US20180062661A1 - Spread spectrum clock generator - Google Patents

Spread spectrum clock generator Download PDF

Info

Publication number
US20180062661A1
US20180062661A1 US15/251,065 US201615251065A US2018062661A1 US 20180062661 A1 US20180062661 A1 US 20180062661A1 US 201615251065 A US201615251065 A US 201615251065A US 2018062661 A1 US2018062661 A1 US 2018062661A1
Authority
US
United States
Prior art keywords
circuit
signal
control signal
current
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/251,065
Other versions
US9923566B1 (en
Inventor
Anand Kumar
Gagan Midha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMICROELECTRONICS INTERNATIONAL NV
STMicroelectronics International NV
Original Assignee
STMicroelectronics International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics International NV filed Critical STMicroelectronics International NV
Priority to US15/251,065 priority Critical patent/US9923566B1/en
Assigned to STMICROELECTRONICS INTERNATIONAL N.V. reassignment STMICROELECTRONICS INTERNATIONAL N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, ANAND, MIDHA, GAGAN
Priority to CN201710735056.5A priority patent/CN107800410B/en
Priority to CN201721070065.9U priority patent/CN207884584U/en
Priority to US15/888,153 priority patent/US10348314B2/en
Publication of US20180062661A1 publication Critical patent/US20180062661A1/en
Application granted granted Critical
Publication of US9923566B1 publication Critical patent/US9923566B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • H03K5/1254Suppression or limitation of noise or interference specially adapted for pulses generated by closure of switches, i.e. anti-bouncing devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/095Modifications of modulator for regulating the mean frequency using a phase locked loop applying frequency modulation to the loop in front of the voltage controlled oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/181Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a numerical count result being used for locking the loop, the counter counting during fixed time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/04Reducing interference from electric apparatus by means located at or near the interfering apparatus the interference being caused by substantially sinusoidal oscillations, e.g. in a receiver or in a tape-recorder

Definitions

  • the present invention relates to a spread spectrum clock generator and, in particular, to a spread spectrum clock generator having a high modulation frequency.
  • SoC type integrated circuits typically include a digital circuit that operates in response to a clock signal.
  • SoC digital circuit designs require increasing the frequency of the clock signal.
  • EMI electromagnetic interference
  • This EMI can be a significant concern, especially in consumer electronics, microprocessor-based systems and data transmission circuits. Reduction of EMI is therefore a critical design feature.
  • FIG. 1 showing a conventional configuration for a spread spectrum clock generator circuit 10 based on a phase-lock-loop (PLL) implementation.
  • the circuit 10 receives a reference frequency signal fref that is fed to a first input of a phase difference detector (PDD) 12 .
  • a second input of the phase difference detector 12 receives a feedback frequency signal ffb.
  • the phase difference detector 12 determines a difference in phase between the reference frequency signal fref and the feedback frequency signal ffb.
  • the output of the phase difference detector 12 drives a charge pump (CP) circuit 14 which generates a voltage signal indicative of the determined difference in phase. That voltage signal is then filtered by a low pass filter (LPF) 16 to generate a control signal.
  • CP charge pump
  • LPF low pass filter
  • a control input of a voltage controlled oscillator (VCO) 18 receives the control signal and generates an output clock signal fout.
  • a divider circuit (/N) 20 divides the output clock signal fout by N to generate the feedback frequency signal ffb.
  • the loop circuit accordingly operates to cause the phase of the output clock signal to lock to the phase of the reference frequency signal fref, wherein a frequency of the output clock signal is an integer multiple (N) of the reference frequency signal fref.
  • the divider value N is modulated by a sigma-delta (IA) modulator circuit 22 .
  • the designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 22 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled.
  • FIG. 2 shows a conventional configuration for a spread spectrum clock generator circuit 30 based on a frequency-lock-loop (FLL) implementation.
  • a count difference (CD) circuit 32 receives a reference count Cref at a first input and a feedback count Cfb at a second input.
  • the count difference circuit 32 is a digital circuit that operates to determine a difference in the received count values. That difference value is then filtered by a digital low pass filter (LPF) 34 to generate a digital control signal.
  • a digital-to-analog converter (DAC) circuit 36 converts the digital control signal to an analog control signal.
  • a control input of a current controlled oscillator (CCO) 38 receives the analog control signal and generates an output clock signal fout.
  • CCO current controlled oscillator
  • a cycle counter circuit (CCC) 40 receives the output clock signal fout and a reference frequency signal fref.
  • the cycle counter circuit 40 operates to count a number of cycles in the output clock signal fout which occur for each single cycle of the reference frequency signal fref. That count is the feedback count Cfb.
  • the loop circuit accordingly operates to cause a frequency of the output clock signal to lock to an integer multiple of a frequency of the reference frequency signal fref, wherein the integer multiple is designated by the value of the reference count Cref.
  • the reference count Cref is a count with a value of N modulated by a sigma-delta (IA) modulator circuit 42 .
  • the designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 42 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled.
  • the triangular wave profile for the input signal to the sigma-delta modulator circuit 22 or 42 provides for a near optimum spreading of the spectrum so as to mitigate EMI effects.
  • the fractional resolution required by spread spectrum clock generator modulation is achieved through the sigma-delta modulator circuit 22 or 42 .
  • One problem with this approach is that high frequency modulation cannot be achieved.
  • the spread spectrum clock generator modulation must be at least three times less than the bandwidth of the system circuit 10 or 30 in order to pass at least the third harmonic of the fundamental frequency of the triangular wave.
  • the bandwidth of the system circuit 10 or 30 is mainly a function of the reference frequency signal fref. For example, the maximum bandwidth possible for the PLL implementation is about one-eighth of the reference frequency.
  • the ratio is reduced to about one-twenty-fourth. Now further allowing for three harmonics of the triangular wave, the maximum frequency of the spread spectrum clock generator profile would be one-seventy-second.
  • New SoC designs and new standards will require modulation frequencies up to or above 2 MHz with reference frequencies as low as 32 kHz.
  • the solutions of FIGS. 1 and 2 are not usable.
  • operation of the generator is not dependent on reference frequency.
  • the modulation depth and modulation frequency for the generated spread spectrum clock should be programmable and PVT tolerant.
  • a circuit comprises: a locked-loop circuit including: an oscillator configured to generate an output clock signal having a frequency set by an oscillator control signal; a modulator circuit having a first input configured to receive a first signal and a second input configured to receive a second signal, said modulator circuit configured to generate a control signal having a value modulated in response to said first and second signals; and a filter circuit configured to generate said oscillator control signal by filtering the control signal; and a delta-sigma modulator circuit configured to modulate the second signal in response to a modulation profile so that said output clock signal is a spread spectrum clock signal.
  • a spread spectrum clock generation circuit comprises: a phase-lock-loop circuit including an input configured to receive a reference frequency signal and an oscillator configured to output a spread spectrum clock signal having a frequency controlled by an oscillator control signal and phase locked to said reference frequency signal; and a sigma delta modulator circuit having an input configured to receive a modulation profile signal, said sigma delta modulator circuit configured to apply a modulation to said oscillator control signal in response to said modulation profile signal.
  • a spread spectrum clock generation circuit comprises: a frequency-lock-loop circuit including an input configured to receive a reference frequency signal and an oscillator configured to output a spread spectrum clock signal having a frequency controlled by an oscillator control signal and frequency locked to an integer multiple of said reference frequency signal; and a sigma delta modulator circuit having an input configured to receive a modulation profile signal, said sigma delta modulator circuit configured to apply a modulation to said oscillator control signal in response to said modulation profile signal.
  • FIG. 1 shows a conventional configuration for a spread spectrum clock generator circuit based on a phase-lock-loop (PLL) implementation
  • FIG. 2 shows a conventional configuration for a spread spectrum clock generator circuit based on a frequency-lock-loop (FLL) implementation
  • FIG. 3 shows a spread spectrum clock generator circuit based on a phase-lock-loop (PLL) implementation
  • FIG. 4 is a block diagram of the current modulator circuit
  • FIG. 5 shows a spread spectrum clock generator circuit based on a frequency-lock-loop (FLL) implementation.
  • FLL frequency-lock-loop
  • FIG. 3 showing a spread spectrum clock generator circuit 100 based on a phase-lock-loop (PLL) implementation.
  • the circuit 100 receives a reference frequency signal fref that is fed to a first input of a phase difference detector (PDD) 112 .
  • a second input of the phase difference detector 112 receives a feedback frequency signal ffb.
  • the phase difference detector 112 determines a difference in phase between the reference frequency signal fref and the feedback frequency signal ffb.
  • the output of the phase difference detector 112 drives a charge pump (CP) circuit 114 which generates a voltage signal indicative of the determined difference in phase. That voltage signal is then filtered by a low pass filter (LPF) 116 to generate a first control signal C 1 .
  • CP charge pump
  • LPF low pass filter
  • a first control input of a current modulator circuit 118 receives the first control signal C 1 .
  • a second control input of the current modulator circuit 118 receives a second control signal C 2 .
  • the current modulator circuit 118 outputs a current control signal CC having a magnitude that is dependent on both the first and second control signals C 1 and C 2 . That current control signal CC is then filtered by a low pass filter (LPF) 120 to generate an oscillator control signal OC.
  • a control input of a current controlled oscillator (CCO) 122 receives the oscillator control signal and generates an output clock signal fout having a frequency that is dependent on the oscillator control signal.
  • a divider circuit (/N) 124 divides the output clock signal fout by N to generate the feedback frequency signal ffb.
  • a divider circuit (/M) 126 divides the output clock signal fout by M to generate a clock signal fmod.
  • a sigma-delta ( ⁇ ) modulator circuit 128 includes a clock input that receives the clock signal fmod. The designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 128 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled.
  • the sigma-delta modulator circuit 128 operates to modulate the second control signal C 2 in accordance with the modulation profile for application to the current modulator circuit 118 .
  • the clock signal fmod for the sigma-delta modulator circuit 128 may instead by provided by the reference frequency signal fref.
  • FIG. 4 shows a block diagram of the current modulator circuit 118 .
  • the circuit 118 includes a plurality of current branches 200 ( 1 )- 200 ( i ). Each branch includes a current source 202 biased by the first control signal.
  • a current summing circuit 204 sums the currents that are output from the current sources 202 to generate the current control signal CC.
  • a switching circuit 206 controlled by the second control signal C 2 selectively actuates the current sources 202 .
  • the second control signal C 2 may, for example, be a multibit digital signal wherein each bit is configured to control a switch within the switching circuit 206 to actuate a corresponding current source 202 . Alternatively, the digital signal may be decoded to generate signals for actuating switches of the switching circuit 2016 .
  • the current source 202 in branch 200 ( 1 ) is always on and is configured to source a current that is 90% of a reference current Iref to the current control signal CC.
  • a magnitude of the reference current Iref is set by the first control signal C 1 which biases the operation of each one of the current sources 202 .
  • the twenty current sources 202 in the branches 200 ( 2 )- 200 ( i ) are selectively actuated by the switching circuit 206 in response to the bits of the second control signal C 2 .
  • the magnitude of the current control signal CC is accordingly modulated by the combination of the first control signal C 1 (which modulates the reference current Iref through the biasing of the current sources 202 for all branches 200 ) and the second control signal C 2 (which modulates through the selective actuation of the current sources 202 in the branches 200 ( 2 )- 200 ( i )).
  • the current control signal CC is accordingly modulated over a range from 0.9 ⁇ Iref to 1.1 ⁇ Iref.
  • the sigma-delta modulator circuit 128 modulates the branches 200 ( 2 )- 200 ( i )) though second control signal C 2 control of the switches within the switching circuit 206 to produce the desired modulation depth in percentage of the current Iref locked to the reference frequency.
  • the total output spread for an input spread of 0 to 1 would be +3 to ⁇ 2. So, in this configuration, the second order modulator would achieve a +7 to ⁇ 8% modulation depth.
  • the circuit 100 differs from the circuit 10 of FIG. 1 in that the modulation profile is introduced at the input of the current controlled oscillator 122 . This configuration supports the use of higher modulation frequencies.
  • a count difference (CD) circuit 212 receives a reference count Cref at a first input and a feedback count Cfb at a second input.
  • the count difference circuit 212 is a digital circuit that operates to determine a difference in the received count values. That difference value is then filtered by a digital low pass filter (LPF) 214 to generate a digital control signal.
  • a digital-to-analog converter (DAC) circuit 216 converts the digital control signal to an analog first control signal C 1 .
  • a first control input of a current modulator circuit 218 receives the first control signal C 1 .
  • a second control input of the current modulator circuit 218 receives a second control signal C 2 .
  • the current modulator circuit 218 outputs a current control signal CC having a magnitude that is dependent on both the first and second control signals C 1 and C 2 . That current control signal CC is then filtered by a low pass filter (LPF) 220 to generate an oscillator control signal OC.
  • a control input of a current controlled oscillator (CCO) 222 receives the oscillator control signal and generates an output clock signal fout.
  • a cycle counter circuit (CCC) 224 receives the output clock signal fout and a reference frequency signal fref.
  • the cycle counter circuit 224 operates to count a number of cycles in the output clock signal fout which occur for each single cycle of the reference frequency signal fref. That determined count is the feedback count Cfb.
  • the loop circuit accordingly operates to cause a frequency of the output clock signal to lock to an integer multiple of the reference frequency signal fref, wherein the integer multiple is designated by the reference count Cref.
  • a divider circuit (/M) 226 divides the output clock signal fout by M to generate a clock signal fmod.
  • a sigma-delta ( ⁇ ) modulator circuit 228 includes a clock input that receives the clock signal fmod. The designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 228 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled.
  • the sigma-delta modulator circuit 228 operates to modulate the second control signal C 2 in response to the modulation profiled for application to the current modulator circuit 2
  • the clock signal fmod for the sigma-delta modulator circuit 128 may instead be provided by the reference frequency signal fref.
  • FIG. 4 shows a block diagram of the current modulator circuit 218 .
  • the circuit 200 differs from the circuit 30 of FIG. 2 in that the modulation profile is introduced at the input of the current controlled oscillator 122 . This configuration supports the use of higher modulation frequencies.
  • the current flowing into the current controlled oscillator 122 or 222 with oscillator control signal OC also changes to adjust for gain variation and keep the output clock signal fout locked (in phase, frequency or both).
  • the desired modulation profile is the percentage of the total frequency, and the modulation of the current control signal CC in the same percentage would achieve that purpose. This holds true if the current to frequency transfer function is linear. Such is the case for a ring oscillator implemented as the current controlled oscillator 122 or 222 .
  • the sigma-delta modulator circuit 128 or 228 operates at an oversampled rate set by the clock signal fmod (or reference clock frequency fref in the alternative embodiment).
  • the current control signal CC generated by the current summing circuit 204 is passed through the low pass filter 120 or 220 that is at least a second order filter (and is more preferably a third order filter) so as to ensure that the high frequency sigma-delta modulator quantization noise is effectively filtered out of the oscillator control signal OC.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A phase or frequency locked-loop circuit includes an oscillator configured to generate an output clock signal having a frequency set by an oscillator control signal. A modulator circuit receives a first signal and a second signal and is configured to generate a control signal having a value modulated in response to the first and second signals. A filter circuit generates the oscillator control signal by filtering the control signal. A delta-sigma modulator circuit operates to modulate the second signal in response to a modulation profile. As a result, the output clock signal is a spread spectrum clock signal.

Description

    TECHNICAL FIELD
  • The present invention relates to a spread spectrum clock generator and, in particular, to a spread spectrum clock generator having a high modulation frequency.
  • BACKGROUND
  • System on Chip (SoC) type integrated circuits typically include a digital circuit that operates in response to a clock signal. The evolution of SoC digital circuit designs requires increasing the frequency of the clock signal. However, as the operating frequency of the clock signal increases, the electromagnetic interference (EMI) also increases. This EMI can be a significant concern, especially in consumer electronics, microprocessor-based systems and data transmission circuits. Reduction of EMI is therefore a critical design feature.
  • There are a number of known EMI reduction schemes including: the use of a shielding box, skew-rate control circuits and spread spectrum clock generation. Of these options, spread spectrum clock generation is an attractive solution because of its lower hardware cost. As a result, the use of spread spectrum clock generation circuit is a common component of many SoC designs.
  • Reference is made to FIG. 1 showing a conventional configuration for a spread spectrum clock generator circuit 10 based on a phase-lock-loop (PLL) implementation. The circuit 10 receives a reference frequency signal fref that is fed to a first input of a phase difference detector (PDD) 12. A second input of the phase difference detector 12 receives a feedback frequency signal ffb. The phase difference detector 12 determines a difference in phase between the reference frequency signal fref and the feedback frequency signal ffb. The output of the phase difference detector 12 drives a charge pump (CP) circuit 14 which generates a voltage signal indicative of the determined difference in phase. That voltage signal is then filtered by a low pass filter (LPF) 16 to generate a control signal. A control input of a voltage controlled oscillator (VCO) 18 receives the control signal and generates an output clock signal fout. A divider circuit (/N) 20 divides the output clock signal fout by N to generate the feedback frequency signal ffb. The loop circuit accordingly operates to cause the phase of the output clock signal to lock to the phase of the reference frequency signal fref, wherein a frequency of the output clock signal is an integer multiple (N) of the reference frequency signal fref. To implement spread spectrum control over the output clock signal, the divider value N is modulated by a sigma-delta (IA) modulator circuit 22. The designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 22 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled.
  • FIG. 2 shows a conventional configuration for a spread spectrum clock generator circuit 30 based on a frequency-lock-loop (FLL) implementation. A count difference (CD) circuit 32 receives a reference count Cref at a first input and a feedback count Cfb at a second input. The count difference circuit 32 is a digital circuit that operates to determine a difference in the received count values. That difference value is then filtered by a digital low pass filter (LPF) 34 to generate a digital control signal. A digital-to-analog converter (DAC) circuit 36 converts the digital control signal to an analog control signal. A control input of a current controlled oscillator (CCO) 38 receives the analog control signal and generates an output clock signal fout. A cycle counter circuit (CCC) 40 receives the output clock signal fout and a reference frequency signal fref. The cycle counter circuit 40 operates to count a number of cycles in the output clock signal fout which occur for each single cycle of the reference frequency signal fref. That count is the feedback count Cfb. The loop circuit accordingly operates to cause a frequency of the output clock signal to lock to an integer multiple of a frequency of the reference frequency signal fref, wherein the integer multiple is designated by the value of the reference count Cref. To implement spread spectrum control, the reference count Cref is a count with a value of N modulated by a sigma-delta (IA) modulator circuit 42. The designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 42 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled.
  • The triangular wave profile for the input signal to the sigma- delta modulator circuit 22 or 42 provides for a near optimum spreading of the spectrum so as to mitigate EMI effects. The fractional resolution required by spread spectrum clock generator modulation is achieved through the sigma- delta modulator circuit 22 or 42. One problem with this approach is that high frequency modulation cannot be achieved. The spread spectrum clock generator modulation must be at least three times less than the bandwidth of the system circuit 10 or 30 in order to pass at least the third harmonic of the fundamental frequency of the triangular wave. The bandwidth of the system circuit 10 or 30 is mainly a function of the reference frequency signal fref. For example, the maximum bandwidth possible for the PLL implementation is about one-eighth of the reference frequency. If taking into account process, voltage, temperature (PVT) variation of the bandwidth, the ratio is reduced to about one-twenty-fourth. Now further allowing for three harmonics of the triangular wave, the maximum frequency of the spread spectrum clock generator profile would be one-seventy-second.
  • New SoC designs and new standards will require modulation frequencies up to or above 2 MHz with reference frequencies as low as 32 kHz. The solutions of FIGS. 1 and 2 are not usable. A need accordingly exists for a spread spectrum clock generator having a high modulation frequency. Preferably, operation of the generator is not dependent on reference frequency. Still further, the modulation depth and modulation frequency for the generated spread spectrum clock should be programmable and PVT tolerant.
  • SUMMARY
  • In an embodiment, a circuit comprises: a locked-loop circuit including: an oscillator configured to generate an output clock signal having a frequency set by an oscillator control signal; a modulator circuit having a first input configured to receive a first signal and a second input configured to receive a second signal, said modulator circuit configured to generate a control signal having a value modulated in response to said first and second signals; and a filter circuit configured to generate said oscillator control signal by filtering the control signal; and a delta-sigma modulator circuit configured to modulate the second signal in response to a modulation profile so that said output clock signal is a spread spectrum clock signal.
  • In an embodiment, a spread spectrum clock generation circuit comprises: a phase-lock-loop circuit including an input configured to receive a reference frequency signal and an oscillator configured to output a spread spectrum clock signal having a frequency controlled by an oscillator control signal and phase locked to said reference frequency signal; and a sigma delta modulator circuit having an input configured to receive a modulation profile signal, said sigma delta modulator circuit configured to apply a modulation to said oscillator control signal in response to said modulation profile signal.
  • In an embodiment, a spread spectrum clock generation circuit comprises: a frequency-lock-loop circuit including an input configured to receive a reference frequency signal and an oscillator configured to output a spread spectrum clock signal having a frequency controlled by an oscillator control signal and frequency locked to an integer multiple of said reference frequency signal; and a sigma delta modulator circuit having an input configured to receive a modulation profile signal, said sigma delta modulator circuit configured to apply a modulation to said oscillator control signal in response to said modulation profile signal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the embodiments, reference will now be made by way of example only to the accompanying figures in which:
  • FIG. 1 shows a conventional configuration for a spread spectrum clock generator circuit based on a phase-lock-loop (PLL) implementation;
  • FIG. 2 shows a conventional configuration for a spread spectrum clock generator circuit based on a frequency-lock-loop (FLL) implementation;
  • FIG. 3 shows a spread spectrum clock generator circuit based on a phase-lock-loop (PLL) implementation;
  • FIG. 4 is a block diagram of the current modulator circuit; and
  • FIG. 5 shows a spread spectrum clock generator circuit based on a frequency-lock-loop (FLL) implementation.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Reference is now made to FIG. 3 showing a spread spectrum clock generator circuit 100 based on a phase-lock-loop (PLL) implementation. The circuit 100 receives a reference frequency signal fref that is fed to a first input of a phase difference detector (PDD) 112. A second input of the phase difference detector 112 receives a feedback frequency signal ffb. The phase difference detector 112 determines a difference in phase between the reference frequency signal fref and the feedback frequency signal ffb. The output of the phase difference detector 112 drives a charge pump (CP) circuit 114 which generates a voltage signal indicative of the determined difference in phase. That voltage signal is then filtered by a low pass filter (LPF) 116 to generate a first control signal C1. A first control input of a current modulator circuit 118 receives the first control signal C1. A second control input of the current modulator circuit 118 receives a second control signal C2. The current modulator circuit 118 outputs a current control signal CC having a magnitude that is dependent on both the first and second control signals C1 and C2. That current control signal CC is then filtered by a low pass filter (LPF) 120 to generate an oscillator control signal OC. A control input of a current controlled oscillator (CCO) 122 receives the oscillator control signal and generates an output clock signal fout having a frequency that is dependent on the oscillator control signal. A divider circuit (/N) 124 divides the output clock signal fout by N to generate the feedback frequency signal ffb. A divider circuit (/M) 126 divides the output clock signal fout by M to generate a clock signal fmod. A sigma-delta (ΣΔ) modulator circuit 128 includes a clock input that receives the clock signal fmod. The designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 128 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled. The sigma-delta modulator circuit 128 operates to modulate the second control signal C2 in accordance with the modulation profile for application to the current modulator circuit 118.
  • In an alternative embodiment, as shown in the figure, the clock signal fmod for the sigma-delta modulator circuit 128 may instead by provided by the reference frequency signal fref.
  • FIG. 4 shows a block diagram of the current modulator circuit 118. The circuit 118 includes a plurality of current branches 200(1)-200(i). Each branch includes a current source 202 biased by the first control signal. A current summing circuit 204 sums the currents that are output from the current sources 202 to generate the current control signal CC. A switching circuit 206 controlled by the second control signal C2 selectively actuates the current sources 202. The second control signal C2 may, for example, be a multibit digital signal wherein each bit is configured to control a switch within the switching circuit 206 to actuate a corresponding current source 202. Alternatively, the digital signal may be decoded to generate signals for actuating switches of the switching circuit 2016.
  • In an example embodiment, the current source 202 in branch 200(1) is always on and is configured to source a current that is 90% of a reference current Iref to the current control signal CC. A magnitude of the reference current Iref is set by the first control signal C1 which biases the operation of each one of the current sources 202. Each of the current sources 202 in the branches 200(2)-200(i) is configured to source a current that is 1% of the reference current Iref. If i=21, then the twenty current sources 202 in the branches 200(2)-200(i) will each selectively contribute 1% of the reference current Iref to the current control signal CC. The twenty current sources 202 in the branches 200(2)-200(i) are selectively actuated by the switching circuit 206 in response to the bits of the second control signal C2. The magnitude of the current control signal CC is accordingly modulated by the combination of the first control signal C1 (which modulates the reference current Iref through the biasing of the current sources 202 for all branches 200) and the second control signal C2 (which modulates through the selective actuation of the current sources 202 in the branches 200(2)-200(i)). The current control signal CC is accordingly modulated over a range from 0.9×Iref to 1.1×Iref.
  • When no modulation is required, ten of the current sources 202 in the branches 200(2)-200(i)) are actuated along with the current source 202 in branch 200(1) to provide the current control signal CC at 100% of Iref. When a modulation profile for spread spectrum clock generation is desired, the sigma-delta modulator circuit 128 modulates the branches 200(2)-200(i)) though second control signal C2 control of the switches within the switching circuit 206 to produce the desired modulation depth in percentage of the current Iref locked to the reference frequency. For a second order modulator, the total output spread for an input spread of 0 to 1 would be +3 to −2. So, in this configuration, the second order modulator would achieve a +7 to −8% modulation depth.
  • The circuit 100 differs from the circuit 10 of FIG. 1 in that the modulation profile is introduced at the input of the current controlled oscillator 122. This configuration supports the use of higher modulation frequencies.
  • Reference is now made to FIG. 5 showing a spread spectrum clock generator circuit 200 based on a frequency-lock-loop (FLL) implementation. A count difference (CD) circuit 212 receives a reference count Cref at a first input and a feedback count Cfb at a second input. The count difference circuit 212 is a digital circuit that operates to determine a difference in the received count values. That difference value is then filtered by a digital low pass filter (LPF) 214 to generate a digital control signal. A digital-to-analog converter (DAC) circuit 216 converts the digital control signal to an analog first control signal C1. A first control input of a current modulator circuit 218 receives the first control signal C1. A second control input of the current modulator circuit 218 receives a second control signal C2. The current modulator circuit 218 outputs a current control signal CC having a magnitude that is dependent on both the first and second control signals C1 and C2. That current control signal CC is then filtered by a low pass filter (LPF) 220 to generate an oscillator control signal OC. A control input of a current controlled oscillator (CCO) 222 receives the oscillator control signal and generates an output clock signal fout. A cycle counter circuit (CCC) 224 receives the output clock signal fout and a reference frequency signal fref. The cycle counter circuit 224 operates to count a number of cycles in the output clock signal fout which occur for each single cycle of the reference frequency signal fref. That determined count is the feedback count Cfb. The loop circuit accordingly operates to cause a frequency of the output clock signal to lock to an integer multiple of the reference frequency signal fref, wherein the integer multiple is designated by the reference count Cref. A divider circuit (/M) 226 divides the output clock signal fout by M to generate a clock signal fmod. A sigma-delta (ΣΔ) modulator circuit 228 includes a clock input that receives the clock signal fmod. The designation of the modulation profile is provided through an input signal to the sigma-delta modulator circuit 228 that may, for example, have a triangular wave profile. The amplitude and frequency of the modulation profile may be controlled. The sigma-delta modulator circuit 228 operates to modulate the second control signal C2 in response to the modulation profiled for application to the current modulator circuit 218.
  • In an alternative embodiment, as shown in the figure, the clock signal fmod for the sigma-delta modulator circuit 128 may instead be provided by the reference frequency signal fref.
  • FIG. 4 shows a block diagram of the current modulator circuit 218.
  • The circuit 200 differs from the circuit 30 of FIG. 2 in that the modulation profile is introduced at the input of the current controlled oscillator 122. This configuration supports the use of higher modulation frequencies.
  • As PVT variation changes, the current flowing into the current controlled oscillator 122 or 222 with oscillator control signal OC also changes to adjust for gain variation and keep the output clock signal fout locked (in phase, frequency or both). The desired modulation profile is the percentage of the total frequency, and the modulation of the current control signal CC in the same percentage would achieve that purpose. This holds true if the current to frequency transfer function is linear. Such is the case for a ring oscillator implemented as the current controlled oscillator 122 or 222.
  • The sigma- delta modulator circuit 128 or 228 operates at an oversampled rate set by the clock signal fmod (or reference clock frequency fref in the alternative embodiment). The current control signal CC generated by the current summing circuit 204 is passed through the low pass filter 120 or 220 that is at least a second order filter (and is more preferably a third order filter) so as to ensure that the high frequency sigma-delta modulator quantization noise is effectively filtered out of the oscillator control signal OC.
  • The foregoing description has provided by way of exemplary and non-limiting examples a full and informative description of the exemplary embodiment of this invention. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention as defined in the appended claims.

Claims (35)

1. A circuit, comprising:
a locked-loop circuit including:
an oscillator configured to generate an output clock signal having a frequency set by a first oscillator control signal;
a modulator circuit having a first input configured to receive a second oscillator control signal and a second input configured to receive a spread spectrum modulation control signal, said modulator circuit configured to generate a third oscillator control signal by directly modulating the second oscillator control signal in response to said spread spectrum modulation control signal; and
a filter circuit configured to generate said first oscillator control signal by filtering the third oscillator control signal; and
a delta-sigma modulator circuit configured to modulate the spread spectrum modulation control signal in response to a modulation profile so that said output clock signal is a spread spectrum clock signal.
2. A circuit, comprising:
a locked-loop circuit including:
an oscillator configured to generate an output clock signal having a frequency set by an oscillator control signal;
a modulator circuit having a first input configured to receive a first signal and a second input configured to receive a second signal, said modulator circuit configured to generate a control signal having a value modulated in response to said first and second signals; and
a filter circuit configured to generate said oscillator control signal by filtering the control signal; and
a delta-sigma modulator circuit configured to modulate the second signal in response to a modulation profile so that said output clock signal is a spread spectrum clock signal,
wherein the locked-loop circuit is a phase-locked-loop circuit and further includes:
a phase detector circuit having a first input configured to receive a reference frequency signal and a second input configured to receive a feedback frequency signal, said phase detector circuit configured to detect a phase difference between the reference frequency signal and the feedback frequency signal and output a difference signal;
a charge pump circuit configured to generate a voltage signal in response to said difference signal, wherein said first signal is derived from said voltage signal; and
a divider circuit configured to divide said output clock signal to generate said feedback frequency signal.
3. The circuit of claim 2, wherein said locked-loop circuit further includes a further filter circuit configured to filter said voltage signal to generate said first signal.
4. The circuit of claim 2, wherein said delta-sigma modulator circuit includes a first input configured to receive a clock signal and a second input configured to receive said modulation profile.
5. The circuit of claim 4, wherein said clock signal is a frequency divided version of said output clock signal.
6. The circuit of claim 4, wherein said clock signal is said reference frequency signal.
7. A circuit, comprising:
a locked-loop circuit including:
an oscillator configured to generate an output clock signal having a frequency set by an oscillator control signal;
a modulator circuit having a first input configured to receive a first signal and a second input configured to receive a second signal, said modulator circuit configured to generate a control signal having a value modulated in response to said first and second signals; and
a filter circuit configured to generate said oscillator control signal by filtering the control signal; and
a delta-sigma modulator circuit configured to modulate the second signal in response to a modulation profile so that said output clock signal is a spread spectrum clock signal,
wherein the locked-loop circuit is a frequency-locked-loop circuit and further includes:
a count difference circuit having a first input configured to receive a reference count and a second input configured to receive a feedback count, said count difference circuit configured to determine a difference value between the reference count and the feedback count;
a digital to analog converter circuit configured to convert the difference value to said first signal; and
a cycle counter circuit configured to count a number of cycles of the output clock signal within one cycle of a reference frequency signal to generate said feedback count.
8. The circuit of claim 7, wherein said locked-loop circuit further includes a further filter circuit configured to filter said difference value.
9. The circuit of claim 7, wherein said delta-sigma modulator circuit includes a first input configured to receive a clock signal and a second input configured to receive said modulation profile.
10. The circuit of claim 9, wherein said clock signal is a frequency divided version of said output clock signal.
11. The circuit of claim 9, wherein said clock signal is said reference frequency signal.
12. A circuit, comprising:
a locked-loop circuit including:
an oscillator configured to generate an output clock signal having a frequency set by an oscillator control signal;
a modulator circuit having a first input configured to receive a first signal and a second input configured to receive a second signal, said modulator circuit configured to generate a control signal having a value modulated in response to said first and second signals; and
a filter circuit configured to generate said oscillator control signal by filtering the control signal; and
a delta-sigma modulator circuit configured to modulate the second signal in response to a modulation profile so that said output clock signal is a spread spectrum clock signal,
wherein said modulator circuit comprises:
a plurality of current paths;
wherein each current path includes a current source configured to generate a current, wherein the current source is biased by said first signal;
a current summing circuit configured to sum the generated currents from the current paths to output said control signal; and
a switching circuit configured to selectively actuate said current sources in response to said second signal.
13. The circuit of claim 12, wherein said oscillator is a current controlled oscillator responsive to a magnitude of the summed currents.
14. A spread spectrum clock generation circuit, comprising:
a phase-lock-loop circuit including an input configured to receive a reference frequency signal, a phase comparison circuit configured to compare a feedback frequency signal to the reference frequency signal and generate a first oscillator control signal, and an oscillator configured to output a spread spectrum clock signal having a frequency controlled by a second oscillator control signal and phase locked to said reference frequency signal; and
a sigma delta modulator circuit having an input configured to receive a modulation profile signal, said sigma delta modulator circuit configured to apply a modulation to said first oscillator control signal in response to said modulation profile signal to generate said second oscillator control signal.
15. The spread spectrum clock generation circuit of claim 14, wherein said oscillator is a current controlled oscillator and further including a current modulator circuit configured to generate a current control signal as said second oscillator control signal, wherein a magnitude of the current control signal is modulated by said modulation applied by the sigma delta modulator circuit.
16. The spread spectrum clock generation circuit of claim 15, wherein said current modulator circuit comprises:
a plurality of current paths;
wherein each current path includes a current source configured to generate a current, wherein the current source is biased by the first oscillator control signal;
a current summing circuit configured to sum the generated currents from the current paths to output said current control signal; and
a switching circuit configured to selectively actuate said current sources in response to said modulation applied by the sigma delta modulator circuit.
17. The spread spectrum clock generation circuit of claim 14, wherein a clock signal for said sigma delta modulator circuit is a frequency divided version of said spread spectrum clock signal.
18. The spread spectrum clock generation circuit of claim 14, wherein said clock signal for said sigma delta modulator circuit is said reference frequency signal.
19. A spread spectrum clock generation circuit, comprising:
a frequency-lock-loop circuit including an input configured to receive a reference frequency signal, a frequency comparison circuit configured to compare a feedback frequency signal to the reference frequency signal and generate a first oscillator control signal, and an oscillator configured to output a spread spectrum clock signal having a frequency controlled by a second oscillator control signal and frequency locked to an integer multiple of said reference frequency signal; and
a sigma delta modulator circuit having an input configured to receive a modulation profile signal, said sigma delta modulator circuit configured to apply a modulation to said first oscillator control signal in response to said modulation profile signal to generate said second oscillator control signal.
20. The spread spectrum clock generation circuit of claim 19, wherein said oscillator is a current controlled oscillator and further including a current modulator circuit configured to generate a current control signal as said second oscillator control signal, wherein a magnitude of the current control signal is modulated by said modulation applied by the sigma delta modulator circuit.
21. The spread spectrum clock generation circuit of claim 20, wherein said current modulator circuit comprises:
a plurality of current paths;
wherein each current path includes a current source configured to generate a current, wherein the current source is biased by the first oscillator control signal;
a current summing circuit configured to sum the generated currents from the current paths to output said current control signal; and
a switching circuit configured to selectively actuate said current sources in response to said modulation applied by the sigma delta modulator circuit.
22. The spread spectrum clock generation circuit of claim 19, wherein a clock signal for said sigma delta modulator circuit is a frequency divided version of said spread spectrum clock signal.
23. The spread spectrum clock generation circuit of claim 19, wherein said clock signal for said sigma delta modulator circuit is said reference frequency signal.
24. A circuit, comprising:
a locked-loop circuit including:
a comparison circuit configured to compare a reference frequency signal to a feedback signal and output a first oscillator control signal;
a modulator circuit having a first input configured to receive the first oscillator control signal and a second input configured to receive a modulation control signal, said modulator circuit configured to generate a second oscillator control signal by directly modulating the first oscillator control signal in response to said modulation control signal;
a sigma delta modulator circuit configured to generate the modulation control signal in response to a continuously varying modulation profile;
a filter circuit configured to generate a third oscillator control signal by filtering the second oscillator control signal;
an oscillator configured to generate an output clock signal in response to said third oscillator control signal, said output clock signal having a spread spectrum set by the continuously varying modulation profile; and
a feedback circuit configured to generate the feedback signal from the output clock signal.
25. The circuit of claim 24, wherein the continuously varying modulation profile is a triangular waveform.
26. The circuit of claim 24, wherein a clock signal for said sigma delta modulator circuit is a frequency divided version of said output clock signal.
27. The circuit of claim 24, wherein a clock signal for said sigma delta modulator circuit is said reference frequency signal.
28. The circuit of claim 24, wherein the locked-loop circuit is a phase locked loop circuit and said comparison circuit comprises a phase comparator configured to compare phases of the feedback signal to said reference frequency signal.
29. The circuit of claim 24, wherein the locked-loop circuit is a frequency locked loop circuit and said comparison circuit comprises a count comparator configured to compare a frequency count of the feedback signal to a frequency count of said reference frequency signal.
30. The circuit of claim 24, further comprising an additional filter configured to filter the first oscillator control signal prior to said modulator circuit.
31. The circuit of claim 23, wherein said modulator circuit comprises:
a plurality of current paths;
wherein each current path includes a current source configured to generate a current, wherein the current source is biased by said first oscillator control signal;
a current summing circuit configured to sum the generated currents from the current paths to output said second oscillator control signal; and
a switching circuit configured to selectively actuate said current sources in response to said modulation control signal.
32. The circuit of claim 31, wherein said oscillator is a current controlled oscillator responsive to a magnitude of the summed currents.
33. The circuit of claim 1, wherein said first oscillator control signal is generated in response to a difference between a reference frequency signal and a frequency divided version of the comparison of the output clock signal.
34. The circuit of claim 33, wherein said difference is a phase difference.
35. The circuit of claim 33, wherein said difference is a frequency difference.
US15/251,065 2016-08-30 2016-08-30 Spread spectrum clock generator Active US9923566B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/251,065 US9923566B1 (en) 2016-08-30 2016-08-30 Spread spectrum clock generator
CN201710735056.5A CN107800410B (en) 2016-08-30 2017-08-24 Spread spectrum clock generator
CN201721070065.9U CN207884584U (en) 2016-08-30 2017-08-24 Circuit and spread spectrum clock generative circuit
US15/888,153 US10348314B2 (en) 2016-08-30 2018-02-05 Spread spectrum clock generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/251,065 US9923566B1 (en) 2016-08-30 2016-08-30 Spread spectrum clock generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/888,153 Continuation US10348314B2 (en) 2016-08-30 2018-02-05 Spread spectrum clock generator

Publications (2)

Publication Number Publication Date
US20180062661A1 true US20180062661A1 (en) 2018-03-01
US9923566B1 US9923566B1 (en) 2018-03-20

Family

ID=61243739

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/251,065 Active US9923566B1 (en) 2016-08-30 2016-08-30 Spread spectrum clock generator
US15/888,153 Active US10348314B2 (en) 2016-08-30 2018-02-05 Spread spectrum clock generator

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/888,153 Active US10348314B2 (en) 2016-08-30 2018-02-05 Spread spectrum clock generator

Country Status (2)

Country Link
US (2) US9923566B1 (en)
CN (2) CN107800410B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200071B1 (en) * 2017-08-07 2019-02-05 Kratos Integral Holdings, Llc System and method for interference reduction in radio communications
US10291389B1 (en) * 2018-03-16 2019-05-14 Stmicroelectronics International N.V. Two-point modulator with matching gain calibration
US11139819B2 (en) * 2019-04-23 2021-10-05 Boe Technology Group Co., Ltd. Parameter determination method and device for spread spectrum circuit, and clock spread spectrum method and device
WO2024026054A1 (en) * 2022-07-28 2024-02-01 Texas Instruments Incorporated Multiplying spread-spectrum generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923566B1 (en) * 2016-08-30 2018-03-20 Stmicroelectronics International N.V. Spread spectrum clock generator
US11323131B2 (en) 2019-11-06 2022-05-03 Stmicroelectronics International N.V. Delay-based spread spectrum clock generator circuit
CN113452348A (en) * 2020-03-25 2021-09-28 矽恩微电子(厦门)有限公司 Spread spectrum clock generation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844763B1 (en) * 2002-08-29 2005-01-18 Analog Devices, Inc. Wideband modulation summing network and method thereof
US8037336B2 (en) 2006-05-15 2011-10-11 Stmicroelectronics Pvt, Ltd. Spread spectrum clock generation
TWI337009B (en) * 2007-06-08 2011-02-01 Faraday Tech Corp Spread spectrum clock generator with low jitter
US8604840B2 (en) * 2009-06-25 2013-12-10 Qualcomm Incorporated Frequency synthesizer noise reduction
CN101719762B (en) * 2009-11-18 2012-07-04 电子科技大学 Spread-spectrum clock signal generator for digital current modulation
CN104426541B (en) * 2013-08-28 2018-03-30 京微雅格(北京)科技有限公司 A kind of phase-locked loop circuit and method of spread-spectrum control
US9705514B2 (en) * 2013-11-27 2017-07-11 Silicon Laboratories Inc. Hybrid analog and digital control of oscillator frequency
US9762250B2 (en) * 2013-11-27 2017-09-12 Silicon Laboratories Inc. Cancellation of spurious tones within a phase-locked loop with a time-to-digital converter
US9923566B1 (en) * 2016-08-30 2018-03-20 Stmicroelectronics International N.V. Spread spectrum clock generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200071B1 (en) * 2017-08-07 2019-02-05 Kratos Integral Holdings, Llc System and method for interference reduction in radio communications
US10291389B1 (en) * 2018-03-16 2019-05-14 Stmicroelectronics International N.V. Two-point modulator with matching gain calibration
US11139819B2 (en) * 2019-04-23 2021-10-05 Boe Technology Group Co., Ltd. Parameter determination method and device for spread spectrum circuit, and clock spread spectrum method and device
WO2024026054A1 (en) * 2022-07-28 2024-02-01 Texas Instruments Incorporated Multiplying spread-spectrum generator
US11936391B2 (en) 2022-07-28 2024-03-19 Texas Instruments Incorporated Multiplying spread-spectrum generator

Also Published As

Publication number Publication date
US10348314B2 (en) 2019-07-09
US9923566B1 (en) 2018-03-20
CN107800410B (en) 2021-07-20
CN207884584U (en) 2018-09-18
US20180159544A1 (en) 2018-06-07
CN107800410A (en) 2018-03-13

Similar Documents

Publication Publication Date Title
US9923566B1 (en) Spread spectrum clock generator
CN103001631B (en) Fractional-n phase locked loop
US8699650B2 (en) Fractional type phase-locked loop circuit with compensation of phase errors
US7015738B1 (en) Direct modulation of a voltage-controlled oscillator (VCO) with adaptive gain control
US8179163B2 (en) Method and apparatus for charge pump linearization in fractional-N PLLs
EP0322139B1 (en) Frequency or phase modulation
US11804847B2 (en) Fractional frequency synthesis by sigma-delta modulating frequency of a reference clock
US6690215B2 (en) Sigma-delta-based frequency synthesis
US8258835B1 (en) Cancellation system for phase jumps at loop gain changes in fractional-N frequency synthesizers
Michel et al. A frequency modulated PLL for EMI reduction in embedded application
US7605664B2 (en) All digital phase locked loop system and method
US8664989B1 (en) Method to increase frequency resolution of a fractional phase-locked loop
US8730076B2 (en) Spur reduction circuit
Chen et al. A spread spectrum clock generator for SATA-II
US10148275B1 (en) Low power digital-to-analog converter (DAC)-based frequency synthesizer
US20020030546A1 (en) Frequency synthesizer having an offset frequency summation path
Fatahi et al. Design of low noise fractional-N frequency synthesizer using sigma-delta modulation technique
US9742414B2 (en) Reducing errors due to non-linearities caused by a phase frequency detector of a phase locked loop
US8422536B2 (en) Spread spectrum clock signal generator method and system
KR102392109B1 (en) Fractional-N Phase Locked Loop Using Phase Rotator
US20140184274A1 (en) Fractional-n frequency synthesizer with low quantization noise
Sun et al. A 0.951 ps rms period jitter, 3.2% modulation range, DSM-free, spread-spectrum PLL
Reddy Noise shaping with sigma delta modulators in fractional-N synthesizers
Lee et al. A fractional-N frequency synthesizer with a 3-bit 4 th order Σ-Δ modulator
Rhee Phase-locked frequency synthesis and modulation for modern wireless transceivers

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICROELECTRONICS INTERNATIONAL N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, ANAND;MIDHA, GAGAN;REEL/FRAME:039579/0166

Effective date: 20160830

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4