US20170334801A1 - A system for enhancing plant growth - Google Patents

A system for enhancing plant growth Download PDF

Info

Publication number
US20170334801A1
US20170334801A1 US15/522,283 US201515522283A US2017334801A1 US 20170334801 A1 US20170334801 A1 US 20170334801A1 US 201515522283 A US201515522283 A US 201515522283A US 2017334801 A1 US2017334801 A1 US 2017334801A1
Authority
US
United States
Prior art keywords
vessel
pump
contents
discharge line
aerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/522,283
Inventor
Coleman Scott Huntley, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dirt 2 Soil LLC
Original Assignee
Dirt 2 Soil LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dirt 2 Soil LLC filed Critical Dirt 2 Soil LLC
Priority to US15/522,283 priority Critical patent/US20170334801A1/en
Publication of US20170334801A1 publication Critical patent/US20170334801A1/en
Assigned to DIRT 2 SOIL LLC reassignment DIRT 2 SOIL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNTLEY, COLEMAN SCOTT, JR.
Assigned to DIRT 2 SOIL LLC reassignment DIRT 2 SOIL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNTLEY, COLEMAN SCOTT, JR.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C05F17/0211
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/042Adding fertiliser to watering systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • C05F17/0036
    • C05F17/027
    • C05F17/0276
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/20Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/914Portable or transportable devices, e.g. transport containers or trucks
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/964Constructional parts, e.g. floors, covers or doors
    • C05F17/971Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material
    • C05F17/979Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material the other material being gaseous
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/964Constructional parts, e.g. floors, covers or doors
    • C05F17/971Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material
    • C05F17/986Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material the other material being liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention is directed to a system suitable for enhancing plant grow that satisfies this need.
  • the system is designed for both growing microorganism and a method of administering the microorganisms as well as a system and method for delivering nutrients that do not need oxygen to grow. It provides a mobile brewery that is simple and efficient and can easily be administered via an irrigation system. Furthermore, this system utilizes an aerator to maintain a high level of dissolved oxygen continuously throughout the system.
  • the device comprises a mobile structure; a vessel supported by the structure for receiving water and nutrients; a pump supported by the structure and exterior to the vessel; a generator supported by the structure for powering the pump; a vessel outlet from a bottom portion of the vessel to the pump; a first discharge line from the pump extending from the pump into the bottom portion of the vessel, wherein the contents of the vessel can be circulated by the pump from the vessel outlet back into the vessel through the first discharge line; a second discharge line from the pump for discharging contents of the vessel; and an aerator for injecting air into the first discharge line for aerating the contents of the vessel.
  • the aerator can be a venturi.
  • the aerator can be removable to allow circulation of nutrients, such as inorganic nutrients, that do not require oxygen rich environments.
  • the system can be provided with a power cord for providing AC power to the pump.
  • the aerator can be disposed external and above the vessel for continuously aerating the solution as it is pumped through the aerator and back into the vessel.
  • the first discharge line can comprise a first section from the pump to the top of the vessel and a second down section extending from the first section to the bottom portion of the vessel.
  • the second discharge line can be removed easily with a wrench, screw, or by hand. This allows changing out the second discharge line for injection into different pre-existing irrigation systems.
  • the aerator can be removable to allow use with microorganisms and nutrients that do not require oxygen.
  • each discharge line has a valve for selecting where the pumped contents of the vessel are discharged.
  • the user can easily alternate the flow of the solution from continuous circulation to discharging onto plants.
  • the invention also includes a method for growing microorganisms and circulating nutrients for administering to plants.
  • the method comprises the steps of adding water, microorganisms, and microorganism growth media into the vessel; circulating the contents with the pump by withdrawing contents of the vessel from the vessel outlet back into the vessel through the first discharge line, wherein air is sucked into the first discharge line by the venturi for aerating the contents of the vessel; cease pumping the contents of the vessel through the first discharge line; and pumping contents of the vessel with the pump out of the vessel through the second discharge line for enhancing the growth of plants.
  • Another method requires that the aerator be removed before cycling the contents of the vessel.
  • the user can move the vessel before pumping the contents out of the vessel.
  • the user can optionally choose to attach the second discharge line to an irrigation system or a spray before pumping the contents of the vessel out. After discharging the contents of the vessel, the user can disconnect the vessel entirely from all other component parts for effective cleaning.
  • FIG. 1 is a front perspective view of a system having features of the present invention
  • FIG. 2 is a perspective view of an aerating portion of the system of FIG. 1 ;
  • FIG. 3 is a side view of the system of FIG. 1 , partially in section;
  • FIG. 4 is a sectional view of the aeration portion of the system of FIG. 1 .
  • the structure 36 can be towable or self-propelled.
  • the structure supports the entire system including a vessel 12 , a generator 32 , a pump 26 , piping, and a venturi 34 serving as an aerator.
  • the term “line” can refer to any structure capable of transporting a liquid, for example this could include a pipe.
  • the term “pipe” is not meant to be exclusive but an example of one such “line” and can include other structures capable of transporting a liquid.
  • the term “aerator” can comprise any structure capable of introduce air into the system; a venturi is one type of aerator.
  • the system provides for continual circulation and aeration of a microorganism solution.
  • a mixture of microorganisms, nutrients, and water are contained within the vessel 12 .
  • the pump 26 extracts from the bottom of the vessel 12 the solution through a vessel outlet 28 .
  • a first discharge line 50 circulates the vessel contents.
  • the first discharge line 50 can comprise a first section 14 from the pump to the top of the vessel and a second down section 38 extending from the first section 14 to the bottom portion of the vessel 12 .
  • the pump forces the solution up the first section 14 of the first discharge line 50 to a venturi 34 or aerator 34 .
  • the venturi 34 As the solution passes through the venturi 34 , the solution is aerated and forced back down into the vessel 12 via the second section 38 of the first discharge line 50 . The system continues this circulation for the entire cultivation time until the solution is ready for application. This ensures continuous oxygen saturation and high quality and concentration of beneficial microorganisms. However, if the solution does not need to be aerated during the brewing or mixing process, the venturi 34 can be removed and the solution circulated with no aeration.
  • the system is designed for mobile as well as stationary brewing and application.
  • the entire system is supported by a mobile structure 36 .
  • the mobile structure 36 can be towable or self-propelled.
  • the generator 32 allows for the system to be fully mobile and can be administered easily at any location.
  • the system comprises a power cord 18 to power the pump 26 when AC power is easily accessible.
  • the system comprises a second discharge line 22 for administering the contents of the vessel.
  • the second discharge line 22 can be connected to an irrigation system 40 or can be attached to a spray 42 for mobile applications of the solution.
  • the pump is a diaphragm pump.
  • the generator is a 4,000 watt portable PredatorTM generator.
  • the system is designed for ease of access and ease of cleaning. An important aspect of brewing these high-quality aids is cleanliness of the equipment. “Harmful” microbes can live in biofilm. Biofilm is the substance that builds up in, and remains in a brewing machine if it is not thoroughly cleaned after each brew. If the machine is not clean for subsequent brews, then the “harmful” microbes that remain in the biofilm can reproduce exponentially along with the “good” microbes and negatively affect the quality of the organic aid produced.
  • the vessel 12 is modular so the vessel can be separated from the other components of the system for cleaning. The entire vessel 12 can be removed from the system, as it is lightweight and detachable. Therefore, the invention is a system that is easy to use and easy to clean, and that is economical and simple to operate.
  • the vessel 12 is contained within a holding crate 10 .
  • the holding crate 10 can be any material or configuration suitable for holding and supporting the vessel 12 stationary such as but not limited to a skeleton, bolts, or even recessed notches.
  • the holding crate 10 is easily moved in the field and can be connected easily to provide any total volume of solution required to irrigate any size field.
  • multiple holding crates 10 with the vessel 12 can be used as slaves in order to provide a larger volume of solution for a greater surface area to be applied.
  • multiple isolated units, each with its own pump and circulation system can be connected via piping or lines to one “master” second discharge line.
  • a “cross” 47 connects to the second down section 38 of the first discharge line 50 through an inlet 48 in the top of the vessel 12 .
  • the “cross” 47 can be easily removed from the inlet 48 and the second down section of the first discharge line 50 .
  • the second down section 38 of the first discharge line 50 is connected permanently to the cross 47 but can be easily removed with the cross intact.
  • the second down section 38 of the first discharge line 50 is easily removed from the inlet 48 and thus removed from the vessel 12 for cleaning. This simple design allows the user to efficiently clean the vessel 12 to eliminate any residual biofilm in the vessel 12 .
  • the bottom opening of the second down section 38 of the first discharge line 50 can have diffusers.
  • the venturi 34 that can provide optimum aeration of the liquid.
  • the venturi 34 maintains a continual minimum dissolved oxygen content of at least 6 ppm and typically up to 10 ppm.
  • One configuration of an aerator is the venturi 34 .
  • One configuration of the venturi 34 is comprised of the “cross” 47 , two air/oxygen inlets 46 a/b , a liquid inlet 45 and the descending second down section 38 of the first discharge line 50 .
  • the two oxygen inlets 46 a/b are located opposite to each other and perpendicular to the flow of the liquid.
  • only one air inlet can be used.
  • Liquid is pumped from the first section 14 of the first discharge line 50 to the top of the “cross” 47 .
  • the two oxygen inlets 46 a/b aerate the liquid.
  • the aerated liquid is then pumped down the second down section 38 of the first discharge line 50 into the vessel 12 .
  • the aerated liquid is forced down the second down section 38 of the first discharge line 50 to the bottom of the vessel 12 wherein the liquid “mushrooms” as it hits the flat surface of the bottom of the vessel and creates a swirling of the liquid similar to the motion of a washing machine. This process allows for uniform circulation throughout the vessel 12 as well as increasing the dissolved oxygen within the system.
  • the piping can be plastic or metal; the preferred piping is polyvinyl chloride.
  • the system comprises three valves: a vessel outlet valve 30 on the vessel outlet 28 disposed between the pump 26 and the vessel 12 , a first discharge valve 20 on the first section 14 of the first discharge line 50 disposed between the pump 26 and the “cross” 47 , and a second discharge valve 21 on the second discharge line 22 disposed between the pump 26 and a barbed fitting 24 for attachment to an irrigation system.
  • a user can alternate the direction and flow of the liquid from continuous circulation to the application on plants. For example, to maintain constant circulation, the pump 26 and generator 32 are turned on and first discharge valve 20 and vessel outlet valve 30 are opened while second discharge valve 21 is closed. Alternately, to discharge the contents of the vessel 12 while the pump 26 and generator 32 are on, second discharge valve 21 and vessel outlet valve 30 are opened while first discharge valve 20 is closed.
  • the water demand of the irrigation can vary during a typical irrigation cycle so it is desirable measure the flow rate. This enables all of the water in the irrigation lines to be nutrient treated to assure even application of the nutrients to the medium.
  • the system can be adapted to any irrigation system and will precisely measure the dilution rate of the solution in the irrigation system and the flow of irrigation water.
  • a diaphragm pump for pumping the solution.
  • a diaphragm pump such as a double diaphragm pump, provides the benefits, among others, of pumping chambers preventing the material being pumped to come in contact with any close fitting rotary or sliding seals to and capacities are infinitely variable within the pumps range. Because of the double diaphragm pump structure, it is ideal to be used with abrasives, slurries or even run dry. Therefore, there is no need to use variable speed motors or variable drives with a diaphragm pump.
  • venturi 34 To create the venturi 34 , take a 1.5 inch “bushing” and cut a “flange” off of the end (one quarter inch). Insert a 2.75 inch long 1 inch pvc pipe into the “bushing” so that it “seats” against the interior “flange” inside the “bushing” and hold in place in the center of the “cross” for one minute so that the glue dries.
  • the invention relates to a method for growing microorganisms and administering the microorganisms for enhancing the growth of plants using the systems of the invention.
  • the method comprises adding water, microorganisms, and nutrients for the microorganisms into the vessel 12 .
  • the contents of the vessel are circulated through the first section 14 of the first discharge line 50 to the discharge opening 45 , wherein air is sucked into the first discharge pipe 50 for aerating the contents of the vessel.
  • the time required to circulate the contents of the vessel depends on the amount of solution and the area necessary to be irrigated in order to allow a majority of the microorganisms to fully develop.
  • microorganisms and nutrients can be circulated for administering to plants wherein the aerator 34 is removed before pumping to allow circulation without the introduction for air into the system.
  • One embodiment of the invention provides for the capacity to brew at between 200 and 600 gallons of solution, preferably at least 300 gallons.
  • brewing generally takes about 2-4 hours. However, it is envisioned that less brewing time can be required.
  • the system is transported to the site of application and then brewed on site; however, brewing can take place anywhere as the system is mobile.
  • the user can move the vessel 12 before pumping the contents out of the vessel 12 .
  • the user can optionally choose to attach the second discharge pipe 22 to an irrigation system 40 or a spray 42 before pumping the contents of the vessel. After discharging the contents of the vessel 12 , the user can disconnect the vessel entirely from all other component parts for effective cleaning.
  • the microorganisms can comprise aerobic microbes consisting of archaea, bacteria, fungal hyphae, flagellates, amoebae, some ciliates, yeast cells and yeast fungal hyphae.
  • the nutrient solution can be composed of any appropriate nutrients for such microorganisms, for example but not limited to black strap molasses, fish hydrolysate, and kelp meal.
  • a product containing both microorganisms and nutrients is available from Simple Science LLC located in Salt Lake City, Utah, under the mark Dirt2Soil.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydroponics (AREA)

Abstract

A mobile system for growing microorganisms and circulating nutrients for administering to plants. The system has minimal interior obstructions that can be easily removed for effective cleaning. The system comprises a mobile structure; a vessel supported by the structure for receiving water and nutrients; a pump supported by the structure; a generator supported by the structure for powering the pump; a vessel outlet from a bottom portion of the vessel to the pump; a first discharge line from the pump extending from the pump into the bottom portion of the vessel, wherein the contents of the vessel can be circulated by the pump from the vessel outlet back into the vessel through the first discharge line; a second discharge line from the pump for discharging contents of the vessel; and an aerator for injecting air into the first discharge line for aerating the contents of the vessel.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This International Patent Application claims the benefit of U.S. Provisional Patent Application No. 62/069,068, titled “Microorganism Brew System,” filed Oct. 27, 2014, the contents of which are incorporated in this disclosure by reference in their entirety.
  • BACKGROUND
  • There is a need for organic, safe, inexpensive, natural aids for growing plants. Furthermore, there is a need for a single system that can deliver both organic and inorganic nutrients to plants and soil. Natural aids that contain beneficial microorganisms help prevent root and foliar diseases as well as adding nutrients to plants and soil. Such organic aids are becoming more recognized in commercial agriculture as a healthier alternative to pesticides and fertilizers.
  • Attempts to meet this need are described in U.S. patent application Ser. Nos. 10/024,854, 09/847,893, and 11/224,554 and U.S. Pat. No. 7,972,839. However, each of these attempts has deficiencies such as being bulky, expensive, immobile, and excessively complex.
  • Therefore there is a need for a system that overcomes the disadvantages of existing systems.
  • SUMMARY
  • The present invention is directed to a system suitable for enhancing plant grow that satisfies this need. The system is designed for both growing microorganism and a method of administering the microorganisms as well as a system and method for delivering nutrients that do not need oxygen to grow. It provides a mobile brewery that is simple and efficient and can easily be administered via an irrigation system. Furthermore, this system utilizes an aerator to maintain a high level of dissolved oxygen continuously throughout the system.
  • In particular, the device comprises a mobile structure; a vessel supported by the structure for receiving water and nutrients; a pump supported by the structure and exterior to the vessel; a generator supported by the structure for powering the pump; a vessel outlet from a bottom portion of the vessel to the pump; a first discharge line from the pump extending from the pump into the bottom portion of the vessel, wherein the contents of the vessel can be circulated by the pump from the vessel outlet back into the vessel through the first discharge line; a second discharge line from the pump for discharging contents of the vessel; and an aerator for injecting air into the first discharge line for aerating the contents of the vessel. Furthermore, the aerator can be a venturi. The aerator can be removable to allow circulation of nutrients, such as inorganic nutrients, that do not require oxygen rich environments.
  • Optionally, the system can be provided with a power cord for providing AC power to the pump. The aerator can be disposed external and above the vessel for continuously aerating the solution as it is pumped through the aerator and back into the vessel. Furthermore, the first discharge line can comprise a first section from the pump to the top of the vessel and a second down section extending from the first section to the bottom portion of the vessel. Optionally, the second discharge line can be removed easily with a wrench, screw, or by hand. This allows changing out the second discharge line for injection into different pre-existing irrigation systems. For inorganic nutrients, optionally the aerator can be removable to allow use with microorganisms and nutrients that do not require oxygen.
  • In order to control the flow rate and direction of the solution each discharge line has a valve for selecting where the pumped contents of the vessel are discharged. Thus, the user can easily alternate the flow of the solution from continuous circulation to discharging onto plants.
  • The invention also includes a method for growing microorganisms and circulating nutrients for administering to plants. The method comprises the steps of adding water, microorganisms, and microorganism growth media into the vessel; circulating the contents with the pump by withdrawing contents of the vessel from the vessel outlet back into the vessel through the first discharge line, wherein air is sucked into the first discharge line by the venturi for aerating the contents of the vessel; cease pumping the contents of the vessel through the first discharge line; and pumping contents of the vessel with the pump out of the vessel through the second discharge line for enhancing the growth of plants. Another method requires that the aerator be removed before cycling the contents of the vessel.
  • Optionally, the user can move the vessel before pumping the contents out of the vessel. Furthermore, the user can optionally choose to attach the second discharge line to an irrigation system or a spray before pumping the contents of the vessel out. After discharging the contents of the vessel, the user can disconnect the vessel entirely from all other component parts for effective cleaning.
  • DRAWINGS
  • These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying figures where:
  • FIG. 1 is a front perspective view of a system having features of the present invention;
  • FIG. 2 is a perspective view of an aerating portion of the system of FIG. 1;
  • FIG. 3 is a side view of the system of FIG. 1, partially in section; and
  • FIG. 4 is a sectional view of the aeration portion of the system of FIG. 1.
  • DESCRIPTION
  • With reference to the figures, there is a system having features of the present invention comprising a mobile structure 36. The structure 36 can be towable or self-propelled. The structure supports the entire system including a vessel 12, a generator 32, a pump 26, piping, and a venturi 34 serving as an aerator.
  • Herein, the term “line” can refer to any structure capable of transporting a liquid, for example this could include a pipe. The term “pipe” is not meant to be exclusive but an example of one such “line” and can include other structures capable of transporting a liquid. The term “aerator” can comprise any structure capable of introduce air into the system; a venturi is one type of aerator.
  • Referring to FIGS. 1 and 3, the system provides for continual circulation and aeration of a microorganism solution. A mixture of microorganisms, nutrients, and water are contained within the vessel 12. The pump 26 extracts from the bottom of the vessel 12 the solution through a vessel outlet 28. A first discharge line 50 circulates the vessel contents. The first discharge line 50 can comprise a first section 14 from the pump to the top of the vessel and a second down section 38 extending from the first section 14 to the bottom portion of the vessel 12. The pump forces the solution up the first section 14 of the first discharge line 50 to a venturi 34 or aerator 34. As the solution passes through the venturi 34, the solution is aerated and forced back down into the vessel 12 via the second section 38 of the first discharge line 50. The system continues this circulation for the entire cultivation time until the solution is ready for application. This ensures continuous oxygen saturation and high quality and concentration of beneficial microorganisms. However, if the solution does not need to be aerated during the brewing or mixing process, the venturi 34 can be removed and the solution circulated with no aeration.
  • Referring to FIGS. 1 and 3, the system is designed for mobile as well as stationary brewing and application. The entire system is supported by a mobile structure 36. The mobile structure 36 can be towable or self-propelled. There is a generator 32 for powering the pump 26 where an AC power is not readily available. The generator 32 allows for the system to be fully mobile and can be administered easily at any location. Optionally, the system comprises a power cord 18 to power the pump 26 when AC power is easily accessible. Furthermore, the system comprises a second discharge line 22 for administering the contents of the vessel. The second discharge line 22 can be connected to an irrigation system 40 or can be attached to a spray 42 for mobile applications of the solution. Preferably, the pump is a diaphragm pump.
  • Any generator capable of powering such pump is envisioned. In one embodiment, the generator is a 4,000 watt portable Predator™ generator.
  • The system is designed for ease of access and ease of cleaning. An important aspect of brewing these high-quality aids is cleanliness of the equipment. “Harmful” microbes can live in biofilm. Biofilm is the substance that builds up in, and remains in a brewing machine if it is not thoroughly cleaned after each brew. If the machine is not clean for subsequent brews, then the “harmful” microbes that remain in the biofilm can reproduce exponentially along with the “good” microbes and negatively affect the quality of the organic aid produced. The vessel 12 is modular so the vessel can be separated from the other components of the system for cleaning. The entire vessel 12 can be removed from the system, as it is lightweight and detachable. Therefore, the invention is a system that is easy to use and easy to clean, and that is economical and simple to operate.
  • Referring to FIG. 3, the vessel 12 is contained within a holding crate 10. The holding crate 10 can be any material or configuration suitable for holding and supporting the vessel 12 stationary such as but not limited to a skeleton, bolts, or even recessed notches. The holding crate 10 is easily moved in the field and can be connected easily to provide any total volume of solution required to irrigate any size field. Furthermore, multiple holding crates 10 with the vessel 12 can be used as slaves in order to provide a larger volume of solution for a greater surface area to be applied. In this configuration multiple isolated units, each with its own pump and circulation system can be connected via piping or lines to one “master” second discharge line.
  • Only the vessel outlet 28 and the second down section 38 of the first discharge line 50 are located interior to the vessel 12. However, both pipes can be easily removed and the vessel 12 completely removed for thorough cleaning. The pipes can be removed manually without tools or can require simple tools such as a screw and a wrench. Referring to FIG. 2, a “cross” 47 connects to the second down section 38 of the first discharge line 50 through an inlet 48 in the top of the vessel 12. Optionally, the “cross” 47 can be easily removed from the inlet 48 and the second down section of the first discharge line 50. Preferably, the second down section 38 of the first discharge line 50 is connected permanently to the cross 47 but can be easily removed with the cross intact. The second down section 38 of the first discharge line 50 is easily removed from the inlet 48 and thus removed from the vessel 12 for cleaning. This simple design allows the user to efficiently clean the vessel 12 to eliminate any residual biofilm in the vessel 12. Optionally, the bottom opening of the second down section 38 of the first discharge line 50 can have diffusers.
  • Referring to FIGS. 2 and 4, there is the venturi 34 that can provide optimum aeration of the liquid. Preferably, the venturi 34 maintains a continual minimum dissolved oxygen content of at least 6 ppm and typically up to 10 ppm. One configuration of an aerator, is the venturi 34. One configuration of the venturi 34 is comprised of the “cross” 47, two air/oxygen inlets 46 a/b, a liquid inlet 45 and the descending second down section 38 of the first discharge line 50. The two oxygen inlets 46 a/b are located opposite to each other and perpendicular to the flow of the liquid. Optionally, only one air inlet can be used. Liquid is pumped from the first section 14 of the first discharge line 50 to the top of the “cross” 47. As the liquid passes through the constricted pipe 44, creating a venturi effect, the two oxygen inlets 46 a/b aerate the liquid. The aerated liquid is then pumped down the second down section 38 of the first discharge line 50 into the vessel 12. Furthermore, as seen in FIG. 3, the aerated liquid is forced down the second down section 38 of the first discharge line 50 to the bottom of the vessel 12 wherein the liquid “mushrooms” as it hits the flat surface of the bottom of the vessel and creates a swirling of the liquid similar to the motion of a washing machine. This process allows for uniform circulation throughout the vessel 12 as well as increasing the dissolved oxygen within the system.
  • The piping can be plastic or metal; the preferred piping is polyvinyl chloride.
  • It is desirable to control the flow rate and direction of the liquid. To accomplish this, the system comprises three valves: a vessel outlet valve 30 on the vessel outlet 28 disposed between the pump 26 and the vessel 12, a first discharge valve 20 on the first section 14 of the first discharge line 50 disposed between the pump 26 and the “cross” 47, and a second discharge valve 21 on the second discharge line 22 disposed between the pump 26 and a barbed fitting 24 for attachment to an irrigation system. Using the valves, a user can alternate the direction and flow of the liquid from continuous circulation to the application on plants. For example, to maintain constant circulation, the pump 26 and generator 32 are turned on and first discharge valve 20 and vessel outlet valve 30 are opened while second discharge valve 21 is closed. Alternately, to discharge the contents of the vessel 12 while the pump 26 and generator 32 are on, second discharge valve 21 and vessel outlet valve 30 are opened while first discharge valve 20 is closed.
  • The water demand of the irrigation can vary during a typical irrigation cycle so it is desirable measure the flow rate. This enables all of the water in the irrigation lines to be nutrient treated to assure even application of the nutrients to the medium. By varying the pressure output from the second discharge line 22 and diameter of the discharge pipes, the system can be adapted to any irrigation system and will precisely measure the dilution rate of the solution in the irrigation system and the flow of irrigation water.
  • Furthermore, it is desirable to be able to accommodate different irrigation systems of which can have different size piping and maximum and minimum pressure loads. This can be accomplished by varying the pressure output of the pump 26, varying the degree that the second discharge valve 21 is opened or closed in the second discharge line 22, or by varying the diameter of the piping in the second discharge line 22. In order to account for the varying pressures needed in different irrigation systems, it is preferred to use a diaphragm pump for pumping the solution. A diaphragm pump, such as a double diaphragm pump, provides the benefits, among others, of pumping chambers preventing the material being pumped to come in contact with any close fitting rotary or sliding seals to and capacities are infinitely variable within the pumps range. Because of the double diaphragm pump structure, it is ideal to be used with abrasives, slurries or even run dry. Therefore, there is no need to use variable speed motors or variable drives with a diaphragm pump.
  • Example
  • Next, disclosed is the method of assembly of one embodiment of the invention. To create the venturi 34, take a 1.5 inch “bushing” and cut a “flange” off of the end (one quarter inch). Insert a 2.75 inch long 1 inch pvc pipe into the “bushing” so that it “seats” against the interior “flange” inside the “bushing” and hold in place in the center of the “cross” for one minute so that the glue dries. Insert the “bushing” into the “cross” 47 in the opposite direction that it was designed to be inserted so that the 2.75 inch long 1 inch pvc pipe extends into the center of the “cross” 47, leaving 0.5 inches of the (unglued) “bushing” outside the “cross” 47 so as to be accessible for inserting and gluing into a 1.5 inch “elbow”. This leaves the 1 inch pvc pipe terminating in the middle of the “cross” 47 reducing the flow of liquid so as to create a venturi effect as the liquid passes through the “cross” 47 from top to bottom with the perpendicular “arms” of the cross serving as air inlets 46 a/b. Using a conical boring device, bore out the top of the “bushing” where it enters the “cross” 47 and reduces to 1 inch to enhance the venturi effect of the cross 47. This is now the top of the system.
  • Next, use two 2 inch lengths of pipe as “sleeves” and glue the (2) “arms” of the cross 47 to the “elbows” so that the opening of the “elbows” points down at a 30 degree angle. Glue the third “elbow” to the top of the “cross” 47 so that it is perpendicular to the arms of the “cross” where the “bushing” extends out 0.5 inch (over the venturi 34). Glue a 50 inch flexible pipe into the bottom arm of the “cross”. This is now the second down section of the first discharge line 50 that inserts into the tank. Glue the flexible pipe into the “elbow” above the venturi. This is now the first discharge pipe 14. Glue the end of the flexible pvc pipe to the “union”. This “union” will connect the flexible pipe to the valve 20 coming out of the pump.
  • Furthermore, the invention relates to a method for growing microorganisms and administering the microorganisms for enhancing the growth of plants using the systems of the invention. The method comprises adding water, microorganisms, and nutrients for the microorganisms into the vessel 12. Pumping to aerate the vessel 12 for a sufficient time to allow a majority of the microorganism to grow and develop. The contents of the vessel are circulated through the first section 14 of the first discharge line 50 to the discharge opening 45, wherein air is sucked into the first discharge pipe 50 for aerating the contents of the vessel. Next, pump contents of the vessel 12 with the pump 26 out of the vessel for enhancing the growth of plants. The time required to circulate the contents of the vessel depends on the amount of solution and the area necessary to be irrigated in order to allow a majority of the microorganisms to fully develop.
  • Alternatively, microorganisms and nutrients can be circulated for administering to plants wherein the aerator 34 is removed before pumping to allow circulation without the introduction for air into the system.
  • One embodiment of the invention provides for the capacity to brew at between 200 and 600 gallons of solution, preferably at least 300 gallons. Depending on the bacteria desired and cultivation time, in one embodiment brewing generally takes about 2-4 hours. However, it is envisioned that less brewing time can be required. Preferably, the system is transported to the site of application and then brewed on site; however, brewing can take place anywhere as the system is mobile.
  • Optionally, the user can move the vessel 12 before pumping the contents out of the vessel 12. Furthermore, the user can optionally choose to attach the second discharge pipe 22 to an irrigation system 40 or a spray 42 before pumping the contents of the vessel. After discharging the contents of the vessel 12, the user can disconnect the vessel entirely from all other component parts for effective cleaning.
  • The microorganisms can comprise aerobic microbes consisting of archaea, bacteria, fungal hyphae, flagellates, amoebae, some ciliates, yeast cells and yeast fungal hyphae. The nutrient solution can be composed of any appropriate nutrients for such microorganisms, for example but not limited to black strap molasses, fish hydrolysate, and kelp meal. A product containing both microorganisms and nutrients is available from Simple Science LLC located in Salt Lake City, Utah, under the mark Dirt2Soil.
  • Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. For example, different aerating means may be employed such as an air pump. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.

Claims (20)

1. A system comprising:
a) a mobile structure;
b) a vessel supported by the structure for receiving water and nutrients;
c) a pump supported by the structure and exterior to the vessel;
d) a generator supported by the structure for powering the pump;
e) a vessel outlet from a bottom portion of the vessel to the pump;
f) a first discharge line from the pump extending from the pump into the bottom portion of the vessel, wherein the contents of the vessel can be circulated by the pump from the vessel outlet back into the vessel through the first discharge line;
g) a second discharge line from the pump for discharging contents of the vessel; and
h) an aerator for injecting air into the first discharge line for aerating the contents of the vessel.
2. The system of claim 1 wherein the aerator is removable.
3. The system of claim 1 wherein the aerator comprises a venturi.
4. The system of claim 1 wherein vessel contains water, microorganisms and microorganism growth media.
5. The system of claim 1 further comprising a power cord for optionally providing AC power to the pump.
6. The system of claim 1 wherein the aerator is disposed exterior to the vessel and above the top of the vessel.
7. The system of claim 1 wherein each discharge line has a valve for selecting where the pumped contents of the vessel are discharged.
8. The system of claim 1 further comprising a valve in the outlet.
9. The system of claim 1 wherein the top of the vessel is open to the atmosphere.
10. A method for growing microorganisms and circulating nutrients for administering to plants, the method comprising the steps of:
a) selecting the system of claim 1;
b) adding water, microorganisms, and microorganism growth media into the vessel;
c) circulating the contents with the pump by withdrawing contents of the vessel from the vessel outlet back into the vessel through the first discharge pipe, wherein air is sucked into the first discharge line by the venturi for aerating the contents of the vessel;
d) cease pumping the contents of the vessel through the first discharge line; and
e) pumping contents of the vessel with the pump out of the vessel through the second discharge line for enhancing the growth of plants.
11. A method for growing microorganisms and circulating nutrients for administering to plants, the method comprising the steps of:
a) selecting the system of claim 2;
b) removing the aerator;
c) adding water, microorganisms, and microorganism growth media into the vessel;
d) circulating the contents with the pump by withdrawing contents of the vessel from the vessel outlet back into the vessel through the first discharge pipe, wherein air is sucked into the first discharge pipe by the venturi for aerating the contents of the vessel;
e) cease pumping the contents of the vessel through the first discharge pipe; and
f) pumping contents of the vessel with the pump out of the vessel through the second discharge pipe for enhancing the growth of plants.
12. The method of claim 10 wherein the method further comprises connecting the second discharge pipe to an irrigation system before the last step.
13. The method of claim 10 wherein the method further comprises connecting the second discharge pipe to a spray before the last step.
14. The system of claim 1 wherein the first discharge line comprises a first section from the pump to the top of the vessel and a second down section extending to the bottom portion of the vessel.
15. The system of claim 1 wherein the vessel is modular so the vessel can be separated from the other components of the system for cleaning.
16. The system of claim 1 wherein the second section of the first discharge line is manually removable without tools.
17. The system of claim 1 wherein the aerator comprises two air inlets into the first discharge line.
18. The system of claim 1 wherein the vessel can contain from 200-600 gallons of water.
19. The method of claim 11 wherein the method further comprises connecting the second discharge pipe to an irrigation system before the last step.
20. The method of claim 11 wherein the method further comprises connecting the second discharge pipe to a spray before the last step.
US15/522,283 2014-10-27 2015-10-27 A system for enhancing plant growth Abandoned US20170334801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/522,283 US20170334801A1 (en) 2014-10-27 2015-10-27 A system for enhancing plant growth

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462069068P 2014-10-27 2014-10-27
PCT/US2015/057646 WO2016069643A1 (en) 2014-10-27 2015-10-27 A system for enhancing plant growth
US15/522,283 US20170334801A1 (en) 2014-10-27 2015-10-27 A system for enhancing plant growth

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/057646 A-371-Of-International WO2016069643A1 (en) 2014-10-27 2015-10-27 A system for enhancing plant growth

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/184,672 Division US10479736B2 (en) 2014-10-27 2018-11-08 Method for improving plant growth by irrigation with nutrients
US16/682,102 Division US20200361831A9 (en) 2014-10-27 2019-11-13 System for enhancing plant growth

Publications (1)

Publication Number Publication Date
US20170334801A1 true US20170334801A1 (en) 2017-11-23

Family

ID=55858269

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/522,283 Abandoned US20170334801A1 (en) 2014-10-27 2015-10-27 A system for enhancing plant growth
US16/184,672 Active US10479736B2 (en) 2014-10-27 2018-11-08 Method for improving plant growth by irrigation with nutrients
US16/682,102 Abandoned US20200361831A9 (en) 2014-10-27 2019-11-13 System for enhancing plant growth

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/184,672 Active US10479736B2 (en) 2014-10-27 2018-11-08 Method for improving plant growth by irrigation with nutrients
US16/682,102 Abandoned US20200361831A9 (en) 2014-10-27 2019-11-13 System for enhancing plant growth

Country Status (2)

Country Link
US (3) US20170334801A1 (en)
WO (1) WO2016069643A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108782513A (en) * 2018-05-22 2018-11-13 高元琴 A kind of garden lawn fog machine
CN113711751B (en) * 2021-09-07 2022-05-13 新洋丰农业科技股份有限公司 Facility cultivation water and fertilizer integrated system and fertilizer application method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685656A (en) * 1971-03-11 1972-08-22 Richard J Schaefer Recirculating ozone treatment apparatus
US5447866A (en) * 1994-02-02 1995-09-05 Eco Soil Systems Reactor for microorganisms and feed device therefor
US5833857A (en) * 1996-06-07 1998-11-10 Lytal Family Trust Mobile Bioreactor and Biogenerator
US5890664A (en) 1997-07-22 1999-04-06 Conant, Iii; Jess Austin Transportable, self-contained, fully automated composter
US7879593B2 (en) * 1999-12-16 2011-02-01 Whiteman G Robert Fermentation systems, methods and apparatus
DE10022582A1 (en) 2000-05-09 2001-11-15 Hilti Ag Hand tool with suction dust collector
US20030113908A1 (en) 2001-12-18 2003-06-19 Hussey Leon R. Compost tea apparatus and methods
US20070059819A1 (en) 2005-09-12 2007-03-15 Progressive Gardens, Llc Dba Progress Earth Compost tea brewer
US20070186962A1 (en) * 2006-02-16 2007-08-16 Ez Environmental Solutions Corporation Portable, self-contained, bioremediation waste water treatment apparatus with integrated particulate removal
US20090032446A1 (en) * 2007-08-01 2009-02-05 Triwatech, L.L.C. Mobile station and methods for diagnosing and modeling site specific effluent treatment facility requirements
US7972839B2 (en) 2008-01-25 2011-07-05 Timothy James Wilson Aerobic compost tea making device and method
WO2009149536A1 (en) 2008-06-10 2009-12-17 Ekologix Earth-Friendly Solutions Inc. Apparatus and process for treatment of wastewater and biological nutrient removal in activated sludge systems
BRPI1015504A2 (en) 2010-12-27 2014-03-11 Silva Joao Luciano Rodrigues Da EFFLUENT TREATMENT PROCESS IN MODULAR STATION AND LINEAR STATIC MIXER WITH HELICAL HYDRAULIC FLOW
WO2012151382A1 (en) * 2011-05-03 2012-11-08 Algae Biosciences Inc. Microalgae-based soil inoculating system and methods of use

Also Published As

Publication number Publication date
US20200087223A1 (en) 2020-03-19
US10479736B2 (en) 2019-11-19
WO2016069643A1 (en) 2016-05-06
US20200361831A9 (en) 2020-11-19
US20190077722A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US8117992B2 (en) Aquatic farming systems
US6649405B2 (en) Compost tea system
US20150342161A1 (en) Fish culturing system
US8529764B2 (en) Solar powered aeration and microbial incubation system
US20200361831A9 (en) System for enhancing plant growth
US7972839B2 (en) Aerobic compost tea making device and method
US20010047617A1 (en) Portable hydroponic garden apparatus
US9540290B2 (en) Compost tea apparatus
CN203735328U (en) Biological paddle, multifunctional propagation expanding device and biological drug applied device
KR102407391B1 (en) Apparatus for switching culture tank to bio-filtering tank and recirculative filtering system using thereof
US9499449B2 (en) Aerated compost tea brewer
US20190098849A1 (en) Hydroponic growing system and method
US11565980B2 (en) System and method for organically enhancing plant growth
CN206413606U (en) A kind of apparatus of oxygen supply of auto purification type cultivating pool
CN107188375A (en) A kind of biogas slurry minimizing and the system and its implementation of qualified discharge
US20220395787A1 (en) Hydroponic system and method for enriching a liquid with gas-bubbles
CN214592898U (en) Liquid manure quantitative fertilization device
CN107551299A (en) A kind of nursery soil chlorination equipment
CN208732744U (en) A kind of biological treatment reactor for river regulation
US20150037878A1 (en) Portable system for brewing compost tea
CA2617086A1 (en) An aerobic compost tea making device
CN207201432U (en) A kind of corresponding cultivation system after biomass wastewater treatment
MY143988A (en) Aeration apparatus for culture pond and method of harvesting cultivated crop using such aeration apparatus
CN110402863A (en) A kind of biological breeding apparatus of freshwater crayfish cultivation fattening period
Moore et al. Comparisons of devices for aerating inflow of pipes

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIRT 2 SOIL LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUNTLEY, COLEMAN SCOTT, JR.;REEL/FRAME:046626/0325

Effective date: 20170403

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DIRT 2 SOIL LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUNTLEY, COLEMAN SCOTT, JR.;REEL/FRAME:053130/0094

Effective date: 20170403