to communicate with the user and/or clients that are placing the on-line order.
  • the ordering server 206 also contains the hardware and software necessary for addressing queries about inventory in the production facility.
  • the online server 206 may be configured to query the user about a particular prescription, about health insurance, and other pertinent information.
  • the online server 206 may comprise software and hardware that permits the client 202 to pull up notes, research the prescribed medication(s), research side effects and drug interactions with other medications, vitamins, foods, and other such information that would help the patient properly consume the products ordered by the patient.
  • the production server 210 controls the processing of the multiple prescription orders at the production facility that generates containers having a plurality of different tablets in each container.
  • the illustrative production server 210 comprises a system database 214 that stores information about the products available at the production facility such as prescription medication, over-the-counter medication, vitamins, supplements, herbs, oils, or other such substances. Additionally, the system database 214 may include historical prescription information that is associated with the patient, so that the user may access the multiple prescription order at a later time.
  • the production server contains and maintains all the information to control the production facility.
  • the production server 210 may be configured with management software that manages all the filling, inspection, printing, sealing, order tracking, and tablet assembly traffic control functions.
  • the online ordering server 206 may request information from a medical provider server 216 or provide information to the medical provider.
  • a medical provider such as a medical doctor or nurse can confirm that a specific medication has been ordered and will be administered in a particular manner.
  • the medical provider may also include notes for the patient on how the medicine should be taken, and this information may be printed by the production facility and associated with the patient's on-line order.
  • historical prescription order information may also be stored on the medical provider server 216 .
  • the online ordering server may also request information on the accuracy or changes in the end user's medical insurance from the insurance provider server 218 .
  • the online ordering server 216 may also request information from the pharmaceutical company server 220 about certain prescribed medications. These queries to the pharmaceutical company server 220 may occur during the online ordering process initiated by the end user or at various times when updating the system database. Additional queries may be made to government agencies, private medical facilities, on-line search engines, websites, databases, or any combination thereof.
  • the online ordering server 206 and/or the production facility server 210 may also be communicatively connected to an updated medical information server 222 via the Internet or a secure wide area network connection.
  • the updated medical information server 222 may be a private or government maintained server with compiled updated information on the various drugs stored in the production facility.
  • the updated information may comprise new warnings on drug interactions, updated expiration dates, toxicity information and the like.
  • the updated information is communicated to the second labeling component. This information is valuable in assuring the multi-drug prescriptions are effective and safe.
  • the online ordering server 206 comprises a transactional component 212 that processes the user's financial information.
  • the transactional component enables the online ordering server 206 to obtain pertinent information from the user, healthcare provider and the user's insurance company to verify the prescription.
  • the transactional component is also configured to carry out the payment of the order and informs the user if the prescription has been processed or if the financial transaction has failed.
  • FIG. 9 there is shown a block diagram of a simplified client server architecture in which the multiple prescription packaging is outsourced to the production facility.
  • the user requests a prescription refill from a client 230 computer that displays a GUI viewed using a standard web browser 232 , and the client 230 is communicatively connected to a wide area network (WAN) such as the Internet 234 .
  • WAN wide area network
  • the client 230 then proceeds to access the web site that displays the illustrative GUI 100 .
  • the client 230 computer may be a portable terminal, a notebook computer, a hand-held personal digital assistant, or other such device that can be networked and can process browser software.
  • the end user of the GUI may be a patient, parent, caregiver, physician, hospital personnel, or any other person that has permission from the patient to access their prescription data.
  • the client 232 then proceeds to communicate with the secure LAN 236 that comprises a production server 238 and an online server 240 .
  • the production server 238 is associated with managing the inventory in the production facility and comprises an inventory database module 242 that determines if the production facility can satisfy the client's prescription order.
  • the online server 240 may be located in a variety of different places such as a separate on-line pharmacy, a physician's website, a healthcare provider's website, a health insurance website, a school, a university, or any other such entity that out-sources the multiple prescription packaging to the production facility described in further detail below.
  • the online server 240 comprises a web server inventory lookup module 244 that is operatively coupled to the inventory database module 242 and receives updates regarding the production facility's ability to satisfy the client's request.
  • the client 230 may access the production server 238 directly or through the illustrative online server 240 that may be associated with a separate on-line pharmacy, a physician, a health care provider, a health insurance provider, a school, a university or any other such entity. Additionally, physicians involved in the patient's care may utilize the Internet to generate a new prescription for the patient, or modify a previous prescription that may be stored on the production server 238 .
  • Patient confidentiality may be preserved by using encryption technology and by requiring strong authentication.
  • encryption technology such as Secure Sockets Layer (SSL) and Public Key Infrastructure (PKI)
  • SSL Secure Sockets Layer
  • PKI Public Key Infrastructure
  • Illustrative embodiments may use available encryption tools such as Pretty Good Privacy (PGP), OpenPGP (the IETF's RFC 2440) and other available PKI encryption standards.
  • Information stored on databases and servers may also be encrypted. Strong authentication may be obtained by asking the user for one or more unique identifiers such as date of birth (DOB), unique IP address, last 4 digits of a social security number, username, password, or any other such unique identifier.
  • DOB date of birth
  • DOB date of birth
  • IP address last 4 digits of a social security number
  • username password
  • password or any other such unique identifier.
  • GUI graphic user interface
  • a pharmacist's on-line server communicates with the production server 238 and the inventory database 242 .
  • the pharmacist's on-line server makes a request to determine whether the production facility can satisfy the pharmacist's order.
  • the inventory database 242 is accessed to determine if the prescription order may be filled.
  • the online server relays this information back to the clients computer via the Internet.
  • the illustrative production server 238 comprises software to access the drug interaction database to determine if there may be possible interactions between the prescribed tablets stored.
  • the production server 238 also communicates the order to production facility computers which control the various systems and subsystems involved in producing the tablet assembly, including printers for labeling the lidstock on each individually sealed container with medication instructions such as date and time to take the tablets in each individual container.
  • the production server 238 may also communicate to production facility computers which are connected to a printer for labeling an area of the sleeve portion of the tablet assembly, with end user information, drug information and expiration date(s) for the medication stored within the individual containers.
  • vitamins and herbal supplements may also be stored together with prescription drugs.
  • FIG. 10 there is shown a flow chart of an illustrative prescription validation process 250 .
  • the prescription validation process is initiated at block 252 where user information and prescription order information is provided to either online server 206 or online server 240 .
  • the method then proceeds to block 254 where user information is matched against the prescription order information.
  • the prescription order is validated if user information and prescription information also match information stored on the online server. Additionally, the prescription may be validated after the online server communicates with another server such as the medical provider's server. Alternatively, the prescription order may be simply validated if the user information matches the prescription information. For example, if either the patient information or the prescription order information does not match the information stored on the online server, then the method proceeds to block 258 where the user receives a failed prescription notification.
  • an explanation may be provided by the online server such as the patient's personal information is incorrect, or the prescription has expired, or a physician's examination is required before filling the order, or the patient needs to wait a couple more days before the prescription order may be filled.
  • the user information and prescription information may require being input more than once before a failed notification is provided to the user.
  • the method proceeds to decision diamond 260 and determines if the prescription order is covered by the user's health insurance.
  • the insurance information for a specific user may be stored on a database associated with the online server of the production facility or the health insurance company's server may be queried by the online server via secured network about the accuracy of the user's insurance policy such as determining if the insured's policy is up-to-date. Additionally, information about the medications covered by the specific insurer may be queried, co-payment information, prescription drug policy, secondary insurance information, or any other such pertinent insurance information.
  • the method proceeds to process the transaction at block 262 .
  • a more detailed view of the transaction process 262 is provided below in FIG. 11 .
  • the prescription order may not be covered, or may only be partially covered by the user's insurance and so the method proceeds to decision diamond 264 where alternative payment methods can be provided.
  • alternative payment methods include VISA transactions, debit card transactions, ATM transactions, PayPal transactions, Electronic Fund Transfers, and other such methods for performing on-line transactions. If the alternative payment method can be processed, the method proceeds to block 262 where the transaction is processed. However, if the alternative payment method can not be effectively processed, the method proceeds to block 266 where the user receives a failed payment notification.
  • FIG. 11 there is shown an illustrative method for processing an illustrative transaction in block 262 .
  • the online transaction is processed, which enables the online server to send confirmation that the prescription order has been filled.
  • the method is initiated at decision diamond 270 where a determination is made concerning whether the transaction is valid.
  • a transaction is valid when the information for payment of the multiple prescription order has been authenticated.
  • the method proceeds to block 272 where a log of either the prescription complication, transaction complication, or both is recorded.
  • the prescription complication may arise because the production facility can not satisfy the order.
  • the transactional complication may be caused by the payment method not being authenticated.
  • the processing of the online transaction may also comprise confirming that the drugs requested are in the production facility's inventory and ready for dispensing. Inventory information may be stored on either the online server or the production server or on any other communicatively connected database or computer associated to the transaction component of the online server.
  • the method proceeds to block 276 where the user receives a completed or failed transaction notification.
  • the failed transaction notification comprises information explaining to the user that the transaction failed because an invalid credit card number was provided. If the transaction is determined to be valid, the prescription is logged as filled and the user receives a prescription completed notification via the network connection between the online server and the user's computer.
  • a multiple prescription container assembly comprises a plurality of containers that are configured to receive a plurality of medications, even though a single prescription may reside within an individual container.
  • the multiple prescription container assembly is configured to dispense a plurality of different tablets to a particular individual.
  • the illustrative multiple prescription container assembly comprises a plurality of containers made from a single piece of moldable material wherein the containers are ordered to permit sequential dispensing. At least one of the containers is configured to receive a first tablet associated with a first medication, and a second tablet associated with a second medication that is different from the first medication, the first tablet and the second tablet to be taken at approximately the same time by the particular patient. As described above, there is a flange on the top surface of each of the containers.
  • the multiple prescription container assembly also comprises a plurality of lids, the lidstock configured to interface with the flange of each integrated container. Each lid seals each of the containers and has a surface that receives a printable indicia with specific information regarding the particular individual. Additionally, the multiple prescription assembly comprises a sleeve that is slidably coupled to the plurality of sealed containers wherein the sleeve is configured to permit sequential dispensing of each of the sealed containers.
  • FIG. 12 there is shown a plurality of illustrative containers 300 having various depths that are configured to receive a plurality of tablets.
  • the three individual containers 302 , 304 , and 306 are identical except for the depth of the cavity of the containers.
  • the flanged top surface 308 and the bottom surface 310 are the same on all three containers shown in FIG. 12 , and are configured to make the various sizes of containers stackable.
  • Each of the containers further comprises a breakaway tab 312 on the sealing flange 308 . The tab provides a handhold for easy opening and peeling back the lid from the container.
  • Each of the containers also comprises a plurality of indentations 314 on at least one edge of the flanged top surface 308 .
  • Each of the illustrative embodiments 302 , 304 and 306 is an element of the multiple prescription container that stores tablets.
  • a “tablet” is a small article which is swallowed.
  • a tablet includes tablets, capsules, and caplets.
  • a tablet may also be a solid dose of medication, i.e. pill, tablet, capsule or a liquid dose of medication, e.g. Vitamin E or (cod liver oil) provided in a capsule.
  • a tablet may be a prescription medication, supplements, or any other such article that is intended to be ingested to improve a user's health or wellbeing.
  • a tablet may also be medication in the form of a suppository, or vitamins, herbal supplements and the like.
  • FIG. 13A and FIG. 13B there is shown a top view and a bottom view of a plurality of illustrative sealed multiple prescription containers 320 .
  • both views reflect that one of the containers 321 comprises a tapered body container 322 with a cavity for holding a plurality of tablets.
  • the tapered body container 322 allows a plurality of individual containers to be stacked for storage.
  • Each container 320 has a flanged top surface 324 configured to be sealed with a lid 326 .
  • the tablet assembly may require individual containers that vary in depth depending on the amount of tablets needed to be dispensed at a specific time. While the depth of the individual containers may vary, the flanged top surface and collar remain constant for processing of different sized individual containers and for commonality with the assembly sleeve.
  • the multiple prescription container assembly comprises a plurality of individual containers.
  • container 321 is coupled to container 328 with lid 326 .
  • the lid 326 seals one or more containers.
  • the sequential connection enables a linear configuration for the individual containers.
  • the quantity of containers in a multiple prescription assembly may vary as well as the interconnection configuration of the containers, e.g. a circular, an elliptical, polyhedral, etc.
  • the plurality of multiple prescription containers are made from a single piece of moldable material having a plurality of indentations wherein each indentation is configured to form one container 321 in the set of containers 334 .
  • At least one of the containers is configured to receive a first tablet associated with a first medication, and a second tablet associated with a second medication that is different from the first medication.
  • the set of containers 334 are connected to one another by frangible connections 336 or perforations positioned within the flanged edge 324 that is proximate to the adjacent container.
  • the frangible connection 336 which is between containers, allows the containers to “break-away” from the set of containers 334 in a sequential manner. Once the lids are attached and/or sealed to the top flanged surface 324 , this sequential connection enables a linear configuration as described above.
  • Each container may also comprise a collar 338 below the flanged edge 324 that allows the containers to be stored in a stackable configuration. Stacking of the containers can also be performed with the collar 338 .
  • Each container may also comprise a bottom surface 340 with at least one ridge 342 .
  • the ridge is useful in minimizing tablet-to-tablet collisions and avoiding medication sloughing off of a tablet due to collisions with other tablets. By limiting excessive movement of the tablets in each of the containers, the ridge or ridges on the bottom of the container(s) help preserve the integrity of the tablets within.
  • the ridge may protrude outward from the bottom surface of the containers as shown in FIG. 13B , or in other embodiments, may be formed by an indentation of the bottom surface.
  • the ridge(s) may be configured as a square, rectangle, circle, a plurality of parallel lines as well as other geometric shapes.
  • the illustrative set of containers 334 comprises seven adjacent containers configured for sequential dispensing of the contents of each container. Sequential dispensing refers to individual containers being “dispensed one at a time,” which is different from being “cherry picked” from a grid of individual containers.
  • the number of containers in a set of integrated containers may vary due to the prescription prescribed for the user. While the illustrative embodiment describes seven containers, a set of containers may comprise at least two containers to about 20 containers, and more preferably about 5 to about 14 containers. It is expected that most of the containers will be of similar size for ease of filling the containers, but in certain embodiments varying container sizes may be needed.
  • the set of containers 334 may be opaque but in preferred embodiments, the moldable material comprises enough clarity for the user to visualize the contents of the containers.
  • the illustrative lid 326 of container 321 comprises a printing surface where unique prescription-specific information is displayed for each container.
  • the information displayed on the printing surface may include, but is not be limited to, the patient's name, the date and the day of the week the contained mixed dosage medications (tablets) are to be taken, as well as the time of day that the tablets are to be taken.
  • the markings on the containers inform the patient and/or caregiver the time in which the contents of the container are to be taken in the proper sequence.
  • the lid stock comes from a roll and the appropriate amount of lidstock is released from the roll to accommodate the designated number of containers to be sealed.
  • an unsealed area of lid film is generally used to help in the peeling of the lid.
  • the breakaway tab 332 on the illustrative container 321 gives the user something to hold onto and is a useful feature to a container that is manufactured by injection molding with plastics like polyethylene or styrene.
  • FIG. 14 there is shown an exploded isometric view of the multiple prescription container assembly 350 before slidably coupling the set of sealed containers 334 to the dispensing sleeve 352 .
  • the exploded view also shows a top tab 354 on the top surface 356 of the sleeve which holds the end container 358 by catching the rectangular void made by one of the indentations 360 .
  • the set of sealed containers are released and the top tab 354 is disengaged from the containers.
  • the end container 358 can be slid out of the dispensing sleeve 352 if there are no other child protective features, and the top tab latches on to the next indentation (not shown). The user then can break the frangible connection 364 and remove the container. This two-step process of holding tabs 362 and pulling on the end of the sealed containers is a “child safety” feature. It shall be appreciated by those skilled in the art that certain embodiments can be made to conform to a more senior-friendly solution that is described in further detail below.
  • a notch 363 that is configured to be fit into an illustrative cavity that is a square-shaped perimeter 365 and receives a notch similar to notch 363 .
  • the notch 363 permits two dispensing sleeves to “snap” together.
  • the square shaped perimeter 365 is located on near the edge of the dispensing sleeve 352 and has a square cut and a lip.
  • Printed material 366 may be attached to the top surface 356 of the dispensing sleeve 352 . Additional information about the prescription or other patient data can also be placed on the dispensing sleeve 352 .
  • the dispensing sleeve 352 may also comprise a surface for printable indicia, and the printable indicia may include patient data as well as prescription information.
  • FIG. 15 there is shown an isometric view of the set of sealed containers slidably coupled to another sleeve for sequential dispensing.
  • the sealed multiple prescription containers are operatively coupled to the dispensing sleeve 368 .
  • the dispensing sleeve 368 is similar to the dispensing sleeve 352 in that both sleeves comprise grooves or slits 370 configured to allow the flanged top surface 324 (see FIG. 13 ) of each container to slide into the respective dispensing sleeve.
  • both sleeves comprise a thumb groove 372 , which is configured for a human thumb or finger, allowing a patient or caregiver easy access to the sealed prescription container.
  • the thumb groove 372 also acts as a display window to allow the patient to view the printed markings on each lid.
  • the dispensing sleeve 368 also contains a printable area 374 large enough to accommodate a detailed label with information about each tablet in each of the containers.
  • the dispensing sleeve 368 and 352 may be produced as one piece and is configured to lock onto another sleeve with a “snap and lock” means comprising at least one protruding section 376 that defines a cavity 378 of the dispensing sleeve.
  • the protruding section is configured to receive a notch (not shown) that can interface directly with the protruding section 376 .
  • the dispensing sleeve may be injection molded or manufactured from plastics such as polypropylene and ABS.
  • the particular sleeve 368 further comprises integral, mold-in release tabs 380 a and 380 b configured to allow the sealed containers to slide out of the dispensing sleeve 368 when pressure is applied to release tabs 380 a and 380 b .
  • the container 350 is then removed by breaking the perforation mark between the containers.
  • the release tabs are configured to “catch” the next container 350 so that one container is released at a time, thereby providing child resistance.
  • the first end 392 of the dispensing sleeve 394 comprises release tabs 396 a and 396 b configured on the sides of the sleeve.
  • the release tabs 396 a and 396 b each comprise a molded loop 398 a and 398 b configured to hold the top flanged surface 400 of the end container 402 in the dispensing sleeve 394 .
  • the molded loops 398 a and 398 b have concave sections 404 a and 404 b which contact the bottom side of the top flanged surface 406 .
  • FIG. 17 there is shown an illustrative embodiment of a plurality of dispensing sleeves 410 that are configured to interface with at least one other sleeve having a plurality of sealed containers.
  • the dispensing sleeves 410 are similar to dispensing sleeve 368 described above.
  • the first dispensing sleeve 412 is fixedly coupled to dispensing sleeve 414 , which in turn is fixedly coupled to dispensing sleeve 416 .
  • Each sleeve comprises a plurality of knobs or hooks on a first side of each sleeve 362 and a plurality of corresponding shaped grooves or knob receptacles 418 on the second side of each sleeve, which enables the sleeves to interlock.
  • each dispensing sleeves 412 , 414 , and 416 are grouped together for daily usage on a per week basis for a patient that needs to take medications three times per day.
  • FIG. 18 there is shown illustrative notches of interlocking elements for the illustrative dispensing sleeve 352 shown in FIG. 14 .
  • the illustrative notches 363 are configured to be fit into a plurality of square-shaped perimeters 365 that define a cavity.
  • the notches 363 and square shaped perimeters permit two dispensing sleeves 352 to fit together.
  • the square shaped perimeters 365 define a cavity that is located adjacent to the edge of the dispensing sleeve 352 . Additionally a small lip is shown that permits the notch to be locked into place.
  • FIG. 19 is an illustrative top view of multiple sleeves coupled to one another and depicting the sequential dispensing of a container.
  • the multiple prescription container assembly is for patients that must take multiple medications more than once a day.
  • the multiple prescription container assembly 420 comprises a plurality of thermoformed (or molded) sets of sealed container 422 a , 422 b , and 422 c that are heat sealed with a laminated lid 424 a , 424 b , and 424 c , respectively.
  • Each container within the set of containers 422 a , 422 b , and 422 c contains the required medications that have been prescribed for a particular time.
  • the containers are separated by perforations as described above.
  • each container contains printed markings 426 that identify the medications contained therein, and may also indicate the patient's name, and, most importantly for the purposes of this embodiment, the day and the time of day that the medications are to be taken.
  • each container is dedicated solely to a particular time of day.
  • the set of containers 422 a are taken in the morning
  • the set of containers 422 b are taken at approximately noon
  • the set of containers 422 c are taken in the evening.
  • the patient is supplied with a complete set of containers for a particular week for a specific time of day.
  • the multiple prescription container assembly 420 may be provided to the patient or caregiver as three separate sets of containers enclosed in three separate dispensing sleeves. The patient or caregiver can interlock the three separate dispensing sleeves 428 a , 428 b , and 428 c.
  • FIG. 20A there is shown a top view of a dispensing sleeve housing a plurality of rounded multiple prescription containers.
  • the illustrative rounded multiple prescription container 430 comprises a plurality of containers 432 that are adjacent to one another. Each container is wedge shaped so that the triangular surface area at the top of each container is greater than the triangular well at the bottom of each container.
  • the illustrative container 432 is surrounded by a flanged edge 434 .
  • the dispensing sleeve 436 surrounds the rounded multiple prescription container 430 .
  • a release tab 438 on the sleeve 436 permits the rounded multiple prescription container 430 to be rotated within the sleeve 436 .
  • the axis of rotation is defined by the well 440 at the center of the plurality of containers.
  • a plurality of ridges 442 a , 442 b , 442 c , and 442 d on the sleeve 436 hold cover, lidstock, or any other labels in place.
  • FIG. 20B there is shown a bottom view of the dispensing sleeve housing the rounded containers described in FIG. 20A .
  • the bottom view shows the rounded multiple prescription container 430 and the illustrative container 432 with the flanged ends 434 that interface with the sleeve 436 .
  • the flanged ends 434 are slidably coupled to the sleeve 436 via a plurality of lips such as lip 444 .
  • the bottom view also shows the release tab 438 that permits the rounded containers to rotate around the sleeve.
  • a rim 445 is shown that is the approximate depth of the container.
  • the rim 445 receives printed information about the particular patient taking the prescribed medication.
  • the rim 445 also permits the stacking of a plurality of rounded multiple prescription assemblies.
  • FIG. 21A there is shown the dispensing sleeve housing the rounded containers having a first lid and a cover.
  • the first lid 446 is visible and is associated with a particular multiple prescription container and is adhesively coupled to the flanged edges of the container.
  • the cover 448 shields the lids and containers within each sleeve.
  • the combination of elements shown in FIG. 21A illustrates a rounded multiple prescription assembly 450 .
  • FIG. 21 B the first lid 446 is removed, permitting access to the different medications within the container.
  • an alternative sleeve 452 that does not comprise a rim 445 .
  • the sleeve 452 is configured to receive the rounded multiple prescription container 430 , and the combination results in an alternative embodiment of the rounded multiple prescription container assembly 454 .
  • Both of the multiple prescription container assemblies 450 and 454 are configured for sequential dispensing. While the illustrative embodiment describes seven containers, a set of containers may comprise at least two containers to about 20 containers, and more preferably about 5 to about 14 containers. It is expected that most of the containers will be of similar size for ease of filling the containers. Additionally, the illustrative moldable material comprises enough clarity for the user to visualize the contents of the containers.
  • the information displayed on the lid and cover may include the patient's name, the date and the day of the week the contained mixed dosage medications (tablets) are to be taken, as well as the time of day that the tablets are to be taken.
  • the markings on the containers inform the patient and/or caregiver the time in which the contents of the container are to be taken in the proper sequence.
  • the lidstock comes from a roll and the appropriate amount of lidstock is released from the roll to accommodate the designated number of containers to be sealed.
  • an unsealed area of lid film is generally used to help in the peeling of the lid.
  • the stacked rounded multiple prescription assemblies 456 are composed of a plurality of rounded multiple prescription container assemblies 450 .
  • Each of the multiple prescription container assemblies 450 are stacked on top of one another with the rim 445 , which permits the stacking of rounded multiple prescription container assemblies.
  • the circular multiple prescription container assembly 460 comprises a set of multiple prescription containers 462 having flanged edges similar to the flanged ends 434 (described in FIG. 20A ), a lid 464 , and a cap 466 .
  • the lid 464 seals the multiple prescription containers 462 .
  • the cap 466 fits over the flanged ends (not shown) and has a triangular opening 468 cut into the cap 466 .
  • the cap 466 is configured to snap fit with the sealed multiple prescription containers.
  • the triangular opening 468 permits the patient and/or caregiver to view writing on the lid 464 and to have access to the lid 464 .
  • FIG. 24B there is shown an illustrative embodiment in which the lid 470 has printed information that identifies the patient, the date, and the time that the prescribed medications are to be taken.
  • the illustrative lid 464 is cut to permit a patient to remove the lid by placing a finger underneath a cut 472 .
  • a ridge 474 permits the lid 464 to be more easily removed from the container.
  • FIG. 25 A more detailed view of a patient or caregiver removing the lid 464 is provided in FIG. 25 .
  • FIG. 26 there is shown a flowchart of an illustrative method for dispensing tablets which utilizes a secondary package or sleeve for receiving a multiple prescription container 500 .
  • This embodiment of the method for dispensing tablets comprises providing a set of integrated containers 502 , the containers adjacent to one another and filling each container with at least one tablet previously specified for each container.
  • the method also comprises the set of integrated containers having a flanged edge and at least one frangible connection (e.g. perforated line) configured within the flanged edge between each of the plurality of containers 504 .
  • the method may also comprise providing a lidstock with a plurality of lids that may be adjacent to one another in a linear arrangement 506 .
  • the configuration of the lids is not limited to a linear arrangement and may be configured in any manner as to be capable of sealing the set of integrated containers.
  • the method further comprises providing a frangible connection (e.g. perforated line) between each of the plurality of lids 508 .
  • the frangible connection may be a thinned region of plastic that is easily breakable, perforations in the film and the like.
  • the method comprises sealing the plurality of containers of the set of integrated containers with the corresponding plurality of lids 510 of the lidstock.
  • the quantity of the containers in the tablet assembly is variable, depending on the prescription of the patient.
  • the number of lids will correspond to the number of containers utilized in the tablet assembly.
  • a printable surface is provided on each of the plurality of lids 512 in which specific printing indicia or information is placed 514 relating to the administration of the tablets held in the container sealed by the corresponding lid.
  • This method may also comprise providing a sleeve or secondary package for receiving the set of sealed containers 516 and placing the set of sealed containers into the sleeve 518 .
  • the patient completes the process of dispensing the tablets by expelling or manually moving one of the plurality of sealed containers out of the sleeve at the time printed on the corresponding lid 520 .
  • the container is removed from the set of containers as well as the secondary package and/or sleeve by tearing the frangible connection between the expelled container and the adjacent container remaining in the sleeve 522 .
  • the patient can then gain access to the tablets in the expelled container by removing the lid from the container 524 .
  • the method comprises providing extended tabs on the lids, break-away tabs and/or providing chamfered edges on the containers to make removing the lid off of the container more convenient.
  • the method further comprises providing a child safety release tab on a secondary sleeve as seen on the tablet assembly embodiment shown above, to prevent unwanted tampering of the tablets in the containers by children.
  • the patient holds the dispenser and manually actuates the release tabs while simultaneously manually sliding the strip of containers in a direction “out of the dispenser.”
  • the release tab resets, thus locking the strip from further sliding motion.
  • the patient then tears off, at the perforations, the protruding container that contains the correct medications for the stated time, pulls up on the extended corner of the lid, and opens the container by peeling back the lid, exposing the medications.
  • the dispenser then is left with the correct printed markings showing in the thumb groove display window, ready for the next dosage to be taken.
  • inventions of the methods of dispensing tablets comprise, providing a “senior friendly” tablet assembly instead of an assembly with a child safety tab for the convenience of patients with limited dexterity.
  • the order processing system 602 After receiving the prescription order in one of the illustrative system and/or methods described above, the order processing system 602 begins controlling the filling of the prescription order.
  • the ordering processing system 602 interfaces with an online server, production server, or both, and receives data that relates to the type of medication or tablet, and the type of multiple prescription container assembly that needs to be filled with the appropriate medications and/or tablets.
  • the systems or methods for controlling production can be performed using a centralized control system or a distributed control system. For purposes of this patent, those with ordinary skill in the art shall appreciate that there will even be instances where a combination of centralized and distributed control are optimal, and depend on design requirements and expectations.
  • the order processing system 602 is in communication with a tablet management system 608 .
  • the tablet management system 608 controls the tablets that fill the pill refill modules, which in turn fill up the appropriate multiple prescription containers.
  • the tablet management system 608 also communicates when a refill module is not properly being filled.
  • the order processing system 602 also communicates with a container selection process 604 .
  • the container selection process 604 may receive an order for a particular container assembly from the user placing the order, e.g. pharmacist, caregiver, patient, etc.
  • the container selection process 604 may simply receive a multiple prescription order, and may have to select the appropriate container for filling the order, e.g. less than 5 tablets require a small container, 6-10 tablets require a mid-size container, and 10-20 tablets require a large container.
  • the inspection process 606 may include identifying whether the container is broken or has some obstruction that may cause some difficulty to downstream systems and/or processes.
  • the container filling process 610 occurs by placing the selected container on a pallet or tote and moving the pallet or tote on a conveyer, which moves the pallet to the appropriate filling location so that the appropriate tablets may fill the container.
  • an inspection of the filled containers is performed at block 612 .
  • the inspection may be conducted by using X-ray detection, near infrared detection, robotic detection at visual wavelengths, or any other such technique that looks at color, shape, density, or other such parameter to determine if the appropriate container has been filled with the correct prescription.
  • a visual inspection by a pharmacist may be satisfactory.
  • the method proceeds to the lid assembly process 614 during which the lid is applied to the multiple prescription container.
  • the sleeve is then applied at the sleeve assembly process in block 616 .
  • a cap may be placed on the sealed multiple prescription container, as described above.
  • the term “sleeved container” encompasses a multiple prescription container having a cap, unless otherwise indicated.
  • the inspection of the sleeved sealed containers is conducted. This inspection at block 618 is performed after the multiple prescription container has been sealed. Note, the inspection at block 612 was conducted before sealing. The need for the second inspection described in block 618 is in case a tablet or medication fell out of the container or was mislabeled. Additionally, one of the tablets or medications may also have been broken or otherwise compromised. As stated above, the inspection may be conducted using a variety of different instruments including, but not limited to, robotic inspections at a visual wavelength, near IR, X-ray and any other detection means that can identify the type of tablets or medication in each container.
  • the method then proceeds to block 620 where the sleeved sealed container(s) are combined with printed materials in the tote.
  • the printed materials may include labels as described in FIG. 5-7 above. Additional materials may also be provided such as printed materials from pharmaceutical companies, medical providers, pharmacists, and other such entities.
  • the printed materials are controlled by the tote assembly system 622 .
  • the printed materials may be generated at the production facility or may be shipped to the production facility or any combination thereof.
  • the combination is shipped to a pharmacy or customer as described by block 624 .
  • the customer may be a patient, a caregiver, a medical health professional, or any other such person
  • FIG. 28 there is shown an illustrative production facility 628 that would occupy a warehouse.
  • a plurality of container 630 are fed in a container feeding section by an operator 632 that places the containers on a pallet or tote that are carried by a conveyor belt 634 around the facility.
  • the operator 632 is charged with container selection based on the information provided by the order processing system. Additionally, the operator 632 is charged with performing a visual inspection of the containers that are placed on the pallet or tote.
  • the powered conveyor then transports the tote having the empty containers to filler cells that have a particular medication or tablet.
  • the tablet management system determines whether a tablet is to be dispensed.
  • the container filling process requires a variety of different filling cells that have to be refilled by illustrative operators 636 and 638 .
  • the conveyor belts and filler cells are grouped into units for easier operation and maintenance.
  • the powered conveyers can travel to the appropriate filler cell in an efficient manner that permits a particular pallet to bypass traveling along the perimeter of the conveyor assembly. For example, a particular pallet may bypass traveling along the length of a conveyor via a bypass 640 or 642 .
  • the filled containers are then inspected to determine if the container has been properly filled.
  • An operator 644 mans the inspection equipment. If order adjustments are needed, another operator 646 is charged with resolving any problems with one or more orders. If the operator 644 determines that the prescription has been properly filled, then the appropriate lid is placed on the containers.
  • a lidstock sealer 648 seals the lid on the multiple prescription container.
  • the sleeve is then selected at the sleeve assembly 650 and then applied.
  • the operator 652 inspects the sleeve. Alternatively, the operator 652 may be charged with combining the sleeved and sealed prescription container.
  • a separate tote filling system 654 generates the printed materials that are combined with the pallet or tote having the sleeved and sealed multiple prescription containers.
  • the conveyor 656 then transports the filled prescription order to a predetermined location so that the filled prescription order may be shipped to the pharmacy or customer.
  • FIG. 29 there is shown a perspective view of an illustrative tabletop system that can be used to have an illustrative pharmacist to fill the multiple prescription order.
  • the illustrative table top system 660 receives a prescription order at station 662 .
  • the appropriate containers 664 are selected and placed on a conveyor (not shown) that are fed under fill cells 666 .
  • the multiple prescription order is inspected by the illustrative pharmacist.
  • a lid is generated at station 670 and sealed at station 672 .
  • the sleeve located at sleeve dispenser 674 is then applied.
  • the sealed sleeve assembly is then inspected by the pharmacist.
  • Printed materials are generated by printer 676 , and the printed materials are combined with the sealed and sleeved multiple prescription container.
  • the filled multiple prescription may then be picked up at a “pick-up” window 678 .
  • a pharmacist at station can then explain to the customer about the multiple prescription packaging.
  • the order processing system 602 is configured to control the filling of the prescription order.
  • the order processing system comprises a block 690 in which a multiple prescription order is received.
  • the multiple prescription order may be received electronically or at a pharmacist's window.
  • the system 602 then proceeds to check an inventory management system 692 and determines if the appropriate medication or tablets are available.
  • a decision to order additional inventory is made if the inventory of tablets or medication are running low. If inventories are running low, then at block 696 an order is placed for additional tablet inventory. However, if there is a satisfactory inventory, block 698 communicates tablet type, size, quantity, frequency, packaging, and time for taking the prescribed medications in the container selection process 604 and the pill management system 608 .
  • the order processing system 602 also accommodates receiving the tablet received in block 700 , after having placed the order for additional inventory in block 696 . After receiving the order tablets, the inventory management system is updated as indicated in block 702 . The updated inventory is then communicated to the pill management system 608 .
  • the order processing system 602 is intended to make it more efficient for a production facility and/or pharmacist to manage the tablet or medication inventory stored at the local facility. By creating a system and method for automated ordering, the order processing system can provide a more efficient means for controlling inventory and thereby more efficiently control the filling of multiple prescription orders in multiple prescription containers.
  • the container selection process 604 may receive an order for a particular container assembly from the user placing the order, e.g. pharmacist, caregiver, patient, etc.
  • the container selection process 604 may simply receive a multiple prescription order, and may have to select the appropriate container for filling the order, e.g. less than 5 tablets require a small container, 6-10 tablets require a mid-size container, and 10-20 tablets require a large container.
  • the container selection process 604 is initiated by receiving the appropriate tablet and/or container information.
  • tablet data and/or container selection data is received that may comprise type of tablet or medication, size of the tablet or medication and the frequency with which the tablet or medication needs to be consumed.
  • the method may determine the type of container to use based on the types of medications, size, and frequency. The determination of the type of container may be performed without receiving a user's request for a particular multiple prescription container assembly as described above. The determination of container availability is then made at decision diamond 708 . If a particular container is not available, the method may return to block 706 to select an alternative container. Issues associated with container availability are reported to the inventory management system 702 . If the containers are available, the method proceeds to block 710 where the containers are de-nested and then placed on the appropriate pallet, at block 712 . The method then proceeds to container inspection at block 706 .
  • FIG. 32 there is shown an illustrative block diagram of an illustrative tablet management system 608 .
  • the illustrative tablet management system 608 controls the tablets that fill the pill refill modules (described above).
  • the tablet management system 608 also communicates when a refill module is not properly being filled.
  • Bulk tablets are received at block 720 and then are fed into an illustrative hopper 722 .
  • the tablets are then separated by a separator 724 and are then inspected 726 to determine if they have been placed in the appropriate refill module.
  • a tablet refill control system 728 manages the tablet being distributed to the appropriate refill module 730 . Additionally, the tablet refill control system receives tablet information 732 , and this tablet information is stored on the tablet refill control system 728 . The additional tablet inventory and is then communicated to the inventory management system 702 .
  • the illustrative refill module 730 includes a hopper 734 , separator 736 , and sensor 738 that counts the tablets.
  • the tablet refill control system 728 communicates with the illustrative refill module 730 .
  • a plurality of feeding tubes 740 distributes one or more tablets to the illustrative containers 742 .
  • Broken tablets are collected in bottle 744 after being inspected by sensor 738 .
  • FIG. 34 there is shown a flowchart of an illustrative multiple prescription container filling process 610 .
  • the container filling process 610 occurs by placing the selected container on a pallet or tote and moving the pallet or tote on a conveyer that moves the tote or pallet to the appropriate filling location so that the appropriate tablets may fill the container.
  • an operational conveyor system is used to transport the containers.
  • an operation conveyer system 750 is required.
  • a conveyer system may not be required and may instead rely on being gravity fed and placed into a particular container configured to hold a plurality of medications or tablets.
  • the illustrative conveyer system receives a container pallet or tote at block 752 .
  • the containers then stop at the appropriate refill module and are filled with tablets as described in block 754 .
  • each refill module may comprise a sensor 738 that counts the number of tablets that are distributed by the refill module, and this count may be communicated to the tablet refill control system 728 .
  • a container tracking system 756 tracks the location of each container so that the appropriate medications or tablets are filled by the appropriate filling modules.
  • the container tracking system 756 and the refill module are communicatively coupled to the tablet refill control system 728 . After the containers are filled by the plurality of refill modules, the illustrative unsealed containers are inspected at block 714 .
  • the illustrative table top system 660 receives a prescription order at station 662 .
  • the appropriate containers 664 are selected.
  • the appropriate containers are selected by the pharmacist and are then placed on a conveyor 665 , which feeds these multiple prescription containers to refill cells 666 .
  • the refill cells 666 are configured to deposit the appropriate tablets and/or medications into the containers.
  • the filled multiple prescription order are visually inspected by the pharmacist.
  • there may be other means of inspecting the filled, yet unsealed, multiple prescription containers such as near infrared, X-ray, or such means for inspection.
  • a lid is then generated at station 670 .
  • FIG. 36 there is shown a flowchart with a more detailed flow of the inspection of filled multiple prescription containers that have not been sealed.
  • an inspection of the filled containers is performed at block 612 .
  • the inspection may be conducted by simply providing an image to the pharmacist so that the pharmacist can see if the appropriate tablet or medication is in each container, as represented by block 760 .
  • precision weighing 762 may be used to make sure that the appropriate tablets or medications are deposited in the appropriate multiple prescription container.
  • the inspection may also be conducted by using X-ray detection 764 or some other form of detecting such as near infrared detection, robotic detection at visual wavelengths, or any other such technique that looks at color, shape, density, or other such parameter to determine if the appropriate container has been filled with the correct prescription. If a determination is made that the multiple prescription container has not been properly filled, then order adjustment 766 may be performed. After inspection, the process continues to lid assembly processing.
  • X-ray detection 764 or some other form of detecting such as near infrared detection, robotic detection at visual wavelengths, or any other such technique that looks at color, shape, density, or other such parameter to determine if the appropriate container has been filled with the correct prescription. If a determination is made that the multiple prescription container has not been properly filled, then order adjustment 766 may be performed. After inspection, the process continues to lid assembly processing.
  • the lid assembly process 614 comprises receiving blank lidstock 770 , and placing the lidstock 772 in a position so that lidstock printing 774 can take place. To perform the printing on the lidstock, a printing ink, toner, or ribbon is needed.
  • a pallet is used to transport the multiple prescription container to the appropriate lid assembly section, as described by block 778 .
  • a pallet is not needed and the container simply travels along the conveyer.
  • a conveyer is not needed.
  • a label needs to be applied.
  • the appropriate label is generated as described above and placed on the filled multiple prescription container as represented by block 780 .
  • the method then proceeds to block 782 where the lidstock is heat sealed to the filled multiple prescription container.
  • the sleeve is then applied at the sleeve assembly process 616 .
  • FIG. 38 there is shown a flowchart of an illustrative sleeve assembly process 616 where the sleeve is applied to the sealed multiple prescription container.
  • the sealed multiple prescription container is communicated using a pallet, as represented by block 790 .
  • the sleeve is then combined with the sealed multiple prescription container at block 792 .
  • the illustrative sleeve is generated by receiving a blank sleeve 794 and placing the sleeve 796 in the appropriate position so that a printed label 798 can be placed on the sleeve.
  • the printed label 798 may be generated locally with printing ink, toner, or a ribbon 802 .
  • the complete sleeve assembly 804 is then ready to be coupled to the sealed multiple prescription container. As described above, a cap may also be placed on the sealed multiple prescription container, instead of a sleeve.
  • FIG. 39 there is shown a more detailed flowchart of the inspection of the sleeved containers conducted at block 618 .
  • This inspection at block 618 is performed after the multiple prescription container has been sealed.
  • the need for this second inspection is to maintain a high degree of quality assurance and quality control (QA/QC).
  • QA/QC quality assurance and quality control
  • a tablet or medication may have fallen out of the multiple prescription container during the lid sealing process described above.
  • the wrong printed information may have been placed on the lidstock, sleeve, or cap.
  • the sleeved sealed containers are received in block 806 .
  • the printed information on the sleeve and/or lid is verified.
  • the label is rejected at decision diamond 810 , and a new label is placed on the sleeve 812 . If the label is accurate, then the method proceeds to block 620 where tote printed materials are combined with the sleeved multiple prescription containers.
  • problems that may also be identified during the inspection process 618 include identifying tablets or medication being broken, compromised, or too many tablets being dispensed at one particular time. Additionally, the inspection may not be limited to simply checking the label, and a more exhaustive secondary inspection may be conducted using a variety of different instruments including, but not limited to, robotic inspections at a visual wavelength, near IR, X-ray, precision weighing and any other detection means that can identify the type of tablets or medication in each container.
  • FIG. 40 there is shown an exploded perspective view of the illustrative tabletop system with the lid assembly process, sleeve assembly process, and inspection.
  • the illustrative table top system includes generating a lid at station 670 , and sealing the lid at station 672 .
  • the container travels along conveyor 665 .
  • the sleeve located at sleeve dispenser 674 is then applied.
  • the sleeve label is generated at sleeve label station 675 .
  • the pharmacist then proceeds to combine the sleeve and the sealed multiple prescription container.
  • the pharmacist then may perform a visual inspection.
  • Printed materials are generated by printer 676 , and the printed materials are combined with the multiple prescription container assembly.
  • the order consolidation process comprises accessing a database with patient prescriptions and orders and consolidating various prescriptions or orders. For example, a patient may request vitamin supplements with prescribed medications, and so order consolidation may be necessary. Additionally, there may be two separate prescriptions from two different doctors that need to be combined.
  • the method then proceeds to block 822 where the patient-specific information is printed. This patient-specific information may include the labels described above in FIG. 5-7 above.
  • prescription literature that is provided by a pharmaceutical company, medical provider, insurance company, or other such health professional may be included.
  • These printed materials may be generated at the production facility or may be shipped to the production facility or any combination thereof.
  • shipper packaging information may also be processed at block 826 , so that the illustrative production facility may accommodate shipping using a variety of different carriers, e.g. FedEx, UPS, USPS, DHL, etc.
  • the appropriate shipping label is then generated at block 828 .
  • the method then proceeds to block 620 where the sleeved sealed container(s) are combined with printed materials in the tote or pallet.
  • FIG. 42 there is shown a block diagram describing the combining of the tote and sealed multiple prescription containers at block 620 .
  • the illustrative production facility conveys the pallet or tote with the multiple prescription container assembly.
  • the multiple prescription container assembly is then combined with the printed materials generated by the tote assembly system 622 .
  • a record of the filled prescription is recorded and communicated to the appropriate entities as represented by block 834 .
  • the multiple prescription container assembly and associated materials are then shipped to the pharmacy or customer as reflected by block 624 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Composite Materials (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Child & Adolescent Psychology (AREA)

Abstract

An ordering system that fills a prescription order is described. The ordering system comprises a Graphical User Interface, a transactional component, a production facility, a detailed labeling component, and a distribution point. The GUI is configured to receive at least one prescription order that is associated with a particular patient wherein the at least one prescription order comprises at least two different medications. The transactional component charges for processing the prescription order. The production facility receives the prescription order and fills a plurality of multiple prescription containers. Each of the multiple prescription containers is associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval. The detailed labeling component is associated with the production facility, and the detailed labeling component is configured to generate a detailed label that provides a plurality of medical information regarding the medications to the patient. The distribution point provides the multiple prescription containers and the detailed label to the particular patient.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 60/795,370, filed Apr. 26, 2006, which is incorporated herein by reference in its entirety.
  • This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 60/795,446, filed Apr. 26, 2006, which is incorporated herein by reference in its entirety.
  • This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 60/795,413, filed Apr. 26, 2006, which is incorporated herein by reference in its entirety.
  • This application is a continuation-in-part of patent application of patent application Ser. No. 11/241,783, filed Sep. 30, 2005, which is incorporated herein by reference in its entirety.
  • BACKGROUND 1. Field
  • The description relates to the field of tablet packaging and delivery systems. More particularly, the description relates to ordering and filling a prescription comprising a plurality of different medications.
  • 2. Description of Related Art
  • One of the major problems in the taking of prescribed daily medications emanates from the fact that, in many instances the patient has to take more than one medication in the form of pills or tablets. A principal concern is determining whether all medications have been taken in compliance with the prescribed daily regimen. Many times this concern is compounded by the requirement that portions of the various medications must be taken at different times during the day.
  • The fear of taking improper dosages of prescribed medication can be particularly acute in the elderly, many of whom have some degree of mental dementia and can easily be confused as to whether they have taken all of their medications at the correct time. Some patients, with curtailed mental capabilities, have difficulty just in sorting out the medications preparatory to taking them, let alone taking the medication in a timely manner. Providing medications to disabled and/or incapacitated individuals can also be a problem for caregivers, particularly those in hospitals and assisted living facilities where one caregiver may oversee the medication of many patients.
  • Thus, there is a need for a positive delivery system and tablet package assembly for the delivery of multi-prescription dosages. A tablet packaging and delivery system which could decrease the possibility of human error and provide an easy to use set-up for the correct selection and delivery of multi-tablet/multi-time medications would be welcomed by the pharmaceutical and medical communities.
  • There is also a need for a tablet delivery system that could provide evidence that the prescriptions were actually taken or administered as prescribed. Such a system would be an efficient way for any patient to take such multi-dosages but it would be especially beneficial for a patient of limited mental capacity as well as to caregivers in the hospital setting.
  • There is also a need for a tablet assembly and delivery system for vitamin supplements. Vitamin supplements are also often used in the same manner as many prescribed drug regiments with many of the same problems and inconveniences. Therefore a delivery system that addresses the needs of multi-prescription administration also contains many benefits for, and can be applied to, the vitamin and herbal supplement market.
  • One solution to the problem of taking multiple medications is to pre-package the multiple medications so that users can take the pre-packaged medications at a predetermined time. Generally, these methods of pre-packaging medications are targeted to patients that may lack maturity and/or mental capacity to take the correct medications at the correct time. For example, young children in a school or campground, and elderly individuals in elder care centers, or nursing homes are target groups for the pre-packaging of medications. Some of the pre-packaged medications are placed in a small plastic bag, which may be easily misplaced and is not child proof. Other pre-packaged medications are placed in sealed cups that are difficult to open and which can not be made child proof.
  • Additionally, the pre-packaging of multiple medications is also limited by distributing pre-packaged medications to a limited geographical location. For example, the pre-packaging of multiple medications is only provided in hospitals, medical institutions, campgrounds, or schools. Thus, the geographic limitation makes it difficult to effectively distribute the pre-packaged medications to a broad group of people over a broad geographic area.
  • Furthermore, pre-packaged multiple medications are difficult to order because the pre-packaging of multiple medications is a specialty service that has not been automated. The manual processing of prescription orders is expensive because the process lacks automation. Therefore, there is a need for an automated ordering system and process that is simple and cost effective for a patient or a pharmacist to use. An automated system and method for receiving orders would make it substantially easier to process a multiple prescription order, which would in turn make the process much more cost effective.
  • Further still, the current pre-packaging of multiple medications does not provide a simplified labeling technique that permits a caregiver to efficiently monitor the dispensing of different medications at pre-determined intervals. For example, the current techniques for dispensing medications do not provide summaries of the medications being taken by a patient. Additionally, although a pharmacist may provide information about drug interactions, there is no simple and clear record that describes drug interactions in a patient-friendly manner.
  • Further yet, there is a need for an efficient production facility that efficiently processes and inspects the pre-packaged multiple prescription containers. Automated processing and inspection techniques can dramatically improve efficiencies and minimize improper packaging or labeling. Thus, by automating the tablet processing and inspection process a more cost effective solution for the pre-packaging of multiple prescriptions can be obtained.
  • The following description provides a convenient and efficient way for patients, pharmacists, and physicians to order multi-drug prescriptions from a pharmaceutical dispensing system which produces multi-dose prescriptions. This description allows for prescriptions to be placed from a computer, telephone, facsimile, mail, or any combination thereof.
  • SUMMARY
  • An ordering system that fills a prescription order is described. The ordering system comprises a Graphical User Interface, a transactional component, a production facility, a detailed labeling component, and a distribution point. The GUI is configured to receive at least one prescription order that is associated with a particular patient wherein the at least one prescription order comprises at least two different medications. The transactional component charges for processing the prescription order. The production facility receives the prescription order and fills a plurality of multiple prescription containers. Each of the multiple prescription containers is associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval. The detailed labeling component is associated with the production facility, and the detailed labeling component is configured to generate a detailed label that provides a plurality of medical information regarding the medications to the patient. The distribution point provides the multiple prescription containers and the detailed label to the particular patient.
  • Additionally, a means for receiving the multiple prescription order that is associated with the patient is described. By way of example and not of limitation, the means for receiving the multiple prescription order includes from a networked computer, a telephone order, a mail order, a scanned order, or any combination thereof.
  • A method for processing a multiple prescription order that comprises a plurality of different medications is also described. The method comprises receiving a multiple prescription order that is associated with a particular patient. The multiple prescription order comprises at least two different medications that are to be consumed at the same prescribed interval determined by the multiple prescription order. The method also comprises initiating a transaction that charges for filling the multiple prescription order. The multiple prescription containers are filled so that each multiple prescription is associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval. A detailed label is generated that comprises medical information regarding the medications to the particular patient. The multiple prescription containers and the detailed label are then distributed to the particular patient.
  • DRAWINGS
  • The present invention will be more fully understood by reference to the following drawings which are for illustrative, not limiting, purposes.
  • FIG. 1 is an illustrative flowchart showing a method for receiving and processing at least one prescription.
  • FIG. 2 is an illustrative high-level flowchart of a production facility processing a prescription order.
  • FIG. 3 is a more detailed flowchart showing how a multiple prescription order is processed within the production facility.
  • FIG. 4 shows an illustrative graphical user interface (GUI) for receiving an order.
  • FIG. 5 shows an illustrative label that is generated by the production facility.
  • FIG. 6 is an illustrative summary label that may be generated by the production facility.
  • FIG. 7 is an alternative summary label that may be generated by the production facility.
  • FIG. 8 is a block diagram of an illustrative system that receives a pill order via the Internet.
  • FIG. 9 is a block diagram of a client server architecture that out-sources the filling of the multiple prescription order to a production facility.
  • FIG. 10 is a flowchart showing a prescription validation process.
  • FIG. 11 is a flowchart showing a transaction being processed.
  • FIG. 12 is a diagram showing an illustrative multiple prescription container having various depths.
  • FIG. 13A and FIG. 13B shows a top view and a bottom view of a multiple prescription container assembly.
  • FIG. 14 is an exploded isometric view of the sleeve for the multiple prescription container assembly before it is slidably coupled to the sealed containers.
  • FIG. 15 is an isometric view of the sealed containers slidably coupled to the sleeve for sequential dispensing.
  • FIG. 16 is an exploded view of an illustrative child protective feature for a multiple prescription container assembly.
  • FIG. 17 is an illustrative embodiment of a plurality of dispensing sleeves that are connected to one another.
  • FIG. 18 shows illustrative notches of interlocking elements for an illustrative dispensing sleeve.
  • FIG. 19 is an illustrative top view of multiple sleeves coupled to one another and depicting the sequential dispensing of a container.
  • FIG. 20A there is a top view of a dispensing sleeve housing a plurality of rounded multiple prescription containers.
  • FIG. 20B is a bottom view of the dispensing sleeve housing the rounded containers described in FIG. 20A.
  • FIG. 21A is the dispensing sleeve housing the rounded containers having a first lid and a cover.
  • FIG. 22 shows an alternative sleeve that does not comprise a rim.
  • FIGS. 23A and 23B show two separate perspective views of a plurality of stacked rounded multiple prescription container assemblies.
  • FIG. 24A is a perspective view of a circular multiple prescription container assembly.
  • FIG. 24B is an illustrative embodiment in which the lid has printed information.
  • FIG. 25 provides a more detailed view of a patient or caregiver removing the lid from the circular multiple prescription container in FIGS. 24A and 24B.
  • FIG. 26 is a flowchart showing an illustrative embodiment of the method for dispensing tablets which utilizes a secondary package or sleeve for receiving a multiple prescription container.
  • FIG. 27 is a flowchart showing the processes and systems used by a production facility to fill a prescription order.
  • FIG. 28 is a top view of an illustrative manufacturing floor that fills the prescription order.
  • FIG. 29 is an isometric view of an illustrative tabletop system that can also fill the prescription order.
  • FIG. 30 is a block diagram of an illustrative order processing system.
  • FIG. 31 is a flowchart of an illustrative container selection process.
  • FIG. 32 is a block diagram of an illustrative pill management system.
  • FIG. 33 is a side view of an illustrative refill module.
  • FIG. 34 is a flowchart of an illustrative container filling process.
  • FIG. 35 is an isometric view of an illustrative tabletop system including order processing, pill management, container selection, container inspection, and container filling.
  • FIG. 36 is a flowchart showing the inspection of filled multiple prescription containers.
  • FIG. 37 is a flowchart showing an illustrative lid assembly process.
  • FIG. 38 is a flowchart of an illustrative sleeve assembly process.
  • FIG. 40 is an isometric view of the illustrative tabletop system with filled container inspection, lid assembly, sleeve assembly, and inspection of sleeved and sealed containers.
  • FIG. 41 is a block diagram of a tote assembly system.
  • FIG. 42 is a block diagram showing the combining of the tote and sealed multiple prescription containers.
  • DESCRIPTION
  • Before the present assembly, apparatus and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
  • Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
  • Referring to FIG. 1 there is shown a flowchart showing a general method for receiving and processing at least one prescription. A prescription generally comprises at least one medication that is dispensed as a tablet. The method may be initiated with a consumer having a doctor's prescription at block 12. By way of example and not of limitation, a consumer may be a patient or caregiver. A consumer may also be a person or entity authorized to conduct a transaction for at least one product that includes prescription medication, over-the-counter medication, vitamins, supplements, herbs, oils, or any such substances. A prescription may not be required for processing a prescription order. For example, a prescription may not required for dispensing certain tablets such as vitamins, herbs, oils, over-the-counter medications, supplements, and other such products. Additionally, in some jurisdictions a prescription for dispensing medications may not be required.
  • A direct order may then be placed at decision diamond 14. A “direct order” is an order that must be placed by a pharmacist. By way of example and not of limitation, the order is placed using a graphical user interface (GUI) resident on a browser running on a computer that is in communication with the Internet by a pharmacist, patient or caregiver.
  • If the direct order requires a pharmacist, the method proceeds to block 16 where a pharmacist places the order for the appropriate medications. After block 16, the method proceeds to block 17 in which the pharmacist may be prompted for at least one packaging option. A variety of different packaging options may be provided to the pharmacist. The packaging options may comprise at least one multiple prescription container as described in further detail below. Alternatively, as described by block 18, the order may also be placed by telephone, fax, mail, scanned order, or any other such means for placing an order that does not employ a graphical user interface.
  • If the direct order can be placed without the need for a pharmacist, the method proceeds to block 19 where the user is prompted to select at least one packaging option. Generally, the user is either a patient or a caregiver. A variety of packaging options may be provided to the caregiver or consumer. The various packaging options are described throughout this specification. As described above, the order may also be placed on-line, by telephone, fax, mail, or other such means for communicating the order.
  • After receiving an order, the method proceeds to decision diamond 22 where a decision about how to process a multiple prescription order is made. A multiple prescription order or “Multi-Script” order is an order that comprises two or more tablets or medications wherein a first tablet or medication is different from a second tablet or medication. Generally, a multiple prescription order requires taking multiple tablets or medications at approximately the same time. If the order is not a multiple prescription order, the method proceeds to block 24, in which a single vial is prepared with a simple label. However, if the order is a multiple prescription order, the method proceeds to block 26 where a multiple prescription container is selected and the appropriate label is generated. At block 28, either the simple vial or the multiple prescription container is filled.
  • At block 30, a plurality of written information may also be generated. This plurality of information may include information related to each medication, summary information about each medication, appropriate labeling, some summary information about the patient, a drug interaction report, or any such combination thereof. The drug interaction report may provide information to help individuals properly take the prescribed medication. The drug interaction report includes information about the various drug interactions that may be associated with each prescription. For example, certain foods may interact with a particular prescription. Additionally, there may be a group of particular drugs that may interact with the prescription, and this information may not be readily available to the patient or the patient's caregiver. The drug interaction report may be used to help identify foods, medications, vitamins, supplements, or any combination thereof that may interact with the patient's filled prescription. The written information may also include a summary of the medications being taken as described in further detail below.
  • The method then proceeds to decision diamond 32 where a decision is made about how to distribute the filled order. If the filled order must be distributed to a pharmacist 36, the pharmacist 36 provides the prescription to the consumer 34 that may be a patient or caregiver. Alternatively, the filled prescription may be distributed directly to the particular consumer 34.
  • Referring to FIG. 2 there is shown an illustrative high-level flowchart of a production facility processing a prescription order. Recall, FIG. 1 describes a general method for receiving and processing a prescription order. FIG. 2 provides an illustrative flowchart from the perspective of a production facility processing a verified prescription order. The method is initiated at block 52 where the production facility receives a verified prescription order. A verified prescription order is an order that has been “verified” according to local jurisdictional requirements, insurance requirements, co-pay requirements, transactional requirements, or a combination thereof. For example, in certain jurisdictions a verified prescription order may require a medical doctor's signature, and may have to be processed by a pharmacist. Additionally, a verified order may require approval from an insurance company, Medicare or any such entity. In other jurisdictions, the only form of verification may include confirming that funds are available from the particular individual or organization charged, which satisfies transactional requirements. By way of example and not of limitation, verification of the availability of funds may include simply receiving authorization to charge a credit card and confirming that the credit card is a valid card.
  • The method then proceeds to decision diamond 54 where a determination is made if the verified order was a multiple prescription order. If the order is not a multiple prescription order, the method proceeds to block 56 where a single prescription order is processed, and then subsequently the filled prescription is sent to a pharmacy or customer as shown in block 64.
  • If the verified prescription order is a multiple prescription order, the method proceeds to block 58 where the facility determines the filling procedure to use. The filling procedure will depend on a host of variables such as the type of user selectable packaging. The method then proceeds to block 60 where the production facility inspects the tablets that have been placed in the multiple prescription containers. The type of inspection depends on the particular design of the production facility. For example the inspection may be conducted by tablet counters, RFID counters, by using X-ray or near IR technology, or other such technology capable of inspecting the multiple prescription containers. Alternative methods of inspecting the filled multiple prescription will readily suggest themselves to those of ordinary skill in the art.
  • After completing the inspection, the production facility generates the plurality of written information shown in block 62. The written information may also be referred to as packaging information. The written information may comprise information about each substance, appropriate labeling, summary information as described below, a drug interaction report as described in this specification, or a combination thereof. At block 64, the filled prescription order is then sent to a designated entity or individual including, but not limited to, the patient, the caregiver, the pharmacist, the user, or the consumer.
  • Referring to FIG. 3 there is shown a more detailed flowchart of a multiple prescription order being processed within the production facility. A more detailed view of block 58 is shown in FIG. 3, which includes a description of the user selectable packaging that may be determined by the user, consumer, patient, caregiver, or pharmacist. In the illustrative embodiment, a variety of different packaging options are presented. By way of example and not of limitation, the verified prescription order may include 10 tablets taken three times per day, which requires mid-size multiple prescription containers. In another example, the patient and/or user may desire a package design that may be easily used by a caregiver. In yet another illustrative example, the patient may want a package design that is small and portable. Based on the patients needs, the appropriate user selectable options may be provided. Thus, an individual requesting the filling of a multiple prescription order will provide sufficient information so that appropriately sized containers are identified as represented by block 66. The containers may be stacked. In certain embodiments, the containers may be placed on a conveyer belt system which allows the containers to travel along the conveyor system to the designated filler module containing the correct medications. The containers may also be placed on trays configured to hold a plurality of containers and situated on a conveyor system which allows the filling facility to track the position of each container within the filling facility.
  • Additionally, sufficient information is provided so that the appropriate tablets can be associated with the appropriate multiple prescription containers at the appropriate dosing times as represented by block 68. The method then proceeds to block 70 where each of the multiple prescription containers is filled with the appropriate tablets. A more detailed explanation of the method for filling each of the multiple prescription containers is described in further detail below.
  • A more detailed view of block 60 where the production facility inspects the containers is also described. The inspection may be conducted either before the multiple prescription containers are sealed as represented by block 72. A label may then be printed on lidstock 74 and the multiple prescription container may then be sealed 76. Additionally, the medications within the multiple prescription container may be inspected after the multiple prescription containers are sealed as represented by block 78. Thus, the filled multiple prescription container may be inspected either before the multiple prescription containers is sealed, after the multiple prescription container is sealed, or both.
  • A more detailed view of block 62 is also presented in FIG. 3 where after the inspection 60, the production facility generates the plurality of written information. The written information may also be referred to as packaging information. The written information may comprise information about each substance which is described in the multiple prescription tote 80. The written information may also include summary information about the various medications and is represented by block 82. A drug interaction report may also be generated at block 84.
  • Referring to FIG. 4 there is shown an illustrative graphical user interface (GUI) for receiving on-line orders. The illustrative GUI 100 embodiment is configured to receive a prescription order, a direct order, or any such order related to medications, vitamins, supplements, herbs, oils, or any such substance that is associated with a particular patient. The illustrative GUI 100 includes fields for the name of the patient 102 and the patient's address 104. Additional information about the individual placing the order may also be requested, such as the individual's telephone number 106 and e-mail address 108. Information about the patient such as date of birth 110, height 112, weight 114, and sex 116 can also provided to the illustrative GUI 100. The user can input information about the patient's particular medical condition 120, information about the patient's doctor 122, allergies 124, and current medications 126 being taken by the patient.
  • Furthermore, the user may provide specific ordering options such as instructing about the type of user selectable packaging. For example, a plurality of single packages 128 may be requested for multiple medications. Also, a multiple prescription package 130 or “multi-script” package may be requested. The multiple prescription package may include a variety of user selectable options such as type of package, size of package, and child resistant packaging. The type of package may include a sleeved package or a circular package as described below. Alternatively, the packaging may employ other packaging techniques such as grid packaging or the use of plastic bags. The size of package may also vary and may come in three different sizes: travel (small), notebook (medium), and companion (large).
  • Data fields are also provided for identifying the requested medications 132 that include a description of the product 134, the dosage 136, the quantity 138, and the type of drug 140. The type of drug 140 may include information about whether the drug is generic or name brand. If the product is available, the on-line ordering system would then provide a price 142 for the product. A sub-total 144 is then provided, and shipping costs 146 are identified. A final order total 148 is then presented to the user. The patient may then provide a card 150 such as a credit card, a debit card or any other such information for conducting an on-line transaction. The name, the card number, the type of card and the expiration date of the card are requested in the illustrative embodiment.
  • Referring to FIG. 5 there is shown an illustrative label that is generated by the production facility. By way of example and not of limitation, the illustrative label 160 may contain written information that is related to each medication such as summary information about each medication, summary information about the patient, the name of the patient, a picture of the patient, pictures of the first tablet and the second tablet that are to scale, a drug interaction description, or any combination thereof. The illustrative label may be folded and conveniently coupled to a multiple prescription container. For example, the illustrative label 160 can be coupled to a dispensing sleeve, which is described in further detail below.
  • The illustrative label 160 includes a picture 162 of the particular patient, and the name and address 164 of the patient. Furthermore, there may be additional unique information about the patient printed on the label, such as the doctor's name 166 and telephone number, and health insurance information. The label 160 also includes pictures 168 of the pills that have been prescribed. Additionally, there may be a particular description 170 about each pill on the folded label that may include manufacturer's latest labeling information, a summary of expected side effects 172, and a short description of possible drug interactions 174. This information may be presented in a manner similar to the Physician's Desk Reference, which includes a color picture of the pill with summary information about each pill. Additionally, information about how to administer products 176 may be provided. This information may be used by a caregiver, to help in dispensing the appropriate medications.
  • Referring to FIG. 6 and FIG. 7 there are shown two different summary labels that may be generated by the production facility. In FIG. 6, the summary label 180 may be conveniently configured to fit into a wallet, or may be configured to be attached to the back of an insurance card or driver's license. The illustrative label 180 comprises a picture 182 of the patient, pictures of the first tablet and the second tablet that are to scale, his name and address 184, and other such information. Information about the prescriptions and dosages may be provided with information about the patient's doctors and other health information. In FIG. 7 an alternative summary label 190 is shown that includes the patient's name, name of the patient's doctors, insurance, and insurance number. Additionally, summary label 190 includes information about the patient's allergies 192, the patient's prescriptions 194, and a warning about possible drug interactions 196. The particular summary label may be dependent on the patient's condition, the patient's caregiver, a physician's recommendation, statutory requirements, or any other such entity charged with assisting the patient.
  • FIG. 1 through FIG. 7 provide an overview of the systems and methods for processing a multiple prescription order. In the illustrative embodiment an emphasis was placed on performing an on-line transaction. The on-line systems and methods for processing the prescription order are described in further detail in FIG. 8 through FIG. 12. These on-line systems may be open and use the Internet or may be networked using alternative networking architectures as described below.
  • Referring to FIG. 8 there is shown a block diagram of an illustrative system 200 configured to receive a pill order via the Internet. The illustrative patient's personal computer (PC) or “client” 202 displays the illustrative GUI 100. The illustrative client 202 is communicatively coupled to the Internet 204. By way of example and not of limitation, a standard off-the-shelf personal computer and operating system would operate as a client.
  • The PC 202 is configured to remotely communicate with an online ordering server 206. The online server 206 is behind a firewall and is part of a secure local area network (LAN) 208 located at a production facility. Generally, the production facility is configured to generate a filled multiple prescription order as described throughout this specification. The secure LAN also comprises a production server 210. In the illustrative example of FIG. 8, the production server 210 and online server 206 are both housed in the production facility. An alternative embodiment in which the online server is located in a separate location is described below in FIG. 9.
  • The online ordering server 206 is communicatively coupled to the production server 210. The online ordering server 206 is configured to communicate with the user and/or clients that are placing the on-line order. The ordering server 206 also contains the hardware and software necessary for addressing queries about inventory in the production facility. The online server 206 may be configured to query the user about a particular prescription, about health insurance, and other pertinent information. The online server 206 may comprise software and hardware that permits the client 202 to pull up notes, research the prescribed medication(s), research side effects and drug interactions with other medications, vitamins, foods, and other such information that would help the patient properly consume the products ordered by the patient.
  • The production server 210 controls the processing of the multiple prescription orders at the production facility that generates containers having a plurality of different tablets in each container. The illustrative production server 210 comprises a system database 214 that stores information about the products available at the production facility such as prescription medication, over-the-counter medication, vitamins, supplements, herbs, oils, or other such substances. Additionally, the system database 214 may include historical prescription information that is associated with the patient, so that the user may access the multiple prescription order at a later time. In one illustrative example, the production server contains and maintains all the information to control the production facility. The production server 210 may be configured with management software that manages all the filling, inspection, printing, sealing, order tracking, and tablet assembly traffic control functions.
  • While placing an order, the online ordering server 206 may request information from a medical provider server 216 or provide information to the medical provider. For example, a medical provider such as a medical doctor or nurse can confirm that a specific medication has been ordered and will be administered in a particular manner. Additionally, the medical provider may also include notes for the patient on how the medicine should be taken, and this information may be printed by the production facility and associated with the patient's on-line order. Additionally, historical prescription order information may also be stored on the medical provider server 216.
  • The online ordering server may also request information on the accuracy or changes in the end user's medical insurance from the insurance provider server 218. The online ordering server 216 may also request information from the pharmaceutical company server 220 about certain prescribed medications. These queries to the pharmaceutical company server 220 may occur during the online ordering process initiated by the end user or at various times when updating the system database. Additional queries may be made to government agencies, private medical facilities, on-line search engines, websites, databases, or any combination thereof.
  • The online ordering server 206 and/or the production facility server 210 may also be communicatively connected to an updated medical information server 222 via the Internet or a secure wide area network connection. The updated medical information server 222 may be a private or government maintained server with compiled updated information on the various drugs stored in the production facility. The updated information may comprise new warnings on drug interactions, updated expiration dates, toxicity information and the like. The updated information is communicated to the second labeling component. This information is valuable in assuring the multi-drug prescriptions are effective and safe.
  • Additionally, the online ordering server 206 comprises a transactional component 212 that processes the user's financial information. The transactional component enables the online ordering server 206 to obtain pertinent information from the user, healthcare provider and the user's insurance company to verify the prescription. The transactional component is also configured to carry out the payment of the order and informs the user if the prescription has been processed or if the financial transaction has failed.
  • Referring to FIG. 9 there is shown a block diagram of a simplified client server architecture in which the multiple prescription packaging is outsourced to the production facility. In this embodiment, the user requests a prescription refill from a client 230 computer that displays a GUI viewed using a standard web browser 232, and the client 230 is communicatively connected to a wide area network (WAN) such as the Internet 234. The client 230 then proceeds to access the web site that displays the illustrative GUI 100. The client 230 computer may be a portable terminal, a notebook computer, a hand-held personal digital assistant, or other such device that can be networked and can process browser software. It shall be appreciated by those skilled in the art that the end user of the GUI may be a patient, parent, caregiver, physician, hospital personnel, or any other person that has permission from the patient to access their prescription data.
  • The client 232 then proceeds to communicate with the secure LAN 236 that comprises a production server 238 and an online server 240. The production server 238 is associated with managing the inventory in the production facility and comprises an inventory database module 242 that determines if the production facility can satisfy the client's prescription order.
  • The online server 240 may be located in a variety of different places such as a separate on-line pharmacy, a physician's website, a healthcare provider's website, a health insurance website, a school, a university, or any other such entity that out-sources the multiple prescription packaging to the production facility described in further detail below. In the illustrative embodiment, the online server 240 comprises a web server inventory lookup module 244 that is operatively coupled to the inventory database module 242 and receives updates regarding the production facility's ability to satisfy the client's request.
  • In operation, the client 230 may access the production server 238 directly or through the illustrative online server 240 that may be associated with a separate on-line pharmacy, a physician, a health care provider, a health insurance provider, a school, a university or any other such entity. Additionally, physicians involved in the patient's care may utilize the Internet to generate a new prescription for the patient, or modify a previous prescription that may be stored on the production server 238.
  • Patient confidentiality may be preserved by using encryption technology and by requiring strong authentication. Using encryption technology such as Secure Sockets Layer (SSL) and Public Key Infrastructure (PKI), communications across the Internet 204 are kept secure. Illustrative embodiments may use available encryption tools such as Pretty Good Privacy (PGP), OpenPGP (the IETF's RFC 2440) and other available PKI encryption standards. Information stored on databases and servers may also be encrypted. Strong authentication may be obtained by asking the user for one or more unique identifiers such as date of birth (DOB), unique IP address, last 4 digits of a social security number, username, password, or any other such unique identifier.
  • Once the client 230 has been authenticated, the client is able to place a multiple prescription order using the illustrative graphic user interface (GUI) 100. In one illustrative example, a pharmacist's on-line server communicates with the production server 238 and the inventory database 242. The pharmacist's on-line server makes a request to determine whether the production facility can satisfy the pharmacist's order. The inventory database 242 is accessed to determine if the prescription order may be filled. Once the pharmacist's online server has received confirmation that the prescription order can be filled, the online server relays this information back to the clients computer via the Internet.
  • By way of example and not of limitation, the illustrative production server 238 comprises software to access the drug interaction database to determine if there may be possible interactions between the prescribed tablets stored. The production server 238 also communicates the order to production facility computers which control the various systems and subsystems involved in producing the tablet assembly, including printers for labeling the lidstock on each individually sealed container with medication instructions such as date and time to take the tablets in each individual container. The production server 238 may also communicate to production facility computers which are connected to a printer for labeling an area of the sleeve portion of the tablet assembly, with end user information, drug information and expiration date(s) for the medication stored within the individual containers. It should be noted that vitamins and herbal supplements may also be stored together with prescription drugs.
  • Referring now to FIG. 10 there is shown a flow chart of an illustrative prescription validation process 250. The prescription validation process is initiated at block 252 where user information and prescription order information is provided to either online server 206 or online server 240. The method then proceeds to block 254 where user information is matched against the prescription order information.
  • At decision diamond 256, the prescription order is validated if user information and prescription information also match information stored on the online server. Additionally, the prescription may be validated after the online server communicates with another server such as the medical provider's server. Alternatively, the prescription order may be simply validated if the user information matches the prescription information. For example, if either the patient information or the prescription order information does not match the information stored on the online server, then the method proceeds to block 258 where the user receives a failed prescription notification. By way of example and not of limitation, an explanation may be provided by the online server such as the patient's personal information is incorrect, or the prescription has expired, or a physician's examination is required before filling the order, or the patient needs to wait a couple more days before the prescription order may be filled. Those skilled in the art shall appreciate that the user information and prescription information may require being input more than once before a failed notification is provided to the user.
  • If the prescription order is validated by having the patient information match the prescription order information, the method proceeds to decision diamond 260 and determines if the prescription order is covered by the user's health insurance. As with prescription information, the insurance information for a specific user may be stored on a database associated with the online server of the production facility or the health insurance company's server may be queried by the online server via secured network about the accuracy of the user's insurance policy such as determining if the insured's policy is up-to-date. Additionally, information about the medications covered by the specific insurer may be queried, co-payment information, prescription drug policy, secondary insurance information, or any other such pertinent insurance information.
  • If the prescription order is paid for partially or fully by the user's health insurance, the method proceeds to process the transaction at block 262. A more detailed view of the transaction process 262 is provided below in FIG. 11.
  • The prescription order may not be covered, or may only be partially covered by the user's insurance and so the method proceeds to decision diamond 264 where alternative payment methods can be provided. By way of example and not of limitation, alternative payment methods include VISA transactions, debit card transactions, ATM transactions, PayPal transactions, Electronic Fund Transfers, and other such methods for performing on-line transactions. If the alternative payment method can be processed, the method proceeds to block 262 where the transaction is processed. However, if the alternative payment method can not be effectively processed, the method proceeds to block 266 where the user receives a failed payment notification.
  • Referring to FIG. 11 there is shown an illustrative method for processing an illustrative transaction in block 262. At block 262, the online transaction is processed, which enables the online server to send confirmation that the prescription order has been filled. The method is initiated at decision diamond 270 where a determination is made concerning whether the transaction is valid. A transaction is valid when the information for payment of the multiple prescription order has been authenticated.
  • If a determination is made that the transaction is not a valid transaction, the method proceeds to block 272 where a log of either the prescription complication, transaction complication, or both is recorded. The prescription complication may arise because the production facility can not satisfy the order. The transactional complication may be caused by the payment method not being authenticated.
  • If the transaction is valid, the method proceeds to block 274 where the log indicates that prescription has been filled. The processing of the online transaction may also comprise confirming that the drugs requested are in the production facility's inventory and ready for dispensing. Inventory information may be stored on either the online server or the production server or on any other communicatively connected database or computer associated to the transaction component of the online server.
  • After determining whether the transaction is valid, the method proceeds to block 276 where the user receives a completed or failed transaction notification. In the illustrative example, the failed transaction notification comprises information explaining to the user that the transaction failed because an invalid credit card number was provided. If the transaction is determined to be valid, the prescription is logged as filled and the user receives a prescription completed notification via the network connection between the online server and the user's computer.
  • A multiple prescription container assembly comprises a plurality of containers that are configured to receive a plurality of medications, even though a single prescription may reside within an individual container. The multiple prescription container assembly is configured to dispense a plurality of different tablets to a particular individual. The illustrative multiple prescription container assembly comprises a plurality of containers made from a single piece of moldable material wherein the containers are ordered to permit sequential dispensing. At least one of the containers is configured to receive a first tablet associated with a first medication, and a second tablet associated with a second medication that is different from the first medication, the first tablet and the second tablet to be taken at approximately the same time by the particular patient. As described above, there is a flange on the top surface of each of the containers. The multiple prescription container assembly also comprises a plurality of lids, the lidstock configured to interface with the flange of each integrated container. Each lid seals each of the containers and has a surface that receives a printable indicia with specific information regarding the particular individual. Additionally, the multiple prescription assembly comprises a sleeve that is slidably coupled to the plurality of sealed containers wherein the sleeve is configured to permit sequential dispensing of each of the sealed containers.
  • Referring to FIG. 12 there is shown a plurality of illustrative containers 300 having various depths that are configured to receive a plurality of tablets. The three individual containers 302, 304, and 306 are identical except for the depth of the cavity of the containers. The flanged top surface 308 and the bottom surface 310 are the same on all three containers shown in FIG. 12, and are configured to make the various sizes of containers stackable. Each of the containers further comprises a breakaway tab 312 on the sealing flange 308. The tab provides a handhold for easy opening and peeling back the lid from the container. Each of the containers also comprises a plurality of indentations 314 on at least one edge of the flanged top surface 308.
  • Each of the illustrative embodiments 302, 304 and 306 is an element of the multiple prescription container that stores tablets. It should be noted that a “tablet” is a small article which is swallowed. A tablet includes tablets, capsules, and caplets. A tablet may also be a solid dose of medication, i.e. pill, tablet, capsule or a liquid dose of medication, e.g. Vitamin E or (cod liver oil) provided in a capsule. In general, a tablet may be a prescription medication, supplements, or any other such article that is intended to be ingested to improve a user's health or wellbeing. A tablet may also be medication in the form of a suppository, or vitamins, herbal supplements and the like.
  • Referring to FIG. 13A and FIG. 13B there is shown a top view and a bottom view of a plurality of illustrative sealed multiple prescription containers 320. In FIG. 13A and FIG. 13B, both views reflect that one of the containers 321 comprises a tapered body container 322 with a cavity for holding a plurality of tablets. The tapered body container 322 allows a plurality of individual containers to be stacked for storage. Each container 320 has a flanged top surface 324 configured to be sealed with a lid 326. In certain embodiments, the tablet assembly may require individual containers that vary in depth depending on the amount of tablets needed to be dispensed at a specific time. While the depth of the individual containers may vary, the flanged top surface and collar remain constant for processing of different sized individual containers and for commonality with the assembly sleeve.
  • In one embodiment, the multiple prescription container assembly comprises a plurality of individual containers. In one illustrative embodiment, container 321 is coupled to container 328 with lid 326. The lid 326 seals one or more containers. The sequential connection enables a linear configuration for the individual containers. However, it should be noted that the quantity of containers in a multiple prescription assembly may vary as well as the interconnection configuration of the containers, e.g. a circular, an elliptical, polyhedral, etc.
  • In another embodiment, the plurality of multiple prescription containers are made from a single piece of moldable material having a plurality of indentations wherein each indentation is configured to form one container 321 in the set of containers 334. At least one of the containers is configured to receive a first tablet associated with a first medication, and a second tablet associated with a second medication that is different from the first medication. The set of containers 334 are connected to one another by frangible connections 336 or perforations positioned within the flanged edge 324 that is proximate to the adjacent container. The frangible connection 336, which is between containers, allows the containers to “break-away” from the set of containers 334 in a sequential manner. Once the lids are attached and/or sealed to the top flanged surface 324, this sequential connection enables a linear configuration as described above.
  • Each container may also comprise a collar 338 below the flanged edge 324 that allows the containers to be stored in a stackable configuration. Stacking of the containers can also be performed with the collar 338. Each container may also comprise a bottom surface 340 with at least one ridge 342. The ridge is useful in minimizing tablet-to-tablet collisions and avoiding medication sloughing off of a tablet due to collisions with other tablets. By limiting excessive movement of the tablets in each of the containers, the ridge or ridges on the bottom of the container(s) help preserve the integrity of the tablets within. The ridge may protrude outward from the bottom surface of the containers as shown in FIG. 13B, or in other embodiments, may be formed by an indentation of the bottom surface. The ridge(s) may be configured as a square, rectangle, circle, a plurality of parallel lines as well as other geometric shapes.
  • The illustrative set of containers 334 comprises seven adjacent containers configured for sequential dispensing of the contents of each container. Sequential dispensing refers to individual containers being “dispensed one at a time,” which is different from being “cherry picked” from a grid of individual containers. The number of containers in a set of integrated containers may vary due to the prescription prescribed for the user. While the illustrative embodiment describes seven containers, a set of containers may comprise at least two containers to about 20 containers, and more preferably about 5 to about 14 containers. It is expected that most of the containers will be of similar size for ease of filling the containers, but in certain embodiments varying container sizes may be needed. The set of containers 334 may be opaque but in preferred embodiments, the moldable material comprises enough clarity for the user to visualize the contents of the containers.
  • The illustrative lid 326 of container 321 comprises a printing surface where unique prescription-specific information is displayed for each container. The information displayed on the printing surface may include, but is not be limited to, the patient's name, the date and the day of the week the contained mixed dosage medications (tablets) are to be taken, as well as the time of day that the tablets are to be taken. The markings on the containers inform the patient and/or caregiver the time in which the contents of the container are to be taken in the proper sequence. In general, the lid stock comes from a roll and the appropriate amount of lidstock is released from the roll to accommodate the designated number of containers to be sealed. For a thermoformed container, using polypropylene for the material for the lid stock, an unsealed area of lid film is generally used to help in the peeling of the lid. The breakaway tab 332 on the illustrative container 321 gives the user something to hold onto and is a useful feature to a container that is manufactured by injection molding with plastics like polyethylene or styrene.
  • Referring to FIG. 14 there is shown an exploded isometric view of the multiple prescription container assembly 350 before slidably coupling the set of sealed containers 334 to the dispensing sleeve 352. The exploded view also shows a top tab 354 on the top surface 356 of the sleeve which holds the end container 358 by catching the rectangular void made by one of the indentations 360. When the user pushes down the sleeve tabs 362, the set of sealed containers are released and the top tab 354 is disengaged from the containers. The end container 358 can be slid out of the dispensing sleeve 352 if there are no other child protective features, and the top tab latches on to the next indentation (not shown). The user then can break the frangible connection 364 and remove the container. This two-step process of holding tabs 362 and pulling on the end of the sealed containers is a “child safety” feature. It shall be appreciated by those skilled in the art that certain embodiments can be made to conform to a more senior-friendly solution that is described in further detail below.
  • Additionally, there is shown a notch 363 that is configured to be fit into an illustrative cavity that is a square-shaped perimeter 365 and receives a notch similar to notch 363. The notch 363 permits two dispensing sleeves to “snap” together. The square shaped perimeter 365 is located on near the edge of the dispensing sleeve 352 and has a square cut and a lip.
  • Printed material 366 may be attached to the top surface 356 of the dispensing sleeve 352. Additional information about the prescription or other patient data can also be placed on the dispensing sleeve 352. The dispensing sleeve 352 may also comprise a surface for printable indicia, and the printable indicia may include patient data as well as prescription information.
  • Referring to FIG. 15 there is shown an isometric view of the set of sealed containers slidably coupled to another sleeve for sequential dispensing. In this illustrative embodiment, the sealed multiple prescription containers are operatively coupled to the dispensing sleeve 368. The dispensing sleeve 368 is similar to the dispensing sleeve 352 in that both sleeves comprise grooves or slits 370 configured to allow the flanged top surface 324 (see FIG. 13) of each container to slide into the respective dispensing sleeve. Additionally, both sleeves comprise a thumb groove 372, which is configured for a human thumb or finger, allowing a patient or caregiver easy access to the sealed prescription container. The thumb groove 372 also acts as a display window to allow the patient to view the printed markings on each lid. The dispensing sleeve 368 also contains a printable area 374 large enough to accommodate a detailed label with information about each tablet in each of the containers. The dispensing sleeve 368 and 352 may be produced as one piece and is configured to lock onto another sleeve with a “snap and lock” means comprising at least one protruding section 376 that defines a cavity 378 of the dispensing sleeve. The protruding section is configured to receive a notch (not shown) that can interface directly with the protruding section 376. The dispensing sleeve may be injection molded or manufactured from plastics such as polypropylene and ABS.
  • Additionally, the particular sleeve 368 further comprises integral, mold-in release tabs 380 a and 380 b configured to allow the sealed containers to slide out of the dispensing sleeve 368 when pressure is applied to release tabs 380 a and 380 b. The container 350 is then removed by breaking the perforation mark between the containers. The release tabs are configured to “catch” the next container 350 so that one container is released at a time, thereby providing child resistance.
  • Referring to FIG. 16 there is shown an exploded view of an illustrative child protective feature 390 for a multiple prescription container assembly. The first end 392 of the dispensing sleeve 394 comprises release tabs 396 a and 396 b configured on the sides of the sleeve. The release tabs 396 a and 396 b each comprise a molded loop 398 a and 398 b configured to hold the top flanged surface 400 of the end container 402 in the dispensing sleeve 394. The molded loops 398 a and 398 b have concave sections 404 a and 404 b which contact the bottom side of the top flanged surface 406. When the end container 402 is to be taken out of the dispensing sleeve, the downward pressure of the user's thumb on the lid of container 402 in the thumb well pushes the concave section 404 a and 404 b downward, releasing the top flanged surface from the release tabs 396 a and 396 b, allowing container 402 to exit the dispensing sleeve 394. Other embodiments of the release tab(s) will readily suggest themselves to those of ordinary skill in the art.
  • Referring to FIG. 17 there is shown an illustrative embodiment of a plurality of dispensing sleeves 410 that are configured to interface with at least one other sleeve having a plurality of sealed containers. The dispensing sleeves 410 are similar to dispensing sleeve 368 described above. The first dispensing sleeve 412 is fixedly coupled to dispensing sleeve 414, which in turn is fixedly coupled to dispensing sleeve 416. Each sleeve comprises a plurality of knobs or hooks on a first side of each sleeve 362 and a plurality of corresponding shaped grooves or knob receptacles 418 on the second side of each sleeve, which enables the sleeves to interlock. In this embodiment, each dispensing sleeves 412, 414, and 416 are grouped together for daily usage on a per week basis for a patient that needs to take medications three times per day.
  • Referring to FIG. 18 there is shown illustrative notches of interlocking elements for the illustrative dispensing sleeve 352 shown in FIG. 14. The illustrative notches 363 are configured to be fit into a plurality of square-shaped perimeters 365 that define a cavity. The notches 363 and square shaped perimeters permit two dispensing sleeves 352 to fit together. The square shaped perimeters 365 define a cavity that is located adjacent to the edge of the dispensing sleeve 352. Additionally a small lip is shown that permits the notch to be locked into place.
  • FIG. 19 is an illustrative top view of multiple sleeves coupled to one another and depicting the sequential dispensing of a container. In this illustrative example, the multiple prescription container assembly is for patients that must take multiple medications more than once a day. The multiple prescription container assembly 420 comprises a plurality of thermoformed (or molded) sets of sealed container 422 a, 422 b, and 422 c that are heat sealed with a laminated lid 424 a, 424 b, and 424 c, respectively. Each container within the set of containers 422 a, 422 b, and 422 c contains the required medications that have been prescribed for a particular time. The containers are separated by perforations as described above. In the illustrative embodiment, each container contains printed markings 426 that identify the medications contained therein, and may also indicate the patient's name, and, most importantly for the purposes of this embodiment, the day and the time of day that the medications are to be taken.
  • In the illustrative embodiment of FIG. 19, each container is dedicated solely to a particular time of day. In the illustrative example, the set of containers 422 a are taken in the morning, the set of containers 422 b are taken at approximately noon, and the set of containers 422 c are taken in the evening. Thus, it is possible to have a plurality of containers for each day of the week so that each container has the proper dosage that is to be taken at a particular time of day. In this illustrative embodiment, the patient is supplied with a complete set of containers for a particular week for a specific time of day.
  • Each individual container within each set of containers is to be taken at the correct, prescheduled time each day as marked 426 on each container. The multiple prescription container assembly 420 may be provided to the patient or caregiver as three separate sets of containers enclosed in three separate dispensing sleeves. The patient or caregiver can interlock the three separate dispensing sleeves 428 a, 428 b, and 428 c.
  • Referring to FIG. 20A there is shown a top view of a dispensing sleeve housing a plurality of rounded multiple prescription containers. The illustrative rounded multiple prescription container 430 comprises a plurality of containers 432 that are adjacent to one another. Each container is wedge shaped so that the triangular surface area at the top of each container is greater than the triangular well at the bottom of each container. The illustrative container 432 is surrounded by a flanged edge 434. The dispensing sleeve 436 surrounds the rounded multiple prescription container 430. A release tab 438 on the sleeve 436 permits the rounded multiple prescription container 430 to be rotated within the sleeve 436. The axis of rotation is defined by the well 440 at the center of the plurality of containers. A plurality of ridges 442 a, 442 b, 442 c, and 442 d on the sleeve 436 hold cover, lidstock, or any other labels in place.
  • Referring to FIG. 20B there is shown a bottom view of the dispensing sleeve housing the rounded containers described in FIG. 20A. The bottom view shows the rounded multiple prescription container 430 and the illustrative container 432 with the flanged ends 434 that interface with the sleeve 436. The flanged ends 434 are slidably coupled to the sleeve 436 via a plurality of lips such as lip 444. The bottom view also shows the release tab 438 that permits the rounded containers to rotate around the sleeve.
  • Additionally, a rim 445 is shown that is the approximate depth of the container. The rim 445 receives printed information about the particular patient taking the prescribed medication. The rim 445 also permits the stacking of a plurality of rounded multiple prescription assemblies.
  • Referring to FIG. 21A there is shown the dispensing sleeve housing the rounded containers having a first lid and a cover. The first lid 446 is visible and is associated with a particular multiple prescription container and is adhesively coupled to the flanged edges of the container. The cover 448 shields the lids and containers within each sleeve. The combination of elements shown in FIG. 21A illustrates a rounded multiple prescription assembly 450. In FIG. 21 B, the first lid 446 is removed, permitting access to the different medications within the container. There may be a variety of printed information on the lid 446 and/or the cover 448.
  • Referring to FIG. 22, there is shown an alternative sleeve 452 that does not comprise a rim 445. The sleeve 452 is configured to receive the rounded multiple prescription container 430, and the combination results in an alternative embodiment of the rounded multiple prescription container assembly 454.
  • Both of the multiple prescription container assemblies 450 and 454 are configured for sequential dispensing. While the illustrative embodiment describes seven containers, a set of containers may comprise at least two containers to about 20 containers, and more preferably about 5 to about 14 containers. It is expected that most of the containers will be of similar size for ease of filling the containers. Additionally, the illustrative moldable material comprises enough clarity for the user to visualize the contents of the containers.
  • The information displayed on the lid and cover may include the patient's name, the date and the day of the week the contained mixed dosage medications (tablets) are to be taken, as well as the time of day that the tablets are to be taken. The markings on the containers inform the patient and/or caregiver the time in which the contents of the container are to be taken in the proper sequence. In general, the lidstock comes from a roll and the appropriate amount of lidstock is released from the roll to accommodate the designated number of containers to be sealed. For a thermoformed container, using polypropylene for the material for the lid tock, an unsealed area of lid film is generally used to help in the peeling of the lid.
  • Referring to FIGS. 23A and 23B, there are shown two separate perspective views of a plurality of stacked rounded multiple prescription container assemblies. The stacked rounded multiple prescription assemblies 456 are composed of a plurality of rounded multiple prescription container assemblies 450. Each of the multiple prescription container assemblies 450 are stacked on top of one another with the rim 445, which permits the stacking of rounded multiple prescription container assemblies.
  • Referring to FIG. 24A there is shown a perspective view of a circular multiple prescription container assembly. In this illustrative embodiment, the circular multiple prescription container assembly 460 comprises a set of multiple prescription containers 462 having flanged edges similar to the flanged ends 434 (described in FIG. 20A), a lid 464, and a cap 466. The lid 464 seals the multiple prescription containers 462. The cap 466 fits over the flanged ends (not shown) and has a triangular opening 468 cut into the cap 466. The cap 466 is configured to snap fit with the sealed multiple prescription containers. The triangular opening 468 permits the patient and/or caregiver to view writing on the lid 464 and to have access to the lid 464. Referring to FIG. 24B, there is shown an illustrative embodiment in which the lid 470 has printed information that identifies the patient, the date, and the time that the prescribed medications are to be taken.
  • Additionally, the illustrative lid 464 is cut to permit a patient to remove the lid by placing a finger underneath a cut 472. A ridge 474 permits the lid 464 to be more easily removed from the container. A more detailed view of a patient or caregiver removing the lid 464 is provided in FIG. 25. Once the contents of a particular container have been removed, the cap 466 is rotated, and provides access to the next sealed container.
  • Referring to FIG. 26 there is shown a flowchart of an illustrative method for dispensing tablets which utilizes a secondary package or sleeve for receiving a multiple prescription container 500. This embodiment of the method for dispensing tablets comprises providing a set of integrated containers 502, the containers adjacent to one another and filling each container with at least one tablet previously specified for each container. The method also comprises the set of integrated containers having a flanged edge and at least one frangible connection (e.g. perforated line) configured within the flanged edge between each of the plurality of containers 504. The method may also comprise providing a lidstock with a plurality of lids that may be adjacent to one another in a linear arrangement 506. The configuration of the lids is not limited to a linear arrangement and may be configured in any manner as to be capable of sealing the set of integrated containers. The method further comprises providing a frangible connection (e.g. perforated line) between each of the plurality of lids 508. The frangible connection may be a thinned region of plastic that is easily breakable, perforations in the film and the like.
  • The method comprises sealing the plurality of containers of the set of integrated containers with the corresponding plurality of lids 510 of the lidstock. The quantity of the containers in the tablet assembly is variable, depending on the prescription of the patient. The number of lids will correspond to the number of containers utilized in the tablet assembly. A printable surface is provided on each of the plurality of lids 512 in which specific printing indicia or information is placed 514 relating to the administration of the tablets held in the container sealed by the corresponding lid.
  • This method may also comprise providing a sleeve or secondary package for receiving the set of sealed containers 516 and placing the set of sealed containers into the sleeve 518. The patient completes the process of dispensing the tablets by expelling or manually moving one of the plurality of sealed containers out of the sleeve at the time printed on the corresponding lid 520. Once the container has been slid out from the secondary package, the container is removed from the set of containers as well as the secondary package and/or sleeve by tearing the frangible connection between the expelled container and the adjacent container remaining in the sleeve 522. The patient can then gain access to the tablets in the expelled container by removing the lid from the container 524. In some alternative embodiments, the method comprises providing extended tabs on the lids, break-away tabs and/or providing chamfered edges on the containers to make removing the lid off of the container more convenient.
  • In yet another embodiment, the method further comprises providing a child safety release tab on a secondary sleeve as seen on the tablet assembly embodiment shown above, to prevent unwanted tampering of the tablets in the containers by children. In this embodiment, at the proper time for dispensing the tablets from a container, the patient holds the dispenser and manually actuates the release tabs while simultaneously manually sliding the strip of containers in a direction “out of the dispenser.” When the perforations or frangible connection between the first two containers in the strip reach the outer edge of the dispenser the release tab resets, thus locking the strip from further sliding motion. The patient then tears off, at the perforations, the protruding container that contains the correct medications for the stated time, pulls up on the extended corner of the lid, and opens the container by peeling back the lid, exposing the medications. The dispenser then is left with the correct printed markings showing in the thumb groove display window, ready for the next dosage to be taken.
  • Other embodiments of the methods of dispensing tablets comprise, providing a “senior friendly” tablet assembly instead of an assembly with a child safety tab for the convenience of patients with limited dexterity.
  • Referring to FIG. 27 there is shown a flowchart of the production facility processes 600 used by an illustrative production facility to fill a prescription order. After receiving the prescription order in one of the illustrative system and/or methods described above, the order processing system 602 begins controlling the filling of the prescription order. By way of example and not of limitation, the ordering processing system 602 interfaces with an online server, production server, or both, and receives data that relates to the type of medication or tablet, and the type of multiple prescription container assembly that needs to be filled with the appropriate medications and/or tablets. Those with ordinary skill in the art of manufacturing processes and robotic processes shall appreciate that the systems or methods for controlling production can be performed using a centralized control system or a distributed control system. For purposes of this patent, those with ordinary skill in the art shall appreciate that there will even be instances where a combination of centralized and distributed control are optimal, and depend on design requirements and expectations.
  • The order processing system 602 is in communication with a tablet management system 608. The tablet management system 608 controls the tablets that fill the pill refill modules, which in turn fill up the appropriate multiple prescription containers. The tablet management system 608 also communicates when a refill module is not properly being filled.
  • The order processing system 602 also communicates with a container selection process 604. The container selection process 604 may receive an order for a particular container assembly from the user placing the order, e.g. pharmacist, caregiver, patient, etc. Alternatively, the container selection process 604 may simply receive a multiple prescription order, and may have to select the appropriate container for filling the order, e.g. less than 5 tablets require a small container, 6-10 tablets require a mid-size container, and 10-20 tablets require a large container.
  • After the container selection process 604, there is a container inspection process 606 during which inspection of the appropriate container is performed, to ensure that the appropriate container or substitute container has been selected. Additionally, the inspection process 606 may include identifying whether the container is broken or has some obstruction that may cause some difficulty to downstream systems and/or processes.
  • After the container inspection 606, the container filling process 610 is initiated. In an illustrative example, the container filling process 610 occurs by placing the selected container on a pallet or tote and moving the pallet or tote on a conveyer, which moves the pallet to the appropriate filling location so that the appropriate tablets may fill the container.
  • After filling the appropriate container with a plurality of medications and/or tablets, an inspection of the filled containers is performed at block 612. The inspection may be conducted by using X-ray detection, near infrared detection, robotic detection at visual wavelengths, or any other such technique that looks at color, shape, density, or other such parameter to determine if the appropriate container has been filled with the correct prescription. Thus, in certain instances, a visual inspection by a pharmacist may be satisfactory.
  • After inspection, the method proceeds to the lid assembly process 614 during which the lid is applied to the multiple prescription container. The sleeve is then applied at the sleeve assembly process in block 616. Alternatively, a cap may be placed on the sealed multiple prescription container, as described above. For purposes of this patent, the term “sleeved container” encompasses a multiple prescription container having a cap, unless otherwise indicated.
  • At block 618, the inspection of the sleeved sealed containers is conducted. This inspection at block 618 is performed after the multiple prescription container has been sealed. Note, the inspection at block 612 was conducted before sealing. The need for the second inspection described in block 618 is in case a tablet or medication fell out of the container or was mislabeled. Additionally, one of the tablets or medications may also have been broken or otherwise compromised. As stated above, the inspection may be conducted using a variety of different instruments including, but not limited to, robotic inspections at a visual wavelength, near IR, X-ray and any other detection means that can identify the type of tablets or medication in each container.
  • The method then proceeds to block 620 where the sleeved sealed container(s) are combined with printed materials in the tote. The printed materials may include labels as described in FIG. 5-7 above. Additional materials may also be provided such as printed materials from pharmaceutical companies, medical providers, pharmacists, and other such entities. The printed materials are controlled by the tote assembly system 622. The printed materials may be generated at the production facility or may be shipped to the production facility or any combination thereof.
  • After combining the printed materials and the sleeved sealed multiple prescription containers, the combination is shipped to a pharmacy or customer as described by block 624. As stated above, the customer may be a patient, a caregiver, a medical health professional, or any other such person
  • Referring to FIG. 28, there is shown an illustrative production facility 628 that would occupy a warehouse. A plurality of container 630 are fed in a container feeding section by an operator 632 that places the containers on a pallet or tote that are carried by a conveyor belt 634 around the facility. The operator 632 is charged with container selection based on the information provided by the order processing system. Additionally, the operator 632 is charged with performing a visual inspection of the containers that are placed on the pallet or tote.
  • The powered conveyor then transports the tote having the empty containers to filler cells that have a particular medication or tablet. As the empty container passes under each filler cell 635, the tablet management system determines whether a tablet is to be dispensed. The container filling process requires a variety of different filling cells that have to be refilled by illustrative operators 636 and 638. The conveyor belts and filler cells are grouped into units for easier operation and maintenance. In the illustrative embodiment, the powered conveyers can travel to the appropriate filler cell in an efficient manner that permits a particular pallet to bypass traveling along the perimeter of the conveyor assembly. For example, a particular pallet may bypass traveling along the length of a conveyor via a bypass 640 or 642.
  • The filled containers are then inspected to determine if the container has been properly filled. An operator 644 mans the inspection equipment. If order adjustments are needed, another operator 646 is charged with resolving any problems with one or more orders. If the operator 644 determines that the prescription has been properly filled, then the appropriate lid is placed on the containers. A lidstock sealer 648 seals the lid on the multiple prescription container. The sleeve is then selected at the sleeve assembly 650 and then applied. The operator 652 inspects the sleeve. Alternatively, the operator 652 may be charged with combining the sleeved and sealed prescription container. A separate tote filling system 654 generates the printed materials that are combined with the pallet or tote having the sleeved and sealed multiple prescription containers. The conveyor 656 then transports the filled prescription order to a predetermined location so that the filled prescription order may be shipped to the pharmacy or customer.
  • Referring to FIG. 29 there is shown a perspective view of an illustrative tabletop system that can be used to have an illustrative pharmacist to fill the multiple prescription order. Although the warehouse size production facility is described above in FIG. 28, the tabletop system is much smaller and can also be used to fill a multiple prescription order. The illustrative table top system 660 receives a prescription order at station 662. The appropriate containers 664 are selected and placed on a conveyor (not shown) that are fed under fill cells 666. At workstation 668 the multiple prescription order is inspected by the illustrative pharmacist. A lid is generated at station 670 and sealed at station 672. The sleeve located at sleeve dispenser 674 is then applied. The sealed sleeve assembly is then inspected by the pharmacist. Printed materials are generated by printer 676, and the printed materials are combined with the sealed and sleeved multiple prescription container. The filled multiple prescription may then be picked up at a “pick-up” window 678. A pharmacist at station can then explain to the customer about the multiple prescription packaging.
  • Referring to FIG. 30 there is shown a block diagram of an illustrative order processing system 602. The order processing system 602 is configured to control the filling of the prescription order. The order processing system comprises a block 690 in which a multiple prescription order is received. The multiple prescription order may be received electronically or at a pharmacist's window. The system 602 then proceeds to check an inventory management system 692 and determines if the appropriate medication or tablets are available. At decision diamond 694, a decision to order additional inventory is made if the inventory of tablets or medication are running low. If inventories are running low, then at block 696 an order is placed for additional tablet inventory. However, if there is a satisfactory inventory, block 698 communicates tablet type, size, quantity, frequency, packaging, and time for taking the prescribed medications in the container selection process 604 and the pill management system 608.
  • The order processing system 602 also accommodates receiving the tablet received in block 700, after having placed the order for additional inventory in block 696. After receiving the order tablets, the inventory management system is updated as indicated in block 702. The updated inventory is then communicated to the pill management system 608. The order processing system 602 is intended to make it more efficient for a production facility and/or pharmacist to manage the tablet or medication inventory stored at the local facility. By creating a system and method for automated ordering, the order processing system can provide a more efficient means for controlling inventory and thereby more efficiently control the filling of multiple prescription orders in multiple prescription containers.
  • Referring to FIG. 31 there is shown a flowchart of an illustrative container selection process 604. The container selection process 604 may receive an order for a particular container assembly from the user placing the order, e.g. pharmacist, caregiver, patient, etc. Alternatively, the container selection process 604 may simply receive a multiple prescription order, and may have to select the appropriate container for filling the order, e.g. less than 5 tablets require a small container, 6-10 tablets require a mid-size container, and 10-20 tablets require a large container. For either embodiment, the container selection process 604 is initiated by receiving the appropriate tablet and/or container information. For example in block 704, tablet data and/or container selection data is received that may comprise type of tablet or medication, size of the tablet or medication and the frequency with which the tablet or medication needs to be consumed.
  • At block 706, the method may determine the type of container to use based on the types of medications, size, and frequency. The determination of the type of container may be performed without receiving a user's request for a particular multiple prescription container assembly as described above. The determination of container availability is then made at decision diamond 708. If a particular container is not available, the method may return to block 706 to select an alternative container. Issues associated with container availability are reported to the inventory management system 702. If the containers are available, the method proceeds to block 710 where the containers are de-nested and then placed on the appropriate pallet, at block 712. The method then proceeds to container inspection at block 706.
  • Referring to FIG. 32, there is shown an illustrative block diagram of an illustrative tablet management system 608. The illustrative tablet management system 608 controls the tablets that fill the pill refill modules (described above). The tablet management system 608 also communicates when a refill module is not properly being filled. Bulk tablets are received at block 720 and then are fed into an illustrative hopper 722. The tablets are then separated by a separator 724 and are then inspected 726 to determine if they have been placed in the appropriate refill module.
  • A tablet refill control system 728 manages the tablet being distributed to the appropriate refill module 730. Additionally, the tablet refill control system receives tablet information 732, and this tablet information is stored on the tablet refill control system 728. The additional tablet inventory and is then communicated to the inventory management system 702.
  • Referring to FIG. 33 there is shown an illustrative refill module 730. The illustrative refill module includes a hopper 734, separator 736, and sensor 738 that counts the tablets. The tablet refill control system 728 communicates with the illustrative refill module 730. A plurality of feeding tubes 740 distributes one or more tablets to the illustrative containers 742. Broken tablets are collected in bottle 744 after being inspected by sensor 738.
  • Referring to FIG. 34 there is shown a flowchart of an illustrative multiple prescription container filling process 610. Recall, the container filling process 610 occurs by placing the selected container on a pallet or tote and moving the pallet or tote on a conveyer that moves the tote or pallet to the appropriate filling location so that the appropriate tablets may fill the container. In the illustrative production facility described in FIG. 28 or the illustrative bench system in FIG. 29, an operational conveyor system is used to transport the containers. Thus, in the illustrative examples an operation conveyer system 750 is required. However, those skilled in the art shall appreciate that a conveyer system may not be required and may instead rely on being gravity fed and placed into a particular container configured to hold a plurality of medications or tablets.
  • The illustrative conveyer system receives a container pallet or tote at block 752. The containers then stop at the appropriate refill module and are filled with tablets as described in block 754. Additionally, each refill module may comprise a sensor 738 that counts the number of tablets that are distributed by the refill module, and this count may be communicated to the tablet refill control system 728. A container tracking system 756 tracks the location of each container so that the appropriate medications or tablets are filled by the appropriate filling modules. By way of example and not of limitation, the container tracking system 756 and the refill module are communicatively coupled to the tablet refill control system 728. After the containers are filled by the plurality of refill modules, the illustrative unsealed containers are inspected at block 714.
  • Referring to FIG. 35 there is shown an exploded perspective view of the illustrative tabletop system 660 that comprises order processing, pill management, container selection, container inspection, container filling, lid generation and lid placement. As described above, the illustrative table top system 660 receives a prescription order at station 662. The appropriate containers 664 are selected. By way of example and not of limitation, there are three different size containers, e.g. small, medium, and large. The appropriate containers are selected by the pharmacist and are then placed on a conveyor 665, which feeds these multiple prescription containers to refill cells 666. The refill cells 666 are configured to deposit the appropriate tablets and/or medications into the containers. At workstation 668 the filled multiple prescription order are visually inspected by the pharmacist. Alternatively, there may be other means of inspecting the filled, yet unsealed, multiple prescription containers such as near infrared, X-ray, or such means for inspection. A lid is then generated at station 670.
  • Referring to FIG. 36 there is shown a flowchart with a more detailed flow of the inspection of filled multiple prescription containers that have not been sealed. After filling the appropriate container with a plurality of medications and/or tablets, an inspection of the filled containers is performed at block 612. The inspection may be conducted by simply providing an image to the pharmacist so that the pharmacist can see if the appropriate tablet or medication is in each container, as represented by block 760. Additionally, precision weighing 762 may be used to make sure that the appropriate tablets or medications are deposited in the appropriate multiple prescription container. The inspection may also be conducted by using X-ray detection 764 or some other form of detecting such as near infrared detection, robotic detection at visual wavelengths, or any other such technique that looks at color, shape, density, or other such parameter to determine if the appropriate container has been filled with the correct prescription. If a determination is made that the multiple prescription container has not been properly filled, then order adjustment 766 may be performed. After inspection, the process continues to lid assembly processing.
  • Referring to FIG. 37 there is shown a flowchart describing an illustrative lid assembly process 614. After inspection, the method proceeds to the lid assembly process 614 during which the lid is applied to the multiple prescription container. The lid assembly process 614 comprises receiving blank lidstock 770, and placing the lidstock 772 in a position so that lidstock printing 774 can take place. To perform the printing on the lidstock, a printing ink, toner, or ribbon is needed.
  • In the illustrative production facility 628, a pallet is used to transport the multiple prescription container to the appropriate lid assembly section, as described by block 778. In another embodiment 660, a pallet is not needed and the container simply travels along the conveyer. In yet another embodiment, a conveyer is not needed. However, regardless of the system and method used to transfer the filled multiple prescription container, a label needs to be applied. In this illustrative embodiment, the appropriate label is generated as described above and placed on the filled multiple prescription container as represented by block 780. The method then proceeds to block 782 where the lidstock is heat sealed to the filled multiple prescription container. The sleeve is then applied at the sleeve assembly process 616.
  • Referring to FIG. 38 there is shown a flowchart of an illustrative sleeve assembly process 616 where the sleeve is applied to the sealed multiple prescription container. By way of example and not of limitation, the sealed multiple prescription container is communicated using a pallet, as represented by block 790. The sleeve is then combined with the sealed multiple prescription container at block 792.
  • The illustrative sleeve is generated by receiving a blank sleeve 794 and placing the sleeve 796 in the appropriate position so that a printed label 798 can be placed on the sleeve. The printed label 798 may be generated locally with printing ink, toner, or a ribbon 802. The complete sleeve assembly 804 is then ready to be coupled to the sealed multiple prescription container. As described above, a cap may also be placed on the sealed multiple prescription container, instead of a sleeve.
  • Refer to FIG. 39 there is shown a more detailed flowchart of the inspection of the sleeved containers conducted at block 618. This inspection at block 618 is performed after the multiple prescription container has been sealed. The need for this second inspection is to maintain a high degree of quality assurance and quality control (QA/QC). For example, a tablet or medication may have fallen out of the multiple prescription container during the lid sealing process described above. Additionally, the wrong printed information may have been placed on the lidstock, sleeve, or cap. In the illustrative production facility embodiment, the sleeved sealed containers are received in block 806. At block 808, the printed information on the sleeve and/or lid is verified. If the label is incorrect then the label is rejected at decision diamond 810, and a new label is placed on the sleeve 812. If the label is accurate, then the method proceeds to block 620 where tote printed materials are combined with the sleeved multiple prescription containers.
  • Note, that other problems that may also be identified during the inspection process 618 include identifying tablets or medication being broken, compromised, or too many tablets being dispensed at one particular time. Additionally, the inspection may not be limited to simply checking the label, and a more exhaustive secondary inspection may be conducted using a variety of different instruments including, but not limited to, robotic inspections at a visual wavelength, near IR, X-ray, precision weighing and any other detection means that can identify the type of tablets or medication in each container.
  • Referring to FIG. 40 there is shown an exploded perspective view of the illustrative tabletop system with the lid assembly process, sleeve assembly process, and inspection. The illustrative table top system includes generating a lid at station 670, and sealing the lid at station 672. The container travels along conveyor 665. The sleeve located at sleeve dispenser 674 is then applied. The sleeve label is generated at sleeve label station 675. The pharmacist then proceeds to combine the sleeve and the sealed multiple prescription container. The pharmacist then may perform a visual inspection. Printed materials are generated by printer 676, and the printed materials are combined with the multiple prescription container assembly.
  • Referring to FIG. 41 there is shown a block diagram of the tote assembly system 622 that controls the printed materials. Prior to generating the printed materials the illustrative tote assembly system performs an order consolidation process 820. The order consolidation process comprises accessing a database with patient prescriptions and orders and consolidating various prescriptions or orders. For example, a patient may request vitamin supplements with prescribed medications, and so order consolidation may be necessary. Additionally, there may be two separate prescriptions from two different doctors that need to be combined. The method then proceeds to block 822 where the patient-specific information is printed. This patient-specific information may include the labels described above in FIG. 5-7 above. At block 824, prescription literature that is provided by a pharmaceutical company, medical provider, insurance company, or other such health professional may be included. These printed materials may be generated at the production facility or may be shipped to the production facility or any combination thereof. In the illustrative tote assembly system, shipper packaging information may also be processed at block 826, so that the illustrative production facility may accommodate shipping using a variety of different carriers, e.g. FedEx, UPS, USPS, DHL, etc. The appropriate shipping label is then generated at block 828. The method then proceeds to block 620 where the sleeved sealed container(s) are combined with printed materials in the tote or pallet.
  • Referring to FIG. 42 there is shown a block diagram describing the combining of the tote and sealed multiple prescription containers at block 620. At block 830, the illustrative production facility conveys the pallet or tote with the multiple prescription container assembly. At block 832, the multiple prescription container assembly is then combined with the printed materials generated by the tote assembly system 622. After the prescription order is filled, a record of the filled prescription is recorded and communicated to the appropriate entities as represented by block 834. The multiple prescription container assembly and associated materials are then shipped to the pharmacy or customer as reflected by block 624.
  • It is to be understood that the foregoing is a detailed description of illustrative embodiments. The scope of the claims is not limited to these specific embodiments. Various elements, details, execution of any methods, and uses can differ from those just described, or be expanded on or implemented using technologies not yet commercially viable, and yet still be within the inventive concepts of the present disclosure. The scope of the invention is determined by the following claims and their legal equivalents.

Claims (25)

What is claimed is:
1. An ordering system that fills a prescription order, the ordering system comprising:
a Graphical User Interface (GUI) configured to receive at least one prescription order that is associated with a particular patient wherein the at least one prescription order comprises at least two different medications;
a transactional component that charges for processing the prescription order;
a production facility that receives the prescription order and fills a plurality of multiple prescription containers, each multiple prescription container being associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval; and
a detailed labeling component associated with the multiple prescription containers, the detailed labeling component configured to generate a detailed label that provides a plurality of medical information regarding the medications to the patient, the detailed label combined with the multiple prescription containers.
2. The ordering system of claim 1 wherein each of the at least two different medications within the multiple prescription container are in a tablet form.
3. The ordering system of claim 1 further comprising configuring the GUI to receive an order from a pharmacist, and having the pharmacist receive the plurality of multiple prescription containers.
4. The ordering system of claim 1 further comprising configuring the GUI to receive an order from the particular patient, and having the patient receive the plurality of multiple prescription containers.
5. The ordering system of claim 1 wherein the transactional component is configured to operatively communicate with an insurance company server having the particular patient's insurance information.
6. The ordering system of claim 1 wherein the prescription order received from the GUI is communicated to a database communicatively coupled to the production facility and the database is configured to store the prescription order so that a user may access a plurality of multiple prescription orders at a later time.
7. The ordering system of claim 2 wherein the detailed label comprises the name of the particular patient.
8. The ordering system of claim 8 wherein the detailed label further comprises a picture of the particular patient.
9. The ordering system of claim 8 wherein the detailed label further comprises a picture of each tablet.
10. The ordering system of claim 8 wherein the detailed label further comprises a drug interaction section configured to identify drug interactions between the first tablet and the second tablet.
11. An ordering system that fills a prescription order for a plurality of different medications, the ordering system comprising:
a means for receiving a multiple prescription order that is associated with a particular patient, that multiple prescription order comprising a first tablet that comprises a different medication from a second tablet wherein the first tablet and the second tablet are prescribed to be consumed at the same time intervals;
a transactional component that charges for processing the multiple prescription order;
a production facility that receives the multiple prescription order and fills a plurality of multiple prescription containers, each multiple prescription container being associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval; and
a detailed labeling component associated with the multiple prescription containers, the detailed labeling component configured to generate a detailed label that provides a plurality of medical information regarding the first tablet and the second tablet to the particular patient, the detailed label being combined with the multiple prescription containers.
12. The multiple prescription ordering system of claim 18 wherein the means for communicating a multiple prescription order comprises an on-line order communicated from a networked computer to the production facility.
13. The multiple prescription ordering system of claim 18 wherein the means for communicating a multiple prescription order comprises a telephone order that is communicated to the production facility.
14. The multiple prescription ordering system of claim 18 wherein the means for communicating a multiple prescription order comprises a mail order that is sent to the production facility.
15. The multiple prescription ordering system of claim 18 wherein the means for communicating a multiple prescription order comprises a scanned order that is transmitted to the production facility.
16. The multiple prescription ordering system of claim 18 wherein the means for communicating a multiple prescription order is initiated by a pharmacist.
17. The multiple prescription ordering system of claim 18 wherein the means for communicating a multiple prescription order is initiated by the patient.
18. The multiple prescription ordering system of claim 18 wherein the production facility is configured to operatively communicate with an insurance company server having the particular patient's insurance information.
19. A method for processing a multiple prescription order that comprises a plurality of different medications, the method comprising:
receiving a multiple prescription order that is associated with a particular patient, the multiple prescription order comprising at least two different medications that are to be consumed at the same prescribed interval determined by the multiple prescription order;
initiating a transaction that charges for filling the multiple prescription order;
filling a plurality of multiple prescription containers, each multiple prescription being associated with a prescribed time interval determined by the prescription order, and each multiple prescription container comprises the different medications that are to be consumed at the prescribed time interval;
generating a detailed label comprising medical information regarding the medications to the particular patient; and
combining the multiple prescription containers and the detailed label.
20. The method of claim 19 wherein the receiving of the multiple prescription order further comprises receiving the multiple prescription order from a networked computer.
21. The method of claim 19 wherein the receiving of the multiple prescription order further comprises receiving the multiple prescription order from a telephone order.
22. The method of claim 19 wherein the receiving of the multiple prescription order further comprises receiving the multiple prescription order from a mail order.
23. The method of claim 19 wherein the receiving of the multiple prescription order further comprises receiving the multiple prescription order from a scanned order.
24. The method of claim 19 wherein the receiving of the multiple prescription order further comprises receiving the multiple prescription order from a pharmacist.
25. The method of claim 19 wherein the receiving of the multiple prescription order further comprises receiving the multiple prescription order from the particular patient.
US15/644,790 2004-10-01 2017-07-09 System and method for processing a multiple prescription order Abandoned US20180122029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/644,790 US20180122029A1 (en) 2004-10-01 2017-07-09 System and method for processing a multiple prescription order

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US61526704P 2004-10-01 2004-10-01
US11/241,783 US8123036B2 (en) 2004-10-01 2005-09-30 Pill assembly for pill packaging and delivery systems
US79541306P 2006-04-26 2006-04-26
US79537006P 2006-04-26 2006-04-26
US79544606P 2006-04-26 2006-04-26
US11/796,125 US9710866B2 (en) 2005-09-30 2007-04-25 System and method for processing a multiple prescription order
US15/644,790 US20180122029A1 (en) 2004-10-01 2017-07-09 System and method for processing a multiple prescription order

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/796,125 Continuation US9710866B2 (en) 2004-10-01 2007-04-25 System and method for processing a multiple prescription order

Publications (1)

Publication Number Publication Date
US20180122029A1 true US20180122029A1 (en) 2018-05-03

Family

ID=46327780

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/796,125 Expired - Fee Related US9710866B2 (en) 2004-10-01 2007-04-25 System and method for processing a multiple prescription order
US15/644,790 Abandoned US20180122029A1 (en) 2004-10-01 2017-07-09 System and method for processing a multiple prescription order

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/796,125 Expired - Fee Related US9710866B2 (en) 2004-10-01 2007-04-25 System and method for processing a multiple prescription order

Country Status (1)

Country Link
US (2) US9710866B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8255241B2 (en) * 2007-04-01 2012-08-28 Jason Edward Cafer Iconic graphical method for displaying complex information
US7945455B2 (en) * 2008-01-30 2011-05-17 Cardinal Health Technologies, Llc Pharmaceutical distribution systems and methods
US8200366B2 (en) * 2008-08-06 2012-06-12 Walgreen Co. Method and system for determining a volume-based fill pattern of a multi-dose medicament container
US8627639B2 (en) * 2008-09-19 2014-01-14 Walgreen Co. Method and system for determining an order of fill for a plurality of pills in a multi-dose medicament container
US8055512B1 (en) 2008-11-21 2011-11-08 Walgreen Co. Manifest, methods and systems for multi-dose medication order fill
US20100275475A1 (en) * 2009-04-29 2010-11-04 Mark Mohr Spray nozzle packaging system and method
US9798861B2 (en) 2009-08-12 2017-10-24 Deborah Adler, LLC Methods, systems and apparatuses for management and storage
US9643771B2 (en) 2009-08-12 2017-05-09 Deborah Adler LLC Methods, systems and apparatuses for management and storage
US8359816B2 (en) 2010-05-25 2013-01-29 Juno Technologies, Llc Apparatus for and method of shipping a child-resistant medicate container
US20120173254A1 (en) * 2010-12-29 2012-07-05 Korhnak Daniel J Load balancing and assigning medication requests
US10269085B2 (en) * 2010-12-29 2019-04-23 Aesynt Incorporated Modes and workflows for processing medication requests
WO2013009852A1 (en) 2011-07-11 2013-01-17 Omnicare, Inc. Methods and apparatus for filling packagings with medications
US9073206B2 (en) 2012-06-21 2015-07-07 Omnicare, Inc. Methods and apparatus for automated filling of packagings with medications
USD690199S1 (en) 2012-10-25 2013-09-24 Juno Technologies, Llc Medicate container
USD684458S1 (en) 2012-10-25 2013-06-18 Juno Technologies, Llc Medicate container
US9679114B2 (en) 2013-06-07 2017-06-13 Medifriend, Inc. Systems and methods for dispensing prescription medication using a medication dispensing machine
US10181014B2 (en) 2015-03-02 2019-01-15 Medifriend, Inc. Apparatus and methods for storing and dispensing medications
US11342069B2 (en) 2015-03-02 2022-05-24 Pat Iantorno Apparatus and methods for storing and dispensing medications
JP6567051B2 (en) * 2016-03-01 2019-08-28 国立大学法人千葉大学 MEDICAL INFORMATION PROVIDING SYSTEM, SERVER, MEDICAL INFORMATION PROVIDING DEVICE, MEDICAL INFORMATION PROVIDING MEDIUM, MEDICAL INFORMATION PROVIDING METHOD, AND PROGRAM
US10741274B2 (en) * 2017-02-16 2020-08-11 Express Scripts Strategic Development, Inc. Methods and systems for collecting pharmaceutical containers
CN107833003B (en) * 2017-11-28 2020-10-30 广东自来物智能科技有限公司 Logistics transportation system and method
CN107944793B (en) * 2017-11-28 2020-12-01 广东自来物智能科技有限公司 Logistics transportation system and method
US11292623B2 (en) * 2018-05-29 2022-04-05 Express Scripts Strategic Development, Inc. Methods and systems for automated pharmaceutical container sorting
EP3761315A1 (en) * 2019-07-03 2021-01-06 Webbit S.r.l. Labelling method and system for tagging drugs to be administered to a patient in a hospital or surgical setting
US11779518B2 (en) 2021-08-09 2023-10-10 Express Scripts Strategic Development, Inc. Blister pack device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041968A1 (en) * 2000-02-11 2001-11-15 Hamilton Rodney N. Pharmacy pill counting vision system
US20030193185A1 (en) * 2002-04-15 2003-10-16 Valley Jeffrey M. Prescription pharmaceutical labeling system
US6711460B1 (en) * 2001-06-18 2004-03-23 Diebold Incorporated Pharmaceutical system in which pharmaceutical care is provided by a remote professional serving multiple pharmacies
US20050049746A1 (en) * 2003-08-26 2005-03-03 Ken Rosenblum Automatic prescription drug dispenser
US20050209879A1 (en) * 2004-03-19 2005-09-22 Anne-Marie Chalmers Method and system for centralized medication fulfillment
US20060124502A1 (en) * 2004-12-14 2006-06-15 Lee James M Multiple compartment pill dispenser
US7668730B2 (en) * 2002-12-17 2010-02-23 JPI Commercial, LLC. Sensitive drug distribution system and method

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126129A (en) 1964-03-24 Recording and dispensing device
US2294220A (en) * 1940-03-13 1942-08-25 Stokes & Smith Co Method of and apparatus for making containers
US3254828A (en) * 1963-12-18 1966-06-07 Automated Packaging Corp Flexible container strips
US3308962A (en) 1965-05-10 1967-03-14 Austin U Bryant Pill organizer and method
US3432951A (en) * 1966-07-21 1969-03-18 Phil Cherrin Compartmented container
US3410450A (en) 1967-06-16 1968-11-12 Jerry A. Fortenberry Sanitary pill dispenser with indicator
US3450306A (en) 1967-08-16 1969-06-17 Lester D Gill Pill dispenser with rotating top for discharging successive pills
US3409721A (en) 1967-09-15 1968-11-05 Neomed Lab Inc Oral dosage system effective to control the reproduction cycle
US3503493A (en) * 1968-01-08 1970-03-31 Hoffmann La Roche Medicament packaging device
US3497892A (en) * 1968-06-03 1970-03-03 Usm Corp Contoured insoles
US3497982A (en) 1968-11-22 1970-03-03 Ciba Geigy Corp Package and method for dispensing of pharmaceutical preparations
US3773250A (en) 1971-07-14 1973-11-20 N Am Dye Corp Ltd Medication dispensing
US3703955A (en) * 1971-07-23 1972-11-28 Edward C Inacker Multiple compartment dispensing box
US3780856A (en) 1971-07-26 1973-12-25 Medi Dose Inc Medicinal dispensing device
US3809220A (en) 1972-07-24 1974-05-07 Becton Dickinson Co Child safety package
US3884379A (en) 1972-12-11 1975-05-20 Eyelet Specialty Co Bottle safety closure
US3933245A (en) * 1973-07-09 1976-01-20 Mullen Patrick E Article holding and dispensing container
US3921804A (en) * 1974-05-09 1975-11-25 William W Tester Medication dispensing package
US3881625A (en) 1974-07-02 1975-05-06 William James Landen Ratchet-type safety closure
US4039080A (en) * 1976-03-23 1977-08-02 Joseph Anthony Cappuccilli Dosage indicating pill tray
US4036385A (en) 1976-05-28 1977-07-19 Morris Glenn H Safety closure for containers
US4062445A (en) 1976-09-14 1977-12-13 Kjell Moe Medicine dispensers
US4274550A (en) 1979-05-07 1981-06-23 Myer B. Shimelman Medicament dispensing device
DE2952616A1 (en) * 1979-12-28 1981-07-02 Aldo B. Schaffhausen Artusi PACKAGING CONTAINER FOR MEDICINES
US4318477A (en) * 1980-09-22 1982-03-09 Kerpe Stase Z Pharmaceutical package
US4553670A (en) 1981-10-30 1985-11-19 Richard Collens Medical reminder device
US4693371A (en) * 1981-11-16 1987-09-15 Berlex Laboratories, Inc. Medication dispenser and container
US4416375A (en) * 1982-04-30 1983-11-22 Medi-Dose, Inc. Computer print form cover sheet for multi-compartment medicinal dispensing device
US4953745A (en) * 1983-09-19 1990-09-04 James R. Rowlett, Jr. Medication dispensing apparatus
JPS6080935A (en) 1983-10-11 1985-05-08 Nissan Motor Co Ltd Slide locking device for seat
US4736849A (en) 1983-12-19 1988-04-12 Leonard Walter G Calendar-oriented pill dispenser
US4512476A (en) * 1983-12-29 1985-04-23 Mobil Oil Corporation Plastic bag dispenser
US4546901A (en) * 1984-02-02 1985-10-15 Buttarazzi Patrick J Apparatus for dispensing medication
DE3502647A1 (en) 1984-02-17 1986-07-31 Helmut 7000 Stuttgart Zanker Dosage system for medicaments
US4823982A (en) 1985-04-11 1989-04-25 Medical Microsystems, Inc. Multiple cartridge dispensing system
DE3523173A1 (en) 1985-06-28 1987-01-08 Bramlage Gmbh DONOR
US4655026A (en) * 1985-12-11 1987-04-07 Wigoda Luis T Pill dispensing machine
US4872559A (en) * 1986-07-07 1989-10-10 Preci-Plast Ab Dispenser for medical preparations
DE3623331A1 (en) * 1986-07-11 1988-01-21 Hoechst Ag CONFECTION PACKS, CONTAINING DRUG COMBINATIONS FOR PERIODICALLY APPLICATION
US4805800A (en) * 1986-09-04 1989-02-21 Minigrip, Inc. Dispenser for plastic bags
US4733797A (en) 1986-09-22 1988-03-29 Haber Terry M Dosage sealing, monitoring and dispensing assembly
US4799590A (en) * 1987-02-02 1989-01-24 Furman Theodore J Package and method of packaging
US4887790A (en) 1987-07-07 1989-12-19 Professional Compounding Centers Of America, Inc. Troche mold and dispenser
US4749085A (en) * 1987-10-02 1988-06-07 Denney James D Pill box holder
US4811764A (en) 1987-10-19 1989-03-14 Mclaughlin John T Medication dispenser station
US4830183A (en) 1987-12-22 1989-05-16 Aegis Medical Corporation Dispenser apparatus
US4872593A (en) 1988-01-11 1989-10-10 Behringer John W Dispenser for packaged bandages and the like
US4972657A (en) * 1988-01-11 1990-11-27 Rna, Incorporated Method of packaging medication for controlled dispensing
US4860899A (en) 1988-01-11 1989-08-29 Rna, Incorporated Medication control system
US4867315A (en) * 1988-06-06 1989-09-19 Baldwin Brian E Vial filling, holding and serving tray arrangement and method
US4918604A (en) * 1988-10-03 1990-04-17 Medco Containment Services, Inc. Prescription drug depiction and labeling system
US5195123A (en) * 1988-11-23 1993-03-16 Clement Richard J Radiograph identification method and device
US4954210A (en) 1989-04-06 1990-09-04 Desmond John W Dispenser for rolled pressure sensitive labels
US5014851A (en) * 1989-06-16 1991-05-14 Multi-Comp, Inc. Package assembly for dispensing pharmaceutical medications and method of manufacturing the same
US4993586A (en) 1989-06-21 1991-02-19 University Of Pittsburgh Adhesive bandage dispensing device and associated method
US5027954A (en) 1990-03-12 1991-07-02 Hickerson Frederick R Child proof container and safety closure
US5085510A (en) 1990-08-28 1992-02-04 Pfizer Inc. Pharmaceutical tablet vision inspection system
US5310057A (en) * 1991-12-10 1994-05-10 Lever Brothers Company, Division Of Conopco, Inc. Fabric softener sheet dispenser
US5199636A (en) * 1992-02-05 1993-04-06 Young Lincoln L C Gift mailing box
US5186345A (en) * 1992-04-28 1993-02-16 Chiang Ching An Container
US5422831A (en) 1992-08-03 1995-06-06 Iowa State University Research Foundation, Inc. Acoustic and video imaging system for quality determination of pharmaceutical products
US5390796A (en) * 1992-10-02 1995-02-21 Kerfoot, Jr.; Franklin W. Envelope apparatus for dispensing medications from drug files
US5310437A (en) 1992-10-15 1994-05-10 The Gillette Company Single spool correction tape dispenser
US5366087A (en) * 1992-12-28 1994-11-22 Moore Business Forms, Inc. Resealable pressure sensitive closure label
CA2132164A1 (en) * 1993-09-16 1995-03-17 Richard W. Foote Pharmaceutical label and record system
US5457895A (en) * 1993-10-01 1995-10-17 R. P. Scherer Corporation Method of identifying freeze-dried dosage forms
US5522512A (en) 1994-05-09 1996-06-04 Merck & Co., Inc. System and method for automatically feeding, inspecting and diverting tablets for continuous filling of tablet containers
US5577612A (en) 1994-06-21 1996-11-26 Lever Brothers Company, Division Of Conopco Inc. Fabric softener sheet dispenser cartons
US5443178A (en) 1994-06-23 1995-08-22 Allergan, Inc. Tablet dispensing system
JP2933837B2 (en) 1994-10-21 1999-08-16 株式会社湯山製作所 Drug packaging device
US5737539A (en) 1994-10-28 1998-04-07 Advanced Health Med-E-Systems Corp. Prescription creation system
MX9702723A (en) 1994-10-28 1998-04-30 Advanced Health Med E Systems Prescription management system.
US5845255A (en) 1994-10-28 1998-12-01 Advanced Health Med-E-Systems Corporation Prescription management system
US5558229A (en) * 1995-03-20 1996-09-24 Halbich; Frank Dispenser assembly and method of administering medication
US5883370A (en) * 1995-06-08 1999-03-16 Psc Inc. Automated method for filling drug prescriptions
US5505371A (en) 1995-06-23 1996-04-09 Westvaco Corporation Shipping and display carton with partition
US5544768A (en) 1995-10-12 1996-08-13 Comar Inc. Child resistant closure
US5797515A (en) * 1995-10-18 1998-08-25 Adds, Inc. Method for controlling a drug dispensing system
US5597995A (en) * 1995-11-08 1997-01-28 Automated Prescription Systems, Inc. Automated medical prescription fulfillment system having work stations for imaging, filling, and checking the dispensed drug product
US5685833A (en) 1995-11-14 1997-11-11 Turngren; Christina Margaret Sterile adhesive bandage and associated methods
US5891078A (en) 1995-11-14 1999-04-06 Turngren; Christina M. Sterile adhesive bandage and associated methods
US6066374A (en) 1995-12-07 2000-05-23 Alphapointe Association For The Blind Transparent, light resistant container for medicinal agents
US5746323A (en) 1995-12-11 1998-05-05 M.W. Technologies, Inc. Apparatus for high speed inspection of objects
US5995938A (en) 1996-02-27 1999-11-30 Whaley; Susan S. Medication compliance system
US5711442A (en) 1996-02-29 1998-01-27 Owens-Illinois Prescription Products Inc. Child resistant package
JPH1033636A (en) * 1996-05-03 1998-02-10 Yuyama Seisakusho:Kk Medicine separately wrapping device, medicine bottle, and medicine testing method
CA2207045C (en) 1996-07-22 1999-06-01 Michel Bouthiette Kit and process for the manufacture of a set of individual pill containers
JP2002506358A (en) 1996-09-06 2002-02-26 メルク アンド カンパニー,インコーポレーテッド Customer-specific packing line
US5788974A (en) 1996-09-11 1998-08-04 D'amico; Steven A. Helicobacter pylori treatment compliance pack
EP0844193A1 (en) * 1996-11-25 1998-05-27 Rayovac Corporation Package
US5963453A (en) * 1996-11-25 1999-10-05 Medication Management, Inc. System and method for processing prescription medications
US6330351B1 (en) 1996-11-29 2001-12-11 Kabushiki Kaisha Yuyama Seisakusho Drug inspection device and drug packaging device
US6021392A (en) 1996-12-09 2000-02-01 Pyxis Corporation System and method for drug management
US6611733B1 (en) 1996-12-20 2003-08-26 Carlos De La Huerga Interactive medication dispensing machine
JPH10198736A (en) 1997-01-13 1998-07-31 Yuyama Seisakusho:Kk Medicine processing system
NL1005038C2 (en) 1997-01-17 1998-07-20 Bouwe Prakken Rectangular folding box with display option.
US5873466A (en) 1997-01-27 1999-02-23 Sharp Corporation, Inc. Blister package with storage strip
US6155423A (en) 1997-04-01 2000-12-05 Cima Labs Inc. Blister package and packaged tablet
US6535637B1 (en) * 1997-04-04 2003-03-18 Esco Electronics, Inc. Pharmaceutical pill recognition and verification system
US5976014A (en) * 1997-05-28 1999-11-02 Moore U.S.A., Inc. Integrity seal form/label combination
USD400412S (en) 1997-05-30 1998-11-03 Peter Gold Wire-stripping blade
EP1009662A1 (en) 1997-06-11 2000-06-21 Ranpak Corp. Cushioning conversion system and method
US5941402A (en) 1997-06-24 1999-08-24 Kerr Child-resistant closure and container apparatus
US6564945B1 (en) 1997-07-14 2003-05-20 Robert E. Weinstein Medication assemblage for use in sinusitis treatment regimens
US5878887A (en) * 1997-07-16 1999-03-09 The West Company, Incorporated Child-resistant blister package
US6077530A (en) 1997-07-28 2000-06-20 Weinstein; Robert Analgesic dosage units for coordinated administration
US6176392B1 (en) 1997-12-05 2001-01-23 Mckesson Automated Prescription Systems, Inc. Pill dispensing system
US5921398A (en) 1998-01-12 1999-07-13 Star-Kist Foods, Inc. Storage and display carton
US6324253B1 (en) 1998-08-26 2001-11-27 Yuyama Mfg. Co., Ltd. Tablet inspection apparatus
US6256967B1 (en) * 1998-08-27 2001-07-10 Automed Technologies, Inc. Integrated automated drug dispenser method and apparatus
US6213343B1 (en) 1998-10-13 2001-04-10 Avery Dennison Corporation Portable sterile bandage dispenser
US6171439B1 (en) 1998-10-15 2001-01-09 Glen Groeneweg Manual stamp dispenser
US6155485A (en) 1998-11-09 2000-12-05 Scriptpro Llc Medicament dispensing station
US6170230B1 (en) 1998-12-04 2001-01-09 Automed Technologies, Inc. Medication collecting system
US6041932A (en) * 1999-02-10 2000-03-28 Holmberg; Doublas A. Vitamin organizing, storing and dispensing system
US6012582A (en) * 1999-04-05 2000-01-11 Hijk Stackable packaging and display system
US7185476B1 (en) * 1999-05-11 2007-03-06 Mts, Medication Technologies, Inc. Automated solid pharmaceutical product packaging machine
US6460693B1 (en) * 1999-05-19 2002-10-08 Valley Design, Inc. Child resistant blister pack container with compound action release mechanism
US6594928B1 (en) 1999-06-16 2003-07-22 Burrell E. Clawson Apparatus to identify information on containers
US6371297B1 (en) * 1999-07-14 2002-04-16 Young Dae Cha Medication dosage regulation apparatus
US6375956B1 (en) 1999-07-22 2002-04-23 Drugtech Corporation Strip pack
US6202923B1 (en) * 1999-08-23 2001-03-20 Innovation Associates, Inc. Automated pharmacy
US20020047019A1 (en) 1999-08-24 2002-04-25 James Devers Pill dispensing apparatus
US7006893B2 (en) * 1999-09-22 2006-02-28 Telepharmacy Solutions, Inc. Systems for dispensing medical products
US6564121B1 (en) * 1999-09-22 2003-05-13 Telepharmacy Solutions, Inc. Systems and methods for drug dispensing
JP2001130505A (en) 1999-11-01 2001-05-15 Yuyama Manufacturing Co Ltd Medicine subdividing/packaging equipment
WO2001046016A1 (en) * 1999-12-23 2001-06-28 Rast Rodger H System and method for providing individualized dosing
US6757898B1 (en) 2000-01-18 2004-06-29 Mckesson Information Solutions, Inc. Electronic provider—patient interface system
CA2333343A1 (en) * 2000-02-01 2001-08-01 Johnson & Johnson Vision Care, Inc. Customized prescription product packaging and method and system for producing customized prescription product packaging
US6273260B1 (en) * 2000-03-08 2001-08-14 Eli Lilly And Company Pharmaceutical packaging system
US20020029223A1 (en) 2000-03-08 2002-03-07 Rice Marion R. Prescription network supporting doctors, care givers and online drug store interaction
US6925774B2 (en) * 2000-03-31 2005-08-09 Mts Medication Technologies, Inc. Compact structure for automatically filling solid pharmaceutical product packages
WO2001077653A1 (en) * 2000-04-06 2001-10-18 Hamamatsu Photonics K.K. X-ray inspection system
US6401919B1 (en) * 2000-04-07 2002-06-11 Adaptec, Inc. Package for a software application
US6227371B1 (en) 2000-05-12 2001-05-08 Julie Song Medical container and system
US6662081B1 (en) 2000-06-08 2003-12-09 Medport Llc Medication regimen container and system
US6892941B2 (en) 2000-06-08 2005-05-17 Mendota Healthcare, Inc. Automatic prescription drug dispenser
US6394306B1 (en) 2000-06-23 2002-05-28 Delsys Pharmaceutical Corp. Medication dispenser for dispensing flat dosage forms
DE10030318C1 (en) * 2000-06-27 2002-02-28 Byk Gulden Lomberg Chem Fab Pharmaceutical packaging for eradication therapy
US6839403B1 (en) 2000-07-24 2005-01-04 Rapiscan Security Products (Usa), Inc. Generation and distribution of annotation overlays of digital X-ray images for security systems
US7672859B1 (en) 2000-11-16 2010-03-02 Gsl Solutions, Inc. Prescription order position tracking system and method
US20020066691A1 (en) * 2000-12-04 2002-06-06 Varon Steven C. Therapy pack
US6523694B2 (en) * 2001-02-05 2003-02-25 Cadmus Article-embedded folding container and method for producing same
US20040069675A1 (en) * 2001-02-07 2004-04-15 Gerard Stevens Blister packaging
US6378572B1 (en) 2001-03-28 2002-04-30 Siemens Corporate Research, Inc. Image processing system for inspection of tablets in slab filler packaging machines
US6449921B1 (en) 2001-04-16 2002-09-17 Jv Medi Co., Ltd. Tablet supplying and packaging apparatus having turntable and tablet cassettes
US20030018495A1 (en) 2001-07-11 2003-01-23 Lester Sussman System and method for medical drug prescription acquisition
US20030012701A1 (en) 2001-07-13 2003-01-16 Sangha Jangbir S. Insulated specimen sampling and shipping kit
EP1415213A2 (en) * 2001-07-19 2004-05-06 David A. Henthorn Drug calendar apparatus and method
USD455057S1 (en) * 2001-07-23 2002-04-02 Simon Medhurst Utility knife blade
US7017513B2 (en) 2001-08-08 2006-03-28 Harry Giewercer Dosage reminder device and medication carton
US6761010B1 (en) 2001-12-26 2004-07-13 James B. Gibson Medication organizing system
EP2945130A1 (en) 2001-12-31 2015-11-18 Block Drug Company, Inc. Dispensers for Tissue Dilator Devices
US6771369B2 (en) * 2002-03-12 2004-08-03 Analytical Spectral Devices, Inc. System and method for pharmacy validation and inspection
US7089131B2 (en) 2002-03-22 2006-08-08 Lear Corporation Inspection and verification system and method
US6681935B1 (en) * 2002-04-02 2004-01-27 Graham L. Lewis Method of providing a therapeutic regimen and prefabricated container therefor
US6830153B2 (en) 2002-05-08 2004-12-14 R. P. Scherer Technologies, Inc. Child-resistant blister pack
CA2683043C (en) 2002-05-14 2011-07-26 Jeffrey P. Williams System and method for dispensing prescriptions
US8025314B2 (en) 2002-05-15 2011-09-27 Target Brands, Inc. Medication packaging and labeling system
US7398279B2 (en) * 2002-06-28 2008-07-08 Francis J. Muno, Jr. Method, routines and system for identification of imprints on dosage forms
US20040225528A1 (en) 2002-07-03 2004-11-11 Brock Charles W. Interactive method and system for creating, validating, verifying and dispensing prescriptions
ITBO20020432A1 (en) 2002-07-04 2004-01-05 Ima Spa METHOD FOR DETECTION AND CONTROL OF CHARACTERISTICS OF PHARMACEUTICAL ITEMS
US20040011806A1 (en) 2002-07-17 2004-01-22 Luciano Packaging Technologies, Inc. Tablet filler device with star wheel
DE60218649T2 (en) * 2002-07-22 2007-11-22 The Automation Partnership (Cambridge) Ltd., Royston IR analysis system
US6769228B1 (en) 2002-07-26 2004-08-03 Express Scripts, Inc. Prescription order packaging system and method
US6892512B2 (en) * 2002-08-07 2005-05-17 Medco Health Solutions, Inc. Automated prescription filling system/method with automated labeling and packaging system/method automated order consolidation system/method
WO2004014285A2 (en) 2002-08-09 2004-02-19 Mckesson Automation Systems, Inc. Drug dispensing cabinet having a drawer interlink, counterbalance and locking system
US20040045863A1 (en) 2002-09-06 2004-03-11 Rhoades Dean L. Container with extractable and retractable instructions
GB0221493D0 (en) 2002-09-17 2002-10-23 Glaxo Group Ltd Method for loading a medicament dispenser with a medicament carrier
US6962266B2 (en) 2002-10-04 2005-11-08 Ecolab Inc. Method and apparatus for using a unit dose dispenser
US6981592B2 (en) * 2002-10-11 2006-01-03 Medical Technologies Systems, Inc. Product packaging material for individual temporary storage of pharmaceutical products
US7111780B2 (en) * 2002-10-18 2006-09-26 Mckesson Automation Systems Inc. Automated drug substitution, verification, and reporting system
US7860724B2 (en) * 2002-10-30 2010-12-28 Automed Technologies, Inc. System and method for management of pharmacy workflow
AU2003287727A1 (en) 2002-11-13 2004-06-03 Ackley Machine Corporation Laser unit, inspection unit, method for inspecting pellet-shaped articles and pharmaceutical article
US20040172295A1 (en) 2002-12-03 2004-09-02 Recare, Inc. Electronic prescription system
US20040158507A1 (en) * 2002-12-06 2004-08-12 Meek Robert B. Inventory management and replenishment system
US20040122713A1 (en) 2002-12-20 2004-06-24 Hill Kenneth A. System and method for prescription home delivery
US7017748B2 (en) 2003-01-17 2006-03-28 Weinstein Robert E System and method to reduce uncertainty in procuring over-the-counter medication
NL1022679C1 (en) 2003-02-14 2004-08-17 Dijkstra Vereenigde Bedrijven Inspection device for loose objects, such as tablets.
KR100498727B1 (en) 2003-03-19 2005-07-01 (주)제이브이엠 Automatic tablet packing apparatus with separated hoppers
CA2518359C (en) 2003-03-27 2008-12-30 Graphic Security Systems Corporation System and method for authenticating objects
US20040188312A1 (en) 2003-03-28 2004-09-30 Shorewood Packaging Corporation 024340 Childproof blister pack card
US20040251157A1 (en) 2003-04-23 2004-12-16 Behnke Janica S. Packaging system for distrubuting and dispensing disposable cups and lids
US8453175B2 (en) 2003-05-29 2013-05-28 Eat.Tv, Llc System for presentation of multimedia content
AU2004246660A1 (en) 2003-05-30 2004-12-16 Astrid Keene System and method for labeling pharmaceutical prescriptions
US20040256277A1 (en) 2003-06-19 2004-12-23 Sorgio Gedanke Child resistant package structure
US20050021367A1 (en) * 2003-07-25 2005-01-27 Deborah Saeger Medication administration system
NL1025161C1 (en) 2003-08-19 2005-07-04 Global Factories B V Drug inspection method in large pharmacy, involves grouping number of packs each including several drugs, to form string in association with patient data, and storing scanned image of packs and patient data in memory
US20050044762A1 (en) 2003-08-26 2005-03-03 Neelima Atluri Illustrative drug card
US7264136B2 (en) * 2003-08-26 2007-09-04 Concept Medical Technologies, Inc. Medication dispensing method and apparatus
US7963201B2 (en) * 2003-08-26 2011-06-21 Concept Medical Technologies, Inc. Medication dispensing method and apparatus
CA2447864C (en) * 2003-10-31 2013-05-28 Robyn Tamblyn Patient care management systems and methods
US7028723B1 (en) * 2003-11-03 2006-04-18 Alouani Ali Tahar Apparatus and method for automatic prescription verification
EP1704844B1 (en) 2004-01-05 2017-08-09 Tosho Inc. Automatic dispensation device and medicine feeder
JP4482342B2 (en) 2004-01-30 2010-06-16 株式会社湯山製作所 Tablet storage device
US20050171813A1 (en) * 2004-02-04 2005-08-04 Jordan Mchael L. System for identifying and sorting orders
WO2005092031A2 (en) * 2004-03-22 2005-10-06 Simon, Josephine System and method for storing and dispensing medication
US20080059228A1 (en) 2004-04-24 2008-03-06 Christopher Bossi Operation Of A Remote Medication Management System
DE102004020510B4 (en) 2004-04-26 2007-11-29 Edwin Kohl Plant for the placement of packaging units with the prescribed weekly requirement of patients appropriate drugs
TWI547431B (en) 2004-06-09 2016-09-01 史密斯克萊美占公司 Apparatus and method for pharmaceutical production
US7360652B2 (en) 2004-06-11 2008-04-22 R.P. Scherer Technologies, Inc. Child resistant product dispenser
US7559482B2 (en) 2004-07-09 2009-07-14 cStar Technologies Inc, Supplementary antenna for radio frequency identification and product containing unit incorporating same
US20060219595A1 (en) 2004-08-20 2006-10-05 Peters Timothy J Flexible multi-pocketed re-sealable package and method of making
US7570786B2 (en) 2004-08-30 2009-08-04 Antoun Ateya Automatic digital object counting and verification system and associated method
US7974825B2 (en) 2004-09-20 2011-07-05 The Mathworks, Inc. Generation of code from a graphical model
US20060065670A1 (en) 2004-09-21 2006-03-30 Arjowiggins Security Packaging device for dispensing security-protected units of product
US8123036B2 (en) 2004-10-01 2012-02-28 Edge Medical Properties, Llc Pill assembly for pill packaging and delivery systems
US9015058B2 (en) 2004-10-01 2015-04-21 Edge Medical Properties, Llc Matrix based dosage scheduling
US8266878B2 (en) 2004-10-01 2012-09-18 Edge Medical Properties, Llc System and method for verifying and assembling a multiple prescription package
US9334096B2 (en) 2004-10-01 2016-05-10 Edge Medical Properties, Llc Multiple inspection system and method that inspects different medications
US20130161207A1 (en) 2004-10-01 2013-06-27 Robert A. Luciano, Jr. Child Resistant Packaging for Multi-Prescription Order
US8972288B2 (en) 2004-10-01 2015-03-03 Edge Medical Properties, Llc System and method for online matrix-based dosage scheduling
US20100089936A1 (en) 2005-09-30 2010-04-15 Lawrence Luciano Patient compliant medication management system and method
US8146747B2 (en) 2004-10-01 2012-04-03 Edge Medical Properties, Llc Tablet dispensing container
US7690173B2 (en) 2005-09-30 2010-04-06 Edge Medical, Inc. Multiple prescription production facility
US20120312714A1 (en) 2004-10-01 2012-12-13 Luciano Robert A Tactile and low-vision indication packaging system and apparatus
US8712582B1 (en) 2004-10-01 2014-04-29 Edge Medical Properties, Llc System and method for combining different tablets into a pouch
US9245304B2 (en) 2004-10-01 2016-01-26 Edge Medical Properties, Llc Manufacturing separable pouches with a center cut blade
US8914298B1 (en) 2004-10-01 2014-12-16 Edge Medical Properties, Llc System and method for integrated verification and assembly of multi-script pouches into a housing container
US20130299381A9 (en) 2004-10-01 2013-11-14 Edge Medical Properties, Llc Dual dispensing tablet container
US8074426B2 (en) 2005-09-30 2011-12-13 Edge Medical, Llc Multiple prescription package and method for filling the package
US8789700B2 (en) 2004-10-01 2014-07-29 Edge Medical Properties, Llc System and method for communicating and inspecting a multiple tablet order
US9238518B2 (en) 2004-10-01 2016-01-19 Edge Medical Properties, Llc Inspection system and method with a control process that inspects different medications
US9141764B2 (en) 2010-11-12 2015-09-22 Edge Medical Properties, Llc System and method for online integrated multiple tablet ordering
US20110101016A1 (en) 2009-09-25 2011-05-05 Edge Medical Properties, Llc Low vision patient compliant medication management system and method
US20060076262A1 (en) 2004-10-07 2006-04-13 David Bassett Packaging of medications and nutritional supplements to encourage pursuit of a health regimen
WO2006055515A1 (en) * 2004-11-15 2006-05-26 The Escher Group, Ltd. System and method for dispensing, sorting and delivering prescription and non-prescription medications through the post office
US7628427B2 (en) 2005-01-25 2009-12-08 Target Brands, Inc. Pharmacy label system
ITMI20052011A1 (en) * 2005-10-21 2007-04-22 Sitma Spa METHOD FOR PACKAGING EDITORIAL PRODUCTS IN PLASTIC FILM AND RELATED PACKAGING
CA2626708A1 (en) 2005-11-07 2007-05-31 Alkermes, Inc. Receptacle packaging with inhaler-accommodating geometry
US20100100391A1 (en) 2005-11-14 2010-04-22 Kantilal Kasan Daya Pharmaceutical packaging and method for delivery of same
EP1800645A1 (en) 2005-12-21 2007-06-27 Körber AG Package for medicinal products and the like
US20070150219A1 (en) 2005-12-22 2007-06-28 Cawker Gordon M Method of validating and applying radio frequency tags to an object
US7426814B2 (en) * 2005-12-23 2008-09-23 Qem, Inc. Method of dispensing pills from a movable platen
US7225597B1 (en) * 2005-12-23 2007-06-05 Qem, Inc. Machine to automate dispensing of pills
WO2007084955A2 (en) 2006-01-19 2007-07-26 Oliver Charles Lawless Integrated prescription management and compliance system
US20070173971A1 (en) * 2006-01-26 2007-07-26 Prairiestone Pharmacy, Llc System and method of providing medication compliance packaging
US7918402B2 (en) 2006-03-07 2011-04-05 Tension International, Inc. Item labeling, inspection and verification system for use in manufacturing, packaging, product shipment-fulfillment, distribution, or on-site operations
US20070228047A1 (en) 2006-03-28 2007-10-04 Pehr Harold T Closure system
US7909165B2 (en) 2006-04-10 2011-03-22 Poppack, Llc System for delivering sequential components
US8727208B2 (en) 2006-06-30 2014-05-20 Intel-Ge Care Innovations Llc Method for identifying pills via an optical device
IL176712A0 (en) 2006-07-05 2007-10-31 Michael Cohen Alloro Medication dispenser
US7676948B2 (en) 2006-07-17 2010-03-16 Tammie Miles Tape dispenser for children
KR100806052B1 (en) 2006-11-13 2008-02-21 (주)제이브이엠 Method for controling compounding of medicine in medicine packing machine
KR100787807B1 (en) 2006-12-22 2007-12-21 (주)제이브이엠 Method and apparatus for inspecting a manual distributing tray of medicine packing machine
US20080228160A1 (en) 2007-03-12 2008-09-18 Harrison Chad E Essential home pharmacy kits
WO2008130536A2 (en) 2007-04-17 2008-10-30 Micron Pharmaworks, Inc. Product filling system
US7946421B2 (en) 2007-04-27 2011-05-24 Walgreen Co. Serially connected packets with end indicator
US7866476B2 (en) 2007-05-30 2011-01-11 Walgreen Co. Multi-dose blister card pillbook
US20090043609A1 (en) 2007-08-07 2009-02-12 Walgreen Co. System and method for providing targeted patient communications
EP2213274B1 (en) 2007-10-23 2016-10-05 Yuyama Mfg. Co., Ltd. Drug delivery system, and drug delivery device
EP2062822A1 (en) 2007-11-24 2009-05-27 UHLMANN PAC-SYSTEME GmbH & Co. KG Method and device for individual filling of blister packages
US8196774B1 (en) 2008-01-24 2012-06-12 Talyst Inc. Remote pharmaceutical dispensing
CA2716923A1 (en) 2008-03-17 2009-09-24 The Procter & Gamble Company User-customizable dosing system
US7942280B2 (en) 2008-06-05 2011-05-17 Apothecary Products, Inc. Push tab vial assembly and methods
US8055512B1 (en) 2008-11-21 2011-11-08 Walgreen Co. Manifest, methods and systems for multi-dose medication order fill
US8146331B2 (en) 2009-01-15 2012-04-03 Sabrie Soloman Automated packaging, inspection, verification, and counting apparatus
US20100252479A1 (en) 2009-04-01 2010-10-07 Corroon Kenneth M Medication dispensing systems and methods
US8890681B2 (en) 2009-04-17 2014-11-18 Medtronic, Inc. Management of session history data for implantable fluid delivery device
US20100299155A1 (en) 2009-05-19 2010-11-25 Myca Health, Inc. System and method for providing a multi-dimensional contextual platform for managing a medical practice
US20110015576A1 (en) 2009-06-01 2011-01-20 Sanofi-Aventis Deutschland Gmbh Medicament identification system for multi-dose injection devices
US8191719B2 (en) 2009-08-14 2012-06-05 Pcas Patient Care Automation Services Inc. Rack arrangement for kiosk dispenser
WO2011022330A1 (en) 2009-08-17 2011-02-24 Zin Technologies, Inc. Method and system for monitoring and managing patient care
FR2953930B1 (en) 2009-12-16 2012-02-24 Proditec VISUAL CONTROL DEVICE
US20110161097A1 (en) 2009-12-28 2011-06-30 General Electric Company Methods and systems for scheduling appointments in healthcare environments
EP2341331B1 (en) 2009-12-30 2018-06-06 JVM Co., Ltd. Medicine management system
US20110264465A1 (en) 2010-01-15 2011-10-27 Noel Lindsay Issuing Prescriptions from Standing Orders
WO2011130296A1 (en) 2010-04-12 2011-10-20 Provider Meds, LP On site prescription management system and methods for health care facilities
WO2012005004A1 (en) 2010-07-09 2012-01-12 パナソニック株式会社 Tablet inspection assistance method and tablet inspection assistance system
US20120097560A1 (en) 2010-10-21 2012-04-26 Contractor Sohail G Medication Package
US20120145585A1 (en) 2010-12-08 2012-06-14 Id-Con, Llc Packaging systems and methods
US8752704B2 (en) 2010-12-17 2014-06-17 The Procter & Gamble Company Blister cards promoting intuitive dosing
US20120158430A1 (en) 2010-12-21 2012-06-21 General Electric Company Systems and methods for patient prescription management
KR20180122044A (en) 2011-04-28 2018-11-09 가부시키가이샤 유야마 세이사쿠쇼 Medicine checking device and apparatus for separately packaging medicines
US20120293623A1 (en) 2011-05-17 2012-11-22 Gii Acquisition, Llc Dba General Inspection, Llc Method and system for inspecting small manufactured objects at a plurality of inspection stations and sorting the inspected objects
US8556077B1 (en) 2012-04-19 2013-10-15 Michael Hanley Medication dispensing blister card package with adjustable mechanism that provides a custom patient schedule for complex medication regimens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041968A1 (en) * 2000-02-11 2001-11-15 Hamilton Rodney N. Pharmacy pill counting vision system
US6711460B1 (en) * 2001-06-18 2004-03-23 Diebold Incorporated Pharmaceutical system in which pharmaceutical care is provided by a remote professional serving multiple pharmacies
US20030193185A1 (en) * 2002-04-15 2003-10-16 Valley Jeffrey M. Prescription pharmaceutical labeling system
US7668730B2 (en) * 2002-12-17 2010-02-23 JPI Commercial, LLC. Sensitive drug distribution system and method
US20050049746A1 (en) * 2003-08-26 2005-03-03 Ken Rosenblum Automatic prescription drug dispenser
US20050209879A1 (en) * 2004-03-19 2005-09-22 Anne-Marie Chalmers Method and system for centralized medication fulfillment
US20060124502A1 (en) * 2004-12-14 2006-06-15 Lee James M Multiple compartment pill dispenser

Also Published As

Publication number Publication date
US20070250346A1 (en) 2007-10-25
US9710866B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
US20180122029A1 (en) System and method for processing a multiple prescription order
US7690173B2 (en) Multiple prescription production facility
US9454788B2 (en) System and method for placing a multiple tablet order online
US8713897B2 (en) Method and system for verifying a filled prescription order
US8074426B2 (en) Multiple prescription package and method for filling the package
US9141764B2 (en) System and method for online integrated multiple tablet ordering
US8712582B1 (en) System and method for combining different tablets into a pouch
US8914298B1 (en) System and method for integrated verification and assembly of multi-script pouches into a housing container
CA2502290C (en) Automated drug substitution, verification, and reporting system
US20220254470A1 (en) Systems and methods for medication management
US10940093B2 (en) Apparatus and method for dispensing pharmaceuticals and other medications
US20080179387A1 (en) Medication Dispensing System
US8200366B2 (en) Method and system for determining a volume-based fill pattern of a multi-dose medicament container
US20130161207A1 (en) Child Resistant Packaging for Multi-Prescription Order
US10265243B2 (en) Medication dispensing system
WO2007127359A2 (en) System and method for processing a multiple prescription order
US10315450B1 (en) System and method for generating an integrated label for container housing multi-script pouches
JPWO2003103564A1 (en) Dispensing inspection method and dispensing inspection system
US20210170780A1 (en) System and method for generating an integrated label for container housing multi-script pouches
US20240257935A1 (en) Robotic prescription filling system
Lam et al. Standard of practice in dispensing and distribution for pharmacy services.
EP4288969A1 (en) Systems and methods for tracking items
AU2006212698A1 (en) Medication dispensing system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: EDGE MEDICAL PROPERTIES, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUCIANO, ROBERT A., JR.;LUCIANO, LAWRENCE W.;SIGNING DATES FROM 20180814 TO 20180815;REEL/FRAME:047566/0007

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION