US20170350237A1 - Methods and appartus for remote actuation of a downhole device in a wellbore - Google Patents

Methods and appartus for remote actuation of a downhole device in a wellbore Download PDF

Info

Publication number
US20170350237A1
US20170350237A1 US15/172,378 US201615172378A US2017350237A1 US 20170350237 A1 US20170350237 A1 US 20170350237A1 US 201615172378 A US201615172378 A US 201615172378A US 2017350237 A1 US2017350237 A1 US 2017350237A1
Authority
US
United States
Prior art keywords
downhole device
communication module
downhole
wellbore
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/172,378
Inventor
Gregory Giem
Jesse West
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US15/172,378 priority Critical patent/US20170350237A1/en
Publication of US20170350237A1 publication Critical patent/US20170350237A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEST, JESSE, GIEM, GREGORY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/001Self-propelling systems or apparatus, e.g. for moving tools within the horizontal portion of a borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/01Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for anchoring the tools or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for displacing a cable or cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B47/122
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B2023/008
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0411Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion specially adapted for anchoring tools or the like to the borehole wall or to well tube
    • E21B23/04115Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells operated by fluid means, e.g. actuated by explosion specially adapted for anchoring tools or the like to the borehole wall or to well tube using radial pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/127Packers; Plugs with inflatable sleeve
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B47/065
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry

Definitions

  • the disclosure generally relates to methods and apparatus for remote actuation of a downhole device in a wellbore.
  • Hydrocarbons may be produced from wellbores drilled from the surface through a variety of producing and non-producing formations.
  • the wellbore may be drilled substantially vertically or may be an offset well that is not vertical and has some amount of horizontal displacement from the surface entry point.
  • Wellbores have tubulars or casing in them, and sometimes downhole devices are used to cut the tubular or perforate the casing.
  • An embodiment of an example apparatus for remote actuation of a downhole device includes a cable head.
  • the cable head is configured to connect with a cable in communication with surface equipment.
  • the cable head is connected with the tractor module.
  • the tractor module is connected with a communication module.
  • the communication module is connected with a release device.
  • the release device is connected with the anchor.
  • a downhole device is connected with the release device, wherein the downhole device is configured to communication with the communication module when the communication module is released from the release device.
  • An example method of remotely detonating a downhole device in a wellbore includes conveying a downhole device into a desired location of a wellbore. The method also includes anchoring the downhole device in the wellbore. The method also includes transmitting an actuation signal to the downhole device.
  • Another example method of remotely detonating a downhole device in a wellbore includes conveying a toolstring into a wellbore.
  • the toolstring is connected with a cable.
  • the toolstring includes a tractor module connected with a cable head, wherein the cable head is connected with the cable.
  • the toolstring also includes a communication module connected with the tractor, and a release device connected with the communication module.
  • the anchor section is connected with the release device, and a downhole device is connected with the anchor section.
  • the method also includes anchoring the downhole device in the wellbore by actuating the anchor section.
  • the method also includes disconnecting the communication module form the anchor section by activating the release device.
  • the method also includes moving the tractor module and communication module a distance from the downhole device; and detonating the downhole device by transmitting an actuation signal from the communication module to the downhole device.
  • FIG. 1 depicts an example apparatus for remote actuation of a downhole device in a wellbore.
  • FIG. 2 depicts the apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • FIG. 3 depicts another example apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • FIG. 4 depicts an apparatus for remote actuation of a downhole device that is conveyed into a well via pump-down conveyance.
  • FIG. 5 depicts an apparatus for remote actuation of a downhole device that is actuated by a trip wire.
  • FIG. 6 depicts an anchor engaged with a wall of a wellbore after being pumped downhole and a downhole device remote therefrom.
  • FIG. 7 depicts a schematic of an example actuation system.
  • An example apparatus for remote actuation of a downhole device in a wellbore can include a cable head configured to connect with a cable in communication with surface equipment.
  • the cable head can be any known cable head.
  • the cable head can have an electronic release device, a mechanical release device, or both.
  • the cable head can also have one or more sensors configured to measure tension in the cable, temperature in the wellbore, pressure in the wellbore, other wellbore or tool properties, or combinations thereof. The measured properties can be communicated to the surface equipment in real-time.
  • the example apparatus can also include a tractor module connected with the cable head.
  • the tractor module can be similar to those known in the art or future known tractor modules.
  • the tractor module can acquire real-time operation data including speed, radial force exerted on the wellbore wall, position of the tractor, acceleration, or other operation quantities.
  • the tractor module can have a processor that can receive the measured operation parameters in real-time and adjust the operation of the tractor module to optimize the performance of the tractor.
  • the processor can receive data on the force exerted on the wellbore well and measure slip of wheels of the tractor and can adjust the force exerted on the wall of the wellbore to reduce slip and increase the efficiency of the tractor drive.
  • the acquired operation parameters can also be transmitted to the surface in real-time.
  • the velocity of the tractor module can be measured and used to determine the location of the tractor module in the wellbore that can assist an operator with determining when the toolstring is at a desired location in the wellbore.
  • the example apparatus can further include a communication module connected with the tractor module.
  • the communication module can be a wired module or a communication module configured for wireless communication with a downhole device, as explained further below.
  • a release device can be connected with the communication module.
  • the release device can be a motorized release device, an electronic release device, or both.
  • the release device can be configured to reconnect with the downhole device.
  • the release device can be any now known or future known release device.
  • An anchor section can be connected with the release device.
  • the anchor section can be hydraulically or electrically operated.
  • the anchor section can have one or more arms that can be actuated to radial expand and engage a wall of the wellbore.
  • the arms can be actuated by a hydraulic ram that provides force, due to pressurized fluid from a pump that radially expands the arms.
  • the arms once radially expanded can be locked in place, by closing a valve keeping the hydraulic ram in position, using a mechanical lock to hold the arms in place, or using now known or future known locking devices.
  • a downhole device can be connected with the release device.
  • the downhole device is configured to communication with the communication module when the communication module is released from the release device.
  • the downhole device can be an explosive device, an inflatable packer, a valve, a sensor module, or the like.
  • the communication between the communication module and the downhole device can be wired.
  • the communication module can include an actuation tether that is on a spooling device in the communication module, and the tether is in communication with the cable head and with the downhole device.
  • the tether can transmit an actuation signal to the downhole device.
  • the communication cable can be connected with the cable head or otherwise in communication with surface equipment or a downhole processor at a first end and with a detonation device in communication with an explosive device.
  • the tether can be a cable, a trip wire, a detonation cord, a wire, or the like.
  • a detonation cord can be connected with the communication module and the downhole device. The detonation cord can be detonated causing actuation of the downhole device.
  • the communication between the communication module and the downhole device is wireless.
  • the communication module can include a transmitter of a wireless communication system.
  • the downhole device can include a receiver of the wireless communication system.
  • the transmitter can be in communication with surface equipment or a downhole processor via a wired connection, and the surface equipment or downhole processor can issue a signal to the transmitter of the wireless communication system instructing it to send the actuation signal to the receiver in the downhole device, the actuation signal can be received by the receiver and the receiver can cause actuation of the downhole device.
  • the wireless communication can include any wireless telemetry including sound waves, electrical waves, pressure pulses, or other now known or future known wireless telemetry.
  • the downhole device can be conveyed into the well with an actuator attached thereto.
  • the conveyance can be pump-down conveyance.
  • the actuator can be configured to latch to the wellbore when conveyed a predetermined distance into the wellbore.
  • the distance that the device is conveyed into the wellbore can be determined using sensors on the downhole device, casing joint locators, or other now known or future known displacement measurement methods.
  • the downhole device can continue to travel downhole a second predetermined distance before actuating.
  • the actuation can be initiated using an accelerometer on the downhole device that is communication with a processor in the downhole device.
  • the processor can be configured to receive the acceleration data, integrate the acceleration data over elapsed time to determine the velocity and then multiply the determined velocity by the elapsed time to determine the distance traveled by the downhole device, upon the processor determining that the downhole device reached the second predetermined distance in the wellbore, the processor can initiate actuation of the downhole device.
  • the downhole device can be an explosive device that has a detonator connected therewith. A first end of a trip wire is connected with the detonator, and a second end of the trip wire is connected with the anchor.
  • the downhole device, trip wire, and an anchor can be pumped into a wellbore.
  • the actuator can be configured to latch to a predetermined portion of a wellbore, for example the outer diameter of the actuator can be such that it will catch on a pipe joint, or can have a swellable material that is configured to expand at a predetermined rate, such that the outer diameter of the anchor will be large enough to engage the completion or wellbore wall at a predetermined location in the wellbore, the anchor can have a processor that initiates radial expansion of arms on the anchor when the anchor has been conveyed a predetermined distance into the wellbore, or an operator can send a signal from the surface to actuate arms on the anchor when a predetermined distance is traveled by the anchor.
  • the downhole device can keep traveling until the length of the trip wire is reached, at which point the trip wire will pull out of the detonator allowing actuation of the explosive device.
  • a second tool such as a weighted roller, dart, ball, or the like, can be deployed into the wellbore and contacted with the downhole device to initiate actuation.
  • FIG. 1 depicts an example apparatus for remote actuation of a downhole device in a wellbore.
  • the apparatus 100 includes a cable head 120 , a tractor module 130 , a communication module 140 , a release device 150 , an anchor section 160 , and a downhole device 170 .
  • the cable head 120 is connected with a cable 110 that is in communication with surface equipment (not shown).
  • the cable head 120 can be configured to measure temperature, tension, or other downhole parameters and relay the acquired data to the surface equipment.
  • the cable head 120 can be connected with a tractor module 130 .
  • the tractor module 130 can have one or more drives, one or more anchor sections, electronic cartridges, and other equipment.
  • the tractor module 130 can be any now known tractor or future known tractor.
  • the tractor drive section can be hydraulic, electric, or other known drive sections.
  • the tractor module 130 can be connected with a communication module 140 .
  • the communication module can have telemetry cartridges, power cartridges, a processor, other equipment, or combinations thereof.
  • the communication module can be similar to other telemetry modules that are known for downhole use or future known telemetry modules.
  • the communication module 140 can be connected with a release device 150 .
  • the release device 150 can be any now known or future known inline release device.
  • Illustrative release devices include electric controlled release devices, mechanical release devices, or the like.
  • the release device 150 can be connected with an anchor section 160 .
  • the anchor section 160 can have two grippers that are hydraulically actuated to radial expand and engage a wall of a wellbore.
  • the anchor section can be any now known or future known anchor section.
  • the anchor section can be hydraulically actuated or actuated by other known methods.
  • the anchor section 160 can be connected with a downhole device 170 .
  • the downhole device 170 can be a perforation charge, a colliding tool, or other downhole devices.
  • the downhole device can have a detonator that is actuated by a signal sent from the communication module 140 .
  • the detonator can be any now known detonator or future known detonator.
  • FIG. 2 depicts the apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • the anchor section 160 can be actuated from a signal sent from the surface via the cable 110 when the apparatus 100 reaches a desired location in a wellbore. After, the anchor section 160 is set, the release device 150 is actuated.
  • the release device 150 can be actuated by a signal sent from the surface via the cable 110 or by other known methods. The release device 150 when actuated releases from the communication module 140 .
  • the communication module 140 can have a wire spool and a tether 152 .
  • the tether 152 can be in communication with the cable 110 , a processor in the communication module, or combinations thereof.
  • the tractor module 130 can be operated to move a distance from the anchored downhole device.
  • a signal can be sent from the communication module 140 to the downhole device via the tether 150 to cause actuation of the downhole device.
  • the tether 150 can be a wire, a cable, an optical fiber, or the like.
  • FIG. 3 depicts another example apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • the apparatus 300 in FIG. 3 is substantially similar to the apparatus 100 .
  • the communication module 340 can include a transmitter 341 of a wireless communication system.
  • a receiver 342 of the wireless communication system is in communication with a detonator of the downhole device 170 .
  • the wireless communication system can be a pressure pulse system, electronic system, radio system, or other now known or future known wireless communication systems.
  • the tractor module 130 can be operated to move the apparatus 300 to a desired location in a wellbore.
  • the anchor section 160 can be actuated.
  • the release device 150 can be operated to release the communication module 340 therefrom.
  • the tractor module 130 can then be operated to move a distance from the downhole device 170 .
  • a signal is sent from transmitter 341 to the receiver 342 to detonate the downhole device 170 .
  • FIG. 4 depicts an apparatus for remote actuation of a downhole device that is conveyed into a well via pump-down conveyance.
  • the downhole device 430 , a tether 440 , and an anchor 420 can be conveyed into the wellbore.
  • the anchor 420 is in communication with surface equipment 410 .
  • the anchor 420 can have an anchor actuator 425 that causes engagement with the wall of the wellbore 445 in response to an actuation signal.
  • the actuation signal can be sent from the surface equipment 410 , from a processor on the anchor, or any combination thereof.
  • the anchor 420 can also have a spooling device 442 .
  • the spooling device 442 can be a spring loaded spooling device that allows the tether 440 to spool therefrom and retrieve the tether after removal of tension caused by the weight of the downhole device 430 .
  • the tether 440 can provide communication and power from the surface equipment 410 , a processor on the anchor, or combinations thereof. Once the downhole device 430 is a desired distance from the anchor the downhole device 430 can be actuated by an actuation signal being sent to the actuator 432 . The distance of the downhole device from the anchor can be determined by measuring the spooling rate of the tether, acceleration and/or velocity of the downhole device 430 , or using other now know or future known ways of determining displacement.
  • FIG. 5 depicts an apparatus for remote actuation of a downhole device that is actuated by a trip wire.
  • the anchor 420 , tether 540 , and the downhole device 430 can be deployed into the wellbore.
  • the anchor actuator 525 can be in communication with surface equipment 410 , and the anchor actuator 525 can be actuated when the anchor 420 is at a desired location in the wellbore 445 .
  • the downhole device 430 will disconnect from the anchor and continue moving away from the anchor 420 , until the tether 540 is removed from the actuator 532 , thereby, allowing a circuit to be completed that allows actuation of the downhole device 430 .
  • FIG. 6 depicts an anchor engaged with a wall of a wellbore after being pumped downhole and a downhole device remote therefrom.
  • the anchor device 420 can be sized to pass through the wellbore 445 until engaging joint section 450 .
  • the anchor can secure to the joint section 450 .
  • the downhole device 430 can have an actuator 620 .
  • the actuator 620 can be actuated by hydrostatic pressure, a signal sent from surface equipment 410 , or from a processor on the downhole tool device.
  • the processor can be programmed to determine that the downhole device is not moving, for example from data obtained from an accelerometer, the processor can then be programmed to start a clock, and to issue an actuation signal to an initiator, hydraulic motor, or the like after the a predetermined amount of time has lapsed.
  • FIG. 7 depicts a schematic of an example actuation system.
  • the actuation system 700 can include a processor 720 .
  • the processor 720 can be in communication with one or more sensors 710 .
  • the one or more sensors can be pressure sensors, accelerometers, force sensors, or other known or future know measuring devices.
  • the processor can have an internal clock for tracking time lapse.
  • the processor 720 can be programmed to issue an actuation signal to activate an actuator 732 based on inputs from the one or more sensors, internal clock, or combinations thereof. For example, the processor 720 can send a signal to a solenoid, motor, or similar device. The solenoid, motor, or similar device can cause a switch 730 to close completing a circuit 734 that allows current to be sent to the actuator 732 causing actuation of a downhole device.
  • a method of remotely actuating a downhole device in a wellbore can include conveying a downhole device into a desired location of a wellbore.
  • the conveying can include using a tractor module releasably connected with the downhole device; anchoring the downhole device in the wellbore; disconnecting the tractor module from the downhole device; moving the tractor module a predetermined distance from the downhole device; and transmitting an actuation signal to the downhole device when the tractor module is a desired distance from the downhole device.
  • Transmitting an actuation signal from the tractor module to the downhole device can include sending a signal over a tether connected with the tractor module and the downhole device.
  • the actuation signal can be sent from a processor located on the tractor module when the tractor module is at the predetermined distance from the downhole device.
  • the actuation signal can be sent in response to a signal sent to the tractor module from surface equipment.
  • the method can include transmitting an actuation signal from the tractor module to the downhole device wirelessly to the downhole device.
  • a method of remotely actuating a downhole device in a wellbore can include conveying a toolstring into a wellbore.
  • the toolstring can be connected with a cable, and the toolstring can include a tractor module connected with a cable head, wherein the cable head is connected with the cable; a communication module connected with the tractor; a release device connected with the communication module; an anchor section connected with the release device; and a downhole device connected with the anchor section.
  • the method can also include anchoring the downhole device in the wellbore by actuating the anchor section, and disconnecting the communication module from the anchor section by activating the release device.
  • the method can also include moving the tractor module and communication module a distance from the downhole device; and detonating the downhole device by transmitting an actuation signal from the communication module to the downhole device.
  • the actuation signal can be communicated via a tether, such as a cable, wire, or the like, between the downhole device and the communication module. After actuation of the downhole device, the tractor can be moved back to the downhole device.
  • a tether such as a cable, wire, or the like
  • the tractor can reconnect the release device with the downhole device and recover the downhole device from the wellbore.
  • the tether can be spooled out on a spring loaded drum that allows cable to be spooled therefrom when the tractor is moving away from the downhole device and retrieves the tether as the tractor moves towards the downhole device.

Abstract

An apparatus for remote actuation of a downhole device in a wellbore, that includes a cable head configured to connect with a cable in communication with surface equipment. The cable head is connected with a tractor module. A communication module is connected with the tractor, and a release device is connected with the communication module. The release device is connected with an anchor. The anchor section is connected with a downhole device. The downhole device is configured to communication with the communication module when the communication module is released from the release device.

Description

    FIELD OF THE DISCLOSURE
  • The disclosure generally relates to methods and apparatus for remote actuation of a downhole device in a wellbore.
  • BACKGROUND
  • Hydrocarbons may be produced from wellbores drilled from the surface through a variety of producing and non-producing formations. The wellbore may be drilled substantially vertically or may be an offset well that is not vertical and has some amount of horizontal displacement from the surface entry point. Often wellbores have tubulars or casing in them, and sometimes downhole devices are used to cut the tubular or perforate the casing.
  • SUMMARY
  • An embodiment of an example apparatus for remote actuation of a downhole device includes a cable head. The cable head is configured to connect with a cable in communication with surface equipment. The cable head is connected with the tractor module. The tractor module is connected with a communication module. The communication module is connected with a release device. The release device is connected with the anchor. A downhole device is connected with the release device, wherein the downhole device is configured to communication with the communication module when the communication module is released from the release device.
  • An example method of remotely detonating a downhole device in a wellbore includes conveying a downhole device into a desired location of a wellbore. The method also includes anchoring the downhole device in the wellbore. The method also includes transmitting an actuation signal to the downhole device.
  • Another example method of remotely detonating a downhole device in a wellbore includes conveying a toolstring into a wellbore. The toolstring is connected with a cable. The toolstring includes a tractor module connected with a cable head, wherein the cable head is connected with the cable. The toolstring also includes a communication module connected with the tractor, and a release device connected with the communication module. The anchor section is connected with the release device, and a downhole device is connected with the anchor section. The method also includes anchoring the downhole device in the wellbore by actuating the anchor section. The method also includes disconnecting the communication module form the anchor section by activating the release device. The method also includes moving the tractor module and communication module a distance from the downhole device; and detonating the downhole device by transmitting an actuation signal from the communication module to the downhole device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts an example apparatus for remote actuation of a downhole device in a wellbore.
  • FIG. 2 depicts the apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • FIG. 3 depicts another example apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • FIG. 4 depicts an apparatus for remote actuation of a downhole device that is conveyed into a well via pump-down conveyance.
  • FIG. 5 depicts an apparatus for remote actuation of a downhole device that is actuated by a trip wire.
  • FIG. 6 depicts an anchor engaged with a wall of a wellbore after being pumped downhole and a downhole device remote therefrom.
  • FIG. 7 depicts a schematic of an example actuation system.
  • DETAILED DESCRIPTION
  • Certain examples are shown in the above-identified figures and described in detail below. In describing these examples, like or identical reference numbers are used to identify common or similar elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic for clarity and/or conciseness.
  • An example apparatus for remote actuation of a downhole device in a wellbore can include a cable head configured to connect with a cable in communication with surface equipment. The cable head can be any known cable head. In one or more embodiments, the cable head can have an electronic release device, a mechanical release device, or both. The cable head can also have one or more sensors configured to measure tension in the cable, temperature in the wellbore, pressure in the wellbore, other wellbore or tool properties, or combinations thereof. The measured properties can be communicated to the surface equipment in real-time.
  • The example apparatus can also include a tractor module connected with the cable head. The tractor module can be similar to those known in the art or future known tractor modules. In one or more embodiments, the tractor module can acquire real-time operation data including speed, radial force exerted on the wellbore wall, position of the tractor, acceleration, or other operation quantities. In one or more embodiments, the tractor module can have a processor that can receive the measured operation parameters in real-time and adjust the operation of the tractor module to optimize the performance of the tractor. For example, the processor can receive data on the force exerted on the wellbore well and measure slip of wheels of the tractor and can adjust the force exerted on the wall of the wellbore to reduce slip and increase the efficiency of the tractor drive. The acquired operation parameters can also be transmitted to the surface in real-time. In one or more embodiments, the velocity of the tractor module can be measured and used to determine the location of the tractor module in the wellbore that can assist an operator with determining when the toolstring is at a desired location in the wellbore.
  • The example apparatus can further include a communication module connected with the tractor module. The communication module can be a wired module or a communication module configured for wireless communication with a downhole device, as explained further below.
  • A release device can be connected with the communication module. The release device can be a motorized release device, an electronic release device, or both. The release device can be configured to reconnect with the downhole device. The release device can be any now known or future known release device.
  • An anchor section can be connected with the release device. The anchor section can be hydraulically or electrically operated. The anchor section can have one or more arms that can be actuated to radial expand and engage a wall of the wellbore. The arms can be actuated by a hydraulic ram that provides force, due to pressurized fluid from a pump that radially expands the arms. The arms once radially expanded can be locked in place, by closing a valve keeping the hydraulic ram in position, using a mechanical lock to hold the arms in place, or using now known or future known locking devices.
  • A downhole device can be connected with the release device. The downhole device is configured to communication with the communication module when the communication module is released from the release device. The downhole device can be an explosive device, an inflatable packer, a valve, a sensor module, or the like. The communication between the communication module and the downhole device can be wired. In one embodiment, the communication module can include an actuation tether that is on a spooling device in the communication module, and the tether is in communication with the cable head and with the downhole device. The tether can transmit an actuation signal to the downhole device. For example, the communication cable can be connected with the cable head or otherwise in communication with surface equipment or a downhole processor at a first end and with a detonation device in communication with an explosive device. The tether can be a cable, a trip wire, a detonation cord, a wire, or the like. In one embodiment, a detonation cord can be connected with the communication module and the downhole device. The detonation cord can be detonated causing actuation of the downhole device.
  • In another embodiment, the communication between the communication module and the downhole device is wireless. The communication module can include a transmitter of a wireless communication system. The downhole device can include a receiver of the wireless communication system. For example, the transmitter can be in communication with surface equipment or a downhole processor via a wired connection, and the surface equipment or downhole processor can issue a signal to the transmitter of the wireless communication system instructing it to send the actuation signal to the receiver in the downhole device, the actuation signal can be received by the receiver and the receiver can cause actuation of the downhole device.
  • The wireless communication can include any wireless telemetry including sound waves, electrical waves, pressure pulses, or other now known or future known wireless telemetry.
  • In an embodiment, the downhole device can be conveyed into the well with an actuator attached thereto. The conveyance can be pump-down conveyance. The actuator can be configured to latch to the wellbore when conveyed a predetermined distance into the wellbore. The distance that the device is conveyed into the wellbore can be determined using sensors on the downhole device, casing joint locators, or other now known or future known displacement measurement methods. The downhole device can continue to travel downhole a second predetermined distance before actuating. The actuation can be initiated using an accelerometer on the downhole device that is communication with a processor in the downhole device. The processor can be configured to receive the acceleration data, integrate the acceleration data over elapsed time to determine the velocity and then multiply the determined velocity by the elapsed time to determine the distance traveled by the downhole device, upon the processor determining that the downhole device reached the second predetermined distance in the wellbore, the processor can initiate actuation of the downhole device.
  • In another embodiment, the downhole device can be an explosive device that has a detonator connected therewith. A first end of a trip wire is connected with the detonator, and a second end of the trip wire is connected with the anchor. The downhole device, trip wire, and an anchor can be pumped into a wellbore. The actuator can be configured to latch to a predetermined portion of a wellbore, for example the outer diameter of the actuator can be such that it will catch on a pipe joint, or can have a swellable material that is configured to expand at a predetermined rate, such that the outer diameter of the anchor will be large enough to engage the completion or wellbore wall at a predetermined location in the wellbore, the anchor can have a processor that initiates radial expansion of arms on the anchor when the anchor has been conveyed a predetermined distance into the wellbore, or an operator can send a signal from the surface to actuate arms on the anchor when a predetermined distance is traveled by the anchor. After the anchor engages the wellbore, the downhole device can keep traveling until the length of the trip wire is reached, at which point the trip wire will pull out of the detonator allowing actuation of the explosive device.
  • In one or more embodiments, a second tool, such as a weighted roller, dart, ball, or the like, can be deployed into the wellbore and contacted with the downhole device to initiate actuation.
  • FIG. 1 depicts an example apparatus for remote actuation of a downhole device in a wellbore. The apparatus 100 includes a cable head 120, a tractor module 130, a communication module 140, a release device 150, an anchor section 160, and a downhole device 170.
  • The cable head 120 is connected with a cable 110 that is in communication with surface equipment (not shown). The cable head 120 can be configured to measure temperature, tension, or other downhole parameters and relay the acquired data to the surface equipment.
  • The cable head 120 can be connected with a tractor module 130. The tractor module 130 can have one or more drives, one or more anchor sections, electronic cartridges, and other equipment. The tractor module 130 can be any now known tractor or future known tractor. The tractor drive section can be hydraulic, electric, or other known drive sections. The tractor module 130 can be connected with a communication module 140. The communication module can have telemetry cartridges, power cartridges, a processor, other equipment, or combinations thereof. The communication module can be similar to other telemetry modules that are known for downhole use or future known telemetry modules.
  • The communication module 140 can be connected with a release device 150. The release device 150 can be any now known or future known inline release device. Illustrative release devices include electric controlled release devices, mechanical release devices, or the like.
  • The release device 150 can be connected with an anchor section 160. The anchor section 160 can have two grippers that are hydraulically actuated to radial expand and engage a wall of a wellbore. The anchor section can be any now known or future known anchor section. The anchor section can be hydraulically actuated or actuated by other known methods.
  • The anchor section 160 can be connected with a downhole device 170. The downhole device 170 can be a perforation charge, a colliding tool, or other downhole devices. The downhole device can have a detonator that is actuated by a signal sent from the communication module 140. The detonator can be any now known detonator or future known detonator.
  • FIG. 2 depicts the apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device.
  • The anchor section 160 can be actuated from a signal sent from the surface via the cable 110 when the apparatus 100 reaches a desired location in a wellbore. After, the anchor section 160 is set, the release device 150 is actuated. The release device 150 can be actuated by a signal sent from the surface via the cable 110 or by other known methods. The release device 150 when actuated releases from the communication module 140.
  • As depicted in FIG. 2, the communication module 140 can have a wire spool and a tether 152. The tether 152 can be in communication with the cable 110, a processor in the communication module, or combinations thereof. The tractor module 130 can be operated to move a distance from the anchored downhole device. A signal can be sent from the communication module 140 to the downhole device via the tether 150 to cause actuation of the downhole device. The tether 150 can be a wire, a cable, an optical fiber, or the like.
  • FIG. 3 depicts another example apparatus for remote actuation of a downhole device in a wellbore with a tractor module remote from the downhole device. The apparatus 300 in FIG. 3 is substantially similar to the apparatus 100. The communication module 340 can include a transmitter 341 of a wireless communication system. A receiver 342 of the wireless communication system is in communication with a detonator of the downhole device 170. The wireless communication system can be a pressure pulse system, electronic system, radio system, or other now known or future known wireless communication systems.
  • In operation, the tractor module 130 can be operated to move the apparatus 300 to a desired location in a wellbore. Upon reaching the desired location, the anchor section 160 can be actuated. Once the anchor section 160 is actuated, the release device 150 can be operated to release the communication module 340 therefrom. The tractor module 130 can then be operated to move a distance from the downhole device 170. After the tractor module 130 and the connected communication module 340 is a desired distance from the downhole device 170, a signal is sent from transmitter 341 to the receiver 342 to detonate the downhole device 170.
  • FIG. 4 depicts an apparatus for remote actuation of a downhole device that is conveyed into a well via pump-down conveyance. The downhole device 430, a tether 440, and an anchor 420 can be conveyed into the wellbore. The anchor 420 is in communication with surface equipment 410.
  • The anchor 420 can have an anchor actuator 425 that causes engagement with the wall of the wellbore 445 in response to an actuation signal. The actuation signal can be sent from the surface equipment 410, from a processor on the anchor, or any combination thereof. The anchor 420 can also have a spooling device 442. The spooling device 442 can be a spring loaded spooling device that allows the tether 440 to spool therefrom and retrieve the tether after removal of tension caused by the weight of the downhole device 430.
  • The tether 440 can provide communication and power from the surface equipment 410, a processor on the anchor, or combinations thereof. Once the downhole device 430 is a desired distance from the anchor the downhole device 430 can be actuated by an actuation signal being sent to the actuator 432. The distance of the downhole device from the anchor can be determined by measuring the spooling rate of the tether, acceleration and/or velocity of the downhole device 430, or using other now know or future known ways of determining displacement.
  • FIG. 5 depicts an apparatus for remote actuation of a downhole device that is actuated by a trip wire. The anchor 420, tether 540, and the downhole device 430, can be deployed into the wellbore. The anchor actuator 525 can be in communication with surface equipment 410, and the anchor actuator 525 can be actuated when the anchor 420 is at a desired location in the wellbore 445. The downhole device 430 will disconnect from the anchor and continue moving away from the anchor 420, until the tether 540 is removed from the actuator 532, thereby, allowing a circuit to be completed that allows actuation of the downhole device 430.
  • FIG. 6 depicts an anchor engaged with a wall of a wellbore after being pumped downhole and a downhole device remote therefrom. The anchor device 420 can be sized to pass through the wellbore 445 until engaging joint section 450. The anchor can secure to the joint section 450. The downhole device 430 can have an actuator 620. The actuator 620 can be actuated by hydrostatic pressure, a signal sent from surface equipment 410, or from a processor on the downhole tool device. For example, the processor can be programmed to determine that the downhole device is not moving, for example from data obtained from an accelerometer, the processor can then be programmed to start a clock, and to issue an actuation signal to an initiator, hydraulic motor, or the like after the a predetermined amount of time has lapsed.
  • FIG. 7 depicts a schematic of an example actuation system. The actuation system 700 can include a processor 720. The processor 720 can be in communication with one or more sensors 710. The one or more sensors can be pressure sensors, accelerometers, force sensors, or other known or future know measuring devices. The processor can have an internal clock for tracking time lapse.
  • The processor 720 can be programmed to issue an actuation signal to activate an actuator 732 based on inputs from the one or more sensors, internal clock, or combinations thereof. For example, the processor 720 can send a signal to a solenoid, motor, or similar device. The solenoid, motor, or similar device can cause a switch 730 to close completing a circuit 734 that allows current to be sent to the actuator 732 causing actuation of a downhole device.
  • A method of remotely actuating a downhole device in a wellbore can include conveying a downhole device into a desired location of a wellbore. The conveying can include using a tractor module releasably connected with the downhole device; anchoring the downhole device in the wellbore; disconnecting the tractor module from the downhole device; moving the tractor module a predetermined distance from the downhole device; and transmitting an actuation signal to the downhole device when the tractor module is a desired distance from the downhole device.
  • Transmitting an actuation signal from the tractor module to the downhole device can include sending a signal over a tether connected with the tractor module and the downhole device. The actuation signal can be sent from a processor located on the tractor module when the tractor module is at the predetermined distance from the downhole device. In another embodiment, the actuation signal can be sent in response to a signal sent to the tractor module from surface equipment. In an embodiment, the method can include transmitting an actuation signal from the tractor module to the downhole device wirelessly to the downhole device.
  • A method of remotely actuating a downhole device in a wellbore can include conveying a toolstring into a wellbore. The toolstring can be connected with a cable, and the toolstring can include a tractor module connected with a cable head, wherein the cable head is connected with the cable; a communication module connected with the tractor; a release device connected with the communication module; an anchor section connected with the release device; and a downhole device connected with the anchor section. The method can also include anchoring the downhole device in the wellbore by actuating the anchor section, and disconnecting the communication module from the anchor section by activating the release device.
  • The method can also include moving the tractor module and communication module a distance from the downhole device; and detonating the downhole device by transmitting an actuation signal from the communication module to the downhole device.
  • The actuation signal can be communicated via a tether, such as a cable, wire, or the like, between the downhole device and the communication module. After actuation of the downhole device, the tractor can be moved back to the downhole device.
  • The tractor can reconnect the release device with the downhole device and recover the downhole device from the wellbore. The tether can be spooled out on a spring loaded drum that allows cable to be spooled therefrom when the tractor is moving away from the downhole device and retrieves the tether as the tractor moves towards the downhole device.
  • Although example assemblies, methods, systems have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers every method, apparatus, and article of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.

Claims (17)

What is claimed is:
1. An apparatus for remote actuation of a downhole device in a wellbore, wherein the apparatus comprises:
a cable head configured to connect with a cable in communication with surface equipment;
a tractor module connected with the cable head;
a communication module connected with the tractor;
a release device connected with the communication module;
an anchor section connected with the release device; and
a downhole device connected with the release device, wherein the downhole device is configured to communication with the communication module when the communication module is released from the release device.
2. The apparatus of claim 1, wherein the communication between the communication module and the release device is wired.
3. The apparatus of claim 2, wherein the communication comprises a tether that is on a reel in the communication module, and wherein the tether is in communication with the cable head and with the downhole device.
4. The apparatus of claim 1, wherein communication between the communication module and the release device is wireless.
5. The apparatus of claim 4, wherein the communication module comprises a transmitter of a wireless communication system, and wherein the downhole device comprises a receiver of the wireless communication system.
6. A method of remotely actuating a downhole device in a wellbore comprises:
conveying a downhole device to a desired location of a wellbore;
actuating an anchor in the wellbore; and
actuating the downhole device when the downhole device is at a predetermined location.
7. The method of claim 6, wherein actuating the downhole device comprises removing an end of a trip wire from the downhole device.
8. The method of claim 6, wherein actuating the downhole device comprises activating a detonation cord.
9. The method of claim 6, wherein actuating the downhole device comprises a processor on the anchor sending a signal to the downhole device after a predetermined time.
10. The method of claim 6, wherein actuating the downhole device comprises using hydrostatic pressure.
11. The method of claim 6, wherein actuating the downhole device comprises a processor on the downhole device instructing a switch to close completing an electric circuit when the processor determines that the downhole device is at a predetermined location.
12. A method of remotely actuating a downhole device in a wellbore comprises:
conveying a toolstring into a wellbore, wherein the toolstring is connected with a cable, wherein the toolstring comprises:
a tractor module connected with a cable head, wherein the cable head is connected with the cable;
a communication module connected with the tractor;
a release device connected with the communication module;
an anchor section connected with the release device; and
a downhole device connected with the anchor section;
anchoring the downhole device in the wellbore by actuating the anchor section;
disconnecting the communication module form the anchor section by activating the release device;
moving the tractor module and communication module a distance from the downhole device; and
actuating the downhole device by transmitting an actuation signal from the communication module to the downhole device.
13. The method of claim 12, wherein transmitting an actuation signal from the communication module to the downhole device comprises sending a signal over a tether connected with the communication module and the downhole device.
14. The method of claim 12, wherein the actuation signal is sent from a processor located on the toolstring and in communication with the communication module when the tractor module is at a predetermined distance from the downhole device.
15. The method of claim 12, wherein the actuation signal is sent in response to a signal sent to the communication module from surface equipment.
16. The method of claim 12, transmitting an actuation signal from the communication module to the downhole device comprises sending a signal wirelessly to the downhole device.
17. The method of claim 12, wherein the downhole device is an explosive device, and wherein actuation of the explosive device comprises detonating the explosive device.
US15/172,378 2016-06-03 2016-06-03 Methods and appartus for remote actuation of a downhole device in a wellbore Abandoned US20170350237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/172,378 US20170350237A1 (en) 2016-06-03 2016-06-03 Methods and appartus for remote actuation of a downhole device in a wellbore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/172,378 US20170350237A1 (en) 2016-06-03 2016-06-03 Methods and appartus for remote actuation of a downhole device in a wellbore

Publications (1)

Publication Number Publication Date
US20170350237A1 true US20170350237A1 (en) 2017-12-07

Family

ID=60483088

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/172,378 Abandoned US20170350237A1 (en) 2016-06-03 2016-06-03 Methods and appartus for remote actuation of a downhole device in a wellbore

Country Status (1)

Country Link
US (1) US20170350237A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200248517A1 (en) * 2019-02-04 2020-08-06 Saudi Arabian Oil Company Semi-Autonomous Downhole Taxi with Fiber Optic Communication
WO2021086317A1 (en) * 2019-10-29 2021-05-06 Halliburton Energy Services, Inc. Expandable metal wellbore anchor
US11054536B2 (en) * 2016-12-01 2021-07-06 Halliburton Energy Services, Inc. Translatable eat sensing modules and associated measurement methods
WO2021229369A1 (en) * 2020-05-11 2021-11-18 Acoustic Data Limited Deploying acoustic telemetry equipment
US20220010656A1 (en) * 2018-11-14 2022-01-13 Schlumberger Technology Corporation Systems and methods for downhole deployment of containers
US20220075088A1 (en) * 2019-05-17 2022-03-10 Halliburton Energy Services, Inc. Passive Arm For Bi-Directional Well Logging Instrument
US11448026B1 (en) * 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
WO2022251627A1 (en) * 2021-05-27 2022-12-01 Geodynamics, Inc. Expandable perforating gun string and method
US20230015244A1 (en) * 2021-07-13 2023-01-19 Saudi Arabian Oil Company Wellbore logging
US11867049B1 (en) * 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170159388A1 (en) * 2014-06-27 2017-06-08 Qinterra Technologies As Method And Apparatus For Retrieving A Tubing From A Well
US20170204703A1 (en) * 2014-05-27 2017-07-20 Well-Sense Technology Limited Wellbore activation system
US20170328160A1 (en) * 2014-12-19 2017-11-16 Qinterra Technologies As Method For Recovering Tubular Structures From A Well And A Downhole Tool String

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170204703A1 (en) * 2014-05-27 2017-07-20 Well-Sense Technology Limited Wellbore activation system
US20170159388A1 (en) * 2014-06-27 2017-06-08 Qinterra Technologies As Method And Apparatus For Retrieving A Tubing From A Well
US20170328160A1 (en) * 2014-12-19 2017-11-16 Qinterra Technologies As Method For Recovering Tubular Structures From A Well And A Downhole Tool String

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11054536B2 (en) * 2016-12-01 2021-07-06 Halliburton Energy Services, Inc. Translatable eat sensing modules and associated measurement methods
US11725486B2 (en) * 2018-11-14 2023-08-15 Schlumberger Technology Corporation Systems and methods for downhole deployment of containers
US20220010656A1 (en) * 2018-11-14 2022-01-13 Schlumberger Technology Corporation Systems and methods for downhole deployment of containers
US11002093B2 (en) * 2019-02-04 2021-05-11 Saudi Arabian Oil Company Semi-autonomous downhole taxi with fiber optic communication
US20200248517A1 (en) * 2019-02-04 2020-08-06 Saudi Arabian Oil Company Semi-Autonomous Downhole Taxi with Fiber Optic Communication
US11442193B2 (en) * 2019-05-17 2022-09-13 Halliburton Energy Services, Inc. Passive arm for bi-directional well logging instrument
US20220075088A1 (en) * 2019-05-17 2022-03-10 Halliburton Energy Services, Inc. Passive Arm For Bi-Directional Well Logging Instrument
GB2603334B (en) * 2019-10-29 2023-06-07 Halliburton Energy Services Inc Expandable metal wellbore anchor
GB2603334A (en) * 2019-10-29 2022-08-03 Halliburton Energy Services Inc Expandable metal wellbore anchor
WO2021086317A1 (en) * 2019-10-29 2021-05-06 Halliburton Energy Services, Inc. Expandable metal wellbore anchor
US11891867B2 (en) 2019-10-29 2024-02-06 Halliburton Energy Services, Inc. Expandable metal wellbore anchor
WO2021229369A1 (en) * 2020-05-11 2021-11-18 Acoustic Data Limited Deploying acoustic telemetry equipment
US11448026B1 (en) * 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
WO2022251627A1 (en) * 2021-05-27 2022-12-01 Geodynamics, Inc. Expandable perforating gun string and method
US20230015244A1 (en) * 2021-07-13 2023-01-19 Saudi Arabian Oil Company Wellbore logging
US11697974B2 (en) * 2021-07-13 2023-07-11 Saudi Arabian Oil Company Wellbore logging
US11867049B1 (en) * 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US20240026772A1 (en) * 2022-07-19 2024-01-25 Saudi Arabian Oil Company Downhole logging tool

Similar Documents

Publication Publication Date Title
US20170350237A1 (en) Methods and appartus for remote actuation of a downhole device in a wellbore
US10662750B2 (en) Methods and electrically-actuated apparatus for wellbore operations
EP3478928B1 (en) A perforating gun
US8672031B2 (en) Perforating with wired drill pipe
US10731431B2 (en) Downhole impact apparatus
US11286756B2 (en) Slickline selective perforation system
US8162051B2 (en) Downhole tool delivery system with self activating perforation gun
US8037934B2 (en) Downhole tool delivery system
US8950480B1 (en) Downhole tool delivery system with self activating perforation gun with attached perforation hole blocking assembly
US20150041124A1 (en) Automatic packer
WO2015175128A1 (en) Apparatus and method for operating a device in a wellbore using signals generated in response to strain on a downhole member
CN111919011B (en) Autonomous tool
US9951587B2 (en) Electronically-activated liner hangers and methods of setting same in wellbore
US11268356B2 (en) Casing conveyed, externally mounted perforation concept
US20120048539A1 (en) Reservoir Pressure Monitoring
US20210172305A1 (en) Real-time system for hydraulic fracturing
AU2017438059B2 (en) Safe firing head for deviated wellbores
NO20201205A1 (en) Casing conveyed, externally mounted perforation concept
CA3176665A1 (en) Deploying acoustic telemetry equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIEM, GREGORY;WEST, JESSE;SIGNING DATES FROM 20161003 TO 20181029;REEL/FRAME:047434/0431

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION