US20170363404A1 - Contact-type position measuring device and measuring method using the same - Google Patents

Contact-type position measuring device and measuring method using the same Download PDF

Info

Publication number
US20170363404A1
US20170363404A1 US15/535,799 US201515535799A US2017363404A1 US 20170363404 A1 US20170363404 A1 US 20170363404A1 US 201515535799 A US201515535799 A US 201515535799A US 2017363404 A1 US2017363404 A1 US 2017363404A1
Authority
US
United States
Prior art keywords
diameter
hole
straight hole
chamfered
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/535,799
Other versions
US10422620B2 (en
Inventor
Koji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd filed Critical DMG Mori Co Ltd
Publication of US20170363404A1 publication Critical patent/US20170363404A1/en
Assigned to DMG MORI CO., LTD. reassignment DMG MORI CO., LTD. INTERNAL DOCUMENT Assignors: SATO, KOJI
Application granted granted Critical
Publication of US10422620B2 publication Critical patent/US10422620B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • G01B5/12Measuring arrangements characterised by the use of mechanical techniques for measuring diameters internal diameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B5/243Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes for measuring chamfer

Definitions

  • the present invention relates to a contact-type position measuring device, which is used when, for example, a chamfering process is performed by a machine tool, and a measuring method using the same.
  • Japanese Utility Model Patent Application No. H03-23303 discloses a device that measures the diameter of the chamfered hole by contacting an approximately conical-shaped measuring probe to the chamfered part.
  • the chamfering process was performed to the opening rim part of the straight hole, in addition to the measurement of the diameter of the chamfered hole, there was a case in which it was also required to measure the diameter of the straight hole.
  • the diameter of the straight hole was measured by the straight hole diameter measuring probe, and after replacing the straight hole diameter measuring probe with the chamfered hole diameter measuring probe such as the conventional measuring device, the diameter of the chamfered hole was measured. Therefore, the problems were that the measuring work was required much more effort, and the working time took longer.
  • the disclosed embodiments of the present invention have been developed in view of the above-mentioned and/or other problems in the related art.
  • the disclosed embodiments of the present invention can significantly improve upon existing methods and/or apparatuses.
  • the present invention was created considering the aforementioned conventional status, and an object is to provide a contact-type position measuring device, which measures a diameter of a straight hole and a diameter of a chamfered hole in a short period of time by a simple work and improves the measuring accuracy of the diameter of the chamfered hole, and a measuring method using the same.
  • a contact-type position measuring device includes a straight hole diameter measuring probe measuring a diameter of a straight hole by moving in a radius direction and contacting to an internal peripheral surface of the straight hole which extends in an axis direction; and a chamfered hole diameter measuring probe measuring a diameter of a chamfered hole by moving in the axis direction and contacting to an internal peripheral surface of the chamfered hole.
  • the straight hole diameter measuring probe is detachable from the chamfered hole diameter measuring probe.
  • a measuring method of a diameter of a chamfered hole using the contact-type position measuring device includes the steps of measuring a diameter of a straight hole by a straight hole diameter measuring probe of the contact-type position measuring device as recited above, and computing a center of the straight hole by the measured diameter of the straight hole; moving a chamfered hole diameter measuring probe to be aligned with the computed center of the straight hole; and measuring the diameter of the chamfered hole by moving the chamfered hole diameter measuring probe in a straight hole direction.
  • the contact-type position measuring device is provided with the straight hole diameter measuring probe, which measures a diameter of a straight hole, and the chamfered hole diameter measuring probe, which measures a diameter of a chamfered hole, so that the diameter of the straight hole is measured by moving the straight hole diameter measuring probe in the radius direction, and next, the diameter of the chamfered hole can be measured by moving the chamfered hole diameter measuring probe in the axis direction. Therefore, it is not required to replace the straight hole diameter measuring probe with the chamfered hole diameter measuring probe, so that the diameter of the straight hole and the diameter of the chamfered hole can be measured in a short period of time by a simple work.
  • the straight hole diameter measuring probe is detachable from the chamfered hole diameter measuring probe, so that the straight hole diameter measuring probe can be removed when only the diameter of the chamfered hole is measured. Therefore, both of the measuring device, which combines both measuring probes, and the measuring device, which includes only the chamfered hole diameter measuring probe, can be provided.
  • the center of the straight hole is computed from the diameter of the straight hole measured by the straight hole diameter measuring probe, and the diameter of the chamfered hole is measured by moving the chamfered hole diameter measuring probe in the straight hole direction to be aligned with the computed center of the straight hole, so that the diameter of the chamfered hole can be measured in the state in which the chamfered hole diameter measuring probe is accurately aligned with the center of the straight hole. Therefore, the measuring accuracy of the diameter of the chamfered hole can be improved.
  • FIG. 1 is a diagram showing a configuration of a contact-type position measuring device according to embodiment 1 of the present invention.
  • FIG. 2( a ) is a diagram showing a measuring method by the contact-type position measuring device.
  • FIG. 2( b ) is a diagram showing the measuring method by the contact-type position measuring device.
  • FIG. 2( c ) is a diagram showing the measuring method by the contact-type position measuring device.
  • FIG. 3( a ) is a diagram showing the measuring method.
  • FIG. 3( b ) is a diagram showing the measuring method.
  • FIGS. 1 to 3 are the illustrations to describe the contact-type position measuring device according to embodiment 1 of the present invention and the measuring method using the same.
  • reference numeral 1 denotes a spindle head arranged in a machine tool such as a machining center, etc.
  • This spindle head 1 is movably supported by a column (not shown) in a perpendicular direction (Z-axis direction), and in the spindle head 1 , a spindle 2 is rotatably supported via a bearing (not shown).
  • a work table (not shown) in which a workpiece W is mounted is configured to be movable in a paper-surface-right-and-left-horizontal direction (X-axis direction) and a paper-surface-front-and-back-horizontal direction (Y-axis direction)(see FIG. 1 ).
  • the machining center mounts a predetermined tool (not shown) in the spindle 2 , and a predetermined straight hole W 1 and a chamfered hole W 2 , which has a predetermined tapered angle in an opening rim part of the straight hole W 1 , are formed by performing a drill machining, an internal diameter machining, etc. to the workpiece W by relatively moving the spindle head 1 and the work table in the X-axis, Y-axis, and Z-axis directions, respectively.
  • the tapered angle of the chamfered hole W 2 is set in 45 degrees.
  • a holder 8 which is provided with a contact-type position measuring device 7 , is detachably mounted.
  • the holder 8 includes a tapered-shaped clamp part 9 , which is detachably mounted to the spindle 2 , and a holding member 10 in which the position measuring device 7 is mounted.
  • the position measuring device 7 is provided with a straight hole diameter measuring probe 12 , which measures a diameter of straight hole D 1 by moving inside the straight hole W 1 in a radial direction and contacting to the internal peripheral surface of the straight hole W 1 , and a chamfered hole diameter measuring probe 13 , which measures a diameter of chamfered hole D 2 by moving in an axis direction of the straight hole W 1 and contacting to the internal peripheral surface of the chamfered hole W 2 .
  • a contact signal is outputted when the straight hole diameter measuring probe 12 and the chamfered hole diameter measuring probe 13 contact to the internal peripheral surface, and the diameter of straight hole D 1 and the diameter of chamfered hole D 2 are computed based on the movement amounts in the X-axis direction, Y-axis direction, and Z-axis direction at the time of the contact signal output.
  • the chamfered hole diameter measuring probe 13 includes a downwardly conical-shaped measuring part 13 a , which forms the tapered surface in 45 degrees, and a mounting rod 13 b , which connects to the center of the bottom surface of the measuring part 13 a , and the mounting rod 13 b is mounted and fixed to the holding member 10 .
  • the straight hole diameter measuring probe 12 includes a spherical-shaped measuring part 12 a and a support rod 12 b which connects to the center of the upper surface of the measuring part 12 a .
  • the support rod 12 b is connected to the tip part of the measuring part 13 a of the chamfered hole diameter measuring probe 13 .
  • the shaft length of the support rod 12 b is appropriately set based on the depth of the chamfered hole W 2 . Further, the straight hole diameter measuring probe 12 and the chamfered hole diameter measuring probe 13 are set in the manner in which the axis is aligned.
  • the support rod 12 b of the straight hole diameter measuring probe 12 may be detachably connected to the tip part of the measuring part 13 a of the chamfered hole diameter measuring probe 13 .
  • a screw type or a fitting type may be employed.
  • the X-axis movement amount X′ is measured by inserting the straight hole diameter measuring probe 12 into the straight hole W 1 , moving in the radius direction (X-axis direction), and contacting to the internal peripheral surface of the straight hole W 1 , and the center C′ of the movement amount X′ is computed.
  • the diameter of straight hole D 1 is measured by moving the straight hole diameter measuring probe 12 in the Y-axis direction in a manner of going through the center C′, and the center C of the straight hole W 1 is computed from the measured diameter of straight hole D 1 (see FIGS. 2( a ) and 3( a ) ).
  • the straight hole diameter measuring probe 12 is raised, and the lower surface of the measuring part 12 a of the straight hole diameter measuring probe 12 is contacted to the upper surface (reference surface) W 3 of the workpiece W.
  • the chamfered hole diameter measuring probe 13 is moved to a position where the center C is aligned, and the measuring part 13 a of the chamfered hole diameter measuring probe 13 is moved in the Z-axis direction (straight hole direction) and is contacted to the internal peripheral surface of the chamfered hole W 2 so as to measure an axis direction stroke amount L from the reference surface W 3 to the contact of the chamfered hole W 2 .
  • the diameter of chamfered hole D 2 is computed based on the measurement value (see FIGS. 2( c ) and 3( b ) ).
  • the straight hole diameter measuring probe 12 which measures the diameter of straight hole D 1 by contacting to the internal peripheral surface of the straight hole W 1 formed in the workpiece W
  • the chamfered hole diameter measuring probe 13 which measures the diameter of chamfered hole D 2 by contacting to the chamfered hole W 2 formed in the opening rim part of the straight hole W 1 .
  • the straight hole center C is computed from the diameter of straight hole D 1 measured by the straight hole diameter measuring probe 12 , and the diameter of chamfered hole D 2 is measured in the state in which the chamfered hole diameter measuring probe 13 is aligned with the straight hole center C.
  • the measuring work which measures from the straight hole W 1 to the straight hole center C
  • the measuring work which measures the diameter of chamfered hole D 2 in the state in which the straight hole center C is aligned
  • the measuring work is simplified and it can be measured in a short period of time by the simple work.
  • the chamfered hole diameter measuring probe 13 can be accurately aligned with the axis of the straight hole W 1 , so that the measuring accuracy of the diameter of chamfered hole can be improved.
  • the straight hole diameter measuring probe 12 can be detachably mounted to the chamfered hole diameter measuring probe 13 .
  • it may be replaced if the diameter of chamfered hole D 2 is only measured, so that both of the measuring device, which combines both measuring probes, and the measuring device, which includes only the chamfered hole diameter measuring probe, can be provided.
  • the term “preferably” is non-exclusive and means “preferably, but not limited to.”
  • the terminology “present invention” or “invention” is meant as a non-specific, general reference and may be used as a reference to one or more aspects within the present disclosure.
  • the language present invention or invention should not be improperly interpreted as an identification of criticality, should not be improperly interpreted as applying across all aspects or embodiments (i.e., it should be understood that the present invention has a number of aspects and embodiments), and should not be improperly interpreted as limiting the scope of the application or claims.
  • the terminology “embodiment” can be used to describe any aspect, feature, process or step, any combination thereof, and/or any portion thereof, etc. In some examples, various embodiments may include overlapping features.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

A contact-type position measuring device is configured by a straight hole diameter measuring probe measuring a diameter of straight hole by moving in a radius direction and contacting to an internal peripheral surface of a straight hole, which extends to an axis direction; and a chamfered hole diameter measuring probe measuring a diameter of chamfered hole by moving in the axis direction and contacting to an internal peripheral surface of a chamfered hole.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is the U.S. National Phase under 35 U.S.C. 371 of International Application No. PCT/JP2015/83714, filed on Dec. 1, 2015, which in turn claims the benefit of Japanese Patent Application No. 2014-252937, filed on Dec. 15, 2014, the disclosures of which are incorporated by reference herein.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to a contact-type position measuring device, which is used when, for example, a chamfering process is performed by a machine tool, and a measuring method using the same.
  • Description of the Related Art
  • In a case that a straight hole is formed in a workpiece by a machine tool, there is a case in which a chamfering process is performed to an opening rim part of the straight hole. As a measuring device in order to measure a diameter of a chamfered hole formed by such chamfering process, for example, Japanese Utility Model Patent Application No. H03-23303 discloses a device that measures the diameter of the chamfered hole by contacting an approximately conical-shaped measuring probe to the chamfered part.
  • In the case that the chamfering process was performed to the opening rim part of the straight hole, in addition to the measurement of the diameter of the chamfered hole, there was a case in which it was also required to measure the diameter of the straight hole. In such case, first, the diameter of the straight hole was measured by the straight hole diameter measuring probe, and after replacing the straight hole diameter measuring probe with the chamfered hole diameter measuring probe such as the conventional measuring device, the diameter of the chamfered hole was measured. Therefore, the problems were that the measuring work was required much more effort, and the working time took longer.
  • Further, when the diameter of the chamfered hole was measured by the conventional measuring device, it was required that the axis of the measuring probe was accurately aligned with the hole center of the chamfered hole. However, such alignment work took much time and effort, and in some cases, there was a chance in which the measuring accuracy of the diameter of the chamfered hole was decreased.
  • The description herein of advantages and disadvantages of various features, embodiments, methods, and apparatus disclosed in other publications is in no way intended to limit the present invention. For example, certain features of the preferred described embodiments of the invention may be capable of overcoming certain disadvantages and/or providing certain advantages, such as, e.g., disadvantages and/or advantages discussed herein, while retaining some or all of the features, embodiments, methods, and apparatus disclosed therein.
  • SUMMARY OF THE INVENTION
  • The disclosed embodiments of the present invention have been developed in view of the above-mentioned and/or other problems in the related art. The disclosed embodiments of the present invention can significantly improve upon existing methods and/or apparatuses.
  • The present invention was created considering the aforementioned conventional status, and an object is to provide a contact-type position measuring device, which measures a diameter of a straight hole and a diameter of a chamfered hole in a short period of time by a simple work and improves the measuring accuracy of the diameter of the chamfered hole, and a measuring method using the same.
  • In some embodiments of the present disclosure, a contact-type position measuring device includes a straight hole diameter measuring probe measuring a diameter of a straight hole by moving in a radius direction and contacting to an internal peripheral surface of the straight hole which extends in an axis direction; and a chamfered hole diameter measuring probe measuring a diameter of a chamfered hole by moving in the axis direction and contacting to an internal peripheral surface of the chamfered hole.
  • In some embodiments of the present disclosure, in the contact-type position measuring device as recited above, the straight hole diameter measuring probe is detachable from the chamfered hole diameter measuring probe.
  • In some embodiments of the present disclosure, a measuring method of a diameter of a chamfered hole using the contact-type position measuring device includes the steps of measuring a diameter of a straight hole by a straight hole diameter measuring probe of the contact-type position measuring device as recited above, and computing a center of the straight hole by the measured diameter of the straight hole; moving a chamfered hole diameter measuring probe to be aligned with the computed center of the straight hole; and measuring the diameter of the chamfered hole by moving the chamfered hole diameter measuring probe in a straight hole direction.
  • According to some embodiments as recited above, the contact-type position measuring device is provided with the straight hole diameter measuring probe, which measures a diameter of a straight hole, and the chamfered hole diameter measuring probe, which measures a diameter of a chamfered hole, so that the diameter of the straight hole is measured by moving the straight hole diameter measuring probe in the radius direction, and next, the diameter of the chamfered hole can be measured by moving the chamfered hole diameter measuring probe in the axis direction. Therefore, it is not required to replace the straight hole diameter measuring probe with the chamfered hole diameter measuring probe, so that the diameter of the straight hole and the diameter of the chamfered hole can be measured in a short period of time by a simple work. According to some embodiments as recited above, the straight hole diameter measuring probe is detachable from the chamfered hole diameter measuring probe, so that the straight hole diameter measuring probe can be removed when only the diameter of the chamfered hole is measured. Therefore, both of the measuring device, which combines both measuring probes, and the measuring device, which includes only the chamfered hole diameter measuring probe, can be provided.
  • According to some embodiments as recited above, the center of the straight hole is computed from the diameter of the straight hole measured by the straight hole diameter measuring probe, and the diameter of the chamfered hole is measured by moving the chamfered hole diameter measuring probe in the straight hole direction to be aligned with the computed center of the straight hole, so that the diameter of the chamfered hole can be measured in the state in which the chamfered hole diameter measuring probe is accurately aligned with the center of the straight hole. Therefore, the measuring accuracy of the diameter of the chamfered hole can be improved.
  • The above and/or other aspects, features and/or advantages of various embodiments will be further appreciated in view of the following description in conjunction with the accompanying figures. Various embodiments can include and/or exclude different aspects, features and/or advantages where applicable. In addition, various embodiments can combine one or more aspect or feature of other embodiments where applicable. The descriptions of aspects, features and/or advantages of particular embodiments should not be construed as limiting other embodiments or the claims. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like numbers refer to like elements throughout. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”. It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. Unless indicated otherwise, these terms are only used to distinguish one element from another. For example, a first object could be termed a second object, and, similarly, a second object could be termed a first object without departing from the teachings of the disclosure. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to or “on” another element, it can be directly connected or coupled to or on the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). However, the term “contact,” as used herein refers to direct contact (i.e., touching) unless the context indicates otherwise. Terms such as “same,” “planar,” or “coplanar,” as used herein when referring to orientation, layout, location, shapes, sizes, amounts, or other measures do not necessarily mean an exactly identical orientation, layout, location, shape, size, amount, or other measure, but are intended to encompass nearly identical orientation, layout, location, shapes, sizes, amounts, or other measures within acceptable variations that may occur, for example, due to manufacturing processes. The term “substantially” may be used herein to reflect this meaning. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present application, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing a configuration of a contact-type position measuring device according to embodiment 1 of the present invention.
  • FIG. 2(a) is a diagram showing a measuring method by the contact-type position measuring device.
  • FIG. 2(b) is a diagram showing the measuring method by the contact-type position measuring device.
  • FIG. 2(c) is a diagram showing the measuring method by the contact-type position measuring device.
  • FIG. 3(a) is a diagram showing the measuring method.
  • FIG. 3(b) is a diagram showing the measuring method.
  • DETAILED DESCRIPTION
  • In the following paragraphs, some embodiments of the invention will be described by way of example and not limitation. It should be understood based on this disclosure that various other modifications can be made by those in the art based on these illustrated embodiments.
  • Hereinafter, embodiments of the present invention will be described in reference to the drawings.
  • Embodiment 1
  • FIGS. 1 to 3 are the illustrations to describe the contact-type position measuring device according to embodiment 1 of the present invention and the measuring method using the same.
  • In these drawings, reference numeral 1 denotes a spindle head arranged in a machine tool such as a machining center, etc. This spindle head 1 is movably supported by a column (not shown) in a perpendicular direction (Z-axis direction), and in the spindle head 1, a spindle 2 is rotatably supported via a bearing (not shown). A work table (not shown) in which a workpiece W is mounted is configured to be movable in a paper-surface-right-and-left-horizontal direction (X-axis direction) and a paper-surface-front-and-back-horizontal direction (Y-axis direction)(see FIG. 1).
  • The machining center mounts a predetermined tool (not shown) in the spindle 2, and a predetermined straight hole W1 and a chamfered hole W2, which has a predetermined tapered angle in an opening rim part of the straight hole W1, are formed by performing a drill machining, an internal diameter machining, etc. to the workpiece W by relatively moving the spindle head 1 and the work table in the X-axis, Y-axis, and Z-axis directions, respectively. In the present embodiment, the tapered angle of the chamfered hole W2 is set in 45 degrees.
  • In the spindle 2, a holder 8, which is provided with a contact-type position measuring device 7, is detachably mounted. The holder 8 includes a tapered-shaped clamp part 9, which is detachably mounted to the spindle 2, and a holding member 10 in which the position measuring device 7 is mounted.
  • The position measuring device 7 is provided with a straight hole diameter measuring probe 12, which measures a diameter of straight hole D1 by moving inside the straight hole W1 in a radial direction and contacting to the internal peripheral surface of the straight hole W1, and a chamfered hole diameter measuring probe 13, which measures a diameter of chamfered hole D2 by moving in an axis direction of the straight hole W1 and contacting to the internal peripheral surface of the chamfered hole W2. Concretely, as described later, a contact signal is outputted when the straight hole diameter measuring probe 12 and the chamfered hole diameter measuring probe 13 contact to the internal peripheral surface, and the diameter of straight hole D1 and the diameter of chamfered hole D2 are computed based on the movement amounts in the X-axis direction, Y-axis direction, and Z-axis direction at the time of the contact signal output.
  • The chamfered hole diameter measuring probe 13 includes a downwardly conical-shaped measuring part 13 a, which forms the tapered surface in 45 degrees, and a mounting rod 13 b, which connects to the center of the bottom surface of the measuring part 13 a, and the mounting rod 13 b is mounted and fixed to the holding member 10.
  • The straight hole diameter measuring probe 12 includes a spherical-shaped measuring part 12 a and a support rod 12 b which connects to the center of the upper surface of the measuring part 12 a. The support rod 12 b is connected to the tip part of the measuring part 13 a of the chamfered hole diameter measuring probe 13. The shaft length of the support rod 12 b is appropriately set based on the depth of the chamfered hole W2. Further, the straight hole diameter measuring probe 12 and the chamfered hole diameter measuring probe 13 are set in the manner in which the axis is aligned.
  • Alternatively, the support rod 12 b of the straight hole diameter measuring probe 12 may be detachably connected to the tip part of the measuring part 13 a of the chamfered hole diameter measuring probe 13. In this case of the detachable structure, for example, a screw type or a fitting type may be employed.
  • In order to measure the diameter of chamfered hole D2 by the contact-type position measuring device 7, the X-axis movement amount X′ is measured by inserting the straight hole diameter measuring probe 12 into the straight hole W1, moving in the radius direction (X-axis direction), and contacting to the internal peripheral surface of the straight hole W1, and the center C′ of the movement amount X′ is computed. Next, the diameter of straight hole D1 is measured by moving the straight hole diameter measuring probe 12 in the Y-axis direction in a manner of going through the center C′, and the center C of the straight hole W1 is computed from the measured diameter of straight hole D1 (see FIGS. 2(a) and 3(a)).
  • Next, the straight hole diameter measuring probe 12 is raised, and the lower surface of the measuring part 12 a of the straight hole diameter measuring probe 12 is contacted to the upper surface (reference surface) W3 of the workpiece W. Next, the chamfered hole diameter measuring probe 13 is moved to a position where the center C is aligned, and the measuring part 13 a of the chamfered hole diameter measuring probe 13 is moved in the Z-axis direction (straight hole direction) and is contacted to the internal peripheral surface of the chamfered hole W2 so as to measure an axis direction stroke amount L from the reference surface W3 to the contact of the chamfered hole W2. The diameter of chamfered hole D2 is computed based on the measurement value (see FIGS. 2(c) and 3(b)).
  • According to such present embodiment, the straight hole diameter measuring probe 12, which measures the diameter of straight hole D1 by contacting to the internal peripheral surface of the straight hole W1 formed in the workpiece W, and the chamfered hole diameter measuring probe 13, which measures the diameter of chamfered hole D2 by contacting to the chamfered hole W2 formed in the opening rim part of the straight hole W1, are provided. The straight hole center C is computed from the diameter of straight hole D1 measured by the straight hole diameter measuring probe 12, and the diameter of chamfered hole D2 is measured in the state in which the chamfered hole diameter measuring probe 13 is aligned with the straight hole center C. Therefore, the measuring work, which measures from the straight hole W1 to the straight hole center C, and the measuring work, which measures the diameter of chamfered hole D2 in the state in which the straight hole center C is aligned, can be continuously performed. Accordingly, it is not required to replace the straight hole diameter measuring probe with the chamfered hole diameter measuring probe, so that the measuring work is simplified and it can be measured in a short period of time by the simple work. Further, the chamfered hole diameter measuring probe 13 can be accurately aligned with the axis of the straight hole W1, so that the measuring accuracy of the diameter of chamfered hole can be improved.
  • Further, in the present invention, the straight hole diameter measuring probe 12 can be detachably mounted to the chamfered hole diameter measuring probe 13. In such case, it may be replaced if the diameter of chamfered hole D2 is only measured, so that both of the measuring device, which combines both measuring probes, and the measuring device, which includes only the chamfered hole diameter measuring probe, can be provided.
  • The terms and descriptions used herein are used only for explanatory purposes and the present invention is not limited to them. Accordingly, the present invention allows various design-changes falling within the claimed scope of the present invention.
  • While the present invention may be embodied in many different forms, a number of illustrative embodiments are described herein with the understanding that the present disclosure is to be considered as providing examples of the principles of the invention and such examples are not intended to limit the invention to preferred embodiments described herein and/or illustrated herein.
  • While illustrative embodiments of the invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, but includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive and means “preferably, but not limited to.” In this disclosure and during the prosecution of this application, the terminology “present invention” or “invention” is meant as a non-specific, general reference and may be used as a reference to one or more aspects within the present disclosure. The language present invention or invention should not be improperly interpreted as an identification of criticality, should not be improperly interpreted as applying across all aspects or embodiments (i.e., it should be understood that the present invention has a number of aspects and embodiments), and should not be improperly interpreted as limiting the scope of the application or claims. In this disclosure and during the prosecution of this application, the terminology “embodiment” can be used to describe any aspect, feature, process or step, any combination thereof, and/or any portion thereof, etc. In some examples, various embodiments may include overlapping features.

Claims (3)

1. A contact-type position measuring device comprising:
a straight hole diameter measuring probe measuring a diameter of a straight hole by moving in a radius direction and contacting to an internal peripheral surface of the straight hole which extends in an axis direction; and
a chamfered hole diameter measuring probe measuring a diameter of a chamfered hole by moving in the axis direction and contacting to an internal peripheral surface of the chamfered hole.
2. The contact-type position measuring device according to claim 1, wherein the straight hole diameter measuring probe is detachable from the chamfered hole diameter measuring probe.
3. A measuring method of a chamfered hole diameter using a contact-type position measuring device, the method comprising the steps of:
measuring a diameter of a straight hole by a straight hole diameter measuring probe, and computing a center of the straight hole by the measured diameter of the straight hole;
moving a chamfered hole diameter measuring probe to be aligned with the computed center of the straight hole; and
measuring the chamfered hole diameter by moving the chamfered hole diameter measuring probe in a straight hole direction.
US15/535,799 2014-12-15 2015-12-01 Contact-type position measuring device and measuring method using the same Active 2036-05-02 US10422620B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-252937 2014-12-15
JP2014252937A JP5932006B1 (en) 2014-12-15 2014-12-15 Measuring method of chamfered hole diameter using contact type position measuring instrument
PCT/JP2015/083714 WO2016098576A1 (en) 2014-12-15 2015-12-01 Contact-type position measurement device and measurement method using same

Publications (2)

Publication Number Publication Date
US20170363404A1 true US20170363404A1 (en) 2017-12-21
US10422620B2 US10422620B2 (en) 2019-09-24

Family

ID=56102993

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/535,799 Active 2036-05-02 US10422620B2 (en) 2014-12-15 2015-12-01 Contact-type position measuring device and measuring method using the same

Country Status (5)

Country Link
US (1) US10422620B2 (en)
EP (1) EP3236195B1 (en)
JP (1) JP5932006B1 (en)
CN (1) CN107003105B (en)
WO (1) WO2016098576A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190299415A1 (en) * 2016-07-14 2019-10-03 Siemens Healthcare Diagnostics Inc. Methods and apparatus to calibrate a positional orientation between a robot gripper and a component
DE102019203118A1 (en) * 2019-03-07 2020-09-10 Premium Aerotec Gmbh Measuring tool for measuring bore diameters and machine tools
USD977541S1 (en) * 2019-11-29 2023-02-07 Dmg Mori Co., Ltd. Holder for cutting tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370080A (en) * 2016-12-07 2017-02-01 哈尔滨东安汽车动力股份有限公司 Novel device for measuring size of outer chamfer
CN108917559B (en) * 2018-07-26 2024-05-03 广西玉柴机器股份有限公司 Simple and easy macroporous chamfer measuring tool
CN110977615B (en) * 2019-12-04 2021-11-02 江西洪都航空工业集团有限责任公司 Online cutter monitoring method for automatic tapping system
JP2023080753A (en) * 2021-11-30 2023-06-09 トヨタ自動車株式会社 Measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8464434B1 (en) * 2010-09-15 2013-06-18 The Boeing Company Hole and countersink measurement system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763416A (en) * 1954-11-04 1956-12-12 John Ronald Fraser Improvements relating to measuring gauges
JPS6051407U (en) * 1983-09-16 1985-04-11 三菱重工業株式会社 Measuring instrument
JPS6069501A (en) * 1983-09-26 1985-04-20 Mitsubishi Heavy Ind Ltd Measuring device for size of chamfering
US4905378A (en) * 1985-08-26 1990-03-06 Lockheed Corporation Centralizing countersink gauge
US4753555A (en) * 1986-12-31 1988-06-28 Douglas Thompson Apparatus and method for the drilling and inspecting of holes
JPH0323303U (en) 1989-07-17 1991-03-11
US5259119A (en) * 1991-09-17 1993-11-09 Mitutoyo Corporation Automatic inner diameter measuring apparatus and zero adjustment thereof
CN1104765A (en) * 1993-12-30 1995-07-05 天津大学 Stereo probe and method for measuring small dead hole and narrow slot
JP3647545B2 (en) * 1996-03-12 2005-05-11 株式会社シンク・ラボラトリー Measuring method of taper shaft hole of plate roll
JP2987757B2 (en) 1996-03-13 1999-12-06 光正 松本 High pressure hot water peeling method
CN1737495A (en) * 2005-07-12 2006-02-22 长安汽车(集团)有限责任公司 Method for measuring bore diameter with fixed direction utilizing three coordinate measuring machine
GB0707921D0 (en) * 2007-04-24 2007-05-30 Renishaw Plc Apparatus and method for surface measurement
ITBO20070451A1 (en) * 2007-06-29 2008-12-30 Jobs Spa DEVICE FOR VERIFYING TESTING DIMENSIONS.
CN101782381B (en) * 2010-03-01 2011-09-07 洛阳轴研科技股份有限公司 Horizontal adjusting device for sensor used to measure cylindricity and diameter of workpiece
JP5863475B2 (en) * 2012-01-20 2016-02-16 三菱重工業株式会社 Hole shape measuring apparatus and hole shape measuring method
CN102749007B (en) * 2012-07-16 2014-12-24 中国核动力研究设计院 Gauge and method for measuring size of transformation position of minor-diameter deep hole
EP2936046A1 (en) * 2012-12-20 2015-10-28 Marposs Societa' Per Azioni System and method for checking dimensions and/or position of an edge of a workpiece
DE102012025252A1 (en) * 2012-12-21 2014-06-26 Blum-Novotest Gmbh Pin-shaped component for use in electromechanical coordinate measuring machine that is utilized for measuring coordinate of hole of step-like workpiece, has probe head attached at bar-shaped shaft and formed in tub or barrel shape
CN103673840A (en) * 2013-12-17 2014-03-26 凯斯曼秦皇岛汽车零部件制造有限公司 Hole chamfering depth detection device
CN203629515U (en) * 2014-01-01 2014-06-04 唐山鑫虎重型矿山机械有限公司 Rotary kiln tyre diameter measuring tool
WO2017033581A1 (en) * 2015-08-27 2017-03-02 株式会社東京精密 Surface shape measuring method, misalignment amount calculating method, and surface shape measuring device
US9933248B2 (en) * 2016-07-20 2018-04-03 Tesa Sa Height gauge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8464434B1 (en) * 2010-09-15 2013-06-18 The Boeing Company Hole and countersink measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190299415A1 (en) * 2016-07-14 2019-10-03 Siemens Healthcare Diagnostics Inc. Methods and apparatus to calibrate a positional orientation between a robot gripper and a component
US11498217B2 (en) * 2016-07-14 2022-11-15 Siemens Healthcare Diagnostics Inc. Methods and apparatus to calibrate a positional orientation between a robot gripper and a component
DE102019203118A1 (en) * 2019-03-07 2020-09-10 Premium Aerotec Gmbh Measuring tool for measuring bore diameters and machine tools
DE102019203118B4 (en) 2019-03-07 2024-02-22 Premium Aerotec Gmbh Measuring tool for measuring bore diameters and machine tools
USD977541S1 (en) * 2019-11-29 2023-02-07 Dmg Mori Co., Ltd. Holder for cutting tool

Also Published As

Publication number Publication date
EP3236195B1 (en) 2019-07-24
US10422620B2 (en) 2019-09-24
EP3236195A4 (en) 2018-06-13
EP3236195A1 (en) 2017-10-25
JP5932006B1 (en) 2016-06-08
CN107003105B (en) 2020-02-18
JP2016114457A (en) 2016-06-23
CN107003105A (en) 2017-08-01
WO2016098576A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US10422620B2 (en) Contact-type position measuring device and measuring method using the same
CN104019713A (en) Threaded holes position accuracy comprehensive testing fixture
CN103383237A (en) Steering knuckle main pin hole dip angle measuring device
JP6542742B2 (en) Drill blade phase measurement device and drill blade phase measurement method
CN103644797A (en) Position accuracy detection testing fixture
CN109458914B (en) Inclined hole depth measuring tool
CN104006775A (en) Method for measuring location degree of small hole
CN204322208U (en) Beads dedicated fixture for drilling
KR101796842B1 (en) Spherical surface measuring apparatus
TWI605906B (en) Detecting device
CN103808288A (en) Angular contact ball bearing groove position measuring method
JP2014190946A (en) Apparatus and method for adjusting length of protruding blade edge of boring blade tool
JP6428149B2 (en) measuring device
CN102476324A (en) Measuring movement rest
JP2013188802A (en) Tool holder and lathe device
CN104175247B (en) Chuck device
JP2019515805A (en) Accessory for centering a tool on a machining device, centering method and centering support device including such accessory
CN206772203U (en) It is exclusively used in detecting the device of valve retainer roundness of external circle
CN105666325A (en) Taper measuring method and device, internal grinding machine and external grinding machine
JP2017032540A (en) Internal angle measuring tool
CN219416031U (en) Measuring tool for rapidly measuring small diameter of deep and long internal threaded hole
JP5761516B2 (en) Tool size determination apparatus and method
CN103921172A (en) Centering method of guide die plate and centering assembly thereof
CN104358757B (en) A kind of face contact alignment pin and manufacture fixture thereof
JP5463091B2 (en) Automatic workpiece centering device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: DMG MORI CO., LTD., JAPAN

Free format text: INTERNAL DOCUMENT;ASSIGNOR:SATO, KOJI;REEL/FRAME:049379/0595

Effective date: 20141215

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4