US20180092970A1 - Chlamydia antigens - Google Patents

Chlamydia antigens Download PDF

Info

Publication number
US20180092970A1
US20180092970A1 US15/590,570 US201715590570A US2018092970A1 US 20180092970 A1 US20180092970 A1 US 20180092970A1 US 201715590570 A US201715590570 A US 201715590570A US 2018092970 A1 US2018092970 A1 US 2018092970A1
Authority
US
United States
Prior art keywords
seq
protein
chlamydia
nucleic acid
antigens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/590,570
Inventor
Guido Grandi
Renata Maria Grifantini
Oretta Finco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlaxoSmithKline Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Priority to US15/590,570 priority Critical patent/US20180092970A1/en
Publication of US20180092970A1 publication Critical patent/US20180092970A1/en
Priority to US16/260,554 priority patent/US10716842B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/118Chlamydiaceae, e.g. Chlamydia trachomatis or Chlamydia psittaci
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/295Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Chlamydiales (O)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/125Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Chlamydiales (O)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56927Chlamydia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/295Assays involving biological materials from specific organisms or of a specific nature from bacteria from Chlamydiales (o)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/10Detection of antigens from microorganism in sample from host

Definitions

  • This invention is in the field of Chlamydia trachomatis proteins and their uses.
  • Vaccine development has been identified as essential to controlling infection with C. trachomatis. Vaccines against C. trachomatis appear to elicit protective T-cell and/or B-cell immunity in the genital tract mucosa.
  • B-cells and antibodies do not have a decisive role in resolution of primary infection, they are likely to be important for enhancing the protective effector T-cell response and to be required to control re-infection with various mechanisms such as antibody-mediated neutralization and opsonization.
  • C. trachomatis Because immune protection against infection with C. trachomatis is likely to be mediated by immunization with C. trachomatis proteins that are targets of CD4+ T cells and that are capable of inducing B-cell responses, identification of such proteins is particularly important. It is therefore an object of the invention to provide further antigens for use in Chlamydia vaccines.
  • the invention provides proteins for use in the treatment, prevention and/or diagnosis of Chlamydia infection (and, in particular, C. trachomatis infection). Immunisation with the proteins is preferably able to induce a specific CD4+ Th1 cell mediated response against Chlamydia.
  • the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:1 and SEQ ID NO:2 respectively.
  • This protein is also known as “CT733” and is annotated as a hypothetical protein from C. trachomatis .
  • the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:3 and SEQ ID NO:4 respectively.
  • This protein is also known as “CT153” and is annotated as MACPF/membrane-attack complex (MAC)/perforin from C. trachomatis .
  • the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:5 and SEQ ID NO:6 respectively.
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:7 and SEQ ID NO:8 respectively.
  • CT279 from C. trachomatis .
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:9 and SEQ ID NO:10 respectively.
  • CT443 from C. trachomatis .
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:11 and SEQ ID NO:12 respectively.
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:13 and SEQ ID NO:14 respectively.
  • CT456 from C. trachomatis .
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:15 and SEQ ID NO:16 respectively.
  • CT381 from C. trachomatis .
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:39 and SEQ ID NO:40 respectively.
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:41 and SEQ ID NO:42 respectively.
  • CT341 from C. trachomatis .
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:43 and SEQ ID NO:44 respectively.
  • CT716 from C. trachomatis .
  • nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:45 and SEQ ID NO:46 respectively.
  • This protein is also known as “CT745” from C. trachomatis .
  • the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:47 and SEQ ID NO:48, respectively.
  • This protein is also known as “CT387” from C. trachomatis and is annotated as a hypothetical protein.
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:49 and SEQ ID NO:50, respectively.
  • This protein is also known as “CT812” from C. trachomatis and is annotated as a polymorphic outer membrane protein.
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:51 and SEQ ID NO:52, respectively.
  • This protein is also known as “CT869” from C. trachomatis and is annotated as a polymorphic outer membrane protein.
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:53 and SEQ ID NO:54, respectively.
  • This protein is also known as “CT166” from C. trachomatis .
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:55 and SEQ ID NO:56, respectively.
  • This protein is also known as “CT175” from C. trachomatis .
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:155 and SEQ ID NO:156, respectively.
  • This protein is also known as “CT163” from C. trachomatis .
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:159 and SEQ ID NO:160, respectively.
  • This protein is also known as “CT214” from C. trachomatis .
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:163 and SEQ ID NO:164, respectively.
  • This protein is also known as “CT721” from C. trachomatis .
  • the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:167 and SEQ ID NO:168, respectively.
  • This protein is also known as “CT127” from C. trachomatis.
  • the protein is a variant of a protein as described above.
  • the protein may comprise one or more mutations (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more mutations) in the sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 40, 42, 44, 46, 48, 50, 52, 54, 56, 136, 140, 156, 160, 164 or 168, for example, in the sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44, or 46.
  • Preferred mutations are those which do not cause a significant conformational change in the protein such that the protein of the invention retains the ability to elicit an immune response against the wild-type Chlamydia protein.
  • the proteins having the sequences presented in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44, 46, 48, 50, 52, 54 and 56 are the wild-type proteins.
  • the one or more mutations are present in the N-terminal portion of the protein, for example, between residues 1 and 20 of the protein, between residues 21 and 40, between residues 41 and 60, between residues 1 and 60 or between residues 1 and 40 of the protein.
  • the one or more mutations are present in the C-terminal portion of the protein, for example, between the C-terminal 20 residues of the protein, between residues 21 and 40 from the C-terminus, between residues 41 and 60 from the C-terminus; between residues 1 and 60 from the C-terminus or between residues 1 and 40 from the C-terminus of the protein.
  • the amino acid sequences contain fewer than twenty mutations (e.g. 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1).
  • Each mutation preferably involves a single amino acid and is preferably a point mutation.
  • the mutations may each independently be a substitution, an insertion or a deletion.
  • Preferred mutations are single amino acid substitutions.
  • the proteins may also include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, etc.) single amino acid deletions relative to the Chlamydia sequences.
  • the proteins may also include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, etc.) insertions (e.g. each of 1, 2, 3, 4 or 5 or more amino acids) relative to the Chlamydia sequences.
  • Deletions, substitutions or insertions may be at the N-terminus and/or C-terminus, or may be between the two termini. Thus a truncation is an example of a deletion. Truncations may involve deletion of up to 40 (or more) amino acids at the N-terminus and/or C-terminus (for example, 1-10, 11-40, 41-70, 71-100 or more amino acids).
  • Amino acid substitutions may be to any one of the other nineteen naturally occurring amino acids.
  • a substitution mutation is a conservative substitution.
  • a substitution mutation is a non-conservative substitution.
  • a conservative substitution is commonly defined as a substitution introducing an amino acid having sufficiently similar chemical properties, e.g. having a related side chain (e.g. a basic, positively charged amino acid should be replaced by another basic, positively charged amino acid), in order to preserve the structure and the biological function of the molecule.
  • Genetically-encoded amino acids are generally divided into four families: (1) acidic i.e. aspartate, glutamate; (2) basic i.e. lysine, arginine, histidine; (3) non-polar i.e.
  • the protein may comprise an amino acid sequence having sequence identity to the amino acid sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 40, 42, 44, 46, 48, 50, 52, 54, 56, 136, 140, 156, 160, 164 and 168, for example, of any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44 and 46.
  • the degree of sequence identity is preferably greater than 50% (e.g.
  • proteins include homologs, orthologs, allelic variants and functional mutants.
  • the Chlamydia protein of the invention may comprise one or more amino acid derivatives.
  • amino acid derivative is intended an amino acid or amino acid-like chemical entity other than one of the 20 genetically encoded naturally occurring amino acids.
  • the amino acid derivative may contain substituted or non-substituted, linear, branched, or cyclic alkyl moieties, and may include one or more heteroatoms.
  • the amino acid derivatives can be made de novo or obtained from commercial sources (Calbiochem-Novabiochem AG; Bachem).
  • the variant protein is a homologous protein from C. pneumoniae, C. psittaci, C. pecorum, C. muridarum or C. suis.
  • the invention further provides a protein comprising or consisting of a fragment of a protein comprising or consisting of the amino acid sequence of any of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 40, 42, 44, 46, 48, 50, 52, 54, 56, 136, 140, 156, 160, 164 or 168, for example, of any one of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44 or 46, or a fragment of a variant thereof.
  • the fragment should comprise at least n consecutive amino acids from the protein and, depending on the particular sequence, n is 6 or more (e.g.
  • the fragment comprises one or more epitopes from the protein.
  • one or more of the epitopes is an MHC class II epitope, for example, a CD4+ T cell epitope.
  • the fragment comprises or consists of the amino acid sequence of any of SEQ ID NOs 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 138, 142, 146, 150, 154, 158, 162, 166 and 170.
  • the invention provides a protein comprising or consisting of a fragment of a protein comprising or consisting of the amino acid sequence recited in SEQ ID NO: 122. Table 3 below shows which fragments correspond to which full length sequences.
  • the protein of the invention for example the variant protein or the fragment, is preferably immunogenic.
  • immunogenic in the context of“an immunogenic variant” and “immunogenic fragment”, is used to mean that the protein is capable of eliciting an immune response, such as a cell-mediated and/or an antibody response, against the wild-type Chlamydia protein from which it is derived, for example, when used to immunise a subject (preferably a mammal, more preferably a human or a mouse).
  • the protein of the invention (for example, the variant or fragment) is preferably capable of stimulating in vitro CD4+ IFN ⁇ + cells in splenocytes purified from mice infected with live C. trachomatis to a level comparable with the wild-type Chlamydia protein.
  • the protein of the invention preferably retains the ability to elicit antibodies that recognise the wild-type protein.
  • the protein of the invention preferably elicits antibodies that can bind to, and preferably neutralise the activity of, the wild-type protein.
  • the protein of the invention is capable of eliciting antibodies that are capable of neutralising Chlamydia infectivity and/or virulence.
  • the antibodies are able to cross-react with the protein of the invention and the wild-type protein, but with no other homologous protein (e.g. from another Chlamydia species).
  • the antibodies are cross-reactive with the wild-type protein and with homologous proteins from other Chlamydia species.
  • the antibodies are cross-reactive with the wild-type protein and with homologous protein from other organisms (for example from E. coli or H. influenzae ).
  • Mice immunized with the protein of the invention and the wild-type Chlamydia protein preferably show similar antigen-specific antibody titers.
  • Antibody titres and specificities can be measured using standard methods available in the art. Other methods of testing the immunogenicity of proteins are also well known in the art.
  • the variant or fragment is preferably capable of eliciting an immune response, such as a cell-mediated and/or an antibody response, against the wild-type Chlamydia protein.
  • the fragment is capable of stimulating in vitro CD4+ IFN ⁇ + cells in splenocytes purified from mice infected with live C. trachomatis to a level comparable with the wild-type Chlamydia protein and/or retains the ability to elicit antibodies that recognise the wild-type protein.
  • the variant or the fragment is capable of inducing a specific CD4-Th1 cell mediated response against the wild type Chlamydia protein.
  • the proteins of the invention can, of course, be prepared by various means (e.g. recombinant expression, purification from native host, purification from cell culture, chemical synthesis etc.) and in various forms (e.g. native, fusions, glycosylated, non-glycosylated, lipidated, non-lipidated, phosphorylated, non-phosphorylated, myristoylated, non-myristoylated, monomeric, multimeric, particulate, denatured, etc.).
  • the recombinant fusion proteins of the present invention are prepared as a GST-fusion protein and/or a His-tagged fusion protein.
  • the proteins of the invention are preferably prepared in purified or substantially pure form (i.e. substantially free from host cell proteins and/or other Chlamydia proteins), and are generally at least about 50% pure (by weight), and usually at least about 90% pure, i.e. less than about 50%, and more preferably less than about 10% (e.g. 5%) of a composition is made up of other expressed polypeptides.
  • the antigens in the compositions are separated from the whole organism with which the molecule is expressed.
  • the heterologous host may be prokaryotic (e.g. a bacterium) or eukaryotic. It is preferably E. coli , but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonella typhimurium, Neisseria lactamica, Neisseria cinerea , Mycobacteria (e.g. M. tuberculosis ), yeasts, etc.
  • polypeptide or “protein” refers to amino acid polymers of any length.
  • the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids.
  • the terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component.
  • polypeptides containing one or more analogs of an amino acid including, for example, unnatural amino acids, etc.
  • Polypeptides can occur as single chains or associated chains.
  • the invention provides polypeptides comprising a sequence -P-Q- or -Q-P-, wherein: -P- is an amino acid sequence as defined above and -Q- is not a sequence as defined above i.e. the invention provides fusion proteins.
  • -P- is an amino acid sequence as defined above
  • -Q- is not a sequence as defined above i.e. the invention provides fusion proteins.
  • the N-terminus codon of -P- is not ATG, but this codon is not present at the N-terminus of a polypeptide, it will be translated as the standard amino acid for that codon rather than as a Met. Where this codon is at the N-terminus of a polypeptide, however, it will be translated as Met.
  • Proteins of the invention may be attached to a solid support. They may comprise a detectable label (e.g. a radioactive or fluorescent label, or a biotin label).
  • a detectable label e.g. a radioactive or fluorescent label, or a biotin label.
  • the proteins of the invention induce antibodies that may be used as a vaccine capable of neutralising the activity of infectious EB.
  • the antibodies may alternatively be used for the diagnosis of Chlamydia infection.
  • the invention provides antibodies for use in the treatment, prevention or diagnosis of Chlamydia infection.
  • the infection is by C. trachomatis , but may alternatively be by C. psittaci, C. pecorum, C. muridarum or C. suis.
  • antibody includes intact immunoglobulin molecules, as well as fragments thereof which are capable of binding an antigen. These include hybrid (chimeric) antibody molecules (Winter et al., (1991) Nature 349:293-99; U.S. Pat. No. 4,816,567); F(ab′)2 and F(ab) fragments and Fv molecules; non-covalent heterodimers (Inbar et al., (1972) Proc. Natl. Acad. Sci. U.S.A. 69:2659-62; Ehrlich et al., (1980) Biochem 19:4091-96); single-chain Fv molecules (sFv) (Huston et al., (1988) Proc. Natl. Acad.
  • the antibodies are monoclonal antibodies. Methods of obtaining monoclonal antibodies are well known in the art. Humanised or fully-human antibodies are preferred.
  • the antibodies may be polyclonal or monoclonal and may be produced by any suitable means.
  • the antibody may include a detectable label.
  • Also provided is a method for preparing antibodies comprising immunising a mammal (such as a mouse or a rabbit) with a protein of the invention and obtaining polyclonal antibodies or monoclonal antibodies by conventional techniques.
  • polyclonal antisera may be obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25° C. for one hour, followed by incubating at 4° C. for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000 g for 10 minutes).
  • Monoclonal antibodies may be prepared using the standard method of Kohler & Milstein [ Nature (1975) 256:495-96], or a modification thereof, or by any other suitable method.
  • the invention provides a nucleic acid encoding a protein or antibody of the invention.
  • the nucleic acid sequence encoding a protein of the invention preferably comprises or consists of any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 39, 41, 43, 45, 47, 49, 51, 53, 55, 135, 139, 155, 159, 163 or 167, for example, of any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 39, 41, 43 or 45.
  • the nucleic acid sequence encoding a protein of the invention comprises or consists of any one of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131 and 133.
  • the invention also provides nucleic acid comprising nucleotide sequences having sequence identity to such nucleotide sequences. Identity between sequences is preferably determined by the Smith-Waterman homology search algorithm as described above. Such nucleic acids include those using alternative codons to encode the same amino acid.
  • the invention also provides nucleic acid which can hybridize to these nucleic acids.
  • Hybridization reactions can be performed under conditions of different “stringency”. Conditions that increase stringency of a hybridization reaction of widely known and published in the art (e.g. page 7.52 of Kaplitt, Nature Genetics (1994) 6:148). Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25° C., 37° C., 50° C., 55° C.
  • the nucleic acid may be used in hybridisation reactions (e.g. Northern or Southern blots, or in nucleic acid microarrays or ‘gene chips’) or in amplification reactions (e.g. PCR, SDA, SSSR, LCR, NASBA, TMA) etc.
  • hybridisation reactions e.g. Northern or Southern blots, or in nucleic acid microarrays or ‘gene chips’
  • amplification reactions e.g. PCR, SDA, SSSR, LCR, NASBA, TMA
  • the invention also provides a nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing, or for use as primers).
  • the nucleic acid is complementary to the full length of the nucleic acid described above.
  • Nucleic acid according to the invention may be labelled e.g. with a radioactive or fluorescent label. This is particularly useful where the nucleic acid is to be used as a primer or probe e.g. in PCR, LCR or TMA.
  • nucleic acid includes in general means a polymeric form of nucleotides of any length, which contain deoxyribonucleotides, ribonucleotides, and/or their analogs. It includes DNA, RNA, DNA/RNA hybrids. It also includes DNA or RNA analogs, such as those containing modified backbones (e.g. peptide nucleic acids (PNAs) or phosphorothioates) or modified bases.
  • PNAs peptide nucleic acids
  • the invention includes mRNA, ribozymes, DNA, cDNA, recombinant nucleic acids, branched nucleic acids, plasmids, vectors, probes, primers, etc. Where nucleic acid of the invention takes the form of RNA, it may or may not have a 5′ cap.
  • Nucleic acids of the invention can take various forms (e.g. single stranded, double stranded, vectors, primers, probes etc.). Unless otherwise specified or required, any embodiment of the invention that utilizes a nucleic acid may utilize both the double-stranded form and each of two complementary single-stranded forms which make up the double-stranded form. Primers and probes are generally single-stranded, as are antisense nucleic acids.
  • Nucleic acids of the invention are preferably prepared in substantially pure form (i.e. substantially free from naturally-occuring nucleic acids, particularly from chlamydial or other host cell nucleic acids), generally being at least about 50% pure (by weight), and usually at least about 90% pure.
  • Nucleic acids of the invention may be prepared in many ways e.g. by chemical synthesis (e.g. phosphoramidite synthesis of DNA) in whole or in part, by digesting longer nucleic acids using nucleases (e.g. restriction enzymes), by joining shorter nucleic acids or nucleotides (e.g. using ligases or polymerases), from genomic or cDNA libraries, etc.
  • nucleases e.g. restriction enzymes
  • ligases or polymerases e.g. using ligases or polymerases
  • the invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed with such vectors.
  • Nucleic acids of the invention may be part of a vector i.e. part of a nucleic acid construct designed for transduction/transfection of one or more cell types.
  • Vectors may be, for example, “cloning vectors” which are designed for isolation, propagation and replication of inserted nucleotides, “expression vectors” which are designed for expression of a nucleotide sequence in a host cell, “viral vectors” which are designed to result in the production of a recombinant virus or virus-like particle, or “shuttle vectors”, which comprise the attributes of more than one type of vector.
  • Preferred vectors are plasmids.
  • a host cell comprising a nucleic acid of the invention.
  • a “host cell” includes an individual cell or cell culture which can be or has been a recipient of exogenous nucleic acid.
  • Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change.
  • Host cells include cells transfected or infected in vivo or in vitro with nucleic acid of the invention, for example, with a vector of the invention.
  • nucleic acid is DNA
  • U in a RNA sequence
  • T in the DNA
  • RNA RNA
  • T in a DNA sequence
  • complement or “complementary” when used in relation to nucleic acids refers to Watson-Crick base pairing.
  • the complement of C is G
  • the complement of G is C
  • the complement of A is T (or U)
  • the complement of T is A.
  • bases such as 1 (the purine inosine) e.g. to complement pyrimidines (C or T).
  • Nucleic acids of the invention can be used, for example: to produce polypeptides; as hybridization probes for the detection of nucleic acid in biological samples; to generate additional copies of the nucleic acids; to generate ribozymes or antisense oligonucleotides; as single-stranded DNA primers or probes; or as triple-strand forming oligonucleotides.
  • the invention provides a process for producing nucleic acid of the invention, wherein the nucleic acid is synthesised in part or in whole using chemical means.
  • nucleic acids are preferably at least 24 nucleotides in length (e.g. 60, 120, 240, 390, 540, 720, 900, 1200, 1320, 1500, 1800, 2100, 2400, 2415 nucleotides or longer).
  • nucleic acids are preferably at most 2430 nucleotides in length (e.g. 2427, 2394, 2250, 2034, 1450, 1300, 1150, 1000, 850, 700, 500 nucleotides or shorter).
  • Primers and probes of the invention, and other nucleic acids used for hybridization are preferably between 10 and 30 nucleotides in length (e.g. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides).
  • the protein, antibody, and/or nucleic acid or medicament may be in the form of a composition.
  • compositions may be suitable as immunogenic compositions (e.g. vaccines), or as diagnostic reagents.
  • the composition is an immunogenic composition. It is particularly advantageous to use a protein of the invention in an immunogenic composition such as a vaccine. It is also envisaged that the immunogenic composition may comprise a nucleic acid which encodes a protein of the invention such that the protein is generated in vivo.
  • An immunogenic composition of the invention comprises a protein, antibody, nucleic acid, vector and/or host cell according to the invention.
  • Immunogenic compositions according to the invention may either be prophylactic (i.e. to prevent infection) or therapeutic (i.e. to treat infection), but will typically be prophylactic.
  • the immunogenic composition is for prophylactic use, the human is preferably a child (e.g. a toddler or infant) or a teenager; where the immunogenic composition is for therapeutic use, the human is preferably a teenager or an adult.
  • An immunogenic composition intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
  • the immunogenic composition is for treatment or prevention of Chlamydia infection or an associated condition (e.g. trachoma, blindness, cervicitis, pelvic inflammatory disease, infertility, ectopic pregnancy, chronic pelvic pain, salpingitis, urethritis, epididymitis, infant pneumonia, patients infected with cervical squamous cell carcinoma, and/or HIV infection, etc.), preferably, C. trachomatis infection.
  • the immunogenic composition may be effective against C. pneumoniae.
  • Immunogenic compositions used as vaccines comprise an immunologically effective amount of the protein of the invention, as well as any other components, as needed.
  • immunologically effective amount it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of the individual to be treated (e.g. non-human primate, primate, etc.), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
  • Antigens in the composition will typically be present at a concentration of at least 1 ⁇ g/ml each.
  • the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
  • Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Multiple doses will typically be administered at least 1 week apart (e.g. about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.). In some embodiments, three or more doses are provided (for example, three, four or five) doses. In some embodiments, three doses are given intramuscularly at 2 week-intervals, for example, three doses of 10-20 ⁇ g of each protein, at 2 week-intervals, given intramuscularly.
  • the pH of an immunogenic composition is preferably between 6 and 8, preferably about 7. pH may be maintained by the use of a buffer.
  • the composition may be sterile and/or pyrogen-free.
  • the composition may be isotonic with respect to humans.
  • Immunogenic compositions of the invention will generally be administered directly to a patient.
  • Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or mucosally, such as by rectal, oral (e.g. tablet, spray), vaginal, topical, transdermal (See e.g. WO99/27961) or transcutaneous (See e.g. WO02/074244 and WO02/064162), intranasal (See e.g. WO03/028760), ocular, aural, pulmonary or other mucosal administration.
  • parenteral injection e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue
  • mucosally such as by rectal, oral (e.g. tablet, spray), vaginal, topical, transdermal (See e.g.
  • compositions of the invention may be prepared in various forms.
  • the compositions may be prepared as injectables, either as liquid solutions or suspensions.
  • Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared (e.g. a lyophilised composition).
  • the composition may be prepared for topical administration e.g. as an ointment, cream or powder.
  • the composition may be prepared for oral administration e.g. as a tablet or capsule, or as a syrup (optionally flavoured).
  • the composition may be prepared for pulmonary administration e.g. as an inhaler, using a fine powder or a spray.
  • the composition may be prepared as a suppository or pessary.
  • the composition may be prepared for nasal, aural or ocular administration e.g. as drops.
  • the invention also provides a delivery device pre-filled with an immunogenic composition of the invention.
  • the invention also provides a kit comprising a first component and a second component wherein neither the first component nor the second component is a composition of the invention as described herein, but wherein the first component and the second component can be combined to provide a composition of the invention as described herein.
  • the kit may further include a third component comprising one or more of the following: instructions, syringe or other delivery device, adjuvant, or pharmaceutically acceptable formulating solution.
  • a composition as described above may alternatively and/or additionally be used for diagnosis of chlamydia infection.
  • the therapeutic or diagnostic efficiency of a Chlamydia antigen may be improved by combination with a different Chlamydia antigen.
  • the immunogenicity of a protein of the invention may be improved by combination with another protein of the invention or with another known Chlamydia antigen.
  • the invention thus includes an immunogenic composition comprising a combination of Chlamydia antigens, said combination comprising a protein of the invention in combination with one or more additional Chlamydia antigens.
  • the one or more additional Chlamydia antigens that are present in the composition may be in the form of a protein or nucleic acid or any other suitable form.
  • a protein of the invention may be combined with one or more (e.g.
  • an immunogenic composition comprising two or more (e.g. 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) proteins of the invention.
  • the proteins of the invention may alternatively and/or additionally be provided in the composition in the form of their corresponding nucleic acids, vectors, host cells, etc.
  • a protein or nucleic acid of the invention for a use as described above, wherein the protein or nucleic acid is for use in combination with one or more additional Chlamydia antigens (or their encoding nucleic acids).
  • the one or more additional antigens e.g. 2, 3, 4, 5, 6, 7 or more additional antigens
  • the antibodies of the invention may be used in combination with one or more antibodies specific for one or more additional Chlamydia antigens for use in diagnosis of Chlamydia infections.
  • one or more of the additional Chlamydia antigens is selected from the antigens presented in Table 2, or their variants.
  • one or more (for example, all) of the additional antigens are selected from the Chlamydia trachomatis antigens listed in Table 2, but may alternatively or additionally be selected from the Chlamydia pneumoniae antigens listed in Table 2.
  • the one or more (for example, all) of the additional antigens are selected from the Chlamydia trachomatis antigens and/or Chlamydia pneumoniae antigens listed in Table 2 and CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721 and CT127.
  • one or more of the one or more additional antigens are selected from CT372, CT443, CT043, CT153, CT279, CT601, CT711, CT114, CT480, CT456, CT381, CT089, CT734, CT016, CT600, CT823, CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721 and CT127 (or their variants), for example, from CT372, CT443, CT043, CT153, CT279, CT601, CT711, CT114, CT480, CT456, CT381, CT089, CT734, CT016, CT600 and CT823.
  • These additional antigens are listed in Table 2 and their sequences are set out in the “Sequences” section that follows Table 2.
  • one or more proteins of the invention is combined with CT089. In another embodiment, one or more proteins of the invention is combined with CT089 and CT381 (or their variants). In some embodiments, the C-terminal fragment of CT812 “CT812C” (for example, a protein comprising or consisting of the amino acid sequence set out in SEQ ID NO:122 or a fragment or variant thereof) is used instead of full length CT812.
  • CT812C for example, a protein comprising or consisting of the amino acid sequence set out in SEQ ID NO:122 or a fragment or variant thereof
  • combinations may be used in the absence of any other chlamydia antigens or in the presence of one or more additional chlamydia antigens.
  • Particularly preferred combinations are: (i) CT279+CT601; (ii) CT372+CT443; (iii) CT733+CT153; (iv) CT456+CT381; (v) CT279+CT601+CT733+CT153; (vi) CT279+CT601+CT372+CT443; (vii) CT823+CT733+CT043+CT456; (viii) CT387+CT812+CT869; and (ix) CT387+CT812C+CT869 (or their variants).
  • the human serovariants (“serovars”) of C. trachomatis are divided into two biovariants (“biovars”).
  • Serovars A-K elicit epithelial infections primarily in the ocular tissue (A-C) or urogenital tract (D-K).
  • Serovars L1, L2 and L3 are the agents of invasive lymphogranuloma venereum (LGV).
  • one or more of the additional Chlamydial antigens may, for example, be of any of Serovars A-K or L1, L2 or L3.
  • One or more of the additional Chlamydia antigens is preferably from C. trachomatis serovar D, or from another epidemiologically prevalent serotype.
  • one or more of the additional Chlamydia antigens is a homologous antigen from C. pneumoniae, C. psittaci, C. pecorum, C. muridarum or C. suis.
  • TC0551 (the C. muridarum homologue of CT279) is used in place of the C. trachomatis protein.
  • C. muridarum is the mouse adapted strain of Chlamydia trachomatis .
  • C. muridarum is not a human pathogen, infection of mice with C. muridarum phenotypically mimics many aspects of C. trachomatis infection in humans and is frequently used to measure immunoprotective responses against C. trachomatis .
  • TC0890 (the C. muridarum homologue of CT601) is used in place of the C. trachomatis protein.
  • TC0651 (the C.
  • TC0727 (the C. muridarum homologue of CT443) is used in place of the C. trachomatis protein.
  • TC0106 (the C. muridarum homologue of CT733) is used in place of the C. trachomatis protein.
  • TC0431 (the C. muridarum homologue of CT153) is used in place of the C. trachomatis protein.
  • TC0660 (the C. muridarum homologue of CT381) is used in place of the C. trachomatis protein.
  • TC0741 (the C.
  • TC0210 (the C. muridarum homologue of CT823) is used in place of the C. trachomatis protein.
  • TC0666 (the C. muridarum homologue of CT387) is used in place of the C. trachomatis protein.
  • TC0666 is annotated as a hypothetical protein.
  • TC0197 (the C. muridarum homologue of CT812) is used in place of the C. trachomatis protein.
  • TC0197 is annotated as polymorphic membrane protein D family protein.
  • TC0261 (the C.
  • TC0261 is annotated as polymorphic membrane protein E/F family protein.
  • TC0313 (the C. muridarum homologue of CT043) is used in place of the C. trachomatis protein.
  • TC0889 (the C. muridarum homologue of CT600) is used in place of the C. trachomatis protein.
  • TC0210 (the C. muridarum homologue of CT823) is used in place of the C. trachomatis protein.
  • the composition comprises a single Chlamydia antigen, the C.
  • the muridarum homologue is used in place of the single C. trachomatis antigen.
  • the C. muridarum homologue is used in place of one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) or all C. trachomatis antigens.
  • Advantageous combinations of the invention are those in which two or more antigens (for example, two, three or four antigens) act synergistically.
  • two or more antigens for example, two, three or four antigens
  • the one or more additional Chlamydia antigens may comprise an amino acid sequence: (a) which is a variant of a Table 2 antigen (i.e. has 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to a sequence presented in Table 2); and/or (b) comprising a fragment of at least ‘n’ consecutive amino acids of a sequence presented in Table 2 or of a variant of a Table 2 antigen, wherein ‘n’ is 7 or more (e.g.
  • Preferred fragments of (b) comprise an epitope from a sequence presented in Table 2.
  • the epitope is a MHC class II epitope, for example, a CD4+ T cell epitope.
  • Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g.
  • an additional Chlamydia antigen comprises a sequence that is not identical to a complete sequence from Table 2 (e.g. when it comprises a sequence with less than 100% sequence identity thereto, or when it comprises a fragment thereof), it is preferred in each individual instance that the additional Chlamydia antigen can elicit an antibody that recognises a protein having the complete sequence from the Table 2 antigen from which it is derived.
  • the combination of two or more chlamydia antigens is provided as a combined preparation for simultaneous, separate or sequential administration.
  • the invention also provides a kit comprising a protein of the invention and one or more additional antigens for simultaneous, separate or sequential administration.
  • the Chlamydia antigens used in the invention may be present in the composition as individual separate polypeptides.
  • the combination may be present as a hybrid polypeptide in which two or more (i.e. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more) of the antigens are expressed as a single polypeptide chain.
  • Hybrid polypeptides offer two principal advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful. Different hybrid polypeptides may be mixed together in a single formulation.
  • a Chlamydia trachomatis antigen may be present in more than one hybrid polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.
  • Hybrid polypeptides can be represented by the formula NH 2 -A- ⁇ -X-L- ⁇ n -B—COOH, wherein: at least one X is an amino acid sequence of a Chlamydia protein according to the invention as described above; L is an optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; n is an integer of 2 or more (e.g. 2, 3, 4, 5, 6, etc.). Usually n is 2 or 3.
  • a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein.
  • the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein i.e. the leader peptide of X 1 will be retained, but the leader peptides of X 2 . . . X n will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X 1 as moiety -A-.
  • linker amino acid sequence -L- may be present or absent.
  • the hybrid may be NH 2 —X 1 -L 1 -X 2 -L 2 -COOH, NH 2 —X 1 —X 2 —COOH, NH 2 —X 1 -L 1 -X 2 —COOH, NH 2 —X 1 —X 2 -L 2 -COOH, etc.
  • Linker amino acid sequence(s) -L- will typically be short (e.g. 20 or fewer amino acids i.e. 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
  • Other suitable linker amino acid sequences will be apparent to those skilled in the art.
  • a useful linker is GSGGGG, with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the (Gly) 4 tetrapeptide being a typical poly-glycine linker.
  • oligopeptide e.g. with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids
  • the individual antigens within the hybrid may be from one or more strains.
  • X 2 may be from the same strain as X 1 or from a different strain.
  • the invention also provides a nucleic acid encoding a hybrid polypeptide of the invention. Furthermore, the invention provides a nucleic acid which can hybridise to this nucleic acid, preferably under “high stringency” conditions (e.g. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution).
  • “high stringency” conditions e.g. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution.
  • compositions may thus be pharmaceutically acceptable. They will usually include components in addition to the antigens e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion of such components is available in Remington The Science and Practice of Pharmacy.
  • compositions will generally be administered to a mammal in aqueous form. Prior to administration, however, the composition may have been in a non-aqueous form. For instance, although some vaccines are manufactured in aqueous form, then filled and distributed and administered also in aqueous form, other vaccines are lyophilised during manufacture and are reconstituted into an aqueous form at the time of use. Thus a composition of the invention may be dried, such as a lyophilised formulation.
  • the composition may include preservatives such as thiomersal or 2-phenoxyethanol. It is preferred, however, that the vaccine should be substantially free from (i.e. less than 5 g/ml) mercurial material e.g. thiomersal-free. Vaccines containing no mercury are more preferred. Preservative-free vaccines are particularly preferred.
  • a physiological salt such as a sodium salt.
  • Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml e.g. about 10 ⁇ 2 mg/ml NaCl.
  • Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.
  • Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg.
  • Compositions may include one or more buffers.
  • Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer (particularly with an aluminum hydroxide adjuvant); or a citrate buffer. Buffers will typically be included in the 5-20 mM range.
  • the pH of a composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 e.g. 6.5 and 7.5, or between 7.0 and 7.8.
  • the composition is preferably sterile.
  • the composition is preferably non-pyrogenic e.g. containing ⁇ 1 EU (endotoxin unit, a standard measure) per dose, and preferably ⁇ 0.1 EU per dose.
  • the composition is preferably gluten free.
  • the composition may include material for a single immunisation, or may include material for multiple immunisations (i.e. a ‘multidose’ kit).
  • a preservative is preferred in multidose arrangements.
  • the compositions may be contained in a container having an aseptic adaptor for removal of material.
  • Human vaccines are typically administered in a dosage volume of about 0.5 ml, although a half dose (i.e. about 0.25 ml) may be administered to children.
  • Immunogenic compositions of the invention may also comprise one or more immunoregulatory agents.
  • one or more of the immunoregulatory agents include one or more adjuvants.
  • the adjuvants may include a TH1 adjuvant and/or a TH2 adjuvant, further discussed below.
  • Adjuvants which may be used in compositions of the invention include, but are not limited to:
  • Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts (or mixtures thereof).
  • Calcium salts include calcium phosphate (e.g. the “CAP” particles disclosed in U.S. Pat. No. 6,355,271).
  • Aluminum salts include hydroxides, phosphates, sulfates, etc., with the salts taking any suitable form (e.g. gel, crystalline, amorphous, etc.). Adsorption to these salts is preferred.
  • the mineral containing compositions may also be formulated as a particle of metal salt [WO00/23105].
  • the adjuvants known as aluminum hydroxide and aluminum phosphate may be used. These names are conventional, but are used for convenience only, as neither is a precise description of the actual chemical compound which is present (e.g. see chapter 9 of Vaccine Design . . . (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum).
  • the invention can use any of the “hydroxide” or “phosphate” adjuvants that are in general use as adjuvants.
  • the adjuvants known as “aluminium hydroxide” are typically aluminium oxyhydroxide salts, which are usually at least partially crystalline.
  • aluminium hydroxyphosphate typically aluminium hydroxyphosphates, often also containing a small amount of sulfate (i.e. aluminium hydroxyphosphate sulfate). They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation influence the degree of substitution of phosphate for hydroxyl in the salt.
  • a fibrous morphology (e.g. as seen in transmission electron micrographs) is typical for aluminium hydroxide adjuvants.
  • the pI of aluminium hydroxide adjuvants is typically about 11 i.e. the adjuvant itself has a positive surface charge at physiological pH.
  • Adsorptive capacities of between 1.8-2.6 mg protein per mg Al ++ at pH 7.4 have been reported for aluminium hydroxide adjuvants.
  • Aluminium phosphate adjuvants generally have a PO 4 /Al molar ratio between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95 ⁇ 0.1.
  • the aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts.
  • a typical adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al 3+ /ml.
  • the aluminium phosphate will generally be particulate (e.g. plate-like morphology as seen in transmission electron micrographs). Typical diameters of the particles are in the range 0.5-20 ⁇ m (e.g. about 5-10 ⁇ m) after any antigen adsorption.
  • Adsorptive capacities of between 0.7-1.5 mg protein per mg Al ++ at pH 7.4 have been reported for aluminium phosphate adjuvants.
  • Suspensions of aluminium salts used to prepare compositions of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary.
  • the suspensions are preferably sterile and pyrogen-free.
  • a suspension may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM.
  • the suspensions may also comprise sodium chloride.
  • the invention can use a mixture of both an aluminium hydroxide and an aluminium phosphate.
  • there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. ⁇ 5:1, ⁇ 6:1, ⁇ 7:1, ⁇ 8:1, ⁇ 9:1, etc.
  • the concentration of Al +++ in a composition for administration to a patient is preferably less than 10 mg/ml e.g. ⁇ 5 mg/ml, ⁇ 4 mg/ml, ⁇ 3 mg/ml, ⁇ 2 mg/ml, ⁇ 1 mg/ml, etc.
  • a preferred range is between 0.3 and 1 mg/ml.
  • a maximum of 0.85 mg/dose is preferred.
  • Aluminium phosphates are particularly preferred, particularly in compositions which include a H. influenzae saccharide antigen, and a typical adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al 3+ /ml. Adsorption with a low dose of aluminium phosphate may be used e.g. between 50 and 1004 ⁇ g Al 3+ per conjugate per dose. Where there is more than one conjugate in a composition, not all conjugates need to be adsorbed.
  • Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 [Chapter 10 of Vaccine Design . . . (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum; see also WO90/14837] (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used.
  • CFA Complete Freund's adjuvant
  • IFA incomplete Freund's adjuvant
  • oil-in-water emulsion adjuvants typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible.
  • the oil droplets in the emulsion are generally less than 5 ⁇ m in diameter, and ideally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220 nm are preferred as they can be subjected to filter sterilization.
  • the emulsion can comprise oils such as those from an animal (such as fish) or vegetable source.
  • Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils.
  • Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used.
  • 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils.
  • Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention.
  • the procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art.
  • Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein.
  • a number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids.
  • Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein.
  • Squalane the saturated analog to squalene
  • Fish oils, including squalene and squalane are readily available from commercial sources or may be obtained by methods known in the art. Other preferred oils are the tocopherols (see below). Mixtures of oils can be used.
  • Surfactants can be classified by their ‘HLB’ (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16.
  • the invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAXTM tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol
  • Non-ionic surfactants are preferred.
  • Preferred surfactants for including in the emulsion are Tween 80 (polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
  • surfactants can be used e.g. Tween 80/Span 85 mixtures.
  • a combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-100) is also suitable.
  • Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
  • Preferred amounts of surfactants are: polyoxyethylene sorbitan esters (such as Tween 80) 0.01 to 1%, in particular about 0.1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.
  • polyoxyethylene sorbitan esters such as Tween 80
  • octyl- or nonylphenoxy polyoxyethanols such as Triton X-100, or other detergents in the Triton series
  • polyoxyethylene ethers such as laureth 9
  • Preferred emulsion adjuvants have an average droplets size of ⁇ 1 ⁇ m e.g. ⁇ 750 nm, ⁇ 500 nm, ⁇ 400 nm, ⁇ 300 nm, ⁇ 250 nm, ⁇ 220 nm, ⁇ 200 nm, or smaller. These droplet sizes can conveniently be achieved by techniques such as microfluidisation.
  • oil-in-water emulsion adjuvants useful with the invention include, but are not limited to:
  • an emulsion may be mixed with antigen extemporaneously, at the time of delivery, and thus the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use.
  • an emulsion is mixed with antigen during manufacture, and thus the composition is packaged in a liquid adjuvanted form.
  • the antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids.
  • the volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1.
  • kits may comprise two vials, or it may comprise one ready-filled syringe and one vial, with the contents of the syringe being used to reactivate the contents of the vial prior to injection.
  • composition includes a tocopherol
  • any of the ⁇ , ⁇ , ⁇ , ⁇ , ⁇ or ⁇ tocopherols can be used, but ⁇ -tocopherols are preferred.
  • the tocopherol can take several forms e.g. different salts and/or isomers. Salts include organic salts, such as succinate, acetate, nicotinate, etc. D-a-tocopherol and DL- ⁇ -tocopherol can both be used.
  • Tocopherols are advantageously included in vaccines for use in elderly patients (e.g. aged 60 years or older) because vitamin E has been reported to have a positive effect on the immune response in this patient group (Han et al.
  • a preferred ⁇ -tocopherol is DL- ⁇ -tocopherol, and the preferred salt of this tocopherol is the succinate.
  • the succinate salt has been found to cooperate with TNF-related ligands in vivo.
  • Saponin formulations may also be used as adjuvants in the invention.
  • Saponins are a heterogeneous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officinalis (soap root).
  • Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. QS21 is marketed as StimulonTM.
  • Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C.
  • the saponin is QS21.
  • a method of production of QS21 is disclosed in U.S. Pat. No. 5,057,540.
  • Saponin formulations may also comprise a sterol, such as cholesterol (WO96/33739).
  • ISCOMs immunostimulating complexs
  • a phospholipid such as phosphatidylethanolamine or phosphatidylcholine.
  • Any known saponin can be used in ISCOMs.
  • the ISCOM includes one or more of QuilA, QHA & QHC.
  • the ISCOMS may be devoid of additional detergent (WO00/07621).
  • Virosomes and virus-like particles can also be used as adjuvants in the invention.
  • These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome.
  • the viral proteins may be recombinantly produced or isolated from whole viruses.
  • viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Q ⁇ -phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein pi).
  • influenza virus such as HA or NA
  • Hepatitis B virus such as core or capsid proteins
  • Hepatitis E virus measles virus
  • Sindbis virus Rotavirus
  • Foot-and-Mouth Disease virus Retrovirus
  • Norwalk virus Norwalk virus
  • human Papilloma virus HIV
  • RNA-phages Q ⁇ -phage (such as coat proteins)
  • Virosomes are discussed further in, for example, Gluck et al. (2002) Vaccine 20:B10-B16.
  • Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • LPS enterobacterial lipopolysaccharide
  • Lipid A derivatives Lipid A derivatives
  • immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL).
  • 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains.
  • a preferred “small particle” form of 3 De-O-acylated monophosphoryl lipid A is disclosed in EP-A-0689454. Such “small particles” of 3dMPL are small enough to be sterile filtered through a 0.22 ⁇ m membrane (U.S. Pat. No. 6,630,161).
  • Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g.
  • Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM-174.
  • OM-174 is described for example in Meraldi et al. (2003) Vaccine 21:2485-2491 and Pajak et al. (2003) Vaccine 21:836-842.
  • Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.
  • the CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded.
  • Kandimalla et al. (2003) Nucleic Acids Research 31:2393-2400, WO02/26757 and WO99/62923 disclose possible analog substitutions e.g. replacement of guanosine with 2′-deoxy-7-deazaguanosine.
  • the adjuvant effect of CpG oligonucleotides is further discussed in Krieg (2003) Nature Medicine 9:831-835; McCluskie et al. (2002) FEMS Immunology and Medical Microbiology 32:179-185; WO98/40100; U.S. Pat. No. 6,207,646; U.S. Pat. No. 6,239,116 and U.S. Pat. No. 6,429,199.
  • the CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT (Kandimalla et al. (2003) Biochemical Society Transactions 31 (part 3):654-658).
  • the CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN.
  • CpG-A and CpG-B ODNs are discussed in Blackwell et al. (2003) J Immunol 170:4061-4068; Krieg (2002) Trends Immunol 23:64-65; and WO001/95935.
  • the CpG is a CpG-A ODN.
  • the CpG oligonucleotide is constructed so that the 5′ end is accessible for receptor recognition.
  • two CpG oligonucleotide sequences may be attached at their 3′ ends to form “immunomers”. See, for example, Gluck et al. (2002) Vaccine 20:B10-B16; Kandimalla et al. (2003) BBRC 306:948-953; Bhagat et al. (2003) BBRC 300:853-861; and WO03/035836.
  • CpG7909 also known as ProMuneTM (Coley Pharmaceutical Group, Inc.). Another is CpG1826.
  • TpG sequences can be used (WO01/22972), and these oligonucleotides may be free from unmethylated CpG motifs.
  • the immunostimulatory oligonucleotide may be pyrimidine-rich. For example, it may comprise more than one consecutive thymidine nucleotide (e.g. TTTT, as disclosed in Pajak et al.
  • RNA molecules may have a nucleotide composition with >25% thymidine (e.g. >35%, >40%, >50%, >60%, >80%, etc.).
  • it may comprise more than one consecutive cytosine nucleotide (e.g. CCCC, as disclosed in Pajak et al. (2003) Vaccine 21:836-842), and/or it may have a nucleotide composition with >25% cytosine (e.g. >35%, >40%, >50%, >60%, >80%, etc.).
  • cytosine nucleotide e.g. CCCC, as disclosed in Pajak et al. (2003) Vaccine 21:836-842
  • these oligonucleotides may be free from unmethylated CpG motifs.
  • Immunostimulatory oligonucleotides will typically comprise at least 20 nucleotides. They may comprise fewer than 100 nucleotides.
  • an adjuvant used with the invention may comprise a mixture of (i) an oligonucleotide (e.g. between 15-40 nucleotides) including at least one (and preferably multiple) Cp1 motifs (i.e. a cytosine linked to an inosine to form a dinucleotide), and (ii) a polycationic polymer, such as an oligopeptide (e.g. between 5-20 amino acids) including at least one (and preferably multiple) Lys-Arg-Lys tripeptide sequence(s).
  • an oligonucleotide e.g. between 15-40 nucleotides
  • Cp1 motifs i.e. a cytosine linked to an inosine to form a dinucleotide
  • a polycationic polymer such as an oligopeptide (e.g. between 5-20 amino acids) including at least one (and preferably multiple) Lys-Arg-Lys tripeptide sequence(s).
  • the oligonucleotide may be a deoxynucleotide comprising 26-mer sequence 5′-(IC) 13 -3′.
  • the polycationic polymer may be a peptide comprising 11-mer amino acid sequence KLKLLLLLKLK.
  • Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention.
  • the protein is derived from E. coli ( E. coli heat labile enterotoxin “LT”), cholera (“CT”), or pertussis (“PT”).
  • LT E. coli heat labile enterotoxin
  • CT cholera
  • PT pertussis
  • the use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in WO95/17211 and as parenteral adjuvants in WO98/42375.
  • the toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits.
  • the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated.
  • the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G 192.
  • LT-K63 LT-K63
  • LT-R72 LT-G 192.
  • ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in Beignon et al. (2002) Infect Immun 70:3012-3019; Pizza et al. (2001) Vaccine 19:2534-2541; Pizza et al. (2000) Int J Med Microbiol 290:455-461; Scharton-Kersten et al. (2000) Infect Immun 68:5306-5313; Ryan et al.
  • a useful CT mutant is or CT-E29H (Tebbey et al. (2000) Vaccine 18:2723-34).
  • Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in Domenighini et al. (1995) Mol Microbiol 15:1165-1167, specifically incorporated herein by reference in its entirety.
  • Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 (WO99/40936), etc.) (WO99/44636), interferons (e.g. interferon- ⁇ ), macrophage colony stimulating factor, and tumor necrosis factor.
  • cytokines such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 (WO99/40936), etc.) (WO99/44636), interferons (e.g. interferon- ⁇ ), macrophage colony stimulating factor, and tumor necrosis factor.
  • interferons e.g. interferon- ⁇
  • macrophage colony stimulating factor e.g. interferon- ⁇
  • tumor necrosis factor e.g. interferon- ⁇
  • Bioadhesives and mucoadhesives may also be used as adjuvants in the invention.
  • Suitable bioadhesives include esterified hyaluronic acid microspheres (Singh et al. (2001) J Cont Release 70:267-276) or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention (WO99/27960).
  • Microparticles may also be used as adjuvants in the invention.
  • Microparticles i.e. a particle of ⁇ 100 nm to ⁇ 150 ⁇ m in diameter, more preferably ⁇ 200 nm to ⁇ 30 ⁇ m in diameter, and most preferably ⁇ 500 nm to ⁇ 10 ⁇ m in diameter
  • materials that are biodegradable and non-toxic e.g. a poly(a-hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.
  • a negatively-charged surface e.g. with SDS
  • a positively-charged surface e.g. with a cationic detergent, such as CTAB
  • liposome formulations suitable for use as adjuvants are described in U.S. Pat. No. 6,090,406; U.S. Pat. No. 5,916,588; and EP-A-0626169.
  • Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters (WO99/52549). Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol (WO01/21207) as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol (WO01/21152).
  • Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
  • a phosphazene such as poly[di(carboxylatophenoxy)phosphazene] (“PCPP”) as described, for example, in Andrianov et al. (1998) Biomaterials 19:109-115 and Payne et al. (1998) Adv Drug Delivery Review 31:185-196, may be used.
  • PCPP poly[di(carboxylatophenoxy)phosphazene]
  • muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).
  • thr-MDP N-acetyl-muramyl-L-threonyl-D-isoglutamine
  • nor-MDP N-acetyl-normuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-
  • imidazoquinolone compounds suitable for use adjuvants in the invention include Imiquimod (“R-837”) (U.S. Pat. No. 4,680,338; U.S. Pat. No. 4,988,815), Resiquimod (“R-848”) (WO92/15582), and their analogs; and salts thereof (e.g. the hydrochloride salts).
  • Imiquimod (“R-837”) U.S. Pat. No. 4,680,338; U.S. Pat. No. 4,988,815)
  • Resiquimod (“R-848”) WO92/15582
  • salts thereof e.g. the hydrochloride salts.
  • Substituted ureas useful as adjuvants include compounds of formula 1, II or III, or salts thereof:
  • the invention may also comprise combinations of one or more of the adjuvants identified above.
  • the following adjuvant compositions may be used in the invention: (1) a saponin and an oil-in-water emulsion (WO99/11241); (2) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL) (WO94/00153); (3) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL)+a cholesterol; (4) a saponin (e.g.
  • QS21)+3dMPL+IL-12 (optionally+a sterol) (WO98/57659); (5) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions (European patent applications 0835318, 0735898 and 0761231); (6) SAF, containing 10% squalane, 0.4% Tween 80TM, 5% pluronic-block polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion.
  • SAF containing 10% squalane, 0.4% Tween 80TM, 5% pluronic-block polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion.
  • RibiTM adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL+CWS (DetoxTM); and (8) one or more mineral salts (such as an aluminum salt)+a non-toxic derivative of LPS (such as 3dMPL).
  • a combination of a toxin e.g. LTK63
  • an immunostimulatory oligonucleotide e.g. CpG
  • a combination of an emulsion (e.g. montanide) and an immunostimulatory oligonucleotide (e.g. CpG) is used.
  • aluminium hydroxide and/or aluminium phosphate adjuvant are particularly preferred, and antigens are generally adsorbed to these salts.
  • Calcium phosphate is another preferred adjuvant.
  • Other preferred adjuvant combinations include combinations of Th1 and Th2 adjuvants such as CpG & alum or resiquimod & alum.
  • a combination of aluminium phosphate and 3dMPL may be used.
  • a composition may include a temperature protective agent.
  • This component may be particularly useful in adjuvanted compositions (particularly those containing a mineral adjuvant, such as an aluminium salt).
  • a liquid temperature protective agent may be added to an aqueous vaccine composition to lower its freezing point e.g. to reduce the freezing point to below 0° C.
  • the temperature protective agent also permits freezing of the composition while protecting mineral salt adjuvants against agglomeration or sedimentation after freezing and thawing, and may also protect the composition at elevated temperatures e.g. above 40° C.
  • a starting aqueous vaccine and the liquid temperature protective agent may be mixed such that the liquid temperature protective agent forms from 1-80% by volume of the final mixture.
  • Suitable temperature protective agents should be safe for human administration, readily miscible/soluble in water, and should not damage other components (e.g. antigen and adjuvant) in the composition.
  • examples include glycerin, propylene glycol, and/or polyethylene glycol (PEG).
  • PEGs may have an average molecular weight ranging from 200-20,000 Da.
  • the polyethylene glycol can have an average molecular weight of about 300 Da (‘PEG-300’).
  • the invention provides an immunogenic composition comprising: (i) one or more proteins of the invention; and (ii) a temperature protective agent.
  • This composition may be formed by mixing (i) an aqueous composition comprising one or more proteins of the invention, with (ii) a temperature protective agent.
  • the mixture may then be stored e.g. below 0° C., from 0-20° C., from 20-35° C., from 35-55° C., or higher. It may be stored in liquid or frozen form.
  • the mixture may be lyophilised.
  • the composition may alternatively be formed by mixing (i) a dried composition comprising one or more proteins of the invention, with (ii) a liquid composition comprising the temperature protective agent.
  • component (ii) can be used to reconstitute component (i).
  • compositions of the invention may elicit either or both of a cell mediated immune response and a humoral immune response.
  • This immune response will preferably induce long lasting (e.g. neutralising) antibodies and a cell mediated immunity that can quickly respond upon exposure to chlamydia.
  • CD8 T cells Two types of T cells, CD4 and CD8 cells, are generally thought necessary to initiate and/or enhance cell mediated immunity and humoral immunity.
  • CD8 T cells can express a CD8 co-receptor and are commonly referred to as Cytotoxic T lymphocytes (CTLs).
  • CTLs Cytotoxic T lymphocytes
  • CD8 T cells are able to recognized or interact with antigens displayed on MHC Class I molecules.
  • CD4 T cells can express a CD4 co-receptor and are commonly referred to as T helper cells.
  • CD4 T cells are able to recognize antigenic peptides bound to MHC class II molecules.
  • the CD4 cells Upon interaction with a MI-IC class II molecule, the CD4 cells can secrete factors such as cytokines. These secreted cytokines can activate B cells, cytotoxic T cells, macrophages, and other cells that participate in an immune response.
  • Helper T cells or CD4+ cells can be further divided into two functionally distinct subsets: TH1 phenotype and TH2 phenotypes which differ in their cytokine and effector function.
  • Activated TH1 cells enhance cellular immunity (including an increase in antigen-specific CTL production) and are therefore of particular value in responding to intracellular infections.
  • Activated TH1 cells may secrete one or more of IL-2, IFN ⁇ , and TNF- ⁇ .
  • a TH1 immune response may result in local inflammatory reactions by activating macrophages, NK (natural killer) cells, and CD8 cytotoxic T cells (CTLs).
  • a TH1 immune response may also act to expand the immune response by stimulating growth of B and T cells with IL-12.
  • TH1 stimulated B cells may secrete IgG2a.
  • Activated TH2 cells enhance antibody production and are therefore of value in responding to extracellular infections.
  • Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10.
  • a TH2 immune response may result in the production of IgG1, IgE, IgA and memory B cells for future protection.
  • An enhanced immune response may include one or more of an enhanced TH1 immune response and a TH2 immune response.
  • a TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFN ⁇ , and TNF- ⁇ ), an increase in activated macrophages, an increase in NK activity, or an increase in the production of IgG2a.
  • the enhanced TH1 immune response will include an increase in IgG2a production.
  • a TH1 immune response may be elicited using a TH1 adjuvant.
  • a TH1 adjuvant will generally elicit increased levels of IgG2a production relative to immunization of the antigen without adjuvant.
  • TH1 adjuvants suitable for use in the invention may include for example saponin formulations, virosomes and virus like particles, non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), immunostimulatory oligonucleotides.
  • LPS enterobacterial lipopolysaccharide
  • Immunostimulatory oligonucleotides such as oligonucleotides containing a CpG motif, are preferred TH1 adjuvants for use in the invention.
  • a TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response (such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgG1, IgE, IgA and memory B cells.
  • the enhanced TH2 immune response will include an increase in IgG1 production.
  • a TH2 immune response may be elicited using a TH2 adjuvant.
  • a TH2 adjuvant will generally elicit increased levels of IgG1 production relative to immunization of the antigen without adjuvant.
  • TH2 adjuvants suitable for use in the invention include, for example, mineral containing compositions, oil-emulsions, and ADP-ribosylating toxins and detoxified derivatives thereof. Mineral containing compositions, such as aluminium salts are preferred TH2 adjuvants for use in the invention.
  • the invention includes a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant.
  • a composition elicits an enhanced TH1 and an enhanced TH2 response, i.e., an increase in the production of both IgG1 and IgG2a production relative to immunization without an adjuvant.
  • the composition comprising a combination of a TH1 and a TH2 adjuvant elicits an increased TH1 and/or an increased TH2 immune response relative to immunization with a single adjuvant (i.e., relative to immunization with a TH1 adjuvant alone or immunization with a TH2 adjuvant alone).
  • the immune response may be one or both of a TH1 immune response and a TH2 response.
  • immune response provides for one or both of an enhanced TH1 response and an enhanced TH2 response.
  • the immune response includes an increase in the production of IgG1 and/or IgG2 and/or IgGA.
  • the invention is preferably used to elicit systemic and/or mucosal immunity.
  • the enhanced immune response may be one or both of a systemic and a mucosal immune response.
  • the immune response provides for one or both of an enhanced systemic and an enhanced mucosal immune response.
  • the mucosal immune response is a TH2 immune response.
  • the mucosal immune response includes an increase in the production of IgA.
  • the invention also provides a method for raising an immune response in a mammal comprising the step of administering an effective amount of a protein, antibody, nucleic acid, vector, host cell or composition of the invention.
  • the immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity.
  • the method may raise a booster response.
  • the invention also provides a protein or combination, as defined above, for use as a medicament e.g. for use in raising an immune response in a mammal.
  • the invention also provides the use of a protein or combination of the invention in the manufacture of a medicament for raising an immune response in a mammal.
  • a protein or combination of the invention in the manufacture of a medicament for raising an immune response in a mammal.
  • the mammal may be protected against Chlamydia trachomatis .
  • the invention is effective against Chlamydia of various different serotypes, but can be particularly useful in protecting against disease resulting from Chlamydia infection by strains in serovar D.
  • the invention also provides a nucleic acid, protein, antibody, vector or host cell according to the invention for use as a medicament (e.g. a vaccine) or a diagnostic reagent.
  • the protein, nucleic acid or antibody is used for treatment, prevention or diagnosis of Chlamydia infection (preferably C. trachomatis ) in a mammal.
  • the invention also provides a method of treating, preventing of diagnosing Chlamydia infection (preferably, C. trachomatis infection) in a patient (preferably a mammal), comprising administering a therapeutically effective amount of a nucleic acid, protein or antibody of the invention.
  • the nucleic acid, protein or antibody according to the invention is for treatment or prevention of Chlamydia infection or an associated condition (e.g. trachoma, blindness, cervicitis, pelvic inflammatory disease, infertility, ectopic pregnancy, chronic pelvic pain, salpingitis, urethritis, epididymitis, infant pneumonia, cervical squamous cell carcinoma, etc.), preferably, C. trachomatis infection.
  • the immunogenic composition may additionally or alternatively be effective against C. pneumoniae.
  • the mammal is preferably a human.
  • the human is preferably a child (e.g. a toddler or infant) or a teenager; where the vaccine is for therapeutic use, the human is preferably a teenager or an adult.
  • a vaccine intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
  • a human patient may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old.
  • Preferred patients for receiving the vaccines are people going through puberty, teenagers, sexually active people, the elderly (e.g. ⁇ 50 years old, ⁇ 60 years old, and preferably ⁇ 65 years), the young (e.g. ⁇ 5 years old), hospitalised patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, or immunodeficient patients.
  • the vaccines are not suitable solely for these groups, however, and may be used more generally in a population.
  • Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as a human papillomavirus vaccine such as CervarixTM or GardasilTM; a tetanus, diphtheria and acellular pertussis vaccine such as TDaP, DTaP or BoostrixTM; a rubella vaccine such as MMR; or a tubercolosis vaccine such as the BCG.
  • a human papillomavirus vaccine such as CervarixTM or GardasilTM
  • a tetanus, diphtheria and acellular pertussis vaccine such as TDaP, DTaP or BoostrixTM
  • a rubella vaccine such as MMR
  • tubercolosis vaccine such as the BCG.
  • the protein of the invention is used to elicit antibodies that are capable of neutralising the activity of the wild type Chlamydia protein, for example, of one or more of wild-type Chlamydia CT733, CT153, CT601, CT279, CT443, CT372, CT456, CT381, CT255, CT341, CT716, CT745, CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721, CT127, CT043, CT600 and/or CT823 for example, of one or more of wild-type Chlamydia CT733, CT153, CT601, CT279, CT443, CT372, CT456 and/or CT381.
  • Neutralizing antibodies may be used as a vaccine capable of neutralising the activity of a native Chlamydia protein expressed by infectious EB.
  • the protein of the invention is used to elicit antibodies that are capable of neutralising Chlamydia infectivity and/or virulence.
  • the invention also provides the antibodies of the invention for neutralising wild-type Chlamydia proteins and/or Chlamydia infectivity and/or virulence.
  • the invention also provides the use of a nucleic acid, protein, or antibody of the invention in the manufacture of: (i) a medicament for treating or preventing bacterial infection; (ii) a diagnostic reagent for detecting the presence of bacteria or of antibodies raised against bacteria; and/or (iii) a reagent which can raise antibodies against bacteria.
  • Said bacteria is preferably a Chlamydia , e.g. Chlamydia trachomatis or Chlamydia pneumoniae , but is preferably Chlamydia trachomatis.
  • Also provided is a method for diagnosing Chlamydia infection comprising:
  • Also provided is a method for diagnosing Chlamydia infection comprising: (a) contacting an antibody which was raised against a protein of the invention with a biological sample suspected of being infected with Chlamydia under conditions suitable for the formation of antibody-antigen complexes; and (b) detecting said complexes, wherein detection of said complex is indicative of Chlamydia infection.
  • Proteins of the invention can be used in immunoassays to detect antibody levels (or, conversely, antibodies of the invention can be used to detect protein levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation.
  • assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules.
  • Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
  • Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.
  • the efficacy of the immunogenic compositions of the present invention can be evaluated in in vitro and in vivo animal models prior to host, e.g., human, administration.
  • in vitro neutralization by Peterson et al (1988) is suitable for testing vaccine compositions directed toward Chlamydia trachomatis.
  • One way of checking efficacy of therapeutic treatment involves monitoring C. trachomatis infection after administration of the compositions of the invention.
  • One way of checking efficacy of prophylactic treatment involves monitoring immune responses both systemically (such as monitoring the level of IgG1 and IgG2a production) and mucosally (such as monitoring the level of IgA production) against the Chlamydia trachomatis antigens in the compositions of the invention after administration of the composition.
  • serum Chlamydia specific antibody responses are determined post-immunisation but pre-challenge whereas mucosal Chlamydia specific antibody body responses are determined post-immunisation and post-challenge.
  • Hyper-immune antisera is diluted in PBS containing 5% guinea pig serum, as a complement source.
  • Chlamydia trachomatis (10 4 IFU; inclusion forming units) are added to the antisera dilutions.
  • the antigen-antibody mixtures are incubated at 37° C. for 45 minutes and inoculated into duplicate confluent Hep-2 or HeLa cell monolayers contained in glass vials (e.g., 15 by 45 mm), which have been washed twice with PBS prior to inoculation.
  • the monolayer cells are infected by centrifugation at 1000 ⁇ g for 1 hour followed by stationary incubation at 37° C. for 1 hour.
  • Infected monolayers are incubated for 48 or 72 hours, fixed and stained with Chlamydia specific antibody, such as anti-MOMP. Inclusion-bearing cells are counted in ten fields at a magnification of 200 ⁇ . Neutralization titer is assigned on the dilution that gives 50% inhibition as compared to control monolayers/IFU.
  • Another way of assessing the immunogenicity of the compositions of the present invention is to express the proteins recombinantly for screening patient sera or mucosal secretions by immunoblot and/or microarrays. A positive reaction between the protein and the patient sample indicates that the patient has mounted an immune response to the protein in question. This method may also be used to identify immunodominant antigens and/or epitopes within antigens.
  • the efficacy of vaccine compositions can also be determined in vivo by challenging animal models of Chlamydia trachomatis infection, e.g., guinea pigs or mice, with the vaccine compositions.
  • Animal models of Chlamydia trachomatis infection e.g., guinea pigs or mice
  • vaccine composition challenge studies in the guinea pig model of Chlamydia trachomatis infection can be performed.
  • Female guinea pigs weighing 450-500 g are housed in an environmentally controlled room with a 12 hour light-dark cycle and immunized with vaccine compositions via a variety of immunization routes.
  • guinea pigs Post-vaccination, guinea pigs are infected in the genital tract with the agent of guinea pig inclusion conjunctivitis (GPIC), which has been grown in HeLa or McCoy cells (Rank et al. (1988)). Each animal receives approximately 1.4 ⁇ 10 7 inclusion forming units (IFU) contained in 0.05 ml of sucrose-phosphate-glutamate buffer, pH 7.4 (Schacter, 1980). The course of infection monitored by determining the percentage of inclusion-bearing cells by indirect immunofluorescence with GPIC specific antisera, or by Giemsa-stained smear from a scraping from the genital tract (Rank et al 1988). Antibody titers in the serum is determined by an enzyme-linked immunosorbent assay.
  • mice 7 to 12 weeks of age receive 2.5 mg of depo-provera subcutaneously at 10 and 3 days before vaginal infection.
  • mice are infected in the genital tract with 1,500 inclusion-forming units of Chlamydia trachomatis contained in 5 ml of sucrose-phosphate-glutamate buffer, pH 7.4.
  • the course of infection is monitored by determining the percentage of inclusion-bearing cells by indirect immunofluorescence with Chlamydia trachomatis specific antisera, or by a Giemsa-stained smear from a scraping from the genital tract of an infected mouse.
  • the presence of antibody titers in the serum of a mouse is determined by an enzyme-linked immunosorbent assay.
  • the immunogenic compositions described above include Chlamydia antigens.
  • the polypeptide antigens can be replaced by nucleic acids (typically DNA) encoding those polypeptides, to give compositions, methods and uses based on nucleic acid immunisation.
  • Nucleic acid immunisation is now a developed field (e.g. see Donnelly et al. (1997) Annu Rev Immunol 15:617-648; Strugnell et al. (1997) Immunol Cell Biol 75(4):364-369; Cui (2005) Adv Genet 54:257-89; Robinson & Torres (1997) Seminars in Immunol 9:271-283; Brunham et al.
  • the nucleic acid encoding the immunogen is expressed in vivo after delivery to a patient and the expressed immunogen then stimulates the immune system.
  • the active ingredient will typically take the form of a nucleic acid vector comprising: (i) a promoter; (ii) a sequence encoding the immunogen, operably linked to the promoter; and optionally (iii) a selectable marker.
  • Preferred vectors may further comprise (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii).
  • (i) & (v) will be eukaryotic and (iii) & (iv) will be prokaryotic.
  • Preferred promoters are viral promoters e.g. from cytomegalovirus (CMV).
  • the vector may also include transcriptional regulatory sequences (e.g. enhancers) in addition to the promoter and which interact functionally with the promoter.
  • Preferred vectors include the immediate-early CMV enhancer/promoter, and more preferred vectors also include CMV intron A.
  • the promoter is operably linked to a downstream sequence encoding an immunogen, such that expression of the immunogen-encoding sequence is under the promoter's control.
  • a marker preferably functions in a microbial host (e.g. in a prokaryote, in a bacteria, in a yeast).
  • the marker is preferably a prokaryotic selectable marker (e.g. transcribed under the control of a prokaryotic promoter).
  • prokaryotic selectable marker e.g. transcribed under the control of a prokaryotic promoter.
  • typical markers are antibiotic resistance genes.
  • the vector of the invention is preferably an autonomously replicating episomal or extrachromosomal vector, such as a plasmid.
  • the vector of the invention preferably comprises an origin of replication. It is preferred that the origin of replication is active in prokaryotes but not in eukaryotes.
  • Preferred vectors thus include a prokaryotic marker for selection of the vector, a prokaryotic origin of replication, but a eukaryotic promoter for driving transcription of the immunogen-encoding sequence.
  • the vectors will therefore (a) be amplified and selected in prokaryotic hosts without polypeptide expression, but (b) be expressed in eukaryotic hosts without being amplified. This arrangement is ideal for nucleic acid immunization vectors.
  • the vector of the invention may comprise a eukaryotic transcriptional terminator sequence downstream of the coding sequence. This can enhance transcription levels.
  • the vector of the invention preferably comprises a polyadenylation sequence.
  • a preferred polyadenylation sequence is from bovine growth hormone.
  • the vector of the invention may comprise a multiple cloning site.
  • the vector may comprise a second eukaryotic coding sequence.
  • the vector may also comprise an IRES upstream of said second sequence in order to permit translation of a second eukaryotic polypeptide from the same transcript as the immunogen.
  • the immunogen-coding sequence may be downstream of an IRES.
  • the vector of the invention may comprise unmethylated CpG motifs e.g. unmethylated DNA sequences which have in common a cytosine preceding a guanosine, flanked by two 5′ purines and two 3′ pyrimidines. In their unmethylated form these DNA motifs have been demonstrated to be potent stimulators of several types of immune cell.
  • Vectors may be delivered in a targeted way.
  • Receptor-mediated DNA delivery techniques are described in, for example, Findeis et al., Trends Biotechnol . (1993) 11:202; Chiou et al. (1994) Gene Therapeutics: Methods And Applications Of Direct Gene Transfer . ed. Wolff; Wu et al., J. Biol. Chem . (1988) 263:621; Wu et al., J. Biol. Chem . (1994) 269:542; Zenke et al., Proc. Natl. Acad. Sci . (USA) (1990) 87:3655; and Wu et al., J. Biol. Chem . (1991) 266:338.
  • compositions containing a nucleic acid are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 11 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA can also be used during a gene therapy protocol. Factors such as method of action (e.g. for enhancing or inhibiting levels of the encoded gene product) and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy.
  • Vectors can be delivered using gene delivery vehicles.
  • the gene delivery vehicle can be of viral or non-viral origin (see generally Jolly, Cancer Gene Therapy (1994) 1:51; Kimura, Human Gene Therapy (1994) 5:845; Connelly, Human Gene Therapy (1995) 1:185; and Kaplitt, Nature Genetics (1994) 6:148).
  • Viral-based vectors for delivery of a desired nucleic acid and expression in a desired cell are well known in the art.
  • Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (e.g. WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Pat. No. 5,219,740; WO 93/11230; WO 93/10218; U.S. Pat. No. 4,777,127; GB Patent No. 2,200,651; EP-A-0345242; and WO 91/02805), alphavirus-based vectors (e.g.
  • Sindbis virus vectors Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532); hybrids or chimeras of these viruses may also be used), poxvirus vectors (e.g. vaccinia, fowlpox, canarypox, modified vaccinia Ankara, etc.), adenovirus vectors, and adeno-associated virus (AAV) vectors (e.g.
  • poxvirus vectors e.g. vaccinia, fowlpox, canarypox, modified vaccinia Ankara, etc.
  • AAV adeno-associated virus
  • Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone (e.g. De Libero et al, Nature Reviews Immunology, 2005, 5: 485-496), ligand-linked DNA (Wu, J. Biol. Chem . (1989) 264:16985), eukaryotic cell delivery vehicles cells (U.S. Pat. No. 5,814,482; WO 95/07994; WO 96/17072; WO 95/30763; and WO 97/42338) and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S.
  • Liposomes e.g. immunoliposomes
  • U.S. Pat. No. 5,422,120 WO 95/13796
  • WO 94/23697 WO 91/14445
  • EP-0524968 Additional approaches are described in Philip, Mol. Cell Biol . (1994) 14:2411 and Woffendin, Proc. Natl. Acad. Sci . (1994) 91:11581.
  • non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Donnelly et al. (1997) Annu Rev Immunol 15:617-648.
  • the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials or use of ionizing radiation (e.g. U.S. Pat. No. 5,206,152 and WO 92/11033).
  • Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun (U.S. Pat. No. 5,149,655) or use of ionizing radiation for activating transferred genes (Slitnell et al. (1997) Immunol Cell Biol 75(4):364-369 and Cui (2005) Adv Genet 54:257-89).
  • Delivery DNA using PLG ⁇ poly(lactide-co-glycolide) ⁇ microparticles is a particularly preferred method e.g. by adsorption to the microparticles, which are optionally treated to have a negatively-charged surface (e.g. treated with SDS) or a positively-charged surface (e.g. treated with a cationic detergent, such as CTAB).
  • a negatively-charged surface e.g. treated with SDS
  • a positively-charged surface e.g. treated with a cationic detergent, such as CTAB
  • the antibodies of the invention may be used, for example, for neutralising the activity of the wild-type Chlamydia protein.
  • Antibodies against Chlamydia antigens can be used for passive immunisation (Brandt et al. (2006) J Antimicrob Chemother. 58(6):1291-4. Epub 2006 October 26).
  • the invention provides the use of antibodies of the invention in therapy.
  • the invention also provides the use of such antibodies in the manufacture of a medicament.
  • the invention also provides a method for treating a mammal comprising the step of administering an effective amount of an antibody of the invention. As described above for immunogenic compositions, these methods and uses allow a mammal to be protected against Chlamydia infection.
  • the invention provides various processes.
  • a process for producing a protein of the invention comprising the step of culturing a host cell of the invention under conditions which induce protein expression.
  • a process for producing protein or nucleic acid of the invention wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.
  • a process for detecting Chlamydia (preferably C. trachomatis ) in a biological sample comprising the step of contacting a nucleic acid according to the invention with the biological sample under hybridising conditions.
  • the process may involve nucleic acid amplification (e.g. PCR, SDA, SSSR, LCR, TMA etc.) or hybridisation (e.g. microarrays, blots, hybridisation with probe in solution etc.).
  • a process for detecting wild-type Chlamydia comprising the steps of: (a) contacting an antibody of the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complex(es); and (b) detecting said complex(es).
  • This process may advantageously be used to diagnose Chlamydia infection.
  • GI numbering is used herein.
  • a GI number, or “GenInfo Identifier”, is a series of digits assigned consecutively to each sequence record processed by NCBI when sequences are added to its databases. The GI number bears no resemblance to the accession number of the sequence record.
  • a sequence is updated (e.g. for correction, or to add more annotation or information) then it receives a new GI number. Thus the sequence associated with a given GI number is never changed.
  • this epitope may be a B-cell epitope and/or a T-cell epitope.
  • Such epitopes can be identified empirically (e.g. using PEPSCAN (Geysen et al. (1984) PNAS USA 81:3998-4002; Carter (1994) Methods Mol Biol 36:207-23) or similar methods), or they can be predicted (e.g. using the Jameson-Wolf antigenic index (Jameson, B A et al. 1988 , CABIOS 4(1):181-186). matrix-based approaches (Raddrizzani & Hammer (2000) Brief Bioinform 1 (2):179-89), MAPITOPE (Bublil et al.
  • Epitopes are the parts of an antigen that are recognised by and bind to the antigen binding sites of antibodies or T-cell receptors, and they may also be referred to as “antigenic determinants”.
  • an antigen “domain” is omitted, this may involve omission of a signal peptide, of a cytoplasmic domain, of a transmembrane domain, of an extracellular domain, etc.
  • composition “comprising” encompasses “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
  • references to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences.
  • This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987) Supplement 30.
  • a preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62.
  • the Smith-Waterman homology search algorithm is disclosed in Smith & Waterman (1981) Adv. Appl. Math. 2: 482-489.
  • FIG. 1 is a graph which shows the ability of 20 selected C. trachomatis antigens to induce IFN ⁇ production by CD4+ T cells.
  • FIG. 2 a shows the bacterial shedding (IFUs recovered from lungs) after Chlamydia challenge in mice to whom EB-CM CD4+ T cells had been adoptively transferred.
  • FIG. 2 b shows the ability of various C. muridarum antigens to stimulate the protective EB-CD4+ T cell line to produce IFN ⁇ .
  • FIG. 3 is a histogram which shows the number of CD4+ T cells that produce IFN ⁇ , upon specific stimulation with C. trachomatis recombinant antigens CT153 and CT733.
  • FIG. 4 shows the protective activity of TC0106 ( C. muridarum homologue of CT733) and TC0431 ( C. muridarum homologue of CT153) as single antigens.
  • the graph shows mean IFU/ml in BALB/C mice immunised with the two antigens and then challendged with C. muridarum .
  • the three bars are, from left to right: adjuvant alone; TC0106 as immunogen; and TC0431 as immunogen.
  • FIG. 5 shows the protective activity of the combination TC0106+TC0431.
  • the graph shows mean IFU per lung (Log 10) recovered from infected lungs of mice immunised with the combination. The three bars are, from left to right: 10 3 live Ebs; adjuvant alone; antigen combination.
  • FIG. 6 shows CD4 T cells producing IFN ⁇ in PBMC of mice immunized with TC0106+TC0431, TC0106, TC0431 and LTK 63+CpG. From left to right, the bars represent stimulation with 1) LTK 63, TC0106+TC0431, TC0106, TC0431 (all EB-immunized mice); 2) LTK 63, TC0106+TC0431, TC0106 (all TC 0106-immunized mice); 3) LTK63, TC0106+TC0431. TC0431 (all TC0431-immunized mice); and 4) LTK63 and TC0106+TC0431 (both TC0106+TC0431-immunized mice).
  • FIG. 7 is a summary of protection results for various combinations and single antigens in the mouse model of C. muridarum intransal challenge. It shows the mean IFU/lung of mice immunised imtramuscularly with single antigens, or antigen combinations, adjuvanted with LTK63 and CpG, then challenged intranasally with 10 3 C. muridarum IFU.
  • FIG. 8 is a summary of protection results for various combinations of antigens in the mouse model of C. muridarum intransal challenge. It shows mean IFU/lung (log 10) of C. muridarum recovered from infected lungs of immunised mice.
  • FIG. 9 shows the results of the combination TC0551+TC0651+TC0727+TC0890 in the mouse model of ovarian bursa challenge with C. muridarum .
  • the Y axis shows IFU/swab (log 10).
  • the three groups, from left to right, are for different immunizing antigens: ovalbiumin; the combination; and nMOMP.
  • FIG. 10A shows the protection results achieved with various antigens combinations in the mouse model of C. muridarum intranasal challenge.
  • FIG. 10B shows the frequency of IFNg-producing CD4+ T cells induced by vaccination with the antigen combination TC0890+TC0551. From left to right, the bars represent stimutaion with 1) TC0551, TC0890, TC0551+TC0890 (for adjuvant-immunized mice) and 2) TC0551, TC0890, TC0551+TC0890 (for MIX TC0890+TC0551-immunized mice).
  • FIG. 10A shows the protection results achieved with various antigens combinations in the mouse model of C. muridarum intranasal challenge.
  • FIG. 10B shows the frequency of IFNg-producing CD4+ T cells induced by vaccination with the antigen combination TC0890+TC0551. From left to right, the bars represent stimutaion with 1) TC0551, TC0890
  • 10C shows CD4 T cells producing TFNg and IL2/TNF in PBMC of mice immunized with TC0106+TC0431 with Ltk63+CpG. From left to right, the bars represent stimulation with a) TC0106.
  • TC0431, TC0106+TC0431, CT153+CT733 all adjuvant-immunized mice
  • TC0106, TC0431, TC0106+TC0431, CT153+CT733 all MIX TC0106+TC0431-immunized mice.
  • FIG. 11 shows an immunoblot analysis of CT601, CT279, CT153 and CT733 in Ct-EBs and C. trachomatis -infected HeLa cells using their specific mouse immune antisera.
  • FIG. 12 shows protective activity of antigens TC0313, TC0741, TC0106 and TC0210 given singly or in combination.
  • the bars show mean IFU/lung (Log 10), with the left-hand bar being adjuvant alone (LTK61+CpG) and the right-hand bar being the TC antigen.
  • FIG. 12E shows the IFU reduction over time (Mean IFU/lung against days post-challenge) using the combination (squares) or adjuvant alone (diamonds).
  • FIGS. 13A and 13B are histograms showing the antigen specific CD4 Th1 response in BALB/c mice after a primary C. trachomatis (CT) infection. Results are the mean of 4 independent experiments. Two results are shown for each experiment: non-infected mice (left hand bar) and primary infected mice (right hand bar). From left to right in FIG. 13A , the results relate to stimulation with CT812C, CT387, CT869, CT166 and CT175. From left to right in FIG. 13B , the results relate to stimulation with MOMP, CT163, CT812, CT812C, CT166, CT869, CT163, CT812, CT214, CT387, CT721, CT127 and CT175. The frequency on 10 5 CD4 T cells is shown on the Y axis.
  • FIG. 14 is a histogram showing C. muridarum IFUs recovered from infected lungs of immunised mice (Day 12 post 1.N. challenge with 10 3 IFUs).
  • the immunisation group is shown on the X axis: the left hand bar relates to mice immuised with LTK63+CpG; the right hand bar relates to mice immunised with TC0197+TC0261+TC0666+LTK63+CpG.
  • Mean IFU/lung (Log 10) is shown on the Y axis.
  • FIG. 15 is a histogram showing C. muridarum IFUs recovered from infected lungs of immunised mice (Day 12 post 1.N. challenge with 10 3 IFUs).
  • the immunisation group is shown on the X axis: from left to right, the results relate to mice immunised with i) LTK63+CpG, ii) TC0261+LTK63+CpG, iii) TC0197+LTK63+CpG, and iv) TC0666+LTK63+CpG.
  • Mean IFU/lung (Log 10) is shown on the Y axis.
  • Example 1 Induction of Population of CD4+ T Cells to Produce IFN ⁇
  • the 17 new antigens are as follows:
  • CT341 may be the least suitable for use in immunization because it is a heat shock protein.
  • the relevance of the newly discovered antigens for protective immunity to Chlamydia was further corroborated by showing that they were recognized by T cells belonging to a Chlamydia -specific CD4+/IFN ⁇ + cell line, conferring protection when adoptively transferred to na ⁇ ve recipient mice.
  • a short-term CD4+ T cell line produced against the extracellular EB form of C. muridarum that showed a high capacity to protect adoptively transferred na ⁇ ve mice from C. muridarum challenge.
  • the protective CD4+ cell line which had undergone only a few cycles of expansion, maintained a polyclonal cell population with broad specificity that should correlate more closely to the in vivo protective response than long-term lines or clones.
  • the polyclonal cell line was analysed for its antigen recognition profile versus the C. muridarum antigens, homologous to the C. trachomatis CD4-Th1 inducing proteins.
  • the dissection of the antigen specificity of the protective CD4+ T cell polyclonal population demonstrated that the Chlamydia CD4+/IFN ⁇ + inducing-antigens identified during an infection are also targets of CD4+ T cells that play a part in the rapid clearance of the bacterium in a protective response to the infection, in the absence of antibodies.
  • Chlamydia T cell lines were derived from Balb/c infected mice and their protective activity was verified in na ⁇ ve mice against C. muridarum challenge.
  • the antigen recognition profile of the C. muridarum CD4+ T cell line was characterized to define the possible contribution of each C. muridarum antigen in inducing protective CD4+ T cells.
  • splenic CD4+T lymphocytes were purified from donor Balb/c mice that had previously been infected intranasally with 10 3 viable Elementary Bodies (EBs) of C. muridarum .
  • An EB-responding CD4+ T cell line was derived (referred as EB-CD4+ cell line) and expanded in vitro with a short term stimulation with heat inactivated EBs. The line showed the capacity to respond to C.
  • muridarum EBs by producing IFN ⁇ with a high frequency (data not shown).
  • 10 7 CD4+ T cells were adoptively transferred into 4 Balb/c recipient na ⁇ ve mice. Mice were challenged intranasally 24 hours after i.v. infusion of CD4+ T cells with 10 3 IFUs of C. muridarum .
  • the protective effect of adoptive immunization was evaluated by quantitating the number of IFUs recovered from lungs taken 10 days after Chlamydia challenge. As shown in FIG.
  • mice adoptively transferred with EB-CM CD4+ T cells shed 3 Log 10 fewer IFUs in the lungs 10 days after intranasal challenge with 10 3 IFUs of C. muridarum , as compared to either non treated mice (p value: 0.008) or mice receiving an unrelated CD4+ T cell line.
  • splenic CD4+ T cells isolated from mice that resolved an intravaginal primary infection with 10 5 IFUs of C. trachomatis conferred significant IFU reduction in adoptively transferred mice (data not shown).
  • muridarum recombinant proteins including MOMP. Fourteen of them were homologs of C. trachomatis CD4+ Th1 inducing antigens identified in the primary screening in infected mice, and 5 were negative controls. As shown in FIG. 2 b , all the 14 CD4+-inducing antigens tested were found also to be targets of the protective EB-CM CD4+ T cell line, and able to induce IFN ⁇ production in a percentage of CD4+ T cells at least 3 times higher than the frequency of negative control antigens. Therefore the pattern of T cell antigens recognized by the protective Chlamydia EB-CM T cell line is comparable to the recognition profile of T cells identified in the C. trachomatis infected mice.
  • Example 3 CT733 and CT153 Specific CD4+ Th1 Response in BALB/c Mice after a Primary C. trachomatis Infection
  • Splenocytes of primary infected BALB/c mice and non infected controls were collected 10 days after infection and stimulated with LPS-free recombinant antigens CT733 and CT153 (20 mg/ml). After 4 hours of stimulation, 5 mg/ml of Brefeldin A were added to the cells for the following 12 hrs to block cytokine secretion. Afterwards, cells were fixed, permeabilized and stained. Intracellular IFN ⁇ and IL-5 expression were analyzed versus CD4 surface expression of the gated viable cells and assessed by flow cytometry.
  • the histogram in FIG. 3 shows the number of CD4+ T cells per 10 5 CD4+T splenocytes of primary infected (dark grey bars) and non-infected (light grey bars) mice that produce IFN ⁇ upon specific stimulation with the C. trachomatis recombinant antigens CT153 and CT733. The data were confirmed in several further experiments using the same protocol.
  • CT733 and CT153 are able to induce significant frequencies of specific CD4+/IFN ⁇ + cells in splenocytes from Balb/c mice that were infected intravaginally with C. trachomatis , suggesting a potential role as antigen candidates for these proteins.
  • CT733 and CT153 were tested in a mouse model of chlamydial infection to evaluate their protective properties. This was done by adopting the mouse model of lung infection with the species Chlamydia muridarum.
  • mice Groups of BALB/c mice were immunized with either TC0106 or TC0431 recombinant antigens formulated with LTK63+CpG adjuvant (3 doses of 15 ug protein, at 2 week interval, given intramuscularly). As negative control, mice were immunized with the adjuvant only. Four weeks after the last immunization animals were infected intranasally with 10 3 IFU of infectious C. muridarum . After 10 days, the protective activity conferred by the two antigens was measured by counting the infectious IFU in the lung of challenge animals.
  • each of the two antigens was able to reduce significantly the number of IFU/lung in challenged mice as compared to adjuvant immunized mice (left hand column of the histogram), indicating that both TC0106 and TC0431 (and therefore CT733 and CT153) confer protective immunity to Chlamydia infection
  • Example 5 Protective Activity of the Combination of TC0106+TC0431 Against C. Muridarum Challenge
  • mice Groups of BALB/c mice (10 to 15 mice) were immunized with the combination of TC0106+TC0431 recombinant antigens formulated with LTK63+CpG adjuvant (3 doses of 10 ug of each protein at 2 week-interval, given intramuscularly).
  • mice were immunized with the adjuvant only.
  • animals were infected intranasally with 10 3 IFU of infectious C. muridarum . After 10 days, the protective activity conferred by the two antigens was measured by counting the infectious IFU in the lung of challenge animals.
  • a group of mice receiving a primary and a secondary C. muridarum infection was also included (left column in the histogram of FIG. 5 ).
  • the antigen combination (right hand column of histogram) was able to significantly reduce the number of IFU/lung in challenged mice as compared to adjuvant immunized mice (middle column of histogram).
  • mice Groups of BALB/c mice (10 to 15 mice) were immunized with the recombinant antigens TC0431 and TC0106 as single antigens or in combination (i.m., 10-15 micrograms/dose, 3 doses at 2 week-intervals) using LTK63+CpG adjuvant.
  • splenocytes were collected and stimulated with LPS-free recombinant antigens (20 mg/ml).
  • LPS-free recombinant antigens 20 mg/ml
  • splenocytes of adjuvant immunized mice were included. After 4 hours of stimulation, 5 mg/ml of Brefeldin A was added to the cells for the following 12 hrs to block cytokine secretion.
  • mice were fixed, permeabilized and stained.
  • the intracellular IFN ⁇ was analyzed versus CD4 surface expression of the gated viable cells and assessed by flow cytometry.
  • the histogram in FIG. 6 shows the number of CD4+ T cells per 10 5 CD4+ T splenocytes that produce IFN ⁇ upon specific stimulation with the recombinant antigens in mice immunized with TC0106, TC0431, the combination of TC0106+TC0431 and adjuvant immunized mice.
  • mice were immunized three times intramuscularly with a combination of two antigens or single antigens with LTK63+CpG as adjuvant. Twenty-four days post last immunization mice were challenged intranasally with 10 3 IFU C. muridarum . After 10 days, lungs were collected, homogenized and the number of viable chlamydiae (IFU/lung) was measured. The data in FIG. 7 shows the mean IFU/lung counts in antigen-immunized mice and adjuvant-immunized control.
  • the lanes relate to (a) adjuvant only; (b) TC0551+TC0890 (CT279+CT601); (c) TC0651+TC0727 (CT372+CT443); (d) TC0106+TC0431 (CT733+CT153); (e) TC0660+TC0741 (CT456+CT381); (f) TC0106 (CT733); (g) TC0431 (CT153).
  • the numbers of infected mice out of the total immunized are reported in the form “Inf X/Y”, wherein X is the number of infected mice and Y is the total number of mice challenged.
  • the statistical significance of immunizing antigen/s (P) was determined by Student t-test.
  • FIG. 8 reports the mean number of infectious chlamydiae recovered from lungs of mice immunized with each antigen formulation, in which data obtained at days 10 and 12 were averaged. As shown in FIG.
  • Example 8 Evaluation of the Protective Activity of the Combination TC0551+TC0890+TC0106+TC0431 Against Challenge with C. muridarum
  • mice were immunized with a combination of four antigens TC0551+TC0890+TC0106+TC0431 using the same immunization regimen as in the Example above.
  • the 4-antigen combination appeared to have an additive protective effect over the 2-antigen combinations, showing 2.2 Logs reduction of bacterial shedding in the lung (P:0.0003).
  • Example 9 Evaluation of the Protective Activity of the Combination TC0551+TC0651+TC0727+TC0890 Against Intraovarian Bursa Challenge with C. muridarum
  • the protective effect of the combination TC0551+TC0651+TC0727+TC0890 was tested in the mouse model of ovarian bursa challenge with C. muridarum using the Montanide+CpG adjuvant.
  • This model has previously been described to assess the protective activity of native MOMP (nMOMP), the chlamydial major outer membrane protein (Pal S et al, Infect Immun., 73:8153, 2005).
  • nMOMP native MOMP
  • chlamydial major outer membrane protein Pal S et al, Infect Immun., 73:8153, 2005.
  • the protective activity of the antigens is assessed against progression of infection by counting the chlamydia shedding in vaginals swabs.
  • mice were immunized three times intranasally with a combination of the four antigens or with MOMP, with LTK63+CpG as adjuvant. As negative control, a group of mice immunized with ovalbumin was also included. Four weeks after the last immunization, mice received a C. muridarum challenge in the ovarian bursa and chlamydial shedding was measured by counting the IFU in the vaginal swabs of infected animals.
  • mice receiving the combination of all four antigens show a reduced bacterial shedding as compared to the negative control group (Ovalbumin).
  • the combination reduced the progression of infection.
  • the protection level obtained with the combination does not differ significantly from that obtained with nMOMP, which is the most protective antigen that has been identified so far.
  • this combination of four antigens is a particularly immunogenic combination.
  • CD4-Th1 response Given the importance of the CD4-Th1 response in mediating protection from Chlamydia infection, the type of immune response induced by vaccination with two antigen combinations that elicited protection in mice was analysed (TC0551+TC0890 and TC0106+TC0431). In particular, we measured the simultaneous production from antigen-specific CD4+ T cells of IFN ⁇ , TNF- ⁇ and IL-2, considering this as an indication of optimal effector functions of CD4+ T cells, possibly improving protection for vaccines aimed at targeting T-cell responses. The assessment of the cytokine profile induced in a single antigen specific CD4+ T cell by vaccination was performed by multiparametric flow cytometric analysis (Perfetto S P et al., Nat. Rev. Immunol.
  • mice 448-655, 2004 in immunized mice.
  • Peripheral blood was collected 12 days after the last immunization with antigen combinations TC0551+TC0890 and TC0106+TC0431.
  • PBMC peripheral blood cells were prepared and the frequency of CD3+, CD4+ antigen-specific IFN ⁇ , IL-2 and TNF-producing cells was assessed by intracellular cytokine staining and flow cytometric determination. As shown in FIG.
  • CT279 subunit C of Na(+)-translocating NADH-quinone reductase
  • CT601 Invasin repeat family phosphatase
  • CT733 -Hypothetical protein
  • CT153 MAC-Perforin Protein
  • Total protein lysates of renografin-purified EBs (corresponding to approximately 10 7 EBs per lane) showed that each tested antiserum was able to react with a protein band of the expected molecular weight in both EB samples, showing in general a higher reactivity against CM EBs.
  • total protein extracts were prepared from Hela 229 cells at different time points after infection (24-48-72 h) and tested by immunoblot.
  • the amount of Chlamydial proteins loaded on the gel was normalized on the basis of MOMP expression as described. As shown in FIG. 11B , the four antigens appeared to be expressed at different phases of the Chlamydia development.
  • mice were immunized with the 4 antigens either as single or in a 4 antigen-combination, using the same immunization regimen described in Example 7.
  • the protective activity of the single antigens was assessed by measuring the IFU/Lung at day 12 post infection.
  • the protective activity of the 4-ag combination was measured at days 10, 12, 14 post infection, to evaluate the kinetics of the infection clearance.
  • the single antigens conferred approximately 0.5-1 log IFU reduction in the lung of infected animals.
  • the four antigens combination showed a highest protective property, indicating a synergic activity of the four antigens in conferring protection, eliciting approximately 4 logs reduction of bacterial shedding in the lung (P ⁇ 0.0001) at day 12 and showing the tendency to resolve the infection at day 12. Moreover a high number of mice (42%) totally resolved the infection, indicating the efficacy of the antigen combination in accelerating the bacterial clearance.
  • C. trachomatis antigens identified by the proteomic characterization of the membrane fraction of CT infected HeLa cells were tested for their capability to induce specific CD4+ Th1 response in mice that received an experimental CT infection.
  • Splenocytes of primary infected BALB/c mice and non infected controls were collected 10 days after infection and stimulated with LPS-free recombinant antigens (20 g/ml). After 4 hours of stimulation, 5 ⁇ g/ml of Brefeldin A was added to the cells for the following 12 hrs, to block cytokine secretion. Afterwards, cells were fixed, permeabilized and stained.
  • the intracellular IFN- ⁇ expression was analyzed versus CD4 surface expression of the gated viable cells, and assessed by flow cytometry.
  • the histogram in FIG. 13A and FIG. 13B show the number of CD4+ T cells that produce IFN ⁇ , upon specific stimulation with CT recombinant antigens per 10 5 CD4+ T splenocytes of primary infected (right hand bars) and not-infected (left hand bars) mice. Data are representative of 4 different experiments.
  • CT812C, CT387, CT869 and CT166 induced a significant frequency of CD4 + -IFN ⁇ + cells in splenocytes of infected animals (Pval ⁇ 0.05).
  • CT812C (a C-terminal fragment of CT812) surprisingly induced a higher frequency of CD4 + -IFN ⁇ + cells in splenocytes of infected animals than did the full length CT812 sequence.
  • mice were immunized with the combination of the three recombinant antigens TC0197+TC0261+TC0666 formulated with LTK63+CpG adjuvant (3 doses of 10 ⁇ g of each protein, at 2 week-interval, given intramuscularly).
  • mice were immunized with the adjuvant only.
  • animals were infected intranasally with 10 3 IFU of infectious C. muridarum . After 12 days, the protective activity conferred by the two antigens was measured by counting the infectious IFU in the lung of challenge animals. As shown in FIG.
  • the antigen combination TC0197+TC0261+TC0666 was able to reduce significantly the number of IFU/lung in challenged mice as compared to adjuvant immunized mice (1.4 log IFU reduction with Pval ⁇ 0.05).
  • the finding that the combination of TC0197+TC0261+TC0666 is able to protect mice against C. muridarum challenge provides evidence that the combinations CT812+CT869+CT387 and CT812C+CT869+CT387 from C. trachomatis are protective against infection by C. trachomatis.
  • mice The protective activity of TC0197, TC0261 and TC0666 as single antigens against C. muridarum challenge was assessed.
  • 3 Groups of BALB/c mice (16 mice per group) were immunized with the three recombinant antigens individually formulated with LTK63+CpG adjuvant (3 doses of 20 ug of each protein, at 2 week-interval, given intramuscularly).
  • LTK63+CpG adjuvant 3 doses of 20 ug of each protein, at 2 week-interval, given intramuscularly.
  • mice were immunized with the adjuvant only.
  • animals were infected intranasally (1.N.) with 10 3 IFU of infectious C. muridarum .
  • the protective activity conferred by the three single antigens was measured by counting the infectious IFU in the lung of challenge animals. As shown in FIG. 15 , none of the 3 antigens individually were able to reduce significantly the number of IFU/lung in challenged mice as compared to adjuvant immunized mice.
  • the three antigens are not protective when administered individually ( FIG. 15 ).
  • Chlamydia muridarum Nigg and Chlamydia trachomatis serovar D strain D/UW-3/CX were grown on confluent monolayers of LLCMK2 (ATCC CCL7) or HeLa 229 cells (ATCC CCL 2.1) in Earle minimal essential medium (EMEM) as described (Caldwell et al. (1981) Infect Immun 31: 1161-1176).
  • EMEM Earle minimal essential medium
  • Purification of C. trachomatis and C. muridarum EBs was carried out by Renografin density gradient centrifugation as described (Montigiani et al. (2002) Infect Immun 70: 368-379.). Bacteria were aliquoted and stored at ⁇ 70° C. in sucrose-phosphate-glutamine buffer (SPG) until use. When indicated, EBs were heat inactivated at 56° C. for 3 hours.
  • SPG sucrose-phosphate-glutamine buffer
  • E. coli DH5c or BL21 was grown aerobically in Luria Broth (LB) medium (Difco) at 37° C. When appropriate, ampicillin (100 ⁇ g/ml) and isopropyl-beta-D-galactopyranoside (IPTG, 0.5 mM) were added to the medium.
  • LB Luria Broth
  • IPTG isopropyl-beta-D-galactopyranoside
  • genes were PCR-amplified from C. trachomatis and C. muridarum chromosomal DNA using specific primers annealing at the 5′ and 3′ ends of either gene.
  • the genes were cloned into plasmid pET21b + (Invitrogen) or pGEXKG (Amersham) in order to express them both as a C-terminal His-tag fusion and as a double fusion protein with an N-terminal Glutathione transferase-encoding sequence and a C-terminal His-tag.
  • LPS-free proteins were prepared by washing of column-immobilized proteins with buffer Tris-HCl 10 mM, pH 8, containing 1% Triton X114 (35 ml) at 4° C. The amount of residual endotoxin was determined using a Limulus Amebocyte Lysate Analysis Kit (QCL-100, BioWhittaker, Walkerville, Md.).
  • mice were generated and treated as described (Montigiani et al., 2002). Where specified, sera from mice immunized with 20 ⁇ g of E. coli contaminant proteins (IMAC-purified proteins from E. coli bacteria containing pET21b+ empty vector) were used as negative control. Western blot, ELISA and Flow cytometry of C. trachomatis EBs were performed as described (Finco et al. (2005) Vaccine 23: 1178-1188.).
  • mice Groups of 6 week-old female BALB/c mice purchased from Charles River Laboratories (3 mice/group) received a subcutaneus hormonal treatment with 2.5 ⁇ mg of Depo-provera (Medroxyprogesterone acetate) and after five days mice were inoculated intravaginally with 15 ⁇ l of SPG buffer containing 10 6 of C. trachomatis IFU. The level of infection was analyzed 7 days post-challenge, by collecting vaginal swabs and counting chlamydial inclusions 48 h later stained with FITC-conjugated anti Chlamydia antibody (Merifluor) using a UV microscope.
  • Depo-provera Medroxyprogesterone acetate
  • the swabs were collected in 400 ⁇ l of SPG and were inoculated on LLCMK2 cell monolayers seeded on 96w flat bottom plates. After 48 hours incubation the number of infectious chlamydiae was determined by counting chlamydial inclusions.
  • Splenocytes were prepared by homogenization through a nylon filter (BD) and the erythrocytes were removed by hypotonic lysis in Ack lysis buffer (NH 4 Cl 0.155 M, KHCO 3 10 mM, Na 2 EDTA 0.1 mM) for 3 minutes at RT, then the cells were plated in 96 wells plates at 2 ⁇ 10 6 cells per well and stimulated with 20 ⁇ g/ml of endotoxin-free specific antigen or with 4 ⁇ g/ml of purified EBS in presence of 1 ⁇ g/ml anti-CD28 antibody (BD Biosciences Pharmingen) for 4 h at 37° C.
  • Ack lysis buffer NH 4 Cl 0.155 M, KHCO 3 10 mM, Na 2 EDTA 0.1 mM
  • Brefeldin A (BFA; Sigma-Aldrich) was then added at a final concentration of 2.5 ⁇ g/ml and cells were incubated for an additional 16 h before intracellular cytokine staining.
  • Cells were stained for viability with LIVE/DEAD® (Molecular Probes) dye according to the manufacturer's instructions. Cells were then fixed and permeabilized using the Cytofix/Cytoperm kit (BD Biosciences Pharmingen) and stained with fluorochrome-labelled monoclonal antibodies for the detection of cells expressing CD3, CD4 on the surface and intracellular IFN ⁇ and IL-4. Finally, cells were resuspended in PBS 1% BSA. All antibodies for intracellular cytokine staining were purchased from BD Pharmingen.
  • Splenocytes were prepared by homogenization from spleens from donor Balb/c mice that had previously been infected intranasally with 10 3 viable Elementary Bodies (EBs) of Chlamydia muridarum ( C. muridarum ) as decribed above. Following centrifugation at 1200 rpm and suspension in Macs Buffer (PBS PH 7.2 0.5% BSA and 2 mM EDTA), the cells were incubated with CD4 (L3T4) microbeads (Milteny Biotec) for 15 minutes and then loaded on a LS columns.
  • EBs Elementary Bodies
  • the CD4 cells bound to the magnet were recovered, washed and suspended in RPMI 1640 supplemented with 2.5% fetal bovine serum (Hyclone), antibiotics, L-Glutammine 2 mM, Sodium Piruvate 1 mM, MEM Not essential amino Acids, MEM Vitamins (Gibco) and Beta-mercaptoethanol 0.5 ⁇ M. Then the cells were plated in 6 multiwell plates, 10 7 cells/wells. After the first stimulation, the purified CD4 were washed twice and then plated with APCs as described below.
  • CD4+ cell line with C. trachomatis was obtained by spleens from donor Balb/c mice that had previously been infected intravaginally with 10 6 viable Elementary Bodies (EBs) of Chlamydia trachomatis and it was performed as described above for Chlamydia muridarum.
  • EBs Elementary Bodies
  • the CD4 cells were plated (6 ⁇ 10 6 /well) with APCs (2 ⁇ 10 7 /well) prepared by na ⁇ ve mice spleens. Splenocytes were prepared as described above, then were washed twice with the medium, gamma irradiated for 7 minutes washed again and suspended in medium.
  • IL2 Aldesleukin Proleukin
  • mice Groups of 6 week-old female BALB/c mice purchased from Charles River Laboratories (4 mice/group), were adoptively transferred by intravenous administration of 10 7 CD4+ T cells in 100 ⁇ l of RPMI-1640 medium (Sigma). Mice were challenged intranasally 24 hours after with 10 3 IFUs of C. muridarum or 10 5 IFUs of C. trachomatis . The effect of adoptive immunization was evaluated by quantitating the number of IFUs recovered from lungs taken 10 days after C. muridarum challenge or 6 days after C. trachomatis challenge, as described above.
  • CD4+ T cells were taken to assess the capability of C. muridarum antigens identified in the previous CD4+ Th1+ screening to stimulate them in vitro.
  • 250000 cells/w were plated in 96 multiwell plates with 10 6 mouse splenocytes CD4 depleted as APC and stimulated with 20 ⁇ g/ml of C. muridarum proteins, homologous to the C. trachomatis proteins identified as CD4+ Th1 inducers, in presence of 1 ⁇ g/ml anti-CD28 antibody (BD Biosciences Pharmingen) for 3 h at 37° C. Then BFA was added and intracellular staining was carried out as described for the splenocytes.
  • mice Groups of 6 week-old female BALB/c mice (10-15 mice/group), were immunized intramuscularly (i.m.) with 3 doses of the antigen combinations TC0551-TC890 (15 rig/dose) and TC0106-TC0431 (containing 10 ⁇ g of each protein/dose) at days 1, 15, and 28 formulated with 5 ⁇ g of LTK63 (Ryan et al., 2000)+10 ⁇ g of CpG (ODN 1826) adjuvant dissolved in 50 ⁇ l PBS. As negative control, groups of mice that received the adjuvant alone were included and treated in parallel.
  • mice were inoculated intranasally (i.n.) with 40 ⁇ l of SPG buffer containing 10 3 IFU of C. muridarum .
  • the Chlamydia challenge dose given to each mouse was confirmed by culturing in triplicate serial dilutions of the inoculating dose on LLCMK2 cell monolayers seeded on 96 wells flat bottom plates. After 24 hours incubation the number of infectious chlamydiae was determined by counting chlamydial inclusions. In the time period between 10- and 12 days post challenge mice were sacrificed, lungs were isolated and their homogenates were used to assess chlamydia growth.
  • PBMC from mouse were isolated from up to 2 ml of heparinized blood, diluted 1/5 in HBSS (Hanks' Balanced Salt Solution) and separated by density gradient centrifugation over Lympholite-M (Cedarlane). 10 6 PBMC were plated in duplicate in 96 multiwell plates with 10 6 mouse splenocytes CD4 depleted as APC and stimulated and stained as described above for mouse splenocytes for 16 h. In this staining was analyzed the expression of IFN ⁇ , TNF ⁇ and IL-2.
  • HeLa cells (20000) were plated on onto glass coverslides ( ⁇ 13 mm) and after 24 hours were infected with CT EBs in 1:1 ratio as described above. At 6, 24, 48 and 72 hours post infection the cells were fixed in 2% paraformaldehyde in PBS buffer for 20 minutes at room temperature. After 2 washes with PBS the cells were permeabilized with a solution of 1%/saponin-0.1% Triton in PBS for 20 minutes.

Abstract

The invention provides Chlamydia antigens for use in the treatment, prevention and/or diagnosis of Chlamydia infection. In particular, the invention provides antigens CT733, CT153, CT601, CT279, CT443, CT372, CT456, CT381, CT255, CT341, CT716, CT745, CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721, CT127, CT043, CT823 and/or CT600 from C. trachomatis for the treatment, prevention or diagnosis of Chlamydia infection.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Ser. No. 14/035,750, filed Sep. 24, 2013, which is a continuation of U.S. Ser. No. 13/255,002, filed Nov. 21, 2011, now U.S. Pat. No. 8,568,732, which is a § 371 filing of PCT/IB2010/050988, filed Mar. 8, 2010, and claims the benefit of U.S. provisional application 61/157,921, filed Mar. 6, 2009, from which applications priority is claimed pursuant to 35 U.S.C. § § 119/120, and which applications are incorporated herein by reference in their entireties.
  • TECHNICAL FIELD
  • This invention is in the field of Chlamydia trachomatis proteins and their uses.
  • BACKGROUND ART
  • Vaccine development has been identified as essential to controlling infection with C. trachomatis. Vaccines against C. trachomatis appear to elicit protective T-cell and/or B-cell immunity in the genital tract mucosa.
  • Protective immunity to C. trachomatis seems to depend on a Th1-polarized cell-mediated immune response, in particular on CD4+ lymphocytes secreting IFNγ. For example, depletion of CD4+ T cells in mice results in loss of protective immunity, and adoptive transfer of Chlamydia-specific CD4+ T cells confers protection against challenge with C. trachomatis. Furthermore, recent studies report that C. trachomatis infection in mice induces a CD4-Th1 protective immune response, indicating that critical Chlamydia antigens are processed and presented via the MHC class II pathway (Brunham R C and Rey-Ladino J (2005), Nat Rev Immunol 5: 149-1611; Su H and Caldwell H D (1995), Infect Immun 63: 3302-3308).
  • Although B-cells and antibodies do not have a decisive role in resolution of primary infection, they are likely to be important for enhancing the protective effector T-cell response and to be required to control re-infection with various mechanisms such as antibody-mediated neutralization and opsonization.
  • Because immune protection against infection with C. trachomatis is likely to be mediated by immunization with C. trachomatis proteins that are targets of CD4+ T cells and that are capable of inducing B-cell responses, identification of such proteins is particularly important. It is therefore an object of the invention to provide further antigens for use in Chlamydia vaccines.
  • DISCLOSURE OF THE INVENTION
  • The invention identifies Chlamydia antigens for use in the treatment, prevention and/or diagnosis of Chlamydia infection. In particular, the invention provides one or more of the following antigens (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30) from C. trachomatis for the treatment, prevention or diagnosis of Chlamydia infection (and, in particular, C. trachomatis infection): CT733, CT153, CT601, CT279, CT443, CT372, CT456, CT381, CT255, CT341, CT716, CT745, CT812, CT869, CT387, CT166, CT175, CT163, CT214, CT721, CT127, CT043, CT823, CT600, CT711, CT114, CT480, CT089, CT734 and CT016 for example, one or more of CT733, CT153, CT601, CT279, CT443, CT372, CT456, CT381, CT255, CT341, CT716 and CT745.
  • In particular, the invention provides proteins for use in the treatment, prevention and/or diagnosis of Chlamydia infection (and, in particular, C. trachomatis infection). Immunisation with the proteins is preferably able to induce a specific CD4+ Th1 cell mediated response against Chlamydia.
  • In one embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:1 and SEQ ID NO:2 respectively. This protein is also known as “CT733” and is annotated as a hypothetical protein from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:3 and SEQ ID NO:4 respectively. This protein is also known as “CT153” and is annotated as MACPF/membrane-attack complex (MAC)/perforin from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:5 and SEQ ID NO:6 respectively. This protein is also known as “CT601” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:7 and SEQ ID NO:8 respectively. This protein is also known as “CT279” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:9 and SEQ ID NO:10 respectively. This protein is also known as “CT443” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:11 and SEQ ID NO:12 respectively. This protein is also known as “CT372” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:13 and SEQ ID NO:14 respectively. This protein is also known as “CT456” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:15 and SEQ ID NO:16 respectively. This protein is also known as “CT381” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:39 and SEQ ID NO:40 respectively. This protein is also known as “CT255” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:41 and SEQ ID NO:42 respectively. This protein is also known as “CT341” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:43 and SEQ ID NO:44 respectively. This protein is also known as “CT716” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:45 and SEQ ID NO:46 respectively. This protein is also known as “CT745” from C. trachomatis. In another embodiment, the nucleic acid sequence and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:47 and SEQ ID NO:48, respectively. This protein is also known as “CT387” from C. trachomatis and is annotated as a hypothetical protein. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:49 and SEQ ID NO:50, respectively. This protein is also known as “CT812” from C. trachomatis and is annotated as a polymorphic outer membrane protein. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:51 and SEQ ID NO:52, respectively. This protein is also known as “CT869” from C. trachomatis and is annotated as a polymorphic outer membrane protein. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:53 and SEQ ID NO:54, respectively. This protein is also known as “CT166” from C. trachomatis. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:55 and SEQ ID NO:56, respectively. This protein is also known as “CT175” from C. trachomatis. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:155 and SEQ ID NO:156, respectively. This protein is also known as “CT163” from C. trachomatis. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:159 and SEQ ID NO:160, respectively. This protein is also known as “CT214” from C. trachomatis. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:163 and SEQ ID NO:164, respectively. This protein is also known as “CT721” from C. trachomatis. In another embodiment, the nucleic acid and/or amino acid sequence of the protein comprises the sequence presented in SEQ ID NO:167 and SEQ ID NO:168, respectively. This protein is also known as “CT127” from C. trachomatis.
  • In some embodiments, the protein is a variant of a protein as described above. For example, the protein may comprise one or more mutations (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more mutations) in the sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 40, 42, 44, 46, 48, 50, 52, 54, 56, 136, 140, 156, 160, 164 or 168, for example, in the sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44, or 46. Preferred mutations are those which do not cause a significant conformational change in the protein such that the protein of the invention retains the ability to elicit an immune response against the wild-type Chlamydia protein. The proteins having the sequences presented in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44, 46, 48, 50, 52, 54 and 56 are the wild-type proteins.
  • In some embodiments, the one or more mutations are present in the N-terminal portion of the protein, for example, between residues 1 and 20 of the protein, between residues 21 and 40, between residues 41 and 60, between residues 1 and 60 or between residues 1 and 40 of the protein. In some embodiments, the one or more mutations are present in the C-terminal portion of the protein, for example, between the C-terminal 20 residues of the protein, between residues 21 and 40 from the C-terminus, between residues 41 and 60 from the C-terminus; between residues 1 and 60 from the C-terminus or between residues 1 and 40 from the C-terminus of the protein.
  • Preferably, the amino acid sequences contain fewer than twenty mutations (e.g. 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1). Each mutation preferably involves a single amino acid and is preferably a point mutation. The mutations may each independently be a substitution, an insertion or a deletion. Preferred mutations are single amino acid substitutions. The proteins may also include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, etc.) single amino acid deletions relative to the Chlamydia sequences. The proteins may also include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, etc.) insertions (e.g. each of 1, 2, 3, 4 or 5 or more amino acids) relative to the Chlamydia sequences. Deletions, substitutions or insertions may be at the N-terminus and/or C-terminus, or may be between the two termini. Thus a truncation is an example of a deletion. Truncations may involve deletion of up to 40 (or more) amino acids at the N-terminus and/or C-terminus (for example, 1-10, 11-40, 41-70, 71-100 or more amino acids).
  • Amino acid substitutions may be to any one of the other nineteen naturally occurring amino acids. Preferably, a substitution mutation is a conservative substitution. Alternatively, a substitution mutation is a non-conservative substitution. A conservative substitution is commonly defined as a substitution introducing an amino acid having sufficiently similar chemical properties, e.g. having a related side chain (e.g. a basic, positively charged amino acid should be replaced by another basic, positively charged amino acid), in order to preserve the structure and the biological function of the molecule. Genetically-encoded amino acids are generally divided into four families: (1) acidic i.e. aspartate, glutamate; (2) basic i.e. lysine, arginine, histidine; (3) non-polar i.e. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar i.e. glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In general, substitution of single amino acids within these families does not have a major effect on the biological activity. Further examples of conversative substitutions that may be used in the invention are presented in Table 1.
  • TABLE 1
    Amino More Preferred
    Acid Synonymous Groups Synonymous Groups
    Ser Gly, Ala, Ser, Thr, Pro Thr, Ser
    Arg Asn, Lys, Gln, Arg, His Arg, Lys, His
    Leu Phe, Ile, Val, Leu, Met Ile, Val, Leu, Met
    Pro Gly, Ala, Ser, Thr, Pro Pro
    Thr Gly, Ala, Ser, Thr, Pro Thr, Ser
    Ala Gly, Thr, Pro, Ala, Ser Gly, Ala
    Val Met, Phe, Ile, Leu, Val Met, Ile, Val, Leu
    Gly Ala, Thr, Pro, Ser, Gly Gly, Ala
    Ile Phe, Ile, Val, Leu, Met Ile, Val, Leu, Met
    Phe Trp, Phe, Tyr Tyr, Phe
    Tyr Trp, Phe, Tyr Phe, Tyr
    Cys Ser, Thr, Cys Cys
    His Asn, Lys, Gln, Arg, His Arg, Lys, His
    Gln Glu, Asn, Asp, Gln Asn, Gln
    Asn Glu, Asn, Asp, Gln Asn, Gln
    Lys Asn, Lys, Gln, Arg, His Arg, Lys, His
    Asp Glu, Asn, Asp, Gln Asp, Glu
    Glu Glu, Asn, Asp, Gln Asp, Glu
    Met Phe, Ile, Val, Leu, Met Ile, Val, Leu, Met
    Trp Trp, Phe, Tyr Trp
  • Examples of non-conservative substitutions that may be used in the invention include the substitution of an uncharged polar amino acid with a nonpolar amino acid, the substitution of a nonpolar amino acid with an uncharged polar amino acid, the substitution of an acidic amino acid with a basic amino acid and the substitution of a basic amino acid with an acidic amino acid.
  • Mutations may also be introduced to improve stability, e.g., the insertion of disulphide bonds (van den Akker et al. Protein Sci., 1997, 6:2644-2649). For example, the protein may comprise an amino acid sequence having sequence identity to the amino acid sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 40, 42, 44, 46, 48, 50, 52, 54, 56, 136, 140, 156, 160, 164 and 168, for example, of any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44 and 46. The degree of sequence identity is preferably greater than 50% (e.g. 60%, 70%, 80%, 90%, 95%, 97%, 98%, 99% or more). These proteins include homologs, orthologs, allelic variants and functional mutants. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.
  • The Chlamydia protein of the invention may comprise one or more amino acid derivatives. By “amino acid derivative” is intended an amino acid or amino acid-like chemical entity other than one of the 20 genetically encoded naturally occurring amino acids. In particular, the amino acid derivative may contain substituted or non-substituted, linear, branched, or cyclic alkyl moieties, and may include one or more heteroatoms. The amino acid derivatives can be made de novo or obtained from commercial sources (Calbiochem-Novabiochem AG; Bachem).
  • In some embodiments, the variant protein is a homologous protein from C. pneumoniae, C. psittaci, C. pecorum, C. muridarum or C. suis.
  • The invention further provides a protein comprising or consisting of a fragment of a protein comprising or consisting of the amino acid sequence of any of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 40, 42, 44, 46, 48, 50, 52, 54, 56, 136, 140, 156, 160, 164 or 168, for example, of any one of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 40, 42, 44 or 46, or a fragment of a variant thereof. The fragment should comprise at least n consecutive amino acids from the protein and, depending on the particular sequence, n is 6 or more (e.g. 8, 11, 16, 31, 51, 76, 121, 181, 231, 281, 331, 381, 431, 440, 445, 446, 481, 531, 581, 631, 681, 731, 781, 801, 806, 808 or more). The fragment is n-1 amino acids or less in length, wherein n=the number of amino acids in the full length protein (e.g. n-5, n-20, n-50, n-110, n-180, n-240, n-310, n-380, n-445, n-515, n-595, n-675, n-745, n-785, n-800 amino acids or less in length). Preferably the fragment comprises one or more epitopes from the protein. Preferably, one or more of the epitopes is an MHC class II epitope, for example, a CD4+ T cell epitope. In some embodiments, the fragment comprises or consists of the amino acid sequence of any of SEQ ID NOs 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 138, 142, 146, 150, 154, 158, 162, 166 and 170. In some embodiments, the invention provides a protein comprising or consisting of a fragment of a protein comprising or consisting of the amino acid sequence recited in SEQ ID NO: 122. Table 3 below shows which fragments correspond to which full length sequences.
  • TABLE 3
    SEQ ID NO. for
    full length
    Annotation sequence SEQ ID NO. for fragment
    CT733 1 63
    CT733 2 64
    CT153 3 65
    CT153 4 66
    CT601 5 67
    CT601 6 68
    CT279 7 69
    CT279 8 70
    CT443 9 71
    CT443 10 72
    CT372 11 73
    CT372 12 74
    CT456 13 75
    CT456 14 76
    CT381 15 77
    CT381 16 78
    CT043 17 79
    CT043 18 80
    CT711 19 81 (nucleotide); 82 (protein)
    CT114 20 83 (nucleotide); 84 (protein)
    CT480 21 85 (nucleotide); 86 (protein)
    CT089 22 87 (nucleotide); 88 (protein)
    CT734 23 89 (nucleotide); 90 (protein)
    CT016 24 91 (nucleotide); 92 (protein)
    TC0551 (CT279) 25 93
    TC0551 (CT279) 26 94
    TC0651 (CT372) 27 95
    TC0651 (CT372) 28 96
    TC0727 (CT443) 29 97
    TC0727 (CT443) 30 98
    TC0313 (CT043) 31 99
    TC0313 (CT043) 32 100
    TC0890 (CT601) 33 101
    TC0890 (CT601) 34 102
    TC0741 (CT456) 35 103
    TC0741 (CT456) 36 104
    TC0660 (CT381) 37 105
    TC0660 (CT381) 38 106
    CT255 39 107
    CT255 40 108
    CT341 41 109
    CT341 42 110
    CT716 43 111
    CT716 44 112
    CT745 45 113
    CT745 46 114
    CT387 47 115
    CT387 48 116
    CT812 49 117 (mature full length);
    119 (N-terminal fragment);
    121 (C-terminal fragment)
    CT812 50 118 (mature full length)
    120 (N-terminal fragment)
    122 (C-terminal fragment)
    CT869 51 123
    CT869 52 124
    CT166 53 125
    CT166 54 126
    CT175 55 127
    CT175 56 128
    TC0666 (CT387) 57 129
    TC0666 (CT387) 58 130
    TC0197 59 131
    TC0197 60 132
    TC0261 61 133
    TC0261 62 134
    CT600 135 137
    CT600 136 138
    CT823 139 141
    CT823 140 142
    TC0106 143 145
    TC0106 144 146
    TC0431 147 149
    TC0431 148 150
    TC0210 151 153
    TC0210 152 154
    CT163 155 157
    CT163 156 158
    CT214 159 161
    CT214 160 162
    CT721 163 165
    CT721 164 166
    CT127 167 169
    CT127 168 170
  • The protein of the invention, for example the variant protein or the fragment, is preferably immunogenic.
  • The term “immunogenic” in the context of“an immunogenic variant” and “immunogenic fragment”, is used to mean that the protein is capable of eliciting an immune response, such as a cell-mediated and/or an antibody response, against the wild-type Chlamydia protein from which it is derived, for example, when used to immunise a subject (preferably a mammal, more preferably a human or a mouse). For example, the protein of the invention (for example, the variant or fragment) is preferably capable of stimulating in vitro CD4+ IFNγ+ cells in splenocytes purified from mice infected with live C. trachomatis to a level comparable with the wild-type Chlamydia protein. The protein of the invention preferably retains the ability to elicit antibodies that recognise the wild-type protein. For example, the protein of the invention preferably elicits antibodies that can bind to, and preferably neutralise the activity of, the wild-type protein. In a further embodiment, the protein of the invention is capable of eliciting antibodies that are capable of neutralising Chlamydia infectivity and/or virulence. In some embodiments, the antibodies are able to cross-react with the protein of the invention and the wild-type protein, but with no other homologous protein (e.g. from another Chlamydia species). In other embodiments, the antibodies are cross-reactive with the wild-type protein and with homologous proteins from other Chlamydia species. In some embodiments, the antibodies are cross-reactive with the wild-type protein and with homologous protein from other organisms (for example from E. coli or H. influenzae). Mice immunized with the protein of the invention and the wild-type Chlamydia protein preferably show similar antigen-specific antibody titers. Antibody titres and specificities can be measured using standard methods available in the art. Other methods of testing the immunogenicity of proteins are also well known in the art.
  • For example, the variant or fragment is preferably capable of eliciting an immune response, such as a cell-mediated and/or an antibody response, against the wild-type Chlamydia protein. In one embodiment the fragment is capable of stimulating in vitro CD4+ IFNγ+ cells in splenocytes purified from mice infected with live C. trachomatis to a level comparable with the wild-type Chlamydia protein and/or retains the ability to elicit antibodies that recognise the wild-type protein.
  • Preferably, the variant or the fragment is capable of inducing a specific CD4-Th1 cell mediated response against the wild type Chlamydia protein.
  • The proteins of the invention can, of course, be prepared by various means (e.g. recombinant expression, purification from native host, purification from cell culture, chemical synthesis etc.) and in various forms (e.g. native, fusions, glycosylated, non-glycosylated, lipidated, non-lipidated, phosphorylated, non-phosphorylated, myristoylated, non-myristoylated, monomeric, multimeric, particulate, denatured, etc.). Generally, the recombinant fusion proteins of the present invention are prepared as a GST-fusion protein and/or a His-tagged fusion protein.
  • The proteins of the invention are preferably prepared in purified or substantially pure form (i.e. substantially free from host cell proteins and/or other Chlamydia proteins), and are generally at least about 50% pure (by weight), and usually at least about 90% pure, i.e. less than about 50%, and more preferably less than about 10% (e.g. 5%) of a composition is made up of other expressed polypeptides. Thus the antigens in the compositions are separated from the whole organism with which the molecule is expressed.
  • Whilst expression of the proteins of the invention may take place in Chlamydia, the invention preferably utilises a heterologous host. The heterologous host may be prokaryotic (e.g. a bacterium) or eukaryotic. It is preferably E. coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonella typhimurium, Neisseria lactamica, Neisseria cinerea, Mycobacteria (e.g. M. tuberculosis), yeasts, etc.
  • The term “polypeptide” or “protein” refers to amino acid polymers of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), as well as other modifications known in the art. Polypeptides can occur as single chains or associated chains.
  • The invention provides polypeptides comprising a sequence -P-Q- or -Q-P-, wherein: -P- is an amino acid sequence as defined above and -Q- is not a sequence as defined above i.e. the invention provides fusion proteins. Where the N-terminus codon of -P- is not ATG, but this codon is not present at the N-terminus of a polypeptide, it will be translated as the standard amino acid for that codon rather than as a Met. Where this codon is at the N-terminus of a polypeptide, however, it will be translated as Met. Examples of -Q- moieties include, but are not limited to, histidine tags (i.e. Hisn where n=3, 4, 5, 6, 7, 8, 9, 10 or more), maltose-binding protein, or glutathione-S-transferase (GST).
  • Proteins of the invention may be attached to a solid support. They may comprise a detectable label (e.g. a radioactive or fluorescent label, or a biotin label).
  • Antibodies
  • The proteins of the invention induce antibodies that may be used as a vaccine capable of neutralising the activity of infectious EB. The antibodies may alternatively be used for the diagnosis of Chlamydia infection. Thus, the invention provides antibodies for use in the treatment, prevention or diagnosis of Chlamydia infection. Preferably, the infection is by C. trachomatis, but may alternatively be by C. psittaci, C. pecorum, C. muridarum or C. suis.
  • The term “antibody” includes intact immunoglobulin molecules, as well as fragments thereof which are capable of binding an antigen. These include hybrid (chimeric) antibody molecules (Winter et al., (1991) Nature 349:293-99; U.S. Pat. No. 4,816,567); F(ab′)2 and F(ab) fragments and Fv molecules; non-covalent heterodimers (Inbar et al., (1972) Proc. Natl. Acad. Sci. U.S.A. 69:2659-62; Ehrlich et al., (1980) Biochem 19:4091-96); single-chain Fv molecules (sFv) (Huston et al., (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5897-83); dimeric and trimeric antibody fragment constructs; minibodies Pack et al., (1992) Biochem 31, 1579-84; Cumber et al., (1992) J. Immunology 149B, 120-26); humanized antibody molecules (Riechmann et al., (1988) Nature 332, 323-27; Verhoeyan et al., (1988) Science 239, 1534-36; and GB 2,276,169); and any functional fragments obtained from such molecules, as well as antibodies obtained through non-conventional processes such as phage display. Preferably, the antibodies are monoclonal antibodies. Methods of obtaining monoclonal antibodies are well known in the art. Humanised or fully-human antibodies are preferred.
  • The antibodies may be polyclonal or monoclonal and may be produced by any suitable means. The antibody may include a detectable label.
  • Also provided is a method for preparing antibodies comprising immunising a mammal (such as a mouse or a rabbit) with a protein of the invention and obtaining polyclonal antibodies or monoclonal antibodies by conventional techniques. For example, polyclonal antisera may be obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25° C. for one hour, followed by incubating at 4° C. for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000 g for 10 minutes). Monoclonal antibodies may be prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof, or by any other suitable method.
  • Nucleic Acids
  • According to a further aspect, the invention provides a nucleic acid encoding a protein or antibody of the invention. In some embodiments, the nucleic acid sequence encoding a protein of the invention preferably comprises or consists of any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 39, 41, 43, 45, 47, 49, 51, 53, 55, 135, 139, 155, 159, 163 or 167, for example, of any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 39, 41, 43 or 45. In some embodiments, the nucleic acid sequence encoding a protein of the invention comprises or consists of any one of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131 and 133.
  • The invention also provides nucleic acid comprising nucleotide sequences having sequence identity to such nucleotide sequences. Identity between sequences is preferably determined by the Smith-Waterman homology search algorithm as described above. Such nucleic acids include those using alternative codons to encode the same amino acid.
  • The invention also provides nucleic acid which can hybridize to these nucleic acids. Hybridization reactions can be performed under conditions of different “stringency”. Conditions that increase stringency of a hybridization reaction of widely known and published in the art (e.g. page 7.52 of Kaplitt, Nature Genetics (1994) 6:148). Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25° C., 37° C., 50° C., 55° C. and 68° C.; buffer concentrations of 10×SSC, 6×SSC, 1×SSC, 0.1×SSC (where SSC is 0.15 M NaCl and 15 mM citrate buffer) and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from 5 minutes to 24 hours; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6×SSC, 1×SSC, 0.1×SSC, or de-ionized water. Hybridization techniques and their optimization are well known in the art (e.g. see U.S. Pat. No. 5,707,829, Current Protocols in Molecular Biology (F. M. Ausubel et al. eds., 1987) Supplement 30, Kaplitt, Nature Genetics (1994) 6:148, and WO 94/03622, etc.).
  • The nucleic acid may be used in hybridisation reactions (e.g. Northern or Southern blots, or in nucleic acid microarrays or ‘gene chips’) or in amplification reactions (e.g. PCR, SDA, SSSR, LCR, NASBA, TMA) etc.
  • The invention also provides a nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing, or for use as primers). In one embodiment, the nucleic acid is complementary to the full length of the nucleic acid described above.
  • Nucleic acid according to the invention may be labelled e.g. with a radioactive or fluorescent label. This is particularly useful where the nucleic acid is to be used as a primer or probe e.g. in PCR, LCR or TMA.
  • The term “nucleic acid” includes in general means a polymeric form of nucleotides of any length, which contain deoxyribonucleotides, ribonucleotides, and/or their analogs. It includes DNA, RNA, DNA/RNA hybrids. It also includes DNA or RNA analogs, such as those containing modified backbones (e.g. peptide nucleic acids (PNAs) or phosphorothioates) or modified bases. Thus the invention includes mRNA, ribozymes, DNA, cDNA, recombinant nucleic acids, branched nucleic acids, plasmids, vectors, probes, primers, etc. Where nucleic acid of the invention takes the form of RNA, it may or may not have a 5′ cap.
  • Nucleic acids of the invention can take various forms (e.g. single stranded, double stranded, vectors, primers, probes etc.). Unless otherwise specified or required, any embodiment of the invention that utilizes a nucleic acid may utilize both the double-stranded form and each of two complementary single-stranded forms which make up the double-stranded form. Primers and probes are generally single-stranded, as are antisense nucleic acids.
  • Nucleic acids of the invention are preferably prepared in substantially pure form (i.e. substantially free from naturally-occuring nucleic acids, particularly from chlamydial or other host cell nucleic acids), generally being at least about 50% pure (by weight), and usually at least about 90% pure.
  • Nucleic acids of the invention may be prepared in many ways e.g. by chemical synthesis (e.g. phosphoramidite synthesis of DNA) in whole or in part, by digesting longer nucleic acids using nucleases (e.g. restriction enzymes), by joining shorter nucleic acids or nucleotides (e.g. using ligases or polymerases), from genomic or cDNA libraries, etc.
  • The invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed with such vectors. Nucleic acids of the invention may be part of a vector i.e. part of a nucleic acid construct designed for transduction/transfection of one or more cell types. Vectors may be, for example, “cloning vectors” which are designed for isolation, propagation and replication of inserted nucleotides, “expression vectors” which are designed for expression of a nucleotide sequence in a host cell, “viral vectors” which are designed to result in the production of a recombinant virus or virus-like particle, or “shuttle vectors”, which comprise the attributes of more than one type of vector. Preferred vectors are plasmids.
  • Also provided is a host cell comprising a nucleic acid of the invention. A “host cell” includes an individual cell or cell culture which can be or has been a recipient of exogenous nucleic acid. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. Host cells include cells transfected or infected in vivo or in vitro with nucleic acid of the invention, for example, with a vector of the invention.
  • Where a nucleic acid is DNA, it will be appreciated that “U” in a RNA sequence will be replaced by “T” in the DNA. Similarly, where a nucleic acid is RNA, it will be appreciated that “T” in a DNA sequence will be replaced by “U” in the RNA.
  • The term “complement” or “complementary” when used in relation to nucleic acids refers to Watson-Crick base pairing. Thus the complement of C is G, the complement of G is C, the complement of A is T (or U), and the complement of T (or U) is A. It is also possible to use bases such as 1 (the purine inosine) e.g. to complement pyrimidines (C or T).
  • Nucleic acids of the invention can be used, for example: to produce polypeptides; as hybridization probes for the detection of nucleic acid in biological samples; to generate additional copies of the nucleic acids; to generate ribozymes or antisense oligonucleotides; as single-stranded DNA primers or probes; or as triple-strand forming oligonucleotides.
  • The invention provides a process for producing nucleic acid of the invention, wherein the nucleic acid is synthesised in part or in whole using chemical means.
  • For certain embodiments of the invention, nucleic acids are preferably at least 24 nucleotides in length (e.g. 60, 120, 240, 390, 540, 720, 900, 1200, 1320, 1500, 1800, 2100, 2400, 2415 nucleotides or longer).
  • For certain embodiments of the invention, nucleic acids are preferably at most 2430 nucleotides in length (e.g. 2427, 2394, 2250, 2034, 1450, 1300, 1150, 1000, 850, 700, 500 nucleotides or shorter).
  • Primers and probes of the invention, and other nucleic acids used for hybridization, are preferably between 10 and 30 nucleotides in length (e.g. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides).
  • Immunogenic Compositions and Medicaments
  • The protein, antibody, and/or nucleic acid or medicament may be in the form of a composition. These compositions may be suitable as immunogenic compositions (e.g. vaccines), or as diagnostic reagents.
  • Preferably, the composition is an immunogenic composition. It is particularly advantageous to use a protein of the invention in an immunogenic composition such as a vaccine. It is also envisaged that the immunogenic composition may comprise a nucleic acid which encodes a protein of the invention such that the protein is generated in vivo.
  • An immunogenic composition of the invention comprises a protein, antibody, nucleic acid, vector and/or host cell according to the invention. Immunogenic compositions according to the invention may either be prophylactic (i.e. to prevent infection) or therapeutic (i.e. to treat infection), but will typically be prophylactic. Where the immunogenic composition is for prophylactic use, the human is preferably a child (e.g. a toddler or infant) or a teenager; where the immunogenic composition is for therapeutic use, the human is preferably a teenager or an adult. An immunogenic composition intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
  • In some embodiments, the immunogenic composition is for treatment or prevention of Chlamydia infection or an associated condition (e.g. trachoma, blindness, cervicitis, pelvic inflammatory disease, infertility, ectopic pregnancy, chronic pelvic pain, salpingitis, urethritis, epididymitis, infant pneumonia, patients infected with cervical squamous cell carcinoma, and/or HIV infection, etc.), preferably, C. trachomatis infection. The immunogenic composition may be effective against C. pneumoniae.
  • Immunogenic compositions used as vaccines comprise an immunologically effective amount of the protein of the invention, as well as any other components, as needed. By ‘immunologically effective amount’, it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of the individual to be treated (e.g. non-human primate, primate, etc.), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
  • Antigens in the composition will typically be present at a concentration of at least 1 μg/ml each.
  • In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
  • Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Multiple doses will typically be administered at least 1 week apart (e.g. about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.). In some embodiments, three or more doses are provided (for example, three, four or five) doses. In some embodiments, three doses are given intramuscularly at 2 week-intervals, for example, three doses of 10-20 μg of each protein, at 2 week-intervals, given intramuscularly.
  • The pH of an immunogenic composition is preferably between 6 and 8, preferably about 7. pH may be maintained by the use of a buffer. The composition may be sterile and/or pyrogen-free. The composition may be isotonic with respect to humans.
  • Immunogenic compositions of the invention will generally be administered directly to a patient. Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or mucosally, such as by rectal, oral (e.g. tablet, spray), vaginal, topical, transdermal (See e.g. WO99/27961) or transcutaneous (See e.g. WO02/074244 and WO02/064162), intranasal (See e.g. WO03/028760), ocular, aural, pulmonary or other mucosal administration.
  • Chlamydia infections affect various areas of the body and so the immunogenic compositions of the invention may be prepared in various forms. For example, the compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared (e.g. a lyophilised composition). The composition may be prepared for topical administration e.g. as an ointment, cream or powder. The composition may be prepared for oral administration e.g. as a tablet or capsule, or as a syrup (optionally flavoured). The composition may be prepared for pulmonary administration e.g. as an inhaler, using a fine powder or a spray. The composition may be prepared as a suppository or pessary. The composition may be prepared for nasal, aural or ocular administration e.g. as drops.
  • The invention also provides a delivery device pre-filled with an immunogenic composition of the invention.
  • The invention also provides a kit comprising a first component and a second component wherein neither the first component nor the second component is a composition of the invention as described herein, but wherein the first component and the second component can be combined to provide a composition of the invention as described herein. The kit may further include a third component comprising one or more of the following: instructions, syringe or other delivery device, adjuvant, or pharmaceutically acceptable formulating solution.
  • A composition as described above may alternatively and/or additionally be used for diagnosis of chlamydia infection.
  • Combinations with Other Antigens
  • The therapeutic or diagnostic efficiency of a Chlamydia antigen may be improved by combination with a different Chlamydia antigen. For example, the immunogenicity of a protein of the invention may be improved by combination with another protein of the invention or with another known Chlamydia antigen. The invention thus includes an immunogenic composition comprising a combination of Chlamydia antigens, said combination comprising a protein of the invention in combination with one or more additional Chlamydia antigens. The one or more additional Chlamydia antigens that are present in the composition may be in the form of a protein or nucleic acid or any other suitable form. A protein of the invention may be combined with one or more (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) different proteins of the invention and/or with one or more (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) other known Chlamydia antigens. For example, an immunogenic composition is provided comprising two or more (e.g. 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) proteins of the invention. The proteins of the invention may alternatively and/or additionally be provided in the composition in the form of their corresponding nucleic acids, vectors, host cells, etc. Also provided is a protein or nucleic acid of the invention for a use as described above, wherein the protein or nucleic acid is for use in combination with one or more additional Chlamydia antigens (or their encoding nucleic acids). The one or more additional antigens (e.g. 2, 3, 4, 5, 6, 7 or more additional antigens) may be administered simultaneously, separately or sequentially with the protein or nucleic acid of the invention, for example as a combined preparation.
  • Likewise, the antibodies of the invention may be used in combination with one or more antibodies specific for one or more additional Chlamydia antigens for use in diagnosis of Chlamydia infections.
  • In one embodiment, one or more of the additional Chlamydia antigens is selected from the antigens presented in Table 2, or their variants. For example, one or more (for example, all) of the additional antigens are selected from the Chlamydia trachomatis antigens listed in Table 2, but may alternatively or additionally be selected from the Chlamydia pneumoniae antigens listed in Table 2.
  • In some embodiments, the one or more (for example, all) of the additional antigens are selected from the Chlamydia trachomatis antigens and/or Chlamydia pneumoniae antigens listed in Table 2 and CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721 and CT127. In one embodiment, one or more of the one or more additional antigens are selected from CT372, CT443, CT043, CT153, CT279, CT601, CT711, CT114, CT480, CT456, CT381, CT089, CT734, CT016, CT600, CT823, CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721 and CT127 (or their variants), for example, from CT372, CT443, CT043, CT153, CT279, CT601, CT711, CT114, CT480, CT456, CT381, CT089, CT734, CT016, CT600 and CT823. These additional antigens are listed in Table 2 and their sequences are set out in the “Sequences” section that follows Table 2. In one embodiment, one or more proteins of the invention is combined with CT089. In another embodiment, one or more proteins of the invention is combined with CT089 and CT381 (or their variants). In some embodiments, the C-terminal fragment of CT812 “CT812C” (for example, a protein comprising or consisting of the amino acid sequence set out in SEQ ID NO:122 or a fragment or variant thereof) is used instead of full length CT812.
  • In some embodiments, the following combinations of antigens (or their variants) are used: CT733+CT601, CT733+CT279, CT733+CT443, CT733+CT372, CT733+CT456, CT733+CT381, CT153+CT601, CT153+CT279, CT153+CT443, CT153+CT372, CT153+CT456, CT153+CT381, CT601+CT443, CT601+CT372, CT601+CT456, CT601+CT381, CT279+CT443, CT279+CT372, CT279+CT456, CT279+CT381, CT443+CT372, CT443+CT456, CT443+CT381, CT372+CT456, CT372+CT381, CT387+CT812+CT869, CT387+CT812C+CT869. These combinations may be used in the absence of any other chlamydia antigens or in the presence of one or more additional chlamydia antigens. Particularly preferred combinations are: (i) CT279+CT601; (ii) CT372+CT443; (iii) CT733+CT153; (iv) CT456+CT381; (v) CT279+CT601+CT733+CT153; (vi) CT279+CT601+CT372+CT443; (vii) CT823+CT733+CT043+CT456; (viii) CT387+CT812+CT869; and (ix) CT387+CT812C+CT869 (or their variants).
  • The human serovariants (“serovars”) of C. trachomatis are divided into two biovariants (“biovars”). Serovars A-K elicit epithelial infections primarily in the ocular tissue (A-C) or urogenital tract (D-K). Serovars L1, L2 and L3 are the agents of invasive lymphogranuloma venereum (LGV). In some embodiments, one or more of the additional Chlamydial antigens may, for example, be of any of Serovars A-K or L1, L2 or L3. One or more of the additional Chlamydia antigens is preferably from C. trachomatis serovar D, or from another epidemiologically prevalent serotype.
  • In some embodiments, one or more of the additional Chlamydia antigens is a homologous antigen from C. pneumoniae, C. psittaci, C. pecorum, C. muridarum or C. suis.
  • In some embodiments, TC0551 (the C. muridarum homologue of CT279) is used in place of the C. trachomatis protein. C. muridarum is the mouse adapted strain of Chlamydia trachomatis. Although C. muridarum is not a human pathogen, infection of mice with C. muridarum phenotypically mimics many aspects of C. trachomatis infection in humans and is frequently used to measure immunoprotective responses against C. trachomatis. In some embodiments, TC0890 (the C. muridarum homologue of CT601) is used in place of the C. trachomatis protein. In some embodiments, TC0651 (the C. muridarum homologue of CT372) is used in place of the C. trachomatis protein. In some embodiments, TC0727 (the C. muridarum homologue of CT443) is used in place of the C. trachomatis protein. In some embodiments, TC0106 (the C. muridarum homologue of CT733) is used in place of the C. trachomatis protein. In some embodiments, TC0431 (the C. muridarum homologue of CT153) is used in place of the C. trachomatis protein. In some embodiments, TC0660 (the C. muridarum homologue of CT381) is used in place of the C. trachomatis protein. In some embodiments, TC0741 (the C. muridarum homologue of CT456) is used in place of the C. trachomatis protein. In some embodiments, TC0210 (the C. muridarum homologue of CT823) is used in place of the C. trachomatis protein. In some embodiments, TC0666 (the C. muridarum homologue of CT387) is used in place of the C. trachomatis protein. TC0666 is annotated as a hypothetical protein. In some embodiments, TC0197 (the C. muridarum homologue of CT812) is used in place of the C. trachomatis protein. TC0197 is annotated as polymorphic membrane protein D family protein. In some embodiments, TC0261 (the C. muridarum homologue of CT869) is used in place of the C. trachomatis protein. TC0261 is annotated as polymorphic membrane protein E/F family protein. In some embodiments, TC0313 (the C. muridarum homologue of CT043) is used in place of the C. trachomatis protein. In some embodiments, TC0889 (the C. muridarum homologue of CT600) is used in place of the C. trachomatis protein. In some embodiments, TC0210 (the C. muridarum homologue of CT823) is used in place of the C. trachomatis protein. In some embodiments in which the composition comprises a single Chlamydia antigen, the C. muridarum homologue is used in place of the single C. trachomatis antigen. In some embodiments in which the composition comprises a combination of Chlamydia antigens, the C. muridarum homologue is used in place of one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) or all C. trachomatis antigens.
  • Advantageous combinations of the invention are those in which two or more antigens (for example, two, three or four antigens) act synergistically. Thus, the protection against Chlamydia achieved by their combined administration exceeds that expected by mere addition of their individual protective efficacy.
  • In some embodiments, the one or more additional Chlamydia antigens may comprise an amino acid sequence: (a) which is a variant of a Table 2 antigen (i.e. has 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to a sequence presented in Table 2); and/or (b) comprising a fragment of at least ‘n’ consecutive amino acids of a sequence presented in Table 2 or of a variant of a Table 2 antigen, wherein ‘n’ is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 350, 450, 550, 650, 750, 780, 800 or more). Preferred fragments of (b) comprise an epitope from a sequence presented in Table 2. Preferably, the epitope is a MHC class II epitope, for example, a CD4+ T cell epitope. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of a sequence presented in Table 2, while retaining at least one epitope of a sequence presented in Table 2. Other fragments omit one or more protein domains. When an additional Chlamydia antigen comprises a sequence that is not identical to a complete sequence from Table 2 (e.g. when it comprises a sequence with less than 100% sequence identity thereto, or when it comprises a fragment thereof), it is preferred in each individual instance that the additional Chlamydia antigen can elicit an antibody that recognises a protein having the complete sequence from the Table 2 antigen from which it is derived.
  • In some embodiments, the combination of two or more chlamydia antigens is provided as a combined preparation for simultaneous, separate or sequential administration. The invention also provides a kit comprising a protein of the invention and one or more additional antigens for simultaneous, separate or sequential administration.
  • The Chlamydia antigens used in the invention may be present in the composition as individual separate polypeptides. Alternatively, the combination may be present as a hybrid polypeptide in which two or more (i.e. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more) of the antigens are expressed as a single polypeptide chain. Hybrid polypeptides offer two principal advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful. Different hybrid polypeptides may be mixed together in a single formulation. Within such combinations, a Chlamydia trachomatis antigen may be present in more than one hybrid polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.
  • Hybrid polypeptides can be represented by the formula NH2-A-{-X-L-}n-B—COOH, wherein: at least one X is an amino acid sequence of a Chlamydia protein according to the invention as described above; L is an optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; n is an integer of 2 or more (e.g. 2, 3, 4, 5, 6, etc.). Usually n is 2 or 3.
  • If a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein. In some embodiments, the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein i.e. the leader peptide of X1 will be retained, but the leader peptides of X2 . . . Xn will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X1 as moiety -A-.
  • For each n instances of {-X-L-}, linker amino acid sequence -L- may be present or absent. For instance, when n=2 the hybrid may be NH2—X1-L1-X2-L2-COOH, NH2—X1—X2—COOH, NH2—X1-L1-X2—COOH, NH2—X1—X2-L2-COOH, etc. Linker amino acid sequence(s) -L- will typically be short (e.g. 20 or fewer amino acids i.e. 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples comprise short peptide sequences which facilitate cloning, poly-glycine linkers (i.e. comprising Gly, where n=2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (i.e. Hisn where n=3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG, with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the (Gly)4 tetrapeptide being a typical poly-glycine linker.
  • -A- is an optional N-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids i.e. 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (e.g. histidine tags i.e. Hisn where n=3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art. If X1 lacks its own N-terminus methionine, -A- is preferably an oligopeptide (e.g. with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides a N-terminus methionine.
  • —B— is an optional C-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct protein trafficking, short peptide sequences which facilitate cloning or purification (e.g. comprising histidine tags i.e. Hisn where n=3, 4, 5, 6, 7, 8, 9, 10 or more), or sequences which enhance protein stability. Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art.
  • Where hybrid polypeptides are used, the individual antigens within the hybrid (i.e. individual -X-moieties) may be from one or more strains. Where n=2, for instance, X2 may be from the same strain as X1 or from a different strain. Where n=3, the strains might be (i) X1=X2=X3 (ii) X1=X2≠X3 (iii) X1≠X2=X3 (iv) X1≠X2≠X3 or (v) X1=X3≠X2, etc.
  • The invention also provides a nucleic acid encoding a hybrid polypeptide of the invention. Furthermore, the invention provides a nucleic acid which can hybridise to this nucleic acid, preferably under “high stringency” conditions (e.g. 65° C. in a 0.1×SSC, 0.5% SDS solution).
  • Further Components of the Composition
  • Compositions may thus be pharmaceutically acceptable. They will usually include components in addition to the antigens e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion of such components is available in Remington The Science and Practice of Pharmacy.
  • Compositions will generally be administered to a mammal in aqueous form. Prior to administration, however, the composition may have been in a non-aqueous form. For instance, although some vaccines are manufactured in aqueous form, then filled and distributed and administered also in aqueous form, other vaccines are lyophilised during manufacture and are reconstituted into an aqueous form at the time of use. Thus a composition of the invention may be dried, such as a lyophilised formulation.
  • The composition may include preservatives such as thiomersal or 2-phenoxyethanol. It is preferred, however, that the vaccine should be substantially free from (i.e. less than 5 g/ml) mercurial material e.g. thiomersal-free. Vaccines containing no mercury are more preferred. Preservative-free vaccines are particularly preferred.
  • To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml e.g. about 10±2 mg/ml NaCl. Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.
  • Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg.
  • Compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer (particularly with an aluminum hydroxide adjuvant); or a citrate buffer. Buffers will typically be included in the 5-20 mM range.
  • The pH of a composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 e.g. 6.5 and 7.5, or between 7.0 and 7.8.
  • The composition is preferably sterile. The composition is preferably non-pyrogenic e.g. containing <1 EU (endotoxin unit, a standard measure) per dose, and preferably <0.1 EU per dose. The composition is preferably gluten free.
  • The composition may include material for a single immunisation, or may include material for multiple immunisations (i.e. a ‘multidose’ kit). The inclusion of a preservative is preferred in multidose arrangements. As an alternative (or in addition) to including a preservative in multidose compositions, the compositions may be contained in a container having an aseptic adaptor for removal of material.
  • Human vaccines are typically administered in a dosage volume of about 0.5 ml, although a half dose (i.e. about 0.25 ml) may be administered to children.
  • Immunogenic compositions of the invention may also comprise one or more immunoregulatory agents. Preferably, one or more of the immunoregulatory agents include one or more adjuvants. The adjuvants may include a TH1 adjuvant and/or a TH2 adjuvant, further discussed below.
  • Adjuvants which may be used in compositions of the invention include, but are not limited to:
  • A. Mineral-Containing Compositions
  • Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts (or mixtures thereof). Calcium salts include calcium phosphate (e.g. the “CAP” particles disclosed in U.S. Pat. No. 6,355,271). Aluminum salts include hydroxides, phosphates, sulfates, etc., with the salts taking any suitable form (e.g. gel, crystalline, amorphous, etc.). Adsorption to these salts is preferred. The mineral containing compositions may also be formulated as a particle of metal salt [WO00/23105].
  • The adjuvants known as aluminum hydroxide and aluminum phosphate may be used. These names are conventional, but are used for convenience only, as neither is a precise description of the actual chemical compound which is present (e.g. see chapter 9 of Vaccine Design . . . (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum). The invention can use any of the “hydroxide” or “phosphate” adjuvants that are in general use as adjuvants. The adjuvants known as “aluminium hydroxide” are typically aluminium oxyhydroxide salts, which are usually at least partially crystalline. The adjuvants known as “aluminium phosphate” are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate (i.e. aluminium hydroxyphosphate sulfate). They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation influence the degree of substitution of phosphate for hydroxyl in the salt.
  • A fibrous morphology (e.g. as seen in transmission electron micrographs) is typical for aluminium hydroxide adjuvants. The pI of aluminium hydroxide adjuvants is typically about 11 i.e. the adjuvant itself has a positive surface charge at physiological pH. Adsorptive capacities of between 1.8-2.6 mg protein per mg Al++ at pH 7.4 have been reported for aluminium hydroxide adjuvants.
  • Aluminium phosphate adjuvants generally have a PO4/Al molar ratio between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95±0.1. The aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts. A typical adjuvant is amorphous aluminium hydroxyphosphate with PO4/Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al3+/ml. The aluminium phosphate will generally be particulate (e.g. plate-like morphology as seen in transmission electron micrographs). Typical diameters of the particles are in the range 0.5-20 μm (e.g. about 5-10 μm) after any antigen adsorption. Adsorptive capacities of between 0.7-1.5 mg protein per mg Al++ at pH 7.4 have been reported for aluminium phosphate adjuvants.
  • The point of zero charge (PZC) of aluminium phosphate is inversely related to the degree of substitution of phosphate for hydroxyl, and this degree of substitution can vary depending on reaction conditions and concentration of reactants used for preparing the salt by precipitation. PZC is also altered by changing the concentration of free phosphate ions in solution (more phosphate=more acidic PZC) or by adding a buffer such as a histidine buffer (makes PZC more basic). Aluminium phosphates used according to the invention will generally have a PZC of between 4.0 and 7.0, more preferably between 5.0 and 6.5 e.g. about 5.7.
  • Suspensions of aluminium salts used to prepare compositions of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary. The suspensions are preferably sterile and pyrogen-free. A suspension may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM. The suspensions may also comprise sodium chloride.
  • The invention can use a mixture of both an aluminium hydroxide and an aluminium phosphate. In this case there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. ≧5:1, ≧6:1, ≧7:1, ≧8:1, ≧9:1, etc.
  • The concentration of Al+++ in a composition for administration to a patient is preferably less than 10 mg/ml e.g. ≦5 mg/ml, ≦4 mg/ml, ≦3 mg/ml, ≦2 mg/ml, ≦1 mg/ml, etc. A preferred range is between 0.3 and 1 mg/ml. A maximum of 0.85 mg/dose is preferred.
  • Aluminium phosphates are particularly preferred, particularly in compositions which include a H. influenzae saccharide antigen, and a typical adjuvant is amorphous aluminium hydroxyphosphate with PO4/Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al3+/ml. Adsorption with a low dose of aluminium phosphate may be used e.g. between 50 and 1004 μg Al3+ per conjugate per dose. Where there is more than one conjugate in a composition, not all conjugates need to be adsorbed.
  • B. Oil Emulsions
  • Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 [Chapter 10 of Vaccine Design . . . (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum; see also WO90/14837] (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used.
  • Various oil-in-water emulsion adjuvants are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible. The oil droplets in the emulsion are generally less than 5 μm in diameter, and ideally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220 nm are preferred as they can be subjected to filter sterilization.
  • The emulsion can comprise oils such as those from an animal (such as fish) or vegetable source. Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used. 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art. Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein. A number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids. Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein. Squalane, the saturated analog to squalene, is also a preferred oil. Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art. Other preferred oils are the tocopherols (see below). Mixtures of oils can be used.
  • Surfactants can be classified by their ‘HLB’ (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16. The invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAX™ tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40); phospholipids such as phosphatidylcholine (lecithin); nonylphenol ethoxylates, such as the Tergitol™ NP series; polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); and sorbitan esters (commonly known as the SPANs), such as sorbitan trioleate (Span 85) and sorbitan monolaurate. Non-ionic surfactants are preferred. Preferred surfactants for including in the emulsion are Tween 80 (polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
  • Mixtures of surfactants can be used e.g. Tween 80/Span 85 mixtures. A combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-100) is also suitable. Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
  • Preferred amounts of surfactants (% by weight) are: polyoxyethylene sorbitan esters (such as Tween 80) 0.01 to 1%, in particular about 0.1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.
  • Preferred emulsion adjuvants have an average droplets size of ≦1 μm e.g. ≦750 nm, ≦500 nm, ≦400 nm, ≦300 nm, ≦250 nm, ≦220 nm, ≦200 nm, or smaller. These droplet sizes can conveniently be achieved by techniques such as microfluidisation.
  • Specific oil-in-water emulsion adjuvants useful with the invention include, but are not limited to:
      • A submicron emulsion of squalene, Tween 80, and Span 85. The composition of the emulsion by volume can be about 5% squalene, about 0.5% polysorbate 80 and about 0.5% Span 85. In weight terms, these ratios become 4.3% squalene, 0.5% polysorbate 80 and 0.48% Span 85. This adjuvant is known as ‘MF59’ (WO90/14837, Podda & Del Giudice (2003) Expert Rev Vaccines 2:197-203, Podda (2001) Vaccine 19: 2673-2680; as described in more detail in Chapter 10 of Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman) Plenum Press 1995 (ISBN 0-306-44867-X) and chapter 12 of Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine series). ISBN: 1-59259-083-7. Ed. O'Hagan). The MF59 emulsion advantageously includes citrate ions e.g. 10 mM sodium citrate buffer.
      • An emulsion of squalene, a tocopherol, and Tween 80. The emulsion may include phosphate buffered saline. It may also include Span 85 (e.g. at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% Tween 80, and the weight ratio of squalene:tocopherol is preferably ≦1 as this provides a more stable emulsion. Squalene and Tween 80 may be present volume ratio of about 5:2. One such emulsion can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90 ml of this solution with a mixture of (5 g of DL-a-tocopherol and 5 ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180 nm.
      • An emulsion of squalene, a tocopherol, and a Triton detergent (e.g. Triton X-100). The emulsion may also include a 3d-MPL (see below). The emulsion may contain a phosphate buffer.
      • An emulsion comprising a polysorbate (e.g. polysorbate 80), a Triton detergent (e.g. Triton X-100) and a tocopherol (e.g. an α-tocopherol succinate). The emulsion may include these three components at a mass ratio of about 75:11:10 (e.g. 750 g/ml polysorbate 80, 110 μg/ml Triton X-100 and 100 μg/ml α-tocopherol succinate), and these concentrations should include any contribution of these components from antigens. The emulsion may also include squalene. The emulsion may also include a 3d-MPL (see below). The aqueous phase may contain a phosphate buffer.
      • An emulsion of squalane, polysorbate 80 and poloxamer 401 (“Pluronic™ L121”). The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the “SAF-1” adjuvant (Allison & Byars (1992) Res Immunol 143:519-25) (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the “AF” adjuvant (Hariharan et al. (1995) Cancer Res 55:3486-9) (5% squalane, 1.25% Pluronic L21 and 0.2% polysorbate 80). Microfluidisation is preferred.
      • An emulsion comprising squalene, an aqueous solvent, a polyoxyethylene alkyl ether hydrophilic nonionic surfactant (e.g. polyoxyethylene (12) cetostearyl ether) and a hydrophobic nonionic surfactant (e.g. a sorbitan ester or mannide ester, such as sorbitan monoleate or ‘Span 80’). The emulsion is preferably thermoreversible and/or has at least 90% of the oil droplets (by volume) with a size less than 200 nm (US-2007/014805.). The emulsion may also include one or more of: alditol; a cryoprotective agent (e.g. a sugar, such as dodecylmaltoside and/or sucrose); and/or an alkylpolyglycoside. Such emulsions may be lyophilized.
      • An emulsion o US-2007/014805.f squalene, poloxamer 105 and Abil-Care (Suli et al. (2004) Vaccine 22(25-26):3464-9). The final concentration (weight) of these components in adjuvanted vaccines are 5% squalene, 4% poloxamer 105 (pluronic polyol) and 2% Abil-Care 85 (Bis-PEG/PPG-16/16 PEG/PPG-16/16 dimethicone; caprylic/capric triglyceride).
      • An emulsion having from 0.5-50% of an oil, 0.1-10% of a phospholipid, and 0.05-5% of a non-ionic surfactant. As described in WO95/11700, preferred phospholipid components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin. Submicron droplet sizes are advantageous.
      • A submicron oil-in-water emulsion of a non-metabolisable oil (such as light mineral oil) and at least one surfactant (such as lecithin, Tween 80 or Span 80). Additives may be included, such as QuilA saponin, cholesterol, a saponin-lipophile conjugate (such as GPI-0100, described in U.S. Pat. No. 6,080,725, produced by addition of aliphatic amine to desacylsaponin via the carboxyl group of glucuronic acid), dimethyidioctadecylammonium bromide and/or N,N-dioctadecyl-N,N-bis (2-hydroxyethyl)propanediamine.
      • An emulsion in which a saponin (e.g. QuilA or QS21) and a sterol (e.g. a cholesterol) are associated as helical micelles (WO2005/097181).
      • An emulsion comprising a mineral oil, a non-ionic lipophilic ethoxylated fatty alcohol, and a non-ionic hydrophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) (WO2006/113373).
      • An emulsion comprising a mineral oil, a non-ionic hydrophilic ethoxylated fatty alcohol, and a non-ionic lipophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) (Wu et al. (2004) Antiviral Res. 64(2):79-83).
  • In some embodiments an emulsion may be mixed with antigen extemporaneously, at the time of delivery, and thus the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use. In other embodiments an emulsion is mixed with antigen during manufacture, and thus the composition is packaged in a liquid adjuvanted form. The antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids. The volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1. Where concentrations of components are given in the above descriptions of specific emulsions, these concentrations are typically for an undiluted composition, and the concentration after mixing with an antigen solution will thus decrease. Where a composition is to be prepared extemporaneously prior to use (e.g. where a component is presented in lyophilised form) and is presented as a kit, the kit may comprise two vials, or it may comprise one ready-filled syringe and one vial, with the contents of the syringe being used to reactivate the contents of the vial prior to injection.
  • Where a composition includes a tocopherol, any of the α, β, γ, δ, ε or ξ tocopherols can be used, but α-tocopherols are preferred. The tocopherol can take several forms e.g. different salts and/or isomers. Salts include organic salts, such as succinate, acetate, nicotinate, etc. D-a-tocopherol and DL-α-tocopherol can both be used. Tocopherols are advantageously included in vaccines for use in elderly patients (e.g. aged 60 years or older) because vitamin E has been reported to have a positive effect on the immune response in this patient group (Han et al. (2005) Impact of Vitamin E on Immune Function and Infectious Diseases in the Aged at Nutrition, Immune functions and Health EuroConference, Paris, 9-10 Jun. 2005). They also have antioxidant properties that may help to stabilize the emulsions (U.S. Pat. No. 6,630,161). A preferred α-tocopherol is DL-α-tocopherol, and the preferred salt of this tocopherol is the succinate. The succinate salt has been found to cooperate with TNF-related ligands in vivo.
  • C. Saponin Formulations (Chapter 22 of Vaccine Design . . . (1995) Eds. Powell & Newman. ISBN: 030644867X. Plenum)
  • Saponin formulations may also be used as adjuvants in the invention. Saponins are a heterogeneous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officinalis (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. QS21 is marketed as Stimulon™.
  • Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C. Preferably, the saponin is QS21. A method of production of QS21 is disclosed in U.S. Pat. No. 5,057,540. Saponin formulations may also comprise a sterol, such as cholesterol (WO96/33739).
  • Combinations of saponins and cholesterols can be used to form unique particles called immunostimulating complexs (ISCOMs) (chapter 23 of Vaccine Design . . . (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum). ISCOMs typically also include a phospholipid such as phosphatidylethanolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs. Preferably, the ISCOM includes one or more of QuilA, QHA & QHC. ISCOMs are further described in Podda & Del Giudice (2003) Expert Rev Vaccines 2:197-203; Podda (2001) Vaccine 19: 2673-2680; Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman) Plenum Press 1995 (ISBN 0-306-44867-X); Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine series). ISBN: 1-59259-083-7. Ed. O'Hagan; Allison & Byars (1992) Res Immunol 143:519-25; Hariharan et al. (1995) Cancer Res 55:3486-9; US-2007/014805; Suli et al. (2004) Vaccine 22(25-26):3464-9; WO95/11700; U.S. Pat. No. 6,080,725; WO2005/097181; WO2006/113373; Han et al. (2005) Impact of Vitamin E on Immune Function and Infectious Diseases in the Aged at Nutrition, Immune functions and Health EuroConference, Paris, 9-10 Jun. 2005; U.S. Pat. No. 6,630,161; U.S. Pat. No. 5,057,540; WO96/33739; EP-A-0109942; and WO96/11711. Optionally, the ISCOMS may be devoid of additional detergent (WO00/07621).
  • A review of the development of saponin based adjuvants can be found in Barr et al. (1998) Advanced Drug Delivery Reviews 32:247-271 and Sjolanderet et al. (1998) Advanced Drug Delivery Reviews 32:321-338.
  • D. Virosomes and Virus-Like Particles
  • Virosomes and virus-like particles (VLPs) can also be used as adjuvants in the invention. These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome. The viral proteins may be recombinantly produced or isolated from whole viruses. These viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Qβ-phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein pi). VLPs are discussed further in Niikura et al. (2002) Virology 293:273-280; Lenz et al. (2001) J Immunol 166:5346-5355; Pinto et al. (2003) J Infect Dis 188:327-338; Gerber et al. (2001) J Virol 75:4752-4760; WO03/024480 and WO03/024481. Virosomes are discussed further in, for example, Gluck et al. (2002) Vaccine 20:B10-B16.
  • E. Bacterial or Microbial Derivatives
  • Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL). 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains. A preferred “small particle” form of 3 De-O-acylated monophosphoryl lipid A is disclosed in EP-A-0689454. Such “small particles” of 3dMPL are small enough to be sterile filtered through a 0.22 μm membrane (U.S. Pat. No. 6,630,161). Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g. RC-529 (Johnson et al. (1999) Bioorg Med Chem Lett 9:2273-2278; and Evans et al. (2003) Expert Rev Vaccines 2:219-229). Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM-174. OM-174 is described for example in Meraldi et al. (2003) Vaccine 21:2485-2491 and Pajak et al. (2003) Vaccine 21:836-842.
  • Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.
  • The CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded. Kandimalla et al. (2003) Nucleic Acids Research 31:2393-2400, WO02/26757 and WO99/62923 disclose possible analog substitutions e.g. replacement of guanosine with 2′-deoxy-7-deazaguanosine. The adjuvant effect of CpG oligonucleotides is further discussed in Krieg (2003) Nature Medicine 9:831-835; McCluskie et al. (2002) FEMS Immunology and Medical Microbiology 32:179-185; WO98/40100; U.S. Pat. No. 6,207,646; U.S. Pat. No. 6,239,116 and U.S. Pat. No. 6,429,199.
  • The CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT (Kandimalla et al. (2003) Biochemical Society Transactions 31 (part 3):654-658). The CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN. CpG-A and CpG-B ODNs are discussed in Blackwell et al. (2003) J Immunol 170:4061-4068; Krieg (2002) Trends Immunol 23:64-65; and WO001/95935. Preferably, the CpG is a CpG-A ODN.
  • Preferably, the CpG oligonucleotide is constructed so that the 5′ end is accessible for receptor recognition. Optionally, two CpG oligonucleotide sequences may be attached at their 3′ ends to form “immunomers”. See, for example, Gluck et al. (2002) Vaccine 20:B10-B16; Kandimalla et al. (2003) BBRC 306:948-953; Bhagat et al. (2003) BBRC 300:853-861; and WO03/035836.
  • A useful CpG adjuvant is CpG7909, also known as ProMune™ (Coley Pharmaceutical Group, Inc.). Another is CpG1826. As an alternative, or in addition, to using CpG sequences, TpG sequences can be used (WO01/22972), and these oligonucleotides may be free from unmethylated CpG motifs. The immunostimulatory oligonucleotide may be pyrimidine-rich. For example, it may comprise more than one consecutive thymidine nucleotide (e.g. TTTT, as disclosed in Pajak et al. (2003) Vaccine 21:836-842), and/or it may have a nucleotide composition with >25% thymidine (e.g. >35%, >40%, >50%, >60%, >80%, etc.). For example, it may comprise more than one consecutive cytosine nucleotide (e.g. CCCC, as disclosed in Pajak et al. (2003) Vaccine 21:836-842), and/or it may have a nucleotide composition with >25% cytosine (e.g. >35%, >40%, >50%, >60%, >80%, etc.). These oligonucleotides may be free from unmethylated CpG motifs. Immunostimulatory oligonucleotides will typically comprise at least 20 nucleotides. They may comprise fewer than 100 nucleotides.
  • A particularly useful adjuvant based around immunostimulatory oligonucleotides is known as IC-31™ (Schellack et al. (2006) Vaccine 24:5461-72). Thus an adjuvant used with the invention may comprise a mixture of (i) an oligonucleotide (e.g. between 15-40 nucleotides) including at least one (and preferably multiple) Cp1 motifs (i.e. a cytosine linked to an inosine to form a dinucleotide), and (ii) a polycationic polymer, such as an oligopeptide (e.g. between 5-20 amino acids) including at least one (and preferably multiple) Lys-Arg-Lys tripeptide sequence(s). The oligonucleotide may be a deoxynucleotide comprising 26-mer sequence 5′-(IC)13-3′. The polycationic polymer may be a peptide comprising 11-mer amino acid sequence KLKLLLLLKLK.
  • Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention. Preferably, the protein is derived from E. coli (E. coli heat labile enterotoxin “LT”), cholera (“CT”), or pertussis (“PT”). The use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in WO95/17211 and as parenteral adjuvants in WO98/42375. The toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits. Preferably, the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated. Preferably, the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G 192. The use of ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in Beignon et al. (2002) Infect Immun 70:3012-3019; Pizza et al. (2001) Vaccine 19:2534-2541; Pizza et al. (2000) Int J Med Microbiol 290:455-461; Scharton-Kersten et al. (2000) Infect Immun 68:5306-5313; Ryan et al. (1999) Infect Immun 67:6270-6280; Partidos et al. (1999) Immunol Lett 67:209-216; Peppoloni et al. (2003) Expert Rev Vaccines 2:285-293; and Pine et al. (2002) J Control Release 85:263-270.
  • A useful CT mutant is or CT-E29H (Tebbey et al. (2000) Vaccine 18:2723-34). Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in Domenighini et al. (1995) Mol Microbiol 15:1165-1167, specifically incorporated herein by reference in its entirety.
  • F. Human Immunomodulators
  • Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 (WO99/40936), etc.) (WO99/44636), interferons (e.g. interferon-γ), macrophage colony stimulating factor, and tumor necrosis factor. A preferred immunomodulator is IL-12.
  • G. Bioadhesives and Mucoadhesives
  • Bioadhesives and mucoadhesives may also be used as adjuvants in the invention. Suitable bioadhesives include esterified hyaluronic acid microspheres (Singh et al. (2001) J Cont Release 70:267-276) or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention (WO99/27960).
  • H. Microparticles
  • Microparticles may also be used as adjuvants in the invention. Microparticles (i.e. a particle of ˜100 nm to ˜150 μm in diameter, more preferably ˜200 nm to ˜30 μm in diameter, and most preferably ˜500 nm to ˜10 μm in diameter) formed from materials that are biodegradable and non-toxic (e.g. a poly(a-hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.), with poly(lactide-co-glycolide) are preferred, optionally treated to have a negatively-charged surface (e.g. with SDS) or a positively-charged surface (e.g. with a cationic detergent, such as CTAB).
  • I. Liposomes (Chapters 13 & 14 of Vaccine Design . . . (1995) Eds. Powell & Newman. ISBN: 030644867X. Plenum.)
  • Examples of liposome formulations suitable for use as adjuvants are described in U.S. Pat. No. 6,090,406; U.S. Pat. No. 5,916,588; and EP-A-0626169.
  • J. Polyoxyethylene Ether and Polyoxyethylene Ester Formulations
  • Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters (WO99/52549). Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol (WO01/21207) as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol (WO01/21152). Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
  • K. Phosphazenes
  • A phosphazene, such as poly[di(carboxylatophenoxy)phosphazene] (“PCPP”) as described, for example, in Andrianov et al. (1998) Biomaterials 19:109-115 and Payne et al. (1998) Adv Drug Delivery Review 31:185-196, may be used.
  • L. Muramylpeptides
  • Examples of muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).
  • M. Imidazoquinolone Compounds.
  • Examples of imidazoquinolone compounds suitable for use adjuvants in the invention include Imiquimod (“R-837”) (U.S. Pat. No. 4,680,338; U.S. Pat. No. 4,988,815), Resiquimod (“R-848”) (WO92/15582), and their analogs; and salts thereof (e.g. the hydrochloride salts). Further details about immunostimulatory imidazoquinolines can be found in Stanley (2002) Clin Exp Dermatol 27:571-577; Wu et al. (2004) Antiviral Res. 64(2):79-83; Vasilakos et al. (2000) Cell Immunol. 204(1):64-74; U.S. Pat. Nos. 4,689,338, 4,929,624, 5,238,944, 5,266,575, 5,268,376, 5,346,905, 5,352,784, 5,389,640, 5,395,937, 5,482,936, 5,494,916, 5,525,612, 6,083,505, 6,440,992, 6,627,640, 6,656,938, 6,660,735, 6,660,747, 6,664,260, 6,664,264, 6,664,265, 6,667,312, 6,670,372, 6,677,347, 6,677,348, 6,677,349, 6,683,088, 6,703,402, 6,743,920, 6,800,624, 6,809,203, 6,888,000 and 6,924,293; and Jones (2003) Curr Opin Investig Drugs 4:214-218.
  • N. Substituted Ureas
  • Substituted ureas useful as adjuvants include compounds of formula 1, II or III, or salts thereof:
  • Figure US20180092970A1-20180405-C00001
  • as defined in WO03/011223, such as ‘ER 803058’, ‘ER 803732’, ‘ER 804053’, ‘ER 804058’, ‘ER 804059’, ‘ER 804442’, ‘ER 804680’, ‘ER 804764’, ER 803022 or ‘ER 804057’ e.g.:
  • Figure US20180092970A1-20180405-C00002
  • O. Further Adjuvants
  • Further adjuvants that may be used with the invention include:
      • An aminoalkyl glucosaminide phosphate derivative, such as RC-529 (Johnson et al. (1999) Bioorg Med Chem Lett 9:2273-2278; Evans et al. (2003) Expert Rev Vaccines 2:219-229)
      • A thiosemicarbazone compound, such as those disclosed in WO2004/060308. Methods of formulating, manufacturing, and screening for active compounds are also described in Bhagat et al. (2003) BBRC 300:853-861. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF-α.
      • A tryptanthrin compound, such as those disclosed in WO2004/064759. Methods of formulating, manufacturing, and screening for active compounds are also described in WO03/035836. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF-α.
      • A nucleoside analog, such as: (a) Isatorabine (ANA-245; 7-thia-8-oxoguanosine):
  • Figure US20180092970A1-20180405-C00003
      • and prodrugs thereof; (b) ANA975; (c) ANA-025-1; (d) ANA380; (e) the compounds disclosed in U.S. Pat. No. 6,924,271, US2005/0070556 and U.S. Pat. No. 5,658,731, oxoribine (7-allyl-8-oxoguanosine) (U.S. Pat. No. 5,011,828).
      • Compounds disclosed in WO2004/87153, including: Acylpiperazine compounds, Indoledione compounds, Tetrahydraisoquinoline (THIQ) compounds, Benzocyclodione compounds, Aminoazavinyl compounds, Aminobenzimidazole quinolinone (ABIQ) compounds (U.S. Pat. No. 6,605,617, WO02/18383), Hydrapthalamide compounds, Benzophenone compounds, Isoxazole compounds, Sterol compounds, Quinazilinone compounds, Pyrrole compounds (WO2004/018455), Anthraquinone compounds, Quinoxaline compounds, Triazine compounds, Pyrazalopyrimidine compounds, and Benzazole compounds (WO03/082272).
      • Compounds containing lipids linked to a phosphate-containing acyclic backbone, such as the TLR4 antagonist E5564 (Wong el al. (2003) J Clin Pharmacol 43(7):735-42; US2005/0215517).
      • A polyoxidonium polymer (Dyakonova et al. (2004) Int Immunopharmacol 4(13):1615-23; FR-2859633) or other N-oxidized polyethylene-piperazine derivative.
      • Methyl inosine 5′-monophosphate (“MIMP”) (Signorelli & Hadden (2003) Int Immunopharmacol 3(8):1177-86).
      • A polyhydroxlated pyrrolizidine compound (WO2004/064715), such as one having formula:
  • Figure US20180092970A1-20180405-C00004
      • where R is selected from the group comprising hydrogen, straight or branched, unsubstituted or substituted, saturated or unsaturated acyl, alkyl (e.g. cycloalkyl), alkenyl, alkynyl and aryl groups, or a pharmaceutically acceptable salt or derivative thereof. Examples include, but are not limited to: casuarine, casuarine-6-α-D-glucopyranose, 3-epi-casuarine, 7-epi-casuarine, 3,7-diepi-casuarine, etc.
      • A CD1d ligand, such as an α-glycosylceramide (De Libero et al, Nature Reviews Immunology, 2005, 5: 485-496; U.S. Pat. No. 5,936,076; Oki et al. J. Clin. Investig., 113: 1631-1640; US2005/0192248; Yang et al, Angew. Chem. Int. Ed., 2004, 43: 3818-3822; WO2005/102049; Goff et al, J. Am. Chem., Soc., 2004, 126: 13602-13603; WO03/105769) e.g. α-galactosylceramide), phytosphingosine-containing α-glycosylceramides, OCH, KRN7000 [(2S,3S,4R)-1-O-(α-D-galactopyranosyl)-2-(N-hexacosanoylamino)-1,3,4-octadecanetriol], CRONY-101, 3″-O-sulfo-galactosylceramide, etc.
      • A gamma inulin (Cooper (1995) Pharm Biotechnol 6:559-80) or derivative thereof, such as algammulin.
  • Figure US20180092970A1-20180405-C00005
  • Adjuvant Combinations
  • The invention may also comprise combinations of one or more of the adjuvants identified above. For example, the following adjuvant compositions may be used in the invention: (1) a saponin and an oil-in-water emulsion (WO99/11241); (2) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL) (WO94/00153); (3) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL)+a cholesterol; (4) a saponin (e.g. QS21)+3dMPL+IL-12 (optionally+a sterol) (WO98/57659); (5) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions (European patent applications 0835318, 0735898 and 0761231); (6) SAF, containing 10% squalane, 0.4% Tween 80™, 5% pluronic-block polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion. (7) Ribi™ adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL+CWS (Detox™); and (8) one or more mineral salts (such as an aluminum salt)+a non-toxic derivative of LPS (such as 3dMPL). In some embodiments a combination of a toxin (e.g. LTK63) and an immunostimulatory oligonucleotide (e.g. CpG) is used. In some embodiments, a combination of an emulsion (e.g. montanide) and an immunostimulatory oligonucleotide (e.g. CpG) is used.
  • Other substances that act as immunostimulating agents are disclosed in chapter 7 of Vaccine Design, (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum.
  • The use of an aluminium hydroxide and/or aluminium phosphate adjuvant is particularly preferred, and antigens are generally adsorbed to these salts. Calcium phosphate is another preferred adjuvant. Other preferred adjuvant combinations include combinations of Th1 and Th2 adjuvants such as CpG & alum or resiquimod & alum. A combination of aluminium phosphate and 3dMPL may be used.
  • To improve thermal stability, a composition may include a temperature protective agent. This component may be particularly useful in adjuvanted compositions (particularly those containing a mineral adjuvant, such as an aluminium salt). As described in WO2006/110603, a liquid temperature protective agent may be added to an aqueous vaccine composition to lower its freezing point e.g. to reduce the freezing point to below 0° C. Thus the composition can be stored below 0° C., but above its freezing point, to inhibit thermal breakdown. The temperature protective agent also permits freezing of the composition while protecting mineral salt adjuvants against agglomeration or sedimentation after freezing and thawing, and may also protect the composition at elevated temperatures e.g. above 40° C. A starting aqueous vaccine and the liquid temperature protective agent may be mixed such that the liquid temperature protective agent forms from 1-80% by volume of the final mixture. Suitable temperature protective agents should be safe for human administration, readily miscible/soluble in water, and should not damage other components (e.g. antigen and adjuvant) in the composition. Examples include glycerin, propylene glycol, and/or polyethylene glycol (PEG). Suitable PEGs may have an average molecular weight ranging from 200-20,000 Da. In a preferred embodiment, the polyethylene glycol can have an average molecular weight of about 300 Da (‘PEG-300’).
  • The invention provides an immunogenic composition comprising: (i) one or more proteins of the invention; and (ii) a temperature protective agent. This composition may be formed by mixing (i) an aqueous composition comprising one or more proteins of the invention, with (ii) a temperature protective agent. The mixture may then be stored e.g. below 0° C., from 0-20° C., from 20-35° C., from 35-55° C., or higher. It may be stored in liquid or frozen form. The mixture may be lyophilised. The composition may alternatively be formed by mixing (i) a dried composition comprising one or more proteins of the invention, with (ii) a liquid composition comprising the temperature protective agent. Thus component (ii) can be used to reconstitute component (i).
  • The compositions of the invention may elicit either or both of a cell mediated immune response and a humoral immune response. This immune response will preferably induce long lasting (e.g. neutralising) antibodies and a cell mediated immunity that can quickly respond upon exposure to chlamydia.
  • Two types of T cells, CD4 and CD8 cells, are generally thought necessary to initiate and/or enhance cell mediated immunity and humoral immunity. CD8 T cells can express a CD8 co-receptor and are commonly referred to as Cytotoxic T lymphocytes (CTLs). CD8 T cells are able to recognized or interact with antigens displayed on MHC Class I molecules.
  • CD4 T cells can express a CD4 co-receptor and are commonly referred to as T helper cells. CD4 T cells are able to recognize antigenic peptides bound to MHC class II molecules. Upon interaction with a MI-IC class II molecule, the CD4 cells can secrete factors such as cytokines. These secreted cytokines can activate B cells, cytotoxic T cells, macrophages, and other cells that participate in an immune response. Helper T cells or CD4+ cells can be further divided into two functionally distinct subsets: TH1 phenotype and TH2 phenotypes which differ in their cytokine and effector function.
  • Activated TH1 cells enhance cellular immunity (including an increase in antigen-specific CTL production) and are therefore of particular value in responding to intracellular infections. Activated TH1 cells may secrete one or more of IL-2, IFNγ, and TNF-β. A TH1 immune response may result in local inflammatory reactions by activating macrophages, NK (natural killer) cells, and CD8 cytotoxic T cells (CTLs). A TH1 immune response may also act to expand the immune response by stimulating growth of B and T cells with IL-12. TH1 stimulated B cells may secrete IgG2a.
  • Activated TH2 cells enhance antibody production and are therefore of value in responding to extracellular infections. Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10.
  • A TH2 immune response may result in the production of IgG1, IgE, IgA and memory B cells for future protection.
  • An enhanced immune response may include one or more of an enhanced TH1 immune response and a TH2 immune response.
  • A TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFNγ, and TNF-β), an increase in activated macrophages, an increase in NK activity, or an increase in the production of IgG2a. Preferably, the enhanced TH1 immune response will include an increase in IgG2a production.
  • A TH1 immune response may be elicited using a TH1 adjuvant. A TH1 adjuvant will generally elicit increased levels of IgG2a production relative to immunization of the antigen without adjuvant. TH1 adjuvants suitable for use in the invention may include for example saponin formulations, virosomes and virus like particles, non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), immunostimulatory oligonucleotides. Immunostimulatory oligonucleotides, such as oligonucleotides containing a CpG motif, are preferred TH1 adjuvants for use in the invention.
  • A TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response (such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgG1, IgE, IgA and memory B cells. Preferably, the enhanced TH2 immune response will include an increase in IgG1 production.
  • A TH2 immune response may be elicited using a TH2 adjuvant. A TH2 adjuvant will generally elicit increased levels of IgG1 production relative to immunization of the antigen without adjuvant. TH2 adjuvants suitable for use in the invention include, for example, mineral containing compositions, oil-emulsions, and ADP-ribosylating toxins and detoxified derivatives thereof. Mineral containing compositions, such as aluminium salts are preferred TH2 adjuvants for use in the invention.
  • Preferably, the invention includes a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant. Preferably, such a composition elicits an enhanced TH1 and an enhanced TH2 response, i.e., an increase in the production of both IgG1 and IgG2a production relative to immunization without an adjuvant. Still more preferably, the composition comprising a combination of a TH1 and a TH2 adjuvant elicits an increased TH1 and/or an increased TH2 immune response relative to immunization with a single adjuvant (i.e., relative to immunization with a TH1 adjuvant alone or immunization with a TH2 adjuvant alone).
  • The immune response may be one or both of a TH1 immune response and a TH2 response. Preferably, immune response provides for one or both of an enhanced TH1 response and an enhanced TH2 response. Preferably, the immune response includes an increase in the production of IgG1 and/or IgG2 and/or IgGA.
  • The invention is preferably used to elicit systemic and/or mucosal immunity. The enhanced immune response may be one or both of a systemic and a mucosal immune response. Preferably, the immune response provides for one or both of an enhanced systemic and an enhanced mucosal immune response. Preferably the mucosal immune response is a TH2 immune response. Preferably, the mucosal immune response includes an increase in the production of IgA.
  • Methods of Treatment, and Administration of the Vaccine
  • The invention also provides a method for raising an immune response in a mammal comprising the step of administering an effective amount of a protein, antibody, nucleic acid, vector, host cell or composition of the invention. The immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity. The method may raise a booster response.
  • The invention also provides a protein or combination, as defined above, for use as a medicament e.g. for use in raising an immune response in a mammal.
  • The invention also provides the use of a protein or combination of the invention in the manufacture of a medicament for raising an immune response in a mammal. By raising an immune response in the mammal by these uses and methods, the mammal can be protected against Chlamydia infection.
  • More particularly, the mammal may be protected against Chlamydia trachomatis. The invention is effective against Chlamydia of various different serotypes, but can be particularly useful in protecting against disease resulting from Chlamydia infection by strains in serovar D.
  • Thus, according to a further aspect, the invention also provides a nucleic acid, protein, antibody, vector or host cell according to the invention for use as a medicament (e.g. a vaccine) or a diagnostic reagent. In one embodiment, the protein, nucleic acid or antibody is used for treatment, prevention or diagnosis of Chlamydia infection (preferably C. trachomatis) in a mammal. The invention also provides a method of treating, preventing of diagnosing Chlamydia infection (preferably, C. trachomatis infection) in a patient (preferably a mammal), comprising administering a therapeutically effective amount of a nucleic acid, protein or antibody of the invention.
  • Preferably, the nucleic acid, protein or antibody according to the invention is for treatment or prevention of Chlamydia infection or an associated condition (e.g. trachoma, blindness, cervicitis, pelvic inflammatory disease, infertility, ectopic pregnancy, chronic pelvic pain, salpingitis, urethritis, epididymitis, infant pneumonia, cervical squamous cell carcinoma, etc.), preferably, C. trachomatis infection. The immunogenic composition may additionally or alternatively be effective against C. pneumoniae.
  • The mammal is preferably a human. Where the vaccine is for prophylactic use, the human is preferably a child (e.g. a toddler or infant) or a teenager; where the vaccine is for therapeutic use, the human is preferably a teenager or an adult. A vaccine intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc. Thus a human patient may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old. Preferred patients for receiving the vaccines are people going through puberty, teenagers, sexually active people, the elderly (e.g. ≧50 years old, ≧60 years old, and preferably ≧65 years), the young (e.g. ≦5 years old), hospitalised patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, or immunodeficient patients. The vaccines are not suitable solely for these groups, however, and may be used more generally in a population.
  • Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as a human papillomavirus vaccine such as Cervarix™ or Gardasil™; a tetanus, diphtheria and acellular pertussis vaccine such as TDaP, DTaP or Boostrix™; a rubella vaccine such as MMR; or a tubercolosis vaccine such as the BCG. Examples of other vaccines that the vaccine produced by the invention may be administered at substantially the same time as are a measles vaccine, a mumps vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H. influenzae type b vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A-C-W135-Y vaccine), a respiratory syncytial virus vaccine, etc.
  • In a preferred embodiment, the protein of the invention is used to elicit antibodies that are capable of neutralising the activity of the wild type Chlamydia protein, for example, of one or more of wild-type Chlamydia CT733, CT153, CT601, CT279, CT443, CT372, CT456, CT381, CT255, CT341, CT716, CT745, CT387, CT812, CT869, CT166, CT175, CT163, CT214, CT721, CT127, CT043, CT600 and/or CT823 for example, of one or more of wild-type Chlamydia CT733, CT153, CT601, CT279, CT443, CT372, CT456 and/or CT381. Neutralizing antibodies may be used as a vaccine capable of neutralising the activity of a native Chlamydia protein expressed by infectious EB. In one embodiment, the protein of the invention is used to elicit antibodies that are capable of neutralising Chlamydia infectivity and/or virulence. Thus, the invention also provides the antibodies of the invention for neutralising wild-type Chlamydia proteins and/or Chlamydia infectivity and/or virulence.
  • The invention also provides the use of a nucleic acid, protein, or antibody of the invention in the manufacture of: (i) a medicament for treating or preventing bacterial infection; (ii) a diagnostic reagent for detecting the presence of bacteria or of antibodies raised against bacteria; and/or (iii) a reagent which can raise antibodies against bacteria. Said bacteria is preferably a Chlamydia, e.g. Chlamydia trachomatis or Chlamydia pneumoniae, but is preferably Chlamydia trachomatis.
  • Also provided is a method for diagnosing Chlamydia infection, comprising:
      • (a) raising an antibody against a protein of the invention;
      • (b) contacting the antibody of step (a) with a biological sample suspected of being infected with Chlamydia under conditions suitable for the formation of antibody-antigen complexes; and
      • (c) detecting said complexes, wherein detection of said complex is indicative of Chlamydia infection.
  • Also provided is a method for diagnosing Chlamydia infection, comprising: (a) contacting an antibody which was raised against a protein of the invention with a biological sample suspected of being infected with Chlamydia under conditions suitable for the formation of antibody-antigen complexes; and (b) detecting said complexes, wherein detection of said complex is indicative of Chlamydia infection.
  • Proteins of the invention can be used in immunoassays to detect antibody levels (or, conversely, antibodies of the invention can be used to detect protein levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
  • Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.
  • Testing Efficacy of Compositions
  • The efficacy of the immunogenic compositions of the present invention can be evaluated in in vitro and in vivo animal models prior to host, e.g., human, administration. For example, in vitro neutralization by Peterson et al (1988) is suitable for testing vaccine compositions directed toward Chlamydia trachomatis.
  • One way of checking efficacy of therapeutic treatment involves monitoring C. trachomatis infection after administration of the compositions of the invention. One way of checking efficacy of prophylactic treatment involves monitoring immune responses both systemically (such as monitoring the level of IgG1 and IgG2a production) and mucosally (such as monitoring the level of IgA production) against the Chlamydia trachomatis antigens in the compositions of the invention after administration of the composition. Typically, serum Chlamydia specific antibody responses are determined post-immunisation but pre-challenge whereas mucosal Chlamydia specific antibody body responses are determined post-immunisation and post-challenge.
  • One example of such an in vitro test is described as follows. Hyper-immune antisera is diluted in PBS containing 5% guinea pig serum, as a complement source. Chlamydia trachomatis (104 IFU; inclusion forming units) are added to the antisera dilutions. The antigen-antibody mixtures are incubated at 37° C. for 45 minutes and inoculated into duplicate confluent Hep-2 or HeLa cell monolayers contained in glass vials (e.g., 15 by 45 mm), which have been washed twice with PBS prior to inoculation. The monolayer cells are infected by centrifugation at 1000×g for 1 hour followed by stationary incubation at 37° C. for 1 hour. Infected monolayers are incubated for 48 or 72 hours, fixed and stained with Chlamydia specific antibody, such as anti-MOMP. Inclusion-bearing cells are counted in ten fields at a magnification of 200×. Neutralization titer is assigned on the dilution that gives 50% inhibition as compared to control monolayers/IFU.
  • Another way of assessing the immunogenicity of the compositions of the present invention is to express the proteins recombinantly for screening patient sera or mucosal secretions by immunoblot and/or microarrays. A positive reaction between the protein and the patient sample indicates that the patient has mounted an immune response to the protein in question. This method may also be used to identify immunodominant antigens and/or epitopes within antigens.
  • The efficacy of vaccine compositions can also be determined in vivo by challenging animal models of Chlamydia trachomatis infection, e.g., guinea pigs or mice, with the vaccine compositions. For example, in vivo vaccine composition challenge studies in the guinea pig model of Chlamydia trachomatis infection can be performed. A description of one example of this type of approach follows. Female guinea pigs weighing 450-500 g are housed in an environmentally controlled room with a 12 hour light-dark cycle and immunized with vaccine compositions via a variety of immunization routes. Post-vaccination, guinea pigs are infected in the genital tract with the agent of guinea pig inclusion conjunctivitis (GPIC), which has been grown in HeLa or McCoy cells (Rank et al. (1988)). Each animal receives approximately 1.4×107 inclusion forming units (IFU) contained in 0.05 ml of sucrose-phosphate-glutamate buffer, pH 7.4 (Schacter, 1980). The course of infection monitored by determining the percentage of inclusion-bearing cells by indirect immunofluorescence with GPIC specific antisera, or by Giemsa-stained smear from a scraping from the genital tract (Rank et al 1988). Antibody titers in the serum is determined by an enzyme-linked immunosorbent assay.
  • Alternatively, in vivo vaccine compositions challenge studies can be performed in the murine model of Chlamydia trachomatis (Morrison et al 1995). A description of one example of this type of approach is as follows. Female mice 7 to 12 weeks of age receive 2.5 mg of depo-provera subcutaneously at 10 and 3 days before vaginal infection. Post-vaccination, mice are infected in the genital tract with 1,500 inclusion-forming units of Chlamydia trachomatis contained in 5 ml of sucrose-phosphate-glutamate buffer, pH 7.4. The course of infection is monitored by determining the percentage of inclusion-bearing cells by indirect immunofluorescence with Chlamydia trachomatis specific antisera, or by a Giemsa-stained smear from a scraping from the genital tract of an infected mouse. The presence of antibody titers in the serum of a mouse is determined by an enzyme-linked immunosorbent assay.
  • Nucleic Acid Immunisation
  • The immunogenic compositions described above include Chlamydia antigens. In all cases, however, the polypeptide antigens can be replaced by nucleic acids (typically DNA) encoding those polypeptides, to give compositions, methods and uses based on nucleic acid immunisation. Nucleic acid immunisation is now a developed field (e.g. see Donnelly et al. (1997) Annu Rev Immunol 15:617-648; Strugnell et al. (1997) Immunol Cell Biol 75(4):364-369; Cui (2005) Adv Genet 54:257-89; Robinson & Torres (1997) Seminars in Immunol 9:271-283; Brunham et al. (2000) J Infect Dis 181 Suppl 3:S538-43; Svanholm et al. (2000) Scand J Immunol 51(4):345-53; DNA Vaccination—Genetic Vaccination (1998) eds. Koprowski et al. (ISBN 3540633928); Gene Vaccination: Theory and Practice (1998) ed. Raz (ISBN 3540644288), etc.).
  • The nucleic acid encoding the immunogen is expressed in vivo after delivery to a patient and the expressed immunogen then stimulates the immune system. The active ingredient will typically take the form of a nucleic acid vector comprising: (i) a promoter; (ii) a sequence encoding the immunogen, operably linked to the promoter; and optionally (iii) a selectable marker. Preferred vectors may further comprise (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii). In general, (i) & (v) will be eukaryotic and (iii) & (iv) will be prokaryotic.
  • Preferred promoters are viral promoters e.g. from cytomegalovirus (CMV). The vector may also include transcriptional regulatory sequences (e.g. enhancers) in addition to the promoter and which interact functionally with the promoter. Preferred vectors include the immediate-early CMV enhancer/promoter, and more preferred vectors also include CMV intron A. The promoter is operably linked to a downstream sequence encoding an immunogen, such that expression of the immunogen-encoding sequence is under the promoter's control.
  • Where a marker is used, it preferably functions in a microbial host (e.g. in a prokaryote, in a bacteria, in a yeast). The marker is preferably a prokaryotic selectable marker (e.g. transcribed under the control of a prokaryotic promoter). For convenience, typical markers are antibiotic resistance genes.
  • The vector of the invention is preferably an autonomously replicating episomal or extrachromosomal vector, such as a plasmid.
  • The vector of the invention preferably comprises an origin of replication. It is preferred that the origin of replication is active in prokaryotes but not in eukaryotes.
  • Preferred vectors thus include a prokaryotic marker for selection of the vector, a prokaryotic origin of replication, but a eukaryotic promoter for driving transcription of the immunogen-encoding sequence. The vectors will therefore (a) be amplified and selected in prokaryotic hosts without polypeptide expression, but (b) be expressed in eukaryotic hosts without being amplified. This arrangement is ideal for nucleic acid immunization vectors.
  • The vector of the invention may comprise a eukaryotic transcriptional terminator sequence downstream of the coding sequence. This can enhance transcription levels. Where the coding sequence does not have its own, the vector of the invention preferably comprises a polyadenylation sequence. A preferred polyadenylation sequence is from bovine growth hormone.
  • The vector of the invention may comprise a multiple cloning site.
  • In addition to sequences encoding the immunogen and a marker, the vector may comprise a second eukaryotic coding sequence. The vector may also comprise an IRES upstream of said second sequence in order to permit translation of a second eukaryotic polypeptide from the same transcript as the immunogen. Alternatively, the immunogen-coding sequence may be downstream of an IRES.
  • The vector of the invention may comprise unmethylated CpG motifs e.g. unmethylated DNA sequences which have in common a cytosine preceding a guanosine, flanked by two 5′ purines and two 3′ pyrimidines. In their unmethylated form these DNA motifs have been demonstrated to be potent stimulators of several types of immune cell.
  • Vectors may be delivered in a targeted way. Receptor-mediated DNA delivery techniques are described in, for example, Findeis et al., Trends Biotechnol. (1993) 11:202; Chiou et al. (1994) Gene Therapeutics: Methods And Applications Of Direct Gene Transfer. ed. Wolff; Wu et al., J. Biol. Chem. (1988) 263:621; Wu et al., J. Biol. Chem. (1994) 269:542; Zenke et al., Proc. Natl. Acad. Sci. (USA) (1990) 87:3655; and Wu et al., J. Biol. Chem. (1991) 266:338.
  • Therapeutic compositions containing a nucleic acid are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 11 μg to about 2 mg, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA can also be used during a gene therapy protocol. Factors such as method of action (e.g. for enhancing or inhibiting levels of the encoded gene product) and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy. Where greater expression is desired over a larger area of tissue, larger amounts of vector or the same amounts re-administered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions may be required to effect a positive therapeutic outcome. In all cases, routine experimentation in clinical trials will determine specific ranges for optimal therapeutic effect.
  • Vectors can be delivered using gene delivery vehicles. The gene delivery vehicle can be of viral or non-viral origin (see generally Jolly, Cancer Gene Therapy (1994) 1:51; Kimura, Human Gene Therapy (1994) 5:845; Connelly, Human Gene Therapy (1995) 1:185; and Kaplitt, Nature Genetics (1994) 6:148).
  • Viral-based vectors for delivery of a desired nucleic acid and expression in a desired cell are well known in the art. Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (e.g. WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Pat. No. 5,219,740; WO 93/11230; WO 93/10218; U.S. Pat. No. 4,777,127; GB Patent No. 2,200,651; EP-A-0345242; and WO 91/02805), alphavirus-based vectors (e.g. Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532); hybrids or chimeras of these viruses may also be used), poxvirus vectors (e.g. vaccinia, fowlpox, canarypox, modified vaccinia Ankara, etc.), adenovirus vectors, and adeno-associated virus (AAV) vectors (e.g. see WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Pat. No. 5,219,740; WO 93/11230; WO 93/10218; U.S. Pat. No. 4,777,127; GB Patent No. 2,200,651; EP-A-0345242; WO 91/02805; WO 94/12649; WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984; and WO 95/00655). Administration of DNA linked to killed adenovirus (Curiel, Hum. Gene Ther. (1992) 3:147) can also be employed.
  • Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone (e.g. De Libero et al, Nature Reviews Immunology, 2005, 5: 485-496), ligand-linked DNA (Wu, J. Biol. Chem. (1989) 264:16985), eukaryotic cell delivery vehicles cells (U.S. Pat. No. 5,814,482; WO 95/07994; WO 96/17072; WO 95/30763; and WO 97/42338) and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Pat. No. 5,580,859. Liposomes (e.g. immunoliposomes) that can act as gene delivery vehicles are described in U.S. Pat. No. 5,422,120; WO 95/13796; WO 94/23697; WO 91/14445; and EP-0524968. Additional approaches are described in Philip, Mol. Cell Biol. (1994) 14:2411 and Woffendin, Proc. Natl. Acad. Sci. (1994) 91:11581.
  • Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Donnelly et al. (1997) Annu Rev Immunol 15:617-648. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials or use of ionizing radiation (e.g. U.S. Pat. No. 5,206,152 and WO 92/11033). Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun (U.S. Pat. No. 5,149,655) or use of ionizing radiation for activating transferred genes (Strugnell et al. (1997) Immunol Cell Biol 75(4):364-369 and Cui (2005) Adv Genet 54:257-89).
  • Delivery DNA using PLG {poly(lactide-co-glycolide)} microparticles is a particularly preferred method e.g. by adsorption to the microparticles, which are optionally treated to have a negatively-charged surface (e.g. treated with SDS) or a positively-charged surface (e.g. treated with a cationic detergent, such as CTAB).
  • Antibody Immunisation
  • The antibodies of the invention may be used, for example, for neutralising the activity of the wild-type Chlamydia protein. Antibodies against Chlamydia antigens can be used for passive immunisation (Brandt et al. (2006) J Antimicrob Chemother. 58(6):1291-4. Epub 2006 October 26). Thus the invention provides the use of antibodies of the invention in therapy. The invention also provides the use of such antibodies in the manufacture of a medicament. The invention also provides a method for treating a mammal comprising the step of administering an effective amount of an antibody of the invention. As described above for immunogenic compositions, these methods and uses allow a mammal to be protected against Chlamydia infection.
  • Processes
  • According to further aspects, the invention provides various processes.
  • A process for producing a protein of the invention is provided, comprising the step of culturing a host cell of the invention under conditions which induce protein expression.
  • A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.
  • A process for detecting Chlamydia (preferably C. trachomatis) in a biological sample is also provided, comprising the step of contacting a nucleic acid according to the invention with the biological sample under hybridising conditions. The process may involve nucleic acid amplification (e.g. PCR, SDA, SSSR, LCR, TMA etc.) or hybridisation (e.g. microarrays, blots, hybridisation with probe in solution etc.).
  • A process for detecting wild-type Chlamydia (preferably, C. trachomatis) is provided, comprising the steps of: (a) contacting an antibody of the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complex(es); and (b) detecting said complex(es).
  • This process may advantageously be used to diagnose Chlamydia infection.
  • General
  • The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472; Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.); Handbook of Experimental Immunology, Vols. 1-IV (D. M. Weir and C. C. Blackwell, eds, 1986, Blackwell Scientific Publications); Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition (Cold Spring Harbor Laboratory Press); Handbook of Surface and Colloidal Chemistry (Birdi, K. S. ed., CRC Press, 1997); Ausubel et al. (eds) (2002) Short protocols in molecular biology, 5th edition (Current Protocols); Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al., eds., 1998, Academic Press); and PCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Graham eds., 1997, Springer Verlag) etc.
  • “GI” numbering is used herein. A GI number, or “GenInfo Identifier”, is a series of digits assigned consecutively to each sequence record processed by NCBI when sequences are added to its databases. The GI number bears no resemblance to the accession number of the sequence record. When a sequence is updated (e.g. for correction, or to add more annotation or information) then it receives a new GI number. Thus the sequence associated with a given GI number is never changed.
  • Where the invention concerns an “epitope”, this epitope may be a B-cell epitope and/or a T-cell epitope. Such epitopes can be identified empirically (e.g. using PEPSCAN (Geysen et al. (1984) PNAS USA 81:3998-4002; Carter (1994) Methods Mol Biol 36:207-23) or similar methods), or they can be predicted (e.g. using the Jameson-Wolf antigenic index (Jameson, B A et al. 1988, CABIOS 4(1):181-186). matrix-based approaches (Raddrizzani & Hammer (2000) Brief Bioinform 1 (2):179-89), MAPITOPE (Bublil et al. (2007) Proteins 68(1):294-304), TEPITOPE (De Lalla et al. (1999) J. Inmunol. 163:1725-29; Kwok et al. (2001) Trends Immunol 22:583-88), neural networks (Brusic et al. (1998) Bioinformatics 14(2):121-30), OptiMer & EpiMer (Meister et al. (1995) Vaccine 13(6):581-91; Roberts et al. (1996) AIDS Res Hum Retroviruses 12(7):593-610), ADEPT (Maksyutov & Zagrebelnaya (1993) Comput Appl Biosci 9(3):291-7), Tsites (Feller & de la Cruz (1991) Nature 349(6311):720-1), hydrophilicity (Hopp (1993) Peptide Research 6:183-190), antigenic index (Welling et al. (1985) FEBS Lett. 188:215-218) or the methods disclosed in Davenport et al. (1995) Immunogenetics 42:392-297; Tsurui & Takahashi (2007) J Pharmacol Sci. 105(4):299-316; Tong et al. (2007) Brief Bioinform. 8(2):96-108; Schirle et al. (2001) J Immunol Methods. 257(1-2):1-16; and Chen et al. (2007) Amino Acids 33(3):423-8, etc.). Epitopes are the parts of an antigen that are recognised by and bind to the antigen binding sites of antibodies or T-cell receptors, and they may also be referred to as “antigenic determinants”.
  • Where an antigen “domain” is omitted, this may involve omission of a signal peptide, of a cytoplasmic domain, of a transmembrane domain, of an extracellular domain, etc.
  • The term “comprising” encompasses “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
  • The term “about” in relation to a numerical value x is optional and means, for example, x+10%.
  • References to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987) Supplement 30. A preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-Waterman homology search algorithm is disclosed in Smith & Waterman (1981)Adv. Appl. Math. 2: 482-489.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a graph which shows the ability of 20 selected C. trachomatis antigens to induce IFNγ production by CD4+ T cells.
  • FIG. 2a shows the bacterial shedding (IFUs recovered from lungs) after Chlamydia challenge in mice to whom EB-CM CD4+ T cells had been adoptively transferred. FIG. 2b shows the ability of various C. muridarum antigens to stimulate the protective EB-CD4+ T cell line to produce IFNγ.
  • FIG. 3 is a histogram which shows the number of CD4+ T cells that produce IFNγ, upon specific stimulation with C. trachomatis recombinant antigens CT153 and CT733.
  • FIG. 4 shows the protective activity of TC0106 (C. muridarum homologue of CT733) and TC0431 (C. muridarum homologue of CT153) as single antigens. The graph shows mean IFU/ml in BALB/C mice immunised with the two antigens and then challendged with C. muridarum. The three bars are, from left to right: adjuvant alone; TC0106 as immunogen; and TC0431 as immunogen.
  • FIG. 5 shows the protective activity of the combination TC0106+TC0431. The graph shows mean IFU per lung (Log 10) recovered from infected lungs of mice immunised with the combination. The three bars are, from left to right: 103 live Ebs; adjuvant alone; antigen combination.
  • FIG. 6 shows CD4 T cells producing IFNγ in PBMC of mice immunized with TC0106+TC0431, TC0106, TC0431 and LTK 63+CpG. From left to right, the bars represent stimulation with 1) LTK 63, TC0106+TC0431, TC0106, TC0431 (all EB-immunized mice); 2) LTK 63, TC0106+TC0431, TC0106 (all TC 0106-immunized mice); 3) LTK63, TC0106+TC0431. TC0431 (all TC0431-immunized mice); and 4) LTK63 and TC0106+TC0431 (both TC0106+TC0431-immunized mice). It shows that immunization with TC0106 (C. muridarum homologue of CT733) and TC0431 (C. muridarum homologue of CT153) elicits a significant frequency of specific CD4+/IFNγ+ cells. The Y axis shows frequency on 106 CD4.
  • FIG. 7 is a summary of protection results for various combinations and single antigens in the mouse model of C. muridarum intransal challenge. It shows the mean IFU/lung of mice immunised imtramuscularly with single antigens, or antigen combinations, adjuvanted with LTK63 and CpG, then challenged intranasally with 103 C. muridarum IFU.
  • FIG. 8 is a summary of protection results for various combinations of antigens in the mouse model of C. muridarum intransal challenge. It shows mean IFU/lung (log 10) of C. muridarum recovered from infected lungs of immunised mice.
  • FIG. 9 shows the results of the combination TC0551+TC0651+TC0727+TC0890 in the mouse model of ovarian bursa challenge with C. muridarum. The Y axis shows IFU/swab (log 10). The three groups, from left to right, are for different immunizing antigens: ovalbiumin; the combination; and nMOMP.
  • FIG. 10A shows the protection results achieved with various antigens combinations in the mouse model of C. muridarum intranasal challenge. FIG. 10B shows the frequency of IFNg-producing CD4+ T cells induced by vaccination with the antigen combination TC0890+TC0551. From left to right, the bars represent stimutaion with 1) TC0551, TC0890, TC0551+TC0890 (for adjuvant-immunized mice) and 2) TC0551, TC0890, TC0551+TC0890 (for MIX TC0890+TC0551-immunized mice). FIG. 10C shows CD4 T cells producing TFNg and IL2/TNF in PBMC of mice immunized with TC0106+TC0431 with Ltk63+CpG. From left to right, the bars represent stimulation with a) TC0106. TC0431, TC0106+TC0431, CT153+CT733 (all adjuvant-immunized mice); 2) TC0106, TC0431, TC0106+TC0431, CT153+CT733 (all MIX TC0106+TC0431-immunized mice).
  • FIG. 11 shows an immunoblot analysis of CT601, CT279, CT153 and CT733 in Ct-EBs and C. trachomatis-infected HeLa cells using their specific mouse immune antisera.
  • FIG. 12 shows protective activity of antigens TC0313, TC0741, TC0106 and TC0210 given singly or in combination. In 12A to 12D the bars show mean IFU/lung (Log 10), with the left-hand bar being adjuvant alone (LTK61+CpG) and the right-hand bar being the TC antigen. FIG. 12E shows the IFU reduction over time (Mean IFU/lung against days post-challenge) using the combination (squares) or adjuvant alone (diamonds).
  • FIGS. 13A and 13B are histograms showing the antigen specific CD4 Th1 response in BALB/c mice after a primary C. trachomatis (CT) infection. Results are the mean of 4 independent experiments. Two results are shown for each experiment: non-infected mice (left hand bar) and primary infected mice (right hand bar). From left to right in FIG. 13A, the results relate to stimulation with CT812C, CT387, CT869, CT166 and CT175. From left to right in FIG. 13B, the results relate to stimulation with MOMP, CT163, CT812, CT812C, CT166, CT869, CT163, CT812, CT214, CT387, CT721, CT127 and CT175. The frequency on 105 CD4 T cells is shown on the Y axis.
  • FIG. 14 is a histogram showing C. muridarum IFUs recovered from infected lungs of immunised mice (Day 12 post 1.N. challenge with 103 IFUs). The immunisation group is shown on the X axis: the left hand bar relates to mice immuised with LTK63+CpG; the right hand bar relates to mice immunised with TC0197+TC0261+TC0666+LTK63+CpG. Mean IFU/lung (Log 10) is shown on the Y axis.
  • FIG. 15 is a histogram showing C. muridarum IFUs recovered from infected lungs of immunised mice (Day 12 post 1.N. challenge with 103 IFUs). The immunisation group is shown on the X axis: from left to right, the results relate to mice immunised with i) LTK63+CpG, ii) TC0261+LTK63+CpG, iii) TC0197+LTK63+CpG, and iv) TC0666+LTK63+CpG. Mean IFU/lung (Log 10) is shown on the Y axis.
  • MODES FOR CARRYING OUT THE INVENTION Example 1: Induction of Population of CD4+ T Cells to Produce IFNγ
  • 20 antigens have been found which induce a population of CD4+ T cells to produce IFNγ (see FIG. 1). 17 of these are newly discovered (CT016, CT043, CT114, CT153, CT255, CT279, CT341, CT372, CT480, CT600, CT601, CT711, CT716, CT733, CT734. CT745, CT823), while three antigens (CT681-MOMP, CT396-Hsp60 and CT587-Enolase) have already been described as targets of CD4+ T cells (Goodall J C et al. 2001; Hassell A B et al. 1993). Significantly, some antigens were able to induce a frequency of antigen-specific CD4+ responding T cells at least comparable to what observed with the positive control antigen MOMP.
  • The 17 new antigens are as follows:
  • Antigen Annotation Gene name
    CT016 Hypothetical protein
    CT043 Hypothetical protein
    CT114 Hypothetical protein
    CT153 Hypothetical protein
    CT255 Hypothetical protein
    CT279 Na(+)-translocating NADH-quinone nqr3
    reductase subunit C
    CT341 Heat shock protein J (Hsp-J) dnaJ
    CT372 Hypothetical protein
    CT480 Oligopeptide Binding Lipoprotein oppA_4
    CT600
    CT601 Invasin repeat family phosphatase papQ
    CT711 Hypothetical protein
    CT716 Hypothetical protein
    CT733 Hypothetical protein
    CT734 Hypothetical protein
    CT745 protoporphyrinogen oxidase hemG
    CT823 DO serine protease htrA
  • Of these 17 new antigens, CT341 may be the least suitable for use in immunization because it is a heat shock protein.
  • Example 2: Characterization of the Antigen-Specificity of Protective Chlamydia Specific CD4+ Th1 Cell Lines
  • The relevance of the newly discovered antigens for protective immunity to Chlamydia was further corroborated by showing that they were recognized by T cells belonging to a Chlamydia-specific CD4+/IFNγ+ cell line, conferring protection when adoptively transferred to naïve recipient mice. To this aim we have derived a short-term CD4+ T cell line, produced against the extracellular EB form of C. muridarum that showed a high capacity to protect adoptively transferred naïve mice from C. muridarum challenge. The protective CD4+ cell line, which had undergone only a few cycles of expansion, maintained a polyclonal cell population with broad specificity that should correlate more closely to the in vivo protective response than long-term lines or clones. The polyclonal cell line was analysed for its antigen recognition profile versus the C. muridarum antigens, homologous to the C. trachomatis CD4-Th1 inducing proteins. The dissection of the antigen specificity of the protective CD4+ T cell polyclonal population demonstrated that the Chlamydia CD4+/IFNγ+ inducing-antigens identified during an infection are also targets of CD4+ T cells that play a part in the rapid clearance of the bacterium in a protective response to the infection, in the absence of antibodies. Chlamydia T cell lines were derived from Balb/c infected mice and their protective activity was verified in naïve mice against C. muridarum challenge. Subsequently, the antigen recognition profile of the C. muridarum CD4+ T cell line was characterized to define the possible contribution of each C. muridarum antigen in inducing protective CD4+ T cells. For the preparation of Chlamydia-specific CD4+ T cells, splenic CD4+T lymphocytes were purified from donor Balb/c mice that had previously been infected intranasally with 103 viable Elementary Bodies (EBs) of C. muridarum. An EB-responding CD4+ T cell line was derived (referred as EB-CD4+ cell line) and expanded in vitro with a short term stimulation with heat inactivated EBs. The line showed the capacity to respond to C. muridarum EBs by producing IFNγ with a high frequency (data not shown). To determine the efficacy of the EB-CD4+ cell line in resolving an infection, 107 CD4+ T cells were adoptively transferred into 4 Balb/c recipient naïve mice. Mice were challenged intranasally 24 hours after i.v. infusion of CD4+ T cells with 103 IFUs of C. muridarum. The protective effect of adoptive immunization was evaluated by quantitating the number of IFUs recovered from lungs taken 10 days after Chlamydia challenge. As shown in FIG. 2a , naïve mice adoptively transferred with EB-CM CD4+ T cells shed 3 Log10 fewer IFUs in the lungs 10 days after intranasal challenge with 103 IFUs of C. muridarum, as compared to either non treated mice (p value: 0.008) or mice receiving an unrelated CD4+ T cell line. Similarly, splenic CD4+ T cells isolated from mice that resolved an intravaginal primary infection with 105 IFUs of C. trachomatis conferred significant IFU reduction in adoptively transferred mice (data not shown).
  • To characterize the antigen recognition profile of the C. muridarum CD4+ T cells, most of the C. muridarum proteins, homolog of the proteins identified as CD4+ Th1 inducers during C. trachomatis infection (FIG. 1), were obtained in recombinant form and tested for their ability to stimulate the protective EB-CD4+ T cell line to produce IFNγ. In this analysis we excluded both the proteins which after purification did not reach the purity/endoxin level required for the cytokine stimulation assay, or those which, due to their homology with human bacterial proteins were not suitable for developing a vaccine (e.g. heat shock proteins, enolase). The protective EB-CD4+ T cell line was stimulated in vitro with a panel of 19 C. muridarum recombinant proteins, including MOMP. Fourteen of them were homologs of C. trachomatis CD4+ Th1 inducing antigens identified in the primary screening in infected mice, and 5 were negative controls. As shown in FIG. 2b , all the 14 CD4+-inducing antigens tested were found also to be targets of the protective EB-CM CD4+ T cell line, and able to induce IFNγ production in a percentage of CD4+ T cells at least 3 times higher than the frequency of negative control antigens. Therefore the pattern of T cell antigens recognized by the protective Chlamydia EB-CM T cell line is comparable to the recognition profile of T cells identified in the C. trachomatis infected mice.
  • Example 3: CT733 and CT153 Specific CD4+ Th1 Response in BALB/c Mice after a Primary C. trachomatis Infection
  • Splenocytes of primary infected BALB/c mice and non infected controls were collected 10 days after infection and stimulated with LPS-free recombinant antigens CT733 and CT153 (20 mg/ml). After 4 hours of stimulation, 5 mg/ml of Brefeldin A were added to the cells for the following 12 hrs to block cytokine secretion. Afterwards, cells were fixed, permeabilized and stained. Intracellular IFNγ and IL-5 expression were analyzed versus CD4 surface expression of the gated viable cells and assessed by flow cytometry.
  • The histogram in FIG. 3 shows the number of CD4+ T cells per 105 CD4+T splenocytes of primary infected (dark grey bars) and non-infected (light grey bars) mice that produce IFNγ upon specific stimulation with the C. trachomatis recombinant antigens CT153 and CT733. The data were confirmed in several further experiments using the same protocol.
  • The results indicate that CT733 and CT153 are able to induce significant frequencies of specific CD4+/IFNγ+ cells in splenocytes from Balb/c mice that were infected intravaginally with C. trachomatis, suggesting a potential role as antigen candidates for these proteins.
  • Example 4: Protective Activity of Single Antigens TC0106 and TC0431 Against C. Muridarum Challenge
  • CT733 and CT153 were tested in a mouse model of chlamydial infection to evaluate their protective properties. This was done by adopting the mouse model of lung infection with the species Chlamydia muridarum.
  • The C. muridarum proteins TC0106 and TC0431, homologous to CT733 and CT153, respectively, were cloned and purified, and used for the mouse model.
  • Groups of BALB/c mice were immunized with either TC0106 or TC0431 recombinant antigens formulated with LTK63+CpG adjuvant (3 doses of 15 ug protein, at 2 week interval, given intramuscularly). As negative control, mice were immunized with the adjuvant only. Four weeks after the last immunization animals were infected intranasally with 103 IFU of infectious C. muridarum. After 10 days, the protective activity conferred by the two antigens was measured by counting the infectious IFU in the lung of challenge animals.
  • As shown in FIG. 4, each of the two antigens (middle and right hand columns of the histogram) was able to reduce significantly the number of IFU/lung in challenged mice as compared to adjuvant immunized mice (left hand column of the histogram), indicating that both TC0106 and TC0431 (and therefore CT733 and CT153) confer protective immunity to Chlamydia infection
  • Example 5: Protective Activity of the Combination of TC0106+TC0431 Against C. Muridarum Challenge
  • Groups of BALB/c mice (10 to 15 mice) were immunized with the combination of TC0106+TC0431 recombinant antigens formulated with LTK63+CpG adjuvant (3 doses of 10 ug of each protein at 2 week-interval, given intramuscularly). As negative control, mice were immunized with the adjuvant only. Four weeks after the last immunization, animals were infected intranasally with 103 IFU of infectious C. muridarum. After 10 days, the protective activity conferred by the two antigens was measured by counting the infectious IFU in the lung of challenge animals. As positive control, a group of mice receiving a primary and a secondary C. muridarum infection was also included (left column in the histogram of FIG. 5).
  • As shown in FIG. 5, the antigen combination (right hand column of histogram) was able to significantly reduce the number of IFU/lung in challenged mice as compared to adjuvant immunized mice (middle column of histogram).
  • Thus, immunization with the CT733 and CT153, either alone or in combination, was able to significantly reduce the bacterial load in the lungs of challenged mice (see FIGS. 4 and 5).
  • Example 6: Elicitation of CD4+ Th1 Cells in BALB/c Mice after Immunization with TC0431 and TC0106 Recombinant Antigens, Alone or in Combination
  • Groups of BALB/c mice (10 to 15 mice) were immunized with the recombinant antigens TC0431 and TC0106 as single antigens or in combination (i.m., 10-15 micrograms/dose, 3 doses at 2 week-intervals) using LTK63+CpG adjuvant. Ten days after the third immunization dose, splenocytes were collected and stimulated with LPS-free recombinant antigens (20 mg/ml). As negative control, splenocytes of adjuvant immunized mice were included. After 4 hours of stimulation, 5 mg/ml of Brefeldin A was added to the cells for the following 12 hrs to block cytokine secretion. Afterwards, cells were fixed, permeabilized and stained. The intracellular IFNγ was analyzed versus CD4 surface expression of the gated viable cells and assessed by flow cytometry. The histogram in FIG. 6 shows the number of CD4+ T cells per 105 CD4+ T splenocytes that produce IFNγ upon specific stimulation with the recombinant antigens in mice immunized with TC0106, TC0431, the combination of TC0106+TC0431 and adjuvant immunized mice.
  • The results indicate that immunization with these antigens elicits a high frequency of CD4+ Th1 cells.
  • Example 7: Evaluation of the Protective Effect of the Chlamydial Antigen(s) Against C. Muridarum Challenge
  • The protective effect of combinations of two antigens selected from C. trachomatis CT279, CT601, CT372, CT443, CT733, CT153, CT456 and CT381 was tested in the C. muridarum mouse model using their C. muridarum homologues TC0551 (CT279), TC0651 (CT372), TC0727 (CT443), TC0890 (CT601), TC0106 (CT733), TC0431 (CT153), TC0660 (CT381) and TC0741 (CT456). The protective effect of CT733 and CT153 individually was also tested.
  • BALB/c mice were immunized three times intramuscularly with a combination of two antigens or single antigens with LTK63+CpG as adjuvant. Twenty-four days post last immunization mice were challenged intranasally with 103 IFU C. muridarum. After 10 days, lungs were collected, homogenized and the number of viable chlamydiae (IFU/lung) was measured. The data in FIG. 7 shows the mean IFU/lung counts in antigen-immunized mice and adjuvant-immunized control. From left to right, the lanes relate to (a) adjuvant only; (b) TC0551+TC0890 (CT279+CT601); (c) TC0651+TC0727 (CT372+CT443); (d) TC0106+TC0431 (CT733+CT153); (e) TC0660+TC0741 (CT456+CT381); (f) TC0106 (CT733); (g) TC0431 (CT153). For each antigen formulation, the numbers of infected mice out of the total immunized are reported in the form “Inf X/Y”, wherein X is the number of infected mice and Y is the total number of mice challenged. The statistical significance of immunizing antigen/s (P), was determined by Student t-test.
  • Four combinations of two antigens have been identified as capable of conferring protection against C. muridarum intranasal challenge. For three of them (TC0431+TC0106; TC0727+TC0651; TC0551+TC0890; homologs of CT733+CT153; CT443+CT372; CT279+CT601) protection has been confirmed in a high number of mice using LTK63+CpG adjuvant (FIG. 7). Immunization experiments with TC0431 and TC0106 (CT153 and CT733) as single antigens indicate that the two antigens are both immunogenic individually and that either of the two antigens contributes to protection of the CT153+CT733 combination (FIG. 7). A fourth antigen combination has been recently identified (TC660+TC0741; homologs of CT456 and CT381) showing protection in an immunization experiment (15 mice) (FIG. 7).
  • The experiments were repeated where the protocol differed from that described above in that the mice were challenged intranasally with 103 IFUs of C. muridarum three weeks after the last immunization. Since differences in the duration of infections in the animals may occur, the presence of infectious Chlamydiae in the lungs was determined in each mouse at days 10 and 12 after challenge. Immunization experiments were repeated at least three times so as to generate data from a statistically significant number of mice. FIG. 8 reports the mean number of infectious chlamydiae recovered from lungs of mice immunized with each antigen formulation, in which data obtained at days 10 and 12 were averaged. As shown in FIG. 8, two of the four combinations tested in the mouse model, namely TC0551 (CT279 homolog, 82.6% identity)+TC0890 (CT0601 homolog, 87.6% identity) and TC0106 (CT733 homolog, 84.8% identity)+TC0431 (CT153 homolog, 64.6% identity), showed a statistically significant protective effect in the immunized groups with an IFU reduction of more than 1 Log as compared to the adjuvant-injected mice (P:<0.001). Moreover, 20-25% of the animals immunized with either of the two combinations resolved completely the infection by days 10-12, as compared to 9% of the adjuvant group.
  • Example 8: Evaluation of the Protective Activity of the Combination TC0551+TC0890+TC0106+TC0431 Against Challenge with C. muridarum
  • On the basis of the result discussed in the preceeding Example, groups of mice were immunized with a combination of four antigens TC0551+TC0890+TC0106+TC0431 using the same immunization regimen as in the Example above. As shown in FIG. 8, the 4-antigen combination appeared to have an additive protective effect over the 2-antigen combinations, showing 2.2 Logs reduction of bacterial shedding in the lung (P:0.0003). Moreover, 39% of animals totally resolved the infection, indicating a higher efficacy of this antigen combination in accelerating the bacterial clearance.
  • The remarkable reduction observed in the number of viable Chlamydiae recovered from the lungs of immunized mice is the first demonstration of a high level of protection induced by systemic immunization with recombinant Chlamydia proteins. It has also to be pointed out that, since denatured forms of the recombinant antigens were used, further optimization of antigen conformation could maximize their protective activity.
  • Preliminary data aimed at defining whether any of the 4 recombinant antigens were protective when given as single antigens, indicated that a lower level of IFU reduction was observed (less than 1 log) was obtained with any of them (data not shown). This is in agreement with the notion that, in general, combinatorial vaccination approaches are more effective in conferring protective immunity against a given pathogen than single vaccine approaches, since elicited immune responses target different aspects of the bacterial developmental cycle.
  • Example 9: Evaluation of the Protective Activity of the Combination TC0551+TC0651+TC0727+TC0890 Against Intraovarian Bursa Challenge with C. muridarum
  • The protective effect of the combination TC0551+TC0651+TC0727+TC0890 (homologs of C. trachomatis CT279+CT372+CT443+CT601) was tested in the mouse model of ovarian bursa challenge with C. muridarum using the Montanide+CpG adjuvant. This model has previously been described to assess the protective activity of native MOMP (nMOMP), the chlamydial major outer membrane protein (Pal S et al, Infect Immun., 73:8153, 2005). In this model, the protective activity of the antigens is assessed against progression of infection by counting the chlamydia shedding in vaginals swabs.
  • BALB/c mice were immunized three times intranasally with a combination of the four antigens or with MOMP, with LTK63+CpG as adjuvant. As negative control, a group of mice immunized with ovalbumin was also included. Four weeks after the last immunization, mice received a C. muridarum challenge in the ovarian bursa and chlamydial shedding was measured by counting the IFU in the vaginal swabs of infected animals.
  • The results shown in FIG. 9 represent the number of IFU/vaginal swab at two weeks post challenge. As shown in FIG. 9, mice receiving the combination of all four antigens show a reduced bacterial shedding as compared to the negative control group (Ovalbumin). Thus, the combination reduced the progression of infection. Interestingly, the protection level obtained with the combination does not differ significantly from that obtained with nMOMP, which is the most protective antigen that has been identified so far. Thus, this combination of four antigens is a particularly immunogenic combination.
  • Example 10: Antigen-Specific Cytokine Profiles of Protective CD4+ T Cells
  • Given the importance of the CD4-Th1 response in mediating protection from Chlamydia infection, the type of immune response induced by vaccination with two antigen combinations that elicited protection in mice was analysed (TC0551+TC0890 and TC0106+TC0431). In particular, we measured the simultaneous production from antigen-specific CD4+ T cells of IFNγ, TNF-α and IL-2, considering this as an indication of optimal effector functions of CD4+ T cells, possibly improving protection for vaccines aimed at targeting T-cell responses. The assessment of the cytokine profile induced in a single antigen specific CD4+ T cell by vaccination was performed by multiparametric flow cytometric analysis (Perfetto S P et al., Nat. Rev. Immunol. 4, 648-655, 2004) in immunized mice. Peripheral blood was collected 12 days after the last immunization with antigen combinations TC0551+TC0890 and TC0106+TC0431. PBMC were prepared and the frequency of CD3+, CD4+ antigen-specific IFNγ, IL-2 and TNF-producing cells was assessed by intracellular cytokine staining and flow cytometric determination. As shown in FIG. 10B, vaccination with the antigen combination TC0551-TC0890 induced a high frequency of TC0551-responding CD4+ T cells producing IFNγ (93 TC0551 specific CD4+ T cells on 105 CD4+ cells), while the response to TC0890 was very low, with a frequency of 16 IFNγ+ responding T cells on 105 CD4+ cells. The response to the antigen combination used for immunization showed an increased response compared to single antigens, with 132 IFNγ producing T cells on 105 CD4+ cells. Furthermore, there was a predominant frequency of multifunctional CD4+ T cells, producing either IFNγ and TNF-α or IFNγ/TNF-α/IL-2 simultaneously. In the control group of mock immunized mice there was no cytokine secretion in response to any recombinant antigen used for stimulation, indicating the specificity of the response observed in the vaccinated mice. As far as the CD4+ response to the antigen combination TC0106-TC0431 is concerned (FIG. 10C) both antigens, TC0106 and TC0431 induced a similar response with a frequency respectively of 120 and 98 IFNγ antigen-specific T cells on 105 CD4+, while the antigen combination showed a frequency of 145 IFNγ+ responding T cells on 105 CD4+ cells. The further analysis of cytokines produced simultaneously with IFNγ showed that about 50% of IFNγ+ cells produced also TNF-α and IL-2, while about 30% of them produced TNF-α. Overall these data underline that the Th1 cytokines produced by antigen-specific CD4+ T cells induced by vaccination showed a functional difference that could reflect differences in the capacity to clear the infection.
  • Example: 11. Expression Analysis of CD4+ Inducing Chlamydia Antigens
  • We then investigated the expression of CT279 (subunit C of Na(+)-translocating NADH-quinone reductase), CT601 (Invasin repeat family phosphatase), CT733 (-Hypothetical protein) and CT153 (MAC-Perforin Protein) by immunoblot analysis both in Ct-EBs and within C. trachomatis infected HeLa cells, using their specific mouse immune antisera (FIG. 11A). Total protein lysates of renografin-purified EBs (corresponding to approximately 107 EBs per lane) showed that each tested antiserum was able to react with a protein band of the expected molecular weight in both EB samples, showing in general a higher reactivity against CM EBs. For analysis of antigen expression in Chlamydia-infected cells, total protein extracts were prepared from Hela 229 cells at different time points after infection (24-48-72 h) and tested by immunoblot.
  • The amount of Chlamydial proteins loaded on the gel was normalized on the basis of MOMP expression as described. As shown in FIG. 11B, the four antigens appeared to be expressed at different phases of the Chlamydia development.
  • Finally, we also investigated antigen cellular localization within infected HeLa cells by confocal microscopy in infected Hela cells at 6, 24, 48 and 72 h post infection. As shown in FIG. 11B, expression of all antigens was clearly detected within the inclusions at 24 h post infection and was still visible at 72 h. Interestingly, CT153 staining appeared to accumulate at the inclusion membrane while the other proteins were homogeneously distributed. Since CT153 encodes a MAC-Perforin protein, belonging to a protein family capable of disrupting the cell membrane, the ammassing of this protein at the inclusion membrane might anticipate its involvement in the Chlamydia exit from infected cells.
  • The analysis of the immune response after vaccination with the combinations has shown that all the recombinant antigens induced a robust humoral response, with the production of IgG2a antibody titers higher than IgG1, as expected for a Th1 driven immune response. Since the resolution of a Chlamydia infection requires a Th1 type of cellular immune response, the regulation of CD4+ Th1 effector and memory cells after vaccination has also been investigated. Differences in the type of cytokines produced by individual cells have important implications for their capacity to mediate effector functions, be sustained as memory T cells or both. CD4+ T cells that secrete only IFNγ have limited capacity to develop into memory T cells as compared with IL-2-IFNγ double positive cells (Hayashi N. et al. 2002). Therefore vaccines eliciting high frequency of single-positive IFNγ producing cells may be limited in their ability to provide long-lasting protection. Furthermore the majority of CD4+ T cells that produce IL-2, IFNγ and TNF are classified as effector memory cells, playing an essential role for mediating protection against intracellular pathogens (Darrah P A et al. 2007). We demonstrated that antigen-specific CD4+ T cells induced by immunization with the protective combinations were predominantly multifunctional, being differentiated to ensure a population of Th1 cells that included either effectors and memory cells. An appropriate balance of Th1 lineage cells that can be maintained and those with immediate protective functions might be the successful formula for an effective vaccine.
  • Example 12: Combination of CT823+CT733+CT043+CT456
  • To evaluate the protective activity of antigens TC0106, TC0313, TC0210, TC0741 and their combination, groups of mice were immunized with the 4 antigens either as single or in a 4 antigen-combination, using the same immunization regimen described in Example 7. The protective activity of the single antigens was assessed by measuring the IFU/Lung at day 12 post infection. The protective activity of the 4-ag combination was measured at days 10, 12, 14 post infection, to evaluate the kinetics of the infection clearance. As shown in FIG. 12, the single antigens conferred approximately 0.5-1 log IFU reduction in the lung of infected animals.
  • The four antigens combination showed a highest protective property, indicating a synergic activity of the four antigens in conferring protection, eliciting approximately 4 logs reduction of bacterial shedding in the lung (P<0.0001) at day 12 and showing the tendency to resolve the infection at day 12. Moreover a high number of mice (42%) totally resolved the infection, indicating the efficacy of the antigen combination in accelerating the bacterial clearance.
  • Example 13: Evaluation of Antigenicity of CT812, CT387, CT869, CT166 and CT175
  • Antigen Specific CD4 Tg1 Response in BALB/c Mice after a Primary C. Trachomatis (CT Infection
  • The antigen specific CD4 Th1 response in BALB/c mice after a primary C. trachomatis (CT) infection was evaluated. C. trachomatis antigens identified by the proteomic characterization of the membrane fraction of CT infected HeLa cells were tested for their capability to induce specific CD4+ Th1 response in mice that received an experimental CT infection. Splenocytes of primary infected BALB/c mice and non infected controls were collected 10 days after infection and stimulated with LPS-free recombinant antigens (20 g/ml). After 4 hours of stimulation, 5 μg/ml of Brefeldin A was added to the cells for the following 12 hrs, to block cytokine secretion. Afterwards, cells were fixed, permeabilized and stained. The intracellular IFN-γ expression was analyzed versus CD4 surface expression of the gated viable cells, and assessed by flow cytometry. The histogram in FIG. 13A and FIG. 13B show the number of CD4+ T cells that produce IFNγ, upon specific stimulation with CT recombinant antigens per 105 CD4+ T splenocytes of primary infected (right hand bars) and not-infected (left hand bars) mice. Data are representative of 4 different experiments. As shown in FIG. 13A, CT812C, CT387, CT869 and CT166 induced a significant frequency of CD4+-IFNγ+ cells in splenocytes of infected animals (Pval<0.05). As shown in FIG. 13B, CT812C (a C-terminal fragment of CT812) surprisingly induced a higher frequency of CD4+-IFNγ+ cells in splenocytes of infected animals than did the full length CT812 sequence.
  • Protective Activity of the Combination of TC0197+TC0261+TC0666 Against C. Muridarum Challenge
  • The protective effect of the combination of the three C. trachomatis antigens CT387+CT812+CT869 was tested in the C. muridarum mouse model using their C. muridarum orthologues TC0666, TC0197 and TC0261, respectively. TC0197, TC0261 and TC0666 were cloned and purified for protection studies in the mouse model of intranasal infection with C. muridarum. Groups of BALB/c mice (16 mice per group) were immunized with the combination of the three recombinant antigens TC0197+TC0261+TC0666 formulated with LTK63+CpG adjuvant (3 doses of 10 μg of each protein, at 2 week-interval, given intramuscularly). As a negative control, mice were immunized with the adjuvant only. Four weeks after the last immunization, animals were infected intranasally with 103 IFU of infectious C. muridarum. After 12 days, the protective activity conferred by the two antigens was measured by counting the infectious IFU in the lung of challenge animals. As shown in FIG. 14, the antigen combination TC0197+TC0261+TC0666 was able to reduce significantly the number of IFU/lung in challenged mice as compared to adjuvant immunized mice (1.4 log IFU reduction with Pval<0.05). The finding that the combination of TC0197+TC0261+TC0666 is able to protect mice against C. muridarum challenge (FIG. 14) provides evidence that the combinations CT812+CT869+CT387 and CT812C+CT869+CT387 from C. trachomatis are protective against infection by C. trachomatis.
  • Protective Activity of TC0197, TC0261 and TC0666 as Single Antigens Against C. Muridarum Challenge
  • The protective activity of TC0197, TC0261 and TC0666 as single antigens against C. muridarum challenge was assessed. 3 Groups of BALB/c mice (16 mice per group) were immunized with the three recombinant antigens individually formulated with LTK63+CpG adjuvant (3 doses of 20 ug of each protein, at 2 week-interval, given intramuscularly). As a negative control, mice were immunized with the adjuvant only. Four weeks after the last immunization, animals were infected intranasally (1.N.) with 103 IFU of infectious C. muridarum. After 12 days, the protective activity conferred by the three single antigens was measured by counting the infectious IFU in the lung of challenge animals. As shown in FIG. 15, none of the 3 antigens individually were able to reduce significantly the number of IFU/lung in challenged mice as compared to adjuvant immunized mice.
  • Thus, the combination of TC0197+TC0261+TC0666 is able to protect mice against C. muridarum challenge (FIG. 14). In particular, FIG. 14 shows protection in terms of reduction in the mean number of IFUs recovered from lungs of immunized mice versus adjuvant immunized controls [p=0.0024]. In contrast, the three antigens are not protective when administered individually (FIG. 15).
  • Example 14: Materials and Methods
  • The experimental protocols used in Examples 1, 2, 7 (repeated experiments), 8, 10 and 11 are described in further detail in this Example.
  • Bacterial Strains, Cultures and Reagents
  • Chlamydia muridarum Nigg and Chlamydia trachomatis serovar D strain D/UW-3/CX were grown on confluent monolayers of LLCMK2 (ATCC CCL7) or HeLa 229 cells (ATCC CCL 2.1) in Earle minimal essential medium (EMEM) as described (Caldwell et al. (1981) Infect Immun 31: 1161-1176). Purification of C. trachomatis and C. muridarum EBs was carried out by Renografin density gradient centrifugation as described (Montigiani et al. (2002) Infect Immun 70: 368-379.). Bacteria were aliquoted and stored at −70° C. in sucrose-phosphate-glutamine buffer (SPG) until use. When indicated, EBs were heat inactivated at 56° C. for 3 hours.
  • E. coli DH5c or BL21 (DE3) was grown aerobically in Luria Broth (LB) medium (Difco) at 37° C. When appropriate, ampicillin (100 μg/ml) and isopropyl-beta-D-galactopyranoside (IPTG, 0.5 mM) were added to the medium.
  • Unless specified, all chemicals were purchased from Sigma. Restriction enzymes and DNA modification enzymes were from New England Biolabs. Unless differently stated, all reagents and antibody for intracellular cytokine staining were from BD Biosciences Pharmingen. Confocal microscopy reagents were from Molecular Probes.
  • Gene Cloning, Protein Expression and Preparation of Antisera
  • To produce C. trachomatis recombinant proteins and their C. muridarum homologs, genes were PCR-amplified from C. trachomatis and C. muridarum chromosomal DNA using specific primers annealing at the 5′ and 3′ ends of either gene. The genes were cloned into plasmid pET21b+ (Invitrogen) or pGEXKG (Amersham) in order to express them both as a C-terminal His-tag fusion and as a double fusion protein with an N-terminal Glutathione transferase-encoding sequence and a C-terminal His-tag.
  • Cloning and purification of His- and GST fusions were performed as already described (Montigiani et al., 2002). CT0681 and TC0052, encoding for C. trachomatis and C. muridarum MOMP respectively (Ct MOMP and Cm MOMP, respectively) were expressed as His fusions and purified from the insoluble protein fraction. With the exception of TC0313 and TC0210, all the C. muridarum proteins used in this work were purified only from the insoluble protein fraction in a denatured form.
  • For T cell in vitro stimulation assays, LPS-free proteins were prepared by washing of column-immobilized proteins with buffer Tris-HCl 10 mM, pH 8, containing 1% Triton X114 (35 ml) at 4° C. The amount of residual endotoxin was determined using a Limulus Amebocyte Lysate Analysis Kit (QCL-100, BioWhittaker, Walkerville, Md.).
  • Mouse antisera were generated and treated as described (Montigiani et al., 2002). Where specified, sera from mice immunized with 20 μg of E. coli contaminant proteins (IMAC-purified proteins from E. coli bacteria containing pET21b+ empty vector) were used as negative control. Western blot, ELISA and Flow cytometry of C. trachomatis EBs were performed as described (Finco et al. (2005) Vaccine 23: 1178-1188.).
  • Screening of Antigen Specific CD4-Th1 Response in Splenocytes from Infected Mice
  • Groups of 6 week-old female BALB/c mice purchased from Charles River Laboratories (3 mice/group) received a subcutaneus hormonal treatment with 2.5 μmg of Depo-provera (Medroxyprogesterone acetate) and after five days mice were inoculated intravaginally with 15 μl of SPG buffer containing 106 of C. trachomatis IFU. The level of infection was analyzed 7 days post-challenge, by collecting vaginal swabs and counting chlamydial inclusions 48 h later stained with FITC-conjugated anti Chlamydia antibody (Merifluor) using a UV microscope.
  • The swabs were collected in 400 μl of SPG and were inoculated on LLCMK2 cell monolayers seeded on 96w flat bottom plates. After 48 hours incubation the number of infectious chlamydiae was determined by counting chlamydial inclusions.
  • Ten days post challenge mice were sacrificed and their spleens were taken. Splenocytes were prepared by homogenization through a nylon filter (BD) and the erythrocytes were removed by hypotonic lysis in Ack lysis buffer (NH4Cl 0.155 M, KHCO 3 10 mM, Na2EDTA 0.1 mM) for 3 minutes at RT, then the cells were plated in 96 wells plates at 2×106 cells per well and stimulated with 20 μg/ml of endotoxin-free specific antigen or with 4 μg/ml of purified EBS in presence of 1 μg/ml anti-CD28 antibody (BD Biosciences Pharmingen) for 4 h at 37° C. Brefeldin A (BFA; Sigma-Aldrich) was then added at a final concentration of 2.5 μg/ml and cells were incubated for an additional 16 h before intracellular cytokine staining. Cells were stained for viability with LIVE/DEAD® (Molecular Probes) dye according to the manufacturer's instructions. Cells were then fixed and permeabilized using the Cytofix/Cytoperm kit (BD Biosciences Pharmingen) and stained with fluorochrome-labelled monoclonal antibodies for the detection of cells expressing CD3, CD4 on the surface and intracellular IFNγ and IL-4. Finally, cells were resuspended in PBS 1% BSA. All antibodies for intracellular cytokine staining were purchased from BD Pharmingen. Acquisition of the samples was performed using a BD Canto flow cytometer and data were analyzed using FlowJo software (Tree Star Inc., Ashland, USA). The intracellular expression of IFNγ and IL-4 was analysed in CD4 expressing singlet cells, previously gated for, morphology, CD3 expression and viability. Cells were then harvested and stained for CD4 surface expression and IFNγ, or IL-4 intracellular production, to investigate whether the observed responses were of the Th1 (IFNγ) or Th2 (IL-4) type. As negative control, spleens from not infected mice were harvested and analyzed in parallel.
  • Preparation of CD4+ Th1 Cell Lines and of Antigen Presenting Cells (APCs)
  • Splenocytes were prepared by homogenization from spleens from donor Balb/c mice that had previously been infected intranasally with 103 viable Elementary Bodies (EBs) of Chlamydia muridarum (C. muridarum) as decribed above. Following centrifugation at 1200 rpm and suspension in Macs Buffer (PBS PH 7.2 0.5% BSA and 2 mM EDTA), the cells were incubated with CD4 (L3T4) microbeads (Milteny Biotec) for 15 minutes and then loaded on a LS columns. The CD4 cells bound to the magnet were recovered, washed and suspended in RPMI 1640 supplemented with 2.5% fetal bovine serum (Hyclone), antibiotics, L-Glutammine 2 mM, Sodium Piruvate 1 mM, MEM Not essential amino Acids, MEM Vitamins (Gibco) and Beta-mercaptoethanol 0.5 μM. Then the cells were plated in 6 multiwell plates, 107 cells/wells. After the first stimulation, the purified CD4 were washed twice and then plated with APCs as described below.
  • Also a CD4+ cell line with C. trachomatis was obtained by spleens from donor Balb/c mice that had previously been infected intravaginally with 106 viable Elementary Bodies (EBs) of Chlamydia trachomatis and it was performed as described above for Chlamydia muridarum.
  • The CD4 cells were plated (6×106/well) with APCs (2×107/well) prepared by naïve mice spleens. Splenocytes were prepared as described above, then were washed twice with the medium, gamma irradiated for 7 minutes washed again and suspended in medium.
  • Cultures were then incubated at 37° C. in a humidified atmosphere containing 5% CO2. After 24 h, Aldesleukin Proleukin (IL2) was added at a concentration of 20 U/ml.
  • C. Muridarum and C. trachomatis-Mouse Model of Adoptive Transfer
  • Groups of 6 week-old female BALB/c mice purchased from Charles River Laboratories (4 mice/group), were adoptively transferred by intravenous administration of 107 CD4+ T cells in 100 μl of RPMI-1640 medium (Sigma). Mice were challenged intranasally 24 hours after with 103 IFUs of C. muridarum or 105 IFUs of C. trachomatis. The effect of adoptive immunization was evaluated by quantitating the number of IFUs recovered from lungs taken 10 days after C. muridarum challenge or 6 days after C. trachomatis challenge, as described above.
  • Characterization of the C. Muridarum CD4+ T Cell Line
  • The same day of the adoptive transfer, an aliquot of purified CD4+ T cells were taken to assess the capability of C. muridarum antigens identified in the previous CD4+ Th1+ screening to stimulate them in vitro. 250000 cells/w were plated in 96 multiwell plates with 106 mouse splenocytes CD4 depleted as APC and stimulated with 20 μg/ml of C. muridarum proteins, homologous to the C. trachomatis proteins identified as CD4+ Th1 inducers, in presence of 1 μg/ml anti-CD28 antibody (BD Biosciences Pharmingen) for 3 h at 37° C. Then BFA was added and intracellular staining was carried out as described for the splenocytes.
  • Mouse Protection Model
  • Groups of 6 week-old female BALB/c mice (10-15 mice/group), were immunized intramuscularly (i.m.) with 3 doses of the antigen combinations TC0551-TC890 (15 rig/dose) and TC0106-TC0431 (containing 10 μg of each protein/dose) at days 1, 15, and 28 formulated with 5 μg of LTK63 (Ryan et al., 2000)+10 μg of CpG (ODN 1826) adjuvant dissolved in 50 μl PBS. As negative control, groups of mice that received the adjuvant alone were included and treated in parallel.
  • Three weeks after the last immunization mice were inoculated intranasally (i.n.) with 40 μl of SPG buffer containing 103 IFU of C. muridarum. The Chlamydia challenge dose given to each mouse was confirmed by culturing in triplicate serial dilutions of the inoculating dose on LLCMK2 cell monolayers seeded on 96 wells flat bottom plates. After 24 hours incubation the number of infectious chlamydiae was determined by counting chlamydial inclusions. In the time period between 10- and 12 days post challenge mice were sacrificed, lungs were isolated and their homogenates were used to assess chlamydia growth.
  • Analysis of Antigen Specific CD4-Th1 Response in PBMC of Mice
  • PBMC from mouse were isolated from up to 2 ml of heparinized blood, diluted 1/5 in HBSS (Hanks' Balanced Salt Solution) and separated by density gradient centrifugation over Lympholite-M (Cedarlane). 106 PBMC were plated in duplicate in 96 multiwell plates with 106 mouse splenocytes CD4 depleted as APC and stimulated and stained as described above for mouse splenocytes for 16 h. In this staining was analyzed the expression of IFNγ, TNFα and IL-2.
  • Confocal Microscopy
  • To examine cellular localization of C. trachomatis proteins after infection, HeLa cells (20000) were plated on onto glass coverslides (Ø13 mm) and after 24 hours were infected with CT EBs in 1:1 ratio as described above. At 6, 24, 48 and 72 hours post infection the cells were fixed in 2% paraformaldehyde in PBS buffer for 20 minutes at room temperature. After 2 washes with PBS the cells were permeabilized with a solution of 1%/saponin-0.1% Triton in PBS for 20 minutes.
  • After washing twice and blocking with PBS containing 1% BSA (PBS-BSA), the cell samples were subjected to antibody and chemical staining. The samples were incubated for 1 h at RT (standard dilution 1:5000 in PBS-BSA) with polyclonal antisera obtained from mice immunized with TC601, TC279, TC733 and TC153, previously pre-adsorbed overnight at 4° C. onto nitrocellulose strips containing E. coli BL21 cell total proteins. Goat anti-mouse Alexa Fluor (Molecular Probes) conjugated antibodies (excitation at 488) were used to visualize the localization of each antigen. Propidium Iodide and Phalloidin conjugated with Alexa Fluor dye A620 (Molecular Probes) were used to visualize respectively DNA and actin.
  • After extensive washes in PBS, cells were mounted with Anti-Fade reagent (Molecular Probes) and observed under a laser scanning confocal microscope (Bio-Rad) with 100× oil immersion objective lens.
  • It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.
  • TABLE 2
    C. pneumoniae accession number & annotation C. trachomatis accession number & annotation CT No.
    Hypothetical protein (AAC67968) CT372
    omcB (AAC68042) CT443
    Hypothetical protein (AAC67634) CT043
    Hypothetical protein (AAC67744) CT153
    Nqr3 (AAC67872) CT279
    papQ (AAC68203) CT601
    Hypothetical protein (AAC68306) CT711
    Hypothetical protein (AAC67705) CT114
    oppA_4 (AAC68080) CT480
    Hypothetical protein (AAC68056) CT456
    ArtJ (AAC67977) CT381
    IcrE (AAC67680) CT089
    Hypothetical protein (AAC68329) CT734
    Hypothetical protein (AAC67606) CT016
    gi|4376729|gb|AAD18590.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G Family
    gi|4376729|gb|AAD18590.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G Family
    gi|4376731|gb|AAD18591.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G/I Family
    gi|4376731|gb|AAD18591.1|Polymorphic Outer Membrane gi|3329350|gb|AAC68472.1|Putative Outer Membrane Protein I
    Protein G/I Family
    gi|4376731|gb|AAD18591.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G/I Family
    gi|4376733|gb|AAD18593.1|Polymorphic Outer Membrane gi|3328840|gb|AAC68009.1|Putative outer membrane protein A
    Protein G Family
    gi|4376731|gb|AAD18591.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G/I Family
    gi|4376754|gb|AAD18611.1|Polymorphic Outer Membrane gi|3329344|gb|AAC68467.1|Putative Outer Membrane Protein E
    Protein (Frame-shift with C
    gi|4376260|gb|AAD18163.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G Family
    gi|4376262|gb|AAD18165.1|hypothetical protein gi|3328765|gb|AAC67940.1|hypothetical protein
    gi|4376269|gb|AAD18171.1|hypothetical protein gi|3328825|gb|AAC67995.1|hypothetical protein
    gi|4376270|gb|AAD18172.1|Polymorphic Outer Membrane gi|3329350|gb|AAC68472.1|Putative Outer Membrane Protein I
    Protein G Family
    gi|4376272|gb|AAD18173.1|Predicted OMP {leader peptide: gi|3328772|gb|AAC67946.1|hypothetical protein CT351
    outer membrane}
    gi|4376273|gb|AAD18174.1|Predicted OMP {leader peptide} gi|3328771|gb|AAC67945.1|hypothetical protein CT350
    gi|4376296|gb|AAD18195.1|hypothetical protein gi|3328520|gb|AAC67712.1|Ribulose-P Epimerase
    gi|4376362|gb|AAD18254.1|YbbP family hypothetical protein gi|3328401|gb|AAC67602.1|hypothetical protein
    gi|4376372|gb|AAD18263.1|Signal Peptidase I gi|3328410|gb|AAC67610.1|Signal Peptidase I
    gi|4376397|gb|AAD18286.1|CHLPS hypothetical protein gi|3328506|gb|AAC67700.1|CHLPS hypothetical protein
    gi|4376402|gb|AAD18290.1|ACR family gi|3328505|gb|AAC67699.1|ACR family
    gi|4376419|gb|AAD18305.1|CT149 hypothetical protein gi|3328551|gb|AAC67740.1|possible hydrolase
    gi|4376446|gb|AAD18330.1|hypothetical protein gi|3329261|gb|AAC68390.1|hypothetical protein
    gi|4376466|gb|AAD18348.1|Oligopeptide Binding Protein gi|3328604|gb|AAC67790.1|Oligopeptide Binding Protein CT198
    gi|4376467|gb|AAD18349.1|Oligopeptide Binding Protein gi|3328604|gb|AAC67790.1|Oligopeptide Binding Protein
    gi|4376468|gb|AAD18350.1|Oligopeptide Binding Protein gi|3328539|gb|AAC67730.1|Oligopeptide Binding Protein
    gi|4376469|gb|AAD18351.1|Oligopeptide Binding Protein gi|3328579|gb|AAC67766.1|Oligopeptide binding protein
    permease
    gi|4376520|gb|AAD18398.1|Polysaccharide Hydrolase-Invasin gi|3328526|gb|AAC67718.1|predicted polysaccharide
    Repeat Family hydrolase-invasin repeat family
    gi|4376567|gb|AAD18441.1|Inclusion Membrane Protein C gi|3328642|gb|AAC67825.1|Inclusion Membrane Protein C
    gi|4376576|gb|AAD18449.1|Omp85 Analog gi|3328651|gb|AAC67834.1|Omp85 Analog CT241
    gi|4376577|gb|AAD18450.1|(OmpH-Like Outer Membrane gi|3328652|gb|AAC67835.1|(OmpH-Like Outer Membrane CT242
    Protein) Protein)
    gi|4376601|gb|AAD18472.1|Low Calcium Response D gi|3328486|gb|AAC67681.1|Low Calcium Response D
    gi|4376602|gb|AAD18473.1|Low Calcium Response E gi|3328485|gb|AAC67680.1|Low Calcium Response E CT089
    gi|4376607|gb|AAD18478.1|Phopholipase D Superfamily gi|3328479|gb|AAC67675.1|Phopholipase D Superfamily
    {leader (33) peptide}
    gi|4376615|gb|AAD18485.1|YojL hypothetical protein gi|3328472|gb|AAC67668.1|hypothetical protein CT077
    gi|4376624|gb|AAD18493.1|Solute Protein Binding Family gi|3328461|gb|AAC67658.1|Solute Protein Binding Family
    gi|4376639|gb|AAD18507.1|Flagellar Secretion Protein gi|3328453|gb|AAC67651.1|Flagellar Secretion Protein
    gi|4376664|gb|AAD18529.1|Leucyl Aminopeptidase A gi|3328437|gb|AAC67636.1|Leucyl Aminopeptidase A CT045
    gi|4376672|gb|AAD18537.1|CBS Domain protein (Hemolysin gi|3328667|gb|AAC67849.1|Hypothetical protein containing
    Homolog) CBS domains
    gi|4376679|gb|AAD18543.1|CT253 hypothetical protein gi|3328664|gb|AAC67846.1|hypothetical protein
    gi|4376696|gb|AAD18559.1|CT266 hypothetical protein gi|3328678|gb|AAC67859.1|hypothetical protein CT266
    gi|4376717|gb|AAD18579.1|Phospholipase D superfamily gi|3328698|gb|AAC67877.1|Phospholipase D superfamily
    gi|4376727|gb|AAD18588.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G/I Family
    gi|4376728|gb|AAD18589.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G Family
    gi|4376729|gb|AAD18590.1|Polymorphic Outer Membrane gi|3329350|gb|AAC68472.1|Putative Outer Membrane Protein I
    Protein G Family
    gi|4376731|gb|AAD18591.1|Polymorphic Outer Membrane gi|3329350|gb|AAC68472.1|Putative Outer Membrane Protein I
    Protein G/I Family
    gi|4376733|gb|AAD18593.1|Polymorphic Outer Membrane gi|3328840|gb|AAC68009.1|Putative outer membrane protein A
    Protein G Family
    gi|4376735|gb|AAD18594.1|Polymorphic Outer Membrane gi|3328840|gb|AAC68009.1|Putative outer membrane protein A
    Protein (truncated) A/I Fam
    gi|4376736|gb|AAD18595.1|Polymorphic Outer Membrane gi|3329346|gb|AAC68469.1|Putative Outer Membrane Protein G
    Protein G Family
    gi|4376737|gb|AAD18596.1|Polymorphic Outer Membrane gi|3329347|gb|AAC68470.1|Putative Outer Membrane Protein H
    Protein H Family
    gi|4376751|gb|AAD18608.1|Polymorphic Outer Membrane gi|3329344|gb|AAC68467.1|Putative Outer Membrane Protein E
    Protein E Family
    gi|4376752|gb|AAD18609.1|Polymorphic Outer Membrane gi|3329344|gb|AAC68467.1|Putative Outer Membrane Protein E
    Protein E Family
    gi|4376753|gb|AAD18610.1|Polymorphic Outer Membrane gi|3329344|gb|AAC68467.1|Putative Outer Membrane Protein E
    Protein E/F Family
    gi|4376757|gb|AAD18613.1|hypothetical protein gi|3328701|gb|AAC67880.1|PP-loop superfamily ATPase
    gi|4376767|gb|AAD18622.1|Arginine Periplasmic Binding gi|3328806|gb|AAC67977.1|Arginine Binding Protein CT381
    Protein
    gi|4376790|gb|AAD18643.1|Heat Shock Protein-70 gi|3328822|gb|AAC67993.1|HSP-70 CT396
    gi|4376802|gb|AAD18654.1|CT427 hypothetical protein gi|3328857|gb|AAC68024.1|hypothetical protein
    gi|4376814|gb|AAD18665.1|CT398 hypothetical protein gi|3328825|gb|AAC67995.1|hypothetical protein CT398
    gi|4376829|gb|AAD18679.1|polymorphic membrane protein A gi|3328840|gb|AAC68009.1|Putative outer membrane protein A
    Family
    gi|4376830|gb|AAD18680.1|polymorphic membrane protein B gi|3328841|gb|AAC68010.1|Putative outer membrane protein B
    Family
    gi|4376832|gb|AAD18681.1|Solute binding protein gi|3328844|gb|AAC68012.1|Solute-binding protein CT415
    gi|4376834|gb|AAD18683.1|(Metal Transport Protein) gi|3328846|gb|AAC68014.1|(Metal Transport Protein)
    gi|4376847|gb|AAD18695.1|Tail-Specific Protease gi|3328872|gb|AAC68040.1|Tail-Specific Protease
    gi|4376848|gb|AAD18696.1|15 kDa Cysteine-Rich Protein gi|3328873|gb|AAC68041.1|15 kDa Cysteine-Rich Protein
    gi|4376849|gb|AAD18697.1|60 kDa Cysteine-Rich OMP gi|3328874|gb|AAC68042.1|60 kDa Cysteine-Rich OMP CT443
    gi|4376850|gb|AAD18698.1|9 kDa-Cysteine-Rich Lipoprotein gi|3328876|gb|AAC68043.1|9 kDa-Cysteine-Rich Lipoprotein CT444
    gi|4376878|gb|AAD18723.1|2-Component Sensor gi|3328901|gb|AAC68067.1|2-component regulatory system- CT467
    sensor histidine kinase
    gi|4376879|gb|AAD18724.1|similarity to CHLPS IncA gi|3328451|gb|AAC67649.1|hypothetical protein
    gi|4376884|gb|AAD18729.1|CT471 hypothetical protein gi|3328905|gb|AAC68071.1|hypothetical protein
    gi|4376886|gb|AAD18731.1|YidD family gi|3328908|gb|AAC68073.1|hypothetical protein
    gi|4376890|gb|AAD18734.1|CT476 hypothetical protein gi|3328911|gb|AAC68076.1|hypothetical protein
    gi|4376892|gb|AAD18736.1|Oligopeptide Permease gi|3328913|gb|AAC68078.1|Oligopeptide Permease
    gi|4376894|gb|AAD18738.1|Oligopeptide Binding Lipoprotein gi|3328915|gb|AAC68080.1|oligopeptide Binding Lipoprotein
    gi|4376900|gb|AAD18743.1|Glutamine Binding Protein gi|3328922|gb|AAC68086.1|Glutamine Binding Protein
    gi|4376909|gb|AAD18752.1|Protease gi|6578107|gb|AAC68094.2|Protease
    gi|4376952|gb|AAD18792.1|Apolipoprotein N-Acetyltransferase gi|3328972|gb|AAC68136.1|Apolipoprotein N-Acetyltransferase
    gi|4376960|gb|AAD18800.1|FKBP-type peptidyl-prolyl cis-trans gi|3328979|gb|AAC68143.1|FKBP-type peptidyl-prolyl cis-trans CT541
    isomerise isomerise
    gi|4376968|gb|AAD18807.1|CT547 hypothetical protein gi|3328986|gb|AAC68149.1|hypothetical protein CT547
    gi|4376969|gb|AAD18808.1|CT548 hypothetical protein gi|3328987|gb|AAC68150.1|hypothetical protein
    gi|4376998|gb|AAD18834.1|Major Outer Membrane Protein gi|3329133|gb|AAC68276.1|Major Outer Membrane Protein CT681
    gi|4377005|gb|AAD18841.1|YopC/Gen Secretion Protein D gi|3329125|gb|AAC68269.1|probable Yop proteins
    translocation protein
    gi|4377015|gb|AAD18851.1|FHA domain; (homology to gi|3329115|gb|AAC68259.1|(FHA domain; homology to
    adenylate cyclase) adenylate cyclase)
    gi|4377033|gb|AAD18867.1|CHLPN 76 kDa Homolog_1 gi|3329069|gb|AAC68226.1|CHLPN 76 kDa Homolog CT622
    (CT622)
    gi|4377034|gb|AAD18868.1|CHLPN 76 kDa Homolog_2 gi|6578109|gb|AAC68227.2|CHLPN 76 kDa Homolog CT623
    (CT623)
    gi|4377035|gb|AAD18869.1|Integral Membrane Protein gi|3329071|gb|AAC68228.1|Integral Membrane Protein
    gi|4377072|gb|AAD18902.1|CT648 hypothetical protein gi|3329097|gb|AAC68825.1|hypothetical protein
    gi|4377073|gb|AAD18903.1|CT647 hypothetical protein gi|3329096|gb|AAC68824.1|hypothetical protein CT647
    gi|4377085|gb|AAD18914.1|CT605 hypothetical protein gi|3329050|gb|AAC68208.1|hypothetical protein
    gi|4377090|gb|AAD18919.1|Peptidoglycan-Associated gi|3329044|gb|AAC68202.1|Peptidoglycan-Associated CT600
    Lipoprotein Lipoprotein
    gi|4377091|gb|AAD18920.1|macromolecule transporter gi|3329043|gb|AAC68201.1|component of a macromolecule
    transport system
    gi|4377092|gb|AAD18921.1|CT598 hypothetical protein gi|3329042|gb|AAC68200.1|hypothetical protein
    gi|4377093|gb|AAD18922.1|Biopolymer Transport Protein gi|3329041|gb|AAC68199.1|Biopolymer Transport Protein CT597
    gi|4377094|gb|AAD18923.1|Macromolecule transporter gi|3329040|gb|AAC68198.1|polysaccharide transporter
    gi|4377101|gb|AAD18929.1|CT590 hypothetical protein gi|3329033|gb|AAC68192.1|hypothetical protein
    gi|4377102|gb|AAD18930.1|CT589 hypothetical protein gi|3329032|gb|AAC68191.1|hypothetical protein CT589
    gi|4377106|gb|AAD18933.1|hypothetical protein gi|3328796|gb|AAC67968.1|hypothetical protein
    gi|4377111|gb|AAD18938.1|Enolase gi|3329030|gb|AAC68189.1|Enolase CT587
    gi|4377127|gb|AAD18953.1|General Secretion Protein D gi|3329013|gb|AAC68174.1|Gen. Secretion Protein D
    gi|4377130|gb|AAD18956.1|predicted OMP {leader peptide} gi|3329010|gb|AAC68171.1|predicted OMP CT569
    gi|4377132|gb|AAD18958.1|CT567 hypothetical protein gi|3329008|gb|AAC68169.1|hypothetical protein CT567
    gi|4377133|gb|AAD18959.1|CT566 hypothetical protein gi|3329007|gb|AAC68168.1|hypothetical protein
    gi|4377140|gb|AAD18965.1|Yop Translocation J gi|3329000|gb|AAC68161.1|Yop proteins translocation CT559
    lipoprotein J
    gi|4377170|gb|AAD18992.1|Outer Membrane Protein B gi|3329169|gb|AAC68308.1|Outer Membrane Protein Analog CT713
    gi|4377177|gb|AAD18998.1|Flagellar M-Ring Protein gi|3329175|gb|AAC68314.1|Flagellar M-Ring Protein
    gi|4377182|gb|AAD19003.1|CT724 hypothetical protein gi|3329181|gb|AAC68319.1|hypothetical protein
    gi|4377184|gb|AAD19005.1|Rod Shape Protein gi|3329183|gb|AAC68321.1|Rod Shape Protein
    gi|4377193|gb|AAD19013.1|CT734 hypothetical protein gi|3329192|gb|AAC68329.1|hypothetical protein
    gi|4377206|gb|AAD19025.1|CHLTR possible phosphoprotein gi|3329204|gb|AAC68339.1|CHLTR possible phosphoprotein
    gi|4377222|gb|AAD19040.1|Muramidase (invasin repeat family) gi|3329221|gb|AAC68354.1|Muramidase (invasin repeat family) CT759
    gi|4377223|gb|AAD19041.1|Cell Division Protein FtsW gi|3329222|gb|AAC68355.1|Cell Division Protein FtsW
    gi|4377224|gb|AAD19042.1|Peptidoglycan Transferase gi|3329223|gb|AAC68356.1|Peptidoglycan Transferase CT761
    gi|4377225|gb|AAD19043.1|Muramate-Ala Ligase & D-Ala-D- gi|3329224|gb|AAC68357.1|UDP-N-acetylmuramate-alanine
    Ala Ligase ligase
    gi|4377248|gb|AAD19064.1|Thioredoxin Disulfide Isomerase gi|3329244|gb|AAC68375.1|Thioredoxin Disulfide Isomerase
    gi|4377261|gb|AAD19076.1|CT788 hypothetical protein— gi|3329253|gb|AAC68383.1|{leader (60) peptide-periplasmic}
    {leader peptide-periplasmi
    gi|4377280|gb|AAD19093.1|Insulinase family/Protease III gi|3329273|gb|AAC68402.1|Insulinase family/Protease III
    gi|4377287|gb|AAD19099.1|Putative Outer Membrane Protein gi|3329279|gb|AAC68408.1|Putative Outer Membrane Protein D
    D Family
    gi|4377306|gb|AAD19116.1|DO Serine Protease gi|3329293|gb|AAC68420.1|DO Serine Protease CT823
    gi|4377342|gb|AAD19149.1|ABC transporter permease gi|3329327|gb|AAC68451.1|ABC transporter permease—
    pyrimidine biosynthesis protein
    gi|4377347|gb|AAD19153.1|CT858 hypothetical protein gi|6578118|gb|AAC68456.2|predicted Protease containing
    IRBP and DHR domains
    gi|4377353|gb|AAD19159.1|CT863 hypothetical protein gi|3329337|gb|AAC68461.1|hypothetical protein
    gi|4377367|gb|AAD19171.1|Predicted OMP gi|3328795|gb|AAC67967.1|hypothetical protein
    gi|4377408|gb|AAD19209.1|hypothetical protein gi|3328795|gb|AAC67967.1|hypothetical protein
    gi|4377409|gb|AAD19210.1|Predicted Outer Membrane Protein gi|3328795|gb|AAC67967.1|hypothetical protein
    (CT371)
    gi|4376411|gb| gi|3328512|gb|AAC67705.1|hypothetical protein CT114
    gi|4376508|gb| gi|3328585|gb|AAC67772.1|hypothetical protein CT181
    gi|4376710|gb| gi|3328692|gb|AAC67872.1|NADH (Ubiquinone) CT279
    Oxidoreductase, Gamma
    gi|4376777|gb| gi|3328815|gb|AAC67986.1|hypothetical protein CT389
    gi|4376782|gb| gi|3328817|gb|AAC67988.1|hypothetical protein CT391
    gi|4376863|gb| gi|3328887|gb|AAC68054.1|Arginyl tRNA transferase CT454
    gi|4376866|gb| gi|3328889|gb|AAC68056.1|hypothetical protein CT456
    gi|4376972|gb| gi|3328991|gb|AAC68153.1|D-Ala-D-Ala Carboxypeptidase CT551
    gi|4377139|gb| gi|3329001|gb|AAC68162.1|hypothetical protein CT560
    gi|4377154|gb| gi|3329154|gb|AAC68295.1|hypothetical protein CT700
  • SEQUENCE LISTING 
    SEQ ID NO: 1-CT733 nucleotide sequence
    ATGTTAATAAACTTTACCTTTCGCAACTGTCTTTTGTTCCTTGTCACACTGTCTAGTGTCCCTGTTTTCTCAGCACC
    TCAACCTCGCGGAACGCTTCCTAGCTCGACCACAAAAATTGGATCAGAAGTTTGGATTGAACAAAAAGTCCGCCAAT
    ATCCAGAGCTTTTATGGTTAGTAGAGCCGTCCTCTACGGGAGCCTCTTTAAAATCTCCTTCAGGAGCCATCTTTTCT
    CCAACATTATTCCAAAAAAAGGTCCCTGCTTTCGATATCGCAGTGCGCAGTTTGATTCACTTACATTTATTAATCCA
    GGGTTCCCGCCAAGCCTATGCTCAACTGATCCAACTACAGACCAGCGAATCCCCTCTAACATTTAAGCAATTCCTTG
    CATTGCATAAGCAATTAACTCTATTTTTAAATTCCCCTAAGGAATTTTATGACTCTGTTAAAGTGTTAGAGACAGCT
    ATCGTCTTACGTCACTTAGGCTGTTCAACTAAGGCTGTTGCTGCGTTTAAACCTTATTTCTCAGAAATGCAAAGAGA
    GGCTTTTTACACTAAGGCTCTGCATGTACTACACACCTTCCCAGAGCTAAGCCCATCATTTGCTCGCCTCTCTCCGG
    AGCAGAAAACTCTCTTCTTCTCCTTGAGAAAATTGGCGAATTACGATGAGTTACTCTCGCTGACGAACACCCCAAGT
    TTTCAGCTTCTGTCTGCTGGGCGCTCGCAACGAGCTCTTTTAGCTCTGGACTTGTACCTCTATGCTTTGGATTCCTG
    TGGAGAACAGGGGATGTCCTCTCAATTCCACACAAACTTCGCACCTCTACAGTCCATGTTGCAACAATACGCTACTG
    TAGAAGAGGCCTTTTCTCGTTATTTTACTTACCGAGCTAATCGATTAGGATTTGATGGCTCTTCTCGATCCGAGATG
    GCTTTAGTAAGAATGGCCACCTTGATGAACTTGTCTCCTTCCGAAGCTGCGATTTTAACCACAAGCTTCAAAACCCT
    TCCTACAGAAGAAGCGGATACTTTGATCAATAGTTTCTATACCAATAAGGGCGATTCGTTGGCTCTTTCTCTGCGAG
    GGTTGCCTACACTTGTATCCGAACTGACGCGAACTGCCCATGGCAATACCAATGCAGAAGCTCGATCTCAGCAAATT
    TATGCAACTACCCTATCGCTAGTAGTAAAGAGTCTGAAAGCGCACAAAGAAATGCTAAACAAGCAAATTCTTTCTAA
    GGAAATTGTTTTAGATTTCTCAGAAACTGCAGCTTCTTGCCAAGGATTGGATATCTTTTCCGAGAATGTCGCTGTTC
    AAATTCACTTAAATGGAACCGTTAGTATCCATTTATAA
    SEQ ID NO: 2-CT733 protein sequence
    MLINFTFRNCLLFLVTLSSVPVFSAPQPRGTLPSSTTKIGSEVWIEQKVRQYPELLWLVEPSSTGASLKSPSGAIFS
    PTLFQKKVPAFDIAVRSLIHLHLLIQGSRQAYAQLIQLQTSESPLTFKQFLALHKQLTLFLNSPKEFYDSVKVLETA
    IVLRHLGCSTKAVAAFKPYFSEPWREAFYTKALHVLHTFPELSPSFARLSPEQKTLFFSLRKLANYDELLSLTNTPS
    FQLLSAGRSQRALLALDLYLYALDSCGEQGMSSQFHTNFAPLQSMLQQYATVEEAFSRYFTYRANRLGFDGSSRSEM
    ALVRMATLMNLSPSEAAILTTSFKTLPTEEADTLINSFYTNKGDSLALSLRGLPTLVSELTRTAHGNTNAEARSQRI
    YATTLSLVVKSLKAHKEMLNKQILSKEIVLDFSETAASCQGLDIFSENVAVQIHLNGTVSIHL
    SEQ ID NO: 3-CT153 nucleotide sequence
    ATGACTAAGCCTTCTTTCTTATACGTTATTCAACCTTTTTCCGTATTTAATCCACGATTAGGACGTTTCTCTACAGA
    CTCAGATACTTATATCGAAGAAGAAAACCGCCTAGCATCGTTCATTGAGAGTTTGCCACTGGAGATCTTCGATATAC
    CTTCTTTCATGGAAACCGCGATTTCCAATAGCCCCTATATTTTATCTTGGGAGACAACTAAAGACGGCGCTCTGTTC
    ACTATTCTTGAACCCAAACTCTCAGCTTGCGCAGCCACTTGCCTGGTAGCCCCTTCTATACAAATGAAATCCGATGC
    GGAGCTCCTAGAAGAAATTAAGCAAGCGTTATTACGCAGCTCTCATGACGGTGTGAAATATCGCATCACCAGAGAAT
    CCTTCTCTCCAGAAAAGAAAACTCCTAAGGTTGCTCTAGTCGATGACGATATTGAATTGATTCGCAATGTCGACTTT
    TTGGGTAGAGCTGTTGACATTGTCAAATTAGACCCTATTAATATTCTGAATACCGTAAGCGAAGAGAATATTCTAGA
    TTACTCTTTTACAAGAGAAACGGCTCAGCTGAGCGCGGATGGTCGTTTTGGTATTCCTCCAGGGACTAAGCTATTCC
    CTAAACCTTCTTTTGATGTAGAAATCAGTACCTCCATTTTCGAAGAAACAACTTCATTTACTCGAAGTTTTTCTGCA
    TCGGTTACTTTTAGTGTACCAGACCTCGCGGCGACTATGCCTCTTCAAAGCCCTCCCATGGTAGAAAATGGTCAAAA
    AGAAATTTGTGTCATTCAAAAACACTTATTCCCAAGCTACTCTCCTAAACTAGTCGATATTGTTAAACGATACAAAA
    GAGAGGCTAAGATCTTGATTAACAAGCTTGCCTTTGGAATGTTATGGCGACATCGGGCTAAAAGCCAAATCCTCACC
    GAGGGAAGCGTACGTCTAGACTTACAAGGATTCACAGAATCGAAGTACAATTACCAGATTCAAGTAGGATCCCATAC
    GATTGCAGCTGTATTAATCGATATGGATATTTCCAAGATTCAATCCAAATCAGAACAAGCTTATGCAATTAGGAAAA
    TCAAATCAGGCTTTCAACGTAGCTTGGATGACTATCATATTTATCAAATTGAAAGAAAACAAACCTTTTCTTTTTCT
    CCGAAGCATCGCAGCCTCTCATCCACATCCCATTCCGAAGATTCTGATTTGGATCTTTCTGAAGCAGCCGCCTTTTC
    AGGAAGTCTTACCTGCGAGTTTGTAAAAAAAAGCACTCAACATGCCAAGAATACCGTCACATGTTCCACAGCCGCTC
    ATTCCCTATACACACTCAAAGAAGATGACAGCTCGAACCCCTCTGAAAAACGATTAGATAGTTGTTTCCGCAATTGG
    ATTGAAAACAAACTAAGCGCCAATTCTCCAGATTCCTGGTCAGCGTTTATTCAAAAATTCGGAACACACTATATTGC
    ATCAGCAACTTTTGGAGGGATAGGTTTCCAAGTGCTCAAACTATCTTTTGAACAGGTGGAGGATCTACATAGCAAAA
    AGATCTCCTTAGAAACCGCAGCAGCCAACTCTCTATTAAAAGGTTCTGTATCCAGCAGCACAGAATCTGGATACTCC
    AGCTATAGCTCCACGTCTTCTTCTCATACGGTATTTTTAGGAGGAACGGTCTTACCTTCGGTTCATGATGAACGTTT
    AGACTTTAAAGATTGGTCGGAAAGTGTGCACCTGGAACCTGTTCCTATCCAGGTTTCTTTACAACCTATAACGAATT
    TACTAGTTCCTCTCCATTTTCCTAATATCGGTGCTGCAGAGCTCTCTAATAAACGAGAATCTCTTCAACAAGCGATT
    CGAGTCTATCTCAAAGAACATAAAGTAGATGAGCAAGGAGAACGTACTACATTTACATCAGGAATCGATAATCCTTC
    TTCCTGGTTTACCTTAGAAGCTGCCCACTCTCCTCTTATAGTCAGTACTCCTTACATTGCTTCGTGGTCTACGCTTC
    CTTATTTGTTCCCAACATTAAGAGAACGTTCTTCGGCAACCCCTATCGTTTTCTATTTTTGTGTAGATAATAATGAA
    CATGCTTCGCAAAAAATATTAAACCAATCGTATTGCTTCCTCGGGTCCTTGCCTATTCGACAAAAAATTTTTGGTAG
    CGAATTTGCTAGTTTCCCCTATCTATCTTTCTATGGAAATGCAAAAGAGGCGTACTTTGATAACACGTACTACCCAA
    CGCGTTGTGGGTGGATTGTTGAAAAGTTAAATACTACACAAGATCAATTCCTCCGGGATGGAGACGAGGTGCGACTA
    AAACATGTTTCCAGCGGAAAGTATCTAGCAACAACTCCTCTTAAGGATACCCATGGTACACTCACGCGTACAACGAA
    CTGTGAAGATGCTATCTTTATTATTAAAAAATCTTCAGGTTATTGA
    SEQ ID NO: 4-CT153 protein sequence
    MTKPSFLYVIQPFSVFNPRLGRFSTDSDTYIEEENRLASFIESLPLEIFDIPSFMETAISNSPYILSWETTKDGALF
    TILEPKLSACAATCLVAPSIQMKSDAELLEEIKQALLRSSHDGVKYRITRESFSPEKKTPKVALVDDDIELIRNVDF
    LGRAVDIVKLDPINILNIVSEENILDYSFTRETAQLSADGRFGIPPGTKLFPKPSFDVEISTSIFEETTSFTRSFSA
    SVTFSVPDLAATMPLQSPPMVENGQKEICVIQKHLFPSYSPKLVDIVKRYKREAKILINKLAFGMLWRHRAKSQILT
    EGSVRLDLQGFTESKYNYQIQVGSHTIAAVLIDMDISKIQSKSEQAYAIRKIKSGFQRSLDDYHIYQIERKQTFSFS
    PKHRSLSSTSHSEDSDLDLSEAAAFSGSLTCEFVKKSTQHAKNTVTCSTAAHSLYTLKEDDSSNPSEKRLDSCFRNW
    IENKLSANSPDSWSAFIQKFGTHYIASATFGGIGFQVLKLSFEQVEDLHSKKISLETAAANSLLKGSVSSSTESGYS
    SYSSTSSSHTVFLGGTVLPSVHDERLDFKDWSESVHLEPVPIQVSLQPITNLLVPLHFPNIGAAELSNKRESLQQAI
    RVYLKEHKVDEQGERTTFTSGIDNPSSWFTLEAAHSPLIVSTPYIASWSTLPYLFPTLRERSSATPIVFYFCVDNNE
    HASQKILNQSYCFLGSLPIRQKIFGSEFASFPYLSFYGNAKEAYFDNTYYPTRCGWIVEKLNTTQDQFLRDGDEVRL
    KHVSSGKYLATTPLKDTHGTLTRTTNCEDAIFIIKKSSGY
    SEQ ID NO: 5-CT601 nucleotide sequence
    ATGCTCGCTAATCGCTTATTCTTAATAACCCTTTTAGGGTTAAGTTCGTCTGTTTACGGCGCAGGTAAAGCACCGTC
    TTTGCAGGCTATTCTAGCCGAAGTCGAAGACACCTCCTCTCGTCTACACGCTCATCACAATGAGCTTGCTATGATCT
    CTGAACGCCTCGATGAGCAAGACACGAAACTACAGCAACTTTCGTCAACACAAGATCATAACCTACCTCGACAAGTT
    CAGCGACTAGAAACGGACCAAAAAGCTTTGGCAAAAACACTGGCGATTCTTTCGCAATCCGTCCAAGATATTCGGTC
    TTCTGTACAAAATAAATTACAAGAAATCCAACAAGAACAAAAAAAATTAGCACAAAATTTGCGAGCGCTTCGTAACT
    CTTTACAAGCTCTCGTTGATGGCTCTTCTCCAGAAAATTATATTGATTTCCTAACTGGTGAAACCCCGGAACATATT
    CATATTGTTAAACAAGGAGAGACCCTGAGCAAGATCGCGAGTAAATATAACATCCCCGTCGTAGAATTAAAAAAACT
    TAATAAACTAAATTCGGATACTATTTTTACAGATCAAAGAATTCGCCTTCCGAAAAAGAAATAG
    SEQ ID NO: 6-CT601 protein sequence
    MLANRLFLITLLGLSSSVYGAGKAPSLQAILAEVEDTSSRLHAHHNELAMISERLDEQDTKLQQLSSTQDHNLPRQV
    QRLETDQKALAKTLAILSQSVQDIRSSVQNKLQEIQQEQKKLAQNLRALRNSLQALVDGSSPENYIDFLTGETPEHI
    HIVKQGETLSKIASKYNIPVVELKKLNKLNSDTIFTDQRIRLPKKK
    SEQ ID NO: 7-CT279 nucleotide sequence
    ATGGCATCCAAGTCTCGCCATTATCTTAATCAGCCTTGGTACATTATCTTATTCATCTTTGTTCTTAGTTTAATTGC
    TGGTACCCTCCTGTCTTCTGTGTATTATGTCCTTGCACCTATCCAACAGCAAGCTGCGGAATTCGATCGCAATCAAC
    AAATGCTAATGGCTGCACAAGTAATTTCTTCCGATAACACATTCCAAGTCTATGAAAAGGGAGATTGGCACCCAGCC
    CTATATAATACTAAAAAGCAGTTGCTAGAGATCTCCTCTACTCCTCCTAAAGTAACCGTGACAACTTTAAGCTCATA
    TTTTCAAAACTTTGTTAGAGTCTTGCTTACAGATACACAAGGAAATCTTTCTTCATTCGAAGACCATAATCTCAATC
    TAGAAGAATTTTTATCTCAACCAACTCCTGTAATACATGGTCTTGCCCTTTATGTGGTCTACGCTATCCTACACAAC
    GATGCAGCTTCCTCTAAATTATCTGCTTCCCAAGTAGCGAAAAATCCAACAGCTATAGAATCTATAGTTCTTCCTAT
    AGAAGGTTTTGGTTTGTGGGGACCTATCTATGGATTCCTTGCTCTAGAAAAAGACGGGAATACTGTTCTTGGTACTT
    CTTGGTATCAACATGGCGAGACTCCTGGATTAGGAGCAAATATCGCTAACCCTCAATGGCAAAAAAATTTCAGAGGC
    AAAAAAGTATTTCTAGTCTCAGCTTCTGGAGAAACAGATTTTGCTAAGACAACCCTAGGACTGGAAGTTATAAAAGG
    ATCTGTATCTGCAGCATTAGGAGACTCACCTAAAGCTGCTTCTTCCATCGACGGAATTTCAGGAGCTACTTTGACTT
    GTAATGGTGTTACCGAATCCTTCTCTCATTCTCTAGCTCCCTACCGCGCTTTGTTGACTTTCTTCGCCAACTCTAAA
    CCTAGTGGAGAGTCTCATGACCACTAA
    SEQ ID NO: 8-CT279 protein sequence
    MASKSRHYLNQPWYIILFIFVLSLIAGTLLSSVYYVLAPIQQQAAEFDRNQQMLMAAQVISSDNTFQVYEKGDWHPA
    LYNTKKQLLEISSTPPKVIVTTLSSYFQNFVRVLLTDTQGNLSSFEDHNLNLEEFLSQPTPVIHGLALYVVYAILHN
    DAASSKLSASQVAKNPTAIESIVLPIEGFGLWGPIYGFLALEKDGNTVLGTSWYQHGETPGLGANIANPQWQKNFRG
    KKVFLVSASGETDFAKTTLGLEVIKGSVSAALGDSPKAASSIDGISGATLTCNGVIESFSHSLAPYRALLIFFANSK
    PSGESHDH
    SEQ ID NO: 9-CT443 nucleotide sequence
    ATGCGAATAGGAGATCCTATGAACAAACTCATCAGACGAGCAGTGACGATCTTCGCGGTGACTAGTGTGGCGAGTTT
    ATTTGCTAGCGGGGTGTTAGAGACCTCTATGGCAGAGTCTCTCTCTACAAACGTTATTAGCTTAGCTGACACCAAAG
    CGAAAGACAACACTTCTCATAAAAGCAAAAAAGCAAGAAAAAACCACAGCAAAGAGACTCCCGTAGACCGTAAAGAG
    GTTGCTCCGGTTCATGAGTCTAAAGCTACAGGACCTAAACAGGATTCTTGCTTTGGCAGAATGTATACAGTCAAAGT
    TAATGATGATCGCAATGTTGAAATCACACAAGCTGTTCCTGAATATGCTACGGTAGGATCTCCCTATCCTATTGAAA
    TTACTGCTACAGGTAAAAGGGATTGTGTTGATGTTATCATTACTCAGCAATTACCATGTGAAGCAGAGTTCGTACGC
    AGTGATCCAGCGACAACTCCTACTGCTGATGGTAAGCTAGTTTGGAAAATTGACCGCTTAGGACAAGGCGAAAAGAG
    TAAAATTACTGTATGGGTAAAACCTCTTAAAGAAGGTTGCTGCTTTACAGCTGCAACAGTATGCGCTTGTCCAGAGA
    TCCGTTCGGTTACAAAATGTGGACAACCTGCTATCTGTGTTAAACAAGAAGGCCCAGAGAATGCTTGTTTGCGTTGC
    CCAGTAGTTTACAAAATTAATATAGTGAACCAAGGAACAGCAACAGCTCGTAACGTTGTTGTTGAAAATCCTGTTCC
    AGATGGTTACGCTCATTCTTCTGGACAGCGTGTACTGACGTTTACTCTTGGAGATATGCAACCTGGAGAGCACAGAA
    CAATTACTGTAGAGTTTTGTCCGCTTAAACGTGGTCGTGCTACCAATATAGCAACGGTTTCTTACTGTGGAGGACAT
    AAAAATACAGCAAGCGTAACAACTGTGATCAACGAGCCTTGCGTACAAGTAAGTATTGCAGGAGCAGATTGGTCTTA
    TGTTTGTAAGCCTGTAGAATATGTGATCTCCGTTTCCAATCCTGGAGATCTTGTGTTGCGAGATGTCGTCGTTGAAG
    ACACTCTTTCTCCCGGAGTCACAGTTCTTGAAGCTGCAGGAGCTCAAATTTCTTGTAATAAAGTAGTTTGGACTGTG
    AAAGAACTGAATCCTGGAGAGTCTCTACAGTATAAAGTTCTAGTAAGAGCACAAACTCCTGGACAATTCACAAATAA
    TGTTGTTGTGAAGAGCTGCTCTGACTGTGGTACTTGTACTTCTTGCGCAGAAGCGACAACTTACTGGAAAGGAGTTG
    CTGCTACTCATATGTGCGTAGTAGATACTTGTGACCCTGTTTGTGTAGGAGAAAATACTGTTTACCGTATTTGTGTC
    ACCAACAGAGGTTCTGCAGAAGATACAAATGTTTCTTTAATGCTTAAATTCTCTAAAGAACTGCAACCTGTATCCTT
    CTCTGGACCAACTAAAGGAACGATTACAGGCAATACAGTAGTATTCGATTCGTTACCTAGATTAGGTTCTAAAGAAA
    CTGTAGAGTTTTCTGTAACATTGAAAGCAGTATCAGCTGGAGATGCTCGTGGGGAAGCGATTCTTTCTTCCGATACA
    TTGACTGTTCCAGTTTCTGATACAGAGAATACACACATCTATTAA
    SEQ ID NO: 10-CT443 protein sequence
    MRIGDPMNKLIRRAVTIFAVTSVASLFASGVLETSMAESLSTNVISLADTKAKDNTSHKSKKARKNHSKETPVDRKE
    VAPVHESKATGPKQDSCFGRMYTVKVNDDRNVEITQAVPEYATVGSPYPIEITAIGKRDCVDVIITQQLPCEAEFVR
    SDPATTPTADGKLVWKIDRLGQGEKSKITVWVKPLKEGCCFTAATVCACPEIRSVTKCGQPAICVKQEGPENACLRC
    PVVYKINIVNQGTATARNVVVENPVPDGYAHSSGQRVLIFTLGDMQPGEHRTITVEFCPLKRGRATNIATVSYCGGH
    KNTASVTTVINEPCVQVSIAGADWSYVCKPVEYVISVSNPGDLVLRDVVVEDTLSPGVTVLEAAGAQISCNKVVWTV
    KELNPGESLQYKVLVRAQTPGQFTNNVVVKSCSDCGTCTSCAEATTYWKGVAATHMCVVDTCDPVCVGENTVYRICV
    TNRGSAEDTNVSLMLKFSKELQPVSFSGPTKGTITGNTVVFDSLPRLGSKETVEFSVTLKAVSAGDARGEAILSSDT
    LTVPVSDTENTHIY
    SEQ ID NO: 11-CT372 nucleotide sequence
    ATGCAGGCTGCACACCATCACTATCACCGCTACACAGATAAACTGCACAGACAAAACCATAAAAAAGATCTCATCTC
    TCCCAAACCTACCGAACAAGAGGCGTGCAATACTTCTTCCCTTAGTAAGGAATTAATCCCTCTATCAGAACAAAGAG
    GCCTTTTATCCCCCATCTGTGACTTTATTTCGGAACGCCCTTGCTTACACGGAGTTTCTGTTAGAAATCTCAAGCAA
    GCGCTAAAAAATTCTGCAGGAACCCAAATTGCACTGGATTGGTCTATTCTCCCTCAATGGTTCAATCCTCGGGTCTC
    TCATGCCCCTAAGCTTTCTATCCGAGACTTTGGGTATAGCGCACACCAAACTGTTACCGAAGCCACTCCTCCTTGCT
    GGCAAAACTGCTTTAATCCATCTGCGGCCGTTACTATCTATGATTCCTCATATGGGAAAGGGGTCTTTCAAATATCC
    TATACCCTTGTCCGCTATTGGAGAGAGAATGCTGCGACTGCTGGCGATGCTATGATGCTCGCAGGGAGTATCAATGA
    TTATCCCTCTCGTCAGAACATTTTCTCTCAGTTTACTTTCTCCCAAAACTTCCCAAATGAACGGGTGAGTCTGACAA
    TTGGTCAGTACTCACTCTATGCAATAGACGGAACATTATACAATAACGATCAACAACTTGGATTCATTAGTTACGCA
    TTATCACAAAATCCAACAGCAACTTATTCCTCTGGAAGTCTTGGAGCTTACCTACAAGTCGCTCCTACCGCAAGCAC
    AAGTCTTCAAATAGGATTTCAAGACGCTTATAATATCTCCGGATCCTCTATCAAATGGAGTAACCTTACAAAAAATA
    GATACAATTTTCACGGTTTTGCTTCCTGGGCTCCCCGCTGTTGCTTAGGATCTGGCCAGTACTCCGTGCTTCTTTAT
    GTGACTAGACAAGTTCCAGAACAGATGGAACAAACAATGGGATGGTCAGTCAATGCGAGTCAACACATATCTTCTAA
    ACTGTATGTGTTTGGAAGATACAGCGGTGTTACAGGACATGTGTTCCCGATTAACCGCACGTATTCATTCGGTATGG
    CCTCTGCAAATTTATTTAACCGTAACCCACAAGATTTATTTGGAATTGCTTGCGCATTCAATAATGTACACCTCTCT
    GCTTCTCCAAATACTAAAAGAAAATACGAAACTGTAATCGAAGGGTTTGCAACTATCGGTTGCGGCCCCTATCTTTC
    TTTCGCTCCAGACTTCCAACTCTACCTCTACCCAGCTCTTCGTCCAAACAAACAATCTGCCCGTGTTTATAGCGTGC
    GAGCTAATTTAGCTATCTAA
    SEQ ID NO: 12-CT372 protein sequence
    MQAAHHHYHRYTDKLHRQNHKKDLISPKPTEQEACNTSSLSKELIPLSEQRGLLSPICDFISERPCLHGVSVRNLKQ
    ALKNSAGTQIALDWSILPQWFNPRVSHAPKLSIRDFGYSAHQTVTEATPPCWQNCFNPSAAVTIYDSSYGKGVFQIS
    YTLVIRYWRENAATAGDAMMLAGSINDYPSUNIFSQFTFSQNFPNERVSLTIGQYSLYAIDGTLYNNDQQLGFISYA
    LSQNPTATYSSGSLGAYLQVAPTASTSLQIGFQDAYNISGSSIKWSNLTKNRYNFHGFASWAPRCCLGSGQYSVLLY
    VTRQVPEQMEQTMGWSVNASQHISSKLYVFGRYSGVTGHVFPINRTYSFGMASANLFNRNPQDLFGIACAFNNVHLS
    ASPNTKRKYETVIEGFATIGCGPYLSFAPDFQLYLYPALRPNKQSARVYSVRANLAI
    SEQ ID NO: 13-CT456 nucleotide sequence
    ATGACGAATTCTATATCAGGTTATCAACCTACTGTTACAACTTCTACATCATCAACCACTTCGGCATCAGGTGCTTC
    CGGATCTCTGGGAGCTTCTTCTGTATCTACTACCGCAAACGCTACAGTTACACAAACAGCAAACGCAACAAATTCAG
    CGGCTACATCTTCTATCCAAACGACTGGAGAGACTGTAGTAAACTATACGAATTCAGCCTCCGCCCCCAATGTAACT
    GTATCGACCTCCTCTTCTTCCACACAAGCCACAGCCACTTCGAATAAAACTTCCCAAGCCGTTGCTGGAAAAATCAC
    TTCTCCAGATACTTCAGAAAGCTCAGAAACTAGCTCTACCTCATCAAGCGATCATATCCCTAGCGATTACGATGACG
    TTGGTAGCAATAGTGGAGATATTAGCAACAACTACGATGACGTAGGTAGTAACAACGGAGATATCAGTAGCAATTAT
    GACGATGCTGCTGCTGATTACGAGCCGATAAGAACTACTGAAAATATTTATGAGAGTATTGGTGGCTCTAGAACAAG
    TGGCCCAGAAAATACAAGTGGTGGTGCAGCAGCAGCACTCAATTCTCTAAGAGGCTCCTCCTACAGCAATTATGACG
    ATGCTGCTGCTGATTACGAGCCGATAAGAACTACTGAAAATATTTATGAGAGTATTGGTGGCTCTAGAACAAGTGGC
    CCAGAAAATACGAGTGGTGGTGCAGCAGCAGCACTCAATTCTCTAAGAGGCTCCTCCTACAGCAATTATGACGATGC
    TGCTGCTGATTACGAGCCGATAAGAACTACTGAAAATATTTATGAGAGTATTGGTGGCTCTAGAACAAGTGGCCCAG
    AAAATACGAGTGATGGTGCAGCAGCAGCAGCACTCAATTCTCTAAGAGGCTCCTCCTACACAACAGGGCCTCGTAAC
    GAGGGTGTATTCGGCCCTGGACCGGAAGGACTACCAGACATGTCTCTTCCTTCATACGATCCTACAAATAAAACCTC
    GTTATTGACTTTCCTCTCCAACCCTCATGTAAAGTCGAAAATGCTTGAAAACTCGGGGCATTTCGTCTTCATTGATA
    CAGATAGAAGTAGTTTCATTCTTGTTCCTAACGGAAATTGGGACCAAGTCTGTTCAATTAAAGTTCAAAATGGAAAG
    ACCAAAGAAGATCTCGACATCAAAGACTTGGAAAACATGTGTGCAAAATTCTGTACAGGGTTTAGCAAATTCTCTGG
    TGACTGGGACAGTCTTGTAGAACCTATGGTGTCAGCCAAAGCTGGAGTGGCCAGCGGAGGCAATCTTCCCAATACAG
    TGATTATCAATAATAAATTCAAAACTTGCGTTGCTTATGGTCCTTGGAATAGCCAGGAAGCAAGTTCTGGTTATACA
    CCTTCTGCTTGGAGACGTGGTCATCGAGTAGATTTTGGAGGAATTTTTGAGAAAGCCAACGACTTTAATAAAATCAA
    CTGGGGAACTCAAGCCGGGCCTAGTAGCGAAGACGATGGCATTTCCTTCTCCAATGAAACTCCTGGAGCTGGTCCTG
    CAGCTGCTCCATCACCAACGCCATCCTCTATTCCTATCATCAATGTCAATGTCAATGTTGGCGGAACTAATGTGAAT
    ATTGGAGATACGAATGTCAACACGACTAACACCACACCAACAACTCAATCTACAGACGCCTCTACAGATACAAGCGA
    TATCGATGACATAAATACCAACAACCAAACTGATGATATCAATACGACAGACAAAGACTCTGACGGAGCTGGTGGAG
    TCAATGGCGATATATCCGAAACAGAATCCTCTTCTGGAGATGATTCAGGAAGTGTCTCTTCCTCAGAATCAGACAAG
    AATGCCTCTGTCGGAAATGACGGACCTGCTATGAAAGATATCCTTTCTGCCGTGCGTAAACACCTAGACGTCGTTTA
    CCCTGGCGAAAATGGCGGTTCTACAGAAGGGCCTCTCCCAGCTAACCAAACTCTCGGAGACGTAATCTCTGATGTAG
    AGAATAAAGGCTCCGCTCAGGATACAAAATTGTCAGGAAATACAGGAGCTGGGGATGACGATCCAACAACCACAGCT
    GCTGTAGGTAATGGAGCGGAAGAGATCACTCTTTCCGACACAGATTCTGGTATCGGAGATGATGTATCCGATACAGC
    GTCTTCATCTGGGGATGAATCCGGAGGAGTCTCCTCTCCCTCTTCAGAATCCAATAAAAATACTGCCGTTGGAAATG
    ACGGACCTTCTGGACTAGATATCCTCGCTGCCGTACGTAAACATTTAGATAAGGTTTACCCTGGCGACAATGGTGGT
    TCTACAGAAGGGCCTCTCCAAGCTAACCAAACTCTTGGAGATATCGTCCAGGATATGGAAACAACAGGGACATCCCA
    AGAAACCGTTGTATCCCCATGGAAAGGAAGCACTTCTTCAACGGAATCAGCAGGAGGAAGTGGTAGCGTACAAACAC
    TACTGCCTTCACCACCTCCAACCCCGTCAACTACAACATTAAGAACGGGCACAGGAGCTACCACCACATCCTTGATG
    ATGGGAGGACCAATCAAAGCTGACATAATAACAACTGGTGGCGGAGGACGAATTCCTGGAGGAGGAACGTTAGAAAA
    GCTGCTCCCTCGTATACGTGCGCACTTAGACATATCCTTTGATGCGCAAGGCGATCTCGTAAGTACTGAAGAGCCTC
    AGCTTGGCTCGATTGTAAACAAATTCCGCCAAGAAACTGGTTCAAGAGGAATCTTAGCTTTCGTTGAGAGTGCTCCA
    GGCAAGCCGGGATCTGCACAGGTCTTAACGGGTACAGGGGGAGATAAAGGCAACCTATTCCAAGCAGCTGCCGCAGT
    CACCCAAGCCTTAGGAAATGTTGCAGGGAAAGTCAACCTTGCGATACAAGGCCAAAAACTATCATCCCTAGTCAATG
    ACGACGGGAAGGGGTCTGTTGGAAGAGATTTATTCCAAGCAGCAGCCCAAACAACTCAAGTGCTAAGCGCACTGATT
    GATACCGTAGGATAA
    SEQ ID NO: 14-CT456 protein sequence
    MTNSISGYQPTVTTSTSSTTSASGASGSLGASSVSTTANATVTQTANATNSAATSSIQTTGETVVNYTNSASAPNVT
    VSTSSSSTQATATSNKTSQAVAGKITSPDTSESSETSSTSSSDHIPSDYDDVGSNSGDISNNYDDVGSNNGDISSNY
    DDAAADYEPIRTTENIYESIGGSRTSGPENTSGGAAAALNSLRGSSYSNYDDAAADYEPIRTTENIYESIGGSRTSG
    PENTSGGAAAALNSLRGSSYSNYDDAAADYEPIRTTENIYESIGGSRTSGPENTSDGAAAAALNSLRGSSYTTGPRN
    EGVFGPGPEGLPDMSLPSYDPINKTSLLTFLSNPHVKSKMLENSGHFVFIDTDRSSFILVPNGNWDQVCSIKVQNGK
    TKEDLDIKDLENMCAKFCTGFSKFSGDWDSLVEPMVSAKAGVASGGNLPNTVIINNKFKTCVAYGPWNSQEASSGYT
    PSAWRRGHRVDFGGIFEKANDFNKINWGTQAGPSSEDDGISFSNETPGAGPAAAPSPTPSSIPIINVNVNVGGTNVN
    IGDTNVNTINTTPTTQSTDASTDTSDIDDINTNNQTDDINTTDKDSDGAGGVNGDISETESSSGDDSGSVSSSESDK
    NASVGNDGPAMKDILSAVRKHLDVVYPGENGGSTEGPLPANQTLGDVISDVENKGSAQDTKLSGNTGAGDDDPITTA
    AVGNGAEEITLSDTDSGIGDDVSDTASSSGDESGGVSSPSSESNKNTAVGNDGPSGLDILAAVRKHLDKVYPGDNGG
    STEGPLQANQTLGDIVQDMETTGTSQETVVSPWKGSTSSTESAGGSGSVQTLLPSPPPTPSTTTLRTGTGATTTSLM
    MGGPIKADIITTGGGGRIPGGGTLEKLLPRIRAHLDISFDAQGDLVSTEEPQLGSIVNKFRQETGSRGILAFVESAP
    GKPGSAQVLTGTGGDKGNLFQAAAAVTQALGNVAGKVNLAIQGQKLSSLVNDDGKGSVGRDLFQAAAQTTQVLSALI
    DTVG
    SEQ ID NO: 15: CT381 nucleotide sequence
    ATGTGCATAAAAAGAAAAAAAACATGGATAGCTTTTTTAGCAGTTGTCTGTAGTTTTTGTTTGACGGGTTGTTTAAA
    AGAAGGGGGAGACTCCAATAGTGAAAAATTTATTGTAGGGACTAATGCAACCTACCCTCCTTTTGAGTTTGTTGATA
    AGCGAGGAGAGGTTGTAGGCTTCGATATAGACTTGGCTAGAGAGATTAGTAACAAGCTGGGGAAAACGCTGGACGTT
    CGGGAGTTTTCCTTTGATGCACTCATTCTAAACCTAAAACAGCATCGGATTGATGCGGTTATAACAGGGATGTCCAT
    TACTCCTTCTAGATTGAAGGAAATTCTTATGATTCCCTATTATGGGGAGGAAATAAAACACTTGGTTTTAGTGTTTA
    AAGGAGAGAATAAGCATCCATTGCCACTCACTCAATATCGTTCTGTAGCTGTTCAAACAGGAACCTATCAAGAGGCC
    TATTTACAGTCTCTTTCTGAAGTTCATATTCGCTCTTTTGATAGCACTCTAGAAGTACTCATGGAAGTCATGCATGG
    TAAATCTCCCGTCGCTGTTTTAGAGCCATCTATCGCTCAAGTTGTCTTGAAAGATTTCCCGGCTCTTTCTACAGCAA
    CCATAGATCTCCCTGAAGATCAGTGGGTTTTAGGATACGGGATTGGCGTTGCTTCAGATCGCCCAGCTTTAGCCTTG
    AAAATCGAGGCAGCTGTGCAAGAGATCCGAAAAGAAGGAGTGCTAGCAGAGTTGGAACAGAAGTGGGGTTTGAACAA
    CTAA
    SEQ ID NO: 16: CT381 protein sequence
    MCIKRKKTWIAFLAVVCSFCLTGCLKEGGDSNSEKFIVGINATYPPFEFVDKRGEVVGFDIDLAREISNKLGKTLDV
    REFSFDALILNLKQHRIDAVITGMSITPSRLKEILMIPYYGEEIKHLVLVFKGENKHPLPLTQYRSVAVQTGTYQEA
    YLQSLSEVHIRSFDSTLEVLMEVMHGKSPVAVLEPSIAQVVLKDFPALSTATIDLPEDQWVLGYGIGVASDRPALAL
    KIEAAVQEIRKEGVLAELEQKWGLNN
    SEQ ID NO: 17: CT043 nucleotide sequence
    ATGTCCAGGCAGAATGCTGAGGAAAATCTAAAAAATTTTGCTAAAGAGCTTAAACTCCCCGACGTGGCCTTCGATCA
    GAATAATACGTGCATTTTGTTTGTTGATGGAGAGTTTTCTCTTCACCTGACCTACGAAGAACACTCTGATCGCCTTT
    ATGTTTACGCACCTCTTCTTGACGGACTGCCAGACAATCCGCAAAGAAGGTTAGCTCTATATGAGAAGTTGTTAGAA
    GGCTCTATGCTCGGAGGCCAAATGGCTGGTGGAGGGGTAGGAGTCGCTACTAAGGAACAGTTGATCTTAATGCACTG
    CGTGTTAGACATGAAGTATGCAGAGACCAACCTACTCAAAGCTTTTGCACAGCTTTTTATTGAAACCGTTGTGAAAT
    GGCGAACTGTTTGTTCTGATATCAGCGCTGGACGAGAACCCACTGTTGATACCATGCCACAAATGCCTCAAGGGGGT
    GGCGGAGGAATTCAACCTCCTCCAGCAGGAATCCGTGCATAA
    SEQ ID NO: 18: CT043 protein sequence
    MSRQNAEENLKNFAKELKLPDVAFDQNNICILFVDGEFSLHLTYEEHSDRLYVYAPLLDGLPDNPQRRLALYEKLLE
    GSMLGGQMAGGGVGVATKEQLILMHCVLDMKYAETNLLKAFAQLFIETVVKWRTVCSDISAGREPTVDTMPQMPQGG
    GGGIQPPPAGIRA
    SEQ ID NO: 19: CT711/hypothetical protein (AAC68306)
    MSIQPTSISLTKNITAALAGEQVDAAAVYMPQAVFFFQQLDEKSKGLKQALGLLEEVDLEKFIPSLEKSPTPITTGT
    TSKISADGIEIVGELSSETILADPNKAAAQVFGEGLADSFDDWLRLSENGGIQDPTAIEEEIVTKYQTELNTLRNKL
    KQQSLTDDEYTKLYAIPQNFVKEIESLKNENNVRLIPKSKVTNFWQNIMLTYNSVTSLSEPVTDAMNTTMAEYSLYI
    ERATEAAKLIREITNTIKDIFNPVWDVREQTGIFGLKGAEYNALEGNMIQSLLSFAGLFRQUISRTATVDEIGALYP
    KNDKNEDVIHTAIDDYVNSLADLKANEQVKLNGLLSLVYAYYASTLGFAKKDVFNNAQASFTDYTNFLNQEIQYWTP
    RETSSFNISNQALQTFKNKPSADYNGVYLFDNKGLETNLFNPTFFFDVVSLMTADPIKTMSRQDYNKVITASESSIQ
    KINQAITAWELAIAECGTKKAKLEPSSLNYFNAMVEAKKTFVETSPIQMVYSSLMLDKYLPNQQYILETLGSQNTFS
    NKAARYLNDIIAYAVSFQTADVYYSLGMYLRQMNQQEFPEVISRANDTVKKEIDRSRADLFHCKKAIEKIKELVTSV
    NADTELTSSQRAELLETLASYAFEFENLYHNLSNVYVMVSKVQISGVSKPDEVDEAFTAKIGSKEFDTWIQQLTTFE
    SAVIEGGRNGVMPGGEQQVLQSLESKQQDYTSFNQNQQLALQMESAAIQQEWTMVAAALALMNQIFAKLIRRFK
    SEQ ID NO: 20: CT114/hypothetical protein (AAC67705)
    MCFIGIGSLLLPTALRATERMRKEPIPLLDKQQSFWNVDPYCLESICACFVAHRDPLSAKQLMYLFPQLSEEDVSVF
    ARCILSSKRPEYLFSKSEEELFAKLILPRVSLGVHRDDDLARVLVLAEPSAEEQKARYYSLYLDVLALRAYVERERL
    ASAAHGDPERIDLATIEAINTILFQEEGWRYPSKQEMFENRFSELAAVTDSKFGVCLGTVVLYQAVAQRLDLSLDPV
    TPPGHIYLRYKDKVNIETTSGGRHLPTERYCECIKESQLKVRSQMELIGLTFMNRGAFFLQKGEFLQASLAYEQAQS
    YLSDEQISDLLGITYVLLGKKAAGEALLKKSAEKTRRGSSIYDYFQGYISPEILGVLFADSGVTYQETLEYRKKLVM
    LSKKYPKSGSLRLRLATTALELGLVKEGVQLLEESVKDAPEDLSLRLQFCKILCNRHDYVRAKYHFDQAQALLIKEG
    LFSEKTSYTLLKTIGKKLSLFAPS
    SEQ ID NO: 21: CT480/oppA_4 (AAC68080)
    MIDKIIRTILVLSLFLLYWSSDLLEKDVKSIKRELKALHEDVLELVRISHQQKNWVQSTDFSVSPEISVLKDCGDPA
    FPNLLCEDPYVEKVVPSLLKEGFVPKGILRTAQVGRPDNLSPFNGFVNIVRFYELCVPNLAVEHVGKYEEFAPSLAL
    KIEEHYVEDGSGDKEFHIYLRPNMFWEPIDPTLFPKNITLADSFLRPHPVTAHDVKFYYDVVMNPYVAEMRAVAMRS
    YFEDMVSVRVENDLKLIVRWRAHTVRNEQGEEEKKVLYSAFANTLALQPLPCFVYQHFANGEKIVPEDSDPDTYRKD
    SVWAQNFSSHWAYNYIVSCGAFRFAGMDDEKITLVRNPNYHNPFAALVEKRYIYMKDSTDSLFQDFKAGKVDIAYFP
    PNHVDNLASFMQTSAYKEQAARGEAILEKNSSDRSYSYIGWNCLSLFFNNRSVRQAMNMLIDRDRIIEQCLDGRGVS
    VSGPFSLCSPSYNRDVEGWQYSPEEAARKLEEEGWIDADGDGIREKVIDGVVVPFRFRLCYYVKSVTARTIAEYVAT
    VCKEVGIECCLLGLDMADYSQALEEKNFDAILSGWCLGTPPEDPRALWHSEGALEKGSANAVGFCNEEADRIIEQLS
    YEYDSNKRQALYHRFHEVIHEESPYAFLYSRQYSLVYKEFVKNIFVPTEHQDLIPGAQDETVNLSMLWVDKEEGRCS
    AIS
    SEQ ID NO: 22: CT089/IcrE (AAC67680)
    MTASGGAGGLGSTQTVDVARAQAAAATQDAQEVIGSQEASEASMLKGCEDLINPAAATRIKKKGEKFESLEARRKPT
    ADKAEKKSESTEEKGDTPLEDRFTEDLSEVSGEDFRGLKNSFDDDSSPDEILDALTSKFSDPTIKDLALDYLIQTAP
    SDGKLKSTLIQAKHQLMSQNPQAIVGGRNVLLASETFASRANTSPSSLRSLYFQVTSSPSNCANLHQMLASYLPSEK
    TAVMEFLVNGMVADLKSEGPSIPPAKLQVYMTELSNLQALHSVNSFFDRNIGNLENSLKHEGHAPIPSLTIGNLIKT
    FLQLVEDKFPSSSKAQKALNELVGPDTGPQTEVLNLFFRALNGCSPRIFSGAEKKQQLASVITNTLDAINADNEDYP
    KPGDFPRSSFSSTPPHAPVPQSEIPTSPTSTQPPSP
    SEQ ID NO: 23: CT734/hypothetical protein (AAC68329)
    MKKFIYKYSFGALLLLSGLSGLSSCCANSYGSTLAKNTAEIKEESVTLREKPDAGCKKKSSCYLRKFFSRKKPKEKT
    EPVLPNFKSYADPMTDSERKDLSFVVSAAADKSSIALAMAQGEIKGALSRIREIHPLALLQALAEDPALIAGMKKMQ
    GRDWVWNIFITELSKVFSQAASLGAFSVADVAAFASTLGLDSGTVTSIVDGERWAELIDVVIQNPAI
    SEQ ID NO: 24: CT016/hypothetical protein (AAC67606)
    MKVKINDQFICISPYISARWNQIAFIESCDGGTEGGITLKLHLIDGETVSIPNLGQAIVDEVFQEHLLYLESTAPQK
    NKEEEKISSLLGAVQQMAKGCEVQVFSQKGLVSMLLGGAGSINVLLQHSPEHKDHPDLPTDLLERIAQMMRSLSIGP
    TSILAKPEPHCNCLHCQIGRATVEEEDAGVSDEDLTFRSWDISQSGEKMYTVTDPLNPEEQFNVYLGTPIGCTCGQP
    YCEHVKAVLYT
    SEQ ID NO: 25: CM homolog of CT279 = TC_0551
    ATGGCATCCAAGTCTCGTCATTATCTTAACCAGCCTTGGTACATTATCTTATTCATCTTTGTTCTTAGTCTGGTTGC
    TGGTACCCTTCTTTCTTCAGTTTCCTATGTTCTATCTCCAATCCAAAAACAAGCTGCAGAATTTGATCGTAATCAGC
    AAATGTTGATGGCCGCACAAATTATTTCCTATGACAATAAATTCCAAATATATGCTGAAGGGGATTGGCAACCTGCT
    GTCTATAATACAAAAAAACAGATACTAGAAAAAAGCTCTTCCACTCCACCACAAGTGACTGTGGCGACTCTATGCTC
    TTATTTTCAAAATTTTGTTAGAGTTTTGCTTACAGACTCCCAAGGGAATCTTTCTTCTTTTGAAGATCACAATCTTA
    ACCTAGAAGAGTTCTTATCCCACCCCACATCTTCAGTACAAGATCACTCTCTGCATGTAATTTATGCTATTCTAGCA
    AACGATGAATCCTCTAAAAAGTTATCATCCTCCCAAGTAGCAAAAAATCCGGTATCCATAGAGTCTATTATTCTTCC
    TATAAAAGGATTTGGTTTATGGGGACCAATCTATGGATTTCTTGCTTTAGAAAAGGACGGTAATACGGTTCTAGGGA
    CATGCTGGTATCAACATGGTGAGACTCCAGGATTAGGAGCAAATATAACTAATCCCCAATGGCAACAAAATTTCAGA
    GGAAAAAAAGTATTTCTCGCTTCCTCTTCCGGAGAAACCGATTTTGCTAAAACAACTCTAGGACTAGAAGTTATAAA
    AGGATCTGTTTCTGCATTATTAGGGGACTCTCCCAAAGCTAATTCCGCTGTTGATGGAATTTCAGGAGCTACACTGA
    CCTGTAATGGAGTTACTGAAGCTTTTGCTAATTCGCTAGCTCCTTACCGCCCCTTATTGACTTTCTTCGCCAATCTT
    AACTCTAGTGGAGAATCTCATGACAACCAATAA
    SEQ ID NO: 26: CM homologue of CT279 protein sequence = TC_0551 protein sequence
    MASKSRHYLNQPWYIILFIFVLSLVAGTLLSSVSYVLSPIQKQAAEFDRNQQMLMAAQIISYDNKFQIYAEGDWQPA
    VYNTKKQILEKSSSTPPQVIVATLCSYFQNFVRVLLTDSQGNLSSFEDHNLNLEEFLSHPTSSVQDHSLHVIYAILA
    NDESSKKLSSSQVAKNPVSIESIILPIKGFGLWGPIYGFLALEKDGNTVLGTCWYQHGETPGLGANITNPQWQQNFR
    GKKVFLASSSGETDFAKTTLGLEVIKGSVSALLGDSPKANSAVDGISGATLICNGVTEAFANSLAPYRPLLTFFANL
    NSSGESHDNQ
    SEQ ID NO: 27: CM homologue of CT372 = TC_0651 nucleotide sequence
    ATGAATGGAAAAGTTCTGTGTGAGGTTTCTGTGTCCTTCCGTTCGATTCTGCTGACGGCTCTGCTTTCACTTTCTTT
    TACAAACACTATGCAGGCTGCACACCATCATTATCACCGTTATGATGATAAACTACGCAGACAATACCATAAAAAGG
    ACTTGCCCACTCAAGAGAATGTTCGGAAAGAGTTTTGTAATCCCTACTCTCATAGTAGTGATCCTATCCCTTTGTCA
    CAACAACGAGGAGTCCTATCTCCTATCTGTGATTTAGTCTCAGAGTGCTCGTTTTTGAACGGGATTTCCGTTAGGAG
    TCTTAAACAAACACTGAAAAATTCTGCTGGGACTCAAGTTGCTTTAGACTGGTCTATCCTTCCTCAATGGTTCAATC
    CTAGATCCTCTTGGGCTCCTAAGCTCTCTATTCGAGATCTTGGATATGGTAAACCCCAGTCCCTTATTGAAGCAGAT
    TCCCCTTGTTGTCAAACCTGCTTCAACCCATCTGCTGCTATTACGATTTACGATTCTTCATGTGGGAAGGGTGTTGT
    CCAAGTGTCATACACCCTTGTTCGTTATTGGAGAGAAACGGCTGCACTTGCAGGGCAAACTATGATGCTTGCAGGAA
    GTATTAATGATTATCCTGCTCGCCAAAACATATTCTCTCAACTTACATTTTCCCAAACTTTCCCTAATGAGAGAGTA
    AATCTAACTGTTGGTCAATACTCTCTTTACTCGATAGACGGAACGCTGTACAACAATGATCAGCAGCTAGGATTTAT
    TAGTTATGCGTTGTCGCAAAATCCAACAGCGACTTATTCCTCTGGAAGCCTTGGCGCCTATCTACAAGTCGCTCCAA
    CAGAAAGCACCTGTCTTCAAGTTGGGTTCCAAGATGCCTATAATATTTCAGGTTCCTCGATCAAATGGAATAATCTT
    ACAAAAAATAAGTATAACTTCCATGGCTATGCATCTTGGGCTCCACACTGTTGCTTAGGACCTGGACAATACTCTGT
    TCTTCTTTATGTAACCAGAAAGGTTCCTGAGCAAATGATGCAGACAATGGGCTGGTCTGTGAATGCAAGTCAATACA
    TCTCTTCTAAACTTTATGTATTTGGAAGATACAGCGGAGTCACAGGCCAATTGTCTCCTATTAACCGAACCTATTCA
    TTTGGCTTAGTCTCTCCTAATTTATTGAACCGTAACCCACAAGACTTATTTGGAGTAGCTTGCGCATTCAATAATAT
    ACACGCCTCCGCCTTTCAAAATGCTCAAAGAAAATATGAAACTGTGATCGAGGGATTTGCAACTATTGGTTGCGGAC
    CTTACATCTCCTTTGCTCCAGATTTCCAACTTTACCTCTATCCTGCTCTGCGTCCAAATAAACAAAGCGCCCGAGTC
    TATAGCGTTCGCGCAAACCTAGCTATTTAG
    SEQ ID NO: 28: CM homologue of CT372 = TC_0651 protein sequence
    MNGKVLCEVSVSFRSILLTALLSLSFTNTMQAAHHHYHRYDDKLRRQYNKKDLPTQENVRKEFCNPYSHSSDPIPLS 
    QQRGVLSPICDLVSECSFLNGISVRSLKQTLKNSAGTQVALDWSILPQWFNPRSSWAPKLSIRDLGYGKPQSLIEAD 
    SPCCQTCFNPSAAITIYDSSCGKGVVQVSYTLVRYWRETAALAGQTMILAGSINDYPARQNIFSQLTFSQTFPNERV 
    NLTVGQYSLYSIDGTLYNNDQQLGFISYALSQNPTATYSSGSLGAYLQVAPTESTCLQVGFRDAYNISGSSIKWNNL 
    TKNKYNFHGYASWAPHCCLGPGQYSVLLYVTRKVPEQMMQTMGWSVNASQYISSKLYVFGRYSGVTGQLSPINRTYS 
    FGLVSPNLLNRNPQDLFGVACAFNNIHASAFRNAQRKYETVIEGFATIGCGPYISFAPDFQLYLYPALRPNKQSARV 
    YSVRANLAI 
    SEQ ID NO: 29: CM homologue of CT443 = TC_0727
    ATGCGAATAGGAGATCCTATGAACAAACTCATCAGACGAGCTGTGACGATCTTCGCGGTGACTAGTGTGGCGAGTTT
    ATTTGCTAGCGGGGTGTTAGAGACCTCTATGGCAGAGTCTCTCTCTACCAACGTTATTAGCTTAGCTGACACCAAAG
    CGAAAGAGACCACTTCTCATCAAAAAGACAGAAAAGCAAGAAAAAATCATCAAAATAGGACTTCCGTAGTCCGTAAA
    GAGGTTACTGCAGTTCGTGATACTAAAGCTGTAGAGCCTAGACAGGATTCTTGCTTTGGCAAAATGTATACAGTCAA
    AGTTAATGATGATCGTAATGTAGAAATCGTGCAGTCCGTTCCTGAATATGCTACGGTAGGATCTCCATATCCTATTG
    AGATTACTGCTATAGGGAAAAGAGACTGTGTTGATGTAATCATTACACAGCAATTACCATGCGAAGCAGAGTTTGTT
    AGCAGTGATCCAGCTACTACTCCTACTGCTGATGGTAAGCTAGTTTGGAAAATTGATCGGTTAGGACAGGGCGAAAA
    GAGTAAAATTACTGTATGGGTAAAACCTCTTAAAGAAGGTTGCTGCTTTACAGCTGCAACGGTTTGTGCTTGTCCAG
    AGATCCGTTCGGTTACGAAATGTGGCCAGCCTGCTATCTGTGTTAAACAGGAAGGTCCAGAAAGCGCATGTTTGCGT
    TGCCCAGTAACTTATAGAATTAATGTAGTCAACCAAGGAACAGCAACAGCACGTAATGTTGTTGTGGAAAATCCTGT
    TCCAGATGGCTATGCTCATGCATCCGGACAGCGTGTATTGACATATACTCTTGGGGATATGCAACCTGGAGAACAGA
    GAACAATCACCGTGGAGTTTTGTCCGCTTAAACGTGGTCGAGTCACAAATATTGCTACAGTTTCTTACTGTGGTGGA
    CACAAAAATACTGCTAGCGTAACAACAGTGATCAATGAGCCTTGCGTGCAAGTTAACATCGAGGGAGCAGATTGGTC
    TTATGTTTGTAAGCCTGTAGAATATGTTATCTCTGTTTCTAACCCTGGTGACTTAGTTTTACGAGACGTTGTAATTG
    AAGATACGCTTTCTCCTGGAATAACTGTTGTTGAAGCAGCTGGAGCTCAGATTTCTTGTAATAAATTGGTTTGGACT
    TTGAAGGAACTCAATCCTGGAGAGTCTTTACAATATAAGGTTCTAGTAAGAGCTCAAACTCCAGGGCAATTCACAAA
    CAACGTTGTTGTGAAAAGTTGCTCTGATTGCGGTATTTGTACTTCTTGCGCAGAAGCAACAACTTACTGGAAAGGAG
    TTGCTGCTACTCATATGTGCGTAGTAGATACTTGTGATCCTATTTGCGTAGGAGAGAACACTGTTTATCGTATCTGT
    GTGACAAACAGAGGTTCTGCTGAAGATACAAATGTGTCCTTAATTTTGAAATTCTCTAAAGAATTACAACCTATATC
    TTTCTCTGGACCAACTAAAGGAACCATTACAGGAAACACGGTAGTGTTTGATTCGTTACCTAGATTAGGTTCTAAAG
    AAACTGTAGAGTTTTCTGTAACGTTGAAAGCAGTATCCGCTGGAGATGCTCGTGGGGAAGCTATTCTTTCTTCCGAT
    ACATTGACAGTTCCTGTATCTGATACGGAGAATACACATATCTATTAA
    SEQ ID NO: 30: CM homologue of CT443 = TC_0727
    MRIGDPMNKLIRRAVTIFAVTSVASLFASGVLETSMAESLSTNVISLADTKAKETTSHQKDRKARKNHQNRTSVVRKT
    EVTAVRDTKAVEPRQDSCFGKMYTVKVNDDRNVEIVQSVPEYATVGSPYPIEITAIGKRDCVDVIITQQLPCEAEFVT
    SSDPATTPTADGKLVWKIDRLGQGEKSKITVWVKPLKEGCCFTAATVCACPEIRSVTKCGQPAICVKQEGPESACLRT
    CPVTYRINVVNQGTATARNVVVENPVPDGYAHASGQRVLTYTLGDMQPGEQRTITVEFCPLKRGRVTNIATVSYCGGT
    HKNTASVTTVINEPCVQVNIEGADWSYVCKPVEYVISVSNPGDLVLRDVVIEDTLSPGITVVEAAGAQISCNKLVWTT
    LKELNPGESLQYKVLVRAQTPGQFTNNVVVKSCSDCGICTSCAEATTYWKGVAATHMCVVDTCDPICVGENTVYRICT
    VTNRGSAEDTNVSLILKFSKELQPISFSGPTKGTITGNTVVFDSLPRLGSKETVEFSVTLKAVSAGDARGEAILSSDT
    TLTVPVSDTENTHIYT
    SEQ ID NO: 31: CM homologue of CT043 = TC_0313 nucleotide sequence
    ATGTCCAGACAGAATGCTGAGGAAAATCTAAAAAATTTTGCTAAAGAGCTCAAGCTCCCCGACGTGGCCTTCGATCAT
    GAATAATACGTGCATTTTGTTTGTTGATGGAGAGTTTTCTCTTCACCTGACCTACGAAGAGCACTCTGATCGCCTTTT
    ATGTTTACGCACCTCTCCTTGACGGACTCCCAGATAATCCGCAAAGAAAGTTGGCTCTGTATGAGAAATTGTTGGAAT
    GGCTCTATGCTCGGAGGCCAAATGGCTGGTGGAGGAGTAGGAGTTGCTACTAAAGAACAGTTGATCCTAATGCATTGT
    CGTGTTAGATATGAAATATGCAGAGACTAATCTATTGAAAGCTTTTGCACAGCTTTTCATTGAAACTGTTGTGAAATT
    GGCGAACGGTCTGTTCTGATATCAGCGCTGGACGAGAACCTTCCGTTGACACTATGCCTCAAATGCCTCAAGGAGGCT
    AGCGGAGGAATTCAACCTCCTCCAACAGGAATTCGTGCGTAGT
    SEQ ID NO: 32: CM homologue of CT043 = TC_0313 protein sequence
    MSRQNAEENLKNFAKELKLPDVAFDQNNICILFVDGEFSLHLTYEEHSDRLYVYAPLLDGLPDNPQRKLALYEKLLET
    GSMLGGQMAGGGVGVATKEQLILMHCVLDMKYAETNLLKAFAQLFIETVVKWRTVCSDISAGREPSVDTMPQMPQGGT
    SGGIQPPPTGIRAT
    SEQ ID NO: 33: CM homologue of CT601 = TC_0890 nucleotide sequence
    ATGCTCGCTAATCGGTTATTTCTAATCACCCTTATAGGTTTTGGCTATTCTGCTTACGGTGCCAGCACAGGGAAATCT
    ACCTTCTTTACAGGTTATTTTAGCTGAAGTCGAGGATACATCTTCGCGCTTACAAGCTCATCAGAATGAGCTTGTTAT
    TGCTCTCGGAACGTTTAGATGAGCAAGACACAAAACTTCAACAACTCTCGTCAACTCAGGCCCGTAATCTTCCTCAAT
    CAAGTTCAACGGCTTGAGATTGATCTGAGAGCTCTGGCTAAAACAGCTGCTGTGCTCTCGCAATCTGTTCAGGATATT
    CCGATCATCCGTGCAAAATAAATTACAAGAAATCCAACAAGAACAAAAAAATTTAGCTCAAAATTTACGAGCGCTTCT
    GCAACTCCTTACAAGCACTAGTTGATGGCTCTTCCCCAGAAAATTATATTGATTTTTTGGCCGGGGAGACACCTGAAT
    CATATTCACGTTGTTAAACAAGGAGAAACCCTGAGTAAAATCGCTAGTAAGTACAATATCCCTGTCGCAGAATTGAAT
    AAAACTTAATAAATTAAATTCCGATACTATTTTTACTGATCAAAGAATCCGACTTCCAAAAAAGAAATAAT
    SEQ ID NO: 34: CM homologue of CT601 = TC_0890 protein sequence
    MLANRLFLITLIGFGYSAYGASTGKSPSLQVILAEVEDTSSRLQAHQNELVMLSERLDEQDTKLQQLSSTQARNLPQT
    QVQRLEIDLRALAKTAAVLSQSVQDIRSSVQNKLQEIQQEQKNLAQNLRALRNSLQALVDGSSPENYIDFLAGETPET
    HIHVVKQGETLSKIASKYNIPVAELKKLNKLNSDTIFTDQRIRLPKKKT
    SEQ ID NO: 35: CM homologue of CT456 = TC_0741
    ATGACGACTCCAATAAGTAATTCTCCATCTTCTATTCCAACTGTTACAGTATCAACTACTACAGCATCTTCTGGATCT
    TCTCGGAACTTCTACTGTATCATCAACGACTACAAGTACTTCAGTCGCACAAACAGCAACAACAACATCTTCTGCTTT
    CTACATCTATAATTCAGTCTAGTGGAGAAAACATCCAATCCACTACAGGTACCCCTTCTCCTATTACGTCTAGTGTTT
    TCAACATCCGCTCCATCTCCTAAAGCCTCCGCCACTGCAAACAAAACTTCAAGCGCTGTTTCTGGGAAAATTACCTCT
    ACAAGAAACTTCTGAGGAATCCGAAACCCAAGCCACTACATCTGATGGAGAAGTTAGTAGTAATTACGATGATGTTGT
    ATACCCCGACCAATTCGTCCGATTCGACAGTTGATAGTGATTACCAAGATGTTGAGACTCAGTACAAAACAATTAGCT
    AACAATGGTGAAAACACTTATGAAACAATCGGAAGTCATGGTGAGAAAAACACACACGTCCAGGAAAGCCATGCATCT
    CGGAACAGGAAATCCCATAAATAATCAGCAAGAAGCTATTAGACAGCTCCGATCATCTACCTATACAACCAGCCCTCT
    GTAATGAGAATATATTTAGTCCAGGACCGGAAGGTCTACCTAATATGTCTCTTCCTAGTTACAGCCCTACAGATAAAT
    AGTTCTCTACTAGCTTTCCTATCTAATCCCAATACAAAAGCAAAAATGCTCGAACACTCCGGGCATTTAGTCTTTATT
    AGACACAACTAGAAGTAGCTTTATCTTTGTTCCGAATGGAAATTGGGATCAAGTCTGTTCCATGAAGGTTCAGAATGT
    GGAAAACTAAAGAAGACCTTGGCTTAAAGGACTTAGAAGATATGTGTGCAAAGTTTTGCACAGGATACAATAAATTCT
    TCCTCTGATTGGGGAAATCGAGTTGACCCCTTGGTCTCTTCTAAGGCCGGGATAGAAAGTGGGGGGCACCTCCCAAGT
    CTCAGTTATCATCAACAACAAATTTAGAACCTGTGTTGCCTATGGGCCGTGGAACCCCAAAGAAAACGGCCCCAATTT
    ATACTCCTTCAGCCTGGAGACGTGGGCATCGAGTAGATTTTGGAAAGATCTTTGATGGAACAGCGCCGTTTAATAAAT
    ATCAACTGGGGCTCTTCCCCTACCCCTGGTGATGACGGCATCTCCTTCTCTAATGAAACTATTGGGTCTGAACCATTT
    CGCGACACCTCCCTCATCCCCATCGCAAACCCCCGTTATCAACGTCAATGTTAATGTCGGTGGAACCAATGTTAATAT
    TTGGGGATACAAACGTATCTAAAGGATCCGGCACACCAACATCTTCTCAATCTGTGGACATGTCTACAGATACTAGCT
    GATTTAGATACCAGTGATATTGATACAAACAACCAAACTAACGGCGATATCAACACGAATGACAACTCCAATAATGTT
    CGATGGAAGTTTATCTGACGTTGATTCAAGGGTGGAAGACGATGACGGTGTATCGGATACAGAGTCCACTAATGGCAT
    ATGACTCTGGTAAAACTACTTCCACAGAAGAAAATGGTGACCCAAGCGGACCAGACATCCTGGCTGCTGTACGTAAAT
    CACCTAGACACTGTCTATCCAGGAGAAAATGGCGGATCTACAGAAGGACCTCTCCCTGCTAATCAAAATCTGGGGAAT
    CGTTATCCATGATGTGGAGCAGAATGGATCTGCTAAAGAAACTATTATCACTCCAGGAGATACAGGGCCTACAGACTT
    CAAGCTCCTCTGTAGATGCTGATGCAGACGTTGAAGATACTTCTGATACTGACTCTGGAATCGGAGACGACGACGGTT
    GTATCGGATACAGAGTCCACTAATGGTAATAACTCTGGTAAAACTACTTCCACAGAAGAAAATGGTGACCCAAGCGGT
    ACCAGACATCCTGGCTGCTGTACGTAAACACCTAGACACTGTCTATCCAGGAGAAAATGGCGGATCTACAGAAGGACT
    CTCTCCCTGCTAATCAAAATCTGGGGAACGTTATCCATGATGTAGAACAAAACGGAGCCGCTCAAGAAACTATTATCT
    ACTCCAGGAGATACGGAATCTACAGACACAAGCTCTAGTGTAAATGCTAATGCAGACTTAGAAGATGTTTCTGATGCT
    TGATTCAGGATTCGGGGATGATGACGGTATATCGGATACAGAGTCCACTAATGGTAACGACTCTGGAAAAAATACTCT
    CTGTAGGGGATGGTGGTACACCAAGCGGACCAGATATCCTAGCTGCTGTACGCAAACATCTAGACACTGTCTATCCAT
    GGAGAAAATGGTGGATCTACAGAGAGACCTTTACCCGCTAATCAAAATTTAGGAGATATCATTCATGATGTAGAACAT
    AAACGGAAGCGCTAAAGAAACTGTAGTATCGCCTTATCGAGGAGGAGGAGGAAATACATCTTCCCCAATTGGATTAGT
    CCTCCCTGCTTCCAGCAACACCATCCACACCTTTGATGACAACACCTAGAACAAATGGGAAAGCTGCAGCTTCTTCTT
    TTGATGATAAAAGGAGGAGAAACTCAAGCCAAGCTAGTTAAGAATGGCGGCAATATCCCTGGAGAAACCACATTAGCT
    AGAATTACTCCCTCGTTTAAGAGGACACCTTGACAAAGTCTTTACTTCAGACGGGAAGTTTACAAATCTTAATGGACT
    CTCAACTTGGAGCCATCATAGACCAATTCCGCAAAGAAACGGGTTCCGGAGGAATCATAGCTCATACAGATAGTGTTT
    CCAGGAGAGAACGGAACAGCCTCTCCTCTCACAGGAAGTTCAGGGGAAAAAGTCTCTCTCTATGATGCAGCGAAAAAT
    CGTCACTCAAGCTTTAACAAGTGTTACGAACAAAGTAACCCTAGCAATGCAAGGACAAAAACTGGAAGGAATTATAAT
    ACAACAACAATACCCCCTCTTCTATTGGACAAAATCTTTTCGCAGCAGCGAGGGCAACGACACAATCCCTCAGTTCAT
    TTAATTGGAACCGTACAATAAT
    SEQ ID NO: 36: CM homologue of CT456 = TC_0741 protein sequence
    MTTPISNSPSSIPTVTVSITTASSGSLGTSTVSSTITSTSVAQTATTTSSASTSIIQSSGENIQSTTGTPSPITSSV
    STSAPSPKASATANKTSSAVSGKITSQETSEESETQATTSDGEVSSNYDDVDTPTNSSDSTVDSDYQDVETQYKTIS
    NNGENTYETIGSHGEKNTHVQESHASGIGNPINNQQEAIRQLRSSTYTTSPRNENIFSPGPEGLPNMSLPSYSPTDK
    SSLLAFLSNPNTKAKMLEHSGHLVFIDTTRSSFIFVPNGNWDQVCSMKVQNGKTKEDLGLKDLEDMCAKFCTGYNKF
    SSDWGNRVDPLVSSKAGIESGGHLPSSVIINNKFRICVAYGPWNPKENGPNYTPSAWRRGHRVDFGKIFDGTAPFNK
    INWGSSPTPGDDGISFSNETIGSEPFATPPSSPSQTPVINVNVNVGGINVNIGDINVSKGSGTPTSSQSVDMSTDTS
    DLDTSDIDTNNQTNGDINTNDNSNNVDGSLSDVDSRVEDDDGVSDTESTNGNDSGKITSTEENGDPSGPDILAAVRK
    HLDTVYPGENGGSTEGPLPANQNLGNVIHDVEQNGSAKETIITPGDTGPTDSSSSVDADADVEDTSDTDSGIGDDDG
    VSDTESTNGNNSGKTTSTEENGDPSGPDILAAVRKHLDTVYPGENGGSTEGPLPANQNLGNVIHDVEQNGAAQETII
    TPGDTESTDISSSVNANADLEDVSDADSGFGDDDGISDTESTNGNDSGKNTPVGDGGIPSGPDILAAVRKHLDTVYP
    GENGGSTERPLPANQNLGDIIHDVEQNGSAKETVVSPYRGGGGNTSSPIGLASLLPATPSTPLMTTPRTNGKAAASS
    LMIKGGETQAKLVKNGGNIPGETTLAELLPRLRGHLDKVFTSDGKFTNLNGPQLGAIIDQFRKETGSGGIIAHTDSV
    PGENGTASPLTGSSGEKVSLYDAAKNVTQALTSVINKVTLAMQGQKLEGIINNNNTPSSIGQNLFAAARATTQSLSS
    LIGTVQ
    SEQ ID NO: 37: CM homologue of CT381 = TC_0660
    GTGAGTATGTATATAAAAAGAAAGAAAGCTTGGATGACTTTCTTAGCAATTGTCTGTAGTTTCTGTTTGGCGGGCTG
    TTCAAAAGAGAGCAAAGACTCTGTTAGTGAAAAATTTATTGTAGGAACTAACGCAACGTATCCTCCTTTTGAGTTTG
    TTGATGAAAGAGGTGAGACGGTTGGCTTTGATATTGATTTAGCTAGGGAGATTAGTAAAAAGCTAGGGAAAAAATTA
    GAAGTCCGAGAATTTGCTTTTGATGCACTCGTTCTCAATTTAAAACAGCATCGTATTGATGCAATTATGGCAGGGGT
    GTCCATTACGTCTTCTCGATTGAAAGAAATTTTGATGATTCCCTACTATGGCGAAGAAATAAAGAGTTTGGTTTTAG
    TGTTTAAGGATGGAGACTCAAAGTCTTTACCACTAGATCAGTATAATTCTGTTGCTGTTCAAACTGGCACGTACCAA
    GAGGAATATTTACAGTCTCTTCCAGGGGTGCGTATTCGCTCTTTTGATAGTACTTTAGAAGTGCTTATGGAAGTTTT
    GCATAGCAAGTCTCCTATAGCTGTTTTAGAACCGTCTATTGCGCAGGTCGTTTTAAAAGATTTTCCGACGCTCACTA
    CTGAAACGATAGATCTTCCTGAAGATAAATGGGTTTTAGGGTATCGAATTGGAGTTGCTTCTGATCGACCATCTCTA
    GCTTCTGATATAGAAGCTGCTGTACAAGAGATCAAGAAAGAAGGAGTGTTAGCAGAGTTAGAGCAAAAATGGGGTTT
    GAACGGCTAA
    SEQ ID NO: 38: CM homologue of CT381 = TC_0660
    NSMYIKRKKAWMTFLAIVCSFCLAGCSKESKDSVSEKFIVGTNATYPPFEFVDERGETVGFDIDLAREISKKLGKKL
    EVREFAFDALVLNLKQHRIDAIMAGVSITSSRLKEILMIPYYGEEIKSLVLVFKDGDSKSLPLDQYNSVAVQTGTYQ
    EEYLQSLPGVRIRSFDSTLEVLMEVLHSKSPIAVLEPSIAQVVLKDFPTLTTETIDLPEDKWVLGYGIGVASDRPSL
    ASDIEAAVQEIKKEGVLAELEQKWGLNG
    SEQ ID NO: 39-CT255 nucleotide sequence
    ATGGAAGAAAAAGGCATCTTACAATTGGTTGAAATTTCGCGAGCAATGGCTTTACAGGGAGTTTGTCCTTGGACTAA
    TTTACAGAGTGTGGAGTCTATGTTGCAGTATATAGCAGGGGAGTGTCAGGAGTTGGCTGATGCTGTACAAGAAAATA
    AAGCTTCGTTGGAAATCGCTTCGGAAGCCGGAGACGTACTTACTTTAGTATTGACCTTGTGTTTCTTGCTAGAAAGA
    GAAGGAAAGCTTAAAGCTGAAGAAGTATTTGTAGAAGCTTTGGCTAAGTTGCGTCGTCGATCTCCTCATGTTTTTGA
    TCCTCATAATCAAATTTCTTTAGAACAGGCTGAAGAATACTGGGCTCGTATGAAACAGCAAGAAAAAATTTCTTAA
    SEQ ID NO: 40-CT255 protein sequence
    MEEKGILQLVEISRAMALQGVCPWINLQSVESMLQYIAGECQELADAVQENKASLEIASEAGDVLTLVLTLCFLLER
    EGKLKAEEVFVEALAKLRRRSPHVFDPHNQISLEQAEEYWARMKQQEKIS
    SEQ ID NO: 41-CT341 nucleotide sequence
    ATGGATTACTACACGATATTGGGTGTAGCGAAGACTGCTACTCCTGAAGAAATAAAGAAAGCTTACCGTAAGCTCGC
    TGTAAAGTACCATCCAGATAAGAATCCTGGGGATGCTGAAGCGGAGCGACGCTTTAAAGAAGTTTCTGAAGCCTATG
    AAGTATTAGGTGATGCGCAGAAGCGGGAGTCATATGATCGTTACGGCAAAGACGGTCCATTTGCTGGTGCTGGAGGA
    TTCGGTGGCGCTGGCATGGGGAATATGGAAGACGCTTTGCGAACATTTATGGGAGCTTTTGGCGGCGATTTCGGTGG
    TAATGGAGGCGGTTTCTTTGAAGGGCTTTTTGGAGGACTTGGAGAAGCTTTCGGAATGCGTGGAGGCTCAGAAAGTT
    CTCGACAAGGAGCTAGTAAGAAGGTGCATATTACGCTGTCCTTCGAGGAGGCGGCAAAAGGTGTTGAAAAAGAACTT
    CTTGTTTCAGGCTATAAATCTTGTGATGCTTGTTCTGGTAGTGGAGCCAATACTGCTAAAGGTGTAAAAGTTTGTGA
    TCGATGCAAGGGCTCTGGTCAGGTAGTGCAAAGCCGAGGCTTTTTCTCCATGGCTTCTACTTGCCCTGATTGTAGTG
    GTGAAGGTCGGGTTATCACAGATCCTTGTTCAGTTTGTCGTGGGCAGGGACGTATCAAGGATAAACGTAGCGTCCAT
    GTTAATATCCCAGCTGGAGTCGATTCTGGGATGAGATTAAAGATGGAAGGCTATGGAGATGCTGGCCAAAATGGAGC
    GCCTGCAGGGGATCTGTATGTTTTTATTGATGTAGAGCCTCATCCTGTTTTCGAGCGCCATGGGGATGATTTAGTTT
    TAGAGCTTCCTATTGGATTTGTTGATGCGGCTTTAGGGATCAAGAAGGAAATCCCTACACTCTTAAAAGAAGGTACT
    TGCCGTTTGAGTATCCCAGAAGGGATTCAGAGCGGAACAGTTCTTAAAGTTAGAGGGCAGGGATTCCCTAATGTGCA
    TGGGAAATCCAGAGGAGATCTTTTAGTAAGAGTATCTGTGGAGACTCCCCAGCACCTATCTAATGAACAAAAAGATT
    TATTGAGACAGTTTGCTGCTACGGAGAAGGCTGAAAATTTCCCTAAGAAACGGAGTTTCTTAGACAAAATCAAAGGT
    TTTTTTTCTGACTTTGCTGTATAG
    SEQ ID NO: 42-CT341 protein sequence
    MDYYTILGVAKTATPEEIKKAYRKLAVKYHPDKNPGDAEAERRFKEVSEAYEVLGDAQKRESYDRYGKDGPFAGAGG 
    FGGAGMGNMEDALRTFMGAFGGDFGGNGGGFFEGLFGGLGEAFGMRGGSESSRQGASKKVHITLSFEEAAKGVEKEL 
    LVSGYKSCDACSGSGANTAKGVKVCDRCKGSGQVVQSRGFFSMASTCPDCSGEGRVITDPCSVCRGQGRIKDKRSVH 
    VNIPAGVDSGMRLKMEGYGDAGQNGAPAGDLYVFIDVEPHPVFERHGDDLVLELPIGFVDAALGIKKEIPTLLKEGT 
    CRLSIPEGIQSGTVLKVRGQGFPNVHGKSRGDLLVRVSVETPQHLSNEQKDLLRQFAATEKAENFPKKRSFLDKIKG 
    FFSDFAV 
    SEQ ID NO: 43-CT716 nucleotide sequence
    ATGAATAAAAAACTCCAAGATCTGTCTAAACTGCTCACTATTGAGCTTTTCAAGAAACGTACACGGTTGGAAACAGT
    AAAAAAAGCGCTCTCCACAATAGAACATCGCTTACAACAAATACAGGAGCACATCGCGAAAATTTCCTTAACAAGGC
    ACAAACAATTCCTATGTCGGTCATATACCCATGAATATGACCAACATTTAGAACATTTACAAAGAGAGCAAACTTCT
    CTATATAAACAGCATCAGACCCTGAAAACGTCTTTGAAAGATGCTTATGGCGACATACAAAAACAACTAGACCAAAG
    AAAAATTATCGAAAAGATCCATGACAGTAAATATCCTATAAAGAGCGCGAATAACTAA
    SEQ ID NO: 44-CT716 protein sequence
    MNKKLQDLSKLLTIELFKKRTRLETVKKALSTIEHRLQQIQEHIAKISLTRHKQFLCRSYTHEYDQHLEHLQREQTS
    LYKQHQTLKTSLKDAYGDIQKQLDQRKIIEKIHDSKYPIKSANN
    SEQ ID NO: 45-CT745 nucleotide sequence
    ATGAAACATGCTCTCATTGTTGGCTCAGGTATTGCCGGCCTTTCTGCCGCGTGGTGGCTACACAAACGATTCCCTCA
    TGTGCAGCTGTCTATTCTAGAAAAAGAGTCTCGATCTGGAGGGCTAATTGTCACAGAGAAACAACAAGGGTTTTCCC
    TCAATATGGGCCCTAAAGGTTTTGTTTTAGCTCATGATGGGCAACACACCCTTCACCTCATTCAGTCTTTAGGCCTA
    GCAGACGAGCTATTATATAGCTCTCCAGAGGCTAAAAACCGCTTTATCCACTATAATAATAAAACCCGAAAAGTCTC
    GCCTTGGACTATTTTCAAACAAAATCTCCCTCTCTCTTTTGCTAAGGATTTCTTTGCGCGTCCTTACAAACAAGACA
    GCTCCGTGGAAGCCTTCTTTAAAAGACACAGTTCTTCCAAGCTTAGAAGAAATCTTTTAAATCCCATTAGCATTGCT
    ATTCGTGCAGGACATAGTCATATATTGTCTGCACAGATGGCTTACCCAGAATTAACACGAAGAGAAGCTCAAACAGG
    ATCGTTGTTACGTAGTTATCTCAAAGATTTTCCTAAAGAGAAACGCACAGGCCCTTATTTAGCTACCTTGCGGTCTG
    GGATGGGAATGCTAACCCAGGCTTTGCATGATAAATTGCCTGCTACCTGGTATTTTTCTGCACCCGTCAGCAAAATC
    CGTCAGTTGGCGAATGGGAAAATTTCTCTTTCATCTCCTCAAGGAGAAATAACGGGAGATATGCTCATTTATGCTGG
    GTCCGTGCACGATCTCCCTTCCTGTCTAGAAGGGATCCCTGAAACCAAGCTTATCAAGCAAACGACTTCATCTTGGG
    ATCTCTCTTGTGTATCTTTAGGATGGCATGCATCCTTCCCTATCCCTCATGGATATGGCATGCTTTTCGCTGATACG
    CCTCCCTTATTAGGGATCGTGTTTAATACGGAAGTGTTCCCTCAACCCGAGCGGCCTAATACAATAGTCTCTCTTCT
    TTTAGAAGGTCGATGGCACCAAGAAGAAGCGTATGCTTTCTCACTAGCAGCTATTTCTGAGTACCTGCAAATTTACA
    CTCCTCCCCAAGCTTTCTCACTATTCTCTCCTCGAGAGGGACTTCCCCAACACCATGTTGGATTTATCCAATCCCGC
    CAACGCCTTCTATCTAAACTTCCTCACAATATAAAAATTGTAGGGCAGAATTTTGCAGGTCCAGGTCTCAACCGCGC
    TACAGCGTCTGCTTATAAAGCTATAGCTTCTTTACTATCATGA
    SEQ ID NO: 46-CT745 protein sequence
    MKHALIVGSGIAGLSAAWWLHKRFPHVQLSILEKESRSGGLIVTEKQQGFSLNMGPKGFVLAHDGQHTLHLIQSLGL
    ADELLYSSPEAKNRFIHYNNKTRKVSPWTIFKQNLPLSFAKDFFARPYKQDSSVEAFFKRHSSSKLRRNLLNPISIA
    IRAGHSHILSAQMAYPELTRREAQTGSLLRSYLKDFPKEKRTGPYLATLRSGMGMLTQALHDKLPATWYFSAPVSKI
    RQLANGKISLSSPQGEITGDMLIYAGSVHDLPSCLEGIPETKLIKQTTSSWDLSCVSLGWHASFPIPHGYGMLFADT
    PPLLGIVFNTEVFPQPERPNTIVSLLLEGRWHQEEAYAFSLAAISEYLQIYIPPQAFSLFSPREGLPQHHVGFIQSR
    QRLLSKLPHNIKIVGQNFAGPGLNRATASAYKAIASLLS
    SEQ ID NO: 47-CT387 nucleotide sequence
    ATGACGCTCTTTCATTCTCATCATGATGCCGTCTCTCCAGACAGCTACCTATGTTCTTCCCTTCAGTTAGTTGGTAC
    TGGCGTATACGAAGGAGAAATCGAGATTCAAAATATCCCCTCTTATTTCCTTGGATTCCAATTACCCTCTCATTGCA
    TACACCTTAATTTAAAGAGCTCTCTAGCTCAATTAGGAATAGATGCCTCCCTTCTTCACTGCGAATTGAGCAAAAAT
    CAACATCGAGCACATATACATGCTCAATTTACCGGTCATGGCCCCATTGCTGAATCTATGCTAGCCCTTCTCCAACC
    AGGAGATCGTGTAGCAAAACTATTTGCTGCAGACGATCGCAGACTGGTCCGATCTCCAGATTACCTCGAAAGCATGC
    TGAAAAATACAGATAAAGCTGGCCATCCTTTGCTCTGTTTTGGGAAAAAATTAGAACACTTGATTTCTTTTGATGTG
    GTAGATGATCGCCTTGTCGTCTCCCTTCCTACCCTGCCGGGAGTTGTTCGTTATGATTCGGATATTTATGGACTCCT
    TCCTCTTATTCAAAAATCACTCAGTAATCCCAAACTCAGCATTCGTCACTTTTTAGCTCTGTACCAACAGATTGTGG
    AAGGGCAACATGTCTCTTGCGGAAACCATATTCTTCTGATCAAAACAGAACCGCTGCACATCCGCACTGTATTTGCT
    CGCGTGGTAAATCAACTCCTCCCTCAAGGTCTCTCCCACACTTCTGCCAATATTTTGGAACCAACCACTCGAGAATC
    CGGGGATATCTTTGAATTTTTTGGGAACCCTTCTGCACAGATAGAAAGAATTCCTTTAGAATTTTTCACTATCGAAC
    CCTATAAAGAACATTCTTACTTCTGTAATCGGGATTTATTACAAACCATCTTACAATCAGAAAGCGAAATCAAAAAA
    ATATTCGAAACAGCGCCCAAAGAACCTGTCAAAGCTGCCACCTATTTATCAAAAGGCAGTGAAATCTCTTCCCTGCA
    CACAGACTCTTGGCTCACAGGATCCGCAGCTGCCTATCAATATAGTGAGCAAGCAGATAAAAACGAGTACACTCATG
    CTCAACCTTGCTATCCTTTCTTAGAAGCAATGGAAATGGGCCTGATCAATAGCGAAGGAGCCTTACTCACTCGTTAT
    TTCCCTTCAGCTAGCTTAAAAGGAATGTTGATTTCCTACCATGTGCGCCACTATCTCAAACAAATCTACTTTCAAGT
    TCCCTCTTATACACATGGAAACTATTTCTCTCATAATGACAGAGGTTTGCTATTAGATCTGCAGCAAGCAGATATTG
    ATGTTTTCTGGGCAGATGAAGAAAGCGGCCGTGTGTTGCAATATACAAAACGACGCGATAAGAATAGCGGTATGTTC
    GTGATCAAAAATCGTGTTGAAGAGTTTCGATCAGCTTATTTTATTGCTATTTATGGCTCTCGTCTCCTTGAGAATAA
    TTTCTCTGCTCAGCTCCATACCCTCCTAGCGGGCTTACAGCAAGCAGCACATACTCTCGGCATTCCTGGATTCTCAA
    AGCCTACCCCACTTGCAGTCATCACCGGAGGCGGCACTGGAGTTATGGCCACAGGAAATCGTGTAGCTAAAGAACTA
    6GAATCCTATCTTGTGGAACCGTTCTTGATTTAGAAGCTTCTCCAGCACAAATCGACCAACCTACCAATGAATTCTT
    AGATGCTAAAATGACATACCGCCTACCTCAACTTATAGAAAGGCAAGAACACTTTTATGCAGACCTTCCTATCCTTG
    TAGTTGGCGGTGTAGGAACCGATTTCGAACTCTACCTAGAACTTGTCTATCTCAAAACAGGAGCTAAACCACCGACT
    CCCATTTTCCTAATTGGACCTATTGAATACTGGAAAGAAAAAGTGGCCCACGCCTACGAGATCAACCTCAAAGCAGG
    AACCATCCGTGGATCCGAATGGATCAGCAACTGCCTATATTGTATCACTTCTCCGGAAGCTGGAATTGCCGTATTCG
    AACAATTCCTAGCTGGAGAACTCCCTATAGGATACGACTATCCTCCAGCTCCAGATGGATTAGTGATCGTCTAA
    SEQ ID NO: 48-CT387 protein sequence
    MTLFHSHHDAVSPDSYLCSSIALVGTGVYEGEIEIQNIPSYFLGFQLPSHCIHLNLKSSLAQLGIDASLLHCELSKN
    QHRAHIHAQFTGHGPIAESNLALLQPGDRVAKLFAADDRRLVRSPDYLESMLKNTDKAGHPLLCFGKKLEHLISFDV
    VDDRLVVSLPTLPGVVRYDSDIYGLLPLIQKSLSNPKLSIRHFLALYQQIVEGQHVSCGNHILLIKTEPLHIRTVFA
    RVVNQLLIDQGLSHTSANILEPTTRESGDIFEFFGNPSAQIERIPLEFFTIEPYKEHSYFCNRDLLQTRQSESEIKK
    IFETAPKEPVKAATYLSKGSEISSLHTDSWLTGSAAAYQYSEQADKNEYTHAQPCYPFLEAMEMGLINSEGALLTRY
    FPSASLKGMLISYHVRHYLKQIYFQVPSYTHGNYFSHNDRGLLIDLQQADIDVFWADEESGRVLQYTKRRDKNSGMF
    VIKNRVEEFRSAYFIAIYGSRLLENNFSAQLHTLLAGLQQAAHTLGIPGFSKPTPLAVITGGGTGVNATGNRVAKEL
    GILSCGTVLDLEASPAQIDQPTNEFLDAKMTYRLPQLIERQEHFYADLPILVVGGVGTDFELYLELVYLKTGAKPPT
    PIFLIGPIEYWKEKVAHAYEINLKAGTIRGSEWISNCLYCITSPEAGIAVFEQFLAGELPIGYDYPPAPDGLVIV
    SEQ ID NO: 49-CT812 nucleotide sequence
    ATGAGTTCCGAGAAAGATATAAAAAGCACCTGTTCTAAGTTTTCTTTGTCTGTAGTAGCAGCTATCCTTGCCTCTGT
    TAGCGGGTTAGCTAGTTGCGTAGATCTTCATGCTGGAGGACAGTCTGTAAATGAGCTGGTATATGTAGGCCCTCAAG
    CGGTTTTATTGTTAGACCAAATTCGAGATCTATTCGTTGGGTCTAAAGATAGTCAGGCTGAAGGACAGTATAGGTTA
    ATTGTAGGAGATCCAAGTTCTTTCCAAGAGAAAGATGCGGATACTCTTCCCGGGAAGGTAGAGCAAAGTACTTTGTT
    CTCAGTAACCAATCCCGTGGTTTTCCAAGGTGTGGACCAACAGGATCAAGTCTCTTCCCAAGGGTTAATTTGTAGTT
    TTACGAGCAGCAACCTTGATTCTCCTCGTGACGGAGAATCTTTTTTAGGTATTGCTTTTGTTGGGGATAGTAGTAAG
    GCTGGAATCACATTAACTGACGTGAAAGCTTCTTTGTCTGGAGCGGCTTTATATTCTACAGAAGATCTTATCTTTGA
    AAAGATTAAGGGTGGATTGGAATTTGCATCATGTTCTTCTCTAGAACAGGGGGGAGCTTGTGCAGCTCAAAGTATTT
    TGATTCATGATTGTCAAGGATTGCAGGTTAAACACTGTACTACAGCCGTGAATGCTGAGGGGTCTAGTGCGAATGAT
    CATCTTGGATTTGGAGGAGGCGCTTTCTTTGTTACGGGTTCTCTTTCTGGAGAGAAAAGTCTCTATATGCCTGCAGG
    AGATATGGTAGTTGCGAATTGTGATGGGGCTATATCTTTTGAAGGAAACAGCGCGAACTTTGCTAATGGAGGAGCGA
    TTGCTGCCTCTGGGAAAGTGCTTTTTGTCGCTAATGATAAAAAGACTTCTTTTATAGAGAACCGAGCTTTGTCTGGA
    GGAGCGATTGCAGCCTCTTCTGATATTGCCTTTCAAAACTGCGCAGAACTAGTTTTCAAAGGCAATTGTGCAATTGG
    AACAGAGGATAAAGGTTCTTTAGGTGGAGGGGCTATATCTTCTCTAGGCACCGTTCTTTTGCAAGGGAATCACGGGA
    TAACTTGTGATAAGAATGAGTCTGCTTCGCAAGGAGGCGCCATTTTTGGCAAAAATTGTCAGATTTCTGACAACGAG
    GGGCCAGTGGTTTTCAGAGATAGTACAGCTTGCTTAGGAGGAGGCGCTATTGCAGCTCAAGAAATTGTTTCTATTCA
    GAACAATCAGGCTGGGATTTCCTTCGAGGGAGGTAAGGCTAGTTTCGGAGGAGGTATTGCGTGTGGATCTTTTTCTT
    CCGCAGGTGGTGCTTCTGTTTTAGGGACCATTGATATTTCGAAGAATTTAGGCGCGATTTCGTTCTCTCGTACTTTA
    TGTACGACCTCAGATTTAGGACAAATGGAGTACCAGGGAGGAGGAGCTCTATTTGGTGAAAATATTTCTCTTTCTGA
    GAATGCTGGTGTGCTCACCTTTAAAGACAACATTGTGAAGACTTTTGCTTCGAATGGGAAAATTCTGGGAGGAGGAG
    CGATTTTAGCTACTGGTAAGGTGGAAATTACTAATAATTCCGAAGGAATTTCTTTTACAGGAAATGCGAGAGCTCCA
    CAAGCTCTTCCAACTCAAGAGGAGTTTCCTTTATTCAGCAAAAAAGAAGGGCGACCACTCTCTTCAGGATATTCTGG
    GGGAGGAGCGATTTTAGGAAGAGAAGTAGCTATTCTCCACAACGCTGCAGTAGTATTTGAGCAAAATCGTTTGCAGT
    GCAGCGAAGAAGAAGCGACATTATTAGGTTGTTGTGGAGGAGGCGCTGTTCATGGGATGGATAGCACTTCGATTGTT
    GGCAACTCTTCAGTAAGATTTGGTAATAATTACGCAATGGGACAAGGAGTCTCAGGAGGAGCTCTTTTATCTAAAAC
    AGTGCAGTTAGCTGGGAATGGAAGCGTCGATTTTTCTCGAAATATTGCTAGTTTGGGAGGAGGAGCTCTTCAAGCTT
    CTGAAGGAAATTGTGAGCTAGTTGATAACGGCTATGTGCTATTCAGAGATAATCGAGGGAGGGTTTATGGGGGTGCT
    ATTTCTTGCTTACGTGGAGATGTAGTCATTTCTGGAAACAAGGGTAGAGTTGAATTTAAAGACAACATAGCAACACG
    TCTTTATGTGGAAGAAACTGTAGAAAAGGTTGAAGAGGTAGAGCCAGCTCCTGAGCAAAAAGACAATAATGAGCTTT
    CTTTCTTAGGGAGAGCAGAACAGAGTTTTATTACTGCAGCTAATCAAGCTCTTTTCGCATCTGAAGATGGGGATTTA
    TCACCTGAGTCATCCATTTCTTCTGAAGAACTTGCGAAAAGAAGAGAGTGTGCTGGAGGAGCTATTTTTGCAAAACG
    GGTTCGTATTGTAGATAACCAAGAGGCCGTTGTATTCTCGAATAACTTCTCTGATATTTATGGCGGCGCCATTTTTA
    CAGGTTCTCTTCGAGAAGAGGATAAGTTAGATGGGCAAATCCCTGAAGTCTTGATCTCAGGCAATGCAGGGGATGTT
    GTTTTTTCCGGAAATTCCTCGAAGCGTGATGAGCATCTTCCTCATACAGGTGGGGGAGCCATTTGTACTCAAAATTT
    GACGATTTCTCAGAATACAGGGAATGTTCTGTTTTATAACAACGTGGCCTGTTCGGGAGGAGCTGTTCGTATAGAGG
    ATCATGGTAATGTTCTTTTAGAAGCTTTTGGAGGAGATATTGTTTTTAAAGGAAATTCTTCTTTCAGAGCACAAGGA
    TCCGATGCTATCTATTTTGCAGGTAAAGAATCGCATATTACAGCCCTGAATGCTACGGAAGGACATGCTATTGTTTT
    CCACGACGCATTAGTTTTTGAAAATCTAGAAGAAAGGAAATCTGCTGAAGTATTGTTAATCAATAGTCGAGAAAATC
    CAGGTTACACTGGATCTATTCGATTTTTAGAAGCAGAAAGTAAAGTTCCTCAATGTATTCATGTACAACAAGGAAGC
    CTTGAGTTGCTAAATGGAGCCACATTATGTAGTTATGGTTTTAAACAAGATGCTGGAGCTAAGTTGGTATTGGCTGC
    TGGAGCTAAACTGAAGATTTTAGATTCAGGAACTCCTGTACAACAAGGGCATGCTATCAGTAAACCTGAAGCAGAAA
    TCGAGTCATCTTCTGAACCAGAGGGTGCACATTCTCTTTGGATTGCGAAGAATGCTCAAACAACAGTTCCTATGGTT
    GATATCCATACTATTTCTGTAGATTTAGCCTCCTTCTCTTCTAGTCAACAGGAGGGGACAGTAGAAGCTCCTCAGGT
    TATTGTTCCTGGAGGAAGTTATGTTCGATCTGGAGAGCTTAATTTGGAGTTAGTTAACACAACAGGTACTGGTTATG
    AAAATCATGCTTTATTGAAGAATGAGGCTAAAGTTCCATTGATGTCTTTCGTTGCTTCTGGTGATGAAGCTTCAGCC
    GAAATCAGTAACTTGTCGGTTTCTGATTTACAGATTCATGTAGTAACTCCAGAGATTGAAGAAGACACATACGGCCA
    TATGGGAGATTGGTCTGAGGCTAAAATTCAAGATGGAACTCTTGTCATTAGTTGGAATCCTACTGGATATCGATTAG
    ATCCTCAAAAAGCAGGGGCTTTAGTATTTAATGCATTATGGGAAGAAGGGGCTGTCTTGTCTGCTCTGAAAAATGCA
    CGCTTTGCTCATAATCTCACTGCTCAGCGTATGGAATTCGATTATTCTACAAATGTGTGGGGATTCGCCTTTGGTGG
    TTTCCGAACTCTATCTGCAGAGAATCTGGTTGCTATTGATGGATACAAAGGAGCTTATGGTGGTGCTTCTGCTGGAG
    TCGATATTCAATTGATGGAAGATTTTGTTCTAGGAGTTAGTGGAGCTGCTTTCCTAGGTAAAATGGATAGTCAGAAG
    TTTGATGCGGAGGTTTCTCGGAAGGGAGTTGTTGGTTCTGTATATACAGGATTTTTAGCTGGATCCTGGTTCTTCAA
    AGGACAATATAGCCTTGGAGAAACACAGAACGATATGAAAACGCGTTATGGAGTACTAGGAGAGTCGAGTGCTTCTT
    GGACATCTCGAGGAGTACTGGCAGATGCTTTAGTTGAATACCGAAGTTTAGTTGGTCCTGTGAGACCTACTTTTTAT
    GCTTTGCATTTCAATCCTTATGTCGAAGTATCTTATGCTTCTATGAAATTCCCTGGCTTTACAGAACAAGGAAGAGA
    AGCGCGTTCTTTTGAAGACGCTTCCCTTACCAATATCACCATTCCTTTAGGGATGAAGTTTGAATTGGCGTTCATAA
    AAGGACAGTTTTCAGAGGTGAACTCTTTGGGAATAAGTTATGCATGGGAAGCTTATCGAAAAGTAGAAGGAGGCGCG
    GTGCAGCTTTTAGAAGCTGGGTTTGATTGGGAGGGAGCTCCAATGGATCTTCCTAGACAGGAGCTGCGTGTCGCTCT
    GGAAAATAATACGGAATGGAGTTCTTACTTCAGCACAGTCTTAGGATTAACAGCTTTTTGTGGAGGATTTACTTCTA
    CAGATAGTAAACTAGGATATGAGGCGAATACTGGATTGCGATTGATCTTTTAA
    SEQ ID NO: 50-CT812 protein sequence
    MSSEKDIKSTCSKFSLSVVAAILASVSGLASCVDLHAGGQSVNELVYVGPQAVLLLDQIRDLFVGSKDSQAEGQYRL
    IVGDPSSFQEKDADTLPGKVEQSTLFSVINPVVFQGVDQQDQVSSQGLICSFISSNLDSPRDGESFLGIAFVGDSSK
    AGITLTDVKASLSGAALYSTEDLIFEKIKGGLEFASCSSLEQGGACAAQSILIHDCQGLQVKHCITAVNAEGSSAND
    HLGFGGGAFFVTGSLSGEKSLYMPAGNIVVANCDGAISFEGNSANFANGGAIAASGKVLFVANDKKTSFIENRALSG
    GAIAASSDIAFQNCAELVFKGNCAIGTEDKGSLGGGAISSLGTVLLQGNHGITCDKNESASQGGAIFGKNCQISDNE
    GPVVFRDSTACLGGGAIAAQEIVSIQNNQAGISFEGGKASFGGGIACGSFSSAGGASVLGTIDISKNLGAISFSRTL
    CTTSDLGQMEYQGGGALFGENISLSENAGVLTFKDNIVKTFASNGKILGGGAILATGKVEITNNSEGISFIGNARAP
    QALPTQEEFPLFSKKEGRPLSSGYSGGGAILGREVAILHNAAVVFEQNRLQCSEEEATLLGCCGGGAVHGMDSTSIV
    GNSSVRFGNNYAMGQGVSGGALLSKTVQLAGNGSVDFSRNIASLGGGALQASEGNCELVDNGYVLFRDNRGRVYGGA
    ISCLRGDVVISGNKGRVEFKDNIATRLYVEETVEKVEEVEPAPEQKDNNELSFLGRAEQSFITAANQALFASEDGDL
    SPESSISSEELAKRRECAGGAIFAKRVRIVDNREAVVFSNNFSDIYGGAIFTGSLREEDKLDGQIPEVLISGNAGDV
    VFSGNSSKRDEHLPHTGGGAICTQNLTISQNTGNVLFYNNVACSGGAVRIEDHGNVLLEAFGGDIVFKGNSSFRAQG
    SDAIYFAGKESHITALNATEGHAIVFHDALVFENLEERKSAEVLLINSRENPGYTGSIRFLEAESKVPQCIHVQQGS
    LELLNGATLCSYGFKQDAGAKLVLAAGAKLKILDSGTPVQQGHAISKPEAEIESSSEPEGAHSLWIAKNAQTTVPMV
    DIHTISVDLASFSSSQQEGTVEAPQVIVPGGSYVRSGELNLELVNTTGTGYENHALLKNEAKVPLMSFVASGDEASA
    EISNLSVSDLQIHVVIPEIEEDTYGHMGDWSEAKIQDGTLVISWNPTGYRLDPQKAGALVFNALWEEGAVLSALKNA
    RFAHNLTAQRMEFDYSINVWGFAFGGFRILSAENLVAIDGYKGAYGGASAGVDIQLMEDFVLGVSGAAFLGKMDSQK
    FDAEVSRKGVVGSVYTGFLAGSWFFKGQYSLGETQNDMKTRYGVLGESSASWISRGVLADALVEYRSLVGPVRPTFY
    ALHFNPYVEVSYASMKFPGFTEQGREARSFEDASLTNITIPLGMKFELAFIKGQFSEVNSLGISYAWEAYRKVEGGA
    VQLLEAGFDWEGAPMDLPRE2ELRVALENNTEWSSYFSTVLGLTAFCGGFTSTDSKLGYEANTGLRLIF
    SEQ ID NO: 51-CT869 nucleotide sequence
    ATGAAAAAAGCGTTTTTCTTTTTCCTTATCGGAAACTCCCTATCAGGACTAGCTAGAGAGGTTCCTTCTAGAATCTT
    TCTTATGCCCAACTCAGTTCCAGATCCTACGAAAGAGTCGCTATCAAATAAAATTAGTTTGACAGGAGACACTCACA
    ATCTCACTAACTGCTATCTCGATAACCTACGCTACATACTGGCTATTCTACAAAAAACTCCCAATGAAGGAGCTGCT
    GTCACAATAACAGATTACCTAAGCTTTTTTGATACACAAAAAGAAGGTATTTATTTTGCAAAAAATCTCACCCCTGA
    AAGTGGTGGTGCGATTGGTTATGCGAGTCCCAATTCTCCTACCGTGGAGATTCGTGATACAATAGGTCCTGTAATCT
    TTGAAAATAATACTTGTTGCAGACTATTTACATGGAGAAATCCTTATGCTGCTGATAAAATAAGAGAAGGCGGAGCC
    ATTCATGCTCAAAATCTTTACATAAATCATAATCATGATGTGGTCGGATTTATGAAGAACTTTTCTTATGTCCAAGG
    AGGAGCCATTAGTACCGCTAATACCTTTGTTGTGAGCGAGAATCAGTCTTGTTTTCTCTTTATGGACAACATCTGTA
    TTCAAACTAATACAGCAGGAAAAGGTGGCGCTATCTATGCTGGAACGAGCAATTCTTTTGAGAGTAATAACTGCGAT
    CTCTTCTTCATCAATAACGCCTGTTGTGCAGGAGGAGCGATCTTCTCCCCTATCTGTTCTCTAACAGGAAATCGTGG
    TAACATCGTTTTCTATAACAATCGCTGCTTTAAAAATGTAGAAACAGCTTCTTCAGAAGCTTCTGATGGAGGAGCAA
    TTAAAGTAACTACTCGCCTAGATGTTACAGGCAATCGTGGTAGGATCTTTTTTAGTGACAATATCACAAAAAATTAT
    GGCGGAGCTATTTACGCTCCTGTAGTTACCCTAGTGGATAATGGCCCTACCTACTTTATAAACAATATCGCCAATAA
    TAAGGGGGGCGCTATCTATATAGACGGAACCAGTAACTCCAAAATTTCTGCCGACCGCCATGCTATTATTTTTAATG
    AAAATATTGTGACTAATGTAACTAATGCAAATGGTACCAGTACGTCAGCTAATCCTCCTAGAAGAAATGCAATAACA
    GTAGCAAGCTCCTCTGGTGAAATTCTATTAGGAGCAGGGAGTAGCCAAAATTTAATTTTTTATGATCCTATTGAAGT
    TAGCAATGCAGGGGTCTCTGTGTCCTTCAATAAGGAAGCTGATCAAACAGGCTCTGTAGTATTTTCAGGAGCTACTG
    TTAATTCTGCAGATTTTCATCAACGCAATTTACAAACAAAAACACCTGCACCCCTTACTCTCAGTAATGGTTTTCTA
    TGTATCGAAGATCATGCTCAGCTTACAGTGAATCGATTCACACAAACTGGGGGTGTTGTTTCTCTTGGGAATGGAGC
    AGTTCTGAGTTGCTATAAAAATGGTACAGGAGATTCTGCTAGCAATGCCTCTATAACACTGAAGCATATTGGATTGA
    ATCTTTCTTCCATTCTGAAAAGTGGTGCTGAGATTCCTTTATTGTGGGTAGAGCCTACAAATAACAGCAATAACTAT
    ACAGCAGATACTGCAGCTACCTTTTCATTAAGTGATGTAAAACTCTCACTCATTGATGACTACGGGAACTCTCCTTA
    TGAATCCACAGATCTGACCCATGCTCTGTCATCACAGCCTATGCTATCTATTTCTGAAGCTAGCGATAACCAGCTAC
    AATCAGAAAATATAGATTTTTCGGGACTAAATGTCCCTCATTATGGATGGCAAGGACTTTGGACTTGGGGCTGGGCA
    AAAACTCAAGATCCAGAACCAGCATCTTCAGCAACAATCACTGATCCACAAAAAGCCAATAGATTTCATAGAACCTT
    ACTACTAACATGGCTTCCTGCCGGGTATGTTCCTAGCCCAAAACACAGAAGTCCCCTCATAGCTAACACCTTATGGG
    GGAATATGCTGCTTGCAACAGAAAGCTTAAAAAATAGTGCAGAGCTGACACCTAGTGGTCATCCTTTCTGGGGAATT
    ACAGGAGGAGGACTAGGCATGATGGTTTACCAAGATCCTCGAGAAAATCATCCTGGATTCCATATGCGCTCTTCCGG
    ATACTCTGCGGGGATGATAGCAGGGCAGACACACACCTTCTCATTGAAATTCAGTCAGACCTACACCAAACTCAATG
    AGCGTTACGCAAAAAACAACGTATCTTCTAAAAATTACTCATGCCAAGGAGAAATGCTCTTCTCATTGCAAGAAGGT
    TTCTTGCTGACTAAATTAGTTGGGCTTTACAGCTATGGAGACCATAACTGTCACCATTTCTATACTCAAGGAGAAAA
    TCTAACATCTCAAGGGACGTTCCGCAGTCAAACGATGGGAGGTGCTGTCTTTTTTGATCTCCCTATGAAACCCTTTG
    GATCAACGCATATACTGACAGCTCCCTTTTTAGGTGCTCTTGGTATTTATTCTAGCCTGTCTCACTTTACTGAGGTG
    GGAGCCTATCCGCGAAGCTTTTCTACAAAGACTCCTTTGATCAATGTCCTAGTCCCTATTGGAGTTAAAGGTAGCTT
    TATGAATGCTACCCACAGACCTCAAGCCTGGACTGTAGAATTGGCATACCAACCCGTTCTGTATAGACAAGAACCAG
    GGATCGCAGCCCAGCTCCTAGCCAGTAAGGGTATTTGGTTCGGTAGTGGAAGCCCCTCATCGCGTCATGCCATGTCC
    TATAAAATCTCACAGCAAACACAACCTTTGAGTTGGTTAACTCTCCATTTCCAGTATCATGGATTCTACTCCTCTTC
    AACCTTCTGTAATTATCTCAATGGGGAAATTGCTCTGCGATTCTAG
    SEQ ID NO: 52-CT869 protein sequence
    MKKAFFFFLIGNSLSGLAREVPSRIFLMPNSVPDPIKESLSNKISLTGDTHNLTNCYLDNLRYILAILQKTPNEGAA
    VTITDYLSFFDTQKEGIYFAKNLTPESGGAIGYASPNSPTVEIRDTIGPVIFENNTCCRLFTWRNPYAADKIREGGA
    IHAQNLYINHNHDVVGFMKNFSYVQGGAISTANTFVVSENQSCFLFMDNICIQTNTAGKGGAIYAGTSNSFESNNCD
    LFFINNACCAGGAIFSPICSLTGNRGNIVFYNNRCFKNVETASSEASDGGAIKVTIRLDVIGNRGRIFFSDNITKNY
    GGAIYAPVVTLVDNGPTYFINNIANNKGGAIYIDGTSNSKISADRHAIIFNENIVINVTNANGTSTSANPPRRNAIT
    VASSSGEILLGAGSSQNLIFYDPIEVSNAGVSVSFNKEADQTGSVVFSGATVNSADFHQRNLQTKTPAPLTLSNGFL
    CIEDHAQLTVNRFTQTGGVVSLGNGAVLSCYKNGTGDSASNASITLKHIGLNLSSILKSGAEIPLLWVEPTNNSNNY
    TADTAATFSLSDVKLSLIDDYGNSPYESTDLTHALSSQPMLSISEASDNQLASENIDFSGLNVPHYGWQGLWTWGWA
    KTQDPEPASSATITDPQKANRFHRTLLLTWLPAGYVPSPKHRSPLIANTUIGNMLLATESLKNSAELTPSGHPFWGI
    TGGGLGMMVYQDPRENHPGFHMRSSGYSAGMIAGQTHTFSLKFSQTYTKLNERYAKNNVSSKNYSCQGEMLFSLQEG
    FLLTKLVGLYSYGDHNCHHFYTQGENLTSQGTFRSQTMGGAVFFDLPMKPFGSTHILTAPFLGALGIYSSLSHFTEV
    GAYPRSFSTKTPLINVLVPIGVKGSFMNATHRPQAWTVELAYQPVLYRQEPGIAAQLLASKGIWFGSGSPSSRHAMS
    YKISQQTQPLSWLTLHFQYHGFYSSSTFCNYLNGEIALRF
    SEQ ID NO: 53-CT166 nucleotide sequence
    GTGAACGTTCGTACGTACTCTGTTCAGAGGGGGGGGGTAAAAACGATTTCTGCTAGTGCAGTTCCTCCTACAGCAGC
    TGTTTTATCGAGAAAAAAGCGTGCTATAGAAGAGAAGAAGGAGGAAGCTTCTTCTGGAAAGATAGAAAATCTTGATG
    CTAGCAAATACGATCTTACTCCCAAGAACATAGAAGAAAAACTAGGAATTACTCCTGAACAGAAATCTACTGTTAAA
    GACCTATTAAATAAACTGAAAAAGGTCATTAGTGCTTACAACTCTATGCCAGATAAAAATTCGGAAGCGGGACAGAA
    TTCCTTGATTCAACAAGGAAAATACGTCGATGCCATTCAGAAGAAGCTTCCAGCATCATCGCAGGCTCAGCCTAAAC
    AGGCAAAAGCTAAGGAACAGAAAGCCGAAGAAAAACCTAAGACGACTCCGATTGAAGGTGTTCTTGAAACCATCAAA
    ACAGAATTTAAAGGCCATCGTGTACCTGTTGAGAAAATCATCCATGGAATATGGATCGCAGGAGCGCCTCCGGATGG
    TATCGAAGATTATATGCGAGTCTTTTTAGATACTTATGAAGGTTTTGACTTCTACTTCTGGGTAGATGAGAATGCTT
    ATGCAGCAGCTAAATTTTCTAGCATTTTGAAGAAGGTCGCTTTCGATGCGGCTATTCAAGATCTACGATCTGCCACA
    GATGAGTCTACGAAGGCCTTTGTTAAAGACTACGATGAATTAAAACAGAAATATGAAAAGAAAGTTGCGGAGACGAC
    TTCTCAAGCAGAAAAAGACCAATATCTCAAAGATCTAAAGGATCTTTTAGAGAAATTTACAAAAATCAGTGATGAGA
    TTCGTGGAAAATTTGATCGGCTGTTTCTTAAGAATGTGATTGTTGCTCAGAACGGATTCTTTAATTTCTGCTTGCTG
    AAAGGCCTCGGCAATATCAATGACGAAACGCGTGCAGAGTATTTAGAGAAAGAACTCAAACTTCCTACTGAGGAGAT
    CGAACAGTATAAAAAGCTTAAAGAGACGAACAAAGAGAAGATAGCCGCTATTGTAAAACAACTAAACGAGAAACTTG
    GATCGGATCGGGTAAAAATCAAAGACATTAAAGAGCTGCAATCTATGAAGCAAGCTCGAAATGTCTACAATTATGAA
    CAGGAAATGTTTCTGCGCTGGAACTATGCAGCCGCAACAGATCAGATTCGTATGTATATGTTGGAGGAACTTGGAGG
    TCTTTATACTGATCTGGATATGATGCCTTCATACTCTCAGGAAGTATTGGAGCTTATCAAAAAGCACAGTGATGGAA
    ACCGAATGTTTGAGGATATGAGCTCTAGACGGGCGATTTCTGATGCGGTTTTAAAGATGGCTGTAGGTAAGGCGACA
    ACAGTTTCCATGGAAGAGGTAGCAAAGGATATCGATGTTTCTCGCTTAACAGAAGAGGATAAGACAAAATTAAATGC
    TCTATTTAAGGATCTAGAGCCATTTGCAAAACCGGATTCTAAAGGAGCTGAAGCAGAAGGGGGTGAAGGAGCAAAAG
    GTATGAAAAAGAGCTTTTTCCAGCCCATAGATCTGAATATTGTCAGAAATACCATGCCTATCTTGAGACGCTATCAT
    CACTATCCTGAGTTAGGATGGTTTATTCGAGGATTGAACGGATTGATGGTCTCTCATAAGGGAAGCACTGCGGTTTC
    TGCTGTCATTGTAGGGCAACAGGCTGCCTACCAGGAACTAGCAGCACTTAGACAAGATGTCCTTTCAGGGGAGTTTT
    TCCATTCTTTAGAAAATTTGACACATAGAAACCATAAGGAGCGTATTGGAAATCATCTCGTCGCTAATTATTTGGCT
    AAAAGTCTCTTTTTTGATTACTGCCAAGATTCAGTGATGCCGGAGGCTGTAAGTACCTTAGGTATTAGATGA
    SEQ ID NO: 54-CT166 protein sequence
    MNVRTYSVQRGGVKTISASAVPPTAAVLSRKKRAIEEKKEEASSGKIENLDASKYDLTPKNIEEKLGITPEQKSTVK
    DLLNKLKKVISAYNSMPDKNSEAGQNSLIQQGKYVDAIQKKLPASSQAQPKQAKAKEQKAEEKPKTTPIEGVLETIK
    TEFKGHRVPVEKIIHGIWIAGAPPDGIEDYMRVFLDTYEGFDFYFWVDENAYAAAKFSSILKKVAFDAAIQDLRSAT
    DESTKAFVKDYDELKQKYEKKVAETTSQAEKDQYLKDLKDLLEKFTKISDEIRGKFDRLFLKNVIVAQNGFFNFCLL
    KGLGNINDETRAEYLEKELKLPTEEIEQYKKLKETNKEKIAAIVKQLNEKLGSDRVKIKDIKELQSMKQARNVYNYE
    QEMFLRWNYAAATIMIRMYMLEELGGLYTDLDMMPSYSQEVLELIKKHSDGNRMFEDMSSRRAISDAVLKMAVGKAT
    TVSMEEVAKDIDVSRLTEEDKTKLNALFKDLEPFAKPDSKGAEAEGGEGAKGMKKSFFQPIDLNIVRNTMPILRRYH
    HYPELGWFIRGLNGLMVSHKGSTAVSAVIVGQQAAYQELAALRQDVLSGEFFHSLENLTHRNHKERIGNHLVANYLA
    KSLFFDYCQDSVMPEAVSTLGIR
    SEQ ID NO: 55-CT175 nucleotide sequence
    ATGCATCACAGGAAGTTTTTAGCAGTTTCCATTGCTTTCGTAAGTTTAGCTTTTGGGCTAACATCTTGTTATCATAA
    AAAAGAAGAACCAAAAGATGTTTTGCGGATTGCGATCTGTCATGATCCAATGTCTTTAGATCCGCGTCAGGTTTTTT
    TAAGCAAAGATGTTTCTATTGTAAAAGCTCTCTATGAAGGGTTAGTCCGGGAAAAAGAAGCTGCGTTCCAGCTAGCT
    TTGGCAGAAAGATATCATCAATCTGATGATGGTTGTGTTTATACTTTTTTTCTAAAAAATACATTCTGGAGCAACGG
    AGATGTTGTAACAGCATATGATTTTGAAGAGTCTATTAAACAAATTTATTTCCGAGAAATTGATAACCCTTCGTTAC
    GCTCTCTTGCATTAATTAAAAATTCTCATGCTGTTTTAACAGGAGCTCTCCCTGTTGAAGATTTAGGTGTTAGAGCT
    TTGAATGCGAAAACTCTAGAAATTGTTTTAGAAAACCCGTTTCCTTATTTTCTAGAGATATTGGCGCACCCGGTTTT
    TTATCCGGTGCACACCTCTTTACGAGAATATTACAAAGATAAGCGTAACAAACGCGTTTTCCCGATAATTTCTAATG
    GTCCTTTTGCGATTCAATGTTATGAGCCGCAAAGATATTTACTAATCAACAAAAACCCTCTGTATCATGCCAAGCAC
    GATGTTCTGTTAAATTCGGTATGTTTGCAGATAGTTCCTGATATCCATACAGCTATGCAGTTATTCCAAAAAAATCA
    TATCGATTTAGTTGGGTTACCCTGGAGCTCCTCCTTTTCTTTAGAAGAACAAAGAAATCTCCCTAGAGAAAAATTAT
    TTGATTATCCTGTATTGAGTTGCTCTGTTTTATTCTGTAACATTCATCAAACACCTTTAAATAATCCCTCGCTGAGA
    ACAGCCCTCTCTTTAGCAATCAATCGAGAAACTTTATTAAAACTAGCAGGTAAAGGCTGTAGCGCTACGAGCTTTGT
    TCACCCACAATTATCTCAGATACCTGCTACTACTTTGTCTCAAGATGAGCGGATTGCTTTAGCAAAAGGCTACTTGA
    CCGAAGCTTTAAAGACTTTATCTCAAGAAGATTTAGAAAAAATTACATTAATTTATCCTATAGAATCTGTTTGCTTA
    CGAGCCGTTGTTCAAGAAATTCGCCAACAATTATTTGATGTACTGGGATTTAAAATTTCTACATTAGGATTAGAATA
    TCATTGTTTTTTAGACAAACGTTCCAGAGGAGAATTCTCCTTAGCAACTGGTAATTGGATTGCAGACTATCATCAAG
    CTAGTGCTTTCCTGTCTGTCCTAGGTAATGGGACAAGATATAAAGACTTTCAATTGATTAACTGGCAGAACCAAAAG
    TACACAAATATAGTTGCTCAACTTCTGATTCAAGAATCAAGCGACCTACAGCTTATGGCAGAGCAGTTGTTGCTTAA
    AGAAAGTCCTCTTATTCCTCTATACCACCTCGATTATGTGTATGCGAAACAGCCTCGGGTGTCTGATCTCCAAACCT
    CTTCTCGTGGAGAAATTGATTTAAAAAGAGTTTCATTAGCTGAAGGATAG
    SEQ ID NO: 56-CT175 protein sequence
    MHHRKFLAVSIAFVSLAFGLISCYHKKEEPKDVLRIAICHDPMSLDPRQVFLSKIWSIVKALYEGLVREKEAAFQLA
    LAERYHQSDDGCVYTFFLKNIFWSNGDVVTAYAFEESIKQIYFREIDNPSLRSLALIKNSHAVLTGALPVEDLGVRA
    LNAKTLEIVLENPFPYFLEILAHPVFYPVHTSLREYYKDKRNKRVFPIISNGPFAIQCYEPQRYLLINKNPLYHAKH
    DVLLNSVCLQIVPDIHTANQLFQKNHIDLVGLPWSSSFSLEEORNLPREKLFDYPVLSCSVLFCNIHQTPLNNPSLR
    TALSLAINRETLLKLAGKGCSATSFVHPQLSQIPATTLSQDERIALAKGYLTEALKILSQEDLEKITLIYPIESVCL
    RAVVQEIRQQLFDVLGFKISTLGLEYHCFLDKRSRGEFSLATGNWIADYHQASAFLSVLGNGTRYKDFQLINWQNQK
    YTNIVAQLLIQESSDLQLMAEQLLLKESPLIPLYHLDYVYAKQPRVSDLQTSSRGEIDLKRVSLAEG
    SEQ ID NO: 57-TC0666 nucleotide sequence (homologue of CT387)
    ATGAGGATTCCAATGACACTCTTTCACACTCATCACGATGCCGTCTCTCCGGACGGCTACTTATGTTCTTCCCTTCA
    GTTAGTTGGCTCTGGCACATATGAAGGAGAAATCGAAATCCAAAATATTCCTTCTTATTTCCTTGGATTCCGATTAC
    CCACCCATTGCGTTCATCTTAATTTGAAGAGTTCTCTAGCCCAGTTAGGAGTAGATGCATCTCTTCTTCACTGCGAA
    CTAAGCAAAAATCAACAACGTGCACATATGCACGTGCAGTTCACCGGCTATGGCCCTATCGCTGAGTCCATGCTATC
    TCTTCTCAAACCCGGAGATCGAGTAGCCAAACTGTTTGCTGCAGATGATCGTAGACTAGTCCGCTCCCCTGATTATC
    TTGAAAGCATGCTAAAAAATACTGATAAGACAGGACATCCTCTGCTCCGATTTGGAAAAAAACTCGAGCATCTTATC
    TCTTTTGATGTGGTGGACGATCGCCTCGTTGTATCACTCCCCACCTTGCCAGGCATAGTCAATTATGACCCAGACAT
    CTATGGACTTCTTCCCTTAATTCAAAAATCACTAAGCAATCCTAAATTGAGTATTCGCCACTTCTTGTCTCTCTATC
    AGAAGATCGTAGAAGGACCACACATCCCTTATGAAGGAAACATTTTGTTAATCAAAACAGAGCCTCTTCATATCCGC
    ACAGTATTTGCTCGCGTGGTCGATCAAATGCTCCCTCAAGGTCTATTTCACACTTCTGCCAACATTTTAGAACCCAC
    AACGCGAGAGTCTGGAGATATTTTTGAATTTTTTGGAAATCCCTCCACTCTTGTAGAAAGAATCCCTCTAGAATTCT
    TCACTATCGAACCCTACAAAGAACACTCTTACTTCTGTAATCGAGATCTATTGCAAACTACCTTGCAATCGGAAAGT
    GAAATCAAAAAAATATTCGATACAGCTCCTCAAGAGCCTGTAAAAGCCGCCACTTATTTATCAAAAGGAAGTGAAAT
    TTCTTCTCTTGATGCAGATTCTTGGCTTACGGGATCCGCAGCTGCATACCAATGTAGCGAAAAACAGGCAGCTAAAG
    ACGAATACATCCACGCTCAACCCTGTTATCCATTTTTGGAAGCAATGGAAACGGGACTCATCAATAGCGAAGGAGCT
    TTACTCACTCGGTTTTTCCCCTCTTCCAGCTTAAAAGGGATGTTGATCTCCTATCATGTACGCCACTATCTTAAGCA
    AATTTACTTTCAAGTTCCTTCTTATACATATGGAGACTACTTCTCTCATAATGACCGAGGATTACTGTTAGATCTAT
    ATCAGGCGAACATTGATGTGTTCTGGGCTGATGAAGAGAGCGGCCGTGTATTGCAATATACAAAACGGCGCGACAAA
    AATAGTGGAATGTTCGTCGTTAAAAATCGAGTAGAAGAGTTCCAATCAGCATATTTCGTAGCGATTTATGGATCACG
    TCTCCTGGAAAATAATTTCTCGGCCCAACTAAACACGCTTCTTGCAGGGTTACAAAAAGCTGCACACACTCTAGGCA
    TTCCAGGCTTCTCAAAACCCACTCCTCTTGCCGTAATCACAGGAGGAGGGACTGGCGTTATGGCTACAGGAAATCGT
    GTTGCAAAAGAGTTGGGAATTCTTTCTTGCGGGACCGTTCTCGATTTGGAAGCTTCACCTGCACAAATAGATCAGCC
    TGCAAACGAATTTTTAGATGCCAAAATGACATACCGTCTACCGCAACTTATAGAAAGACAAGAACATTTTTATTCAG
    ACCTTGCCATTTTAGTTGTTGGTGGTGTTGGAACAGATTTCGAACTTTACCTAGAACTCGTCTACTTGAAAACAGGC
    GCCAAACCTCCTACTCCAATTTTCCTTATTGGGCCTGTTGAATACTGGAAAGAGAAAGTTGCTCATGCCTATGAGAT
    TAATCTTAAAGCAGGAACTATTCGTGGTTCTGAGTGGATCAGCAACTGCTTATTCTGCATTACATCTCCTGAAGCAG
    GAATTGCTGTATTCGAACAGTTCCTCGCTGGAGAACTTCCCATAGGATATGATTATCCTCCAGCTCCAGACGGATTA
    GTTATCGTCTAA
    SEQ ID NO: 58-TC0666 protein sequence (homologue of CT387) 
    MRIPMTLFHTHHDAVSPDGYLCSSLQLVGSGTVEGEIEIQNIPSYFLGFRLPTHCVHLNLKSSLAQLGVDASLLHCE
    LSKNQRRAHMHVQFTGYGPIAESMLSLLKPGDRVAKLFAADDRRLVRSPDYLESMLKNTDKTGHPLLRFGKKLEHLI
    SFDVVDDRLVVSLPTLPGIVNYDPDIYGLLPLIQKSLSNPKLSIRHFLSLYQKIVEGPHIPYEGNILLIKTEPLHIR
    TVFARVVDQMLPQGLFHTSANILEPTTRESGDIFEFFGNPSTLVERIPLEFFTIEPYKEHSYFCNRDLLQTTLQSES
    EIKKIFDTAPQEPVKAATYLSKGSEISSLDADSWLTGSAAAYQCSEKQAAKDEYIHAQPCYPFLEAMETGLINSEGA
    LLTRFFPSSSLKGMLISYHVRHYLKQIYFQVPSYTYGDYFSHNDRGULDLYQANIDVFWADEESGRVLQYTKRIRDK
    NSGMFVVKNRVEEFQSAYFVAIYGSRLLENNFSAQLNTLLAGLQKAAHTLGIPGFSKPTPLAVITGGGTGVMATGNR
    VAKELGILSCGTVLDLEASPAQIDQPANEFLDAKMTYRLPQLIERQEHFYSDLAILVVGGVGTDFELYLELVYLKTG
    AKPPTPIFLIGPVEYWKEKVAHAYEINLKAGTIRGSEWISNCLFCITSPEAGIAVFEQFLAGELPIGYDYPPAPDGL
    VIV
    SEQ ID NO: 59-TC0197 nucleotide sequence
    ATGAGTTCCGAGAAAGATAAAAAAAACTCCTGTTCTAAGTTTTCCTTATCGGTAGTAGCAGCTATTCTCGCTTCTAT
    GAGTGGTTTATCGAATTGTTCCGATCTTTATGCCGTAGGAAGTTCTGCAGACCATCCTGCCTACTTGATTCCTCAAG
    CGGGGTTATTATTGGATCATATTAAGGATATATTCATTGGCCCTAAAGATAGTCAGGATAAGGGGCAGTATAAGTTG
    ATTATTGGTGAGGCTGGCTCTTTCCAAGATAGTAATGCAGAGACTCTTCCTCAAAAGGTAGAGCACAGCACTTTGTT
    TTCAGTTACAACACCTATAATTGTGCAAGGAATAGATCAACAAGATCAGGTCTCTTCGCAGGGATTGGTCTGTAATT
    TTTCAGGAGATCATTCAGAGGAGATTTTTGAGAGAGAATCCTTTTTAGGGATCGCTTTCCTAGGGAATGGTAGCAAG
    GATGGAATCACGTTAACAGATATAAAATCTTCGTTATCTGGTGCTGCCTTGTATTCTTCAGATGATCTTATTTTTGA
    AAGAATTAAGGGAGATATAGAGCTTTCTTCTTGTTCATCTTTAGAAAGAGGAGGAGCTTGTTCAGCTCAAAGTATTT
    TAATTCATGATTGTCAAGGATTAACGGTAAAACATTGTGCCGCAGGGGTGAATGTTGAAGGAGTTAGTGCTAGCGAC
    CATCTCGGATTTGGGGGCGGGGCCTTCTCTACTACAAGTTCTCTTTCTGGAGAGAAGAGTTTGTATATGCCTGCAGG
    CGATATTGTGGTGGCTACCTGCGATGGTCCTGTGTGTTTCGAAGGAAATAGTGCTCAGTTAGCAAATGGTGGCGCTA
    TTGCCGCTTCTGGTAAAGTTCTTTTTGTAGCTAACGAAAAAAAGATTTCCTTTACAGACAACCAAGCTTTGTCTGGA
    GGAGCTATTTCTGCATCTTCTAGTATTTCTTTCCAAAATTGTGCTGAGCTTGTGTTCAAGAGTAATCTTGCAAAAGG
    AGTTAAAGATAAATGTTCTTTGGGAGGAGGTGCTTTAGCCTCTTTAGAATCCGTAGTTTTGAAAGATAATCTCGGTA
    TTACTTATGAAAAAAATCAGTCCTATTCGGAAGGAGGGGCTATTTTTGGGAAGGATTGTGAGATTTTTGAAAACAGG
    GGGCCTGTTGTATTCAGAGATAATACAGCTGCTTTAGGAGGCGGAGCTATTTTGGCGCAACAAACTGTGGCGATTTG
    TGGTAATAAGTCTGGAATATCTTTTGAAGGAAGTAAGTCTAGTTTTGGAGGGGCCATTGCTTGTGGAAATTTCTCTT
    CTGAGAATAATTCTTCAGCTTTGGGATCAATTGATATCTCTAACAATCTAGGAGATATCTCTTTTCTTCGGACTCTG
    TGTACTACTTCGGATTTAGGGCAAACGGATTACCAAGGGGGAGGGGCCTTATTCGCTGAAAATATTTCTCTTTCTGA
    GAATGCTGGTGCAATTACTTTCAAAGACAATATTGTGAAGACATTTGCCTCAAATGGAAAAATGTTGGGTGGAGGGG
    CAATTTTAGCTTCAGGAAATGTTTTGATTAGCAAAAACTCTGGAGAGATTTCTTTTGTAGGGAATGCTCGAGCTCCT
    CAGGCTATTCCGACTCGTTCATCTGACGAATTGTCTTTTGGCGCACAATTAACTCAAACTACTTCAGGATGTTCTGG
    AGGAGGAGCTCTTTTTGGTAAAGAGGTTGCCATTGTTCAAAATGCCACTGTTGTATTCGAGCAAAATCGCTTACAGT
    GTGGCGAGCAGGAAACACATGGTGGAGGCGGTGCTGTTTATGGTATGGAGAGTGCCTCTATTATTGGAAACTCTTTT
    GTGAGATTCGGAAATAATTACGCTGTAGGGAATCAGATTTCTGGAGGAGCTCTTTTATCCAAGAAGGTCCGTTTAGC
    TGAAAATACAAGGGTAGATTTTTCTCGAAATATCGCTACTTTCTGCGGCGGGGCTGTTCAAGTTTCTGATGGAAGTT
    GCGAATTGATCAACAATGGGTATGTGCTATTCAGAGATAACCGAGGGCAGACATTTGGTGGGGCTATTTCTTGCTTG
    AAAGGAGATGTGATCATTTCCGGAAATAAAGATAGGGTTGAGTTTAGAGATAACATTGTGACGCGGCCTTATTTTGA
    AGAAAATGAAGAAAAAGTTGAGACAGCAGATATTAATTCAGATAAGCAAGAAGCAGAAGAGCGCTCTTTATTAGAGA
    ACATTGAGCAGAGCTTTATTACTGCAACTAATCAGACCTTTTTCTTAGAGGAAGAGAAACTCCCATCAGAAGCTTTT
    ATCTCTGCTGAAGAACTTTCAAAGAGAAGAGAATGTGCTGGTGGGGCGATTTTTGCAAAACGGGTCTACATTACGGA
    TAATAAAGAACCTATCTTGTTTTCGCATAATTTTTCTGATGTTTATGGGGGAGCTATTTTTACGGGTTCTCTACAGG
    AAACTGATAAACAAGATGTTGTAACTCCTGAAGTTGTGATATCAGGCAACGATGGGGATGTCATTTTTTCTGGAAAT
    GCAGCTAAACATGATAAGCATTTACCTGATACAGGTGGTGGAGCCATTTGTACACAGAATTTGACGATTTCCCAAAA
    CAATGGGAATGTCTTGTTCTTGAACAATTTTGCTTGTTCTGGTGGAGCAGTTCGCATAGAGGATCATGGAGAAGTTC
    TTTTAGAGGCTTTTGGGGGAGATATTATTTTCAATGGAAACTCTTCTTTCAGAGCTCAAGGATCGGATGCGATCTAT
    TTTGCTGGTAAGGACTCTAGAATTAAAGCTTTAAATGCTACTGAAGGACATGCGATTGTGTTCCAAGATGCATTGGT
    GTTTGAAAATATAGAAGAAAGAAAGTCTTCGGGACTATTGGTGATTAACTCTCAGGAAAATGAGGGTTATACGGGAT
    CCGTCCGATTTTTAGGATCTGAAAGTAAGGTTCCTCAATGGATTCATGTGCAACAGGGAGGTCTTGAGTTGCTACAT
    GGAGCTATTTTATGTAGTTATGGGGTTAAACAAGATCCTAGAGCTAAAATAGTATTATCTGCTGGATCTAAATTGAA
    GATTCTAGATTCAGAGCAAGAAAATAACGCAGAAATTGGAGATCTTGAAGATTCTGTTAATTCAGAAAAAACACCAT
    CTCTTTGGATTGGGAAGAACGCTCAAGCAAAAGTCCCTCTGGTTGATATCCATACTATTTCTATTGATTTAGCATCA
    TTTTCTTCTAAAGCTCAGGAAACCCCTGAGGAAGCTCCACAAGTCATCGTCCCTAAGGGAAGTTGTGTCCACTCGGG
    AGAGTTAAGTTTGGAGTTGGTTAATACAACAGGAAAAGGTTATGAGAATCATGCGTTGTTAAAAAATGATACTCAGG
    TTTCTCTCATGTCTTTCAAAGAGGAAAATGATGGATCTTTAGAAGATTTGAGTAAGTTGTCTGTTTCGGATTTACGC
    ATTAAAGTTTCTACTCCAGATATTGTAGAAGAAACTTATGGCCATATGGGGGATTGGTCTGAAGCTACAATTCAAGA
    TGGGGCTCTTGTCATTAATTGGCATCCTACTGGATATAAATTAGATCCGCAAAAAGCTGGTTCTTTGGTATTCAATG
    CATTATGGGAGGAAGAGGCTGTATTGTCTACTCTAAAAAATGCTCGGATTGCCCATAACCTTACCATTCAGAGAATG
    GAATTTGATTATTCTACAAATGCTTGGGGATTAGCTTTTAGTAGCTTTAGAGAGCTATCTTCAGAGAAGCTTGTTTC
    TGTTGATGGATATAGAGGCTCTTATATAGGGGCTTCTGCAGGCATTGATACTCAGTTGATGGAAGATTTTGTTTTGG
    GAATCAGCACGGCTTCCTTCTTCGGGAAAATGCATAGTCAGAATTTTGATGCAGAGATTTCTCGACATGGTTTTGTT
    GGTTCGGTCTATACAGGCTTCCTAGCTGGGGCCTGGTTCTTCAAGGGGCAGTACAGTCTTGGCGAAACACATAACGA
    TATGACAACTCGTTACGGGGTTTTGGGAGAATCTAATGCTACTTGGAAGTCTCGAGGAGTACTAGCAGATGCTTTAG
    TTGAATATCGTAGTTTAGTCGGTCCAGCACGACCTAAATTTTATGCTTTGCATTTTAATCCTTATGTCGAGGTATCT
    TATGCATCTGCGAAGTTCCCTAGTTTTGTAGAACAAGGAGGAGAAGCTCGTGCTTTTGAAGAAACCTCTTTAACAAA
    CATTACCGTTCCCTTTGGTATGAAATTTGAACTATCTTTTACAAAAGGACAGTTTTCAGAGACTAATTCTCTTGGAA
    TAGGTTGTGCATGGGAAATGTATCGGAAAGTCGAAGGAAGATCTGTAGAGCTACTAGAAGCTGGTTTTGATTGGGAA
    GGATCTCCTATAGATCTCCCTAAACAAGAGCTGAGAGTGGCTTTAGAAAACAATACGGAATGGAGTTCGTATTTTAG
    TACAGCTCTAGGAGTAACAGCATTTTGTGGAGGATTTTCTTCTATGGATAATAAACTAGGATACGAAGCGAATGCTG
    GAATGCGTTTGATTTTCTAG
    SEQ ID NO: 60-TC0197 protein sequence 
    MSSEKDKKNSCSKFSLSVVAAILASMSGLSNCSDLYAVGSSADHPAYLIPQAGLLLDHIKDIFIGPKDSQDKGQYKL
    IIGEAGSFQDSNAETLPQKVEHSTLFSVTTPIIVQGIDQQDQVSSQGLVCNFSGDHSEEIFERESFLGIAFLGNGSK
    DGITLTDIKSSLSGAALYSSDDLIFERIKGDIELSSCSSLERGGACSAQSILIHDCQGLTVKHCAAGVNVEGVSASD
    HLGFGGGAFSTTSSLSGEKSLYMPAGDIVVATCDGPVCFEGNSAQLANGGAIAASGKVLFVANEKKISFTDNQALSG
    GAISASSSISFQNCAELVFKSNLAKGVKDKCSLGGGALASLESVVLKDNLGITYEKNQSYSEGGAIFGKDCEIFENR
    GPVVFRDNTAALGGGAILAQQTVAICGNKSGISFEGSKSSFGGAIACGNFSSENNSSALGSIDISNNLGDISFLRIL
    CITSDLGQTDYQGGGALFAENISLSENAGAITFKDNIVKTFASNGKMLGGGAILASGNVLISKNSGEISFVGNARAP
    QAIPTRSSDELSFGAQLTOTTSGCSGGGALFGKEVAIVQNATVVFEQNRLQCGEQETHGGGGAVYGMESASIIGNSF
    VRFGNNYAVGNQISGGALLSKKVRLAENTRVDFSRNIATFCGGAVQVSDGSCELINNGYVLFRDNRGQTFGGAISCL
    KGDVIISGNKDRVEFRDNIVIRPYFEENEEKVETADINSDKQEAEERSLLENIEQSFITATNQTFFLEEEKLPSEAF
    ISAEELSKRRECAGGAIFAKRVYITDNKEPILFSHNFSDVYGGAIFTGSLQETDKQDVVTPEVVISGNDGDVIFSGN
    AAKHDKHLPDTGGGAICTQNLTISQNNGNVLFLNNFACSGGAVRIEDHGEVLLEAFGGDIIFNGNSSFRAQGSDAIY
    FAGKDSRIKALNATEGHAIVFQDALVFENIEERKSSGLLVINSQENEGYTGSVRFLGSESKVPQWIHVQQGGLELLH
    GAILCSYGVKQDPRAKIVLSAGSKLKILDSEQENNAEIGDLEDSVNSEKTPSLWIGKNAQAKVPLVDIHTISIDLAS
    FSSKAQETPEEAPQVIVPKGSCVHSGELSLELVNTTGKGYENHALLKNDTQVSLMSFKEENDGSLEDLSKLSVSDLR
    IKVSTPDIVEETYGHMGDWSEATIQDGALVINWHPTGYKLDPQKAGSLVFNALWEEEAVLSTLKNARIAHNLTIQRM
    EFDYSTNAWGLAFSSFRELSSEKLVSVDGYRGSYIGASAGIDTQLMEDFVLGISTASFFGKMHSQNFDAEISRHGFV
    GSVYTGFLAGAWFFKGQYSLGETHNDMTTRYGVLGESNATWKSRGVLADALVEYRSLVGPARPKFYALHFNPYVEVS
    YASAKFPSFVEQGGEARAFEETSLTNITVPFGMKFELSFTKGQFSETNSLGIGCAWEMYRKVEGRSVELLEAGFDWE
    GSPIDLPKQELRVALENNTEWSSYFSTALGVTAFCGGFSSMDNKLGYEANAGMRLIF
    SEQ ID NO: 61-TC0261 nucleotide sequence
    ATGAAAAAACTGTTCTTTTTTGTCCTTATTGGAAGCTCTATACTGGGATTTACTCGAGAAGTCCCTCCTTCGATTCT
    TTTAAAGCCTATACTAAATCCATACCATATGACCGGGTTATTTTTTCCCAAGGTTAATTTGCTTGGAGACACACATA
    ATCTCACTGATTACCATTTGGATAATCTAAAATGCATTCTGGCTTGCCTACAAAGAACTCCTTATGAAGGAGCTGCT
    TTCACAGTAACCGATTACTTAGGTTTTTCAGATACACAAAAGGATGGTATTTTTTGTTTTAAAAATCTTACTCCAGA
    GAGTGGAGGGGTTATTGGTTCCCCAACTCAAAACACTCCTACTATAAAAATTCATAATACAATCGGCCCCGTTCTTT
    TCGAAAATAATACCTGTCATAGACTGTGGACACAGACCGATCCCGAAAATGAAGGAAACAAAGCACGCGAAGGCGGG
    GCAATTCATGCTGGGGACGTTTACATAAGCAATAACCAGAACCTTGTCGGATTCATAAAGAACTTTGCTTATGTTCA
    AGGTGGAGCTATTAGTGCTAATACTTTTGCCTATAAAGAAAATAAATCGAGCTTTCTTTGCCTAAATAACTCTTGTA
    TACAAACTAAGACGGGAGGGAAAGGTGGTGCTATTTACGTTAGTACGAGCTGCTCTTTCGAGAACAATAACAAGGAT
    CTGCTTTTCATCCAAAACTCCGGCTGTGCAGGAGGAGCTATCTTCTCTCCAACCTGTTCTCTAATAGGAAACCAAGG
    AGATATTGTTTTTTACAGCAACCACGGTTTTAAAAATGTTGATAATGCAACTAACGAATCTGGGGATGGAGGAGCTA
    TTAAAGTAACTACCCGCTTGGACATCACCAATAATGGTAGTCAAATCTTTTTTTCTGATAATATCTCAAGAAATTTT
    GGAGGAGCTATTCATGCTCCTTGTCTTCATCTTGTTGGTAATGGGCCAACCTATTTTACAAACAATATAGCTAATCA
    CACAGGTGGGGCTATTTATATAACAGGAACAGAAACCTCAAAGATTTCTGCAGATCACCATGCTATTATTTTTGATA
    ATAACATTTCTGCAAACGCCACCAATGCGGACGGATCTAGCAGCAACACTAATCCTCCTCACAGAAATGCGATCACT
    ATGGACAATTCCGCTGGAGGAATAGAACTTGGTGCAGGGAAGAGCCAGAATCTTATTTTCTATGATCCTATTCAAGT
    GACGAATGCTGGAGTTACCGTAGACTTCAATAAGGATGCCTCCCAAACCGGATGTGTAGTTTTCTCTGGAGCGACTG
    TCCTTTCTGCAGATATTTCTCAGGCTAATTTGCAAACTAAAACACCTGCAACGCTTACTCTCAGTCACGGTCTTCTG
    TGTATCGAAGATCGTGCTCAGCTCACAGTGAACAATTTTACACAAACAGGAGGGATTGTAGCCTTAGGAAATGGAGC
    AGTTTTAAGCAGCTACCAACACAGCACTACAGACGCCACTCAAACTCCCCCTACAACCACCACTACAGATGCTTCCG
    TAACTCTTAATCACATTGGATTAAATCTCCCCTCTATTCTTAAGGATGGAGCAGAGATGCCTCTATTATGGGTAGAA
    CCTATAAGCACAACTCAAGGTAACACTACAACATATACGTCAGATACCGCGGCTTCCTTCTCATTAAATGGAGCCAC
    ACTCTCTCTCATTGATGAAGATGGAAATTCTCCCTATGAAAACACGGACCTCTCTCGTGCATTGTACGCTCAACCTA
    TGCTAGCAATTTCTGAGGCCAGTGATAACCAATTGCAATCCGAAAGCATGGACTTTTCTAAAGTTAATGTTCCTCAC
    TATGGATGGCAAGGACTTTGGACCTGGGGGTGGGCAAAAACTGAAAATCCAACAACAACTCCTCCAGCAACAATTAC
    TGATCCGAAAAAAGCTAATCAGTTTCATAGAACTTTATTATTAACGTGGCTCCCTGCTGGTTATATCCCCAGCCCTA
    AACATAAAAGCCCTTTAATAGCTAATACCTTGTGGGGGAATATACTTTTTGCAACGGAAAACTTAAAAAATAGCTCA
    GGGCAAGAACTTCTTGATCGTCCTTTCTGGGGAATTACAGGAGGGGGCTTGGGGATGATGGTCTATCAAGAACCTAG
    AAAAGACCATCCTGGATTCCACATGCATACCTCCGGATATTCAGCAGGAATGATTACAGGAAACACACATACCTTCT
    CATTACGATTCAGCCAGTCCTATACAAAACTCAATGAACGTTATGCCAAGAACTATGTGTCTTCTAAAAATTACTCT
    TGCCAAGGGGAAATGCTTTTGTCCTTACAAGAAGGACTCATGCTGACTAAACTAATTGGTCTCTATAGTTATGGGAA
    TCACAACAGCCACCATTTCTATACCCAAGGAGAAGACCTATCGTCTCAAGGGGAGTTCCATAGTCAGACTTTTGGAG
    GGGCTGTCTTTTTTGATCTACCTCTGAAACCTTTTGGAAGAACACACATACTTACAGCTCCTTTCTTAGGTGCCATT
    GGTATGTATTCTAAGCTGTCTAGCTTTACAGAAGTAGGAGCCTATCCAAGAACCTTTATTACAGAAACGCCTTTAAT
    CAATGTCCTGATTCCTATCGGAGTAAAAGGTAGCTTCATGAATGCCACCCATAGACCTCAGGCCTGGACTGTAGAGC
    TTGCTTACCAACCTGTTCTTTACAGACAAGAACCTAGTATCTCTACCCAATTACTCGCTGGTAAAGGTATGTGGTTT
    GGGCATGGAAGTCCTGCATCTCGCCACGCTCTAGCTTATAAAATTTCACAGAAAACACAGCTTTTGCGATTTGCAAC
    ACTTCAACTCCAGTATCACGGATACTATTCGTCTTCCACTTTCTGTAATTATCTGAATGGAGAGGTATCTTTACGTT
    TCTAA
    SEQ ID NO: 62-TC0261 protein sequence
    MKKLFFFVLIGSSILGFTREVPPSILLKPILNPYHMTGLFFPKVNLLGDTHNLTDYHLDNLKCILACLQRTPYEGAA
    FTVTDYLGFSDTQKDGIFCFKNLTPESGGVIGSPTQNTPTIKIHNTIGPVLFENNTCHRLWTQTDPENEGNKAREGG
    AIHAGDVYISNNQNLVGFIKNFAYVQGGAISANTFAYKENKSSFLCLNNSCIQTKTGGKGGAIYVSTSCSFENNNKD
    LLFIQNSGCAGGAIFSPTCSLIGNQGDIVFYSNHGFKNVDNATNESGDGGAIKVTTRLDITNNGSQIFFSDNISRNF
    GGAIHAPCLHLVGNGPTYFTNNIANHTGGAIYITGTETSKISADHHAIIFDNNISANATNADGSSSNTNPPHRNAIT
    MDNSAGGIELGAGKSQNLIFYDPIQVTNAGVTVDFNKDASQTGCVVFSGATVLSADISQANLQTKTPATLTLSHGLL
    CIEDRAQLTVNNFTQIGGIVALGNGAVLSSYQHSTTDATQTPPTTTTIDASVTLNHIGLNLPSILKDGAEMPLLWVE
    PISTIQGNTITYTSDTAASFSLNGATLSLIDEDGNSPYENTDLSRALYAQPMLAISEASDNQLQSESMDFSKVNVPH
    YGWQGLWTWGWAKTENPITTPPATITDPKKANQFHRTLLLTWLPAGYIPSPKHKSPLIANTLWGNILFATENLKNSS
    GQELLDRPFWGITGGGLGMMVYQEPRKDHPGFHMHTSGYSAGMITGNTHIFSLRFSQSYTKLNERYAKNYVSSKNYS
    CQGEMLLSLQEGLMLIKLIGLYSYGNHNSHHFYTQGEDLSSQGEFHSQTFGGAVFFDLPLKPFGRTHILTAPFLGAI
    GMYSKLSSFTEVGAYPRTFITETPLINVLIPIGVKGSFMNATHRPQAWTVELAYQPVLYRQEPSISTQLLAGKGMWF
    GHGSPASRHALAYKISQKTQLLRFATLQLQYHGYYSSSIFCNYLNGEVSLRF
    SEQ ID NO: 63-CT733 fragment nucleotide sequence
    GCACCTCAACCTCGCGGAACGCTTCCTAGCTCGACCACAAAAATTGGATCAGAAGTTTGGATTGAACAAAAAGTCCG
    CCAATATCCAGAGCTTTTATGGTTAGTAGAGCCGTCCTCTACGGGAGCCTCTTTAAAATCTCCTTCAGGAGCCATCT
    TTTCTCCAACATTATTCCAAAAAAAGGTCCCTGCTTTCGATATCGCAGTGCGCAGTTTGATTCACTTACATTTATTA
    ATCCAGGGTTCCCGCCAAGCCTATGCTCAACTGATCCAACTACAGACCAGCGAATCCCCTCTAACATTTAAGCAATT
    CCTTGCATTGCATAAGCAATTAACTCTATTTTTAAATTCCCCTAAGGAATTTTATGACTCTGTTAAAGTGTTAGAGA
    CAGCTATCGTCTTACGTCACTTAGGCTGTTCAACTAAGGCTGTTGCTGCGTTTAAACCTTATTTCTCAGAAATGCAA
    AGAGAGGCTTTTTACACTAAGGCTCTGCATGTACTACACACCTTCCCAGAGCTAAGCCCATCATTTGCTCGCCTCTC
    TCCGGAGCAGAAAACTCTCTTCTTCTCCTTGAGAAAATTGGCGAATTACGATGAGTTACTCTCGCTGACGAACACCC
    CAAGTTTTCAGCTTCTGTCTGCTGGGCGCTCGCAACGAGCTCTTTTAGCTCTGGACTTGTACCTCTATGCTTTGGAT
    TCCTGTGGAGAACAGGGGATGTCCTCTCAATTCCACACAAACTTCGCACCTCTACAGTCCATGTTGCAACAATACGC
    TACTGTAGAAGAGGCCTTTTCTCGTTATTTTACTTACCGAGCTAATCGATTAGGATTTGATGGCTCTTCTCGATCCG
    AGATGGCTTTAGTAAGAATGGCCACCTTGATGAACTTGTCTCCTTCCGAAGCTGCGATTTTAACCACAAGCTTCAAA
    ACCCTTCCTACAGAAGAAGCGGATACTTTGATCAATAGTTTCTATACCAATAAGGGCGATTCGTTGGCTCTTTCTCT
    GCGAGGGTTGCCTACACTTGTATCCGAACTGACGCGAACTGCCCATGGCAATACCAATGCAGAAGCTCGATCTCAGC
    AAATTTATGCAACTACCCTATCGCTAGTAGTAAAGAGTCTGAAAGCGCACAAAGAAATGCTAAACAAGCAAATTCTT
    TCTAAGGAAATTGTTTTAGATTTCTCAGAAACTGCAGCTTCTTGCCAAGGATTGGATATCTTTTCCGAGAATGTCGC
    TGTTCAAATTCACTTAAATGGAACCGTTAGTATCCATTTA
    SEQ ID NO: 64-CT733 fragment protein sequence
    APQPRGILPSSTTKIGSEVWIEQKVRQYPELLWLVEPSSTGASLKSPSGAIFSPTLFQKKVPAFDIAVRSLIHLHLL
    IQGSRQAYAQLIQLQTSESPLTFKQFLALHKQLTLFLNSPKEFYDSVKVLETAIVLRHLGCSTKAVAAFKPYFSEMQ
    REAFYIKALHVLHTFPELSPSFARLSPEQKILFFSLRKLANYDELLSLTNTPSFQLLSAGRSQRALLALDLYLYALD
    SCGEQGMSSQFHTNFAPLQSMLQQYATVEEAFSRYFTYRANRLGFDGSSRSEMALVRMATLMNLSPSEAAILITSFK
    TLPTEEADTLINSFYTNKGDSLALSLRGLPTLVSELTRTAHGNTNAEARSQQIYATTLSLVVKSLKAHKEMLNKQIL
    SKEIVLDFSETAASCQGLDIFSENVAVQIHLNGTVSIHL
    SEQ ID NO: 65-CT153 fragment nucleotide sequence
    ACTAAGCCTTCTTTCTTATACGTTATTCAACCTTTTTCCGTATTTAATCCACGATTAGGACGTTTCTCTACAGACTC
    AGATACTTATATCGAAGAAGAAAACCGCCTAGCATCGTTCATTGAGAGTTTGCCACTGGAGATCTTCGATATACCTT
    CTTTCATGGAAACCGCGATTTCCAATAGCCCCTATATTTTATCTTGGGAGACAACTAAAGACGGCGCTCTGTTCACT
    ATTCTTGAACCCAAACTCTCAGCTTGCGCAGCCACTTGCCTGGTAGCCCCTTCTATACAAATGAAATCCGATGCGGA
    GCTCCTAGAAGAAATTAAGCAAGCGTTATTACGCAGCTCTCATGACGGTGTGAAATATCGCATCACCAGAGAATCCT
    TCTCTCCAGAAAAGAAAACTCCTAAGGTTGCTCTAGTCGATGACGATATTGAATTGATTCGCAATGTCGACTTTTTG
    GGTAGAGCTGTTGACATTGTCAAATTAGACCCTATTAATATTCTGAATACCGTAAGCGAAGAGAATATTCTAGATTA
    CTCTTTTACAAGAGAAACGGCTCAGCTGAGCGCGGATGGTCGTTTTGGTATTCCTCCAGGGACTAAGCTATTCCCTA
    AACCTTCTTTTGATGTAGAAATCAGTACCTCCATTTTCGAAGAAACAACTTCATTTACTCGAAGTTTTTCTGCATCG
    GTTACTTTTAGTGTACCAGACCTCGCGGCGACTATGCCTCTTCAAAGCCCTCCCATGGTAGAAAATGGTCAAAAAGA
    AATTTGTGTCATTCAAAAACACTTATTCCCAAGCTACTCTCCTAAACTAGTCGATATTGTTAAACGATACAAAAGAG
    AGGCTAAGATCTTGATTAACAAGCTTGCCTTTGGAATGTTATGGCGACATCGGGCTAAAAGCCAAATCCTCACCGAG
    GGAAGCGTACGTCTAGACTTACAAGGATTCACAGAATCGAAGTACAATTACCAGATTCAAGTAGGATCCCATACGAT
    TGCAGCTGTATTAATCGATATGGATATTTCCAAGATTCAATCCAAATCAGAACAAGCTTATGCAATTAGGAAAATCA
    AATCAGGCTTTCAACGTAGCTTGGATGACTATCATATTTATCAAATTGAAAGAAAACAAACCTTTTCTTTTTCTCCG
    AAGCATCGCAGCCTCTCATCCACATCCCATTCCGAAGATTCTGATTTGGATCTTTCTGAAGCAGCCGCCTTTTCAGG
    AAGTCTTACCTGCGAGTTTGTAAAAAAAAGCACTCAACATGCCAAGAATACCGTCACATGTTCCACAGCCGCTCATT
    CCCTATACACACTCAAAGAAGATGACAGCTCGAACCCCTCTGAAAAACGATTAGATAGTTGTTTCCGCAATTGGATT
    GAAAACAAACTAAGCGCCAATTCTCCAGATTCCTGGTCAGCGTTTATTCAAAAATTCGGAACACACTATATTGCATC
    AGCAACTTTTGGAGGGATAGGTTTCCAAGTGCTCAAACTATCTTTTGAACAGGTGGAGGATCTACATAGCAAAAAGA
    TCTCCTTAGAAACCGCAGCAGCCAACTCTCTATTAAAAGGTTCTGTATCCAGCAGCACAGAATCTGGATACTCCAGC
    TATAGCTCCACGTCTTCTTCTCATACGGTATTTTTAGGAGGAACGGTCTTACCTTCGGTTCATGATGAACGTTTAGA
    CTTTAAAGATTGGTCGGAAAGTGTGCACCTGGAACCTGTTCCTATCCAGGTTTCTTTACAACCTATAACGAATTTAC
    TAGTTCCTCTCCATTTTCCTAATATCGGTGCTGCAGAGCTCTCTAATAAACGAGAATCTCTTCAACAAGCGATTCGA
    GTCTATCTCAAAGAACATAAAGTAGATGAGCAAGGAGAACGTACTACATTTACATCAGGAATCGATAATCCTTCTTC
    CTGGTTTACCTTAGAAGCTGCCCACTCTCCTCTTATAGTCAGTACTCCTTACATTGCTTCGTGGTCTACGCTTCCTT
    ATTTGTTCCCAACATTAAGAGAACGTTCTTCGGCAACCCCTATCGTTTTCTATTTTTGTGTAGATAATAATGAACAT
    GCTTCGCAAAAAATATTAAACCAATCGTATTGCTTCCTCGGGTCCTTGCCTATTCGACAAAAAATTTTTGGTAGCGA
    ATTTGCTAGTTTCCCCTATCTATCTTTCTATGGAAATGCAAAAGAGGCGTACTTTGATAACACGTACTACCCAACGC
    GTTGTGGGTGGATTGTTGAAAAGTTAAATACTACACAAGATCAATTCCTCCGGGATGGAGACGAGGTGCGACTAAAA
    CATGTTTCCAGCGGAAAGTATCTAGCAACAACTCCTCTTAAGGATACCCATGGTACACTCACGCGTACAACGAACTG
    TGAAGATGCTATCTTTATTATTAAAAAATCTTCAGGTTAT
    SEQ ID NO: 66-CT153 fragment protein sequence
    TKPSFLYVIQPFSVFNPRLGRFSTDSDTYIEEENRLASFIESLPLEIFDIPSFMETAISNSPYILSWETTKDGALFT
    ILEPKLSACAATCLVAPSIVIKSDAELLEEIKQALLRSSHDGVKYRITRESFSPEKKTPKVALVDDDIELIRNVDFL
    GRAVDIVKLDPINILNTVSEENILDYSFTRETAQLSADGRFGIPPGTKLFPKPSFDVEISTSIFEETTSFIRSFSAS
    VTFSVPDLAATMPLQSPPMVENGQKEICVIQKHLFPSYSPKLVDIVKRYKREAKILINKLAFGMLWRHRAKSQILTE
    GSVRLDLQGFTESKYNYQIQVGSHTIAAVLIDMDISKIQSKSEQAYAIRKIKSGFQRSLDDYHIYQIERKQTFSFSP
    KHRSLSSTSHSEDSDLDLSEAAAFSGSLICEFVKKSTQHAKNTVTCSTAAHSLYTLKEDDSSNPSEKRLDSCFRNWI
    ENKLSANSPDSWSAFIQKFGTHYIASATFGGIGFQVLKLSFEQVEDLHSKKISLETAAANSLLKGSVSSSTESGYSS
    YSSTSSSHTVFLGGTVLPSVHDERLDFKDWSESVHLEPVPIQVSLQPITNLLVPLHFPNIGAAELSNKRESLQQAIR
    VYLKEHKVDEQGERTTFTSGIDNPSSWFTLEAAHSPLIVSTPYIASWSTLPYLFPTLRERSSATPIVFYFCVDNNEH
    ASQKILNQSYCFLGSLPIRQKIFGSEFASFPYLSFYGNAKEAYFDNTYYPTRCGWIVEKLNTTQDQFLRDGDEVRLK
    HVSSGKYLATTPLKDTHGTLTRTTNCEDAIFIIKKSSGY
    SEQ ID NO: 67-CT601 fragment nucleotide sequence
    GGTAAAGCACCGTCTTTGCAGGCTATTCTAGCCGAAGTCGAAGACACCTCCTCTCGTCTACACGCTCATCACAATGA
    GCTTGCTATGATCTCTGAACGCCTCGATGAGCAAGACACGAAACTACAGCAACTTTCGTCAACACAAGATCATAACC
    TACCTCGACAAGTTCAGCGACTAGAAACGGACCAAAAAGCTTTGGCAAAAACACTGGCGATTCTTTCGCAATCCGTC
    CAAGATATTCGGTCTTCTGTACAAAATAAATTACAAGAAATCCAACAAGAACAAAAAAAATTAGCACAAAATTTGCG
    AGCGCTTCGTAACTCTTTACAAGCTCTCGTTGATGGCTCTTCTCCAGAAAATTATATTGATTTCCTAACTGGTGAAA
    CCCCGGAACATATTCATATTGTTAAACAAGGAGAGACCCTGAGCAAGATCGCGAGTAAATATAACATCCCCGTCGTA
    GAATTAAAAAAACTTAATAAACTAAATTCGGATACTATTTTTACAGATCAAAGAATTCGCCTTCCGAAAAAGAAA
    SEQ ID NO: 68-CT601 fragment protein sequence
    GKAPSLQAILAEVEDTSSRLHAHHNELAMISERLDEQDTKLQQLSSTQDHNLPRQVQRLETDQKALAKTLAILSQSV
    QDIRSSVQNKLQEIQQEQKKLAQNLRALRNSLQALVDGSSPENYIDFLTGETPEHIHIVKQGETLSKIASKYNIPVV
    ELKKLNKLNSDTIFTDQRIRLPKKK
    SEQ ID NO: 69-CT279 fragment nucleotide sequence
    GCACAAGTAATTTCTTCCGATAACACATTCCAAGTCTATGAAAAGGGAGATTGGCACCCAGCCCTATATAATACTAA
    AAAGCAGTTGCTAGAGATCTCCTCTACTCCTCCTAAAGTAACCGTGACAACTTTAAGCTCATATTTTCAAAACTTTG
    TTAGAGTCTTGCTTACAGATACACAAGGAAATCTTTCTTCATTCGAAGACCATAATCTCAATCTAGAAGAATTTTTA
    TCTCAACCAACTCCTGTAATACATGGTCTTGCCCTTTATGTGGTCTACGCTATCCTACACAACGATGCAGCTTCCTC
    TAAATTATCTGCTTCCCAAGTAGCGAAAAATCCAACAGCTATAGAATCTATAGTTCTTCCTATAGAAGGTTTTGGTT
    TGTGGGGACCTATCTATGGATTCCTTGCTCTAGAAAAAGACGGGAATACTGTTCTTGGTACTTCTTGGTATCAACAT
    GGCGAGACTCCTGGATTAGGAGCAAATATCGCTAACCCTCAATGGCAAAAAAATTTCAGAGGCAAAAAAGTATTTCT
    AGTCTCAGCTTCTGGAGAAACAGATTTTGCTAAGACAACCCTAGGACTGGAAGTTATAAAAGGATCTGTATCTGCAG
    CATTAGGAGACTCACCTAAAGCTGCTTCTTCCATCGACGGAATTTCAGGAGCTACTTTGACTTGTAATGGTGTTACC
    GAATCCTTCTCTCATTCTCTAGCTCCCTACCGCGCTTTGTTGACTTTCTTCGCCAACTCTAAACCTAGTGGAGAGTC
    TCATGACCAC
    SEQ ID NO: 70-CT2 79 fragment protein sequence
    AQVISSDNIFQVYEKGDWHPALYNTKKQLLEISSTPPKVTVITLSSYFQNFVRVLLTDTQGNLSSFEDHNLNLEEFL
    SQPTPVIHGLALYVVYAILHNDAASSKLSASQVAKNPTAIESIVLPIEGFGLWGPIYGFLALEKDGNTVLGTSWYQH
    GETPGLGANIANPQWQKNFRGKKVFLVSASGETDFAKTTLGLEVIKGSVSAALGDSPKAASSIDGISGATLICNGVT
    ESFSHSLAPYRALLIFFANSKPSGESHDH
    SEQ ID NO: 71-CT443 fragment nucleotide sequence
    GGGGTGTTAGAGACCTCTATGGCAGAGTCTCTCTCTACAAACGTTATTAGCTTAGCTGACACCAAAGCGAAAGACAA
    CACTTCTCATAAAAGCAAAAAAGCAAGAAAAAACCACAGCAAAGAGACTCCCGTAGACCGTAAAGAGGTTGCTCCGG
    TTCATGAGTCTAAAGCTACAGGACCTAAACAGGATTCTTGCTTTGGCAGAATGTATACAGTCAAAGTTAATGATGAT
    CGCAATGTTGAAATCACACAAGCTGTTCCTGAATATGCTACGGTAGGATCTCCCTATCCTATTGAAATTACTGCTAC
    AGGTAAAAGGGATTGTGTTGATGTTATCATTACTCAGCAATTACCATGTGAAGCAGAGTTCGTACGCAGTGATCCAG
    CGACAACTCCTACTGCTGATGGTAAGCTAGTTTGGAAAATTGACCGCTTAGGACAAGGCGAAAAGAGTAAAATTACT
    GTATGGGTAAAACCTCTTAAAGAAGGTTGCTGCTTTACAGCTGCAACAGTATGCGCTTGTCCAGAGATCCGTTCGGT
    TACAAAATGTGGACAACCTGCTATCTGTGTTAAACAAGAAGGCCCAGAGAATGCTTGTTTGCGTTGCCCAGTAGTTT
    ACAAAATTAATATAGTGAACCAAGGAACA6CAACAGCTCGTAACGTTGTTGTTGAAAATCCTGTTCCAGATGGTTAC
    GCTCATTCTTCTGGACAGCGTGTACTGACGTTTACTCTTGGAGATATGCAACCTGGAGAGCACAGAACAATTACTGT
    AGAGTTTTGTCCGCTTAAACGTGGTCGTGCTACCAATATAGCAACGGTTTCTTACTGTGGAGGACATAAAAATACAG
    CAAGCGTAACAACTGTGATCAACGAGCCTTGCGTACAAGTAAGTATTGCAGGAGCAGATTGGTCTTATGTTTGTAAG
    CCTGTAGAATATGTGATCTCCGTTTCCAATCCTGGAGATCTTGTGTTGCGAGATGTCGTCGTTGAAGACACTCTTTC
    TCCCGGAGTCACAGTTCTTGAAGCTGCAGGAGCTCAAATTTCTTGTAATAAAGTAGTTTGGACTGTGAAAGAACTGA
    ATCCTGGAGAGTCTCTACAGTATAAAGTTCTAGTAAGAGCACAAACTCCTGGACAATTCACAAATAATGTTGTTGTG
    AAGAGCTGCTCTGACTGTGGTACTTGTACTTCTTGCGCAGAAGCGACAACTTACTGGAAAGGAGTTGCTGCTACTCA
    TATGTGCGTAGTAGATACTTGTGACCCTGTTTGTGTAGGAGAAAATACTGTTTACCGTATTTGTGTCACCAACAGAG
    GTTCTGCAGAAGATACAAATGTTTCTTTAATGCTTAAATTCTCTAAAGAACTGCAACCTGTATCCTTCTCTGGACCA
    ACTAAAGGAACGATTACAGGCAATACAGTAGTATTCGATTCGTTACCTAGATTAGGTTCTAAAGAAACTGTAGAGTT
    TTCTGTAACATTGAAAGCAGTATCAGCTGGAGATGCTCGTGGGGAAGCGATTCTTTCTTCCGATACATTGACTGTTC
    CAGTTTCTGATACAGAGAATACACACATCTAT
    SEQ ID NO: 72-CT443 fragment protein sequence 
    GVLETSMAESLSTNVISLADTKAKDNTSHKSKKARKNHSKETPVDRKEVAPVHESKATGPKQDSCFGRMYTVKVNDD
    RNVEITQAVPEYATVGSPYPIEITATGKRDCVDVIITQQLPCEAEFVRSDPATTPTADGKLVWKIDRLGQGEKSKIT
    VWVKPLKEGCCFTAATVCACPEIRSVTKCGQPAICVKQEGPENACLRCPVVYKINIVNQGTATARNVVVENPVPDGY
    AHSSGQRVLTFTLGDMQPGEHRTITVEFCPLKRGRATNIATVSYCGGHKNTASVITVINEPCVQVSIAGADWSYVCK
    PVEYVISVSNPGDLVLRDVVVEDILSPGVTVLEAAGAQISCNKVVWTVKELNPGESLQYKVLVRAQTPGQFTNNVVV
    KSCSDCGTCTSCAEATTYWKGVAATHMCVVDTCDPVCVGENTVYRICVTNRGSAEDTNVSLMLKFSKELRPVSFSGP
    TKGTITGNTVVFDSLPRLGSKETVEFSVTLKAVSAGDARGEAILSSDILTVPVSDTENTHIY
    SEQ ID NO: 73-CT372 fragment nucleotide sequence
    CAGGCTGCACACCATCACTATCACCGCTACACAGATAAACTGCACAGACAAAACCATAAAAAAGATCTCATCTCTCC
    CAAACCTACCGAACAAGAGGCGTGCAATACTTCTTCCCTTAGTAAGGAATTAATCCCTCTATCAGAACAAAGAGGCC
    TTTTATCCCCCATCTGTGACTTTATTTCGGAACGCCCTTGCTTACACGGAGTTTCTGTTAGAAATCTCAAGCAAGCG
    CTAAAAAATTCTGCAGGAACCCAAATTGCACTGGATTGGTCTATTCTCCCTCAATGGTTCAATCCTCGGGTCTCTCA
    TGCCCCTAAGCTTTCTATCCGAGACTTTGGGTATAGCGCACACCAAACTGTTACCGAAGCCACTCCTCCTTGCTGGC
    AAAACTGCTTTAATCCATCTGCGGCCGTTACTATCTATGATTCCTCATATGGGAAAGGGGTCTTTCAAATATCCTAT
    ACCCTTGTCCGCTATTGGAGAGAGAATGCTGCGACTGCTGGCGATGCTATGATGCTCGCAGGGAGTATCAATGATTA
    TCCCTCTCGTCAGAACATTTTCTCTCAGTTTACTTTCTCCCAAAACTTCCCAAATGAACGGGTGAGTCTGACAATTG
    GTCAGTACTCACTCTATGCAATAGACGGAACATTATACAATAACGATCAACAACTTGGATTCATTAGTTACGCATTA
    TCACAAAATCCAACAGCAACTTATTCCTCTGGAAGTCTTGGAGCTTACCTACAAGTCGCTCCTACCGCAAGCACAAG
    TCTTCAAATAGGATTTCAAGACGCTTATAATATCTCCGGATCCTCTATCAAATGGAGTAACCTTACAAAAAATAGAT
    ACAATTTTCACGGTTTTGCTTCCTGGGCTCCCCGCTGTTGCTTAGGATCTGGCCAGTACTCCGTGCTTCTTTATGTG
    ACTAGACAAGTTCCAGAACAGATGGAACAAACAATGGGATGGTCAGTCAATGCGAGTCAACACATATCTTCTAAACT
    GTATGTGTTTGGAAGATACAGCGGTGTTACAGGACATGTGTTCCCGATTAACCGCACGTATTCATTCGGTATGGCCT
    CTGCAAATTTATTTAACCGTAACCCACAAGATTTATTTGGAATTGCTTGCGCATTCAATAATGTACACCTCTCTGCT
    TCTCCAAATACTAAAAGAAAATACGAAACTGTAATCGAAGGGTTTGCAACTATCGGTTGCGGCCCCTATCTTTCTTT
    CGCTCCAGACTTCCAACTCTACCTCTACCCAGCTCTTCGTCCAAACAAACAATCTGCCCGTGTTTATAGCGTGCGAG
    CTAATTTAGCTATC
    SEQ ID NO: 74-CT372 fragment protein sequence
    QAAHHHYHRYTDKLHRQNHKKDLISPKPTEQEACNTSSLSKELIPLSEQRGLLSPICDFISERPCLHGVSVRNLKQA
    LKNSAGTQIALDWSILPQWFNPRVSHAPKLSIRDFGYSAHQTVTEATPPCWQNCFNPSAAVTIYDSSYGKGVFQISY
    TLVRYWRENAATAGDAMILAGSINDYPSRQNIFSQFTFSQNFPNERVSLTIGQYSLYAIDGTLYNNDQQLGFISYAL
    SOPTATYSSGSLGAYLQVAPTASTSLQIGFQDAYNISGSSIKWSNLIKNRYNFHGFASWAPIRCCLGSGQYSVLLYV
    TRQVPEQMEQTMGWSVNASRHISSKLYVFGRYSGVTGHVFPINRTYSFGMASANLFNRNPQDLFGIACAFNNVHLSA
    SPNTKRKYETVIEGFATIGCGPYLSFAPDFQLYLYPALUNKQSARVYSVRANLAI
    SEQ ID NO: 75-CT456 fragment nucleotide sequence
    ACAAATTCAGCGGCTACATCTTCTATCCAAACGACTGGAGAGACTGTAGTAAACTATACGAATTCAGCCTCCGCCCC
    CAATGTAACTGTATCGACCTCCTCTTCTTCCACACAAGCCACAGCCACTTCGAATAAAACTTCCCAAGCCGTTGCTG
    GAAAAATCACTTCTCCAGATACTTCAGAAAGCTCAGAAACTAGCTCTACCTCATCAAGCGATCATATCCCTAGCGAT
    TACGATGACGTTGGTAGCAATAGTGGAGATATTAGCAACAACTACGATGACGTAGGTAGTAACAACGGAGATATCAG
    TAGCAATTATGACGATGCTGCTGCTGATTACGAGCCGATAAGAACTACTGAAAATATTTATGAGAGTATTGGTGGCT
    CTAGAACAAGTGGCCCAGAAAATACAAGTGGTGGTGCAGCAGCAGCACTCAATTCTCTAAGAGGCTCCTCCTACAGC
    AATTATGACGATGCTGCTGCTGATTACGAGCCGATAAGAACTACTGAAAATATTTATGAGAGTATTGGTGGCTCTAG
    AACAAGTGGCCCAGAAAATACGAGTGGTGGTGCAGCAGCAGCACTCAATTCTCTAAGAGGCTCCTCCTACAGCAATT
    ATGACGATGCTGCTGCTGATTACGAGCCGATAAGAACTACTGAAAATATTTATGAGAGTATTGGTGGCTCTAGAACA
    AGTGGCCCAGAAAATACGAGTGATGGTGCAGCAGCAGCAGCACTCAATTCTCTAAGAGGCTCCTCCTACACAACAGG
    GCCTCGTAACGAGGGTGTATTCGGCCCTGGACCGGAAGGACTACCAGACATGTCTCTTCCTTCATACGATCCTACAA
    ATAAAACCTCGTTATTGACTTTCCTCTCCAACCCTCATGTAAAGTCGAAAATGCTTGAAAACTCGGGGCATTTCGTC
    TTCATTGATACAGATAGAAGTAGTTTCATTCTTGTTCCTAACGGAAATTGGGACCAAGTCTGTTCAATTAAAGTTCA
    AAATGGAAAGACCAAAGAAGATCTCGACATCAAAGACTTGGAAAACATGTGTGCAAAATTCTGTACAGGGTTTAGCA
    AATTCTCTGGTGACTGGGACAGTCTTGTAGAACCTATGGTGTCAGCCAAAGCTGGAGTGGCCAGCGGAGGCAATCTT
    CCCAATACAGTGATTATCAATAATAAATTCAAAACTTGCGTTGCTTATGGTCCTTGGAATAGCCAGGAAGCAAGTTC
    TGGTTATACACCTTCTGCTTGGAGACGTGGTCATCGAGTAGATTTTGGAGGAATTTTTGAGAAAGCCAACGACTTTA
    ATAAAATCAACTGGGGAACTCAAGCCGGGCCTAGTAGCGAAGACGATGGCATTTCCTTCTCCAATGAAACTCCTGGA
    GCTGGTCCTGCAGCTGCTCCATCACCAACGCCATCCTCTATTCCTATCATCAATGTCAATGTCAATGTTGGCGGAAC
    TAATGTGAATATTGGAGATACGAATGTCAACACGACTAACACCACACCAACAACTCAATCTACAGACGCCTCTACAG
    ATACAAGCGATATCGATGACATAAATACCAACAACCAAACTGATGATATCAATACGACAGACAAAGACTCTGACGGA
    GCTGGTGGAGTCAATGGCGATATATCCGAAACAGAATCCTCTTCTGGAGATGATTCAGGAAGTGTCTCTTCCTCAGA
    ATCAGACAAGAATGCCTCTGTCGGAAATGACGGACCTGCTATGAAAGATATCCTTTCTGCCGTGCGTAAACACCTAG
    ACGTCGTTTACCCTGGCGAAAATGGCGGTTCTACAGAAGGGCCTCTCCCAGCTAACCAAACTCTCGGAGACGTAATC
    TCTGATGTAGAGAATAAAGGCTCCGCTCAGGATACAAAATTGTCAGGAAATACAGGAGCTGGGGATGACGATCCAAC
    AACCACAGCTGCTGTAGGTAATGGAGCGGAAGAGATCACTCTTTCCGACACAGATTCTGGTATCGGAGATGATGTAT
    CCGATACAGCGTCTTCATCTGGGGATGAATCCGGAGGAGTCTCCTCTCCCTCTTCAGAATCCAATAAAAATACTGCC
    GTTGGAAATGACGGACCTTCTGGACTAGATATCCTCGCTGCCGTACGTAAACATTTAGATAAGGTTTACCCTGGCGA
    CAATGGTGGTTCTACAGAAGGGCCTCTCCAAGCTAACCAAACTCTTGGAGATATCGTCCAGGATATGGAAACAACAG
    GGACATCCCAAGAAACCGTTGTATCCCCATGGAAAGGAAGCACTTCTTCAACGGAATCAGCAGGAGGAAGTGGTAGC
    GTACAAACACTACTGCCTTCACCACCTCCAACCCCGTCAACTACAACATTAAGAACGGGCACAGGAGCTACCACCAC
    ATCCTTGATGATGGGAGGACCAATCAAAGCTGACATAATAACAACTGGTGGCGGAGGACGAATTCCTGGAGGAGGAA
    CGTTAGAAAAGCTGCTCCCTCGTATACGTGCGCACTTAGACATATCCTTTGATGCGCAAGGCGATCTCGTAAGTACT
    GAAGAGCCTCAGCTTGGCTCGATTGTAAACAAATTCCGCCAAGAAACTGGTTCAAGAGGAATCTTAGCTTTCGTTGA
    GAGTGCTCCAGGCAAGCCGGGATCTGCACAGGTCTTAACGGGTACAGGGGGAGATAAAGGCAACCTATTCCAAGCAG
    CTGCCGCAGTCACCCAAGCCTTAGGAAATGTTGCAGGGAAAGTCAACCTTGCGATACAAGGCCAAAAACTATCATCC
    CTAGTCAATGACGACGGGAAGGGGTCTGTTGGAAGAGATTTATTCCAAGCAGCAGCCCAAACAACTCAAGTGCTAAG
    CGCACTGATTGATACCGTAGGA
    SEQ ID NO: 76-CT456 fragment protein sequence
    TNSAATSSIQTTGETVVNYTNSASAPNVIVSTSSSSTQATATSNKTSQAVAGKITSPDTSESSETSSTSSSDHIPSD
    YDDVGSNSGDISNNYDDVGSNNGDISSNYDDAAADYEPIRTTENIYESIGGSRTSGPENTSGGAAAALNSLRGSSYS
    NYDDAAADYEPIRTTENIYESIGGSRTSGPENTSGGAAAALNSLRGSSYSNYDDAAADYEPIRTTENIYESIGGSRT
    SGPENTSDGAAAAALNSLRGSSYTTGPRNEGVFGPGPEGLPDMSLPSYDPTNKTSLLTFLSNPHVKSKMLENSGHFV
    FIDTDRSSFILVPNGNWDQVCSIKVQNGKTKEDLDIKDLENMCAKFCTGFSKFSGDWDSLVEPMVSAKAGVASGGNL
    PNTVIINNKFKTCVAYGPWNSREASSGYTPSAWRRGHRVDFGGIFEKANDFNKINWGTQAGPSSEDDGISFSNETPG
    AGPAAAPSPIPSSIPIINVNVNVGGTNVNIGDTNVNTINTTPTTQSTDASTDTSDIDDINTNNQTDDINTTDKDSDG
    AGGVNGDISETESSSGDDSGSVSSSESDKNASVGNDGPAMKDILSAVRKHLDVVYPGENGGSTEGPLPANQTLGDVI
    SDVENKGSAQDTKLSGNTGAGDDDPTTTAAVGNGAEEITLSDTDSGIGDDVSDTASSSGDESGGVSSPSSESNKNTA
    VGNDGPSGLDILAAVRKHLDKVYPGDNGGSTEGPLQANQTLGDIVQDMETTGTSQETVVSPWKGSTSSTESAGGSGS
    VQTLLPSPPPTPSTTTLRTGTGATTTSLMNGGPIKADIITTGGGGRIPGGGTLEKLLPRIRAHLDISFDAQGDLVST
    EEPQLGSIVNKFRQETGSRGILAFVESAPGKPGSAQVLTGIGGDKGNLFRAAAAVTQALGNVAGKVNLAIQGQKLSS
    LVNDDGKGSVGIRDLFQAAAQTTQVLSALIDTVG
    SEQ ID NO: 77: CT381 fragment nucleotide sequence
    TGTTTAAAAGAAGGGGGAGACTCCAATAGTGAAAAATTTATTGTAGGGACTAATGCAACCTACCCTCCTTTTGAGTT
    TGTTGATAAGCGAGGAGAGGTTGTAGGCTTCGATATAGACTTGGCTAGAGAGATTAGTAACAAGCTGGGGAAAACGC
    TGGACGTTCGGGAGTTTTCCTTTGATGCACTCATTCTAAACCTAAAACAGCATCGGATTGATGCGGTTATAACAGGG
    ATGTCCATTACTCCTTCTAGATTGAAGGAAATTCTTATGATTCCCTATTATGGGGAGGAAATAAAACACTTGGTTTT
    AGTGTTTAAAGGAGAGAATAAGCATCCATTGCCACTCACTCAATATCGTTCTGTAGCTGTTCAAACAGGAACCTATC
    AAGAGGCCTATTTACAGTCTCTTTCTGAAGTTCATATTCGCTCTTTTGATAGCACTCTAGAAGTACTCATGGAAGTC
    ATGCATGGTAAATCTCCCGTCGCTGTTTTAGAGCCATCTATCGCTCAAGTTGTCTTGAAAGATTTCCCGGCTCTTTC
    TACAGCAACCATAGATCTCCCTGAAGATCAGTGGGTTTTAGGATACGGGATTGGCGTTGCTTCAGATCGCCCAGCTT
    TAGCCTTGAAAATCGAGGCAGCTGTGCAAGAGATCCGAAAAGAAGGAGTGCTAGCAGAGTTGGAACAGAAGTGGGGT
    TTGAACAAC
    SEQ ID NO: 78: CT381 fragment protein sequence
    CLKEGGDSNSEKFIVGTNATYPPFEFVDKRGEVVGFDIDLAREISNKLGKTLDVREFSFDALILNLKQHRIDAVITG
    MSITPSRLKEILMIPYYGEEIKHLVLVFKGENKHPLPLTQYRSVAVQTGTYQEAYLQSLSEVHIRSFDSTLEVLMEV
    MHGKSPVAVLEPSIAQVVLKDFPALSTATIDLPEDQWVLGYGIGVASDRPALALKIEAAVQEIRKEGVLAELEQKWG
    LNN
    SEQ ID NO: 79: CT043 fragment nucleotide sequence
    TCCAGGCAGAATGCTGAGGAAAATCTAAAAAATTTTGCTAAAGAGCTTAAACTCCCCGACGTGGCCTTCGATCAGAA
    TAATACGTGCATTTTGTTTGTTGATGGAGAGTTTTCTCTTCACCTGACCTACGAAGAACACTCTGATCGCCTTTATG
    TTTACGCACCTCTTCTTGACGGACTGCCAGACAATCCGCAAAGAAGGTTAGCTCTATATGAGAAGTTGTTAGAAGGC
    TCTATGCTCGGAGGCCAAATGGCTGGTGGAGGGGTAGGAGTCGCTACTAAGGAACAGTTGATCTTAATGCACTGCGT
    GTTAGACATGAAGTATGCAGAGACCAACCTACTCAAAGCTTTTGCACAGCTTTTTATTGAAACCGTTGTGAAATGGC
    GAACTGTTTGTTCTGATATCAGCGCTGGACGAGAACCCACTGTTGATACCATGCCACAAATGCCTCAAGGGGGTGGC
    G6AGGAATTCAACCTCCTCCAGCAGGAATCCGTGCA
    SEQ ID NO: 80: CT043 fragment protein sequence
    SRQNAEENLKNFAKELKLPDVAFDQNNTCILFVDGEFSLHLTYEEHSDRLYVYAPLLDGLPDNPQRRLALYEKLLEG
    SMLGGQMAGGGVGVATKEQLILMHCVLDMKYAETNLLKAFAQLFIETVVKWRTVCSDISAGREPTVDTMPRMPQGGG
    GGIQPPPAGIRA
    SEQ ID NO:81: CT711 fragment nudeotidaseq Length: 2298
    TCAATACAACCTACATCCATTTCTTTAACTAAGAATATAACGGCAGCTTTAGCCGGAGAGCAGGTCGATGCTGCTGC
    AGTGTATATGCCGCAGGCTGTTTTTTTCTTTCAGCAACTGGATGAAAAAAGCAAGGGGCTGAAACAGGCTTTAGGAT
    TGCTCGAAGAGGTTGATCTAGAAAAATTTATACCGTCTTTAGAAAAATCACCTACACCTATCACTACGGGAACAACG
    AGTAAAATTTCCGCTGATGGGATTGAGATTGTTGGAGAGCTTTCTTCAGAAACAATTTTGGCAGATCCTAATAAAGC
    TGCAGCTCAGGTTTTTGGAGAGGGGCTTGCAGATAGTTTTGATGATTGGCTCAGATTATCTGAAAATGGGGGGATTC
    AAGATCCTACAGCAATAGAAGAAGAGATTGTTACTAAGTATCAAACAGAACTCAATACTCTGCGCAATAAACTCAAG
    CAACAATCTTTAACAGACGATGAGTATACGAAGCTTTATGCTATTCCTCAAAACTTTGTTAAAGAGATAGAAAGCTT
    AAAGAATGAAAATAATGTGAGGTTAATTCCCAAAAGTAAAGTCACTAACTTTTGGCAGAATATCATGCTCACTTACA
    ACTCGGTAACCTCGTTATCAGAACCTGTTACCGATGCGATGAATACGACTATGGCGGAGTACTCTCTTTATATTGAG
    AGAGCTACAGAGGCTGCCAAGTTGATACGGGAGATAACCAACACGATCAAAGACATTTTCAATCCAGTTTGGGATGT
    GCGTGAACAAACAGGAATTTTTGGGTTAAAAGGAGCTGAGTATAACGCTTTAGAAGGCAATATGATTCAAAGCTTGC
    TTAGCTTTGCGGGTCTATTCCGGCAGTTAATGAGTCGTACTGCAACAGTTGATGAGATAGGCGCACTTTATCCTAAA
    AATGATAAAAACGAAGACGTCATTCATACTGCTATTGATGATTATGTGAATTCTTTAGCTGATTTGAAAGCCAATGA
    ACAGGTCAAACTCAACGGTCTGTTGAGTTTAGTATATGCTTATTATGCTAGTACTTTAGGTTTTGCTAAGAAGGATG
    TATTCAATAATGCACAAGCTTCTTTTACAGATTATACTAATTTTCTAAACCAAGAGATCCAATATTGGACGCCTAGA
    GAGACTTCAAGTTTTAATATCTCCAATCAAGCATTGCAAACCTTTAAAAATAAGCCTTCGGCTGATTATAACGGCGT
    ATATCTTTTTGATAATAAAGGATTAGAGACTAATCTCTTTAATCCTACGTTCTTCTTTGATGTTGTGAGTCTCATGA
    CAGCTGATCCTACGAAGACTATGTCTCGACAGGATTACAATAAGGTGATTACAGCCTCGGAATCCAGTATTCAGAAG
    ATTAATCAGGCTATTACCGCTTGGGAACTAGCTATTGCAGAATGTGGGACTAAAAAAGCGAAGCTCGAACCATCCAG
    TTTAAATTATTTTAATGCTATGGTCGAAGCGAAGAAGACCTTCGTAGAGACCTCTCCAATACAGATGGTCTATTCAT
    CTTTGATGTTGGATAAGTATCTTCCGAATCAGCAGTACATATTAGAGACATTAGGAAGTCAGATGACTTTCTCTAAC
    AAGGCTGCTCGGTATTTAAATGATATCATTGCGTATGCAGTTAGCTTCCAAACAGCTGACGTCTATTATTCTTTAGG
    GATGTATCTTCGACAAATGAACCAGCAGGAATTTCCTGAGGTGATTTCTCGTGCTAACGATACTGTGAAAAAAGAGA
    TAGATCGGAGTCGTGCGGATCTCTTTCACTGTAAAAAAGCTATCGAAAAGATTAAAGAATTAGTGACTTCTGTAAAT
    GCGGATACTGAATTGACCTCATCTCAGCGTGCAGAGTTATTAGAGACGTTAGCTAGTTATGCTTTTGAATTTGAGAA
    TCTCTATCACAACCTCTCTAATGTTTACGTCATGGTTTCTAAGGTACAGATTTCTGGCGTAAGCAAGCCTGATGAAG
    TGGATGAGGCTTTTACTGCTAAGATTGGATCGAAGGAATTCGATACTTGGATTCAGCAGCTTACAACATTTGAAAGT
    GCTGTGATTGAAGGTGGGCGTAATGGTGTGATGCCTGGGGGAGAGCAGCAGGTTTTACAGAGTTTAGAGAGCAAGCA
    GCAAGATTACACGTCGTTCAACCAGAATCAGCAATTAGCTCTACAAATGGAGTCCGCAGCGATTCAACAAGAGTGGA
    CTATGGTAGCAGCAGCCTTAGCATTAATGAATCAGATTTTTGCTAAGTTGATCCGTAGATTTAAA
    SEQ ID NO: 82: CT711 fragment protein sequence (AAC68306) 
    SIQPTSISLTKNITAALAGEQVDAAAVYMPQAVFFFQQLDEKSKGLKQALGLLEEVDLEKFIPSLEKSPTPITTGTT
    SKISADGIEIVGELSSETILADPNKAAAQVFGEGLADSFDDWLRLSENGGIQDPTAIEEEIVTKYQTELNTLRNKLK
    QQSLTDDEYTKLYAIPQNFVKEIESLKNENNVRLIPKSKVTNFWQNIMLTYNSVTSLSEPVTDAMNTTMAEYSLYIE
    RATEAAKLIREITNTIKDIFNPVWDVREQTGIFGLKGAEYNALEGNMIQSLLSFAGLFRQLMSRTATVDEIGALYPK
    NDKNEDVIHTAIDDYVNSLADLKANEQVKLNGLLSLVYAYYASTLGFAKKDVFNNAQASFTDYTNFLNQEIQYWTPR
    ETSSFNISNQALQTFKNKPSADYNGVYLFDNKGLETNLFNPTFFFDVVSLMTADPTKTMSRQDYNKVITASESSIQK
    INQAITAWELAIAECGTKKAKLEPSSLNYFNAMVEAKKTFVETSPIQMVYSSLMLDKYLPNQQYILETLGSQMTFSN
    KAARYLNDIIAYAVSFQTADVYYSLGMYLRQMNQQEFPEVISRANDTVKKEIDRSRADLFHCKKAIEKIKELVTSVN
    ADTELTSSQRAELLETLASYAFEFENLYHNLSNVYVMVSKVQISGVSKPDEVDEAFTAKIGSKEFDTWIQQLTTFES
    AVIEGGRNGVMPGGEQQVLQSLESKQQDYTSFNQNQQLALQMESAAIQQEWTMVAAALALMNQIFAKLIRRFK
    SEQ ID NO: 83: CT114 fragment nucleotide sequence-Length: 1296
    GATCCTTTGAGTGCAAAACAGTTAATGTATCTGTTTCCTCAGCTCTCAGAAGAGGATGTATCTGTTTTTGCTCGATG
    CATTTTGTCTTCAAAGCGTCCAGAATACCTCTTTTCAAAATCGGAGGAAGAGCTCTTTGCAAAATTGATTTTGCCAA
    GGGTTTCTCTAGGTGTTCATCGGGACGATGATTTAGCGAGAGTGTTGGTGTTAGCGGAGCCTTCTGCAGAAGAGCAG
    AAGGCTCGATACTATTCATTGTATCTGGATGTTTTAGCTTTGCGTGCATACGTTGAAAGAGAGCGTTTGGCGAGTGC
    TGCACACGGAGATCCTGAGCGGATAGATTTGGCAACCATAGAAGCTATTAATACCATCCTTTTTCAGGAAGAAGGAT
    GGAGGTATCCTTCAAAACAAGAGATGTTTGAAAACAGGTTTTCTGAGTTAGCTGCTGTTACAGATAGTAAGTTTGGA
    GTTTGCTTGGGAACTGTAGTGCTTTATCAAGCTGTCGCCCAGCGGCTTGATTTGTCTCTGGACCCTGTCACCCCTCC
    TGGACATATTTACTTACGCTATAAGGACAAGGTGAATATTGAAACCACTTCTGGAGGAAGGCATCTTCCTACTGAAA
    GGTATTGTGAATGCATAAAAGAGTCGCAGTTAAAGGTGCGTTCGCAGATGGAGCTTATAGGGTTAACTTTTATGAAT
    AGAGGAGCTTTCTTTTTGCAAAAAGGAGAGTTTCTTCAGGCGTCCTTAGCTTATGAGCAAGCTCAATCATATTTATC
    AGACGAGCAGATTTCTGATTTGTTAGGGATTACTTATGTTCTTTTAGGAAAGAAGGCGGCGGGAGAGGCTCTTTTAA
    AGAAATCTGCAGAAAAGACTCGGCGAGGGTCATCTATCTATGACTATTTCCAAGGATATATTTCCCCCGAAATCCTA
    GGGGTGTTGTTTGCCGATTCAGGGGTGACCTATCAAGAAACTTTGGAGTATCGAAAAAAACTAGTGATGCTTTCCAA
    GAAGTATCCAAAAAGTGGATCTCTTAGGTTGAGGTTGGCGACAACAGCATTGGAGCTAGGGCTGGTCAAGGAGGGGG
    TGCAGTTGTTAGAAGAGAGTGTTAAGGATGCCCCAGAGGACCTCTCTTTACGTCTGCAGTTTTGTAAAATTCTTTGC
    AATCGACATGATTATGTCCGAGCAAAATATCATTTTGATCAAGCGCAAGCTCTTCTCATTAAAGAAGGGTTGTTTTC
    CGAAAAAACTTCCTATACTCTCTTAAAAACTATCGGGAAAAAGCTATCTCTTTTTGCTCCGAGT
    SEQ ID NO: 84: CT114 fragment protein sequence (AAC67705)
    DPLSAKQLMYLFPQLSEEDVSVFARCILSSKRPEYLFSKSEEELFAKLILPRVSLGVHRDDDLARVLVLAEPSAEEQ
    KARYYSLYLDVLALRAYVERERLASAAHGDPERIDLATIEAINTILFQEEGWRYPSKQEMFENRFSELAAVTDSKFG
    VCLGTVVLYQAVAQRLDLSLDPVTPPGHIYLRYKDKVNIETTSGGRHLPTERYCECIKESQLKVRSQMELIGLTFMN
    RGAFFLQKGEFLQASLAYEQAQSYLSDEQISDLLGITYVLLGKKAAGEALLKKSAEKTRRGSSIYDYFQGYISPEIL
    GVLFADSGVTYQETLEYRKKLVMLSKKYPKSGSLRLRLATTALELGLVKEGVQLLEESVKDAPEDLSLRLQFCKILC
    NRHDYVRAKYHFDQAQALLIKEGLFSEKTSYTLLKTIGKKLSLFAPS
    SEQ ID NO: 85: CT480 fragrnent nucleotide sequence
    TCTTCAGATCTACTTGAAAAAGATGTGAAATCGATCAAAAGAGAACTCAAGGCTTTACATGAAGATGTTCTTGAGTT
    AGTCCGGATCTCGCATCAGCAAAAAAATTGGGTCCAGTCTACAGATTTTTCTGTTTCTCCAGAGATCAGTGTATTGA
    AGGATTGCGGAGATCCTGCGTTCCCTAATTTATTATGCGAAGACCCTTATGTTGAAAAAGTGGTCCCTTCGTTGTTA
    AAGGAAGGTTTTGTTCCGAAAGGTATTTTGCGTACAGCTCAAGTAGGAAGGCCTGATAACCTAAGTCCGTTTAATGG
    CTTTGTTAATATCGTTCGATTTTATGAATTGTGCGTTCCTAATTTGGCTGTTGAGCATGTTGGTAAATACGAGGAGT
    TTGCGCCTAGTTTAGCCTTAAAGATAGAAGAGCATTATGTAGAGGATGGGTCTGGGGATAAAGAATTTCATATTTAT
    TTGCGTCCTAATATGTTTTGGGAGCCGATAGATCCTACGCTGTTCCCTAAAAATATAACTTTAGCAGACAGCTTCTT
    AAGACCACATCCTGTCACCGCTCATGATGTGAAGTTCTATTACGATGTAGTCATGAATCCCTATGTTGCAGAAATGC
    GTGCAGTGGCTATGAGATCTTATTTTGAGGATATGGTTTCGGTTCGGGTAGAAAACGATTTGAAATTAATCGTTCGT
    TGGAGAGCTCATACTGTACGTAATGAACAGGGAGAGGAAGAGAAAAAAGTGCTCTATTCTGCTTTCGCGAATACATT
    GGCACTCCAACCGTTACCTTGTTTCGTGTATCAGCATTTCGCAAATGGAGAGAAGATCGTTCCAGAAGATTCTGATC
    CCGATACGTATCGCAAAGATTCGGTATGGGCGCAAAACTTTTCTTCACATTGGGCGTATAATTACATAGTGAGCTGT
    GGAGCATTCCGATTTGCAGGGATGGATGATGAGAAAATTACTTTAGTTCGTAATCCTAATTATCATAATCCGTTTGC
    GGCTCTTGTGGAGAAGCGCTATATCTATATGAAAGATAGTACAGATTCTCTCTTCCAAGATTTCAAAGCTGGGAAGG
    TGGATATTGCGTATTTCCCTCCTAACCATGTCGATAATCTAGCGAGCTTCATGCAAACCTCTGCTTATAAGGAACAA
    GCTGCTAGAGGAGAGGCAATTTTAGAAAAAAATTCATCAGACCGGTCCTATTCTTACATCGGATGGAATTGTCTTTC
    TCTTTTCTTTAACAATCGTTCGGTACGACAAGCCATGAATATGTTGATCGATCGGGATCGCATTATTGAGCAGTGCT
    TGGATGGTCGTGGAGTCTCTGTGAGTGGGCCTTTTTCTCTCTGCTCTCCATCATACAACAGAGATGTAGAGGGATGG
    CAATACTCTCCGGAAGAGGCCGCACGTAAATTAGAGGAAGAGGGCTGGATCGATGCTGATGGAGATGGTATTCGTGA
    GAAAGTAATCGATGGAGTTGTAGTGCCTTTCCGTTTCCGGTTATGCTACTATGTGAAAAGTGTAACAGCACGAACGA
    TTGCCGAATATGTAGCTACGGTATGTAAAGAGGTGGGTATCGAGTGTTGCTTACTCGGGTTAGATATGGCGGATTAT
    TCACAAGCCCTCGAGGAGAAAAATTTCGATGCTATTCTTTCCGGATGGTGTTTAGGAACCCCTCCAGAAGATCCTCG
    TGCTCTATGGCATTCGGAAGGAGCTTTGGAGAAAGGATCTGCCAATGCTGTTGGATTTTGTAATGAGGAAGCAGACC
    GTATCATCGAACAGCTCAGTTACGAGTATGATTCTAATAAGCGCCAAGCCTTGTATCACCGTTTTCACGAGGTGATT
    CATGAGGAATCTCCTTACGCGTTTCTCTATTCAAGACAGTACTCCCTTGTCTATAAGGAGTTTGTAAAAAATATTTT
    TGTGCCAACAGAACATCAGGATTTGATTCCTGGAGCTCAAGATGAGACAGTGAATTTATCCATGTTGTGGGTAGATA
    AAGAGGAGGGTCGATGCTCCGCTATATCT
    SEQ ID NO: 86: CT480/oppA_4 fragment protein sequence (AAC68080) 
    SSDLLEKDVKSIKRELKALHEDVLELVRISHQQKNWVQSTDFSVSPEISVLKDCGDPAFPNLLCEDPYVEKVVPSLL
    KEGFVPKGILRTAQVGRPDNLSPFNGFVNIVRFYELCVPNLAVEHVGKYEEFAPSLALKIEEHYVEDGSGDKEFHIY
    LRPNMFWEPIDPTLFPKNITLADSFLRPHPVTAHDVKFYYDVVMNPYVAEMRAVAMRSYFEDMVSVRVENDLKLIVR
    WRAHTVRNEQGEEEKKVLYSAFANTLALQPLPCFVYQHFANGEKIVPEDSDPDTYRKDSVWAQNFSSHWAYNYIVSC
    GAFRFAGMDDEKITLVRNPNYHNPFAALVEKRYIYMKDSTDSLFQDFKAGKVDIAYFPPNHVDNLASFMQTSAYKEQ
    AARGEAILEKNSSDRSYSYIGWNCLSLFFNNRSVRQAMNMLIDRDRIIEQCLDGRGVSVSGPFSLCSPSYNRDVEGW
    QYSPEEAARKLEEEGWIDADGDGIREKVIDGVVVPFRFRLCYYVKSVTARTIAEYVATVCKEVGIECCLLGLDMADY
    SQALEEKNFDAILSGWCLGTPPEDPRALWHSEGALEKGSANAVGFCNEEADRIIEQLSYEYDSNKRQALYHRFHEVI
    HEESPYAFLYSRQYSLVYKEFVKNIFVPTEHQDLIPGAQDETVNLSMLWVDKEEGRCSAIS
    SEQ ID NO: 87: CT089 fragment nucleotide.sequence-Length: 1194
    GCTGCAGCTACTCAAGATGCACAAGAGGTTATCGGCTCTCAGGAAGCTTCTGAGGCAAGTATGCTCAAAGGATGTGA
    GGATCTCATAAATCCTGCAGCTGCAACCCGAATCAAAAAAAAAGGAGAGAAGTTTGAATCATTAGAAGCTCGTCGCA
    AACCAACAGCGGATAAAGCAGAAAAGAAATCCGAGAGCACAGAGGAAAAAGGCGATACTCCTCTTGAAGATCGTTTC
    ACAGAAGATCTTTCCGAAGTCTCCGGAGAAGATTTTCGAGGATTGAAAAATTCGTTCGATGATGATTCTTCTCCTGA
    CGAAATTCTCGATGCGCTCACAAGTAAATTTTCTGATCCCACAATAAAGGATCTAGCTCTTGATTATCTAATTCAAA
    CAGCTCCCTCTGATGGGAAACTTAAGTCCACTCTCATTCAGGCAAAGCATCAACTGATGAGCCAGAATCCTCAGGCG
    ATTGTTGGAGGACGCAATGTTCTGTTAGCTTCAGAAACCTTTGCTTCCAGAGCAAATACATCTCCTTCATCGCTTCG
    CTCCTTATATTTCCAAGTAACCTCATCCCCCTCTAATTGCGCTAATTTACATCAAATGCTTGCTTCTTACTTGCCAT
    CAGAGAAAACCGCTGTTATGGAGTTTCTAGTAAATGGCATGGTAGCAGATTTAAAATCGGAGGGCCCTTCCATTCCT
    CCTGCAAAATTGCAAGTATATATGACGGAACTAAGCAATCTCCAAGCCTTACACTCTGTAAATAGCTTTTTTGATAG
    AAATATTGGGAACTTGGAAAATAGCTTAAAGCATGAAGGACATGCCCCTATTCCATCCTTAACGACAGGAAATTTAA
    CTAAAACCTTCTTACAATTAGTAGAAGATAAATTCCCTTCCTCTTCCAAAGCTCAAAAGGCATTAAATGAACTGGTA
    GGCCCAGATACTGGTCCTCAAACTGAAGTTTTAAACTTATTCTTCCGCGCTCTTAATGGCTGTTCGCCTAGAATATT
    CTCTGGAGCTGAAAAAAAACAGCAGCTGGCATCGGTTATCACAAATACGCTAGATGCGATAAATGCGGATAATGAGG
    ATTATCCTAAACCAGGTGACTTCCCACGATCTTCCTTCTCTAGTACGCCTCCTCATGCTCCAGTACCTCAATCTGAG
    ATTCCAACGTCACCTACCTCAACACAGCCTCCATCACCC
    SEQ ID NO: 88: CT089/IcrE fragment protein sequence (AAC67680) 
    AAATQDAQEVIGSQEASEASMLKGCEDLINPAAATRIKKKGEKFESLEARRKPTADKAEKKSESTEEKGDTPLEDRF
    TEDLSEVSGEDFRGLKNSFDDDSSPDEILDALTSKFSDPTIKDLALDYLIQTAPSDGKLKSTLIQAKHQLMSQNPQA
    IVGGRNVLLASETFASRANTSPSSLRSLYFQVTSSPSNCANLHQMLASYLPSEKTAVMEFLVNGMVADLKSEGPSIP
    PAKLQVYMTELSNLQALHSVNSFFDRNIGNLENSLKHEGHAPIPSLTIGNLTKTFLQLVEDKFPSSSKAQKALNELV
    GPDTGPQTEVLNLFFRALNGCSPRIFSGAEKKQQLASVITNTLDAINADNEDYPKPGDFPRSSFSSTPPHAPVPQSE
    IPTSPTSTQPPSP
    SEQ ID NO: 89: CT734 fragment nucleotide sequence-Length: 591
    TGTTGCGCCAACTCTTATGGATCGACTCTTGCAAAAAATACAGCCGAGATAAAAGAAGAATCTGTTACACTTCGCGA
    GAAGCCGGATGCCGGCTGTAAAAAGAAATCTTCTTGTTACTTGAGAAAATTTTTCTCGCGCAAGAAACCTAAAGAGA
    AGACAGAGCCTGTGTTGCCGAACTTTAAGTCTTACGCAGATCCAATGACAGATTCCGAAAGAAAAGACCTTTCTTTC
    GTAGTATCTGCTGCTGCTGATAAGTCTTCTATTGCTTTGGCTATGGCTCAGGGGGAAATTAAAGGCGCATTATCGCG
    TATTAGAGAGATCCATCCTCTTGCATTGTTACAAGCTCTTGCAGAAGATCCTGCTTTAATTGCTGGAATGAAAAAGA
    TGCAAGGACGGGATTGGGTCTGGAATATCTTTATCACAGAATTAAGCAAAGTTTTTTCTCAAGCAGCATCTTTAGGG
    GCTTTCAGCGTTGCAGACGTTGCCGCGTTCGCGTCGACCTTAGGATTAGACTCGGGGACCGTTACCTCAATTGTTGA
    TGGGGAAAGGTGGGCTGAGCTGATCGATGTCGTGATTCAGAACCCTGCTATA
    SEQ ID NO: 90: CT734 fragment protein sequence (AAC68329)
    CCANSYGSTLAKNTAEIKEESVTLREKPDAGCKKKSSCYLRKFFSRKKPKEKTEPVLPNFKSYADPMTDSERKDLSF
    VVSAAADKSSIALAMAQGEIKGALSRIREIHPLALLQALAEDPALIAGMKKMQGRDWVWNIFITELSKVFSQAASLG
    AFSVADVAAFASTLGLDSGTVISIVDGERWAELIDVVIQNPAI
    SEQ ID NO: 91: CT016 fragment nucleotide sequence
    AAAGTTAAAATTAATGATCAGTTCATTTGTATTTCCCCATACATTTCTGCTCGATGGAATCAGATAGCTTTCATAGA
    GTCTTGTGATGGAGGGACGGAAGGGGGTATTACTTTGAAACTCCATTTAATTGATGGAGAGACAGTCTCTATACCTA
    ATCTAGGACAAGCGATTGTTGATGAGGTGTTCCAAGAGCACTTGCTATATTTAGAGTCCACAGCTCCTCAGAAAAAC
    AAGGAAGAGGAAAAAATTAGCTCTTTGTTAGGAGCTGTTCAACAAATGGCTAAAGGATGCGAAGTACAGGTTTTTTC
    TCAAAAGGGCTTGGTTTCTATGTTACTAGGAGGAGCTGGTTCGATTAATGTGTTGTTGCAACATTCTCCAGAACATA
    AGGATCATCCTGATCTTCCTACCGATTTACTGGAGAGGATAGCGCAAATGATGCGTTCATTATCTATAGGACCAACT
    TCTATTTTAGCTAAGCCAGAGCCTCATTGCAACTGTTTGCATTGTCAAATTGGACGAGCTACAGTGGAAGAAGAGGA
    TGCCGGAGTATCGGATGAGGATCTTACTTTTCGTTCATGGGATATCTCTCAAAGTGGAGAAAAGATGTACACTGTTA
    CAGATCCTTTGAATCCAGAAGAGCAGTTTAATGTGTATTTAGGAACGCCGATTGGATGCACATGTGGGCAGCCATAC
    TGTGAACACGTGAAAGCTGTTCTTTATACT
    SEQ ID NO: 92: CT016 fragment protein sequence (AAC67606)
    KVKINDQFICISPYISARWNQIAFIESCDGGTEGGITLKLHLIDGETVSIPNLGQAIVDEVFQEHLLYLESTAPQKN
    KEEEKISSLLGAVQQMAKGCEVQVFSQKGLVSMLLGGAGSINVLLQHSPEHKDHPDLPTDLLERIAQMMRSLSIGPT
    SILAKPEPHCNCLHCQIGRATVEEEDAGVSDEDLTFRSWDISQSGEKMYTVTDPLNPEEQFNVYLGTPIGCTCGQPY
    CEHVKAVLYT
    SEQ ID NO: 93: CM homolog of CT279 = TC_0551 fragment nucleotide sequence 
    GCATCCAAGTCTCGTCATTATCTTAACCAGCCTTGGTACATTATCTTATTCATCTTTGTTCTTAGTCTGGTTGCTGG
    TACCCTTCTTTCTTCAGTTTCCTATGTTCTATCTCCAATCCAAAAACAAGCTGCAGAATTTGATCGTAATCAGCAAA
    TGTTGATGGCCGCACAAATTATTTCCTATGACAATAAATTCCAAATATATGCTGAAGGGGATTGGCAACCTGCTGTC
    TATAATACAAAAAAACAGATACTAGAAAAAAGCTCTTCCACTCCACCACAAGTGACTGTGGCGACTCTATGCTCTTA
    TTTTCAAAATTTTGTTAGAGTTTTGCTTACAGACTCCCAAGGGAATCTTTCTTCTTTTGAAGATCACAATCTTAACC
    TAGAAGAGTTCTTATCCCACCCCACATCTTCAGTACAAGATCACTCTCTGCATGTAATTTATGCTATTCTAGCAAAC
    GATGAATCCTCTAAAAAGTTATCATCCTCCCAAGTAGCAAAAAATCCGGTATCCATAGAGTCTATTATTCTTCCTAT
    AAAAGGATTTGGTTTATGGGGACCAATCTATGGATTTCTTGCTTTAGAAAAGGACGGTAATACGGTTCTAGGGACAT
    GCTGGTATCAACATGGTGAGACTCCAGGATTAGGAGCAAATATAACTAATCCCCAATGGCAACAAAATTTCAGAGGA
    AAAAAAGTATTTCTCGCTTCCTCTTCCGGAGAAACCGATTTTGCTAAAACAACTCTAGGACTAGAAGTTATAAAAGG
    ATCTGTTTCTGCATTATTAGGGGACTCTCCCAAAGCTAATTCCGCTGTTGATGGAATTTCAGGAGCTACACTGACCT
    GTAATGGAGTTACTGAAGCTTTTGCTAATTCGCTAGCTCCTTACCGCCCCTTATTGACTTTCTTCGCCAATCTTAAC
    TCTAGTGGAGAATCTCATGACAACCAA
    SEQ ID NO: 94: CM homologue of CT279 = TC_0551 fragment protein sequence
    ASKSRHYLNQPWYIILFIFVLSLVAGTLLSSVSYVLSPIQKQAAEFDRNQQMLMAAQIISYDNKFQIYAEGDWQPAV
    YNTKKQILEKSSSTPPQVIVATLCSYFQNFVRVLLTDSQGNLSSFEDHNLNLEEFLSHPTSSVQDHSLHVIYAILAN
    DESSKKLSSSQVAKNPVSIESIILPIKGFGLWGPIYGFLALEKDGNTVLGTCWYQHGETPGLGANITNPQWQQNFRG
    KKVFLASSSGETDFAKTTLGLEVIKGSVSALLGDSPKANSAVDGISGATLTCNGVTEAFANSLAPYRPLLTFFANLN
    SSGESHDNQ
    SEQ ID NO: 95: CM homologue of CT372 = TC 0651 fragment nucleotide sequence
    AATGGAAAAGTTCTGTGTGAGGTTTCTGTGTCCTTCCGTTCGATTCTGCTGACGGCTCTGCTTTCACTTTCTTTTAC
    AAACACTATGCAGGCTGCACACCATCATTATCACCGTTATGATGATAAACTACGCAGACAATACCATAAAAAGGACT
    TGCCCACTCAAGAGAATGTTCGGAAAGAGTTTTGTAATCCCTACTCTCATAGTAGTGATCCTATCCTTTTGTCACAA
    CAACGAGGAGTCCTATCTCCTATCTGTGATTTAGTCTCAGAGTGCTCGTTTTTGAACGGGATTTCCGTTAGGAGTCT
    TAAACAAACACTGAAAAATTCTGCTGGGACTCAAGTTGCTTTAGACTGGTCTATCCTTCCTCAATGGTTCAATCCTA
    GATCCTCTTGGGCTCCTAAGCTCTCTATTCGAGATCTTGGATATGGTAAACCCCAGTCCCTTATTGAAGCAGATTCC
    CCTTGTTGTCAAACCTGCTTCAACCCATCTGCTGCTATTACGATTTACGATTCTTCATGTGGGAAGGGTGTTGTCCA
    AGTGTCATACACCCTTGTTCGTTATTGGAGAGAAACGGCTGCACTTGCAGGGCAAACTATGATGCTTGCAGGAAGTA
    TTAATGATTATCCTGCTCGCCAAAACATATTCTCTCAACTTACATTTTCCCAAACTTTCCCTAATGAGAGAGTAAAT
    CTAACTGTTGGTCAATACTCTCTTTACTCGATAGACGGAACGCTGTACAACAATGATCAGCAGCTAGGATTTATTAG
    TTATGCGTTGTCGCAAAATCCAACAGCGACTTATTCCTCTGGAAGCCTTGGCGCCTATCTACAAGTCGCTCCAACAG
    AAAGCACCTGTCTTCAAGTTGGGTTCCAAGATGCCTATAATATTTCAGGTTCCTCGATCAAATGGAATAATCTTACA
    AAAAATAAGTATAACTTCCATGGCTATGCATCTTGGGCTCCACACTGTTGCTTAGGACCTGGACAATACTCTGTTCT
    TCTTTATGTAACCAGAAAGGTTCCTGAGCAAATGATGCAGACAATGGGCTGGTCTGTGAATGCAAGTCAATACATCT
    CTTCTAAACTTTATGTATTTGGAAGATACAGCGGAGTCACAGGCCAATTGTCTCCTATTAACCGAACCTATTCATTT
    GGCTTAGTCTCTCCTAATTTATTGAACCGTAACCCACAAGACTTATTTGGAGTAGCTTGCGCATTCAATAATATACA
    CGCCTCCGCCTTTCAAAATGCTCAAAGAAAATATGAAACTGTGATCGAGGGATTTGCAACTATTGGTTGCGGACCTT
    ACATCTCCTTTGCTCCAGATTTCCAACTTTACCTCTATCCTGCTCTGCGTCCAAATAAACAAAGCGCCCGAGTCTAT
    AGCGTTCGCGCAAACCTAGCTATT
    SEQ ID NO: 96: CM homologue of CT372 = TC_0651 fragment protein sequence
    NGKVLCEVSVSFRSILLTALLSLSFINTMQAAHHHYHRYDDKLRRQYNKKDLPTQENVRKEFCNPYSHSSDPIPLSQ
    QRGVLSPICDLVSECSFLNGISVRSLKQTLKNSAGTQVALDWSILPQWFWPRSSWAPKLSIRDLGYGKPQSLIEADS
    PCCQTCFNPSAAITIYDSSCGKGVVQVSYTLVRYWRETAALAGQTMILAGSINDYPARQNIFSQLTFSQTFPNERVN
    LTVGQYSLYSIDGTLYNNDQQLGFISYALSQNPTATYSSGSLGAYLQVAPTESTCLQVGFQDAYNISGSSIKWNNLT
    KNKYNFHGYASWAPHCCLGPGQYSVLLYVTRKVPERMMQTMGWSVNASQYISSKLYVFGRYSGVTGQLSPINRTYSF
    GLVSPNLLNRNPQDLFGVACAFNNIHASAFQNAQRKYETVIEGFATIGCGPYISFAPDFQLYLYPALRPNKQSARVY
    SVRANLAI
    SEQ ID NO: 97: CM homologue of CT443 = TC_0727 fragment nucleotide sequence
    AGCGGGGTGTTAGAGACCTCTATGGCAGAGTCTCTCTCTACCAACGTTATTAGCTTAGCTGACACCAAAGCGAAAGA
    GACCACTTCTCATCAAAAAGACAGAAAAGCAAGAAAAAATCATCAAAATAGGACTTCCGTAGTCCGTAAAGAGGTTA
    CTGCAGTTCGTGATACTAAAGCTGTAGAGCCTAGACAGGATTCTTGCTTTGGCAAAATGTATACAGTCAAAGTTAAT
    GATGATCGTAATGTAGAAATCGTGCAGTCCGTTCCTGAATATGCTACGGTAGGATCTCCATATCCTATTGAGATTAC
    TGCTATAGGGAAAAGAGACTGTGTTGATGTAATCATTACACAGCAATTACCATGCGAAGCAGAGTTTGTTAGCAGTG
    ATCCAGCTACTACTCCTACTGCTGATGGTAAGCTAGTTTGGAAAATTGATCGGTTAGGACAGGGCGAAAAGAGTAAA
    ATTACTGTATGGGTAAAACCTCTTAAAGAAGGTTGCTGCTTTACAGCTGCAACGGTTTGTGCTTGTCCAGAGATCCG
    TTCGGTTACGAAATGTGGCCAGCCTGCTATCTGTGTTAAACAGGAAGGTCCAGAAAGCGCATGTTTGCGTTGCCCAG
    TAACTTATAGAATTAATGTAGTCAACCAAGGAACAGCAACAGCACGTAATGTTGTTGTGGAAAATCCTGTTCCAGAT
    GGCTATGCTCATGCATCCGGACAGCGTGTATTGACATATACTCTTGGGGATATGCAACCTGGAGAACAGAGAACAAT
    CACCGTGGAGTTTTGTCCGCTTAAACGTGGTCGAGTCACAAATATTGCTACAGTTTCTTACTGTGGTGGACACAAAA
    ATACTGCTAGCGTAACAACAGTGATCAATGAGCCTTGCGTGCAAGTTAACATCGAGGGAGCAGATTGGTCTTATGTT
    TGTAAGCCTGTAGAATATGTTATCTCTGTTTCTAACCCTGGTGACTTAGTTTTACGAGACGTTGTAATTGAAGATAC
    GCTTTCTCCTGGAATAACTGTTGTTGAAGCAGCTGGAGCTCAGATTTCTTGTAATAAATTGGTTTGGACTTTGAAGG
    AACTCAATCCTGGAGAGTCTTTACAATATAAGGTTCTAGTAAGAGCTCAAACTCCAGGGCAATTCACAAACAACGTT
    GTTGTGAAAAGTTGCTCTGATTGCGGTATTTGTACTTCTTGCGCAGAAGCAACAACTTACTGGAAAGGAGTTGCTGC
    TACTCATATGTGCGTAGTAGATACTTGTGATCCTATTTGCGTAGGAGAGAACACTGTTTATCGTATCTGTGTGACAA
    ACAGAGGTTCTGCTGAAGATACAAATGTGTCCTTAATTTTGAAATTCTCTAAAGAATTACAACCTATATCTTTCTCT
    GGACCAACTAAAGGAACCATTACAGGAAACACGGTAGTGTTTGATTCGTTACCTAGATTAGGTTCTAAAGAAACTGT
    AGAGTTTTCTGTAACGTTGAAAGCAGTATCCGCTGGAGATGCTCGTGGGGAAGCTATTCTTTCTTCCGATACATTGA
    CAGTTCCTGTATCTGATACGGAGAATACACATATCTAT
    SEQ ID NO: 98: CM homologue of CT443 = TC_0727 fragment protein sequence 
    SGVLETSMAESLSTNVISLADTKAKETTSHQKDRKARKNHQNRTSVVRKEVTAVRDTKAVEPRQDSCFGKMYTVKVN
    DDRNVEIVQSVPEYATVGSPYPIEITAIGKRDCVDVIITQQLPCEAEFVSSDPATTPTADGKLVWKIDRLGQGEKSK
    ITVWVKPLKEGCCFTAATVCACPEIRSVTKCGQPAICVKQEGPESACLRCPVTYRINVVNQGTATARNVVVENPVPD
    GYAHASGQRVLTYTLGDMQPGEQRTITVEFCPLKRGRVTNIATVSYCGGHKNTASVTTVINEPCVQVNIEGADWSYV
    CKPVEYVISVSNPGDLVLRDVVIEDTLSPGITVVEAAGAQISCNKLVWTLKELNPGESLQYKVLVRAQTPGRFTNNV
    VVKSCSDCGICTSCAEATTYWKGVAATHMCVVDTCDPICVGENTVYRICVTNRGSAEDTNVSLILKFSKELQPISFS
    GPTKGTITGNTVVFDSLPRLGSKETVEFSVTLKAVSAGDARGEAILSSDTLTVPVSDTENTHIY
    SEQ ID NO: 99: CM homologue of CT043 = TC_0313 fragment nucleotide sequence 
    TCCAGACAGAATGCTGAGGAAAATCTAAAAAATTTTGCTAAAGAGCTCAAGCTCCCCGACGTGGCCTTCGATCAGAA
    TAATACGTGCATTTTGTTTGTTGATGGAGAGTTTTCTCTTCACCTGACCTACGAAGAGCACTCTGATCGCCTTTATG
    TTTACGCACCTCTCCTTGACGGACTCCCAGATAATCCGCAAAGAAAGTTGGCTCTGTATGAGAAATTGTTGGAAGGC
    TCTATGCTCGGAGGCCAAATGGCTGGTGGAGGAGTAGGAGTTGCTACTAAAGAACAGTTGATCCTAATGCATTGCGT
    GTTAGATATGAAATATGCAGAGACTAATCTATTGAAAGCTTTTGCACAGCTTTTCATTGAAACTGTTGTGAAATGGC
    GAACGGTCTGTTCTGATATCAGCGCTGGACGAGAACCTTCCGTTGACACTATGCCTCAAATGCCTCAAGGAGGCAGC
    GGAGGAATTCAACCTCCTCCAACAGGAATTCGTGCG
    SEQ ID NO: 100: CM homologue of CT043 = TC_0313 fragment protein sequence 
    SRQNAEENLKNFAKELKLPDVAFDQNNICILFVDGEFSLHLTYEEHSDRLYVYAPLLDGLPDNPQRKLALYEKLLEG
    SMLGGQMAGGGVGVATKEQLILNHCVLDMKYAETNLLKAFAQLFIETVVKWRTVCSDISAGREPSVDTMPQMPQGGS
    GGIQPPPTGIRA
    SEQ ID NO: 101: CM homologue of CT601 = TC_0890 fragment nucleotide sequence 
    CTCGCTAATCGGTTATTTCTAATCACCCTTATAGGTTTTGGCTATTCTGCTTACGGTGCCAGCACAGGGAAATCACC
    TTCTTTACAGGTTATTTTAGCTGAAGTCGAGGATACATCTTCGCGCTTACAAGCTCATCAGAATGAGCTTGTTATGC
    TCTCGGAACGTTTAGATGAGCAAGACACAAAACTTCAACAACTCTCGTCAACTCAGGCCCGTAATCTTCCTCAACAA
    GTTCAACGGCTTGAGATTGATCTGAGAGCTCTGGCTAAAACAGCTGCTGTGCTCTCGCAATCTGTTCAGGATATCCG
    ATCATCCGTGCAAAATAAATTACAAGAAATCCAACAAGAACAAAAAAATTTAGCTCAAAATTTACGAGCGCTTCGCA
    ACTCCTTACAAGCACTAGTTGATGGCTCTTCCCCAGAAAATTATATTGATTTTTTGGCCGGGGAGACACCTGAACAT
    ATTCACGTTGTTAAACAAGGAGAAACCCTGAGTAAAATCGCTAGTAAGTACAATATCCCTGTCGCAGAATTGAAAAA
    ACTTAATAAATTAAATTCCGATACTATTTTTACTGATCAAAGAATCCGACTTCCAAAAAAGAAA
    SEQ ID NO: 102: CM homologue of CT601 = TC_0890 fragment protein sequence 
    LANRLFLITLIGFGYSAYGASTGKSPSLQVILAEVEDTSSRLQAHQNELVMLSERLDEQDTKLQQLSSTQARNLPQQ
    VQRLEIDLRALAKTAAVLSQSVQDIRSSVQNKLQEIQQEQKNLAQNLRALRNSLQALVDGSSPENYIDFLAGETPEH
    IHVVKQGETLSKIASKYNIPVAELKKLNKLNSDTIFTDQRIRLPKKK
    SEQ ID NO: 103: CM homologue of CT456 = TC_0741 fragment nucleotide sequence 
    ACGACTCCAATAAGTAATTCTCCATCTTCTATTCCAACTGTTACAGTATCAACTACTACAGCATCTTCTGGATCTCT
    CGGAACTTCTACTGTATCATCAACGACTACAAGTACTTCAGTCGCACAAACAGCAACAACAACATCTTCTGCTTCTA
    CATCTATAATTCAGTCTAGTGGAGAAAACATCCAATCCACTACAGGTACCCCTTCTCCTATTACGTCTAGTGTTTCA
    ACATCCGCTCCATCTCCTAAAGCCTCCGCCACTGCAAACAAAACTTCAAGCGCTGTTTCTGGGAAAATTACCTCACA
    AGAAACTTCTGAGGAATCCGAAACCCAAGCCACTACATCTGATGGAGAAGTTAGTAGTAATTACGATGATGTTGATA
    CCCCGACCAATTCGTCCGATTCGACAGTTGATAGTGATTACCAAGATGTTGAGACTCAGTACAAAACAATTAGCAAC
    AATGGTGAAAACACTTATGAAACAATCGGAAGTCATGGTGAGAAAAACACACACGTCCAGGAAAGCCATGCATCCGG
    AACAGGAAATCCCATAAATAATCAGCAAGAAGCTATTAGACAGCTCCGATCATCTACCTATACAACCAGCCCTCGTA
    ATGAGAATATATTTAGTCCAGGACCGGAAGGTCTACCTAATATGTCTCTTCCTAGTTACAGCCCTACAGATAAAAGT
    TCTCTACTAGCTTTCCTATCTAATCCCAATACAAAAGCAAAAATGCTCGAACACTCCGGGCATTTAGTCTTTATAGA
    CACAACTAGAAGTAGCTTTATCTTTGTTCCGAATGGAAATTGGGATCAAGTCTGTTCCATGAAGGTTCAGAATGGGA
    AAACTAAAGAAGACCTTGGCTTAAAGGACTTAGAAGATATGTGTGCAAAGTTTTGCACAGGATACAATAAATTCTCC
    TCTGATTGGGGAAATCGAGTTGACCCCTTGGTCTCTTCTAAGGCCGGGATAGAAAGTGGGGGGCACCTCCCAAGCTC
    AGTTATCATCAACAACAAATTTAGAACCTGTGTTGCCTATGGGCCGTGGAACCCCAAAGAAAACGGCCCCAATTATA
    CTCCTTCAGCCTGGAGACGTGGGCATCGAGTAGATTTTGGAAAGATCTTTGATGGAACAGCGCCGTTTAATAAAATC
    AACTGGGGCTCTTCCCCTACCCCTGGTGATGACGGCATCTCCTTCTCTAATGAAACTATTGGGTCTGAACCATTCGC
    GACACCTCCCTCATCCCCATCGCAAACCCCCGTTATCAACGTCAATGTTAATGTCGGTGGAACCAATGTTAATATTG
    GGGATACAAACGTATCTAAAGGATCCGGCACACCAACATCTTCTCAATCTGTGGACATGTCTACAGATACTAGCGAT
    TTAGATACCAGTGATATTGATACAAACAACCAAACTAACGGCGATATCAACACGAATGACAACTCCAATAATGTCGA
    TGGAAGTTTATCTGACGTTGATTCAAGGGTGGAAGACGATGACGGTGTATCGGATACAGAGTCCACTAATGGCAATG
    ACTCTGGTAAAACTACTTCCACAGAAGAAAATGGTGACCCAAGCGGACCAGACATCCTGGCTGCTGTACGTAAACAC
    CTAGACACTGTCTATCCAGGAGAAAATGGCGGATCTACAGAAGGACCTCTCCCTGCTAATCAAAATCTGGGGAACGT
    TATCCATGATGTGGAGCAGAATGGATCTGCTAAAGAAACTATTATCACTCCAGGAGATACAGGGCCTACAGACTCAA
    GCTCCTCTGTAGATGCTGATGCAGACGTTGAAGATACTTCTGATACTGACTCTGGAATCGGAGACGACGACGGTGTA
    TCGGATACAGAGTCCACTAATGGTAATAACTCTGGTAAAACTACTTCCACAGAAGAAAATGGTGACCCAAGCGGACC
    AGACATCCTGGCTGCTGTACGTAAACACCTAGACACTGTCTATCCAGGAGAAAATGGCGGATCTACAGAAGGACCTC
    TCCCTGCTAATCAAAATCTGGGGAACGTTATCCATGATGTAGAACAAAACGGAGCCGCTCAAGAAACTATTATCACT
    CCAGGAGATACGGAATCTACAGACACAAGCTCTAGTGTAAATGCTAATGCAGACTTAGAAGATGTTTCTGATGCTGA
    TTCAGGATTCGGGGATGATGACGGTATATCGGATACAGAGTCCACTAATGGTAACGACTCTGGAAAAAATACTCCTG
    TAGGGGATGGTGGTACACCAAGCGGACCAGATATCCTAGCTGCTGTACGCAAACATCTAGACACTGTCTATCCAGGA
    GAAAATGGTGGATCTACAGAGAGACCTTTACCCGCTAATCAAAATTTAGGAGATATCATTCATGATGTAGAACAAAA
    CGGAAGCGCTAAAGAAACTGTAGTATCGCCTTATCGAGGAGGAGGAGGAAATACATCTTCCCCAATTGGATTAGCCT
    CCCTGCTTCCAGCAACACCATCCACACCTTTGATGACAACACCTAGAACAAATGGGAAAGCTGCAGCTTCTTCTTTG
    ATGATAAAAGGAGGAGAAACTCAAGCCAAGCTAGTTAAGAATGGCGGCAATATCCCTGGAGAAACCACATTAGCAGA
    ATTACTCCCTCGTTTAAGAGGACACCTTGACAAAGTCTTTACTTCAGACGGGAAGTTTACAAATCTTAATGGACCTC
    AACTTGGAGCCATCATAGACCAATTCCGCAAAGAAACGGGTTCCGGAGGAATCATAGCTCATACAGATAGTGTTCCA
    GGAGAGAACGGAACAGCCTCTCCTCTCACAGGAAGTTCAGGGGAAAAAGTCTCTCTCTATGATGCAGCGAAAAACGT
    CACTCAAGCTTTAACAAGTGTTACGAACAAAGTAACCCTAGCAATGCAAGGACAAAAACTGGAAGGAATTATAAACA
    ACAACAATACCCCCTCTTCTATTGGACAAAATCTTTTCGCAGCAGCGAGGGCAACGACACAATCCCTCAGTTCATTA
    ATTGGAACCGTACAA
    SEQ ID NO: 104: CM homologue of CT456 = TC_0741 fragment protein sequence 
    TTPISNSPSSIPTVIVSTITASSGSLGTSTVSSITTSTSVAQTATTTSSASTSIIQSSGENIQSTIGTPSPITSSVS
    TSAPSPKASATANKTSSAVSGKITSQETSEESETQATTSDGEVSSNYDDVDTPTNSSDSTVDSDYGDVETQYKTISN
    NGENTYETIGSHGEKNTHVQESHASGTGNPINNQQEAIRQLRSSTYTTSPRNENIFSPGPEGLPNMSLPSYSPTDKS
    SLLAFLSNPNTKAKMLEHSGHLVFIDTTRSSFIFVPNGNWDQVCSMKVQNGKTKEDLGLKDLEDMCAKFCTGYNKFS
    SDWGNRVDPLVSSKAGIESGGHLPSSVIINNKFRICVAYGPWNPKENGPNYTPSAWRRGHRVDFGKIFDGTAPFNKI
    NWGSSPTPGDDGISFSNETIGSEPFATPPSSPSQTPVINVNVNVGGTNVNIGDTNVSKGSGTPTSSQSVDMSTDTSD
    LDTSDIDTNNQTNGDINTNDNSNNVDGSLSDVDSRVEDDDGVSDTESTNGNDSGKTTSTEENGDPSGPDILAAVRKH
    LDTVYPGENGGSTEGPLPANRNLGNVIHDVEQNGSAKETIITPGDTGPTDSSSSVDADADVEDTSDTDSGIGDDDGV
    SDTESTNGNNSGKTTSTEENGDPSGPDILAAVRKHLDTVYPGENGGSTEGPLPANQNLGNVIHDVEQNGAAQETIIT
    PGDTESTDISSSVNANADLEDVSDADSGFGDDDGISDTESTNGNDSGKNTPVGDGGTPSGPDILAAVRKHLDTVYPG
    ENGGSTERPLPANQNLGDIIHDVEQNGSAKETVVSPYRGGGGNTSSPIGLASLLPATPSTPLMTTPRINGKAAASSL
    MIKGGETQAKLVKNGGNIPGETTLAELLPRLRGHLDKVFTSDGKFTNLNGPQLGAIIDQFRKETGSGGIIANTDSVP
    GENGIASPLIGSSGEKVSLYDAAKNVTQALTSVINKVTLAMQGQKLEGIINNNNTPSSIGQNLFAAARATTQSLSSL
    IGTVQ
    SEQ ID NO: 105: CM homologue of CT381 = TC_0660 fragment nucleotide sequence
    TGTTCAAAAGAGAGCAAAGACTCTGTTAGTGAAAAATTTATTGTAGGAACTAACGCAACGTATCCTCCTTTTGAGTT
    TGTTGATGAAAGAGGTGAGACGGTTGGCTTTGATATTGATTTAGCTAGGGAGATTAGTAAAAAGCTAGGGAAAAAAT
    TAGAAGTCCGAGAATTTGCTTTTGATGCACTCGTTCTCAATTTAAAACAGCATCGTATTGATGCAATTATGGCAGGG
    GTGTCCATTACGTCTTCTCGATTGAAAGAAATTTTGATGATTCCCTACTATGGCGAAGAAATAAAGAGTTTGGTTTT
    AGTGTTTAAGGATGGAGACTCAAAGTCTTTACCACTAGATCAGTATAATTCTGTTGCTGTTCAAACTGGCACGTACC
    AAGAGGAATATTTACAGTCTCTTCCAGGGGTGCGTATTCGCTCTTTTGATAGTACTTTAGAAGTGCTTATGGAAGTT
    TTGCATAGCAAGTCTCCTATAGCTGTTTTAGAACCGTCTATTGCGCAGGTCGTTTTAAAAGATTTTCCGACGCTCAC
    TACTGAAACGATAGATCTTCCTGAAGATAAATGGGTTTTAGGGTATGGAATTGGAGTTGCTTCTGATCGACCATCTC
    TAGCTTCTGATATAGAAGCTGCTGTACAAGAGATCAAGAAAGAAGGAGTGTTAGCAGAGTTAGAGCAAAAATGGGGT
    TTGAACGGC
    SEQ ID NO: 106: CM homologue of CT381 = TC_0660 fragment protein sequence
    CSKESKDSVSEKFIVGTNATYPPFEFVDERGETVGFDIDLAREISKKLGKKLEVREFAFDALVLNLKQHRIDAIMAG
    VSITSSRLKEILNIPYYGEEIKSLVLVFKDGDSKSLPLDQYNSVAVQTGTYQEEYLQSLPGVRIRSFDSTLEVLMEV
    LHSKSPIAVLEPSIAQVVLKDFPILTTETIDLPEDKWVLGYGIGVASDRPSLASDIEAAVQEIKKEGVLAELEQKWG
    LNG
    SEQ ID NO: 107-CT255 fragment nucleotide sequence
    GAAGAAAAAGGCATCTTACAATTGGTTGAAATTTCGCGAGCAATGGCTTTACAGGGAGTTTGTCCTTGGACTAATTT
    ACAGAGTGTGGAGTCTATGTTGCAGTATATAGCAGGGGAGTGTCAGGAGTTGGCTGATGCTGTACAAGAAAATAAAG
    CTTCGTTGGAAATCGCTTCGGAAGCCGGAGACGTACTTACTTTAGTATTGACCTTGTGTTTCTTGCTAGAAAGAGAA
    GGAAAGCTTAAAGCTGAAGAAGTATTTGTAGAAGCTTTGGCTAAGTTGCGTCGTCGATCTCCTCATGTTTTTGATCC
    TCATAATCAAATTTCTTTAGAACAGGCTGAAGAATACTGGGCTCGTATGAAACAGCAAGAAAAAATTTCT
    SEQ ID NO: 108-CT255 fragment protein sequence
    EEKGILQLVEISRAMALQGVCPWTNLQSVESMLQYIAGECQELADAVQENKASLEIASEAGDVLTLVLTLCFLLERE
    GKLKAEEVFVEALAKLRRRSPHVFDPHNQISLEQAEEYWARMKQQEKIS
    SEQ ID NO: 109-CT341 fragment nucleotide sequence
    GATTACTACACGATATTGGGTGTAGCGAAGACTGCTACTCCTGAAGAAATAAAGAAAGCTTACCGTAAGCTCGCTGT
    AAAGTACCATCCAGATAAGAATCCTGGGGATGCTGAAGCGGAGCGACGCTTTAAAGAAGTTTCTGAAGCCTATGAAG
    TATTAGGTGATGCGCAGAAGCGGGAGTCATATGATCGTTACGGCAAAGACGGTCCATTTGCTGGTGCTGGAGGATTC
    GGTGGCGCTGGCATGGGGAATATGGAAGACGCTTTGCGAACATTTATGGGAGCTTTTGGCGGCGATTTCGGTGGTAA
    TGGAGGCGGTTTCTTTGAAGGGCTTTTTGGAGGACTTGGAGAAGCTTTCGGAATGCGTGGAGGCTCAGAAAGTTCTC
    GACAAGGAGCTAGTAAGAAGGTGCATATTACGCTGTCCTTCGAGGAGGCGGCAAAAGGTGTTGAAAAAGAACTTCTT
    GTTTCAGGCTATAAATCTTGTGATGCTTGTTCTGGTAGTGGAGCCAATACTGCTAAAGGTGTAAAAGTTTGTGATCG
    ATGCAAGGGCTCTGGTCAGGTAGTGCAAAGCCGAGGCTTTTTCTCCATGGCTTCTACTTGCCCTGATTGTAGTGGTG
    AAGGTCGGGTTATCACAGATCCTTGTTCAGTTTGTCGTGGGCAGGGACGTATCAAGGATAAACGTAGCGTCCATGTT
    AATATCCCAGCTGGAGTCGATTCTGGGATGAGATTAAAGATGGAAGGCTATGGAGATGCTGGCCAAAATGGAGCGCC
    TGCAGGGGATCTGTATGTTTTTATTGATGTAGAGCCTCATCCTGTTTTCGAGCGCCATGGGGATGATTTAGTTTTAG
    AGCTTCCTATTGGATTTGTTGATGCGGCTTTAGGGATCAAGAAGGAAATCCCTACACTCTTAAAAGAAGGTACTTGC
    CGTTTGAGTATCCCAGAAGGGATTCAGAGCGGAACAGTTCTTAAAGTTAGAGGGCAGGGATTCCCTAATGTGCATGG
    GAAATCCAGAGGAGATCTTTTAGTAAGAGTATCTGTGGAGACTCCCCAGCACCTATCTAATGAACAAAAAGATTTAT
    TGAGACAGTTTGCTGCTACGGAGAAGGCTGAAAATTTCCCTAAGAAACGGAGTTTCTTAGACAAAATCAAAGGTTTT
    TTTTCTGACTTTGCTGTA
    SEQ ID NO: 110-CT341 fragment protein sequence
    DYYTILGVAKTATPEEIKKAYRKLAVKYHPDKNPGDAEAERRFKEVSEAYEVLGDAQKRESYDRYGKDGPFAGAGGF
    GGAGMGNMEDALRTFMGAFGGDFGGNGGGFFEGLFGGLGEAFGMRGGSESSRQGASKKVHITLSFEEAAKGVEKELL
    VSGYKSCDACSGSGANTAKGVKVCDRCKGSGQVVQSRGFFSMASTCPDCSGEGRVITDPCSVCRGQGRIKDKRSVHV
    NIPAGVDSGMRLKMEGYGDAGQNGAPAGDLYVFIDVEPHPVFERHGDDLVLELPIGFVDAALGIKKEIPTLLKEGTC
    RLSIPEGIQSGTVLKVRGQGFPNVHGKSRGDLLVRVSVETPQHLSNEQKDLLRQFAATEKAENFPKKRSFLDKIKGF
    FSDFAV
    SEQ ID NO: 111-CT716 fragment nucleotide sequence
    AATAAAAAACTCCAAGATCTGTCTAAACTGCTCACTATTGAGCTTTTCAAGAAACGTACACGGTTGGAAACAGTAAA
    AAAAGCGCTCTCCACAATAGAACATCGCTTACAACAAATACAGGAGCACATCGCGAAAATTTCCTTAACAAGGCACA
    AACAATTCCTATGTCGGTCATATACCCATGAATATGACCAACATTTAGAACATTTACAAAGAGAGCAAACTTCTCTA
    TATAAACAGCATCAGACCCTGAAAACGTTTTTGAAAGATGCTTATGGCGACATACAAAAACAACTAGACCAAAGAAA
    AATTATCGAAAAGATCCATGACAGTAAATATCCTATAAAGAGCGCGAATAAC
    SEQ ID NO: 112-CT716 fragment protein sequence 
    NKKLQDLSKLLTIELFKKRTRLETVKKALSTIEHRLQQIQEHIAKISLTRHKRFLCRSYTHEYDQHLEHLQREQTSL
    YKQHQTLKTSLKDAYGDIQKQLDQRKIIEKIHDSKYPIKSANN
    SEQ ID NO: 113-CT745 fragment nucleotide sequence
    GCGTGGTGGCTACACAAACGATTCCCTCATGTGCAGCTGTCTATTCTAGAAAAAGAGTCTCGATCTGGAGGGCTAAT
    TGTCACAGAGAAACAACAAGGGTTTTCCCTCAATATGGGCCCTAAAGGTTTTGTTTTAGCTCATGATGGGCAACACA
    CCCTTCACCTCATTCAGTCTTTAGGCCTAGCAGACGAGCTATTATATAGCTCTCCAGAGGCTAAAAACCGCTTTATC
    CACTATAATAATAAAACCCGAAAAGTCTCGCCTTGGACTATTTTCAAACAAAATCTCCCTCTCTCTTTTGCTAAGGA
    TTTCTTTGCGCGTCCTTACAAACAAGACAGCTCCGTGGAAGCCTTCTTTAAAAGACACAGTTCTTCCAAGCTTAGAA
    GAAATCTTTTAAATCCCATTAGCATTGCTATTCGTGCAGGACATAGTCATATATTGTCTGCACAGATGGCTTACCCA
    GAATTAACACGAAGAGAAGCTCAAACAGGATCGTTGTTACGTAGTTATCTCAAAGATTTTCCTAAAGAGAAACGCAC
    AGGCCCTTATTTAGCTACCTTGCGGTCTGGGATGGGAATGCTAACCCAGGCTTTGCATGATAAATTGCCTGCTACCT
    GGTATTTTTCTGCACCCGTCAGCAAAATCCGTCAGTTGGCGAATGGGAAAATTTCTCTTTCATCTCCTCAAGGAGAA
    ATAACGGGAGATATGCTCATTTATGCTGGGTCCGTGCACGATCTCCCTTCCTGTCTAGAAGGGATCCCTGAAACCAA
    GCTTATCAAGCAAACGACTTCATCTTGGGATCTCTCTTGTGTATCTTTAGGATGGCATGCATCCTTCCCTATCCCTC
    ATGGATATGGCATGCTTTTCGCTGATACGCCTCCCTTATTAGGGATCGTGTTTAATACGGAAGTGTTCCCTCAACCC
    GAGCGGCCTAATACAATAGTCTCTCTTCTTTTAGAAGGTCGATGGCACCAAGAAGAAGCGTATGCTTTCTCACTAGC
    AGCTATTTCTGAGTACCTGCAAATTTACACTCCTCCCCAAGCTTTCTCACTATTCTCTCCTCGAGAGGGACTTCCCC
    AACACCATGTTGGATTTATCCAATCCCGCCAACGCCTTCTATCTAAACTTCCTCACAATATAAAAATTGTAGGGCAG
    AATTTTGCAGGTCCAGGTCTCAACCGCGCTACAGCGTCTGCTTATAAAGCTATAGCTTCTTTACTATCA
    SEQ ID NO: 114-CT745 fragment protein sequence
    AWWLHKRFPHVQLSILEKESRSGGLIVTEKQQGFSLNMGPKGFVLAHDGQHTLHLIQSLGLADELLYSSPEAKNRFI
    HYNNKTRKVSPWTIFKQNLPLSFAKDFFARPYKQDSSVEAFFKRHSSSKLRRNLLNPISIAIRAGHSHILSAQMAYP
    ELTRREAQTGSLLRSYLKDFPKEKRTGPYLATLRSGMGMLTQALHDKLPATWYFSAPVSKIRQLANGKISLSSPQGE
    ITGDMLIYAGSVHDLPSCLEGIPETKLIKQTTSSWDLSCVSLGWHASFPIPHGYGMLFADTPPLLGIVFNTEVFPQP
    ERPNTIVSLLLEGRWHQEEAYAFSLAAISEYLQIYTPPQAFSLFSPREGLPQHHVGFIQSRQRLLSKLPHNIKIVGR
    NFAGPGLNRATASAYKAIASLLS
    SEQ ID NO: 115-CT387 fragment nucleotide sequence
    ACGCTCTTTCATTCTCATCATGATGCCGTCTCTCCAGACAGCTACCTATGTTCTTCCCTTCAGTTAGTTGGTACTGG
    CGTATACGAAGGAGAAATCGAGATTCAAAATATCCCCTCTTATTTCCTTGGATTCCAATTACCCTCTCATTGCATAC
    ACCTTAATTTAAAGAGCTCTCTAGCTCAATTAGGAATAGATGCCTCCCTTCTTCACTGCGAATTGAGCAAAAATCAA
    CATCGAGCACATATACATGCTCAATTTACCGGTCATGGCCCCATTGCTGAATCTATGCTAGCCCTTCTCCAACCAGG
    AGATCGTGTAGCAAAACTATTTGCTGCAGACGATCGCAGACTGGTCCGATCTCCAGATTACCTCGAAAGCATGCTGA
    AAAATACAGATAAAGCTGGCCATCCTTTGCTCTGTTTTGGGAAAAAATTAGAACACTTGATTTCTTTTGATGTGGTA
    GATGATCGCCTTGTCGTCTCCCTTCCTACCCTGCCGGGAGTTGTTCGTTATGATTCGGATATTTATGGACTCCTTCC
    TCTTATTCAAAAATCACTCAGTAATCCCAAACTCAGCATTCGTCACTTTTTAGCTCTGTACCAACAGATTGTGGAAG
    GGCAACATGTCTCTTGCGGAAACCATATTCTTCTGATCAAAACAGAACCGCTGCACATCCGCACTGTATTTGCTCGC
    GTGGTAAATCAACTCCTCCCTCAAGGTCTCTCCCACACTTCTGCCAATATTTTGGAACCAACCACTCGAGAATCCGG
    GGATATCTTTGAATTTTTTGGGAACCCTTCTGCACAGATAGAAAGAATTCCTTTAGAATTTTTCACTATCGAACCCT
    ATAAAGAACATTCTTACTTCTGTAATCGGGATTTATTACAAACCATCTTACAATCAGAAAGCGAAATCAAAAAAATA
    TTCGAAACAGCGCCCAAAGAACCTGTCAAAGCTGCCACCTATTTATCAAAAGGCAGTGAAATCTCTTCCCTGCACAC
    AGACTCTTGGCTCACAGGATCCGCAGCTGCCTATCAATATAGTGAGCAAGCAGATAAAAACGAGTACACTCATGCTC
    AACCTTGCTATCCTTTCTTAGAAGCAATGGAAATGGGCCTGATCAATAGCGAAGGAGCCTTACTCACTCGTTATTTC
    CCTTCAGCTAGCTTAAAAGGAATGTTGATTTCCTACCATGTGCGCCACTATCTCAAACAAATCTACTTTCAAGTTCC
    CTCTTATACACATGGAAACTATTTCTCTCATAATGACAGAGGTTTGCTATTAGATCTGCAGCAAGCAGATATTGATG
    TTTTCTGGGCAGATGAAGAAAGCGGCCGTGTGTTGCAATATACAAAACGACGCGATAAGAATAGCGGTATGTTCGTG
    ATCAAAAATCGTGTTGAAGAGTTTCGATCAGCTTATTTTATTGCTATTTATGGCTCTCGTCTCCTTGAGAATAATTT
    CTCTGCTCAGCTCCATACCCTCCTAGCGGGCTTACAGCAAGCAGCACATACTCTCGGCATTCCTGGATTCTCAAAGC
    CTACCCCACTTGCAGTCATCACCGGAGGCGGCACTGGAGTTATGGCCACAGGAAATCGTGTAGCTAAAGAACTAGGA
    ATCCTATCTTGTGGAACCGTTCTTGATTTAGAAGCTTCTCCAGCACAAATCGACCAACCTACCAATGAATTCTTAGA
    TGCTAAAATGACATACCGCCTACCTCAACTTATAGAAAGGCAAGAACACTTTTATGCAGACCTTCCTATCCTTGTAG
    TTGGCGGTGTAGGAACCGATTTCGAACTCTACCTAGAACTTGTCTATCTCAAAACAGGAGCTAAACCACCGACTCCC
    ATTTTCCTAATTGGACCTATTGAATACTGGAAAGAAAAAGTGGCCCACGCCTACGAGATCAACCTCAAAGCAGGAAC
    CATCCGTGGATCCGAATGGATCAGCAACTGCCTATATTGTATCACTTCTCCGGAAGCTGGAATTGCCGTATTCGAAC
    AATTCCTAGCTGGAGAACTCCCTATAGGATACGACTATCCTCCAGCTCCAGATGGATTAGTGATCGTC
    SEQ ID NO: 116-CT387 fragment protein sequence 
    TLFHSHHDAVSPDSYLCSSLQLVGTGVYEGEIEIQNIPSYFLGFQLPSHCIHLNLKSSLAQLGIDASLLHCELSKNQ
    HRAHIHAQFTGHGPIAESMLALLQPGDRVAKLFAADDRRLVRSPDYLESMLKNTDKAGHPLLCFGKKLEHLISFDVV
    DDRLVVSLPTLPGVVRYDSDIYGLLPLIQKSLSNPKLSIRHFLALYQQIVEGQHVSCGNHILLIKTEPLHIRTVFAR
    VVNQLLPQGLSHTSANILEPTTRESGDIFEFFGNPSAQIERIPLEFFTIEPYKEHSYFCNRDLLQTILQSESEIKKI
    FETAPKEPVKAATYLSKGSEISSLHTDSWLTGSAAAYQYSEQADKNEYTHAQPCYPFLEAMEMGLINSEGALLTRYF
    PSASLKGMLISYHVRHYLKQIYFQVPSYTHGNYFSHNDRGLLLDLQQADIDVFWADEESGRVLQYTKRRDKNSGMFV
    IKNRVEEFRSAYFIAIYGSRLLENNFSAQLHTLLAGLQQAAHTLGIPGFSKPTPLAVITGGGTGVMATGNRVAKELG
    ILSCGTVLDLEASPAQIDQPTNEFLDAKMTYRLPQLIERQEHFYADLPILVVGGVGTDFELYLELVYLKTGAKPPTP
    IFLIGPIEYWKEKVAHAYEINLKAGTIRGSEWISNCLYCITSPEAGIAVFEQFLAGELPIGYDYPPAPDGLVIV
    SEQ ID NO: 117-CT812 fragment nucleotide sequence
    TGCGTAGATCTTCATGCTGGAGGACAGTCTGTAAATGAGCTGGTATATGTAGGCCCTCAAGCGGTTTTATTGTTAGA
    CCAAATTCGAGATCTATTCGTTGGGTCTAAAGATAGTCAGGCTGAAGGACAGTATAGGTTAATTGTAGGAGATCCAA
    GTTCTTTCCAAGAGAAAGATGCGGATACTCTTCCCGGGAAGGTAGAGCAAAGTACTTTGTTCTCAGTAACCAATCCC
    GTGGTTTTCCAAGGTGTGGACCAACAGGATCAAGTCTCTTCCCAAGGGTTAATTTGTAGTTTTACGAGCAGCAACCT
    TGATTCTCCTCGTGACGGAGAATCTTTTTTAGGTATTGCTTTTGTTGGGGATAGTAGTAAGGCTGGAATCACATTAA
    CTGACGTGAAAGCTTCTTTGTCTGGAGCGGCTTTATATTCTACAGAAGATCTTATCTTTGAAAAGATTAAGGGTGGA
    TTGGAATTTGCATCATGTTCTTCTCTAGAACAGGGGGGAGCTTGTGCAGCTCAAAGTATTTTGATTCATGATTGTCA
    AGGATTGCAGGTTAAACACTGTACTACAGCCGTGAATGCTGAGGGGTCTAGTGCGAATGATCATCTTGGATTTGGAG
    GAGGCGCTTTCTTTGTTACGGGTTCTCTTTCTGGAGAGAAAAGTCTCTATATGCCTGCAGGAGATATGGTAGTTGCG
    AATTGTGATGGGGCTATATCTTTTGAAGGAAACAGCGCGAACTTTGCTAATGGAGGAGCGATTGCTGCCTCTGGGAA
    AGTGCTTTTTGTCGCTAATGATAAAAAGACTTCTTTTATAGAGAACCGAGCTTTGTCTGGAGGAGCGATTGCAGCCT
    CTTCTGATATTGCCTTTCAAAACTGCGCAGAACTAGTTTTCAAAGGCAATTGTGCAATTGGAACAGAGGATAAAGGT
    TCTTTAGGTGGAGGGGCTATATCTTCTCTAGGCACCGTTCTTTTGCAAGGGAATCACGGGATAACTTGTGATAAGAA
    TGAGTCTGCTTCGCAAGGAGGCGCCATTTTTGGCAAAAATTGTCAGATTTCTGACAACGAGGGGCCAGTGGTTTTCA
    GAGATAGTACAGCTTGCTTAGGAGGAGGCGCTATTGCAGCTCAAGAAATTGTTTCTATTCAGAACAATCAGGCTGGG
    ATTTCCTTCGAGGGAGGTAAGGCTAGTTTCGGAGGAGGTATTGCGTGTGGATCTTTTTCTTCCGCAGGTGGTGCTTC
    TGTTTTAGGGACCATTGATATTTCGAAGAATTTAGGCGCGATTTCGTTCTCTCGTACTTTATGTACGACCTCAGATT
    TAGGACAAATGGAGTACCAGGGAGGAGGAGCTCTATTTGGTGAAAATATTTCTCTTTCTGAGAATGCTGGTGTGCTC
    ACCTTTAAAGACAACATTGTGAAGACTTTTGCTTCGAATGGGAAAATTCTGGGAGGAGGAGCGATTTTAGCTACTGG
    TAAGGTGGAAATTACTAATAATTCCGAAGGAATTTCTTTTACAGGAAATGCGAGAGCTCCACAAGCTCTTCCAACTC
    AAGAGGAGTTTCCTTTATTCAGCAAAAAAGAAGGGCGACCACTCTCTTCAGGATATTCTGGGGGAGGAGCGATTTTA
    GGAAGAGAAGTAGCTATTCTCCACAACGCTGCAGTAGTATTTGAGCAAAATCGTTTGCAGTGCAGCGAAGAAGAAGC
    GACATTATTAGGTTGTTGTGGAGGAGGCGCTGTTCATGGGATGGATAGCACTTCGATTGTTGGCAACTCTTCAGTAA
    GATTTGGTAATAATTACGCAATGGGACAAGGAGTCTCAGGAGGAGCTCTTTTATCTAAAACAGTGCAGTTAGCTGGG
    AATGGAAGCGTCGATTTTTCTCGAAATATTGCTAGTTTGGGAGGAGGAGCTCTTCAAGCTTCTGAAGGAAATTGTGA
    GCTAGTTGATAACGGCTATGTGCTATTCAGAGATAATCGAGGGAGGGTTTATGGGGGTGCTATTTCTTGCTTACGTG
    GAGATGTAGTCATTTCTGGAAACAAGGGTAGAGTTGAATTTAAAGACAACATAGCAACACGTCTTTATGTGGAAGAA
    ACTGTAGAAAAGGTTGAAGAGGTAGAGCCAGCTCCTGAGCAAAAAGACAATAATGAGCTTTCTTTCTTAGGGAGAGC
    AGAACAGAGTTTTATTACTGCAGCTAATCAAGCTCTTTTCGCATCTGAAGATGGGGATTTATCACCTGAGTCATCCA
    TTTCTTCTGAAGAACTTGCGAAAAGAAGAGAGTGTGCTGGAGGAGCTATTTTTGCAAAACGGGTTCGTATTGTAGAT
    AACCAAGAGGCCGTTGTATTCTCGAATAACTTCTCTGATATTTATGGCGGCGCCATTTTTACAGGTTCTCTTCGAGA
    AGAGGATAAGTTAGATGGGCAAATCCCTGAAGTCTTGATCTCAGGCAATGCAGGGGATGTTGTTTTTTCCGGAAATT
    CCTCGAAGCGTGATGAGCATCTTCCTCATACAGGTGGGGGAGCCATTTGTACTCAAAATTTGACGATTTCTCAGAAT
    ACAGGGAATGTTCTGTTTTATAACAACGTGGCCTGTTCGGGAGGAGCTGTTCGTATAGAGGATCATGGTAATGTTCT
    TTTAGAAGCTTTTGGAGGAGATATTGTTTTTAAAGGAAATTCTTCTTTCAGAGCACAAGGATCCGATGCTATCTATT
    TTGCAGGTAAAGAATCGCATATTACAGCCCTGAATGCTACGGAAGGACATGCTATTGTTTTCCACGACGCATTAGTT
    TTTGAAAATCTAGAAGAAAGGAAATCTGCTGAAGTATTGTTAATCAATAGTCGAGAAAATCCAGGTTACACTGGATC
    TATTCGATTTTTAGAAGCAGAAAGTAAAGTTCCTCAATGTATTCATGTACAACAAGGAAGCCTTGAGTTGCTAAATG
    GAGCCACATTATGTAGTTATGGTTTTAAACAAGATGCTGGAGCTAAGTTGGTATTGGCTGCTGGAGCTAAACTGAAG
    ATTTTAGATTCAGGAACTCCTGTACAACAAGGGCATGCTATCAGTAAACCTGAAGCAGAAATCGAGTCATCTTCTGA
    ACCAGAGGGTGCACATTCTCTTTGGATTGCGAAGAATGCTCAAACAACAGTTCCTATGGTTGATATCCATACTATTT
    CTGTAGATTTAGCCTCCTTCTCTTCTAGTCAACAGGAGGGGACAGTAGAAGCTCCTCAGGTTATTGTTCCTGGAGGA
    AGTTATGTTCGATCTGGAGAGCTTAATTTGGAGTTAGTTAACACAACAGGTACTGGTTATGAAAATCATGCTTTATT
    GAAGAATGAGGCTAAAGTTCCATTGATGTCTTTCGTTGCTTCTGGTGATGAAGCTTCAGCCGAAATCAGTAACTTGT
    CGGTTTCTGATTTACAGATTCATGTAGTAACTCCAGAGATTGAAGAAGACACATACGGCCATATGGGAGATTGGTCT
    GAGGCTAAAATTCAAGATGGAACTCTTGTCATTAGTTGGAATCCTACTGGATATCGATTAGATCCTCAAAAAGCAGG
    GGCTTTAGTATTTAATGCATTATGGGAAGAAGGGGCTGTCTTGTCTGCTCTGAAAAATGCACGCTTTGCTCATAATC
    TCACTGCTCAGCGTATGGAATTCGATTATTCTACAAATGTGTGGGGATTCGCCTTTGGTGGTTTCCGAACTCTATCT
    GCAGAGAATCTGGTTGCTATTGATGGATACAAAGGAGCTTATGGTGGTGCTTCTGCTGGAGTCGATATTCAATTGAT
    GGAAGATTTTGTTCTAGGAGTTAGTGGAGCTGCTTTCCTAGGTAAAATGGATAGTCAGAAGTTTGATGCGGAGGTTT
    CTCGGAAGGGAGTTGTTGGTTCTGTATATACAGGATTTTTAGCTGGATCCTGGTTCTTCAAAGGACAATATAGCCTT
    GGAGAAACACAGAACGATATGAAAACGCGTTATGGAGTACTAGGAGAGTCGAGTGCTTCTTGGACATCTCGAGGAGT
    ACTGGCAGATGCTTTAGTTGAATACCGAAGTTTAGTTGGTCCTGTGAGACCTACTTTTTATGCTTTGCATTTCAATC
    CTTATGTCGAAGTATCTTATGCTTCTATGAAATTCCCTGGCTTTACAGAACAAGGAAGAGAAGCGCGTTCTTTTGAA
    GACGCTTCCCTTACCAATATCACCATTCCTTTAGGGATGAAGTTTGAATTGGCGTTCATAAAAGGACAGTTTTCAGA
    GGTGAACTCTTTGGGAATAAGTTATGCATGGGAAGCTTATCGAAAAGTAGAAGGAGGCGCGGTGCAGCTTTTAGAAG
    CTGGGTTTGATTGGGAGGGAGCTCCAATGGATCTTCCTAGACAGGAGCTGCGTGTCGCTCTGGAAAATAATACGGAA
    TGGAGTTCTTACTTCAGCACAGTCTTAGGATTAACAGCTTTTTGTGGAGGATTTACTTCTACAGATAGTAAACTAGG
    ATATGAGGCGAATACTGGATTGCGATTGATCTTT
    SEQ ID NO: 118-CT812 fragment protein sequence 
    CVDLHAGGQSVNELVYVGPQAVLLLDQIRDLFVGSKDSQAEGQYRLIVGDPSSFQEKDADTLPGKVEQSTLFSVINP
    VVFQGVDQQDQVSSQGLICSFTSSNLDSPRDGESFLGIAFVGDSSKAGITLTDVKASLSGAALYSTEDLIFEKIKGG
    LEFASCSSLEQGGACAAQSILIHDCQGLQVKHCTTAVNAEGSSANDHLGFGGGAFFVTGSLSGEKSLYMPAGDMVVA
    NCDGAISFEGNSANFANGGAIAASGKVLFVANDKKTSFIENRALSGGAIAASSDIAFQNCAELVFKGNCAIGTEDKG
    SLGGGAISSLGTVLLQGNHGITCDKNESASQGGAIFGKNCQISDNEGPVVFRDSTACLGGGAIAAQEIVSIQNNQAG
    ISFEGGKASFGGGIACGSFSSAGGASVLGTIDISKNLGAISFSRTLCTTSDLGQMEYQGGGALFGENISLSENAGVL
    TFKDNIVKTFASNGKILGGGAILATGKVEITNNSEGISFIGNARAPQALPTQEEFPLFSKKEGRPLSSGYSGGGAIL
    GREVAILHNAAVVFEQNRLQCSEEEATLLGCCGGGAVHGNDSTSIVGNSSVRFGNNYAMGQGVSGGALLSKTVQLAG
    NGSVDFSRNIASLGGGALQASEGNCELVDNGYVLFRDNRGRVYGGAISCLRGDVVISGNKGRVEFKDNIATRLYVEE
    TVEKVEEVEPAPEQKDNNELSFLGRAEQSFITAANQALFASEDGDLSPESSISSEELAKRRECAGGAIFAKRVRIVD
    NQEAVVFSNNFSDIYGGAIFTGSLREEDKLDGQIPEVLISGNAGDVVFSGNSSKRDEHLPHIGGGAICTQNLTISQN
    TGNVLFYNNVACSGGAVRIEDHGNVLLEAFGGDIVFKGNSSFRAQGSDAIYFAGKESHITALNATEGHAIVFHDALV
    FENLEERKSAEVLLINSRENPGYTGSIRFLEAESKVPQCIHVQQGSLELLNGATLCSYGFKQDAGAKLVLAAGAKLK
    ILDSGTPVQQGHAISKPEAEIESSSEPEGAHSLWIAKNAQTTVPMVDIHTISVDLASFSSSQQEGTVEAPQVIVPGG
    SYVRSGELNLELVNTTGTGYENHALLKNEAKVPLMSFVASGDEASAEISNLSVSDLQIHVVIPEIEEDTYGHMGDWS
    EAKIQDGTLVISWNPTGYRLDPQKAGALVFNALWEEGAVLSALKNARFAHNLTAQRMEFDYSTNVWGFAFGGFRTLS
    AENLVAIDGYKGAYGGASAGVDIQLMEDFVLGVSGAAFLGKMDSQKFDAEVSRKGVVGSVYTGFLAGSWFFKGQYSL
    GETQNDMKTRYGVLGESSASWTSRGVLADALVEYRSLVGPVRPTFYALHFNPYVEVSYASMKFPGFTEQGREARSFE
    DASLTNITIPLGMKFELAFIKGQFSEVNSLGISYAWEAYRKVEGGAVQLLEAGFDWEGAPMDLPRQELRVALENNTE
    WSSYFSTVLGLTAFCGGFTSTDSKLGYEANTGLRLIF
    SEQ ID NO: 119-CT812N nucleotide sequence
    TGCGTAGATCTTCATGCTGGAGGACAGTCTGTAAATGAGCTGGTATATGTAGGCCCTCAAGCGGTTTTATTGTTAGA
    CCAAATTCGAGATCTATTCGTTGGGTCTAAAGATAGTCAGGCTGAAGGACAGTATAGGTTAATTGTAGGAGATCCAA
    GTTCTTTCCAAGAGAAAGATGCGGATACTCTTCCCGGGAAGGTAGAGCAAAGTACTTTGTTCTCAGTAACCAATCCC
    GTGGTTTTCCAAGGTGTGGACCAACAGGATCAAGTCTCTTCCCAAGGGTTAATTTGTAGTTTTACGAGCAGCAACCT
    TGATTCTCCTCGTGACGGAGAATCTTTTTTAGGTATTGCTTTTGTTGGGGATAGTAGTAAGGCTGGAATCACATTAA
    CTGACGTGAAAGCTTCTTTGTCTGGAGCGGCTTTATATTCTACAGAAGATCTTATCTTTGAAAAGATTAAGGGTGGA
    TTGGAATTTGCATCATGTTCTTCTCTAGAACAGGGGGGAGCTTGTGCAGCTCAAAGTATTTTGATTCATGATTGTCA
    AGGATTGCAGGTTAAACACTGTACTACAGCCGTGAATGCTGAGGGGTCTAGTGCGAATGATCATCTTGGATTTGGAG
    GAGGCGCTTTCTTTGTTACGGGTTCTCTTTCTGGAGAGAAAAGTCTCTATATGCCTGCAGGAGATATGGTAGTTGCG
    AATTGTGATGGGGCTATATCTTTTGAAGGAAACAGCGCGAACTTTGCTAATGGAGGAGCGATTGCTGCCTCTGGGAA
    AGTGCTTTTTGTCGCTAATGATAAAAAGACTTCTTTTATAGAGAACCGAGCTTTGTCTGGAGGAGCGATTGCAGCCT
    CTTCTGATATTGCCTTTCAAAACTGCGCAGAACTAGTTTTCAAAGGCAATTGTGCAATTGGAACAGAGGATAAAGGT
    TCTTTAGGTGGAGGGGCTATATCTTCTCTAGGCACCGTTCTTTTGCAAGGGAATCACGGGATAACTTGTGATAAGAA
    TGAGTCTGCTTCGCAAGGAGGCGCCATTTTTGGCAAAAATTGTCAGATTTCTGACAACGAGGGGCCAGTGGTTTTCA
    GAGATAGTACAGCTTGCTTAGGAGGAGGCGCTATTGCAGCTCAAGAAATTGTTTCTATTCAGAACAATCAGGCTGGG
    ATTTCCTTCGAGGGAGGTAAGGCTAGTTTCGGAGGAGGTATTGCGTGTGGATCTTTTTCTTCCGCAGGTGGTGCTTC
    TGTTTTAGGGACCATTGATATTTCGAAGAATTTAGGCGCGATTTCGTTCTCTCGTACTTTATGTACGACCTCAGATT
    TAGGACAAATGGAGTACCAGGGAGGAGGAGCTCTATTTGGTGAAAATATTTCTCTTTCTGAGAATGCTGGTGTGCTC
    ACCTTTAAAGACAACATTGTGAAGACTTTTGCTTCGAATGGGAAAATTCTGGGAGGAGGAGCGATTTTAGCTACTGG
    TAAGGTGGAAATTACTAATAATTCCGAAGGAATTTCTTTTACAGGAAATGCGAGAGCTCCACAAGCTCTTCCAACTC
    AAGAGGAGTTTCCTTTATTCAGCAAAAAAGAAGGGCGACCACTCTCTTCAGGATATTCTGGGGGAGGAGCGATTTTA
    GGAAGAGAAGTAGCTATTCTCCACAACGCTGCAGTAGTATTTGAGCAAAATCGTTTGCAGTGCAGCGAAGAAGAAGC
    GACATTATTAGGTTGTTGTGGAGGAGGCGCTGTTCATGGGATGGATAGCACTTCGATTGTTGGCAACTCTTCAGTAA
    GATTTGGTAATAATTACGCAATGGGACAAGGAGTCTCAGGAGGAGCTCTTTTATCTAAAACAGTGCAGTTAGCTGGG
    AATGGAAGCGTCGATTTTTCTCGAAATATTGCTAGTTTGGGAGGAGGAGCTCTTCAAGCTTCTGAAGGAAATTGTGA
    GCTAGTTGATAACGGCTATGTGCTATTCAGAGATAATCGAGGGAGGGTTTATGGGGGTGCTATTTCTTGCTTACGTG
    GAGATGTAGTCATTTCTGGAAACAAGGGTAGAGTTGAATTTAAAGACAACATAGCAACACGTCTTTATGTGGAAGAA
    ACTGTAGAAAAGGTTGAAGAGGTAGAGCCAGCTCCTGAGCAAAAAGACAATAATGAGCTTTCTTTCTTAGGGAGAGC
    AGAACAGAGTTTTATTACTGCAGCTAATCAAGCTCTTTTCGCATCTGAAGATGGGGATTTATCACCTGAGTCATCCA
    TTTCTTCTGAAGAA
    SEQ ID NO: 120: CT812N protein sequence
    CVDLHAGGQSVNELVYVGPQAVLLLDQIRDLFVGSKDSQAEGQYRLIVGDPSSFQEKDADTLPGKVEQSTLFSVTNP
    VVFQGVDQQDQVSSQGLICSFTSSNLDSPRDGESFLGIAFVGDSSKAGITLTDVKASLSGAALYSTEDLIFEKIKGG
    LEFASCSSLEQGGACAAQSILIHDCQGLQVKHCTTAVNAEGSSANDHLGFGGGAFFVTGSLSGEKSLYMPAGDMVVA
    NCDGAISFEGNSANFANGGAIAASGKVLFVANDKKTSFIENRALSGGAIAASSDIAFQNCAELVFKGNCAIGTEDKG
    SLGGGAISSLGTVLLQGNHGITCDKNESASQGGAIFGKNCQISDNEGPVVFRDSTACLGGGAIAAQEIVSIQNNQAG
    ISFEGGKASFGGGIACGSFSSAGGASVLGTIDISKNLGAISFSRTLCITSDLGQMEYQGGGALFGENISLSENAGVL
    TFKDNIVKTFASNGKILGGGAILATGKVEITNNSEGISFIGNARAPQALPTQEEFPLFSKKEGRPLSSGYSGGGAIL
    GREVAILHNAAVVFEQNRLQCSEEEATLLGCCGGGAVHGMDSTSIVGNSSVRFGNNYAMGQGVSGGALLSKTVQLAG
    NGSVDFSRNIASLGGGALQASEGNCELVDNGYVLFRDNRGRVYGGAISCLRGDVVISGNKGRVEFKDNIATRLYVEE
    TVEKVEEVEPAPEQKDNNELSFLGRAEQSFITAANQALFASEDGDLSPESSISSEE
    SEQ ID NO: 121: CT812C nucleotide sequence
    GAAGAACTTGCGAAAAGAAGAGAGTGTGCTGGAGGAGCTATTTTTGCAAAACGGGTTCGTATTGTAGATAACCAAGA
    GGCCGTTGTATTCTCGAATAACTTCTCTGATATTTATGGCGGCGCCATTTTTACAGGTTCTCTTCGAGAAGAGGATA
    AGTTAGATGGGCAAATCCCTGAAGTCTTGATCTCAGGCAATGCAGGGGATGTTGTTTTTTCCGGAAATTCCTCGAAG
    CGTGATGAGCATCTTCCTCATACAGGTGGGGGAGCCATTTGTACTCAAAATTTGACGATTTCTCAGAATACAGGGAA
    TGTTCTGTTTTATAACAACGTGGCCTGTTCGGGAGGAGCTGTTCGTATAGAGGATCATGGTAATGTTCTTTTAGAAG
    CTTTTGGAGGAGATATTGTTTTTAAAGGAAATTCTTCTTTCAGAGCACAAGGATCCGATGCTATCTATTTTGCAGGT
    AAAGAATCGCATATTACAGCCCTGAATGCTACGGAAGGACATGCTATTGTTTTCCACGACGCATTAGTTTTTGAAAA
    TCTAGAAGAAAGGAAATCTGCTGAAGTATTGTTAATCAATAGTCGAGAAAATCCAGGTTACACTGGATCTATTCGAT
    TTTTAGAAGCAGAAAGTAAAGTTCCTCAATGTATTCATGTACAACAAGGAAGCCTTGAGTTGCTAAATGGAGCCACA
    TTATGTAGTTATGGTTTTAAACAAGATGCTGGAGCTAAGTTGGTATTGGCTGCTGGAGCTAAACTGAAGATTTTAGA
    TTCAGGAACTCCTGTACAACAAGGGCATGCTATCAGTAAACCTGAAGCAGAAATCGAGTCATCTTCTGAACCAGAGG
    GTGCACATTCTCTTTGGATTGCGAAGAATGCTCAAACAACAGTTCCTATGGTTGATATCCATACTATTTCTGTAGAT
    TTAGCCTCCTTCTCTTCTAGTCAACAGGAGGGGACAGTAGAAGCTCCTCAGGTTATTGTTCCTGGAGGAAGTTATGT
    TCGATCTGGAGAGCTTAATTTGGAGTTAGTTAACACAACAGGTACTGGTTATGAAAATCATGCTTTATTGAAGAATG
    AGGCTAAAGTTCCATTGATGTCTTTCGTTGCTTCTGGTGATGAAGCTTCAGCCGAAATCAGTAACTTGTCGGTTTCT
    GATTTACAGATTCATGTAGTAACTCCAGAGATTGAAGAAGACACATACGGCCATATGGGAGATTGGTCTGAGGCTAA
    AATTCAAGATGGAACTCTTGTCATTAGTTGGAATCCTACTGGATATCGATTAGATCCTCAAAAAGCAGGGGCTTTAG
    TATTTAATGCATTATGGGAAGAAGGGGCTGTCTTGTCTGCTCTGAAAAATGCACGCTTTGCTCATAATCTCACTGCT
    CAGCGTATGGAATTCGATTATTCTACAAATGTGTGGGGATTCGCCTTTGGTGGTTTCCGAACTCTATCTGCAGAGAA
    TCTGGTTGCTATTGATGGATACAAAGGAGCTTATGGTGGTGCTTCTGCTGGAGTCGATATTCAATTGATGGAAGATT
    TTGTTCTAGGAGTTAGTGGAGCTGCTTTCCTAGGTAAAATGGATAGTCAGAAGTTTGATGCGGAGGTTTCTCGGAAG
    GGAGTTGTTGGTTCTGTATATACAGGATTTTTAGCTGGATCCTGGTTCTTCAAAGGACAATATAGCCTTGGAGAAAC
    ACAGAACGATATGAAAACGCGTTATGGAGTACTAGGAGAGTCGAGTGCTTCTTGGACATCTCGAGGAGTACTGGCAG
    ATGCTTTAGTTGAATACCGAAGTTTAGTTGGTCCTGTGAGACCTACTTTTTATGCTTTGCATTTCAATCCTTATGTC
    GAAGTATCTTATGCTTCTATGAAATTCCCTGGCTTTACAGAACAAGGAAGAGAAGCGCGTTCTTTTGAAGACGCTTC
    CCTTACCAATATCACCATTCCTTTAGGGATGAAGTTTGAATTGGCGTTCATAAAAGGACAGTTTTCAGAGGTGAACT
    CTTTGGGAATAAGTTATGCATGGGAAGCTTATCGAAAAGTAGAAGGAGGCGCGGTGCAGCTTTTAGAAGCTGGGTTT
    GATTGGGAGGGAGCTCCAATGGATCTTCCTAGACAGGAGCTGCGTGTCGCTCTGGAAAATAATACGGAATGGAGTTC
    TTACTTCAGCACAGTCTTAGGATTAACAGCTTTTTGTGGAGGATTTACTTCTACAGATAGTAAACTAGGATATGAGG
    CGAATACTGGATTGCGATTGATCTTT
    SEQ ID NO: 122: CT812C protein sequence 
    EELAKRRECAGGAIFAKRVRIVDNQEAVVFSNNFSDIYGGAIFTGSLREEDKLDGQIPEVLISGNAGDVVFSGNSSK
    RDEHLPHTGGGAICTQNLTISQNTGNVLFYNNVACSGGAVRIEDHGNVLLEAFGGDIVFKGNSSFRAQGSDAIYFAG
    KESHITALNATEGHAIVFHDALVFENLEERKSAEVLLINSRENPGYTGSIRFLEAESKVPQCIHVQQGSLELLNGAT
    LCSYGFKQDAGAKLVLAAGAKLKILDSGTPVQQGHAISKPEAEIESSSEPEGAHSLWIAKNAQTTVPMVDIHTISVD
    LASFSSSQQEGTVEAPQVIVPGGSYVRSGELNLELVNTTGTGYENHALLKNEAKVPLMSFVASGDEASAEISNLSVS
    DLQIHVVTPEIEEDTYGHMGDWSEAKIQDGTLVISWNPTGYRLDPQKAGALVFNALWEEGAVLSALKNARFAHNLTA
    QRMEFDYSTNVWGFAFGGFRTLSAENLVAIDGYKGAYGGASAGVDIQLMEDFVLGVSGAAFLGKMDSQKFDAEVSRK
    GVVGSVYTGFLAGSWFFKGQYSLGETQNDMKTRYGVLGESSASWTSRGVLADALVEYRSLVGPVRPTFYALHFNPYV
    EVSYASMKFPGFTEQGREARSFEDASLTNITIPLGMKFELAFIKGQFSEVNSLGISYAWEAYRKVEGGAVQLLEAGF
    DWEGAPMDLPRQELRVALENNTEWSSYFSTVLGLTAFCGGFTSTDSKLGYEANTGLRLIF
    SEQ ID NO: 123: CT869 fragment nucleotide sequence
    AGAGAGGTTCCTTCTAGAATCTTTCTTATGCCCAACTCAGTTCCAGATCCTACGAAAGAGTCGCTATCAAATAAAAT
    TAGTTTGACAGGAGACACTCACAATCTCACTAACTGCTATCTCGATAACCTACGCTACATACTGGCTATTCTACAAA
    AAACTCCCAATGAAGGAGCTGCTGTCACAATAACAGATTACCTAAGCTTTTTTGATACACAAAAAGAAGGTATTTAT
    TTTGCAAAAAATCTCACCCCTGAAAGTGGTGGTGCGATTGGTTATGCGAGTCCCAATTCTCCTACCGTGGAGATTCG
    TGATACAATAGGTCCTGTAATCTTTGAAAATAATACTTGTTGCAGACTATTTACATGGAGAAATCCTTATGCTGCTG
    ATAAAATAAGAGAAGGCGGAGCCATTCATGCTCAAAATCTTTACATAAATCATAATCATGATGTGGTCGGATTTATG
    AAGAACTTTTCTTATGTCCAAGGAGGAGCCATTAGTACCGCTAATACCTTTGTTGTGAGCGAGAATCAGTCTTGTTT
    TCTCTTTATGGACAACATCTGTATTCAAACTAATACAGCAGGAAAAGGTGGCGCTATCTATGCTGGAACGAGCAATT
    CTTTTGAGAGTAATAACTGCGATCTCTTCTTCATCAATAACGCCTGTTGTGCAGGAGGAGCGATCTTCTCCCCTATC
    TGTTCTCTAACAGGAAATCGTGGTAACATCGTTTTCTATAACAATCGCTGCTTTAAAAATGTAGAAACAGCTTCTTC
    AGAAGCTTCTGATGGAGGAGCAATTAAAGTAACTACTCGCCTAGATGTTACAGGCAATCGTGGTAGGATCTTTTTTA
    GTGACAATATCACAAAAAATTATGGCGGAGCTATTTACGCTCCTGTAGTTACCCTAGTGGATAATGGCCCTACCTAC
    TTTATAAACAATATCGCCAATAATAAGGGGGGCGCTATCTATATAGACGGAACCAGTAACTCCAAAATTTCTGCCGA
    CCGCCATGCTATTATTTTTAATGAAAATATTGTGACTAATGTAACTAATGCAAATGGTACCAGTACGTCAGCTAATC
    CTCCTAGAAGAAATGCAATAACAGTAGCAAGCTCCTCTGGTGAAATTCTATTAGGAGCAGGGAGTAGCCAAAATTTA
    ATTTTTTATGATCCTATTGAAGTTAGCAATGCAGGGGTCTCTGTGTCCTTCAATAAGGAAGCTGATCAAACAGGCTC
    TGTAGTATTTTCAGGAGCTACTGTTAATTCTGCAGATTTTCATCAACGCAATTTACAAACAAAAACACCTGCACCCC
    TTACTCTCAGTAATGGTTTTCTATGTATCGAAGATCATGCTCAGCTTACAGTGAATCGATTCACACAAACTGGGGGT
    GTTGTTTCTCTTGGGAATGGAGCAGTTCTGAGTTGCTATAAAAATGGTACAGGAGATTCTGCTAGCAATGCCTCTAT
    AACACTGAAGCATATTGGATTGAATCTTTCTTCCATTCTGAAAAGTGGTGCTGAGATTCCTTTATTGTGGGTAGAGC
    CTACAAATAACAGCAATAACTATACAGCAGATACTGCAGCTACCTTTTCATTAAGTGATGTAAAACTCTCACTCATT
    GATGACTACGGGAACTCTCCTTATGAATCCACAGATCTGACCCATGCTCTGTCATCACAGCCTATGCTATCTATTTC
    TGAAGCTAGCGATAACCAGCTACAATCAGAAAATATAGATTTTTCGGGACTAAATGTCCCTCATTATGGATGGCAAG
    GACTTTGGACTTGGGGCTGGGCAAAAACTCAAGATCCAGAACCAGCATCTTCAGCAACAATCACTGATCCACAAAAA
    GCCAATAGATTTCATAGAACCTTACTACTAACATGGCTTCCTGCCGGGTATGTTCCTAGCCCAAAACACAGAAGTCC
    CCTCATAGCTAACACCTTATGGGGGAATATGCTGCTTGCAACAGAAAGCTTAAAAAATAGTGCAGAGCTGACACCTA
    GTGGTCATCCTTTCTGGGGAATTACAGGAGGAGGACTAGGCATGATGGTTTACCAAGATCCTCGAGAAAATCATCCT
    GGATTCCATATGCGCTCTTCCGGATACTCTGCGGGGATGATAGCAGGGCAGACACACACCTTCTCATTGAAATTCAG
    TCAGACCTACACCAAACTCAATGAGCGTTACGCAAAAAACAACGTATCTTCTAAAAATTACTCATGCCAAGGAGAAA
    TGCTCTTCTCATTGCAAGAAGGTTTCTTGCTGACTAAATTAGTTGGGCTTTACAGCTATGGAGACCATAACTGTCAC
    CATTTCTATACTCAAGGAGAAAATCTAACATCTCAAGGGACGTTCCGCAGTCAAACGATGGGAGGTGCTGTCTTTTT
    TGATCTCCCTATGAAACCCTTTGGATCAACGCATATACTGACAGCTCCCTTTTTAGGTGCTCTTGGTATTTATTCTA
    GCCTGTCTCACTTTACTGAGGTGGGAGCCTATCCGCGAAGCTTTTCTACAAAGACTCCTTTGATCAATGTCCTAGTC
    CCTATTGGAGTTAAAGGTAGCTTTATGAATGCTACCCACAGACCTCAAGCCTGGACTGTAGAATTGGCATACCAACC
    CGTTCTGTATAGACAAGAACCAGGGATCGCAGCCCAGCTCCTAGCCAGTAAGGGTATTTGGTTCGGTAGTGGAAGCC
    CCTCATCGCGTCATGCCATGTCCTATAAAATCTCACAGCAAACACAACCTTTGAGTTGGTTAACTCTCCATTTCCAG
    TATCATGGATTCTACTCCTCTTCAACCTTCTGTAATTATCTCAATGGGGAAATTGCTCTGCGATTC
    SEQ ID NO: 124: CT869 fragment protein sequence
    REVPSRIFLMPNSVPDPTKESLSNKISLTGDTHNLINCYLDNLRYILAILQKTPNEGAAVTITDYLSFFDTQKEGIY
    FAKNLTPESGGAIGYASPNSPTVEIRDTIGPVIFENNTCCRLFTWRNPYAADKIREGGAIHAQNLYINHNHDVVGFM
    KNFSYVQGGAISTANTFVVSENQSCFLFMDNICIQTNTAGKGGAIYAGTSNSFESNNCDLFFINNACCAGGAIFSPI
    CSLTGNRGNIVFYNNRCFKNVETASSEASDGGAIKVTTRLDVIGNRGRIFFSDNITKNYGGAIYAPVVTLVDNGPTY
    FINNIANNKGGAIYIDGTSNSKISADRHAIIFNENIVINVINANGTSTSANPPRRNAITVASSSGEILLGAGSSQNL
    IFYDPIEVSNAGVSVSFNKEADQTGSVVFSGATVNSADFHQRNLQTKTPAPLTLSNGFLCIEDHAQLTVNRFTQTGG
    VVSLGNGAVLSCYKNGTGDSASNASITLKHIGLNLSSILKSGAEIPLLWVEPTNNSNNYTADTAATFSLSDVKLSLI
    DDYGNSPYESTDLTHALSSQPMLSISEASDNQLQSENIDFSGLNVPHYGWQGLWTWGWAKTQDPEPASSATITDPQK
    ANRFHRTLLLTWLPAGYVPSPKHRSPLIANTLWGNMLLATESLKNSAELTPSGHPFWGITGGGLGMMVYQDPRENHP
    GFHMRSSGYSAGMIAGQTHTFSLKFSQTYTKLNERYAKNNVSSKNYSCQGEMLFSLQEGFLLTKLVGLYSYGDHNCH
    HFYTQGENLTSQGTFRSQTMGGAVFFDLPMKPFGSTHILTAPFLGALGIYSSLSHFTEVGAYPRSFSTKTPLINVLV
    PIGVKGSFMNATHRPQAWTVELAYQPVLYRCEPGIAAQLLASKGIWFGSGSPSSRHAMSYKISQQTQPLSWLTLHFQ
    YHGFYSSSTFCNYLNGEIALRF
    SEQ ID NO: 125: CT166 fragment nucleotide sequence
    AACGTTCGTACGTACTCTGTTCAGAGGGGGGGGGTAAAAACGATTTCTGCTAGTGCAGTTCCTCCTACAGCAGCTGT
    TTTATCGAGAAAAAAGCGTGCTATAGAAGAGAAGAAGGAGGAAGCTTCTTCTGGAAAGATAGAAAATCTTGATGCTA
    GCAAATACGATCTTACTCCCAAGAACATAGAAGAAAAACTAGGAATTACTCCTGAACAGAAATCTACTGTTAAAGAC
    CTATTAAATAAACTGAAAAAGGTCATTAGTGCTTACAACTCTATGCCAGATAAAAATTCGGAAGCGGGACAGAATTC
    CTTGATTCAACAAGGAAAATACGTCGATGCCATTCAGAAGAAGCTTCCAGCATCATCGCAGGCTCAGCCTAAACAGG
    CAAAAGCTAAGGAACAGAAAGCCGAAGAAAAACCTAAGACGACTCCGATTGAAGGTGTTCTTGAAACCATCAAAACA
    GAATTTAAAGGCCATCGTGTACCTGTTGAGAAAATCATCCATGGAATATGGATCGCAGGAGCGCCTCCGGATGGTAT
    CGAAGATTATATGCGAGTCTTTTTAGATACTTATGAAGGTTTTGACTTCTACTTCTGGGTAGATGAGAATGCTTATG
    CAGCAGCTAAATTTTCTAGCATTTTGAAGAAGGTCGCTTTCGATGCGGCTATTCAAGATCTACGATCTGCCACAGAT
    GAGTCTACGAAGGCCTTTGTTAAAGACTACGATGAATTAAAACAGAAATATGAAAAGAAAGTTGCGGAGACGACTTC
    TCAAGCAGAAAAAGACCAATATCTCAAAGATCTAAAGGATCTTTTAGAGAAATTTACAAAAATCAGTGATGAGATTC
    GTGGAAAATTTGATCGGCTGTTTCTTAAGAATGTGATTGTTGCTCAGAACGGATTCTTTAATTTCTGCTTGCTGAAA
    GGCCTCGGCAATATCAATGACGAAACGCGTGCAGAGTATTTAGAGAAAGAACTCAAACTTCCTACTGAGGAGATCGA
    ACAGTATAAAAAGCTTAAAGAGACGAACAAAGAGAAGATAGCCGCTATTGTAAAACAACTAAACGAGAAACTTGGAT
    CGGATCGGGTAAAAATCAAAGACATTAAAGAGCTGCAATCTATGAAGCAAGCTCGAAATGTCTACAATTATGAACAG
    GAAATGTTTCTGCGCTGGAACTATGCAGCCGCAACAGATCAGATTCGTATGTATATGTTGGAGGAACTTGGAGGTCT
    TTATACTGATCTGGATATGATGCCTTCATACTCTCAGGAAGTATTGGAGCTTATCAAAAAGCACAGTGATGGAAACC
    GAATGTTTGAGGATATGAGCTCTAGACGGGCGATTTCTGATGCGGTTTTAAAGATGGCTGTAGGTAAGGCGACAACA
    GTTTCCATGGAAGAGGTAGCAAAGGATATCGATGTTTCTCGCTTAACAGAAGAGGATAAGACAAAATTAAATGCTCT
    ATTTAAGGATCTAGAGCCATTTGCAAAACCGGATTCTAAAGGAGCTGAAGCAGAAGGGGGTGAAGGAGCAAAAGGTA
    TGAAAAAGAGCTTTTTCCAGCCCATAGATCTGAATATTGTCAGAAATACCATGCCTATCTTGAGACGCTATCATCAC
    TATCCTGAGTTAGGATGGTTTATTCGAGGATTGAACGGATTGATGGTCTCTCATAAGGGAAGCACTGCGGTTTCTGC
    TGTCATTGTAGGGCAACAGGCTGCCTACCAGGAACTAGCAGCACTTAGACAAGATGTCCTTTCAGGGGAGTTTTTCC
    ATTCTTTAGAAAATTTGACACATAGAAACCATAAGGAGCGTATTGGAAATCATCTCGTCGCTAATTATTTGGCTAAA
    AGTCTCTTTTTTGATTACTGCCAAGATTCAGTGATGCCGGAGGCTGTAAGTACCTTAGGTATTAGA
    SEQ ID NO: 126-CT166 fragment protein sequence
    NVRTYSVQRGGVKTISASAVPPTAAVLSRKKRAIEEKKEEASSGKIENLDASKYDLTPKNIEEKLGITPEQKSTVKD
    LLNKLKKVISAYNSMPDKNSEAGQNSLIQQGKYVDAIQKKLPASSQAQPKQAKAKEQKAEEKPKTTPIEGVLETIKT
    EFKGHRVPVEKIIHGIWIAGAPPDGIEDYMRVFLDTYEGFDFYFWVDENAYAAAKFSSILKKVAFDAAIQDLRSATD
    ESTKAFVKDYDELKQKYEKKVAETTSQAEKDQYLKDLKDLLEKFTKISDEIRGKFDRLFLKNVIVAQNGFFNFCLLK
    GLGNINDETRAEYLEKELKLPTEEIEQYKKLKETNKEKIAAIVKQLNEKLGSDRVKIKDIKELQSMKQARNVYNYEQ
    EMFLRWNYAAATDQIRMYMLEELGGLYTDLDMMPSYSQEVLELIKKHSDGNRMFEDMSSRRAISDAVLKMAVGKATT
    VSMEEVAKDIDVSRLTEEDKTKLNALFKDLEPFAKPDSKGAEAEGGEGAKGMKKSFFQPIDLNIVRNTMPILRRYHH
    YPELGWFIRGLNGLMVSHKGSTAVSAVIVGQQAAYQELAALRQDVLSGEFFHSLENLTHRNHKERIGNHLVANYLAK
    SLFFDYCQDSVMPEAVSTLGIR
    SEQ ID NO: 127-CT175 fragment nucleotide sequence
    TGTTATCATAAAAAAGAAGAACCAAAAGATGTTTTGCGGATTGCGATCTGTCATGATCCAATGTCTTTAGATCCGCG
    TCAGGTTTTTTTAAGCAAAGATGTTTCTATTGTAAAAGCTCTCTATGAAGGGTTAGTCCGGGAAAAAGAAGCTGCGT
    TCCAGCTAGCTTTGGCAGAAAGATATCATCAATCTGATGATGGTTGTGTTTATACTTTTTTTCTAAAAAATACATTC
    TGGAGCAACGGAGATGTTGTAACAGCATATGATTTTGAAGAGTCTATTAAACAAATTTATTTCCGAGAAATTGATAA
    CCCTTCGTTACGCTCTCTTGCATTAATTAAAAATTCTCATGCTGTTTTAACAGGAGCTCTCCCTGTTGAAGATTTAG
    GTGTTAGAGCTTTGAATGCGAAAACTCTAGAAATTGTTTTAGAAAACCCGTTTCCTTATTTTCTAGAGATATTGGCG
    CACCCGGTVTTTTATCCGGTGCACACCTCTTTACGAGAATATTACAAAGATAAGCGTAACAAACGCGTTTTCCCGAT
    AATTTCTAATGGTCCTTTTGCGATTCAATGTTATGAGCCGCAAAGATATTTACTAATCAACAAAAACCCTCTGTATC
    ATGCCAAGCACGATGTTCTGTTAAATTCGGTATGTTTGCAGATAGTTCcTGATATCCATACAGCTATGCAGTTATTC
    CAAAAAAATCATATCGATTTAGTTGGGTTACCCTGGAGCTCCTCCTTTTCTTTAGAAGAACAAAGAAATCTCCCTAG
    AGAAAAATTATTTGATTATCCTGTATTGAGTTGCTCTGTTTTATTCTGTAACATTCATCAAACACCTTTAAATAATC
    CCTCGCTGAGAACAGCCCTCTCTTTAGCAATCAATCGAGAAACTTTATTAAAACTAGCAGGTAAAGGCTGTAGCGCT
    ACGAGCTTTGTTCACCCACAATTATCTCAGATACCTGCTACTACTTTGTCTCAAGATGAGCGGATTGCTTTAGCAAA
    AGGCTACTTGACCGAAGCTTTAAAGACTTTATCTCAAGAAGATTTAGAAAAAATTACATTAATTTATCCTATAGAAT
    CTGTTTGCTTACGAGCCGTTGTTCAAGAAATTCGCCAACAATTATTTGATGTACTGGGATTTAAAATTTCTACATTA
    GGATTAGAATATCATTGTTTTTTAGACAAACGTTCCAGAGGAGAATTCTCCTTAGCAACTGGTAATTGGATTGCAGA
    CTATCATCAAGCTAGTGCTTTCCTGTCTGTCCTAGGTAATGGGACAAGATATAAAGACTTTCAATTGATTAACTGGC
    AGAACCAAAAGTACACAAATATAGTTGCTCAACTTCTGATTCAAGAATCAAGCGACCTACAGCTTATGGCAGAGCAG
    TTGTTGCTTAAAGAAAGTCCTCTTATTCCTCTATACCACCTCGATTATGTGTATGCGAAACAGCCTCGGGTGTCTGA
    TCTCCAAACCTCTTCTCGTGGAGAAATTGATTTAAAAAGAGTTTCATTAGCTGAAGGATAG
    SEQ ID NO: 128-CT175 fragment protein sequence
    CYHKKEEPKDVLRIAICHDPMSLDPRQVFLSKDVSIVKALYEGLVREKEAAFQLALAERYHQSDDGCVYTFFLKNTF
    WSNGDVVTAYDFEESIKQIYFREIDNPSLRSLALIKNSHAVLTGALPVEDLGVRALNAKTLEIVLENPFPYFLEILA
    HPVFYPVHTSLREYYKDKRNKRVFPIISNGPFAIQCYEPQRYLLINKNPLYHAKHDVLLNSVCLQIVPDIHTAMQLF
    QKNHIDLVGLPWSSSFSLEEQRNLPREKLFDYPVLSCSVLFCNIHQTPLNNPSLRTALSLAINRETLLKLAGKGCSA
    TSFVHPQLSQIPATTLSQDERIALAKGYLTEALKTLSQEDLEKITLIYPIESVCLRAVVQEIRQQLFDVLGFKISTL
    GLEYHCFLDKRSRGEFSLATGNWIADYHQASAFLSVLGNGTRYKDFQLINWQNQKYTNIVAQLLIQESSDLQLMAEQ
    LLLKESPLIPLYHLDYVYAKQPRVSDLQTSSRGEIDLKRVSLAEG
    SEQ ID NO: 129_TC0666 fragment nucleotide sequence (homologue of CT387)
    ATGACACTCTTTCACACTCATCACGATGCCGTCTCTCCGGACGGCTACTTATGTTCTTCCCTTCAGTTAGTTGGCTC
    TGGCACATATGAAGGAGAAATCGAAATCCAAAATATTCCTTCTTATTTCCTTGGATTCCGATTACCCACCCATTGCG
    TTCATCTTAATTTGAAGAGTTCTCTAGCCCAGTTAGGAGTAGATGCATCTCTTCTTCACTGCGAACTAAGCAAAAAT
    CAACAACGTGCACATATGCACGTGCAGTTCACCGGCTATGGCCCTATCGCTGAGTCCATGCTATCTCTTCTCAAACC
    CGGAGATCGAGTAGCCAAACTGTTTGCTGCAGATGATCGTAGACTAGTCCGCTCCCCTGATTATCTTGAAAGCATGC
    TAAAAAATACTGATAAGACAGGACATCCTCTGCTCCGATTTGGAAAAAAACTCGAGCATCTTATCTCTTTTGATGTG
    GTGGACGATCGCCTCGTTGTATCACTCCCCACCTTGCCAGGCATAGTCAATTATGACCCAGACATCTATGGACTTCT
    TCCCTTAATTCAAAAATCACTAAGCAATCCTAAATTGAGTATTCGCCACTTCTTGTCTCTCTATCAGAAGATCGTAG
    AAGGACCACACATCCCTTATGAAGGAAACATTTTGTTAATCAAAACAGAGCCTCTTCATATCCGCACAGTATTTGCT
    CGCGTGGTCGATCAAATGCTCCCTCAAGGTCTATTTCACACTTCTGCCAACATTTTAGAACCCACAACGCGAGAGTC
    TGGAGATATTTTTGAATTTTTTGGAAATCCCTCCACTCTTGTAGAAAGAATCCCTCTAGAATTCTTCACTATCGAAC
    CCTACAAAGAACACTCTTACTTCTGTAATCGAGATCTATTGCAAACTACCTTGCAATCGGAAAGTGAAATCAAAAAA
    ATATTCGATACAGCTCCTCAAGAGCCTGTAAAAGCCGCCACTTATTTATCAAAAGGAAGTGAAATTTCTTCTCTTGA
    TGCAGATTCTTGGCTTACGGGATCCGCAGCTGCATACCAATGTAGCGAAAAACAGGCAGCTAAAGACGAATACATCC
    ACGCTCAACCCTGTTATCCATTTTTGGAAGCAATGGAAACGGGACTCATCAATAGCGAAGGAGCTTTACTCACTCGG
    TTTTTCCCCTCTTCCAGCTTAAAAGGGATGTTGATCTCCTATCATGTACGCCACTATCTTAAGCAAATTTACTTTCA
    AGTTCCTTCTTATACATATGGAGACTACTTCTCTCATAATGACCGAGGATTACTGTTAGATCTATATCAGGCGAACA
    TTGATGTGTTCTGGGCTGATGAAGAGAGCGGCCGTGTATTGCAATATACAAAACGGCGCGACAAAAATAGTGGAATG
    TTCGTCGTTAAAAATCGAGTAGAAGAGTTCCAATCAGCATATTTCGTAGCGATTTATGGATCACGTCTCCTGGAAAA
    TAATTTCTCGGCCCAACTAAACACGCTTCTTGCAGGGTTACAAAAAGCTGCACACACTCTAGGCATTCCAGGCTTCT
    CAAAACCCACTCCTCTTGCCGTAATCACAGGAGGAGGGACTGGCGTTATGGCTACAGGAAATCGTGTTGCAAAAGAG
    TTGGGAATTCTTTCTTGCGGGACCGTTCTCGATTTGGAAGCTTCACCTGCACAAATAGATCAGCCTGCAAACGAATT
    TTTAGATGCCAAAATGACATACCGTCTACCGCAACTTATAGAAAGACAAGAACATTTTTATTCAGACCTTGCCATTT
    TAGTTGTTGGTGGTGTTGGAACAGATTTCGAACTTTACCTAGAACTCGTCTACTTGAAAACAGGCGCCAAACCTCCT
    ACTCCAATTTTCCTTATTGGGCCTGTTGAATACTGGAAAGAGAAAGTTGCTCATGCCTATGAGATTAATCTTAAAGC
    AGGAACTATTCGTGGTTCTGAGTGGATCAGCAACTGCTTATTCTGCATTACATCTCCTGAAGCAGGAATTGCTGTAT
    TCGAACAGTTCCTCGCTGGAGAACTTCCCATAGGATATGATTATCCTCCAGCTCCAGACGGATTAGTTATCGTC
    SEQ ID NO: 130-TC0666 fragment protein sequence (homologue of CT387)
    MTLFHTHHDAVSPDGYLCSSLQLVGSGTYEGEIEIQNIPSYFLGFRLPTHCVHLNLKSSLAQLGVDASLLHCELSKN
    QQRAHMHVAFTGYGPIAESMLSLLKPGDRVAKLFAADDRRLVRSPDYLESMLKNTDKTGHPLLRFGKKLEHLISFDV
    VDDRLVVSLPTLPGIVNYDPDIYGLLPLIQKSLSNPKLSIRHFLSLYQKIVEGPHIPYEGNILLIKTEPLHIRTVFA
    RVVDMILPQGLFHTSANILEPTTRESGDIFEFFGNPSTLVERIPLEFFTIEPYKEHSYFCNRDLLQTTLQSESEIKK
    IFDTAPQEPVKAATYLSKGSEISSLDADSWLTGSAAAYQCSEKQAAKDEYIHAQPCYPFLEAMETGLINSEGALLTR
    FFPSSSLKGMLISYHVRHYLKQIYFQVPSYTYGDYFSHNDRGLIADLYQANIDVFWADEESGRVLQYTKRRDKNSGM
    FVVKNRVEEFQSAYFVAIYGSRLLENNFSAQLNTLLAGLQKAAHTLGIPGFSKPTPLAVITGGGTGWIATGNRVAKE
    LGILSCGTVLDLEASPAQIDQPANEFLDAKMTYRLPQLIERQEHFYSDLAILVVGGVGTDFELYLELVYLKTGAKPP
    TPIFLIGPVEYWKEKVAHAYEINLKAGTIRGSEWISNCLFCITSPEAGIAVFEQFLAGELPIGYDYPPAPDGLVIV
    SEQ ID NO: 131-TC0197 fragment nucleotide sequence
    AATTGTTCCGATCTTTATGCCGTAGGAAGTTCTGCAGACCATCCTGCCTACTTGATTCCTCAAGCGGGGTTATTATT
    GGATCATATTAAGGATATATTCATTGGCCCTAAAGATAGTCAGGATAAGGGGCAGTATAAGTTGATTATTGGTGAGG
    CTGGCTCTTTCCAAGATAGTAATGCAGAGACTCTTCCTCAAAAGGTAGAGCACAGCACTTTGTTTTCAGTTACAACA
    CCTATAATTGTGCAAGGAATAGATCAACAAGATCAGGTCTCTTCGCAGGGATTGGTCTGTAATTTTTCAGGAGATCA
    TTCAGAGGAGATTTTTGAGAGAGAATCCTTTTTAGGGATCGCTTTCCTAGGGAATGGTAGCAAGGATGGAATCACGT
    TAACAGATATAAAATCTTCGTTATCTGGTGCTGCCTTGTATTCTTCAGATGATCTTATTTTTGAAAGAATTAAGGGA
    GATATAGAGCTTTCTTCTTGTTCATCTTTAGAAAGAGGAGGAGCTTGTTCAGCTCAAAGTATTTTAATTCATGATTG
    TCAAGGATTAACGGTAAAACATTGTGCCGCAGGGGTGAATGTTGAAGGAGTTAGTGCTAGCGACCATCTCGGATTTG
    GGGGCGGGGCCTTCTCTACTACAAGTTCTCTTTCTGGAGAGAAGAGTTTGTATATGCCTGCAGGCGATATTGTGGTG
    GCTACCTGCGATGGTCCTGTGTGTTTCGAAGGAAATAGTGCTCAGTTAGCAAATGGTGGCGCTATTGCCGCTTCTGG
    TAAAGTTCTTTTTGTAGCTAACGAAAAAAAGATTTCCTTTACAGACAACCAAGCTTTGTCTGGAGGAGCTATTTCTG
    CATCTTCTAGTATTTCTTTCCAAAATTGTGCTGAGCTTGTGTTCAAGAGTAATCTTGCAAAAGGAGTTAAAGATAAA
    TGTTCTTTGGGAGGAGGTGCTTTAGCCTCTTTAGAATCCGTAGTTTTGAAAGATAATCTCGGTATTACTTATGAAAA
    AAATCAGTCCTATTCGGAAGGAGGGGCTATTTTTGGGAAGGATTGTGAGATTTTTGAAAACAGGGGGCCTGTTGTAT
    TCAGAGATAATACAGCTGCTTTAGGAGGCGGAGCTATTTTGGCGCAACAAACTGTGGCGATTTGTGGTAATAAGTCT
    GGAATATCTTTTGAAGGAAGTAAGTCTAGTTTTGGAGGGGCCATTGCTTGTGGAAATTTCTCTTCTGAGAATAATTC
    TTCAGCTTTGGGATCAATTGATATCTCTAACAATCTAGGAGATATCTCTTTTCTTCGGACTCTGTGTACTACTTCGG
    ATTTAGGGCAAACGGATTACCAAGGGGGAGGGGCCTTATTCGCTGAAAATATTTCTCTTTCTGAGAATGCTGGTGCA
    ATTACTTTCAAAGACAATATTGTGAAGACATTTGCCTCAAATGGAAAAATGTTGGGTGGAGGGGCAATTTTAGCTTC
    AGGAAATGTTTTGATTAGCAAAAACTCTGGAGAGATTTCTTTTGTAGGGAATGCTCGAGCTCCTCAGGCTATTCCGA
    CTCGTTCATCTGACGAATTGTCTTTTGGCGCACAATTAACTCAAACTACTTCAGGATGTTCTGGAGGAGGAGCTCTT
    TTTGGTAAAGAGGTTGCCATTGTTCAAAATGCCACTGTTGTATTCGAGCAAAATCGCTTACAGTGTGGCGAGCAGGA
    AACACATGGTGGAGGCGGTGCTGTTTATGGTATGGAGAGTGCCTCTATTATTGGAAACTCTTTTGTGAGATTCGGAA
    ATAATTACGCTGTAGGGAATCAGATTTCTGGAGGAGCTCTTTTATCCAAGAAGGTCCGTTTAGCTGAAAATACAAGG
    GTAGATTTTTCTCGAAATATCGCTACTTTCTGCGGCGGGGCTGTTCAAGTTTCTGATGGAAGTTGCGAATTGATCAA
    CAATGGGTATGTGCTATTCAGAGATAACCGAGGGCAGACATTTGGTGGGGCTATTTCTTGCTTGAAAGGAGATGTGA
    TCATTTCCGGAAATAAAGATAGGGTTGAGTTTAGAGATAACATTGTGACGCGGCCTTATTTTGAAGAAAATGAAGAA
    AAAGTTGAGACAGCAGATATTAATTCAGATAAGCAAGAAGCAGAAGAGCGCTCTTTATTAGAGAACATTGAGCAGAG
    CTTTATTACTGCAACTAATCAGACCTTTTTCTTAGAGGAAGAGAAACTCCCATCAGAAGCTTTTATCTCTGCTGAAG
    AACTTTCAAAGAGAAGAGAATGTGCTGGTGGGGCGATTTTTGCAAAACGGGTCTACATTACGGATAATAAAGAACCT
    ATCTTGTTTTCGCATAATTTTTCTGATGTTTATGGGGGAGCTATTTTTACGGGTTCTCTACAGGAAACTGATAAACA
    AGATGTTGTAACTCCTGAAGTTGTGATATCAGGCAACGATGGGGATGTCATTTTTTCTGGAAATGCAGCTAAACATG
    ATAAGCATTTACCTGATACAGGTGGTGGAGCCATTTGTACACAGAATTTGACGATTTCCCAAAACAATGGGAATGTC
    TTGTTCTTGAACAATTTTGCTTGTTCTGGTGGAGCAGTTCGCATAGAGGATCATGGAGAAGTTCTTTTAGAGGCTTT
    TGGGGGAGATATTATTTTCAATGGAAACTCTTCTTTCAGAGCTCAAGGATCGGATGCGATCTATTTTGCTGGTAAGG
    ACTCTAGAATTAAAGCTTTAAATGCTACTGAAGGACATGCGATTGTGTTCCAAGATGCATTGGTGTTTGAAAATATA
    GAAGAAAGAAAGTCTTCGGGACTATTGGTGATTAACTCTCAGGAAAATGAGGGTTATACGGGATCCGTCCGATTTTT
    AGGATCTGAAAGTAAGGTTCCTCAATGGATTCATGTGCAACAGGGAGGTCTTGAGTTGCTACATGGAGCTATTTTAT
    GTAGTTATGGGGTTAAACAAGATCCTAGAGCTAAAATAGTATTATCTGCTGGATCTAAATTGAAGATTCTAGATTCA
    GAGCAAGAAAATAACGCAGAAATTGGAGATCTTGAAGATTCTGTTAATTCAGAAAAAACACCATCTCTTTGGATTGG
    GAAGAACGCTCAAGCAAAAGTCCTTCTGGTTGATATCCATACTATTTCTATTGATTTAGCATCATTTTCTTCTAAAG
    CTCAGGAAACCCCTGAGGAAGCTCCACAAGTCATCGTCCCTAAGGGAAGTTGTGTCCACTCGGGAGAGTTAAGTTTG
    GAGTTGGTTAATACAACAGGAAAAGGTTATGAGAATCATGCGTTGTTAAAAAATGATACTCAGGTTTCTCTCATGTC
    TTTCAAAGAGGAAAATGATGGATCTTTAGAAGATTTGAGTAAGTTGTCTGTTTCGGATTTACGCATTAAAGTTTCTA
    CTCCAGATATTGTAGAAGAAACTTATGGCCATATGGGGGATTGGTCTGAAGCTACAATTCAAGATGGGGCTCTTGTC
    ATTAATTGGCATCCTACTGGATATAAATTAGATCCGCAAAAAGCTGGTTCTTTGGTATTCAATGCATTATGGGAGGA
    AGAGGCTGTATTGTCTACTCTAAAAAATGCTCGGATTGCCCATAACCTTACCATTCAGAGAATGGAATTTGATTATT
    CTACAAATGCTTGGGGATTAGCTTTTAGTAGCTTTAGAGAGCTATCTTCAGAGAAGCTTGTTTCTGTTGATGGATAT
    AGAGGCTCTTATATAGGGGCTTCTGCAGGCATTGATACTCAGTTGATGGAAGATTTTGTTTTGGGAATCAGCACGGC
    TTCCTTCTTCGGGAAAATGCATAGTCAGAATTTTGATGCAGAGATTTCTCGACATGGTTTTGTTGGTTCGGTCTATA
    CAGGCTTCCTAGCTGGGGCCTGGTTCTTCAAGGGGCAGTACAGTCTTGGCGAAACACATAACGATATGACAACTCGT
    TACGGGGTTTTGGGAGAATCTAATGCTACTTGGAAGTCTCGAGGAGTACTAGCAGATGCTTTAGTTGAATATCGTAG
    TTTAGTCGGTCCAGCACGACCTAAATTTTATGCTTTGCATTTTAATCCTTATGTCGAGGTATCTTATGCATCTGCGA
    AGTTCCCTAGTTTTGTAGAACAAGGAGGAGAAGCTCGTGCTTTTGAAGAAACCTCTTTAACAAACATTACCGTTCCC
    TTTGGTATGAAATTTGAACTATCTTTTACAAAAGGACAGTTTTCAGAGACTAATTCTCTTGGAATAGGTTGTGCATG
    GGAAATGTATCGGAAAGTCGAAGGAAGATCTGTAGAGCTACTAGAAGCTGGTTTTGATTGGGAAGGATCTCCTATAG
    ATCTCCCTAAACAAGAGCTGAGAGTGGCTTTAGAAAACAATACGGAATGGAGTTCGTATTTTAGTACAGCTCTAGGA
    GTAACAGCATTTTGTGGAGGATTTTCTTCTATGGATAATAAACTAGGATACGAAGCGAATGCTGGAATGCGTTTGAT
    TTTCTAG
    SEQ ID NO: 132-TC0197 fragment protein sequence
    NCSDLYAVGSSADHPAYLIPQAGLLLDHIKDIFIGPKDSQDKGQYKLIIGEAGSFQDSNAETLPQKVENSTLFSVTT 
    PIIVQGIDQQDQVSSQGLVCNFSGDHSEEIFERESFLGIAFLGNGSKDGITLTDIKSSLSGAALYSSDDLIFERIKG 
    DIELSSCSSLERGGACSAQSILIHDCQGLTVKHCAAGVNVEGVSASDHLGFGGGAFSTTSSLSGEKSLYMPAGDIVV 
    ATCDGPVCFEGNSAQLANGGAIAASGKVLFVANEKKISFIDNQALSGGAISASSSISFOICAELVFKSNLAKGVKDK 
    CSLGGGALASLESVVLKDNLGITYEKNQSYSEGGAIFGKDCEIFENRGPVVFRDNTAALGGGAILAQQTVAICGNKS 
    GISFEGSKSSFGGAIACGNFSSENNSSALGSIDISNNLGDISFLRTLCTTSDLGQTDYQGGGALFAENISLSENAGA 
    ITFKDNIVKTFASNGKMLGGGAILASGNVLISKNSGEISFVGNARAPRAIPTRSSDELSFGAQLTQTTSGCSGGGAL 
    FGKEVAIVRNATVVFEQNRLQCGEQETHGGGGAVYGMESASIIGNSFVRFGNNYAVGNQISGGALLSKKVRLAENTR 
    VDFSRNIATFCGGAVQVSDGSCELINNGYVLFRDNRGQTFGGAISCLKGDVIISGNKDRVEFRDNIVTRPYFEENEE 
    KVETADINSDKQEAEERSLLENIEQSFITATNQFFFLEEEKLPSEAFISAEELSKRRECAGGAIFAKRVYITDNKEP 
    ILFSHNFSDVYGGAIFTGSLQETDKQDVVTPEVVISGNDGDVIFSGNAAKHDKHLPDTGGGAICTQNLTISQNNGNV 
    LFLNNFACSGGAVRIEDHGEVLLEAFGGDIIFNGNSSFRAQGSDAIYFACKDSRIKALNATEGHAIVFQDALVFENI 
    EERKSSGLLVINSQENEGYTGSVRFLGSESKVPQWIHVQQGGLELLHGAILCSYGVKQDPRAKIVLSAGSKLKILDS 
    EQENNAEIGDLEDSVNSEKTPSLWIGKNAQAKVPLVDINTISIDLASFSSKAQETPEEAPQVIVPKGSCVHSGELSL 
    ELVNTTGKGYENHALLKNDTQVSLMSFKEENDGSLEDLSKLSVSDLRIKVSTPDIVEETYGHMGDWSEATIQDGALV 
    INWHPTGYKLDPQKAGSLVFNALHEEAVLSTLKNARIAHNLTIQRMEFDYSTNAldGLAFSSFRELSSEKLVSVDGY 
    RGSYIGASAGIDTRLMEDFVLGISTASFFGKMHSQNFDAEISRHGFVGSVYTGFLAGAWFFKGQYSLGETHNDMTTR 
    YGVLGESNATUKSRGVLADALVEYRSLVGPARPKFYALHFNPYVEVSYASAKFPSFVEQGGEARAFEETSLTNITVP 
    FGMKFELSFTKGQFSETNSLGIGCAWEMYRKVEGRSVELLEAGFDWEGSPIDLPKQELRVALENNTEWSSYFSTALG 
    VTAFCGGFSSMDNKLGYEANAGMRLIF 
    SEQ ID NO: 133-TC0261 fragment nucleotide sequence
    ACTCGAGAAGTCCCTCCTTCGATTCTTTTAAAGCCTATACTAAATCCATACCATATGACCGGGTTATTTTTTCCCAA
    GGTTAATTTGCTTGGAGACACACATAATCTCACTGATTACCATTTGGATAATCTAAAATGCATTCTGGCTTGCCTAC
    AAAGAACTCCTTATGAAGGAGCTGCTTTCACAGTAACCGATTACTTAGGTTTTTCAGATACACAAAAGGATGGTATT
    TTTTGTTTTAAAAATCTTACTCCAGAGAGTGGAGGGGTTATTGGTTCCCCAACTCAAAACACTCCTACTATAAAAAT
    TCATAATACAATCGGCCCCGTTCTTTTCGAAAATAATACCTGTCATAGACTGTGGACACAGACCGATCCCGAAAATG
    AAGGAAACAAAGCACGCGAAGGCGGGGCAATTCATGCTGGGGACGTTTACATAAGCAATAACCAGAACCTTGTCGGA
    TTCATAAAGAACTTTGCTTATGTTCAAGGTGGAGCTATTAGTGCTAATACTTTTGCCTATAAAGAAAATAAATCGAG
    CTTTCTTTGCCTAAATAACTCTTGTATACAAACTAAGACGGGAGGGAAAGGTGGTGCTATTTACGTTAGTACGAGCT
    GCTCTTTCGAGAACAATAACAAGGATCTGCTTTTCATCCAAAACTCCGGCTGTGCAGGAGGAGCTATCTTCTCTCCA
    ACCTGTTCTCTAATAGGAAACCAAGGAGATATTGTTTTTTACAGCAACCACGGTTTTAAAAATGTTGATAATGCAAC
    TAACGAATCTGGGGATGGAGGAGCTATTAAAGTAACTACCCGCTTGGACATCACCAATAATGGTAGTCAAATCTTTT
    TTTCTGATAATATCTCAAGAAATTTTGGAGGAGCTATTCATGCTCCTTGTCTTCATCTTGTTGGTAATGGGCCAACC
    TATTTTACAAACAATATAGCTAATCACACAGGTGGGGCTATTTATATAACAGGAACAGAAACCTCAAAGATTTCTGC
    AGATCACCATGCTATTATTTTTGATAATAACATTTCTGCAAACGCCACCAATGCGGACGGATCTAGCAGCAACACTA
    ATCCTCCTCACAGAAATGCGATCACTATGGACAATTCCGCTGGAGGAATAGAACTTGGTGCAGGGAAGAGCCAGAAT
    CTTATTTTCTATGATCCTATTCAAGTGACGAATGCTGGAGTTACCGTAGACTTCAATAAGGATGCCTCCCAAACCGG
    ATGTGTAGTTTTCTCTGGAGCGACTGTCCTTTCTGCAGATATTTCTCAGGCTAATTTGCAAACTAAAACACCTGCAA
    CGCTTACTCTCAGTCACGGTCTTCTGTGTATCGAAGATCGTGCTCAGCTCACAGTGAACAATTTTACACAAACAGGA
    GGGATTGTAGCCTTAGGAAATGGAGCAGTTTTAAGCAGCTACCAACACAGCACTACAGACGCCACTCAAACTCCCCC
    TACAACCACCACTACAGATGCTTCCGTAACTCTTAATCACATTGGATTAAATCTCCCCTCTATTCTTAAGGATGGAG
    CAGAGATGCCTCTATTATGGGTAGAACCTATAAGCACAACTCAAGGTAACACTACAACATATACGTCAGATACCGCG
    GCTTCCTTCTCATTAAATGGAGCCACACTCTCTCTCATTGATGAAGATGGAAATTCTCCCTATGAAAACACGGACCT
    CTCTCGTGCATTGTACGCTCAACCTATGCTAGCAATTTCTGAGGCCAGTGATAACCAATTGCAATCCGAAAGCATGG
    ACTTTTCTAAAGTTAATGTTCCTCACTATGGATGGCAAGGACTTTGGACCTGGGGGTGGGCAAAAACTGAAAATCCA
    ACAACAACTCCTCCAGCAACAATTACTGATCCGAAAAAAGCTAATCAGTTTCATAGAACTTTATTATTAACGTGGCT
    CCCTGCTGGTTATATCCCCAGCCCTAAACATAAAAGCCCTTTAATAGCTAATACCTTGTGGGGGAATATACTTTTTG
    CAACGGAAAACTTAAAAAATAGCTCAGGGCAAGAACTTCTTGATCGTCCTTTCTGGGGAATTACAGGAGGGGGCTTG
    GGGATGATGGTCTATCAAGAACCTAGAAAAGACCATCCTGGATTCCACATGCATACCTCCGGATATTCAGCAGGAAT
    GATTACAGGAAACACACATACCTTCTCATTACGATTCAGCCAGTCCTATACAAAACTCAATGAACGTTATGCCAAGA
    ACTATGTGTCTTCTAAAAATTACTCTTGCCAAGGGGAAATGCTTTTGTCCTTACAAGAAGGACTCATGCTGACTAAA
    CTAATTGGTCTCTATAGTTATGGGAATCACAACAGCCACCATTTCTATACCCAAGGAGAAGACCTATCGTCTCAAGG
    GGAGTTCCATAGTCAGACTTTTGGAGGGGCTGTCTTTTTTGATCTACCTCTGAAACCTTTTGGAAGAACACACATAC
    TTACAGCTCCTTTCTTAGGTGCCATTGGTATGTATTCTAAGCTGTCTAGCTTTACAGAAGTAGGAGCCTATCCAAGA
    ACCTTTATTACAGAAACGCCTTTAATCAATGTCCTGATTCCTATCGGAGTAAAAGGTAGCTTCATGAATGCCACCCA
    TAGACCTCAGGCCTGGACTGTAGAGCTTGCTTACCAACCTGTTCTTTACAGACAAGAACCTAGTATCTCTACCCAAT
    TACTCGCTGGTAAAGGTATGTGGTTTGGGCATGGAAGTCCTGCATCTCGCCACGCTCTAGCTTATAAAATTTCACAG
    AAAACACAGCTTTTGCGATTTGCAACACTTCAACTCCAGTATCACGGATACTATTCGTCTTCCACTTTCTGTAATTA
    TCTGAATGGAGAGGTATCTTTACGTTTC
    SEQ ID NO: 134-TC0261 fragment protein sequence
    TREVPPSILLKPILNPYHMTGLFFPKVNLLGDTHNLTDYHLDNLKCILACLQRTPYEGAAFTVTDYLGFSDTQKDGI
    FCFKNLTPESGGVIGSPTQNTPTIKIHNTIGPVLFENNTCHRLWTQTDPENEGNKAREGGAIHAGDVYISNNQNLVG
    FIKNFAYVQGGAISANTFAYKENKSSFLCLNNSCIQTKIGGKGGAIYVSTSCSFENNNKDLLFIQNSGCAGGAIFSP
    TCSLIGNQGDIVFYSNHGFKNVDNATNESGDGGAIKVITRLDITNNGSQIFFSDNISRNFGGAIHAPCLHLVGNGPT
    YFTNNIANHIGGAIYITGTETSKISADHHAIIFDNNISANATNADGSSSNTNPPHRNAITMDNSAGGIELGAGKSQN
    LIFYDPIQVINAGVTVDFNKDASQTGCVVFSGATVLSADISQANLQTKTPATLTLSHGLLCIEDRAQLTVNNFTQTG
    GIVALGNGAVLSSYQHSTTDATQTPPTITTTDASVTLNHIGLNLPSILKDGAEMPLLWVEPISTTQGNITTYTSDTA
    ASFSLNGATLSLIDEDGNSPYENTDLSRALYAQPNLAISEASDNQLQSESMDFSKVNVPHYGWQGLWTWGWAKTENP
    TTTPPATITDPKKANQFHRTLLLTWLPAGYIPSPKHKSPLIANTLWGNILFATENLKNSSGQELLDRPFWGITGGGL
    GMMVYQEPRKDHPGFHMHTSGYSAGMITGNTHTFSLRFSQSYTKLNERYAKNYVSSKNYSCQGEMLLSLQEGLMLTK
    LIGLYSYGNHNSHHFYTQGEDLSSQGEFHSQTFGGAVFFDLPLKPFGRTHILTAPFLGAIGMYSKLSSFTEVGAYPR
    TFITETPLINVLIPIGVKGSFMNATHRPQAWTVELAYQPVLYRQEPSISTQLLAGKGMWFGHGSPASRHALAYKISQ
    KTQLLRFATLQLQYHGYYSSSTFCNYLNGEVSLRF
    SEQ ID NO: 135-CT600 nucleotide sequence
    ATGAGAAAGACTATTTTTAAAGCGTTTAATTTATTATTCTCCCTTCTTTTTCTTTCTTCATGCTCTTATCCTTGCAG
    AGATTGGGAATGCCATGGTTGCGACTCCGCAAGACCTCGTAAATCCTCTTTTGGATTCGTACCTTTCTACTCCGATG
    AAGAAATTCAACAAGCTTTTGTTGAAGATTTTGATTCCAAAGAAGAGCAGCTGTACAAAACGAGCGCACAGAGTACC
    TCTTTCCGAAATATCACTTTCGCTACAGATAGTTATTCTATTAAAGGAGAGGATAACCTCACGATTCTTGCAAGCTT
    AGTTCGTCATTTGCATAAATCTCCTAAAGCTACGCTATATATAGAGGGCCATACAGATGAACGTGGAGCTGCAGCTT
    ATAACCTAGCTTTAGGAGCTCGTCGTGCGAATGCTGTAAAACAATACCTCATCAAACAGGGAATCGCTGCAGACCGC
    TTATTCACTATTTCTTACGGAAAAGAACATCCTGTTCATCCAGGCCATAATGAATTAGCTTGGCAACAAAATCGTCG
    TACTGAATTTAAGATCCATGCTCGCTAA
    SEQ ID NO: 136-CT600 protein sequence
    MRKTIFKAFNLLFSLLFLSSCSYPCRDWECHGCDSARPRKSSFGFVPFYSDEEIQQAFVEDFDSKEEQLYKTSAQST
    SFRNITFATDSYSIKGEDNLTILASLVRHLHKSPKATLYIEGHTDERGAAAYNLALGARRANAVKQYLIKQGIAADR
    LFTISYGKEHPVHPGHNELAWQQNRRTEFKIHAR
    SEQ ID NO: 137-CT600 fragment nucleotide sequence 
    TGCTCTTATCCTTGCAGAGATTGGGAATGCCATGGTTGCGACTCCGCAAGACCTCGTAAATCCTCTTTTGGATTCGT
    ACCTTTCTACTCCGATGAAGAAATTCAACAAGCTTTTGTTGAAGATTTTGATTCCAAAGAAGAGCAGCTGTACAAAA
    CGAGCGCACAGAGTACCTCTTTCCGAAATATCACTTTCGCTACAGATAGTTATTCTATTAAAGGAGAGGATAACCTC
    ACGATTCTTGCAAGCTTAGTTCGTCATTTGCATAAATCTCCTAAAGCTACGCTATATATAGAGGGCCATACAGATGA
    ACGTGGAGCTGCAGCTTATAACCTAGCTTTAGGAGCTCGTCGTGCGAATGCTGTAAAACAATACCTCATCAAACAGG
    GAATCGCTGCAGACCGCTTATTCACTATTTCTTACGGAAAAGAACATCCTGTTCATCCAGGCCATAATGAATTAGCT
    TGGCAACAAAATCGTCGTACTGAATTTAAGATCCATGCTCGC
    SEQ ID NO: 138-CT600 fragment protein sequence
    CSYPCRDWECHGCDSARPRKSSFGFVPFYSDEEIQQAFVEDFDSKEEQLYKTSAQSTSFRNITFATDSYSIKGEDNL
    TILASLVRHLHKSPKATLYIEGHTDERGAAAYNLALGARRANAVKQYLIKQGIAADRLFTISYGKEHPVHPGHWELA
    WQQNRRTEFKIHAR
    SEQ ID NO: 139-CT823 nucleotide sequence 
    ATGATGAAAAGATTATTATGTGTGTTGCTATCGACATCAGTTTTCTCTTCGCCAATGCTAGGCTATAGTGCGTCAAA
    GAAAGATTCTAAGGCTGATATTTGTCTTGCAGTATCCTCAGGAGATCAAGAGGTTTCACAAGAAGATCTGCTCAAAG
    AAGTATCCCGAGGATTTTCTCGGGTCGCTGCTAAGGCAACGCCTGGAGTTGTATATATAGAAAATTTTCCTAAAACA
    GGGAACCAGGCTATTGCTTCTCCAGGAAACAAAAGAGGCTTTCAAGAGAACCCTTTTGATTATTTTAATGACGAATT
    TTTTAATCGATTTTTTGGATTGCCTTCGCATAGAGAGCAGCAGCGTCCGCAGCAGCGTGATGCTGTAAGAGGAACTG
    GGTTCATTGTTTCTGAAGATGGTTATGTTGTTACTAACCATCATGTAGTCGAGGATGCAGGAAAAATTCATGTTACT
    CTCCACGACGGACAAAAATACACAGCTAAGATCGTGGGGTTAGATCCAAAAACAGATCTTGCTGTGATCAAAATTCA
    AGCGGAGAAATTACCATTTTTGACTTTTGGGAATTCTGATCAGCTGCAGATAGGTGACTGGGCTATTGCTATTGGAA
    ATCCTTTTGGATTGCAAGCAACGGTCACTGTCGGGGTCATTAGTGCTAAAGGAAGAAATCAGCTACATATTGTAGAT
    TTCGAAGACTTTATTCAAACAGATGCTGCCATTAATCCTGGGAATTCAGGCGGTCCATTGTTAAACATCAATGGTCA
    AGTTATCGGGGTTAATACTGCCATTGTCAGTGGTAGCGGGGGATATATTGGAATAGGGTTTGCTATTCCTAGCTTGA
    TGGCTAAACGAGTCATTGATCAATTGATTAGTGATGGGCAGGTAACAAGAGGCTTTTTGGGAGTTACCTTGCAACCG
    ATAGATTCTGAATTGGCTACTTGTTACAAATTGGAAAAAGTGTACGGAGCTTTGGTGACGGATGTTGTTAAAGGTTC
    TCCAGCAGAAAAAGCAGGGCTGCGCCAAGAAGATGTCATTGTGGCTTACAATGGAAAAGAAGTAGAGTCTTTGAGTG
    CGTTGCGTAATGCCATTTCCCTAATGATGCCAGGGACTCGTGTTGTTTTAAAAATCGTTCGTGAAGGGAAAACAATC
    GAGATACCTGTGACGGTTACACAGATCCCAACAGAGGATGGCGTTTCAGCGTTGCAGAAGATGGGAGTCCGTGTTCA
    GAACATTACTCCAGAAATTTGTAAGAAACTCGGATTGGCAGCAGATACCCGAGGGATTCTGGTAGTTGCTGTGGAGG
    CAGGCTCGCCTGCAGCTTCTGCAGGCGTCGCTCCTGGACAGCTTATCTTAGCGGTGAATAGGCAGCGAGTCGCTTCC
    GTTGAAGAGTTAAATCAGGTTTTGAAAAACTCGAAAGGAGAGAATGTTCTCCTTATGGTTTCTCAAGGAGATGTGGT
    GCGATTCATCGTCTTGAAATCAGACGAGTAG
    SEQ ID NO: 140-CT823 protein sequence
    MMKRLLCVLLSTSVFSSPMLGYSASKKDSKADICLAVSSGDQEVSQEDLLKEVSRGFSRVAAKATPGVVYIENFPKT
    GNQAIASPGNKRGFQENPFDYFNDEFFNRFFGLPSHREQQRPQQRDAVRGTGFIVSEDGYVVINHHVVEDAGKIHVT
    LHDGQKYTAKIVGLDPKTDLAVIKIQAEKLPFLTFGNSDQLQIGDWAIAIGNPFGLQATVTVGVISAKGRNQLHIVD
    FEDFIQTDAAINPGNSGGPLLNINGQVIGVNTAIVSGSGGYIGIGFAIPSLMAKRVIDQLISDGQVTRGFLGVTLQP
    IDSELATCYKLEKVYGALVTDVVKGSPAEKAGLRQEDVIVAYNGKEVESLSALRNAISLMIWGTRVVLKIVREGKTI
    EIPVTVTQIPTEDGVSALQKMGVRVQNITPEICKKLGLAADTRGILVVAVEAGSPAASAGVAPGQLILAVNRQRVAS
    VEELNQVLKNSKGENVLLMVSQGDVVRFIVLKSDE
    SEQ ID NO: 141-CT823 fragment nucleotide sequence
    TCGCCAATGCTAGGCTATAGTGCGTCAAAGAAAGATTCTAAGGCTGATATTTGTCTTGCAGTATCCTCAGGAGATCA
    AGAGGTTTCACAAGAAGATCTGCTCAAAGAAGTATCCCGAGGATTTTCTCGGGTCGCTGCTAAGGCAACGCCTGGAG
    TTGTATATATAGAAAATTTTCCTAAAACAGGGAACCAGGCTATTGCTTCTCCAGGAAACAAAAGAGGCTTTCAAGAG
    AACCCTTTTGATTATTTTAATGACGAATTTTTTAATCGATTTTTTGGATTGCCTTCGCATAGAGAGCAGCAGCGTCC
    GCAGCAGCGTGATGCTGTAAGAGGAACTGGGTTCATTGTTTCTGAAGATGGTTATGTTGTTACTAACCATCATGTAG
    TCGAGGATGCAGGAAAAATTCATGTTACTCTCCACGACGGACAAAAATACACAGCTAAGATCGTGGGGTTAGATCCA
    AAAACAGATCTTGCTGTGATCAAAATTCAAGCGGAGAAATTACCATTTTTGACTTTTGGGAATTCTGATCAGCTGCA
    GATAGGTGACTGGGCTATTGCTATTGGAAATCCTTTTGGATTGCAAGCAACGGTCACTGTCGGGGTCATTAGTGCTA
    AAGGAAGAAATCAGCTACATATTGTAGATTTCGAAGACTTTATTCAAACAGATGCTGCCATTAATCCTGGGAATTCA
    GGCGGTCCATTGTTAAACATCAATGGTCAAGTTATCGGGGTTAATACTGCCATTGTCAGTGGTAGCGGGGGATATAT
    TGGAATAGGGTTTGCTATTCCTAGCTTGATGGCTAAACGAGTCATTGATCAATTGATTAGTGATGGGCAGGTAACAA
    GAGGCTTTTTGGGAGTTACCTTGCAACCGATAGATTCTGAATTGGCTACTTGTTACAAATTGGAAAAAGTGTACGGA
    GCTTTGGTGACGGATGTTGTTAAAGGTTCTCCAGCAGAAAAAGCAGGGCTGCGCCAAGAAGATGTCATTGTGGCTTA
    CAATGGAAAAGAAGTAGAGTCTTTGAGTGCGTTGCGTAATGCCATTTCCCTAATGATGCCAGGGACTCGTGTTGTTT
    TAAAAATCGTTCGTGAAGGGAAAACAATCGAGATACCTGTGACGGTTACACAGATCCCAACAGAGGATGGCGTTTCA
    GCGTTGCAGAAGATGGGAGTCCGTGTTCAGAACATTACTCCAGAAATTTGTAAGAAACTCGGATTGGCAGCAGATAC
    CCGAGGGATTCTGGTAGTTGCTGTGGAGGCAGGCTCGCCTGCAGCTTCTGCAGGCGTCGCTCCTGGACAGCTTATCT
    TAGCGGTGAATAGGCAGCGAGTCGCTTCCGTTGAAGAGTTAAATCAGGTTTTGAAAAACTCGAAAGGAGAGAATGTT
    CTCCTTATGGTTTCTCAAGGAGATGTGGTGCGATTCATCGTCTTGAAATCAGACGAG
    SEQ ID NO: 142-CT823 fragment protein sequence
    SPMLGYSASKKDSKADICLAVSSGDQEVSQEDLLKEVSRGFSRVAAKATPGVVYIENFPKTGNQAIASPGNKRGFQE
    NPFDYFNDEFFNRFFGLPSHREQQRPQQRDAVRGTGFIVSEDGYVVTNHHVVEDAGKIHVTLHDGQKYTAKIVGLDP
    KTDLAVIKIQAEKLPFLTFGNSDQLQIGDWAIAIGNPFGLQATVTVGVISAKGRNQLHIVDFEDFIQTDAAINPGNS
    GGPLLNINGQVIGVNTAIVSGSGGYIGIGFAIPSLMAKRVIDQLISDGQVTRGFLGVTLQPIDSELATCYKLEKVYG
    ALVTDVVKGSPAEKAGLRQEDVIVAYNGKEVESLSALRNAISLMMPGTRVVLKIVREGKTIEIPVTVTQIPTEDGVS
    ALQKMGVRVQNITPEICKKLGLAADTRGILVVAVEAGSPAASAGVAPGQLILAVNRQRVASVEELNQVLKNSKGENV
    LLMVSQGDVVRFIVLKSDE
    SEQ ID NO: 143-TC0106 nucleotide sequence
    ATGCTAACTAACTTTACCTTTCGCAACTGTCTTTTGTTTTTCGTCACATTGTCCAGTGTCCCTGTTTTCTCGGCACC
    CCAACCTCGCGTAACGCTTCCTAGTGGAGCCAATAAAATCGGATCAGAAGCTTGGATAGAGCAAAAAGTCCGTCAAT
    ATCCAGAACTTTTGTGGTTAGTTGAACCTTCTCCTGCAGGAACTTCTTTAAACGCTCCTTCGGGGATGATCTTTTCT
    CCCCTATTGTTCCAAAAGAAAGTCCCTGCTTTTGATATCGCAGTACGCAGTCTGATTCACCTACACCTGCTTATCCA
    GGGCTCCCGCCAAGCTTATGCTCAGCTTGTCCAGCTGCAGGCTAATGAATCCCCTATGACATTTAAACAGTTCCTTA
    CCCTACATAAGCAGCTCTCCTTATTCCTAAATTCTCCTAAAGAGTTTTATGATTCCGTCAAAATTTTAGAAACTGCT
    ATCATCCTACGCCACTTAGGATGTTCAACAAAAGCTGTTGCCACATTTAAGCCTTATTTTTCAGAAACGCAAAAAGA
    GGTCTTCTATACAAAAGCTTTGCATGTTCTGCATACTTTCCCAGAATTGAGCCCTTCGTTTGCTAGACTCTCTCCAG
    AACAAAAAACGCTCTTCTTCTCATTGAGAAAGCTCGCTAATTATGATGAGTTACTTTCCCTGACAAATGCCCCTAGT
    TTACAACTACTATCTGCTGTACGCTCGCGACGCGCGCTTTTGGCTCTAGACTTGTATCTCTATGCTTTAGATTTTTG
    TGGAGAACAGGGGATATCCTCTCAGTTTCATATGGACTTTTCTCCTTTACAGTCCATGTTGCAACAATATGCTACGG
    TTGAAGAAGCCTTCTCCCGCTACTTTACTTACCGAGCTAATCGCCTAGGATTTGCGGGTTCTTCTCGAACTGAAATG
    GCCTTAGTTAGAATAGCTACTTTAATGAACCTATCCCCTTCAGAAGCTGCTATTTTAACAACAAGCTTTAAGTCTCT
    TTCCTTGGAAGATGCTGAAAGCTTAGTGAATAGCTTTTATACAAATAAGGGAGACTCTTTAGCTCTTTCTTTACGAG
    GACTACCAACTCTTATATCTGAACTAACACGCGCTGCGCATGGAAATACGAATGCGGAAGCTCGAGCTCAGCAAATT
    TACGCCACAACGTTATCATTGGTAGCAAAAAGCTTGAAAGCTCACAAAGAGATGCAAAACAAACAAATTCTTCCCGA
    AGAAGTCGTTTTAGATTTCTCTGAAACTGCTTCTTCCTGTCAAGGATTGGACATCTTCTCTGAGAACGTTGCTGTTC
    AAATCCACTTGAATGGATCTGTCAGCATCCATCTATAA
    SEQ ID NO: 144-TC0106 protein sequence 
    MLTNFTFRNCLLFFVTLSSVPVFSAPQPRVTLPSGANKIGSEAWIEQKVRQYPELLWLVEPSPAGTSLNAPSGMIFS
    PLLFQKKVPAFDIAVRSLIHLHLLIQGSRQAYAQLVQLQANESPMTFKQFLTLHKQLSLFLNSPKEFYDSVKILETA
    IILRHLGCSTKAVATFKPYFSETQKEVFYTKALHVLHTFPELSPSFARLSPEQKTLFFSLRKLANYDELLSLTNAPS
    LQLLSAVRSRRALLALDLYLYALDFCGEQGISSQFHMDFSPLQSMLQQYATVEEAFSRYFTYRANRLGFAGSSRTEM
    ALVRIATLMNLSPSEAAILTTSFKSLSLEDAESLVNSFYTNKGDSLALSLRGLPTLISELTRAAHGNTNAEARAQQI
    YATTLSLVAKSLKAHKEMQNKQILPEEVVLDFSETASSCQGLDIFSENVAVQIHLNGSVSIHL
    SEQ ID NO: 145-TC0106 fragment nucleotide sequence
    TCAGAAGCTTGGATAGAGCAAAAAGTCCGTCAATATCCAGAACTTTTGTGGTTAGTTGAACCTTCTCCTGCAGGAAC
    TTCTTTAAACGCTCCTTCGGGGATGATCTTTTCTCCCCTATTGTTCCAAAAGAAAGTCCCTGCTTTTGATATCGCAG
    TACGCAGTCTGATTCACCTACACCTGCTTATCCAGGGCTCCCGCCAAGCTTATGCTCAGCTTGTCCAGCTGCAGGCT
    AATGAATCCCCTATGACATTTAAACAGTTCCTTACCCTACATAAGCAGCTCTCCTTATTCCTAAATTCTCCTAAAGA
    GTTTTATGATTCCGTCAAAATTTTAGAAACTGCTATCATCCTACGCCACTTAGGATGTTCAACAAAAGCTGTTGCCA
    CATTTAAGCCTTATTTTTCAGAAACGCAAAAAGAGGTCTTCTATACAAAAGCTTTGCATGTTCTGCATACTTTCCCA
    GAATTGAGCCCTTCGTTTGCTAGACTCTCTCCAGAACAAAAAACGCTCTTCTTCTCATTGAGAAAGCTCGCTAATTA
    TGATGAGTTACTTTCCCTGACAAATGCCCCTAGTTTACAACTACTATCTGCTGTACGCTCGCGACGCGCGCTTTTGG
    CTCTAGACTTGTATCTCTATGCTTTAGATTTTTGTGGAGAACAGGGGATATCCTCTCAGTTTCATATGGACTTTTCT
    CCTTTACAGTCCATGTTGCAACAATATGCTACGGTTGAAGAAGCCTTCTCCCGCTACTTTACTTACCGAGCTAATCG
    CCTAGGATTTGCGGGTTCTTCTCGAACTGAAATGGCCTTAGTTAGAATAGCTACTTTAATGAACCTATCCCCTTCAG
    AAGCTGCTATTTTAACAACAAGCTTTAAGTCTCTTTCCTTGGAAGATGCTGAAAGCTTAGTGAATAGCTTTTATACA
    AATAAGGGAGACTCTTTAGCTCTTTCTTTACGAGGACTACCAACTCTTATATCTGAACTAACACGCGCTGCGCATGG
    AAATACGAATGCGGAAGCTCGAGCTCAGCAAATTTACGCCACAACGTTATCATTGGTAGCAAAAAGCTTGAAAGCTC
    ACAAAGAGATGCAAAACAAACAAATTCTTCCCGAAGAAGTCGTTTTAGATTTCTCTGAAACTGCTTCTTCCTGTCAA
    GGATTGGACATCTTCTCTGAGAACGTTGCTGTTCAAATCCACTTGAATGGATCTGTCAGCATCCATCTA
    SEQ ID NO: 146-TC0106 fragment protein sequence 
    SEAWIEQKVRQYPELLWLVEPSPAGTSLNAPSGMIFSPLLFQKKVPAFDIAVRSLIHLHLLIQGSRQAYAQLVQLQA
    NESPMTFKQFLTLHKQLSLFLNSPKEFYDSVKILETAIILRHLGCSTKAVATFKPYFSETQKEVFYTKALHVLHTFP
    ELSPSFARLSPEQKTLFFSLRKLANYDELLSLTNAPSLQLLSAVRSRRALLALDLYLYALDFCGEQGISSQFHMDFS
    PLQSMLQQYATVEEAFSRYFTYRANRLGFAGSSRTEMALVRIATLMNLSPSEAAILTTSFKSLSLEDAESLVNSFYT
    NKGDSLALSLRGLPTLISELTRAAHGNTNAEARAQQIYATTLSLVAKSLKAHKEMQNKQILPEEVVLDFSETASSCQ
    GLDIFSENVAVQIHLNGSVSIHL
    SEQ ID NO: 147-TC0431 nucleotide sequence
    ATGCCCCACTCTCCTTTTTTATATGTTGTTCAACCGCATTCTGTTTTTAATCCTAGATTGGGAGAGCGGCACCCTAT
    TACTTTAGATTTCATCAAAGAAAAGAATCGATTAGCTGATTTTATTGAAAACCTACCTTTAGAAATTTTTGGAGCCC
    CTTCTTTCTTGGAAAATGCTTCTTTAGAAGCCTCTTATGTCTTGTCTAGGGAATCCACAAAAGATGGCACTCTTTTT
    ACCGTTCTAGAACCCAAACTATCTGCCTGCGTAGCTACTTGCCTTGTGGATTCTTCTATTCCTATGGAGCCCGATAA
    CGAGCTCTTAGAAGAAATTAAACACACTTTGTTGAAAAGCTCTTGTGATGGCGTACAATATCGTGTAACCCGAGAGA
    CTCTCCAAAACAAAGATGAAGCCCCCAGAGTCTCTTTAGTTGCTGATGATATCGAACTTATCCGCAATGTAGATTTT
    TTAGGACGTTCCGTTGATATTGTAAAATTGGATCCCTTGAATATTCCTAATACCGTAAGCGAGGAGAATGCTCTCGA
    TTACTCTTTCACAAGGGAAACCGCCAAACTTAGCCCTGACGGACGAGTTGGCATCCCTCAAGGGACAAAAATTTTGC
    CAGCTCCCTCTCTTGAAGTTGAAATTAGCACCTCTATTTTTGAGGAAACCTCTTCTTTTGAACAAAACTTTTCTTCC
    TCTATTACTTTTTGTGTACCACCTCTTACCTCTTTTTCTCCTTTGCAAGAACCTCCTCTAGTGGGAGCTGGACAGCA
    GGAAATTCTTGTGACTAAAAAGCACTTATTCCCTAGCTATACCCCTAAACTTATTGATATTGTCAAACGACACAAAA
    GAGACGCAAAGATTCTAGTAAACAAGATCCAGTTCGAGAAACTATGGAGAAGTCATGCCAAAAGTCAAATCTTAAAA
    GAAGGCTCTGTTCGCTTGGATTTACAAGGATTTACAGGGGAGCTGTTTAACTACCAACTTCAAGTAGGATCTCATAC
    AATTGCAGCCGTGTTAATTGATCCGGAAATTGCTAACGTCAAATCCCTCCCCGAACAAACTTACGCTGTAAGAAAAA
    TTAAATCAGGGTTCCAATGTAGTTTGGATGACCAACACATTTATCAAGTCGCAGTAAAAAAACATCTTTCTCTGTCT
    TCACAACCTCCGAAGATATCTCCGTTATCTCAATCCGAAAGCTCCGATTTAAGTCTCTTTGAAGCAGCAGCGTTTTC
    AGCAAGCCTAACTTACGAGTTCGTAAAGAAAAATACATATCATGCTAAGAATACTGTAACTTGCTCCACGGTATCGC
    ACTCTCTGTATATTCTCAAAGAAGATGACGGGGCTAATGCTGCAGAAAAACGCTTAGACAACAGTTTCCGAAACTGG
    GTCGAAAATAAGTTGAACGCAAATTCTCCAGATTCTTGTACTGCATTTATTCAAAAATTCGGCACACATTACATCAC
    ATCGGCAACTTTTGGAGGATCTGGGTTCCAAGTTCTTAAATTATCCTTTGAACAGGTAGAAGGCCTCCGTAGTAAGA
    AGATCTCCCTAGAAGCAGCAGCAGCAAATTCCTTATTAAAAAGCTCTGTGTCAAACAGCACGGAATCTGGCTACTCT
    ACTTACGATTCCTCTTCTTCTTCTCATACAGTATTCCTAGGGGGCACTGTATTACCCTCTGTTCATGATGGACAGTT
    AGATTTTAAAGATTGGTCTGAAAGTGTCTGTTTAGAACCTGTTCCCATTCACATTTCTTTACTCCCCTTAACAGACT
    TGCTCACCCCTTTTTATTTTCCTGAAACGGATACAACCGAACTATCTAATAAACGTAATGCTCTCCAACAAGCGGTT
    CGAGTTTACCTTAAAGACCATCGTTCAGCTAAACAAAGCGAACGCTCCGTATTCACAGCGGGGATCAATAGTCCTTC
    TTCCTGGTTCACATTAGAATCTGCTAATTCACCTCTTGTTGTGAGTTCTCCTTACATGACGTATTGGTCTACTCTCC
    CCTATCTCTTCCCCACATTAAAAGAGCGTTCTTCAGCAGCTCCCATCGTTTTTTATTTTTGTGTGGATAATAATGAA
    CACGCCTCCCAAAAAATTTTAAACCAAACATATTGCTTCATAGGTTCTTTACCTATTCGACAAAAGATTTTTGGCAG
    AGAATTTGCTGAGAATCCTTATTTATCTTTCTATGGAAGGTTTGGAGAAGCTTATTTTGATGGCGGTTATCCAGAAC
    GTTGTGGATGGATTGTTGAAAAGTTAAATACTACTAAAGATCAAATTCTCCGCGATGAGGATGAAGTGCAACTAAAG
    CATGTTTATAGCGGAGAGTATCTGTCTACAATTCCTATTAAGGATTCCCATTGCACACTCTCGCGTACATGCACCGA
    ATCGAATGCTGTTTTTATTATCAAAAAACCTTCGAGCTATTGA
    SEQ ID NO: 148-TC0431 protein sequence
    MPHSPFLYVVQPHSVFNPRLGERHPITLDFIKEKNRLADFIENLPLEIFGAPSFLENASLEASYVLSRESTKDGTLF
    TVLEPKLSACVATCLVDSSIPMEPDNELLEEIKHTLLKSSCDGVQYRVTRETLQNKDEAPRVSLVADDIELIRNVDF
    LGRSVDIVKLDPLNIPNTVSEENALDYSFTRETAKLSPDGRVGIPQGTKILPAPSLEVEISTSIFEETSSFEQNFSS
    SITFCVPPLTSFSPLQEPPLVGAGQQEILVTKKHLFPSYTPKLIDIVKRHKRDAKILVNKIQFEKLIRSHAKSQILK
    EGSVRLDLQGFTGELFNYQLQVGSHTIAAVLIDPEIANVKSLPEQTYAVRKIKSGFQCSLDDRHIYQVAVKKHLSLS
    SQPPKISPLSQSESSDLSLFEAAAFSASLTYEFVKKNTYHAKNIVTCSTVSHSLYILKEDDGANAAEKRLDNSFRNW
    VENKLNANSPDSCTAFIQKFGTHYITSATFGGSGFQVLKLSFEQVEGLRSKKISLEAAAANSLLKSSVSNSTESGYS
    TYDSSSSSHTVFLGGTVLPSVHDGQLDFKDWSESVCLEPVPIHISLLPLTDLLTPLYFPETDTTELSNKRNALQQAV
    RVYLKDHRSAKQSERSVFTAGINSPSSWFTLESANSPLVVSSPYMTYWSTLPYLFPTLKERSSAAPIVFYFCVDNNE
    HASQKILNQTYCFIGSLPIR4KIFGREFAENPYLSFYGRFGEAYFDGGYPERCGWIVEKLNTTKDQILRDEDEVQLK
    HVYSGEYLSTIPIKDSHCTLSRTCTESNAVFIIKKPSSY
    SEQ ID NO: 149-TC0431 fragment nucleotide sequence
    CCCCACTCTCCTTTTTTATATGTTGTTCAACCGCATTCTGTTTTTAATCCTAGATTGGGAGAGCGGCACCCTATTAC
    TTTAGATTTCATCAAAGAAAAGAATCGATTAGCTGATTTTATTGAAAACCTACCTTTAGAAATTTTTGGAGCCCCTT
    CTTTCTTGGAAAATGCTTCTTTAGAAGCCTCTTATGTCTTGTCTAGGGAATCCACAAAAGATGGCACTCTTTTTACC
    GTTCTAGAACCCAAACTATCTGCCTGCGTAGCTACTTGCCTTGTGGATTCTTCTATTCCTATGGAGCCCGATAACGA
    GCTCTTAGAAGAAATTAAACACACTTTGTTGAAAAGCTCTTGTGATGGCGTACAATATCGTGTAACCCGAGAGACTC
    TCCAAAACAAAGATGAAGCCCCCAGAGTCTCTTTAGTTGCTGATGATATCGAACTTATCCGCAATGTAGATTTTTTA
    GGACGTTCCGTTGATATTGTAAAATTGGATCCCTTGAATATTCCTAATACCGTAAGCGAGGAGAATGCTCTCGATTA
    CTCTTTCACAAGGGAAACCGCCAAACTTAGCCCTGACGGACGAGTTGGCATCCCTCAAGGGACAAAAATTTTGCCAG
    CTCCCTCTCTTGAAGTTGAAATTAGCACCTCTATTTTTGAGGAAACCTCTTCTTTTGAACAAAACTTTTCTTCCTCT
    ATTACTTTTTGTGTACCACCTCTTACCTCTTTTTCTCCTTTGCAAGAACCTCCTCTAGTGGGAGCTGGACAGCAGGA
    AATTCTTGTGACTAAAAAGCACTTATTCCCTAGCTATACCCCTAAACTTATTGATATTGTCAAACGACACAAAAGAG
    ACGCAAAGATTCTAGTAAACAAGATCCAGTTCGAGAAACTATGGAGAAGTCATGCCAAAAGTCAAATCTTAAAAGAA
    GGCTCTGTTCGCTTGGATTTACAAGGATTTACAGGGGAGCTGTTTAACTACCAACTTCAAGTAGGATCTCATACAAT
    TGCAGCCGTGTTAATTGATCCGGAAATTGCTAACGTCAAATCCCTCCCCGAACAAACTTACGCTGTAAGAAAAATTA
    AATCAGGGTTCCAATGTAGTTTGGATGACCAACACATTTATCAAGTCGCAGTAAAAAAACATCTTTCTCTGTCTTCA
    CAACCTCCGAAGATATCTCCGTTATCTCAATCCGAAAGCTCCGATTTAAGTCTCTTTGAAGCAGCAGCGTTTTCAGC
    AAGCCTAACTTACGAGTTCGTAAAGAAAAATACATATCATGCTAAGAATACTGTAACTTGCTCCACGGTATCGCACT
    CTCTGTATATTCTCAAAGAAGATGACGGGGCTAATGCTGCAGAAAAACGCTTAGACAACAGTTTCCGAAACTGGGTC
    GAAAATAAGTTGAACGCAAATTCTCCAGATTCTTGTACTGCATTTATTCAAAAATTCGGCACACATTACATCACATC
    GGCAACTTTTGGAGGATCTGGGTTCCAAGTTCTTAAATTATCCTTTGAACAGGTAGAAGGCCTCCGTAGTAAGAAGA
    TCTCCCTAGAAGCAGCAGCAGCAAATTCCTTATTAAAAAGCTCTGTGTCAAACAGCACGGAATCTGGCTACTCTACT
    TACGATTCCTCTTCTTCTTCTCATACAGTATTCCTAGGGGGCACTGTATTACCCTCTGTTCATGATGGACAGTTAGA
    TTTTAAAGATTGGTCTGAAAGTGTCTGTTTAGAACCTGTTCCCATTCACATTTCTTTACTCCCCTTAACAGACTTGC
    TCACCCCTCTTTATTTTCCTGAAACGGATACAACCGAACTATCTAATAAACGTAATGCTCTCCAACAAGCGGTTCGA
    GTTTACCTTAAAGACCATCGTTCAGCTAAACAAAGCGAACGCTCCGTATTCACAGCGGGGATCAATAGTCCTTCTTC
    CTGGTTCACATTAGAATCTGCTAATTCACCTCTTGTTGTGAGTTCTCCTTACATGACGTATTGGTCTACTCTCCCCT
    ATCTCTTCCCCACATTAAAAGAGCGTTCTTCAGCAGCTCCCATCGTTTTTTATTTTTGTGTGGATAATAATGAACAC
    GCCTCCCAAAAAATTTTAAACCAAACATATTGCTTCATAGGTTCTTTACCTATTCGACAAAAGATTTTTGGCAGAGA
    ATTTGCTGAGAATCCTTATTTATCTTTCTATGGAAGGTTTGGAGAAGCTTATTTTGATGGCGGTTATCCAGAACGTT
    GTGGATGGATTGTTGAAAAGTTAAATACTACTAAAGATCAAATTCTCCGCGATGAGGATGAAGTGCAACTAAAGCAT
    GTTTATAGCGGAGAGTATCTGTCTACAATTCCTATTAAGGATTCCCATTGCACACTCTCGCGTACATGCACCGAATC
    GAATGCTGTTTTTATTATCAAAAAACCTTCGAGCTAT
    SEQ ID NO: 150-TC0431 fragment protein sequence
    PHSPFLYVVQPHSVFNPRLGERHPITLDFIKEKNRLADFIENLPLEIFGAPSFLENASLEASYVLSRESTKDGTLFT 
    VLEPKLSACVATCLVDSSIPMEPDNELLEEIKHILLKSSCDGVQYRVTRETLQNKDEAPRVSLVADDIELIRNVDFL 
    GRSVDIVKLDPLNIPNTVSEENALDYSFTRETAKLSPDGRVGIPQGTKILPAPSLEVEISTSIFEETSSFEQNFSSS 
    ITFCVPPLTSFSPLQEPPLVGAGQQEILVIKKHLFPSYTPKLIDIVKRHKRDAKILVNKIQFEKLWRSHAKSQILKE 
    GSVRLDLQGFTGELFNYQLQVGSHTIAAVLIDPEIANVKSLPEQTYAVRKIKSGFQCSLDDQHIYQVAVKKHLSLSS 
    QPPKISPLSQSESSDLSLFEAAAFSASLTYEFVKKNTYHAKNIVICSTVSHSLYILKEDDGANAAEKRLDNSFRNWV 
    ENKLNANSPDSCTAFIQKFGTHYITSATFGGSGFQVLKLSFEQVEGLRSKKISLEAAAANSLLKSSVSNSTESGYST 
    YDSSSSSHTVFLGGTVLPSVHDGQLDFKDWSESVCLEPVPIHISLLPLTDLLTPLYFPETDTTELSNKRNALQQAVR 
    VYLKDHRSAKQSERSVFTAGINSPSSWFTLESANSPLVVSSPYMTYWSTLPYLFPTLKERSSAAPIVFYFCVDNNEH 
    ASQKILNQTYCFIGSLPIRQKIFGREFAENPYLSFYGRFGEAYFDGGYPERCGWIVEKLNITKMILRDEDEVQLKH 
    VYSGEYLSTIPIKDSHCILSIRTCTESNAVFIIKKPSSY 
    SEQ ID NO: 151-TC0210 nucleotide sequence
    ATGATGAAAAGATTATTATGTGTGTTGCTATCGACATCAGTTTTCTCTTCGCCCATGTTGGGCTATAGTGCGCCAAA
    GAAAGATTCCAGTACTGGCATTTGTCTTGCAGCATCTCAAAGTGATCGGGAACTTTCCCAAGAAGATTTGCTAAAAG
    AAGTGTCTAGAGGATTTTCCAAAGTCGCTGCTCAGGCAACTCCAGGAGTTGTGTATATAGAAAATTTTCCTAAAACT
    GGGAGTCAAGCTATTGCTTCTCCTGGGAATAAAAGGGGTTTTCAAGAGAATCCCTTTGATTATTTCAATGATGAGTT
    TTTCAATCGATTTTTTGGTTTACCCTCGCATAGAGAGCAGCCTCGTCCCCAACAGCGTGATGCTGTAAGAGGAACAG
    GTTTTATTGTGTCAGAAGATGGGTACGTTGTGACCAACCATCACGTAGTGGAAGATGCGGGGAAAATTCATGTTACT
    TTACACGATGGACAAAAATACACCGCAAAAATCATAGGATTAGATCCTAAAACGGATCTCGCTGTGATTAAGATCCA
    AGCAAAAAATCTCCCTTTTTTAACTTTTGGAAACTCTGATCAGCTTCAGATAGGGGATTGGTCAATAGCCATTGGAA
    ATCCTTTCGGATTACAAGCCACAGTAACCGTTGGCGTGATTAGTGCTAAGGGAAGAAACCAATTACATATTGTTGAT
    TTTGAAGATTTTATTCAGACGGATGCAGCAATTAATCCCGGGAATTCAGGTGGTCCATTATTGAACATTGATGGACA
    GGTTATTGGAGTGAATACAGCAATCGTTAGCGGTAGCGGGGGATACATTGGAATAGGATTTGCCATTCCTAGCTTAA
    TGGCTAAACGAGTTATTGACCAACTCATTAGCGATGGACAGGTGACGAGAGGATTTTTAGGAGTAACCTTACAGCCT
    ATTGATTCGGAGCTTGCCGCTTGTTACAAATTAGAAAAGGTGTACGGAGCCTTGATTACGGATGTTGTTAAGGGATC
    TCCTGCAGAAAAAGCAGGTTTGCGCCAGGAAGATGTCATTGTTGCTTACAATGGGAAAGAAGTGGAGTCTTTGAGTG
    CTTTACGTAATGCGATTTCTTTGATGATGCCAGGGACTCGTGTTGTCTTAAAAGTTGTGCGTGAAGGGAAATTCATT
    GAAATACCTGTCACTGTTACACAAATTCCTGCGGAGGATGGGGTATCTGCTCTTCAAAAAATGGGAGTTCGGGTACA
    GAATCTTACTCCAGAGATATGCAAGAAACTAGGATTAGCGTCTGATACTCGAGGGATTTTTGTAGTGTCCGTAGAAG
    CTGGTTCTCCTGCAGCTTCTGCAGGAGTGGTTCCAGGACAACTTATTCTGGCTGTAAACAGACAGAGAGTTTCTTCT
    GTTGAAGAATTGAATCAGGTCTTGAAGAATGCAAAAGGAGAGAATGTTCTCCTTATGGTTTCTCAAGGAGAAGTCAT
    TCGATTCGTTGTTTTAAAGTCTGATGAATAG
    SEQ ID NO: 152-TC0210 protein sequence 
    MMKRLLCVLLSTSVFSSPMLGYSAPKKDSSTGICLAASQSDRELSQEDLLKEVSRGFSKVAAQATPGVVYIENFPKT
    GSQAIASPGNKIRGFQENPFDYFNDEFFNRFFGLPSFIREQPRPMDAVRGTGFIVSEDGYVVTNHHVVEDAGKIHVT
    LHDGQKYTAKIIGLDPKTDLAVIKIRAKNLPFLTFGNSDQLQIGDWSIAIGNPFGLQATVTVGVISAKGRNQLHIVD
    FEDFIQTDAAINPGNSGGPLLNIDGQVIGVNTAIVSGSGGYIGIGFAIPSLMAKRVIDQLISDGQVTRGFLGVTLQP
    IDSELAACYKLEKVYGALITDVVKGSPAEKAGLRQEDVIVAYNGKEVESLSALRNAISLMMPGTRVVLKVVREGKFI
    EIPVTVTQIPAEDGVSALQKMGVRVQNLTPEICKKLGLASDTRGIFVVSVEAGSPAASAGVVPGQLILAVNRQRVSS
    VEELNQVLKNAKGENVLLMVSQGEVIRFVVLKSDE
    SEQ ID NO: 153-TC0210 fragment nucleotide sequence
    TCGCCCATGTTGGGCTATAGTGCGCCAAAGAAAGATTCCAGTACTGGCATTTGTCTTGCAGCATCTCAAAGTGATCG
    GGAACTTTCCCAAGAAGATTTGCTAAAAGAAGTGTCTAGAGGATTTTCCAAAGTCGCTGCTCAGGCAACTCCAGGAG
    TTGTGTATATAGAAAATTTTCCTAAAACTGGGAGTCAAGCTATTGCTTCTCCTGGGAATAAAAGGGGTTTTCAAGAG
    AATCCCTTTGATTATTTCAATGATGAGTTTTTCAATCGATTTTTTGGTTTACCCTCGCATAGAGAGCAGCCTCGTCC
    CCAACAGCGTGATGCTGTAAGAGGAACAGGTTTTATTGTGTCAGAAGATGGGTACGTTGTGACCAACCATCACGTAG
    TGGAAGATGCGGGGAAAATTCATGTTACTTTACACGATGGACAAAAATACACCGCAAAAATCATAGGATTAGATCCT
    AAAACGGATCTCGCTGTGATTAAGATCCAAGCAAAAAATCTCCCTTTTTTAACTTTTGGAAACTCTGATCAGCTTCA
    GATAGGGGATTGGTCAATAGCCATTGGAAATCCTTTCGGATTACAAGCCACAGTAACCGTTGGCGTGATTAGTGCTA
    AGGGAAGAAACCAATTACATATTGTTGATTTTGAAGATTTTATTCAGACGGATGCAGCAATTAATCCCGGGAATTCA
    GGTGGTCCATTATTGAACATTGATGGACAGGTTATTGGAGTGAATACAGCAATCGTTAGCGGTAGCGGGGGATACAT
    TGGAATAGGATTTGCCATTCCTAGCTTAATGGCTAAACGAGTTATTGACCAACTCATTAGCGATGGACAGGTGACGA
    GAGGATTTTTAGGAGTAACCTTACAGCCTATTGATTCGGAGCTTGCCGCTTGTTACAAATTAGAAAAGGTGTACGGA
    GCCTTGATTACGGATGTTGTTAAGGGATCTCCTGCAGAAAAAGCAGGTTTGCGCCAGGAAGATGTCATTGTTGCTTA
    CAATGGGAAAGAAGTGGAGTCTTTGAGTGCTTTACGTAATGCGATTTCTTTGATGATGCCAGGGACTCGTGTTGTCT
    TAAAAGTTGTGCGTGAAGGGAAATTCATTGAAATACCTGTCACTGTTACACAAATTCCTGCGGAGGATGGGGTATCT
    GCTCTTCAAAAAATGGGAGTTCGGGTACAGAATCTTACTCCAGAGATATGCAAGAAACTAGGATTAGCGTCTGATAC
    TCGAGGGATTTTTGTAGTGTCCGTAGAAGCTGGTTCTCCTGCAGCTTCTGCAGGAGTGGTTCCAGGACAACTTATTC
    TGGCTGTAAACAGACAGAGAGTTTCTTCTGTTGAAGAATTGAATCAGGTCTTGAAGAATGCAAAAGGAGAGAATGTT
    CTCCTTATGGTTTCTCAAGGAGAAGTCATTCGATTCGTTGTTTTAAAGTCTGATGAA
    SEQ ID NO: 154-TC0210 fragment protein sequence 
    SPNLGYSAPKKDSSIGICLAASQSDRELSQEDLLKEVSRGFSKVAAQATPGVVYIENFPKTGSQAIASPGNKRGFQE
    NPFDYFNDEFFNRFFGLPSHREQPRPQQRDAVRGIGFIVSEDGYVVINHHVVEDAGKIHVTLHDGRKYTAKIIGLDP
    KTDLAVIKIQAKNLPFLTFGNSDQLQIGDWSIAIGNFTGLQATVTVGVISAKGRNQLHIVDFEDFIQTDAAINPGNS
    GGPLLNIDGQVIGVNTAIVSGSGGYIGIGFAIPSLMAKRVIDQLISDGQVIRGFLGVTLQPIDSELAACYKLEKVYG
    ALITDVVKGSPAEKAGLRQEDVIVAYNGKEVESLSALRNAISLMMPGTRVVLKVVREGKFIEIPVIVTQIPAEDGVS
    ALQKMGVRVQNLTPEICKKLGLASDTRGIFVVSVEAGSPAASAGVVPGQLILAVNRQRVSSVEELNQVLKNAKGENV
    LLMVSQGEVIRFVVLKSDE
    SEQ ID NO: 155-CT163 nucleotide sequence
    ATGTTTGTGTCGTTCGATAAATCCCGTTGCAGAGCGGATGTCCCCGATTTTTTTGAAAGGACAGGAAACTTTCTTCT
    CCATTGTGTGGCAAGAGGGATCAATGTTTTATATCGTGTGAAACAAATCTCTAACTATCCTTCATGCTATTTCTCAC
    ATAAAGAGATTTCGTGTTGTCGTCGTATTGCAAACATTGTGATCTGTATTCTCACAGGGCCTCTGATGTTATTGGCC
    ACTGTGTTAGGATTATTAGCGTATAGGTTTTCTTCTACTTACCAGACTTCTTTACAAGAACGCTTTCGTTATAAATA
    TGAACAAAAGCAAGCTTTAGATGAATACCGTGATAGGGAAGAAAAAGTCATTACGCTTCAGAAGTTTTGTAGAGGAT
    TTCTAGTTAGAAATCATTTGCTCAACCAAGAAACTTTAACAACGTGTAAGCAATGGGGGCAAAAACTATTAGAAGGA
    GAAAAATTCCCAAGGGTCCCAGAAGGACGGTCTCTTGTATATATTTCAAAACAGTTTCCTTCTTTAGTAGCAAAACA
    CGTTGGGGCTCAAGATGCCAGGTCTCGTTGGCATCATATTTTTTCTATGCGCAAAGCGCTTGCTTATTTAGATATTA
    AGCGCATACGAGCACCACGCGCTAGAGTTTATCAAAACTTTATATTCGAAGAAAAACTTCCTGTTTCACGAATTTCT
    GTAGATTCAATGTGTCTCTATAAAGAAAATCCACAAGCTTTCGATGAGGCGATCAAAGAACTCTTATTTCTATTTAA
    AGAAGTGCATTTCAGGGATTTTGTTGTAGAAACAGAGTCTCCAACAGACGATTTCCCCTTAGCCGTGAAAGTACACA
    ACTATTGGGTATGCCCACGATACGATAATTTACCTTTATTTATTCAAGAAGGAAAAGATGGCTCTCCAGAAGGGCGT
    ATAGGACTGGTCGATCTAGAAACTTTTTCTTGGTCTCCACATCCATACCCCGTAGAAGAACTAGCTGTGATGTTTCC
    TATGCATAAAGAGCTTCTTATGACAGAGGCGAAAAAACTACAAATCCCTTTCTCTACAAAGGAGGTCGAGCGCTCTG
    TAGAGAAAGGGCTTGCTTTTTTTGAACATATGCTAGGGCATCAAGATTTTTGTTCCCAAAAAAGCGTAACGCCATTG
    CGTAATTGTGCCCCTTATATTCATCTAGAAGTATGGAGATTCTCACTGAAAATTTTTGATATTTTAAAAGCTGCTAT
    TCAACTAAATGGAGCACTCAATGTTCTGTTATCTCCAGATATTCGAGAGCGGTTGAGTGCTATTTCGGATAAGCAAT
    6GTTGGCTATTAGCTCCCAGGTTACGTCATCGTTACTCGAGCAAGTTTCTACAAACATCTATCAGTCTCATACTGAA
    GAGGCTAAACGAGTAAATTCTTCAGGGACTTTTATCATGTGTCGATCTCCTATCTTCCGGAAAAGCATCTTCATTAA
    AAATCTCCCACAATTCTTAAACAAGAAATTGCAGTTGCTTCCAGAGGAGAAAGCAATCAGCGAGGCGCTTGCTTCTC
    TATGTTTACGTGCAGTAATGGAAGAGCTAGTAGCAACAGGAAATATTTATTCTTATGATTCTATGGATGATTTTTTT
    GAAGGGCAGTATTGTCGCATTCGTTATTAG
    SEQ ID NO: 156-CT163 protein sequence 
    MFVSFDKSRCRADVPDFFERTGNFLLHCVARGINVLYRVKQISNYPSCYFSHKEISCCRRIANIVICILTGPLMLLA
    TVLGLLAYRFSSTYQTSLQERFRYKYEQKQALDEYRDREEKVITLQKFCRGFLVRNHLLNQETLITCKQWGQKLLEG
    EKFPRVPEGRSLVYISKQFPSLVAKHVGAQDARSRWHHIFSMRKALAYLDIKRIRAPRARVYQNFIFEEKLPVSRIS
    VDSMCLYKENPQAFDEAIKELLFLFKEVHFRDFVVETESPTDDFPLAVKVHNYWVCPRYDNLPLFIQEGKDGSPEGR
    IGLVDLETFSWSPHPYPVEELAVMFPMHKELLMTEAKKLQIPFSTKEVERSVEKGLAFFEHMLGHQDFCSQKSVTPL
    RNCAPYIHLEVWRFSLKIFDILKAAIQLNGALNVLLSPDIRERLSAISDKQWLAISSQVTSSLLEQVSTNIYQSHTE
    EAKRVNSSGTFIMCRSPIFRKSIFIKNLPQFLNKKLQLLPEEKAISEALASLCLRAVMEELVATGNIYSYDSMDDFF
    EGQYCRIRY
    SEQ ID NO: 157-CT163 fragment nucleotide sequence
    TTTGTGTCGTTCGATAAATCCCGTTGCAGAGCGGATGTCCCCGATTTTTTTGAAAGGACAGGAAACTTTCTTCTCCA
    TTGTGTGGCAAGAGGGATCAATGTTTTATATCGTGTGAAACAAATCTCTAACTATCCTTCATGCTATTTCTCACATA
    AAGAGATTTCGTGTTGTCGTCGTATTGCAAACATTGTGATCTGTATTCTCACAGGGCCTCTGATGTTATTGGCCACT
    GTGTTAGGATTATTAGCGTATAGGTTTTCTTCTACTTACCAGACTTCTTTACAAGAACGCTTTCGTTATAAATATGA
    ACAAAAGCAAGCTTTAGATGAATACCGTGATAGGGAAGAAAAAGTCATTACGCTTCAGAAGTTTTGTAGAGGATTTC
    TAGTTAGAAATCATTTGCTCAACCAAGAAACTTTAACAACGTGTAAGCAATGGGGGCAAAAACTATTAGAAGGAGAA
    AAATTCCCAAGGGTCCCAGAAGGACGGTCTCTTGTATATATTTCAAAACAGTTTCCTTCTTTAGTAGCAAAACACGT
    TGGGGCTCAAGATGCCAGGTCTCGTTGGCATCATATTTTTTCTATGCGCAAAGCGCTTGCTTATTTAGATATTAAGC
    GCATACGAGCACCACGCGCTAGAGTTTATCAAAACTTTATATTCGAAGAAAAACTTCCTGTTTCACGAATTTCTGTA
    GATTCAATGTGTCTCTATAAAGAAAATCCACAAGCTTTCGATGAGGCGATCAAAGAACTCTTATTTCTATTTAAAGA
    AGTGCATTTCAGGGATTTTGTTGTAGAAACAGAGTCTCCAACAGACGATTTCCCCTTAGCCGTGAAAGTACACAACT
    ATTGGGTATGCCCACGATACGATAATTTACCTTTATTTATTCAAGAAGGAAAAGATGGCTCTCCAGAAGGGCGTATA
    GGACTGGTCGATCTAGAAACTTTTTCTTGGTCTCCACATCCATACCCCGTAGAAGAACTAGCTGTGATGTTTCCTAT
    GCATAAAGAGCTTCTTATGACAGAGGCGAAAAAACTACAAATCCCTTTCTCTACAAAGGAGGTCGAGCGCTCTGTAG
    AGAAAGGGCTTGCTTTTTTTGAACATATGCTAGGGCATCAAGATTTTTGTTCCCAAAAAAGCGTAACGCCATTGCGT
    AATTGTGCCCCTTATATTCATCTAGAAGTATGGAGATTCTCACTGAAAATTTTTGATATTTTAAAAGCTGCTATTCA
    ACTAAATGGAGCACTCAATGTTCTGTTATCTCCAGATATTCGAGAGCGGTTGAGTGCTATTTCGGATAAGCAATGGT
    TGGCTATTAGCTCCCAGGTTACGTCATCGTTACTCGAGCAAGTTTCTACAAACATCTATCAGTCTCATACTGAAGAG
    GCTAAACGAGTAAATTCTTCAGGGACTTTTATCATGTGTCGATCTCCTATCTTCCGGAAAAGCATCTTCATTAAAAA
    TCTCCCACAATTCTTAAACAAGAAATTGCAGTTGCTTCCAGAGGAGAAAGCAATCAGCGAGGCGCTTGCTTCTCTAT
    GTTTACGTGCAGTAATGGAAGAGCTAGTAGCAACAGGAAATATTTATTCTTATGATTCTATGGATGATTTTTTTGAA
    GGGCAGTATTGTCGCATTCGTTAT
    SEQ ID NO: 158-CT163 fragment protein sequence 
    FVSFDKSRCRADVPDFFERTGNFLLHCVARGINVLYRVKQISNYPSCYFSHKEISCCRRIANIVICILTGPLMLLAT
    VLGLLAYRFSSTYQTSLQERFRYKYEQKQALDEYRDREEKVITLQKFCRGFLVRNHLLNQETLTICKQWGQKLLEGE
    KFPRVPEGRSLVYISKQFPSLVAKHVGAQDARSRWHHIFSMRKALAYLDIKRIRAPRARVYQNFIFEEKLPVSRISV
    DSMCLYKENPQAFDEAIKELLFLFKEVHFRDFVVETESPTDDFPLAVKVHNYWVCPRYDNLPLFIQEGKDGSPEGRI
    GLVDLETFSWSPHPYPVEELAVMFPNHKELLMTEAKKLQIPFSTKEVERSVEKGLAFFEHMLGHQDFCSQKSVTPLR
    NCAPYIHLEVWRFSLKIFDILKAAIQLNGALNVLLSPDIRERLSAISDKQWLAISSQVTSSLLEQVSTNIYQSHTEE
    AKRVNSSGTFIMCRSPIFRKSIFIKNLPQFLNKKLQLLPEEKAISEALASLCLRAVMEELVATGNIYSYDSMDDFFE
    GQYCRIRY
    SEQ ID NO: 159-CT214 nucleotide sequence 
    ATGCGAACAGACTCTCTTTTCAATCCTCCCGACTCTACTAGAGGAGTTTTTCAGTTTTTAGAGACTCAGTGTGATCG
    AGCCGTGGCTCGGTCCAGACAAAGCCAATTTATAGGGTTAGTCTCTGCTGTAGCAGCTGCAGCATTATTATTGTTGC
    TTGTGGTCGCTCTATCTGTTCCAGGATTCCCAGTTGCAGCTTCAATTGTTGTAGGGGTTCTCTTTGCTTTATCGATC
    GTAGCATTAACAGCTTCGTTTTTGGTATATATAGCTAATGCTAAGCTTGTTGCAATAAGAATTAAATTCTTGAGTAG
    TGGTCTGCAAGATCACTTTTCGGAGTCATCTATTTTAGGGACTCTCCGTAAAGGACGTGGTGCTAGTATTCCGCTTA
    TTTCCGGACAAGCAGATGATCCTCTCCCTAATCGGATTGGGATCAAAAAAAGCACTGAAATGCGTGTTCTTCAAAAA
    GGAATTGGGACAGATTATAAAAAATATAAGCAGCATCTTGATAGAGTGAATAATGATTTCACTTTTGTCTGTGAGGG
    GATTAGCGCTTTAATTCCTACAGAAAAAGATGCTCCATTCCCTATAGAACCTTCTCATTTAGCAGGTGTTTTTTTAG
    TATCATTTTCACCAGACAAGAATCCGATTCTAAAGATTACGCGTCATGCTGAGAAGATGTTACAGCCTCCTCAAGGC
    GGATTCCCTAACGGGCTGGTTTGGTTGTGTGGAGCTCTTTCTGATCCTAAGAAATTTGCAGCTCCCTTTCTATCTTT
    GATTGAGAAGACTCACCAAGGGATTTTGGTGAGTAAAGACTTGAAAGACAATAAGGAAAGAAAGCTAGCTTTAGAGG
    CTTCCCTTCTTTCATTGAATATTTTCTTTTCCGGTTGGTGTTTGGGGAATCCGGAGTACAATCAGTATATCACAACT
    GCTGTAGCTGAGAAATATAGGGATGTCTCTGTAAGAAATTGTATTTATGATTTCCTGGATACAGGGAATGTGATTTC
    AGCTCTTGCTTTAGCAAGTAGTTATTCACAAGATTCCGCTTGGGCTGCAGGGTTGCAGAAAGTTTTACGTGAAGAAG
    ATAAAAAGACTAAGAAAAAGTCACGTGAAGAAGTCTCTTGTTTGTATCGTGATATAGATCCAGGCTGTTGTTTAAGA
    GCCCTTCCTAAGCGATTTGAATCCAAGTCTTCAGGTAGTCAAGGTAGTCCTAAAGAGCAGTTAAGCTCTTTGTTGAA
    AGCTTTAGACCAGAAAATTCCTTCAGGGATTTTAGGATTGATTGCAAAAGCTTCTTCTGCAGATCTCAAGGCTGATT
    TTGCAGGTATGCTTGAAGTTATTAAGCAATTACAAGCTTTATTCGATTCTTACCCACCTTTATGCGAAGACAATATT
    CTCTTGTGGTTAAGCGCTTCTTTAGAACAAGTAGGCTTGCAGAAGAAATTGAGAACCTTTTTACCTTCATCAGAAAA
    AAAACTCTTAGAAAGAGTTCTCTCTACATTTTTATTAGGTTTGTATACTCGAGGAGTCTTTTCTGTAGGGCAAGTGA
    ATCAGCTAGCTACTATTTGTAATACTCAGGACTCTACAGAATTCTGCCAGAGAGTAAGTGACCTTTCGTTAATTAAA
    CGAGCTCTACCTGCATTATTTGGTTAA
    SEQ ID NO: 160-CT214 protein sequence
    MRTDSLFNPPDSTRGVFQFLETQCDRAVARSRQSQFIGLVSAVAAAALLLLLVVALSVPGFPVAASIVVGVLFALSI
    VALTASFLVYIANAKLVAIRIKFLSSGLQDHFSESSILGTLRKGRGASIPLISGQADDPLPNRIGIKKSTEMRVLQK
    GIGTDYKKYKQHLDRVNNDFTFVCEGISALIPTEKDAPFPIEPSHLAGVFLVSFSPDKNPILKITRHAEKMLQPPQG
    GFPNGLVWLCGALSDPKKFAAPFLSLIEKTHQGILVSKDLKDNKERKLALEASLLSLNIFFSGWCLGNPEYNQYITT
    AVAEKYRDVSVRNCIYDFLDTGNVISALALASSYSQDSAWAAGLQKVLREEDKKTKKKSREEVSCLYRDIDPGCCLR
    ALPKRFESKSSGSQGSPKEQLSSLLKALDQKIPSGILGLIAKASSADLKADFAGMLEVIKQLQALFDSYPPLCEDNI
    LLWLSASLEQVGLQKKLRTFLPSSEKKLLERVLSTFLLGLYTRGVFSVGQVNQLATICNTQDSTEFCQRVSDLSLIK
    RALPALFG
    SEQ ID NO: 161-CT214 fragment nucleotide sequence
    CGAACAGACTCTCTTTTCAATCCTCCCGACTCTACTAGAGGAGTTTTTCAGTTTTTAGAGACTCAGTGTGATCGAGC
    CGTGGCTCGGTCCAGACAAAGCCAATTTATAGGGTTAGTCTCTGCTGTAGCAGCTGCAGCATTATTATTGTTGCTTG
    TGGTCGCTCTATCTGTTCCAGGATTCCCAGTTGCAGCTTCAATTGTTGTAGGGGTTCTCTTTGCTTTATCGATCGTA
    GCATTAACAGCTTCGTTTTTGGTATATATAGCTAATGCTAAGCTTGTTGCAATAAGAATTAAATTCTTGAGTAGTGG
    TCTGCAAGATCACTTTTCGGAGTCATCTATTTTAGGGACTCTCCGTAAAGGACGTGGTGCTAGTATTCCGCTTATTT
    CCGGACAAGCAGATGATCCTCTCCCTAATCCGATTGGGATCAAAAAAAGCACTGAAATGCGTGTTCTTCAAAAAGGA
    ATTGGGACAGATTATAAAAAATATAAGCAGCATCTTGATAGAGTGAATAATGATTTCACTTTTGTCTGTGAGGGGAT
    TAGCGCTTTAATTCCTACAGAAAAAGATGCTCCATTCCCTATAGAACCTTCTCATTTAGCAGGTGTTTTTTTAGTAT
    CATTTTCACCAGACAAGAATCCGATTCTAAAGATTACGCGTCATGCTGAGAAGATGTTACAGCCTCCTCAAGGCGGA
    TTCCCTAACGGGCTGGTTTGGTTGTGTGGAGCTCTTTCTGATCCTAAGAAATTTGCAGCTCCCTTTCTATCTTTGAT
    TGAGAAGACTCACCAAGGGATTTTGGTGAGTAAAGACTTGAAAGACAATAAGGAAAGAAAGCTAGCTTTAGAGGCTT
    CCCTTCTTTCATTGAATATTTTCTTTTCCGGTTGGTGTTTGGGGAATCCGGAGTACAATCAGTATATCACAACTGCT
    GTAGCTGAGAAATATAGGGATGTCTCTGTAAGAAATTGTATTTATGATTTCCTGGATACAGGGAATGTGATTTCAGC
    TCTTGCTTTAGCAAGTAGTTATTCACAAGATTCCGCTTGGGCTGCAGGGTTGCAGAAAGTTTTACGTGAAGAAGATA
    AAAAGACTAAGAAAAAGTCACGTGAAGAAGTCTCTTGTTTGTATCGTGATATAGATCCAGGCTGTTGTTTAAGAGCC
    CTTCCTAAGCGATTTGAATCCAAGTCTTCAGGTAGTCAAGGTAGTCCTAAAGAGCAGTTAAGCTCTTTGTTGAAAGC
    TTTAGACCAGAAAATTCCTTCAGGGATTTTAGGATTGATTGCAAAAGCTTCTTCTGCAGATCTCAAGGCTGATTTTG
    CAGGTATGCTTGAAGTTATTAAGCAATTACAAGCTTTATTCGATTCTTACCCACCTTTATGCGAAGACAATATTCTC
    TTGTGGTTAAGCGCTTCTTTAGAACAAGTAGGCTTGCAGAAGAAATTGAGAACCTTTTTACCTTCATCAGAAAAAAA
    ACTCTTAGAAAGAGTTCTCTCTACATTTTTATTAGGTTTGTATACTCGAGGAGTCTTTTCTGTAGGGCAAGTGAATC
    AGCTAGCTACTATTTGTAATACTCAGGACTCTACAGAATTCTGCCAGAGAGTAAGTGACCTTTCGTTAATTAAACGA
    GCTCTACCTGCATTATTTGGT
    SEQ ID NO: 162-CT214 fragment protein sequence
    RTDSLFNPPDSTRGVFQFLETQCDRAVARSRQSQFIGLVSAVAAAALLLLLVVALSVPGFPVAASIVVGVLFALSIV
    ALTASFLVYIANAKLVAIRIKFLSSGLQDHFSESSILGTLRKGRGASIPLISGQADDPLPNRIGIKKSTEMRVLQKG
    IGTDYKKYKQHLDRVNNDFTFVCEGISALIPTEKDAPFPIEPSHLAGVFLVSFSPDKNPILKITRHAEKMLQPPQGG
    FPNGLVWLCGALSDPKKFAAPFLSLIEKTHQGILVSKDLKDNKERKLALEASLLSLNIFFSGWCLGNPEYNQYITTA
    VAEKYRDVSVRNCIYDFLDTGNVISALALASSYSQDSAWAAGLQKVLREEDKKTKKKSREEVSCLYRDIDPGCCLRA
    LPKRFESKSSGSQGSPKEQLSSLLKALDQKIPSGILGLIAKASSADLKADFAGMLEVIKQLQALFDSYPPLCEDNIL
    LWLSASLEQVGLQKKLRTFLPSSEKKLLERVLSTFLLGLYTRGVFSVGQVNQLATICNTQDSTEFCQRVSDLSLIKR
    ALPALFG
    SEQ ID NO: 163-CT721 nucleotide sequence 
    ATGGACGGGACAAAAATTCACGAAACACGCTCCTTCTCTTGGTTAAACAACCAACAAGCCATCCCTCCTTCCGAAAT
    GGTGAAGGAGGCTTTTCAACGTTACGCAGACGTATTTTCGTACAGCGCAAATACCTCCATTCTGACTTTACAAGCAG
    AAGCTGAAGCTTCTGCCCGCAAACTCACAGGGTGTCAGGAGAAGGCTTTTACCTTTCATTTTATTCTTCATTACCCG
    AATGTCACGGCCATTATCGTGGCCGCTCTTCTGGAAAACCAAAATGCCTTCCAGGGGCGTAATCACCTTCTTGTTCC
    TTCTTGCGAGCAACAATTTATCATTAATGCTCTCTGCCGTCGGCAAAACTTAGGGACAACCTATGATTGGGTAACCA
    GCAAAAACGGCCGCGTAAAAGAATCCGATCTAGCAGAAGCTTTTTCCCCGCGGACCTTGCTGTTTTCCATATCTGCT
    GCGAATGGTATGACAGGATTTCTGGAAGCGATCCCTGAGCTTGCTGCGTTATGTAAAGAACGCGGGGTAATTTTCCA
    CATAGACCTGAGTGATATCTTAGGAAGATGCGCGCTACCCGCAGAACTCTATCAAGCAGATATCCTTACTTTTTCTT
    CACAGTCTCTTGGTGGGATTGGTCCCTCAGGAGCGATGTTTATTTCTCCCGCTTTAACAAAATATTTTTCCTTATGG
    CTTCCTAGTAATCCACAAGTCCCTACCTGCCTGAGTTCTCTTGCAGCTTTTTCTCTTGCCTGTCAGGAACGTACAAC
    CGCTTTCTCCTCTCTTGTGCTTTCTGCTATTTCTTCTCGAGCAGCTCTTAAACAGGCTCTTTCCGCTATTCCTCAAG
    TCGAATTCCTTTTGGAAGACAGTGCCCCTCGTCTCCCTAATGTCGCTGTCTTTGCTATTCCTGGTATCCCTGCAGAG
    TCCTTAGGATTTTTCCTTTCCCAGAAAAATATTTTTGTAGGGTTAGGCTATGAACGCTTCCAGCCTCTATCGCAGAT
    TTTACAAAGTTCGGGCATCTCTCCCTTCTTATGCCACAGCGCTTTACACGTATCTTTTACTGAACGTACTCCTACTA
    CACACTTCTCTGCATTAGCAACCGCCTTACAAGAAGGGATCTCTCACCTACAACCACTGGTTACTCAATCCTTATGA
    SEQ ID NO: 164-CT72 1protein sequence
    MDGTKIHETRSFSWLNNQQAIPPSEMVKEAFQRYADVFSYSANTSILTLQAEAEASARKLTGCQEKAFTFHFILHYP
    NVTAIIVAALLENQNAFQGRNHLLVPSCEQQFIINALCIRQNLGTTYDWVTSKNGRVKESDLAEALSPRTLLFSISA
    ANGMTGFLEAIPELAALCKERGVIFHIDLSDILGRCALPAELYQADILTFSSOSLGGIGPSGAMFISPALTKYFSLW
    LPSNPQVPTCLSSLAAFSLACQERTTAFSSLVLSAISSRAALKQALSAIPQVEFLLEDSAPRLPNVAVFAIPGIPAE
    SLGFFLSQKNIFVGLGYERFQPLSQILQSSGISPFLCHSALHVSFTERTPTTHFSALATALQEGISHLQPLVTQSL
    SEQ ID NO: 165-CT721 fragment nucleotide sequence
    GACGGGACAAAAATTCACGAAACACGCTCCTTCTCTTGGTTAAACAACCAACAAGCCATCCCTCCTTCCGAAATGGT
    GAAGGAGGCTTTTCAACGTTACGCAGACGTATTTTCGTACAGCGCAAATACCTCCATTCTGACTTTACAAGCAGAAG
    CTGAAGCTTCTGCCCGCAAACTCACAGGGTGTCAGGAGAAGGCTTTTACCTTTCATTTTATTCTTCATTACCCGAAT
    GTCACGGCCATTATCGTGGCCGCTCTTCTGGAAAACCAAAATGCCTTCCAGGGGCGTAATCACCTTCTTGTTCCTTC
    TTGCGAGCAACAATTTATCATTAATGCTCTCTGCCGTCGGCAAAACTTAGGGACAACCTATGATTGGGTAACCAGCA
    AAAACGGCCGCGTAAAAGAATCCGATCTAGCAGAAGCTCTTTCCCCGCGGACCTTGCTGTTTTCCATATCTGCTGCG
    AATGGTATGACAGGATTTCTGGAAGCGATCCCTGAGCTTGCTGCGTTATGTAAAGAACGCGGGGTAATTTTCCACAT
    AGACCTGAGTGATATCTTAGGAAGATGCGCGCTACCCGCAGAACTCTATCAAGCAGATATCCTTACTTTTTCTTCAC
    AGTCTCTTGGTGGGATTGGTCCCTCAGGAGCGATGTTTATTTCTCCCGCTTTAACAAAATATTTTTCCTTATGGCTT
    CCTAGTAATCCACAAGTCCCTACCTGCCTGAGTTCTCTTGCAGCTTTTTCTCTTGCCTGTCAGGAACGTACAACCGC
    TTTCTCCTCTCTTGTGCTTTCTGCTATTTCTTCTCGAGCAGCTCTTAAACAGGCTCTTTCCGCTATTCCTCAAGTCG
    AATTCCTTTTGGAAGACAGTGCCCCTCGTCTCCCTAATGTCGCTGTCTTTGCTATTCCTGGTATCCCTGCAGAGTCC
    TTAGGATTTTTCCTTTCCCAGAAAAATATTTTTGTAGGGTTAGGCTATGAACGCTTCCAGCCTCTATCGCAGATTTT
    ACAAAGTTCGGGCATCTCTCCCTTCTTATGCCACAGCGCTTTACACGTATCTTTTACTGAACGTACTCCTACTACAC
    ACTTCTCTGCATTAGCAACCGCCTTACAAGAAGGGATCTCTCACCTACAACCACTGGTTACTCAATCCTTA
    SEQ ID NO: 166-CT721 fragment protein sequence
    DGTKIHETRSFSWLNNQQAIPPSEMVKEAFQRYADVFSYSANTSILTLQAEAEASARKLTGCQEKAFTFHFILHYPN
    VTAIIVAALLENQNAFQGRNHLLVPSCEQQFIINALCRRQNLGTTYDWVISKNGRVKESDLAEALSPRTLLFSISAA
    NGMTGFLEAIPELAALCKERGVIFHIDLSDILGRCALPAELYQADILTFSSQSLGGIGPSGAMFISPALTKYFSLWL
    PSNPQVPTCLSSLAAFSLACQERTTAFSSLVLSAISSRAALKQALSAIPQVEFLLEDSAPRLPNVAVFAIPGIPAES
    LGFFLSQKNIFVGLGYERFQPLSCIILQSSGISPFLCHSALHVSFTERTPTTHFSALATALQEGISHLQPLVTQSL
    SEQ ID NO: 167-CT127 nucleotide sequence
    ATGCCGCACCAAGTCTTATTGTCTCCTGTTTGCGATCTTTTATCGAATGCTGAAGGTATAGAGACGCAAGTACTGTT
    TGGAGAAAGGATATGCAACCATAACCATCGACACTATGCCTATTCTCAACTAGTCTTTTCTTCTATATGGAAGCCAT
    ACCCTGGCGACTCTCTACAGAATATTCCTCTATTCTCTTCCCAACTGCAGCCTCCTAATGCTGTTGTCTGCTCTCAA
    GAAGCTTTTTTAGATCCTTGGCATATCCCCTTACCTTTTGCCGCTCCGCTCCACATAGATAACCAAAATCAAGTGTC
    CCTATCTCCTGCTAGCATAGCATTATTAAATTCCAATTCCAGAAGTAACTATGCAAAAGCTTTCTGCTCTACCAAAG
    AGATTCGTTTTTTAAATTCTTCATTCTCTCCAAGAGATTTAGTTTCTTTCGCAGAACAATTGATAGATACTCCGTAC
    GTTTGGGGTGGCCGGTGCATTCATAAACAGCTTCCTCGTAATGGTGTAGATTGTTCGGGGTATATTCAACTACTTTA
    CCAAGTCACAGGAAGAAATATCCCTCGCAATGCTAGAGATCAATACAGAGACTGTTCTCCAGTAAAAGATTTCTCGT
    CTCTACCTATAGGAGGACTTATCTTCCTCAAGAAAGCAAGCACGGGACAAATCAACCATGTTATGATGAAAATCTCG
    GAGCATGAATTCATTCATGCTGCGGAAAAAATAGGGAAAGTAGAAAAAGTAATCCTAGGAAATAGGGCTTTCTTTAA
    AGGGAATCTATTCTGCTCATTAGGTGAACCGCCTATAGAAGCTGTTTTTGGCGTTCCTAAAAATAGAAAAGCCTTCT
    TTTGA
    SEQ ID NO: 168-CT127 protein sequence
    MPHQVLLSPVCDLLSNAEGIETQVLFGERICNHNHRHYAYSQLVFSSIWKPYPGDSLCMIPLFSSQLQPPNAVVCSQ
    EAFLDPWHIPLPFAAPLHIDNRNQVSLSPASIALLNSNSRSNYAKAFCSTKEIRFLNSSFSPRDLVSFAEQLIDTPY
    VWGGRCIHKQLPRNGVDCSGYI4LLYRVTGRNIPRNARDQYRDCSPVKDFSSLPIGGLIFLKKASTGQINHVMMKIS
    EHEFIHAAEKIGKVEKVILGIIRAFFKGNLFCSLGEPPIEAVFGVPKNRKAFF
    SEQ ID NO: 169-CT127 fragment nucleotide sequence 
    CCGCACCAAGTCTTATTGTCTCCTGTTTGCGATCTTTTATCGAATGCTGAAGGTATAGAGACGCAAGTACTGTTTGG
    AGAAAGGATATGCAACCATAACCATCGACACTATGCCTATTCTCAACTAGTCTTTTCTTCTATATGGAAGCCATACC
    CTGGCGACTCTCTACAGAATATTCCTCTATTCTCTTCCCAACTGCAGCCTCCTAATGCTGTTGTCTGCTCTCAAGAA
    GCTTTTTTAGATCCTTGGCATATCCCCTTACCTTTTGCCGCTCCGCTCCACATAGATAACCAAAATCAAGTGTCCCT
    ATCTCCTGCTAGCATAGCATTATTAAATTCCAATTCCAGAAGTAACTATGCAAAAGCTTTCTGCTCTACCAAAGAGA
    TTCGTTTTTTAAATTCTTCATTCTCTCCAAGAGATTTAGTTTCTTTCGCAGAACAATTGATAGATACTCCGTACGTT
    TGGGGTGGCCGGTGCATTCATAAACAGCTTCCTCGTAATGGTGTAGATTGTTCGGGGTATATTCAACTACTTTACCA
    AGTCACAGGAAGAAATATCCCTCGCAATGCTAGAGATCAATACAGAGACTGTTCTCCAGTAAAAGATTTCTCGTCTC
    TACCTATAGGAGGACTTATCTTCCTCAAGAAAGCAAGCACGGGACAAATCAACCATGTTATGATGAAAATCTCGGAG
    CATGAATTCATTCATGCTGCGGAAAAAATAGGGAAAGTAGAAAAAGTAATCCTAGGAAATAGGGCTTTCTTTAAAGG
    GAATCTATTCTGCTCATTAGGTGAACCGCCTATAGAAGCTGTTTTTGGCGTTCCTAAAAATAGAAAAGCCTTCTTT
    SEQ ID NO: 170-CT127 fragment protein sequence 
    PHQVLLSPVCDLLSNAEGIETQVLFGERICNHNHRHYAYSQLVFSSINKPYPGDSLQNIPLFSSQLQPPNAVVCSQE
    AFLDPWHIPLPFAAPLHIDNQNQVSLSPASIALLNSNSRSNYAKAFCSTKEIRFLNSSFSPRDLVSFAEQLIDTPYV
    WGGRCIHKQLPRNGVDCSGYIQLLYQVTGRNIPRNARDQYRDCSPVKDFSSLPIGGLIFLKKASTGQINHVMMKISE
    HEFIHAAEKIGKVEKVILGNRAFFKGNLFCSLGEPPIEAVFGVPKNRKAFF

Claims (25)

1. A protein comprising the amino acid sequence of any one of SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO: 48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:136 or SEQ ID NO:140 for use in therapy or diagnosis.
2. A protein having 50% or greater sequence identity to a protein according to claim 1.
3. A protein comprising a fragment of the amino acid sequence of claim 2.
4. A protein according to claim 3, wherein the fragment comprises at least 8 consecutive amino acids of the amino acid sequence of SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO: 48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:136 or SEQ ID NO:140.
5. An antibody which binds to a protein according to claim 2 for use in therapy or diagnosis.
6. A nucleic acid molecule which encodes a protein or antibody according to claim 2 for use in therapy or diagnosis.
7. A nucleic acid molecule according to claim 6, comprising the nucleotide sequence of any one of SEQ ID NO: 1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:135 or SEQ ID NO:139.
8. A nucleic acid molecule comprising of a fragment of the nucleotide sequence of any one of SEQ ID NO: 1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43 or SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:135 or SEQ ID NO:139.
9. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to claim 6.
10. A nucleic acid molecule comprising a nucleotide sequence having 50% or greater sequence identity to a nucleic acid molecule according to claim 6.
11. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to claim 6 under high stringency conditions.
12. A vector comprising a nucleic acid molecule according to claim 6 for use in therapy or diagnosis.
13. A host cell comprising a nucleic acid molecule according to claim 6 for use in therapy or diagnosis.
14. A composition comprising the protein of claim 2 for use in therapy or diagnosis.
15-18. (canceled)
19. A method of raising an immune response in a mammal, comprising administering to the mammal the protein according to claim 2.
20. A method of eliciting antibodies in a mammal that are capable of neutralising Chlamydia infection, comprising administering to the mammal a protein according to claim 2.
21. The method according to claim 19, wherein the immune response is a CD4+ Th1 cell-mediated response.
22. (canceled)
23. A method of treating, preventing or diagnosing Chlamydia infection in a mammal, comprising administering to the mammal a therapeutically effective amount of a protein according to claim 2.
24. A composition comprising a combination of Chlamydia antigens or their encoding nucleic acids.
25. The composition according to claim 24, wherein the combination comprises CT279+CT601, CT372+CT443, CT733+CT153, CT456+CT381, CT279+CT153+CT733+CT601, CT279+CT601+CT372+CT443, CT823+CT733+CT043+CT456, CT387+CT812+CT869, CT387+CT812C+CT869 (or variants thereof).
26. The composition according to claim 24, wherein the Chlamydia antigens or their encoding nucleic acids are a combined preparation for simultaneous, separate or sequential administration.
27. A method for diagnosing Chlamydia infection, comprising:
(a) raising an antibody against a protein according to claim 2;
(b) contacting the antibody of step (a) with a biological sample suspected of being infected with Chlamydia under conditions suitable for the formation of antibody-antigen complexes; and
(c) detecting said complexes, wherein detection of said complex is indicative of Chlamydia infection.
28. A method of treating, preventing or diagnosing Chlamydia infection in a mammal, comprising administering to the mammal a therapeutically effective amount of the composition according to claim 24.
US15/590,570 2009-03-06 2017-05-09 Chlamydia antigens Abandoned US20180092970A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/590,570 US20180092970A1 (en) 2009-03-06 2017-05-09 Chlamydia antigens
US16/260,554 US10716842B2 (en) 2009-03-06 2019-01-29 Chlamydia antigens

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15792109P 2009-03-06 2009-03-06
PCT/IB2010/050988 WO2010100632A2 (en) 2009-03-06 2010-03-08 Chlamydia antigens
US201113255002A 2011-11-21 2011-11-21
US14/035,750 US9151756B2 (en) 2009-03-06 2013-09-24 Chlamydia antigens
US14/831,535 US9675683B2 (en) 2009-03-06 2015-08-20 Chlamydia antigens
US15/590,570 US20180092970A1 (en) 2009-03-06 2017-05-09 Chlamydia antigens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/831,535 Division US9675683B2 (en) 2009-03-06 2015-08-20 Chlamydia antigens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/260,554 Division US10716842B2 (en) 2009-03-06 2019-01-29 Chlamydia antigens

Publications (1)

Publication Number Publication Date
US20180092970A1 true US20180092970A1 (en) 2018-04-05

Family

ID=42199074

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/255,002 Active US8568732B2 (en) 2009-03-06 2010-03-08 Chlamydia antigens
US14/035,750 Active US9151756B2 (en) 2009-03-06 2013-09-24 Chlamydia antigens
US14/831,535 Active US9675683B2 (en) 2009-03-06 2015-08-20 Chlamydia antigens
US15/590,570 Abandoned US20180092970A1 (en) 2009-03-06 2017-05-09 Chlamydia antigens
US16/260,554 Active US10716842B2 (en) 2009-03-06 2019-01-29 Chlamydia antigens

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/255,002 Active US8568732B2 (en) 2009-03-06 2010-03-08 Chlamydia antigens
US14/035,750 Active US9151756B2 (en) 2009-03-06 2013-09-24 Chlamydia antigens
US14/831,535 Active US9675683B2 (en) 2009-03-06 2015-08-20 Chlamydia antigens

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/260,554 Active US10716842B2 (en) 2009-03-06 2019-01-29 Chlamydia antigens

Country Status (9)

Country Link
US (5) US8568732B2 (en)
EP (2) EP3549602A1 (en)
JP (1) JP2012519482A (en)
CN (1) CN102438650A (en)
AU (1) AU2010220103A1 (en)
CA (1) CA2754618A1 (en)
ES (1) ES2733084T3 (en)
RU (1) RU2011140508A (en)
WO (1) WO2010100632A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061848A1 (en) * 2000-07-20 2002-05-23 Ajay Bhatia Compounds and methods for treatment and diagnosis of chlamydial infection
EP1981905B1 (en) * 2006-01-16 2016-08-31 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Chlamydia vaccine
JP2012519482A (en) * 2009-03-06 2012-08-30 ノバルティス アーゲー Chlamydia antigen
US20120135025A1 (en) * 2010-10-20 2012-05-31 Genocea Biosciences, Inc. Chlamydia antigens and uses thereof
KR20140088108A (en) * 2011-09-30 2014-07-09 더 유니버시티 오브 브리티시 콜롬비아 Chlamydia antigen compositions and uses thereof
US20130095487A1 (en) * 2011-10-18 2013-04-18 University Of South Florida Interferon-Gamma Response as a Diagnostic Test for Persistent Chlamydial Infections
US9046530B2 (en) * 2011-12-02 2015-06-02 Board Of Regents, The University Of Texas System Methods and compositions for chlamydial antigens as reagents for diagnosis of tubal factor infertility and chlamydial infection
CN113940994B (en) * 2021-11-09 2023-09-15 南华大学 Preparation method and application of chitosan-Pickering emulsion interleukin 12 adjuvant system
WO2023187743A1 (en) * 2022-03-31 2023-10-05 The University Of Queensland Improved chimeric polypeptides and uses thereof

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8205892D0 (en) 1982-10-18 1982-10-18 Bror Morein IMMUNOGENT MEMBRANE PROTEIN COMPLEX, SET FOR PREPARATION AND USE THEREOF
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO1995013796A1 (en) 1993-11-16 1995-05-26 Depotech Corporation Vesicles with controlled release of actives
IL73534A (en) 1983-11-18 1990-12-23 Riker Laboratories Inc 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds
US5916588A (en) 1984-04-12 1999-06-29 The Liposome Company, Inc. Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use
US6090406A (en) 1984-04-12 2000-07-18 The Liposome Company, Inc. Potentiation of immune responses with liposomal adjuvants
US4777127A (en) 1985-09-30 1988-10-11 Labsystems Oy Human retrovirus-related products and methods of diagnosing and treating conditions associated with said retrovirus
US4680338A (en) 1985-10-17 1987-07-14 Immunomedics, Inc. Bifunctional linker
US5011828A (en) 1985-11-15 1991-04-30 Michael Goodman Immunostimulating guanine derivatives, compositions and methods
GB8702816D0 (en) 1987-02-07 1987-03-11 Al Sumidaie A M K Obtaining retrovirus-containing fraction
US5219740A (en) 1987-02-13 1993-06-15 Fred Hutchinson Cancer Research Center Retroviral gene transfer into diploid fibroblasts for gene therapy
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US5206152A (en) 1988-04-08 1993-04-27 Arch Development Corporation Cloning and expression of early growth regulatory protein genes
US5422120A (en) 1988-05-30 1995-06-06 Depotech Corporation Heterovesicular liposomes
AP129A (en) 1988-06-03 1991-04-17 Smithkline Biologicals S A Expression of retrovirus gag protein eukaryotic cells
NZ241926A (en) 1988-08-25 1993-08-26 Liposome Co Inc Immunisation dosage form comprising a salt of an organic acid derivative of a sterol and an antigen
US5238944A (en) 1988-12-15 1993-08-24 Riker Laboratories, Inc. Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine
EP0832980B1 (en) 1989-01-23 2002-06-19 Chiron Corporation Recombinant therapies for infection and hyperproliferative disorders
ATE277193T1 (en) 1989-03-21 2004-10-15 Vical Inc EXPRESSION OF EXOGENEOUS POLYNUCLEOTIDE SEQUENCES IN VERTEBRATES
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US4929624A (en) 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
JPH0832638B2 (en) 1989-05-25 1996-03-29 カイロン コーポレイション Adjuvant formulation comprising submicron oil droplet emulsion
AU648261B2 (en) 1989-08-18 1994-04-21 Novartis Vaccines And Diagnostics, Inc. Recombinant retroviruses delivering vector constructs to target cells
US5585362A (en) 1989-08-22 1996-12-17 The Regents Of The University Of Michigan Adenovirus vectors for gene therapy
US4988815A (en) 1989-10-26 1991-01-29 Riker Laboratories, Inc. 3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines
ZA911974B (en) 1990-03-21 1994-08-22 Res Dev Foundation Heterovesicular liposomes
US5658731A (en) 1990-04-09 1997-08-19 Europaisches Laboratorium Fur Molekularbiologie 2'-O-alkylnucleotides as well as polymers which contain such nucleotides
US5149655A (en) 1990-06-21 1992-09-22 Agracetus, Inc. Apparatus for genetic transformation
GB2276169A (en) 1990-07-05 1994-09-21 Celltech Ltd Antibodies specific for carcinoembryonic antigen
AU657111B2 (en) 1990-12-20 1995-03-02 Dana-Farber Cancer Institute Control of gene expression by ionizing radiation
ATE229943T1 (en) 1991-03-01 2003-01-15 Minnesota Mining & Mfg INTERMEDIATE PRODUCTS FOR THE PRODUCTION OF 1-SUBSTITUTED, 2-SUBSTITUTED-1H-IMIDAZO(4,5-C)QUINOLINE-4-AMINES
US5389640A (en) 1991-03-01 1995-02-14 Minnesota Mining And Manufacturing Company 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
ES2197145T3 (en) 1991-08-20 2004-01-01 The Government Of The Usa As Represented By The Secretary Of The Deptm. Of Health And Human Services TRANSFER OF GENES MEDIATED BY ADENOVIRUS TO GASTROINTESTINAL.
US5936076A (en) 1991-08-29 1999-08-10 Kirin Beer Kabushiki Kaisha αgalactosylceramide derivatives
US5268376A (en) 1991-09-04 1993-12-07 Minnesota Mining And Manufacturing Company 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5266575A (en) 1991-11-06 1993-11-30 Minnesota Mining And Manufacturing Company 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines
WO1993010218A1 (en) 1991-11-14 1993-05-27 The United States Government As Represented By The Secretary Of The Department Of Health And Human Services Vectors including foreign genes and negative selective markers
GB9125623D0 (en) 1991-12-02 1992-01-29 Dynal As Cell modification
FR2688514A1 (en) 1992-03-16 1993-09-17 Centre Nat Rech Scient Defective recombinant adenoviruses expressing cytokines and antitumour drugs containing them
IL105325A (en) 1992-04-16 1996-11-14 Minnesota Mining & Mfg Immunogen/vaccine adjuvant composition
WO1993025234A1 (en) 1992-06-08 1993-12-23 The Regents Of The University Of California Methods and compositions for targeting specific tissue
EP0644946A4 (en) 1992-06-10 1997-03-12 Us Health Vector particles resistant to inactivation by human serum.
SG49909A1 (en) 1992-06-25 1998-06-15 Smithkline Beecham Biolog Vaccine composition containing adjuvants
GB2269175A (en) 1992-07-31 1994-02-02 Imperial College Retroviral vectors
CA2592997A1 (en) 1992-12-03 1994-06-09 Genzyme Corporation Pseudo-adenovirus vectors
US5395937A (en) 1993-01-29 1995-03-07 Minnesota Mining And Manufacturing Company Process for preparing quinoline amines
DE69405551T3 (en) 1993-03-23 2005-10-20 Smithkline Beecham Biologicals S.A. 3-0-DEAZYLATED MONOPHOSPHORYL LIPID A-CONTAINING VACCINE COMPOSITIONS
US5759573A (en) 1993-04-22 1998-06-02 Depotech Corporation Cyclodextrin liposomes encapsulating pharmacologic compounds and methods for their use
CA2166118C (en) 1993-06-24 2007-04-17 Frank L. Graham Adenovirus vectors for gene therapy
DE69425661T2 (en) 1993-07-15 2001-04-19 Minnesota Mining & Mfg IMIDAZO [4,5-c] PYRIDINE-4-AMINE
US5352784A (en) 1993-07-15 1994-10-04 Minnesota Mining And Manufacturing Company Fused cycloalkylimidazopyridines
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
EP0814154B1 (en) 1993-09-15 2009-07-29 Novartis Vaccines and Diagnostics, Inc. Recombinant alphavirus vectors
DE69435223D1 (en) 1993-10-25 2009-09-03 Canji Inc Recombinant adenovirus vector and method of use
AU5543294A (en) 1993-10-29 1995-05-22 Pharmos Corp. Submicron emulsions as vaccine adjuvants
GB9326174D0 (en) 1993-12-22 1994-02-23 Biocine Sclavo Mucosal adjuvant
GB9326253D0 (en) 1993-12-23 1994-02-23 Smithkline Beecham Biolog Vaccines
EP0772689B1 (en) 1994-05-09 2007-12-19 Oxford Biomedica (UK) Limited Retroviral vectors having a reduced recombination rate
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6429199B1 (en) 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
AUPM873294A0 (en) 1994-10-12 1994-11-03 Csl Limited Saponin preparations and use thereof in iscoms
WO1996017072A2 (en) 1994-11-30 1996-06-06 Chiron Viagene, Inc. Recombinant alphavirus vectors
US5482936A (en) 1995-01-12 1996-01-09 Minnesota Mining And Manufacturing Company Imidazo[4,5-C]quinoline amines
UA56132C2 (en) 1995-04-25 2003-05-15 Смітклайн Бічем Байолоджікалс С.А. Vaccine composition (variants), method for stabilizing qs21 providing resistance against hydrolysis (variants), method for manufacturing vaccine
GB9513261D0 (en) 1995-06-29 1995-09-06 Smithkline Beecham Biolog Vaccines
US5707829A (en) 1995-08-11 1998-01-13 Genetics Institute, Inc. DNA sequences and secreted proteins encoded thereby
ATE424463T1 (en) 1996-05-06 2009-03-15 Oxford Biomedica Ltd RECOMBINATION-INCAPABLE RETROVIRAL VECTORS
ES2333069T3 (en) 1997-03-10 2010-02-16 Ottawa Hospital Research Institute USE OF NUCLEIC ACIDS CONTAINING NON-METHYLED CPG DINUCLEOTIDE IN COMBINATION WITH ALUMINUM AS AN ASSISTANT.
US6818222B1 (en) 1997-03-21 2004-11-16 Chiron Corporation Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants
US6080725A (en) 1997-05-20 2000-06-27 Galenica Pharmaceuticals, Inc. Immunostimulating and vaccine compositions employing saponin analog adjuvants and uses thereof
GB9712347D0 (en) 1997-06-14 1997-08-13 Smithkline Beecham Biolog Vaccine
WO1999011241A1 (en) 1997-09-05 1999-03-11 Smithkline Beecham Biologicals S.A. Oil in water emulsions containing saponins
DK1032674T3 (en) 1997-11-21 2007-04-10 Serono Genetics Inst Sa Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection
US7041490B1 (en) * 1997-11-28 2006-05-09 Serono Genetics Institute, S.A. Chlamydia trachomatis polynucleotides and vectors, recombinant host cells, DNA chips or kits containing the same
EP1032676A2 (en) * 1997-11-28 2000-09-06 Genset $i(CHLAMYDIA TRACHOMATIS) GENOMIC SEQUENCE AND POLYPEPTIDES, FRAGMENTS THEREOF AND USES THEREOF, IN PARTICULAR FOR THE DIAGNOSIS, PREVENTION AND TREATMENT OF INFECTION
GB9725084D0 (en) 1997-11-28 1998-01-28 Medeva Europ Ltd Vaccine compositions
CN1285753A (en) 1997-12-02 2001-02-28 鲍德杰克特疫苗公司 Transdermal delivery of particulate vaccine compositions
WO1999040936A2 (en) 1998-02-12 1999-08-19 American Cyanamid Company Pneumococcal and meningococcal vaccines formulated with interleukin-12
US6303114B1 (en) 1998-03-05 2001-10-16 The Medical College Of Ohio IL-12 enhancement of immune responses to T-independent antigens
CN1296416A (en) 1998-04-09 2001-05-23 史密丝克莱恩比彻姆生物有限公司 Adjuvant compositions
DE69937343T2 (en) 1998-05-07 2008-07-24 Corixa Corp., Seattle ADJUVANEAN COMPOSITION AND METHODS OF USE THEREOF
US6248329B1 (en) * 1998-06-01 2001-06-19 Ramaswamy Chandrashekar Parasitic helminth cuticlin nucleic acid molecules and uses thereof
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US6110929A (en) 1998-07-28 2000-08-29 3M Innovative Properties Company Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof
GB9817052D0 (en) 1998-08-05 1998-09-30 Smithkline Beecham Biolog Vaccine
US7357936B1 (en) 1998-10-16 2008-04-15 Smithkline Beecham Biologicals, Sa Adjuvant systems and vaccines
JP2002529069A (en) 1998-11-12 2002-09-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Chlamydia pneumoniae genome sequence
US6565856B1 (en) 1998-12-08 2003-05-20 Corixa Corporation Compounds and methods for treatment and diagnosis of chlamydial infection
US20020061848A1 (en) 2000-07-20 2002-05-23 Ajay Bhatia Compounds and methods for treatment and diagnosis of chlamydial infection
CA2746535A1 (en) 1998-12-08 2000-06-15 Corixa Corporation Compounds and methods for treatment and diagnosis of chlamydial infection
GB9828000D0 (en) 1998-12-18 1999-02-10 Chiron Spa Antigens
US20030130212A1 (en) 1999-01-14 2003-07-10 Rossignol Daniel P. Administration of an anti-endotoxin drug by intravenous infusion
US6551600B2 (en) 1999-02-01 2003-04-22 Eisai Co., Ltd. Immunological adjuvant compounds compositions and methods of use thereof
DK1150918T3 (en) 1999-02-03 2004-12-20 Biosante Pharmaceuticals Inc Process for the preparation of therapeutic calcium phosphate particles
GB9902555D0 (en) 1999-02-05 1999-03-24 Neutec Pharma Plc Medicament
JP4695763B2 (en) 1999-05-03 2011-06-08 サノフィ、パストゥール、リミテッド Chlamydia antigen and corresponding DNA fragments and uses thereof
US6331539B1 (en) 1999-06-10 2001-12-18 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
CA2385325C (en) 1999-09-20 2012-04-10 Aventis Pasteur Limited Chlamydia antigens and corresponding dna fragments and uses thereof
US6632663B1 (en) 1999-09-22 2003-10-14 Aventis Pasteur Limited DNA immunization against chlamydia infection
WO2001021152A1 (en) 1999-09-24 2001-03-29 Smithkline Beecham Biologicals S.A. Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one nonionic surfactant
IL148672A0 (en) 1999-09-24 2002-09-12 Smithkline Beecham Biolog Use of combination of polyxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines
EP1700603A3 (en) 1999-09-25 2007-06-13 Coley Pharmaceutical GmbH Immunostimulatory nucleic acids
EP1240331B1 (en) 1999-12-22 2010-04-07 Aventis Pasteur Limited Chlamydia antigens and corresponding dna fragments and uses thereof
US20010044416A1 (en) 2000-01-20 2001-11-22 Mccluskie Michael J. Immunostimulatory nucleic acids for inducing a Th2 immune response
US20030175700A1 (en) 2000-04-21 2003-09-18 Ajay Bhatia Compounds and methods for treatment and diagnosis of chlamydial infection
EP1282718B1 (en) 2000-05-08 2006-12-20 Sanofi Pasteur Limited Chlamydia antigens and corresponding dna fragments and uses thereof
WO2002002606A2 (en) 2000-07-03 2002-01-10 Chiron S.P.A. Immunisation against chlamydia pneumoniae
US6339133B1 (en) 2000-07-05 2002-01-15 Solvay Polyolefins Europe - Belgium Emergency stop of a polymerization in the gas phase
US6756383B2 (en) 2000-09-01 2004-06-29 Chiron Corporation Heterocyclic derivatives of quinolinone benimidazoles
MXPA03002032A (en) 2000-09-11 2003-07-24 Chiron Corp Quinolinone derivatives.
AU9475001A (en) 2000-09-26 2002-04-08 Hybridon Inc Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
UA74852C2 (en) 2000-12-08 2006-02-15 3M Innovative Properties Co Urea-substituted imidazoquinoline ethers
US6660747B2 (en) 2000-12-08 2003-12-09 3M Innovative Properties Company Amido ether substituted imidazoquinolines
US6664265B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Amido ether substituted imidazoquinolines
US6677347B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Sulfonamido ether substituted imidazoquinolines
US6660735B2 (en) 2000-12-08 2003-12-09 3M Innovative Properties Company Urea substituted imidazoquinoline ethers
US6677348B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Aryl ether substituted imidazoquinolines
US6664260B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Heterocyclic ether substituted imidazoquinolines
US6664264B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Thioether substituted imidazoquinolines
US6667312B2 (en) 2000-12-08 2003-12-23 3M Innovative Properties Company Thioether substituted imidazoquinolines
PT1372708E (en) 2001-02-13 2008-09-29 Us Gov Sec Army Vaccine for transcutaneous immunization against travellers` diarrhoea
EP2316482A1 (en) 2001-03-19 2011-05-04 Intercell USA, Inc. Transcutaneous immunostimulation
WO2003024480A2 (en) 2001-09-14 2003-03-27 Cytos Biotechnology Ag In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles
CN1599623B (en) 2001-09-14 2011-05-11 赛托斯生物技术公司 Packaging of immunostimulatory substances into virus-like particles: method of preparation and use
GB0123580D0 (en) 2001-10-01 2001-11-21 Glaxosmithkline Biolog Sa Vaccine
WO2003035836A2 (en) 2001-10-24 2003-05-01 Hybridon Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
US7321033B2 (en) 2001-11-27 2008-01-22 Anadys Pharmaceuticals, Inc. 3-B-D-ribofuranosylthiazolo [4,5-d] pyrimidine nucleosides and uses thereof
DE60234376D1 (en) 2001-11-27 2009-12-24 Anadys Pharmaceuticals Inc 3-BETA-D-RIBOFURANOSYLTHIAZOLO (4,5-DELTA) PYRIDIMINE NUCLEOSIDE AND ITS USE
EP2335724A1 (en) * 2001-12-12 2011-06-22 Novartis Vaccines and Diagnostics S.r.l. Immunisation against chlamydia trachomatis
US6677349B1 (en) 2001-12-21 2004-01-13 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
WO2003082272A1 (en) 2002-03-29 2003-10-09 Chiron Corporation Substituted benzazoles and use thereof as raf kinase inhibitors
US6743920B2 (en) 2002-05-29 2004-06-01 3M Innovative Properties Company Process for imidazo[4,5-c]pyridin-4-amines
EP1551228B1 (en) 2002-06-13 2012-10-03 New York University Synthetic c-glycolipid and its use for treating cancer infectious diseases and autoimmune diseases
CA2496246A1 (en) 2002-08-23 2004-03-04 Chiron Corporation Pyrrole based inhibitors of glycogen synthase kinase 3
EP1587473A4 (en) 2002-12-27 2008-08-13 Novartis Vaccines & Diagnostic Thiosemicarbazones as anti-virals and immunopotentiators
EP1594524B1 (en) 2003-01-21 2012-08-15 Novartis Vaccines and Diagnostics, Inc. Use of tryptanthrin compounds for immune potentiation
GB0301554D0 (en) 2003-01-23 2003-02-26 Molecularnature Ltd Immunostimulatory compositions
WO2004074318A2 (en) * 2003-02-24 2004-09-02 Institut Pasteur Secreted chlamydia polypeptides, polynucleotides coding therefor, therapeutic and diagnostic uses thereof.
US7893096B2 (en) 2003-03-28 2011-02-22 Novartis Vaccines And Diagnostics, Inc. Use of small molecule compounds for immunopotentiation
WO2005002619A2 (en) * 2003-06-26 2005-01-13 Chiron Corporation Immunogenic compositions for chlamydia trachomatis
RU2236257C1 (en) 2003-09-15 2004-09-20 Косяков Константин Сергеевич Synthetic immunogen for therapy and prophylaxis of addiction with narcotic and psychoactive substances
US7771726B2 (en) 2003-10-08 2010-08-10 New York University Use of synthetic glycolipids as universal adjuvants for vaccines against cancer and infectious diseases
AU2005235080A1 (en) 2004-03-31 2005-11-03 New York University Novel synthetic C-glycolipids, their synthesis and use to treat infections, cancer and autoimmune diseases
AU2005230708B2 (en) 2004-04-05 2009-01-15 Zoetis Services Llc Microfluidized oil-in-water emulsions and vaccine compositions
US20060228369A1 (en) 2005-04-11 2006-10-12 Program For Appropriate Technology In Health Stabilization and preservation of temperature-sensitive vaccines
US7691368B2 (en) 2005-04-15 2010-04-06 Merial Limited Vaccine formulations
US8703095B2 (en) 2005-07-07 2014-04-22 Sanofi Pasteur S.A. Immuno-adjuvant emulsion
EP1976557A2 (en) * 2005-12-22 2008-10-08 Novartis Vaccines and Diagnostics S.r.l. Chlamydial antigens
EP2268659A2 (en) * 2008-03-06 2011-01-05 Novartis AG Mutant forms of chlamydia htra
JP2012519482A (en) * 2009-03-06 2012-08-30 ノバルティス アーゲー Chlamydia antigen

Also Published As

Publication number Publication date
US9151756B2 (en) 2015-10-06
EP2403526A2 (en) 2012-01-11
CA2754618A1 (en) 2010-09-10
US9675683B2 (en) 2017-06-13
ES2733084T3 (en) 2019-11-27
EP3549602A1 (en) 2019-10-09
WO2010100632A2 (en) 2010-09-10
RU2011140508A (en) 2013-04-20
US20160158337A1 (en) 2016-06-09
EP2403526B1 (en) 2019-05-15
US20120093851A1 (en) 2012-04-19
WO2010100632A3 (en) 2011-01-20
US20190282685A1 (en) 2019-09-19
CN102438650A (en) 2012-05-02
AU2010220103A1 (en) 2011-09-22
US20140093510A1 (en) 2014-04-03
US10716842B2 (en) 2020-07-21
JP2012519482A (en) 2012-08-30
US8568732B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US10716842B2 (en) Chlamydia antigens
US20150202280A1 (en) Mutant Forms of Chlamydia HtrA
US9987345B2 (en) OMV vaccines
US8481057B2 (en) Chlamydial antigens
US20110300171A1 (en) Factor h binding protein immunogens
CA2767536A1 (en) Conserved escherichia coli immunogens
EP2837386B1 (en) Detoxified Escherichia coli immunogens
CA2892688A1 (en) Pseudomonas antigens and antigen combinations

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION