US20170373689A1 - Standard cell architecture for reduced parasitic resistance and improved datapath speed - Google Patents

Standard cell architecture for reduced parasitic resistance and improved datapath speed Download PDF

Info

Publication number
US20170373689A1
US20170373689A1 US15/192,872 US201615192872A US2017373689A1 US 20170373689 A1 US20170373689 A1 US 20170373689A1 US 201615192872 A US201615192872 A US 201615192872A US 2017373689 A1 US2017373689 A1 US 2017373689A1
Authority
US
United States
Prior art keywords
track
interconnect
input
output
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/192,872
Other versions
US9859891B1 (en
Inventor
Dorav KUMAR
Venkatasubramanian Narayanan
Bala Krishna THALLA
Seid Hadi Rasouli
Radhika Vinayak Guttal
Sivakumar PATURI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US15/192,872 priority Critical patent/US9859891B1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RASOULI, SEID HADI, GUTTAL, RADHIKA VINAYAK, KUMAR, Dorav, NARAYANAN, VENKATASUBRAMANIAN, PATURI, Sivakumar, THALLA, Bala Krishna
Priority to BR112018076262-8A priority patent/BR112018076262B1/en
Priority to JP2018567265A priority patent/JP6896776B2/en
Priority to EP17722594.3A priority patent/EP3475981B1/en
Priority to KR1020187037386A priority patent/KR20190022554A/en
Priority to PCT/US2017/029700 priority patent/WO2017222638A1/en
Priority to CN201780038535.XA priority patent/CN109314098B/en
Publication of US20170373689A1 publication Critical patent/US20170373689A1/en
Publication of US9859891B1 publication Critical patent/US9859891B1/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • H03K19/00361Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17736Structural details of routing resources
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17736Structural details of routing resources
    • H03K19/17744Structural details of routing resources for input/output signals

Definitions

  • the present disclosure relates generally to a standard cell architecture, and more particularly, to standard cell architecture for a metal oxide semiconductor (MOS) integrated circuit (IC) device that reduces parasitic resistance and improves datapath speeds.
  • MOS metal oxide semiconductor
  • Standard cells of an integrated circuit implement digital logic.
  • An application-specific integrated circuit such as a system-on-a-chip (SoC) device, may contain thousands to millions of standard cell devices.
  • a typical MOS IC device includes a stack of sequentially formed layers. Each layer may be stacked or overlaid on a prior layer and patterned to form the shapes that define transistors (e.g., field effect transistors (FETs) and/or a fin-shaped FET (FinFET)) and connect the transistors into circuits.
  • FETs field effect transistors
  • FinFET fin-shaped FET
  • MOS IC devices are fabricated at smaller sizes, manufacturers are finding it more difficult to integrate larger amounts of standard cell devices on a single chip. For example, as the size of MOS IC devices are reduced, an increase in parasitic resistance may be caused by the reduction in the width and thickness of various layers of the MOS IC device. The increase in parasitic resistance may be responsible for a delay of standard cell output.
  • the interconnect on the lower metal layer may need to be routed around the track. Routing the interconnect around the track may be necessary because the interconnect on the lower metal layer may run into an input/output stack of the interconnect of the higher metal layer.
  • the routing detour may cause a signal delay on the interconnect on the lower metal layer, and the accumulated signal delay of the interconnect on the lower metal layer may cause a decrease in datapath speed for the MOS IC device.
  • a MOS device may include a first logic component with a first input and a first output.
  • the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction.
  • the first output is located on the first track and a third track that extends in the second direction.
  • the MOS device further includes a second logic component with a second input and a second output.
  • the second input is located on the first track and a fourth track that extends in the second direction.
  • the second output is located on the first track and a fifth track that extends in the second direction.
  • the fourth track and the fifth track are between the second track and the third track.
  • the MOS device includes a first interconnect on a M x layer that extends on the first track and is coupled to the first input on the second track.
  • the MOS device includes a second interconnect on the M x layer that extends on the first track and is coupled to the first output on the third track.
  • the MOS device includes a third interconnect on a M y layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x.
  • the MOS device includes a fourth interconnect on the M y layer that extends on the first track and is coupled to the second output on the fifth track.
  • a method of operation of a MOS IC includes propagating a first signal through a first logic component with a first input and a first output.
  • the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction.
  • the first output is located on the first track and a third track that extends in the second direction.
  • the method further includes propagate a second signal through a second logic component with a second input and a second output.
  • the second input is located on the first track and a fourth track that extends in the second direction.
  • the second output is located on the first track and a fifth track that extends in the second direction.
  • the fourth track and the fifth track are between the second track and the third track.
  • the MOS device includes a first interconnect on a M x layer that extends on the first track and is coupled to the first input on the second track.
  • the MOS device includes a second interconnect on the M x layer that extends on the first track and is coupled to the first output on the third track.
  • the MOS device includes a third interconnect on a M y layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x.
  • the MOS device includes a fourth interconnect on the M y layer that extends on the first track and is coupled to the second output on the fifth track.
  • FIG. 1 is a diagram illustrating a plan view of an example MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 2 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 3 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 4 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 5 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 6 is a flow chart of an exemplary method.
  • MOS IC devices are fabricated at smaller sizes, manufacturers are finding it more difficult to integrate larger amounts of standard cell devices on a single chip. For example, as the size of MOS IC devices are reduced, an increase in parasitic resistance may be caused by the reduction in the width and thickness of various layers of the MOS IC device. The increase in parasitic resistance may be responsible for a delay of standard cell output.
  • MOS IC device standard cells may be designed up to the metal x (Mx) layer interconnect, where x ⁇ 3 .
  • One way to reduce the parasitic resistance of smaller MOS IC devices may be to design the standard cells up to a higher metal layer, such as an metal 5 (M 5 ) layer interconnect or an metal 6 (M 6 ) layer interconnect.
  • M 5 metal 5
  • M 6 metal 6
  • additional vias may also be included that connect the higher metal layer interconnects to lower metal layer interconnects.
  • the additional metal layer interconnects and vias may provide additional parallel current paths that are able to reduce the overall parasitic resistance of the standard cell, as compared to a standard cell only designed up to the Mx layer interconnect.
  • the interconnect on the lower metal layer may need to be routed around the track. Routing the interconnect around the track may be necessary because the interconnect on the lower metal layer may run into an input/output stack of the interconnect of the higher metal layer.
  • the routing detour may cause a signal delay on the interconnect on the lower metal layer, and the accumulated signal delay of the interconnect on the lower metal layer may cause a decrease in datapath speed for the MOS IC device, as discussed infra with respect to FIG. 1 .
  • FIG. 1 is a diagram illustrating a plan view of an example MOS IC device 100 including a first standard cell 120 a and a second standard cell 120 b designed with metal layers up to M 6 layer to reduce parasitic resistance as discussed supra.
  • the first standard cell 120 a includes a first buffer 102 a
  • the second standard cell 120 b includes a second buffer 102 b (e.g., a 2-bit buffer).
  • the first buffer 102 a includes a first input 104 a (e.g., a first input pin) and a first output 106 a (e.g., a first output pin).
  • the first input 104 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction.
  • the first input 104 a may correspond to a first M 6 layer interconnect.
  • the first output 106 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction.
  • the first output 106 a may correspond to a second M 6 layer interconnect.
  • the first direction is orthogonal to the second direction.
  • the second buffer 102 b includes a second input 104 b (e.g., a second input pin) and a second output 106 b (e.g., a second output pin).
  • the second input 104 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction.
  • the second input 104 b may correspond to a first M 8 layer interconnect.
  • the second output 106 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction.
  • the second output 106 b may correspond to a second M 8 layer interconnect.
  • an M 7 layer and an M 9 layer both extend along the first track.
  • the M 9 layer is formed above the M 7 layer in a third direction as indicated in the top right corner of FIG. 1 .
  • the signals carried on each of M 7 layer and M 9 layer travel in the same direction as indicated on the left hand side of FIG. 1 .
  • the M 9 layer extends over the entirety of the M 7 layer, portions of the M 9 layer are not shown in FIG. 1 so not to obscure the view of the M 7 layer of the first input 104 a.
  • a first interconnect 108 a on the M 7 layer may be coupled through a via to the first input 104 a (e.g., on an M 6 layer) on the second track.
  • a second interconnect 108 b may be connected through a via to the first output 106 a (e.g., on an M 6 layer) on the fourth track with a routing detour from the first track.
  • a third interconnect 110 a on the M 9 layer may be coupled through a via to the second input 104 b (e.g., on an M 8 layer) on the fifth track.
  • a fourth interconnect 110 b on the M 9 layer may be coupled through a via to the second output 106 b (e.g., on an M 8 layer) on the third track.
  • the second interconnect 108 b is unable to connect to second standard cell 120 b without a routing detour from the first track.
  • the routing detour may cause a signal delay, and the accumulated signal delay of the routing detour may cause a decrease in datapath speed in the MOS IC device 100 illustrated in FIG. 1 .
  • FIG. 2 illustrates an exemplary MOS IC device 200 including a standard cell 220 designed with metal layers up to M 6 /M 8 layers to reduce parasitic resistance.
  • the MOS IC device includes a first buffer 202 a and a second buffer 202 b (e.g., a 2-bit buffer).
  • the exemplary MOS IC device 200 illustrated in FIG. 2 may not require a routing detour to connect the M 7 layer interconnect to a buffer output.
  • the first buffer 202 a includes a first input 204 a (e.g., a first input pin) and a first output 206 a (e.g., a first output pin).
  • the first input 204 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction.
  • the first input 204 a may correspond to a first M 6 layer interconnect.
  • the first output 206 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction.
  • the first output 206 a may correspond to a second M 6 layer interconnect.
  • the first direction is orthogonal to the second direction.
  • the second buffer 202 b includes a second input 204 b (e.g., a second input pin) and a second output 206 b (e.g., a second output pin).
  • the second input 204 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction.
  • the second input 204 b may correspond to a first M 8 layer interconnect.
  • the second output 206 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction.
  • the second output 206 b may correspond to a second M 8 layer interconnect.
  • an M 7 layer interconnect and an M 9 layer interconnect both extend along the first track.
  • the M 9 layer interconnect is formed above the M 7 layer interconnect in a third direction as indicated in the top right corner of FIG. 2 .
  • the signals carried on each of M 7 layer interconnect and M 9 layer interconnect travel in the same direction as indicated on the left hand side of FIG. 2 .
  • the M 9 layer interconnect extends over the entirety of the M 7 layer interconnect, portions of the M 9 layer interconnect are not shown in FIG. 2 so as not to obscure the view of the M 7 layer interconnect of the first input 204 a and the first output 206 a.
  • a first interconnect 208 a on the M 7 layer may be coupled to the first input 204 a (e.g., the first M 6 layer interconnect) on the second track.
  • the first interconnect 208 a may be coupled to the first input 204 a through a via that connects the first interconnect 208 a to the first input 204 a of the MOS IC device 200 .
  • a second interconnect 208 b on the M 7 layer may be coupled to the first output 206 a (e.g., the second M 6 layer interconnect) on the third track.
  • second interconnect 208 b may be coupled to the first output 206 a through a via that connects the M 7 layer to the first output 206 a of the MOS IC device 200 .
  • a third interconnect 210 a on the M 9 layer may be coupled to the second input 204 b (e.g., the first M 8 layer interconnect) on the fourth track.
  • the third interconnect 210 a may be coupled to the second input 204 b through a via that connects the third interconnect 210 a to the second input 204 b of the MOS IC device 200 .
  • a fourth interconnect 210 b on the M 9 layer may be coupled to the second output 206 b (e.g., the second M 8 layer interconnect) on the fifth track.
  • fourth interconnect 210 b may be coupled to the second output 206 b through a via that connects the fourth interconnect 210 b to the second output 206 b of the MOS IC device 200 .
  • the first interconnect 208 a , the second interconnect 208 b , the third interconnect 210 a , and the fourth interconnect 210 b may be used as inter-cell routing between the standard cell 220 and another standard cell (not shown in FIG. 2 ).
  • the standard cell 220 is a quadruple height cell with the four rows including the second through fifth track. It should be understood, that the aspects disclosed herein may also be applied to a single height cell, a double height cell, a triple height cell, or any other cell height without departing from the scope of the present disclosure.
  • the connection of the M 9 layer interconnects in a stack to transistors of the MOS IC device 200 may not block the M 7 layer interconnects from extending on the first track. Therefore, routing detours of the M 7 layer interconnects may be avoided and datapath speeds may be improved in the MOS IC device 200 illustrated in FIG. 2 .
  • FIG. 3 illustrates an exemplary MOS IC device 300 including a standard cell 320 each designed with metal layers up to M 6 /M 8 layers to reduce parasitic resistance.
  • the MOS IC device 300 also includes a first buffer 302 a and a second buffer 302 b (e.g., a 2-bit buffer).
  • the exemplary MOS IC device 300 illustrated in FIG. 3 may not require a routing detour to connect the M 7 to a buffer output.
  • the first buffer 302 a includes a first input 304 a (e.g., a first input pin) and a first output 306 a (e.g., a first output pin).
  • the first input 304 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction.
  • the first input 304 a may correspond to a first M 6 layer interconnect.
  • the first output 306 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction.
  • the first output 306 a may correspond to a second M 6 layer interconnect.
  • the first direction is orthogonal to the second direction.
  • the second buffer 302 b includes a second input 304 b (e.g., a second input pin) and a second output 306 b (e.g., a second output pin).
  • the second input 304 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction.
  • the second input 304 b may correspond to a first M 8 layer interconnect.
  • the second output 306 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction.
  • the second output 306 b may correspond to a second M 8 layer interconnect.
  • an M 7 layer interconnect and an M 9 layer interconnect both extend along the first track.
  • the M 9 layer interconnect is formed above the M 7 layer interconnect in a third direction as indicated in the top right corner of FIG. 3 .
  • the signals carried on each of M 7 layer interconnect and M 9 layer interconnect travel in opposite directions as indicated on the left hand side of FIG. 3 .
  • the M 9 layer interconnect extends over the entirety of the M 7 layer interconnect, portions of the M 9 layer interconnect are not shown in FIG. 3 so as not to obscure the view of the M 7 layer interconnects of the first input 304 a and the first output 306 a.
  • a first interconnect 308 a on the M 7 layer may be coupled to the first input 304 a (e.g., the first M 6 layer interconnect) on the second track.
  • the first interconnect 308 a may be coupled to the first input 304 a through a via that connects the first interconnect 308 a to the first input 304 a of the MOS IC device 300 .
  • a second interconnect 308 b on the M 7 layer may be coupled to the first output 306 a (e.g., the second M 6 layer interconnect) on the third track.
  • the second interconnect 308 b may be coupled to the first output 306 a through a via that connects the second interconnect 308 b to the first output 306 a of the MOS IC device 300 .
  • a third interconnect 310 a on the M 9 layer may be coupled to the second input 304 b (e.g., the first M 8 layer interconnect) on the fourth track.
  • the third interconnect 310 a may be coupled to the second input 304 b through a via that connects the third interconnect 310 a to the second input 304 b the MOS IC device 300 .
  • a fourth interconnect 310 b on the M 9 layer may be coupled to the second output 306 b (e.g., the second M 8 layer interconnect) on the fifth track.
  • the fourth interconnect 310 b may be coupled to the second output 306 b through a via that connects the fourth interconnect 310 b to the second output 306 b of the MOS IC device 300 .
  • the first interconnect 308 a , the second interconnect 308 b , the third interconnect 310 a , and the fourth interconnect 310 b may be used as inter-cell routing between the standard cell 320 and another standard cell (not shown in FIG. 3 ).
  • the standard cell 320 is a quadruple height cell with the four rows including the second through fifth track. It should be understood, that the aspects disclosed herein may also be applied to a single height cell, a double height cell, a triple height cell, or any other cell height without departing from the scope of the present disclosure.
  • the connection of the M 9 layer interconnects in a stack to transistors of the MOS IC device 300 may not block the M 7 layer interconnects from extending on the first track. Therefore, routing detours of the M 7 layer interconnects may be avoided and datapath speeds may be improved in the MOS IC device 300 illustrated in FIG. 3 .
  • FIG. 4 illustrates an exemplary MOS IC device 400 with metal layers up to M 5 /M 7 layers to reduce parasitic resistance.
  • the MOS IC device 400 includes, for example, a first buffer 402 a and a second buffer 402 b (e.g., a 2-bit buffer).
  • the exemplary MOS IC device 400 illustrated in FIG. 4 may not require a routing detour of an M 6 layer interconnect from the first track the MOS IC device 400 .
  • the first buffer 402 a includes a first input 404 a (e.g., a first input pin) and a first output 406 a (e.g., a first output pin).
  • the first input 404 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction.
  • the first input 404 a may correspond to a first M 5 layer interconnect.
  • the first output 406 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction.
  • the first output 406 a may correspond to a second M 5 layer interconnect.
  • the first direction is orthogonal to the second direction.
  • the second buffer 402 b includes a second input 404 b (e.g., a second input pin) and a second output 406 b (e.g., a second output pin).
  • the second input 404 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction.
  • the second input 404 b may correspond to a first M 7 layer interconnect.
  • the second output 406 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction.
  • the second output 406 b may correspond to a second M 7 layer interconnect.
  • an M 6 layer interconnect and an M 8 layer interconnect both extend along the first track.
  • the M 8 layer interconnect is formed above the M 6 layer interconnect in a third direction as indicated in the top right corner of FIG. 4 .
  • the signals carried on each of M 6 layer interconnect and M 8 layer interconnect travel in opposite directions as indicated on the left hand side of FIG. 4 .
  • the M 8 layer interconnect extends over the entirety of the M 6 layer interconnect, portions of the M 8 layer interconnect are not shown in FIG. 4 so as not to obscure the view of the M 6 layer interconnects of the first input 404 a and the first output 406 a.
  • a first interconnect 408 a on the M 6 layer may be coupled to the first input 404 a (e.g., the first M 5 layer interconnect) on the second track.
  • the first interconnect 408 a may be coupled to the first input 404 a through a via that connects the first interconnect 408 a to the first input 404 a of the MOS IC device 400 .
  • a second interconnect 408 b on the M 6 layer may be coupled to the first output 406 a (e.g., the second M 5 layer interconnect) on the third track.
  • the second interconnect 408 b may be coupled to the first output 406 a through a via that connects the second interconnect 408 b to the first output 406 a of the MOS IC device 400 .
  • a third interconnect 410 a on the M 8 layer may be coupled to the second input 404 b (e.g., the first M 7 layer interconnect) on the fourth track.
  • the third interconnect 410 a may be coupled to the second input 404 b through a via that connects the third interconnect 410 a to the second input 404 b the MOS IC device 400 .
  • a fourth interconnect 410 b on the M 8 layer may be coupled to the second output 406 b (e.g., the second M 7 layer interconnect) on the fifth track.
  • the fourth interconnect 410 b may be coupled to the second output 406 b through a via that connects the fourth interconnect 410 b to the second output 406 b of the MOS IC device 400 .
  • the connection of the M 8 layer interconnects in a stack to transistors of the MOS IC device 400 may not block the M 6 layer interconnects from extending on the first track. Therefore, routing detours of the M 6 layer interconnects may be avoided and datapath speeds may be improved in the MOS IC device 400 illustrated in FIG. 4 .
  • a 2-bit buffer system is illustrated in the exemplary MOS IC devices 200 , 300 , 400 of FIGS. 2-4 , it should be understood that the aspects disclosed herein are not limited to a 2-bit buffer system.
  • the exemplary aspects disclosed herein may be applied to a buffer system that includes more than 2 buffers (e.g., 3-bit buffer, 4-bit buffer, etc.) without departing from the scope of the present disclosure.
  • FIG. 5 illustrates an exemplary MOS IC device 500 in accordance with one aspect of the present disclosure.
  • the MOS IC device 500 may include a first standard cell 502 a , a second standard cell 502 b , and at least one other standard cell 502 c .
  • Each of the first standard cell 502 a and the second standard cell 502 b include a first track, a second track, a third track, and a fourth track.
  • the first standard cell 502 a includes a V dd power rail 504 a and a V ss power rail 506
  • the second standard cell 502 b includes the V ss power rail 506 and a V dd power rail 504 b.
  • each of the 2-bit buffers 508 a , 508 b , 508 c , and 508 d may be staggered to include the greatest amount of 2-bit buffers in the MOS IC device 500 while operating within the spacing requirements for a standard cell.
  • a MOS device ( 200 , 300 , 400 , 500 ) includes a first logic component ( 202 a , 302 a , 402 a ) with a first input ( 204 a , 304 a , 404 a ) and a first output ( 206 a , 306 a , 406 a ).
  • the first input ( 204 a , 304 a , 404 a ) is located on a first track that extends in a first direction and a second track that extends in a second direction orthogonal to the first direction.
  • the first output ( 206 a , 306 a , 406 a ) is located on the first track and a third track that extends in the second direction.
  • the MOS device ( 200 , 300 , 400 , 500 ) includes a second logic component ( 202 b , 302 b , 402 b ) with a second input ( 204 b , 304 b , 404 b ) and a second output ( 206 b , 306 b , 406 b ).
  • the second input ( 204 b , 304 b , 404 b ) is located on the first track and a fourth track that extends in the second direction.
  • the second output ( 206 b , 306 b , 406 b ) is located on the first track and a fifth track that extends in the second direction.
  • the fourth track and the fifth track are between the second track and the third track (see FIGS. 2-4 ).
  • the MOS device ( 200 , 300 , 400 , 500 ) includes a first interconnect ( 208 a , 308 a , 408 a ) on a metal x (M x ) layer (e.g., the M 7 layer in FIGS. 2 and 3 , and the M 6 layer interconnect in FIG. 4 ) that extends on the first track and that is coupled to the first input ( 204 a , 304 a , 404 a ) on the second track.
  • M x metal x
  • the MOS device ( 200 , 300 , 400 , 500 ) includes a second interconnect ( 208 b , 308 b , 408 b ) on the M x layer (e.g., the M 7 layer in FIGS. 2 and 3 , and the M 6 layer interconnect in FIG. 4 ) that extends on the first track and that is coupled to the first output ( 206 a , 306 a , 406 a ) on the third track.
  • the M x layer e.g., the M 7 layer in FIGS. 2 and 3 , and the M 6 layer interconnect in FIG. 4
  • the MOS device ( 200 , 300 , 400 , 500 ) includes a third interconnect ( 210 a , 310 a , 410 a ) on a metal y (M y ) layer (e.g., the M 9 layer in FIGS. 2 and 3 , and the M 8 layer in FIG. 4 ) that extends on the first track and is coupled to the second input ( 204 b , 304 b , 404 b ) on the fourth track.
  • M y metal y
  • the MOS device ( 200 , 300 , 400 , 500 ) includes a fourth interconnect ( 210 b , 310 b , 410 b ) on the M y layer (e.g., the M 9 layer in FIGS. 2 and 3 , and the M 8 layer in FIG. 4 ) that extends on the first track and that is coupled to the second output ( 206 b , 306 b , 406 b ) on the fifth track.
  • the M y layer e.g., the M 9 layer in FIGS. 2 and 3 , and the M 8 layer in FIG. 4
  • the first logic component ( 202 a , 302 a , 402 a ) and the second logic component ( 202 b , 302 b , 402 b ) are part of a standard cell ( 220 , 320 , 502 a ) in the MOS device ( 200 , 300 , 500 ).
  • first interconnect ( 208 a , 308 a , 408 a ), the second interconnect ( 208 b , 308 b , 408 b ), the third interconnect ( 210 a , 310 a , 410 a ), and the fourth interconnect ( 210 b , 310 b , 410 b ) are inter-cell routing between the standard cell ( 502 a ) and at least one other standard cell ( 502 c ).
  • the standard cell ( 502 a ) may be a quadruple height cell with four rows (see FIGS. 2-4 ) including a first row (see FIGS. 2-4 ), a second row (see FIGS. 2-4 ) adjacent the first row (see FIGS. 2-4 ), a third row adjacent the second row (see FIGS. 2-4 ), and a fourth row adjacent the third row (see FIGS. 2-4 ).
  • the second track (see FIGS. 2-4 ) is in the first row (see FIGS. 2-4 ).
  • the third track (see FIGS. 2-4 ) is in the fourth row (see FIGS. 2-4 ).
  • the fourth track see FIGS.
  • the fifth track is in another one of the second row (see FIGS. 3 and 4 ) or the third row (see FIG. 2 ).
  • the first input ( 204 a , 304 a , 404 a ) corresponds to a first input pin ( 204 a , 304 a , 404 a ).
  • the first output ( 206 a , 306 a , 406 a ) corresponds to a first output pin ( 206 a , 306 a , 406 a ).
  • the second input ( 204 b , 304 b , 404 b ) corresponds to a second input pin ( 204 b , 304 b , 404 b ).
  • the second output ( 206 b , 306 b , 406 b ) corresponds to a second output pin ( 206 b , 306 b , 406 b ).
  • the first input pin ( 204 a , 304 a , 404 a ) corresponds to a metal x-z 1 (M x-z1 ) layer interconnect (e.g., the M 7 layer interconnect in FIGS. 2 and 3 , and the M 5 layer interconnect in FIG. 4 ).
  • M x-z1 metal x-z 1
  • the first output pin ( 206 a , 306 a , 406 a ) corresponds to a metal x-z 2 (M x-z2 ) layer interconnect (e.g., the M 8 layer interconnect in FIGS. 2 and 3 , and the M 5 layer interconnect in FIG. 4 ).
  • M x-z2 metal x-z 2
  • the second input pin ( 204 b , 304 b , 404 b ) corresponds to a metal y-z 3 (M y-z3 ) layer interconnect (e.g., the M 8 layer interconnect in FIGS. 2 and 3 , and the M 7 layer interconnect in FIG. 4 ).
  • M y-z3 metal y-z 3
  • the second output pin ( 206 b , 306 b , 406 b ) corresponds to a metal y-z 4 (M y-z4 ) layer interconnect (e.g., the M 8 layer interconnect in FIGS. 2 and 3 , and the M 7 layer interconnect in FIG. 4 ).
  • M y-z4 metal y-z 4
  • z 4 ⁇ 1.
  • z 1 , z 2 , z 3 , and z 4 are each equal to 1.
  • the input/output pins are located one metal layer below the aforementioned M 6 , M 7 , M 8 , M 9 signal line interconnects.
  • z is a number of metal layers below the M 6 , M 7 , M 8 , M 9 signal line interconnects which the input/output pins are located.
  • the fifth track is between the fourth track and the third track (see FIG. 2 ).
  • the first interconnect ( 208 a ) and the third interconnect overlap ( 210 a ) in a third direction.
  • the second interconnect ( 208 b ) and the fourth interconnect ( 210 b ) overlap in the third direction.
  • the third direction is orthogonal to the first direction and the second direction.
  • the fourth track is between the fifth track and the third track (see FIGS. 3 and 4 ).
  • the first interconnect ( 308 a , 408 a ) and the fourth interconnect ( 310 b , 410 b ) overlap in a third direction.
  • the second interconnect ( 308 b , 408 b ) and the third interconnect ( 310 a , 410 a ) overlap in the third direction.
  • the third direction is orthogonal to the first direction and the second direction.
  • the first logic component ( 202 a , 302 a , 402 a ) is a first buffer ( 202 a , 302 a , 402 a ).
  • the second logic component ( 202 b , 302 b , 402 b ) is a second buffer ( 202 b , 302 b , 402 b ).
  • the first track is a vertical track (e.g., FIGS. 2 and 3 ).
  • the second track, the third track, the fourth track, and the fifth track are each horizontal tracks (e.g., FIGS. 2 and 3 ).
  • the first track is a horizontal track (e.g., FIG. 4 ).
  • the second track, the third track, the fourth track, and the fifth track are each vertical tracks (e.g., FIG. 4 ).
  • the first logic component ( 202 a , 302 a , 402 a ) and the second logic component ( 202 b , 302 b , 402 b ) are part of a first buffer ( 508 a ) positioned on the first track (track 1 in the first standard cell 502 a in FIG. 5 ).
  • the MOS device ( 500 ) also includes a second buffer ( 508 b ) positioned on a sixth track (e.g., track 2 in the first standard cell 502 a in FIG. 5 ) that is parallel to the first track (track 1 in the first standard cell 502 a in FIG. 5 ).
  • second buffer ( 508 b ) is non-adjacent to the first buffer ( 508 a ).
  • the MOS device ( 500 ) includes a third buffer ( 508 c ) positioned on a seventh track (track 3 in the first standard cell 502 a in FIG. 5 ) that is parallel to the first track (track 1 in the first standard cell 502 a in FIG. 5 .
  • the third buffer ( 508 c ) is non-adjacent to the second buffer ( 508 b ).
  • the MOS device ( 500 ) includes a fourth buffer ( 508 d ) positioned on an eight track (track 4 in the first standard cell 502 in FIG. 5 ) that is parallel to the first track (track 1 in the first standard cell 502 a in FIG. 5 ).
  • the fourth buffer ( 508 d ) is non-adjacent to the third buffer ( 508 c ).
  • FIG. 6 is a flow chart 600 of an exemplary method.
  • the exemplary method is a method of operation of a MOS IC device.
  • the MOS device may be one of the MOS IC devices 200 , 300 , 400 illustrated in FIGS. 2-4 .
  • a first signal is propagated through a first logic component with a first input and a first output.
  • the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction.
  • the first output is located on the first track and a third track that extends in the second direction.
  • a second signal is propagated through a second logic component with a second input and a second output.
  • the second input is located on the first track and a fourth track that extends in the second direction.
  • the second output is located on the first track and a fifth track that extends in the second direction.
  • the fourth track and the fifth track are between the second track and the third track.
  • the MOS device includes a first interconnect on a M x layer that extends on the first track and is coupled to the first input on the second track.
  • the MOS device includes a second interconnect on the M x layer that extends on the first track and is coupled to the first output on the third track.
  • the MOS device includes a third interconnect on a M y layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x. Still further, the MOS device includes a fourth interconnect on the M y layer that extends on the first track and is coupled to the second output on the fifth track.
  • the MOS device further includes first means for propagating a signal through a first logic component with a first input and a first output.
  • the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction.
  • the first output is located on the first track and a third track that extends in the second direction.
  • the MOS device further includes second means for propagating a signal through a second logic component with a second input and a second output.
  • the second input is located on the first track and a fourth track that extends in the second direction.
  • the second output is located on the first track and a fifth track that extends in the second direction.
  • the fourth track and the fifth track are between the second track and the third track.
  • the MOS device includes a first interconnect on a M x layer that extends on the first track and is coupled to the first input on the second track.
  • the MOS device includes a second interconnect on the M x layer that extends on the first track and is coupled to the first output on the third track.
  • the MOS device includes a third interconnect on a M y layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x. Still further, the MOS device includes a fourth interconnect on the M y layer that extends on the first track and is coupled to the second output on the fifth track.
  • MOS IC device standard cells may be designed up to the metal x (Mx) layer interconnect, where x ⁇ 3.
  • Mx metal x
  • One way to reduce the parasitic resistance of smaller MOS IC devices may be to design the standard cells up to a higher metal layer, such as an metal 5 (M 5 ) layer interconnect or an metal 6 (M 6 ) layer interconnect.
  • M 5 metal 5
  • M 6 metal 6
  • additional vias may also be included that connect the higher metal layer interconnects to lower metal layer interconnects.
  • the additional metal layer interconnects and vias may provide additional parallel current paths that are able to reduce the overall parasitic resistance of the standard cell, as compared to a standard cell only designed up to the Mx layer interconnect.
  • the interconnect on the lower metal layer may need to be routed around the track. Routing the interconnect around the track may be necessary because the interconnect on the lower metal layer may run into an input/output stack of the interconnect of the higher metal layer.
  • the routing detour may cause a signal delay on the interconnect on the lower metal layer, and the accumulated signal delay of the interconnect on the lower metal layer may cause a decrease in datapath speed for the MOS IC device, as discussed supra with respect to FIG. 1 .
  • the present disclosure provides a solution to the problem by providing a 2-bit buffer with input/output pins for a lower metal layer interconnect signal line ( 208 a , 208 b , 308 a , 308 b , 408 a , 408 b ) on edges of a 2-bit buffer standard cell. Further, input/output pins of the higher metal layer interconnect signal line ( 210 a , 210 b , 310 a , 310 b , 410 a , 410 b ) are located between the input/output pins of the lower metal layer interconnect signal line ( 208 a , 208 b , 308 a , 308 b , 408 a , 408 b ).
  • connection of the higher metal layer interconnect signal line ( 210 a , 210 b , 310 a , 310 b , 410 a , 410 b ) to the MOS IC device ( 200 , 300 , 400 ) may not block a connection of the lower metal layer interconnect signal line ( 208 a , 208 b , 308 a , 308 b , 408 a , 408 b ) to the MOS IC device ( 200 , 300 , 400 ) on the first track.
  • routing detours of the lower metal layer interconnect signal lines ( 208 a , 208 b , 308 a , 308 b , 408 a , 408 b ) may be avoided and datapath speeds may be improved in the MOS IC devices ( 200 , 300 , 400 ) illustrated in FIGS. 2-4 .
  • Combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

A MOS device may include a first logic component with a first input located on a second track and a first output located on the third track. The MOS device may include a second logic component with a second input located on the fourth track and a second output located on a fifth track. For example, the MOS device includes a first interconnect on a Mx layer that is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the Mx layer that is coupled to the first output on the third track. The MOS device includes a third interconnect on a My layer that is coupled to the second input on the fourth track. Still further, the MOS device includes a fourth interconnect on the My layer that is coupled to the second output on the fifth track.

Description

    BACKGROUND Field
  • The present disclosure relates generally to a standard cell architecture, and more particularly, to standard cell architecture for a metal oxide semiconductor (MOS) integrated circuit (IC) device that reduces parasitic resistance and improves datapath speeds.
  • Background
  • Standard cells of an integrated circuit implement digital logic. An application-specific integrated circuit (ASIC), such as a system-on-a-chip (SoC) device, may contain thousands to millions of standard cell devices. A typical MOS IC device includes a stack of sequentially formed layers. Each layer may be stacked or overlaid on a prior layer and patterned to form the shapes that define transistors (e.g., field effect transistors (FETs) and/or a fin-shaped FET (FinFET)) and connect the transistors into circuits.
  • As MOS IC devices are fabricated at smaller sizes, manufacturers are finding it more difficult to integrate larger amounts of standard cell devices on a single chip. For example, as the size of MOS IC devices are reduced, an increase in parasitic resistance may be caused by the reduction in the width and thickness of various layers of the MOS IC device. The increase in parasitic resistance may be responsible for a delay of standard cell output.
  • In addition, using conventional standard cell architecture, when two interconnects on two different metal layers (e.g., a higher metal layer and a lower metal layer) carrying different signals occupy the same track in a MOS IC device and are connected to two different standard cells having inputs and outputs on the same track, the interconnect on the lower metal layer may need to be routed around the track. Routing the interconnect around the track may be necessary because the interconnect on the lower metal layer may run into an input/output stack of the interconnect of the higher metal layer. The routing detour may cause a signal delay on the interconnect on the lower metal layer, and the accumulated signal delay of the interconnect on the lower metal layer may cause a decrease in datapath speed for the MOS IC device.
  • There is currently a need for a standard cell architecture that reduces the parasitic resistance of smaller MOS IC devices and enables interconnects carrying two different signals on a track to connect to input/output pins on the track without being routed around the track.
  • SUMMARY
  • In an aspect of the disclosure, a MOS device may include a first logic component with a first input and a first output. In an aspect, the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction. In another aspect, the first output is located on the first track and a third track that extends in the second direction. The MOS device further includes a second logic component with a second input and a second output. In an aspect, the second input is located on the first track and a fourth track that extends in the second direction. In another aspect, the second output is located on the first track and a fifth track that extends in the second direction. In a further aspect, the fourth track and the fifth track are between the second track and the third track. For example, the MOS device includes a first interconnect on a Mx layer that extends on the first track and is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the Mx layer that extends on the first track and is coupled to the first output on the third track. In a further example, the MOS device includes a third interconnect on a My layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x. Still further, the MOS device includes a fourth interconnect on the My layer that extends on the first track and is coupled to the second output on the fifth track.
  • In another aspect of the disclosure, a method of operation of a MOS IC includes propagating a first signal through a first logic component with a first input and a first output. In an aspect, the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction. In another aspect, the first output is located on the first track and a third track that extends in the second direction. The method further includes propagate a second signal through a second logic component with a second input and a second output. In an aspect, the second input is located on the first track and a fourth track that extends in the second direction. In another aspect, the second output is located on the first track and a fifth track that extends in the second direction. In a further aspect, the fourth track and the fifth track are between the second track and the third track. For example, the MOS device includes a first interconnect on a Mx layer that extends on the first track and is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the Mx layer that extends on the first track and is coupled to the first output on the third track. In a further example, the MOS device includes a third interconnect on a My layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x. Still further, the MOS device includes a fourth interconnect on the My layer that extends on the first track and is coupled to the second output on the fifth track.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating a plan view of an example MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 2 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 3 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 4 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 5 is a diagram illustrating a plan view of an exemplary MOS IC device in accordance with an aspect of the disclosure.
  • FIG. 6 is a flow chart of an exemplary method.
  • DETAILED DESCRIPTION
  • The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts. Apparatuses and methods will be described in the following detailed description and may be illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, elements, etc.
  • As MOS IC devices are fabricated at smaller sizes, manufacturers are finding it more difficult to integrate larger amounts of standard cell devices on a single chip. For example, as the size of MOS IC devices are reduced, an increase in parasitic resistance may be caused by the reduction in the width and thickness of various layers of the MOS IC device. The increase in parasitic resistance may be responsible for a delay of standard cell output.
  • MOS IC device standard cells may be designed up to the metal x (Mx) layer interconnect, where x≦3. One way to reduce the parasitic resistance of smaller MOS IC devices may be to design the standard cells up to a higher metal layer, such as an metal 5 (M5) layer interconnect or an metal 6 (M6) layer interconnect. By designing standard cells with higher metal layer interconnects, additional vias may also be included that connect the higher metal layer interconnects to lower metal layer interconnects. The additional metal layer interconnects and vias may provide additional parallel current paths that are able to reduce the overall parasitic resistance of the standard cell, as compared to a standard cell only designed up to the Mx layer interconnect.
  • In addition, using conventional standard cell architecture, when two interconnects on two different metal layer interconnects (e.g., a higher metal 9 (M9) layer and a lower metal 7 (M7) layer) carrying different signals occupy the same track in a MOS IC device and are connected to two different standard cells having inputs and outputs on the same track, the interconnect on the lower metal layer may need to be routed around the track. Routing the interconnect around the track may be necessary because the interconnect on the lower metal layer may run into an input/output stack of the interconnect of the higher metal layer. The routing detour may cause a signal delay on the interconnect on the lower metal layer, and the accumulated signal delay of the interconnect on the lower metal layer may cause a decrease in datapath speed for the MOS IC device, as discussed infra with respect to FIG. 1.
  • FIG. 1 is a diagram illustrating a plan view of an example MOS IC device 100 including a first standard cell 120 a and a second standard cell 120 b designed with metal layers up to M6 layer to reduce parasitic resistance as discussed supra. The first standard cell 120 a includes a first buffer 102 a, and the second standard cell 120 b includes a second buffer 102 b (e.g., a 2-bit buffer).
  • As further illustrated in FIG. 1, the first buffer 102 a includes a first input 104 a (e.g., a first input pin) and a first output 106 a (e.g., a first output pin). For example, the first input 104 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction. In an aspect, the first input 104 a may correspond to a first M6 layer interconnect. Furthermore, the first output 106 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction. In another aspect, the first output 106 a may correspond to a second M6 layer interconnect. As indicated in the top right corner of FIG. 1, the first direction is orthogonal to the second direction.
  • In addition, the second buffer 102 b includes a second input 104 b (e.g., a second input pin) and a second output 106 b (e.g., a second output pin). For example, the second input 104 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction. In one aspect, the second input 104 b may correspond to a first M8 layer interconnect. Furthermore, the second output 106 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction. In another aspect, the second output 106 b may correspond to a second M8 layer interconnect.
  • As also illustrated in FIG. 1, an M7 layer and an M9 layer both extend along the first track. For example, the M9 layer is formed above the M7 layer in a third direction as indicated in the top right corner of FIG. 1. Furthermore, the signals carried on each of M7 layer and M9 layer travel in the same direction as indicated on the left hand side of FIG. 1. Although the M9 layer extends over the entirety of the M7 layer, portions of the M9 layer are not shown in FIG. 1 so not to obscure the view of the M7 layer of the first input 104 a.
  • In the example MOS IC device 100, a first interconnect 108 a on the M7 layer may be coupled through a via to the first input 104 a (e.g., on an M6 layer) on the second track. In addition, a second interconnect 108 b may be connected through a via to the first output 106 a (e.g., on an M6 layer) on the fourth track with a routing detour from the first track. Still further, a third interconnect 110 a on the M9 layer may be coupled through a via to the second input 104 b (e.g., on an M8 layer) on the fifth track. In addition, a fourth interconnect 110 b on the M9 layer may be coupled through a via to the second output 106 b (e.g., on an M8 layer) on the third track.
  • However, because the stack that corresponds to the second input 104 b extends up to the M9 layer, the second interconnect 108 b is unable to connect to second standard cell 120 b without a routing detour from the first track. As discussed supra, the routing detour may cause a signal delay, and the accumulated signal delay of the routing detour may cause a decrease in datapath speed in the MOS IC device 100 illustrated in FIG. 1.
  • FIG. 2 illustrates an exemplary MOS IC device 200 including a standard cell 220 designed with metal layers up to M6/M8 layers to reduce parasitic resistance. The MOS IC device includes a first buffer 202 a and a second buffer 202 b (e.g., a 2-bit buffer). In an aspect, the exemplary MOS IC device 200 illustrated in FIG. 2 may not require a routing detour to connect the M7 layer interconnect to a buffer output.
  • As further illustrated in FIG. 2, the first buffer 202 a includes a first input 204 a (e.g., a first input pin) and a first output 206 a (e.g., a first output pin). For example, the first input 204 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction. In an aspect, the first input 204 a may correspond to a first M6 layer interconnect. Furthermore, the first output 206 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction. In another aspect, the first output 206 a may correspond to a second M6 layer interconnect. As indicated in the top right corner of FIG. 2, the first direction is orthogonal to the second direction.
  • In addition, the second buffer 202 b includes a second input 204 b (e.g., a second input pin) and a second output 206 b (e.g., a second output pin). For example, the second input 204 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction. In one aspect, the second input 204 b may correspond to a first M8 layer interconnect.
  • Furthermore, the second output 206 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction. In another aspect, the second output 206 b may correspond to a second M8 layer interconnect.
  • As also illustrated in FIG. 2, an M7 layer interconnect and an M9 layer interconnect both extend along the first track. For example, the M9 layer interconnect is formed above the M7 layer interconnect in a third direction as indicated in the top right corner of FIG. 2. Furthermore, the signals carried on each of M7 layer interconnect and M9 layer interconnect travel in the same direction as indicated on the left hand side of FIG. 2. Although the M9 layer interconnect extends over the entirety of the M7 layer interconnect, portions of the M9 layer interconnect are not shown in FIG. 2 so as not to obscure the view of the M7 layer interconnect of the first input 204 a and the first output 206 a.
  • In the exemplary MOS IC device 200, a first interconnect 208 a on the M7 layer may be coupled to the first input 204 a (e.g., the first M6 layer interconnect) on the second track. For example, the first interconnect 208 a may be coupled to the first input 204 a through a via that connects the first interconnect 208 a to the first input 204 a of the MOS IC device 200.
  • In addition, a second interconnect 208 b on the M7 layer may be coupled to the first output 206 a (e.g., the second M6 layer interconnect) on the third track. For example, second interconnect 208 b may be coupled to the first output 206 a through a via that connects the M7 layer to the first output 206 a of the MOS IC device 200.
  • Still further, a third interconnect 210 a on the M9 layer may be coupled to the second input 204 b (e.g., the first M8 layer interconnect) on the fourth track. For example, the third interconnect 210 a may be coupled to the second input 204 b through a via that connects the third interconnect 210 a to the second input 204 b of the MOS IC device 200.
  • In addition, a fourth interconnect 210 b on the M9 layer may be coupled to the second output 206 b (e.g., the second M8 layer interconnect) on the fifth track. For example, fourth interconnect 210 b may be coupled to the second output 206 b through a via that connects the fourth interconnect 210 b to the second output 206 b of the MOS IC device 200.
  • The first interconnect 208 a, the second interconnect 208 b, the third interconnect 210 a, and the fourth interconnect 210 b may be used as inter-cell routing between the standard cell 220 and another standard cell (not shown in FIG. 2). In the exemplary embodiment illustrated in FIG. 2, the standard cell 220 is a quadruple height cell with the four rows including the second through fifth track. It should be understood, that the aspects disclosed herein may also be applied to a single height cell, a double height cell, a triple height cell, or any other cell height without departing from the scope of the present disclosure.
  • By orienting the first input 204 a, the second input 204 b, the first output 206 a, and the second output 206 b as shown in FIG. 2, the connection of the M9 layer interconnects in a stack to transistors of the MOS IC device 200 may not block the M7 layer interconnects from extending on the first track. Therefore, routing detours of the M7 layer interconnects may be avoided and datapath speeds may be improved in the MOS IC device 200 illustrated in FIG. 2.
  • FIG. 3 illustrates an exemplary MOS IC device 300 including a standard cell 320 each designed with metal layers up to M6/M8 layers to reduce parasitic resistance. The MOS IC device 300 also includes a first buffer 302 a and a second buffer 302 b (e.g., a 2-bit buffer). In addition, the exemplary MOS IC device 300 illustrated in FIG. 3 may not require a routing detour to connect the M7 to a buffer output.
  • As further illustrated in FIG. 3, the first buffer 302 a includes a first input 304 a (e.g., a first input pin) and a first output 306 a (e.g., a first output pin). For example, the first input 304 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction. In an aspect, the first input 304 a may correspond to a first M6 layer interconnect. Furthermore, the first output 306 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction. In another aspect, the first output 306 a may correspond to a second M6 layer interconnect. As indicated in the top right corner of FIG. 3, the first direction is orthogonal to the second direction.
  • In addition, the second buffer 302 b includes a second input 304 b (e.g., a second input pin) and a second output 306 b (e.g., a second output pin). For example, the second input 304 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction. In one aspect, the second input 304 b may correspond to a first M8 layer interconnect. Furthermore, the second output 306 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction. In another aspect, the second output 306 b may correspond to a second M8 layer interconnect.
  • As also illustrated in FIG. 3, an M7 layer interconnect and an M9 layer interconnect both extend along the first track. For example, the M9 layer interconnect is formed above the M7 layer interconnect in a third direction as indicated in the top right corner of FIG. 3. Furthermore, the signals carried on each of M7 layer interconnect and M9 layer interconnect travel in opposite directions as indicated on the left hand side of FIG. 3. Although the M9 layer interconnect extends over the entirety of the M7 layer interconnect, portions of the M9 layer interconnect are not shown in FIG. 3 so as not to obscure the view of the M7 layer interconnects of the first input 304 a and the first output 306 a.
  • In the exemplary MOS IC device 300, a first interconnect 308 a on the M7 layer may be coupled to the first input 304 a (e.g., the first M6 layer interconnect) on the second track. For example, the first interconnect 308 a may be coupled to the first input 304 a through a via that connects the first interconnect 308 a to the first input 304 a of the MOS IC device 300.
  • In addition, a second interconnect 308 b on the M7 layer may be coupled to the first output 306 a (e.g., the second M6 layer interconnect) on the third track. For example, the second interconnect 308 b may be coupled to the first output 306 a through a via that connects the second interconnect 308 b to the first output 306 a of the MOS IC device 300.
  • Still further, a third interconnect 310 a on the M9 layer may be coupled to the second input 304 b (e.g., the first M8 layer interconnect) on the fourth track. For example, the third interconnect 310 a may be coupled to the second input 304 b through a via that connects the third interconnect 310 a to the second input 304 b the MOS IC device 300.
  • In addition, a fourth interconnect 310 b on the M9 layer may be coupled to the second output 306 b (e.g., the second M8 layer interconnect) on the fifth track. For example, the fourth interconnect 310 b may be coupled to the second output 306 b through a via that connects the fourth interconnect 310 b to the second output 306 b of the MOS IC device 300.
  • The first interconnect 308 a, the second interconnect 308 b, the third interconnect 310 a, and the fourth interconnect 310 b may be used as inter-cell routing between the standard cell 320 and another standard cell (not shown in FIG. 3). In the exemplary embodiment illustrated in FIG. 3, the standard cell 320 is a quadruple height cell with the four rows including the second through fifth track. It should be understood, that the aspects disclosed herein may also be applied to a single height cell, a double height cell, a triple height cell, or any other cell height without departing from the scope of the present disclosure.
  • By orienting the first input 304 a, the second input 304 b, the first output 306 a, and the second output 306 b as shown in FIG. 3, the connection of the M9 layer interconnects in a stack to transistors of the MOS IC device 300 may not block the M7 layer interconnects from extending on the first track. Therefore, routing detours of the M7 layer interconnects may be avoided and datapath speeds may be improved in the MOS IC device 300 illustrated in FIG. 3.
  • FIG. 4 illustrates an exemplary MOS IC device 400 with metal layers up to M5/M7 layers to reduce parasitic resistance. The MOS IC device 400 includes, for example, a first buffer 402 a and a second buffer 402 b (e.g., a 2-bit buffer). In addition, the exemplary MOS IC device 400 illustrated in FIG. 4 may not require a routing detour of an M6 layer interconnect from the first track the MOS IC device 400.
  • As further illustrated in FIG. 4, the first buffer 402 a includes a first input 404 a (e.g., a first input pin) and a first output 406 a (e.g., a first output pin). For example, the first input 404 a may be located on a first track (e.g., vertical track) that extends in a first direction and a second track (e.g., horizontal track) that extends in a second direction. In an aspect, the first input 404 a may correspond to a first M5 layer interconnect. Furthermore, the first output 406 a may be located on the first track that extends in the first direction and a third track (e.g., horizontal track) that extends in the second direction. In another aspect, the first output 406 a may correspond to a second M5 layer interconnect. As indicated in the top right corner of FIG. 4, the first direction is orthogonal to the second direction.
  • In addition, the second buffer 402 b includes a second input 404 b (e.g., a second input pin) and a second output 406 b (e.g., a second output pin). For example, the second input 404 b may be located on the first track that extends in the first direction and a fourth track (e.g., horizontal track) that extends in the second direction. In one aspect, the second input 404 b may correspond to a first M7 layer interconnect. Furthermore, the second output 406 b may be located on the first track that extends in the first direction and a fifth track (e.g., horizontal track) that extends in the second direction. In another aspect, the second output 406 b may correspond to a second M7 layer interconnect.
  • As also illustrated in FIG. 4, an M6 layer interconnect and an M8 layer interconnect both extend along the first track. For example, the M8 layer interconnect is formed above the M6 layer interconnect in a third direction as indicated in the top right corner of FIG. 4. Furthermore, the signals carried on each of M6 layer interconnect and M8 layer interconnect travel in opposite directions as indicated on the left hand side of FIG. 4. Although the M8 layer interconnect extends over the entirety of the M6 layer interconnect, portions of the M8 layer interconnect are not shown in FIG. 4 so as not to obscure the view of the M6 layer interconnects of the first input 404 a and the first output 406 a.
  • In the exemplary MOS IC device 400, a first interconnect 408 a on the M6 layer may be coupled to the first input 404 a (e.g., the first M5 layer interconnect) on the second track. For example, the first interconnect 408 a may be coupled to the first input 404 a through a via that connects the first interconnect 408 a to the first input 404 a of the MOS IC device 400.
  • In addition, a second interconnect 408 b on the M6 layer may be coupled to the first output 406 a (e.g., the second M5 layer interconnect) on the third track. For example, the second interconnect 408 b may be coupled to the first output 406 a through a via that connects the second interconnect 408 b to the first output 406 a of the MOS IC device 400.
  • Still further, a third interconnect 410 a on the M8 layer may be coupled to the second input 404 b (e.g., the first M7 layer interconnect) on the fourth track. For example, the third interconnect 410 a may be coupled to the second input 404 b through a via that connects the third interconnect 410 a to the second input 404 b the MOS IC device 400.
  • In addition, a fourth interconnect 410 b on the M8 layer may be coupled to the second output 406 b (e.g., the second M7 layer interconnect) on the fifth track. For example, the fourth interconnect 410 b may be coupled to the second output 406 b through a via that connects the fourth interconnect 410 b to the second output 406 b of the MOS IC device 400.
  • By orienting the first input 404 a, the second input 404 b, the first output 406 a, and the second output 406 b as shown in FIG. 4, the connection of the M8 layer interconnects in a stack to transistors of the MOS IC device 400 may not block the M6 layer interconnects from extending on the first track. Therefore, routing detours of the M6 layer interconnects may be avoided and datapath speeds may be improved in the MOS IC device 400 illustrated in FIG. 4.
  • Although a 2-bit buffer system is illustrated in the exemplary MOS IC devices 200, 300, 400 of FIGS. 2-4, it should be understood that the aspects disclosed herein are not limited to a 2-bit buffer system. For example, the exemplary aspects disclosed herein may be applied to a buffer system that includes more than 2 buffers (e.g., 3-bit buffer, 4-bit buffer, etc.) without departing from the scope of the present disclosure.
  • FIG. 5 illustrates an exemplary MOS IC device 500 in accordance with one aspect of the present disclosure. For example, the MOS IC device 500 may include a first standard cell 502 a, a second standard cell 502 b, and at least one other standard cell 502 c. Each of the first standard cell 502 a and the second standard cell 502 b include a first track, a second track, a third track, and a fourth track. Still further, the first standard cell 502 a includes a Vdd power rail 504 a and a Vss power rail 506, and the second standard cell 502 b includes the Vss power rail 506 and a Vdd power rail 504 b.
  • In order to efficiently use the tracks in the first standard cell 502 a, each of the 2- bit buffers 508 a, 508 b, 508 c, and 508 d may be staggered to include the greatest amount of 2-bit buffers in the MOS IC device 500 while operating within the spacing requirements for a standard cell.
  • Referring again to FIGS. 2-5, a MOS device (200, 300, 400, 500) includes a first logic component (202 a, 302 a, 402 a) with a first input (204 a, 304 a, 404 a) and a first output (206 a, 306 a, 406 a). In an aspect, the first input (204 a, 304 a, 404 a) is located on a first track that extends in a first direction and a second track that extends in a second direction orthogonal to the first direction. In another aspect, the first output (206 a, 306 a, 406 a) is located on the first track and a third track that extends in the second direction.
  • In another aspect of the disclosure, the MOS device (200, 300, 400, 500) includes a second logic component (202 b, 302 b, 402 b) with a second input (204 b, 304 b, 404 b) and a second output (206 b, 306 b, 406 b). In an aspect, the second input (204 b, 304 b, 404 b) is located on the first track and a fourth track that extends in the second direction. In another aspect, the second output (206 b, 306 b, 406 b) is located on the first track and a fifth track that extends in the second direction. In a further aspect, the fourth track and the fifth track are between the second track and the third track (see FIGS. 2-4).
  • In a further aspect of the disclosure, the MOS device (200, 300, 400, 500) includes a first interconnect (208 a, 308 a, 408 a) on a metal x (Mx) layer (e.g., the M7 layer in FIGS. 2 and 3, and the M6 layer interconnect in FIG. 4) that extends on the first track and that is coupled to the first input (204 a, 304 a, 404 a) on the second track.
  • In yet another aspect of the disclosure, the MOS device (200, 300, 400, 500) includes a second interconnect (208 b, 308 b, 408 b) on the Mx layer (e.g., the M7 layer in FIGS. 2 and 3, and the M6 layer interconnect in FIG. 4) that extends on the first track and that is coupled to the first output (206 a, 306 a, 406 a) on the third track.
  • In still another aspect of the disclosure, the MOS device (200, 300, 400, 500) includes a third interconnect (210 a, 310 a, 410 a) on a metal y (My) layer (e.g., the M9 layer in FIGS. 2 and 3, and the M8 layer in FIG. 4) that extends on the first track and is coupled to the second input (204 b, 304 b, 404 b) on the fourth track. For example, y (e.g., y=9 in FIGS. 2 and 3, and y=8 in FIG. 4) is greater than x (e.g., x=7 in FIGS. 2 and 3, and x=6 in FIG. 4).
  • Further still, the MOS device (200, 300, 400, 500) includes a fourth interconnect (210 b, 310 b, 410 b) on the My layer (e.g., the M9 layer in FIGS. 2 and 3, and the M8 layer in FIG. 4) that extends on the first track and that is coupled to the second output (206 b, 306 b, 406 b) on the fifth track.
  • In an additional aspect, the first logic component (202 a, 302 a, 402 a) and the second logic component (202 b, 302 b, 402 b) are part of a standard cell (220, 320, 502 a) in the MOS device (200, 300, 500).
  • Still further, the first interconnect (208 a, 308 a, 408 a), the second interconnect (208 b, 308 b, 408 b), the third interconnect (210 a, 310 a, 410 a), and the fourth interconnect (210 b, 310 b, 410 b) are inter-cell routing between the standard cell (502 a) and at least one other standard cell (502 c).
  • Additionally, the standard cell (502 a) may be a quadruple height cell with four rows (see FIGS. 2-4) including a first row (see FIGS. 2-4), a second row (see FIGS. 2-4) adjacent the first row (see FIGS. 2-4), a third row adjacent the second row (see FIGS. 2-4), and a fourth row adjacent the third row (see FIGS. 2-4). For example, the second track (see FIGS. 2-4) is in the first row (see FIGS. 2-4). In an aspect, the third track (see FIGS. 2-4) is in the fourth row (see FIGS. 2-4). In another aspect, the fourth track (see FIGS. 2-4) is in one of the second row (see FIG. 2) or the third row (see FIGS. 3 and 4). In an additional aspect, the fifth track (see FIGS. 2-4) is in another one of the second row (see FIGS. 3 and 4) or the third row (see FIG. 2).
  • In a further aspect, the first input (204 a, 304 a, 404 a) corresponds to a first input pin (204 a, 304 a, 404 a). In another aspect, the first output (206 a, 306 a, 406 a) corresponds to a first output pin (206 a, 306 a, 406 a). In an additional aspect, the second input (204 b, 304 b, 404 b) corresponds to a second input pin (204 b, 304 b, 404 b). Further still, the second output (206 b, 306 b, 406 b) corresponds to a second output pin (206 b, 306 b, 406 b). In one example, the first input pin (204 a, 304 a, 404 a) corresponds to a metal x-z1 (Mx-z1) layer interconnect (e.g., the M7 layer interconnect in FIGS. 2 and 3, and the M5 layer interconnect in FIG. 4). For example, z1≧1. In another aspect, the first output pin (206 a, 306 a, 406 a) corresponds to a metal x-z2 (Mx-z2) layer interconnect (e.g., the M8 layer interconnect in FIGS. 2 and 3, and the M5 layer interconnect in FIG. 4). For example, z2≧1. In a further aspect, the second input pin (204 b, 304 b, 404 b) corresponds to a metal y-z3(My-z3) layer interconnect (e.g., the M8 layer interconnect in FIGS. 2 and 3, and the M7 layer interconnect in FIG. 4). For example, z3≧1. Further still, the second output pin (206 b, 306 b, 406 b) corresponds to a metal y-z4 (My-z4) layer interconnect (e.g., the M8 layer interconnect in FIGS. 2 and 3, and the M7 layer interconnect in FIG. 4). For example, z4≧1. In a further example, z1, z2, z3, and z4 are each equal to 1. When z1, z2, z3, and z4 are each equal to 1, then the input/output pins are located one metal layer below the aforementioned M6, M7, M8, M9 signal line interconnects. As such z is a number of metal layers below the M6, M7, M8, M9 signal line interconnects which the input/output pins are located.
  • In one example, the fifth track is between the fourth track and the third track (see FIG. 2). In another example, the first interconnect (208 a) and the third interconnect overlap (210 a) in a third direction. In a further example, the second interconnect (208 b) and the fourth interconnect (210 b) overlap in the third direction. For example, the third direction is orthogonal to the first direction and the second direction.
  • In another example, the fourth track is between the fifth track and the third track (see FIGS. 3 and 4). In an aspect, the first interconnect (308 a, 408 a) and the fourth interconnect (310 b, 410 b) overlap in a third direction. In further aspect, the second interconnect (308 b, 408 b) and the third interconnect (310 a, 410 a) overlap in the third direction. For example, the third direction is orthogonal to the first direction and the second direction.
  • In still a further aspect, the first logic component (202 a, 302 a, 402 a) is a first buffer (202 a, 302 a, 402 a). In another aspect, the second logic component (202 b, 302 b, 402 b) is a second buffer (202 b, 302 b, 402 b).
  • In another aspect, the first track is a vertical track (e.g., FIGS. 2 and 3). In a further aspect, the second track, the third track, the fourth track, and the fifth track are each horizontal tracks (e.g., FIGS. 2 and 3).
  • In a further aspect, the first track is a horizontal track (e.g., FIG. 4). In an additional aspect, the second track, the third track, the fourth track, and the fifth track are each vertical tracks (e.g., FIG. 4).
  • In another aspect, the first logic component (202 a, 302 a, 402 a) and the second logic component (202 b, 302 b, 402 b) are part of a first buffer (508 a) positioned on the first track (track 1 in the first standard cell 502 a in FIG. 5). In addition, the MOS device (500) also includes a second buffer (508 b) positioned on a sixth track (e.g., track 2 in the first standard cell 502 a in FIG. 5) that is parallel to the first track (track 1 in the first standard cell 502 a in FIG. 5). For example, second buffer (508 b) is non-adjacent to the first buffer (508 a). In a further aspect, the MOS device (500) includes a third buffer (508 c) positioned on a seventh track (track 3 in the first standard cell 502 a in FIG. 5) that is parallel to the first track (track 1 in the first standard cell 502 a in FIG. 5. For example, the third buffer (508 c) is non-adjacent to the second buffer (508 b). In another aspect, the MOS device (500) includes a fourth buffer (508 d) positioned on an eight track (track 4 in the first standard cell 502 in FIG. 5) that is parallel to the first track (track 1 in the first standard cell 502 a in FIG. 5). For example, the fourth buffer (508 d) is non-adjacent to the third buffer (508 c).
  • FIG. 6 is a flow chart 600 of an exemplary method. The exemplary method is a method of operation of a MOS IC device. For example, the MOS device may be one of the MOS IC devices 200, 300, 400 illustrated in FIGS. 2-4.
  • At 602, a first signal is propagated through a first logic component with a first input and a first output. In an aspect, the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction. In another aspect, the first output is located on the first track and a third track that extends in the second direction.
  • At 604, a second signal is propagated through a second logic component with a second input and a second output. In an aspect, the second input is located on the first track and a fourth track that extends in the second direction. In another aspect, the second output is located on the first track and a fifth track that extends in the second direction. In a further aspect, the fourth track and the fifth track are between the second track and the third track. For example, the MOS device includes a first interconnect on a Mx layer that extends on the first track and is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the Mx layer that extends on the first track and is coupled to the first output on the third track. In a further example, the MOS device includes a third interconnect on a My layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x. Still further, the MOS device includes a fourth interconnect on the My layer that extends on the first track and is coupled to the second output on the fifth track.
  • The MOS device further includes first means for propagating a signal through a first logic component with a first input and a first output. In an aspect, the first input is located on a first track that extends in a first direction and a second track that extends in a second direction that is orthogonal to the first direction. In another aspect, the first output is located on the first track and a third track that extends in the second direction.
  • The MOS device further includes second means for propagating a signal through a second logic component with a second input and a second output. In an aspect, the second input is located on the first track and a fourth track that extends in the second direction. In another aspect, the second output is located on the first track and a fifth track that extends in the second direction. In a further aspect, the fourth track and the fifth track are between the second track and the third track. For example, the MOS device includes a first interconnect on a Mx layer that extends on the first track and is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the Mx layer that extends on the first track and is coupled to the first output on the third track. In a further example, the MOS device includes a third interconnect on a My layer that extends on the first track and is coupled to the second input on the fourth track. In an aspect, y is greater than x. Still further, the MOS device includes a fourth interconnect on the My layer that extends on the first track and is coupled to the second output on the fifth track.
  • MOS IC device standard cells may be designed up to the metal x (Mx) layer interconnect, where x≦3. One way to reduce the parasitic resistance of smaller MOS IC devices may be to design the standard cells up to a higher metal layer, such as an metal 5 (M5) layer interconnect or an metal 6 (M6) layer interconnect. By designing standard cells with higher metal layer interconnects, additional vias may also be included that connect the higher metal layer interconnects to lower metal layer interconnects. The additional metal layer interconnects and vias may provide additional parallel current paths that are able to reduce the overall parasitic resistance of the standard cell, as compared to a standard cell only designed up to the Mx layer interconnect.
  • In addition, using conventional standard cell architecture, when two interconnects on two different metal layer interconnects (e.g., a higher M9 layer and a lower M7 layer) carrying different signals occupy the same track in a MOS IC device and are connected to two different standard cells having inputs and outputs on the same track, the interconnect on the lower metal layer may need to be routed around the track. Routing the interconnect around the track may be necessary because the interconnect on the lower metal layer may run into an input/output stack of the interconnect of the higher metal layer. The routing detour may cause a signal delay on the interconnect on the lower metal layer, and the accumulated signal delay of the interconnect on the lower metal layer may cause a decrease in datapath speed for the MOS IC device, as discussed supra with respect to FIG. 1.
  • The present disclosure provides a solution to the problem by providing a 2-bit buffer with input/output pins for a lower metal layer interconnect signal line (208 a, 208 b, 308 a, 308 b, 408 a, 408 b) on edges of a 2-bit buffer standard cell. Further, input/output pins of the higher metal layer interconnect signal line (210 a, 210 b, 310 a, 310 b, 410 a, 410 b) are located between the input/output pins of the lower metal layer interconnect signal line (208 a, 208 b, 308 a, 308 b, 408 a, 408 b). With the first input (204 a, 304 a, 404 a), the second input (204 b, 304 b, 404 b), the first output (206 a, 306 a, 406 a), and the second output (206 b, 306 b, 406 b) as shown in FIGS. 2-4, the connection of the higher metal layer interconnect signal line (210 a, 210 b, 310 a, 310 b, 410 a, 410 b) to the MOS IC device (200, 300, 400) may not block a connection of the lower metal layer interconnect signal line (208 a, 208 b, 308 a, 308 b, 408 a, 408 b) to the MOS IC device (200, 300, 400) on the first track. Therefore, routing detours of the lower metal layer interconnect signal lines (208 a, 208 b, 308 a, 308 b, 408 a, 408 b) may be avoided and datapath speeds may be improved in the MOS IC devices (200, 300, 400) illustrated in FIGS. 2-4.
  • It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Further, some steps may be combined or omitted. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
  • The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.” Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”

Claims (30)

What is claimed is:
1. A metal oxide semiconductor (MOS) device, comprising:
a first logic component with a first input and a first output, the first input being located on a first track extending in a first direction and a second track extending in a second direction orthogonal to the first direction, the first output being located on the first track and a third track extending in the second direction;
a second logic component with a second input and a second output, the second input being located on the first track and a fourth track extending in the second direction, the second output being located on the first track and a fifth track extending in the second direction, the fourth track and the fifth track being between the second track and the third track;
a first interconnect on a metal x (Mx) layer extending on the first track and coupled to the first input on the second track;
a second interconnect on the Mx layer extending on the first track and coupled to the first output on the third track;
a third interconnect on a metal y (My) layer extending on the first track and coupled to the second input on the fourth track, y being greater than x; and
a fourth interconnect on the My layer extending on the first track and coupled to the second output on the fifth track.
2. The MOS device of claim 1, wherein the first logic component and the second logic component are part of a standard cell in the MOS device.
3. The MOS device of claim 2, wherein the first interconnect, the second interconnect, the third interconnect, and the fourth interconnect are inter-cell routing between the standard cell and at least one other standard cell.
4. The MOS device of claim 2, wherein the standard cell is a quadruple height cell with four rows including a first row, a second row adjacent the first row, a third row adjacent the second row, and a fourth row adjacent the third row, the second track being in the first row, the third track being in the fourth row, the fourth track being in one of the second row or the third row, and the fifth track being in another one of the second row or the third row.
5. The MOS device of claim 1, wherein the first input corresponds to a first input pin, the first output corresponds to a first output pin, the second input corresponds to a second input pin, and the second output corresponds to a second output pin, and wherein:
the first input pin corresponds to a metal x-z1 (Mx-z1) layer interconnect, where z1≧1;
the first output pin corresponds to a metal x-z2 (Mx-z2) layer interconnect, where z2≧1;
the second input pin corresponds to a metal y-z3 (My-z3) layer interconnect, where z3≧1; and
the second output pin corresponds to a metal y-z4 (My-z4) layer interconnect, where z4≧1.
6. The MOS device of claim 5, wherein z1, z2, z3, and z4 are each equal to 1.
7. The MOS device of claim 1, wherein x is equal to 7 and y is equal to 9.
8. The MOS device of claim 1, wherein the fifth track is between the fourth track and the third track, the first interconnect and the third interconnect overlap in a third direction, and the second interconnect and the fourth interconnect overlap in the third direction, the third direction being orthogonal to the first direction and the second direction.
9. The MOS device of claim 1, wherein the fourth track is between the fifth track and the third track, the first interconnect and the fourth interconnect overlap in a third direction, and the second interconnect and the third interconnect overlap in the third direction, the third direction being orthogonal to the first direction and the second direction.
10. The MOS device of claim 1, wherein the first logic component is a first buffer, and the second logic component is a second buffer.
11. The MOS device of claim 1, wherein the first track is a vertical track, and wherein the second track, the third track, the fourth track, and the fifth track are each horizontal tracks.
12. The MOS device of claim 1, wherein the first track is a horizontal track, and wherein the second track, the third track, the fourth track, and the fifth track are each vertical tracks.
13. The MOS device of claim 1, wherein the first logic component and the second logic component are part of a first buffer positioned on the first track, the MOS device further comprising:
a second buffer positioned on a sixth track that is parallel to the first track, the second buffer being non-adjacent to the first buffer;
a third buffer positioned on a seventh track that is parallel to the first track, the third buffer being non-adjacent to the second buffer; and
a fourth buffer positioned on an eight track that is parallel to the first track, the fourth buffer being non-adjacent to the third buffer.
14. A method of operating a metal oxide semiconductor (MOS) device, the method comprising:
propagating a first signal through a first logic component with a first input and a first output, the first input being located on a first track extending in a first direction and a second track extending in a second direction orthogonal to the first direction, the first output being located on the first track and a third track extending in the second direction;
propagating a second signal through a second logic component with a second input and a second output, the second input being located on the first track and a fourth track extending in the second direction, the second output being located on the first track and a fifth track extending in the second direction, the fourth track and the fifth track being between the second track and the third track, wherein the MOS IC device comprises:
a first interconnect on a metal x (Mx) layer extending on the first track and coupled to the first input on the second track;
a second interconnect on the Mx layer extending on the first track and coupled to the first output on the third track;
a third interconnect on a metal y (My) layer extending on the first track and coupled to the second input on the fourth track, y being greater than x; and
a fourth interconnect on the My layer extending on the first track and coupled to the second output on the fifth track.
15. The method of claim 14, wherein the first logic component and the second logic component are part of a standard cell in the MOS device.
16. The method of claim 15, wherein the first interconnect, the second interconnect, the third interconnect, and the fourth interconnect are inter-cell routing between the standard cell and at least one other standard cell.
17. The method of claim 15, wherein the standard cell is a quadruple height cell with four rows including a first row, a second row adjacent the first row, a third row adjacent the second row, and a fourth row adjacent the third row, the second track being in the first row, the third track being in the fourth row, the fourth track being in one of the second row or the third row, and the fifth track being in another one of the second row or the third row.
18. The method of claim 14, wherein the first input corresponds to a first input pin, the first output corresponds to a first output pin, the second input corresponds to a second input pin, and the second output corresponds to a second output pin, and wherein:
the first input pin corresponds to a metal x-z1 (Mx-z1) layer interconnect, where z1≧1;
the first output pin corresponds to a metal x-z2 (Mx-z2) layer interconnect, where z2≧1;
the second input pin corresponds to a metal y-z3 (My-z3) layer interconnect, where z3≧1; and
the second output pin corresponds to a metal y-z4 (My-z4) layer interconnect, where z4≧1.
19. The method of claim 18, wherein z1, z2, z3, and z4 are each equal to 1.
20. The method of claim 14, wherein x is equal to 7 and y is equal to 9.
21. The method of claim 14, wherein the fifth track is between the fourth track and the third track, the first interconnect and the third interconnect overlap in a third direction, and the second interconnect and the fourth interconnect overlap in the third direction, the third direction being orthogonal to the first direction and the second direction.
22. The method of claim 14, wherein the fourth track is between the fifth track and the third track, the first interconnect and the fourth interconnect overlap in a third direction, and the second interconnect and the third interconnect overlap in the third direction, the third direction being orthogonal to the first direction and the second direction.
23. The method of claim 14, wherein the first logic component is a first buffer, and the second logic component is a second buffer.
24. The method of claim 14, wherein the first track is a vertical track, and wherein the second track, the third track, the fourth track, and the fifth track are each horizontal tracks.
25. The method of claim 14, wherein the first track is a horizontal track, and wherein the second track, the third track, the fourth track, and the fifth track are each vertical tracks.
26. The method of claim 14, wherein the first logic component and the second logic component are part of a first buffer positioned on the first track, the MOS device further comprising:
a second buffer positioned on a sixth track that is parallel to the first track, the second buffer being non-adjacent to the first buffer;
a third buffer positioned on a seventh track that is parallel to the first track, the third buffer being non-adjacent to the second buffer; and
a fourth buffer positioned on an eight track that is parallel to the first track, the fourth buffer being non-adjacent to the third buffer.
27. A metal oxide semiconductor (MOS) device, comprising:
first means for propagating a first signal through a first logic component with a first input and a first output, the first input being located on a first track extending in a first direction and a second track extending in a second direction orthogonal to the first direction, the first output being located on the first track and a third track extending in the second direction; and
second means for propagating a second signal through a second logic component with a second input and a second output, the second input being located on the first track and a fourth track extending in the second direction, the second output being located on the first track and a fifth track extending in the second direction, the fourth track and the fifth track being between the second track and the third track, wherein the MOS IC device further comprises:
a first interconnect on a metal x (Mx) layer extending on the first track and coupled to the first input on the second track;
a second interconnect on the Mx layer extending on the first track and coupled to the first output on the third track;
a third interconnect on a metal y (My) layer extending on the first track and coupled to the second input on the fourth track, y being greater than x; and
a fourth interconnect on the My layer extending on the first track and coupled to the second output on the fifth track.
28. The MOS device of claim 27, wherein the first logic component and the second logic component are part of a standard cell in the MOS device.
29. The MOS of claim 28, wherein the first interconnect, the second interconnect, the third interconnect, and the fourth interconnect are inter-cell routing between the standard cell and at least one other standard cell.
30. The MOS device of claim 27, wherein the first input corresponds to a first input pin, the first output corresponds to a first output pin, the second input corresponds to a second input pin, and the second output corresponds to a second output pin, and wherein:
the first input pin corresponds to a metal x-z1 (Mx-z1) layer interconnect, where z1≧1;
the first output pin corresponds to a metal x-z2 (Mx-z2) layer interconnect, where z2≧1;
the second input pin corresponds to a metal y-z3 (My-z3) layer interconnect, where z3≧1; and
the second output pin corresponds to a metal y-z4 (My-z4) layer interconnect, where z4≧1.
US15/192,872 2016-06-24 2016-06-24 Standard cell architecture for reduced parasitic resistance and improved datapath speed Active 2036-09-08 US9859891B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/192,872 US9859891B1 (en) 2016-06-24 2016-06-24 Standard cell architecture for reduced parasitic resistance and improved datapath speed
KR1020187037386A KR20190022554A (en) 2016-06-24 2017-04-26 Standard cell architecture for reduced parasitic resistance and improved data path speed
JP2018567265A JP6896776B2 (en) 2016-06-24 2017-04-26 Standard cell architecture for reduced parasitic resistance and improved data path speed
EP17722594.3A EP3475981B1 (en) 2016-06-24 2017-04-26 A standard cell architecture for reduced parasitic resistance and improved datapath speed
BR112018076262-8A BR112018076262B1 (en) 2016-06-24 2017-04-26 A STANDARD CELL ARCHITECTURE FOR REDUCED PARASITIC RESISTANCE AND IMPROVED DATA TRAJECTION SPEED
PCT/US2017/029700 WO2017222638A1 (en) 2016-06-24 2017-04-26 A standard cell architecture for reduced parasitic resistance and improved datapath speed
CN201780038535.XA CN109314098B (en) 2016-06-24 2017-04-26 Standard cell architecture for reducing parasitic resistance and increasing data path speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/192,872 US9859891B1 (en) 2016-06-24 2016-06-24 Standard cell architecture for reduced parasitic resistance and improved datapath speed

Publications (2)

Publication Number Publication Date
US20170373689A1 true US20170373689A1 (en) 2017-12-28
US9859891B1 US9859891B1 (en) 2018-01-02

Family

ID=58692616

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/192,872 Active 2036-09-08 US9859891B1 (en) 2016-06-24 2016-06-24 Standard cell architecture for reduced parasitic resistance and improved datapath speed

Country Status (7)

Country Link
US (1) US9859891B1 (en)
EP (1) EP3475981B1 (en)
JP (1) JP6896776B2 (en)
KR (1) KR20190022554A (en)
CN (1) CN109314098B (en)
BR (1) BR112018076262B1 (en)
WO (1) WO2017222638A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157355B1 (en) 2019-04-23 2020-09-18 삼성전자 주식회사 Integrated circuit including standard cells, method and computing system for fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213515A1 (en) * 2009-02-20 2010-08-26 Lopes Antonio S Metal or Via Programmable Element
US20150263039A1 (en) * 2014-03-12 2015-09-17 Paramjeet Singh Standard cell layout for logic gate
US9502351B1 (en) * 2015-09-15 2016-11-22 Qualcomm Incorporated Multiple split rail standard cell library architecture
US20170213847A1 (en) * 2016-01-05 2017-07-27 Bitfury Group Limited Layouts of transmission gates and related systems and techniques

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339818B2 (en) * 2004-06-04 2008-03-04 Micron Technology, Inc. Spintronic devices with integrated transistors
JP2006114668A (en) 2004-10-14 2006-04-27 Sony Corp Semiconductor integrated circuit and its manufacturing method
US7241636B2 (en) * 2005-01-11 2007-07-10 Freescale Semiconductor, Inc. Method and apparatus for providing structural support for interconnect pad while allowing signal conductance
US7603644B2 (en) 2005-06-24 2009-10-13 Pulsic Limited Integrated circuit routing and compaction
US7683486B2 (en) 2005-12-09 2010-03-23 Freescale Semiconductor, Inc. Electronic apparatus interconnect routing and interconnect routing method for minimizing parasitic resistance
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
JP2009272340A (en) 2008-04-30 2009-11-19 Ail Kk Semiconductor integrated circuit
US7919792B2 (en) 2008-12-18 2011-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. Standard cell architecture and methods with variable design rules
GB2466313A (en) * 2008-12-22 2010-06-23 Cambridge Silicon Radio Ltd Radio Frequency CMOS Transistor
CN101599460A (en) * 2009-06-17 2009-12-09 上海宏力半导体制造有限公司 A kind of SRAM dual-position unit wiring method
US8612914B2 (en) 2011-03-23 2013-12-17 Synopsys, Inc. Pin routing in standard cells
US9251299B1 (en) 2013-06-28 2016-02-02 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for associating track patterns with rules for electronic designs
US8645892B1 (en) 2013-01-07 2014-02-04 Freescale Semiconductor, Inc. Configurable circuit and mesh structure for integrated circuit
US9035679B2 (en) 2013-05-03 2015-05-19 Globalfoundries Inc. Standard cell connection for circuit routing
US9483600B2 (en) 2014-03-14 2016-11-01 Qualcomm Incorporated Multi supply cell arrays for low power designs
US9520358B2 (en) 2014-10-30 2016-12-13 Qualcomm Incorporated Via structure for optimizing signal porosity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213515A1 (en) * 2009-02-20 2010-08-26 Lopes Antonio S Metal or Via Programmable Element
US20150263039A1 (en) * 2014-03-12 2015-09-17 Paramjeet Singh Standard cell layout for logic gate
US9502351B1 (en) * 2015-09-15 2016-11-22 Qualcomm Incorporated Multiple split rail standard cell library architecture
US20170213847A1 (en) * 2016-01-05 2017-07-27 Bitfury Group Limited Layouts of transmission gates and related systems and techniques

Also Published As

Publication number Publication date
CN109314098A (en) 2019-02-05
EP3475981B1 (en) 2019-12-11
BR112018076262B1 (en) 2022-12-13
JP2019519122A (en) 2019-07-04
CN109314098B (en) 2022-01-25
US9859891B1 (en) 2018-01-02
KR20190022554A (en) 2019-03-06
WO2017222638A1 (en) 2017-12-28
BR112018076262A2 (en) 2019-03-26
EP3475981A1 (en) 2019-05-01
JP6896776B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US7761831B2 (en) ASIC design using clock and power grid standard cell
US9620452B2 (en) Via structure for optimizing signal porosity
EP3138129A1 (en) Adaptive standard cell architecture and layout techniques for low area digital soc
US11133803B2 (en) Multiple via structure for high performance standard cells
US9397101B2 (en) Stacked common gate finFET devices for area optimization
US9035389B2 (en) Layout schemes for cascade MOS transistors
US20210280571A1 (en) Vertical power grid standard cell architecture
US9634026B1 (en) Standard cell architecture for reduced leakage current and improved decoupling capacitance
US9859891B1 (en) Standard cell architecture for reduced parasitic resistance and improved datapath speed
KR20230082615A (en) Heterogeneous Height Logic Cell Architecture
US20230027616A1 (en) Semiconductor integrated circuit device
CN110945655A (en) Cell architecture with intrinsic decoupling capacitor
EP3353806B1 (en) Source separated cell
US9929095B2 (en) IO power bus mesh structure design
KR102579237B1 (en) Multi-bit multi-height cells to improve pin accessibility

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, DORAV;NARAYANAN, VENKATASUBRAMANIAN;THALLA, BALA KRISHNA;AND OTHERS;SIGNING DATES FROM 20160915 TO 20160916;REEL/FRAME:040471/0466

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4