US20170333553A1 - Lipidated immune response modifier compound compositions, formulations, and methods - Google Patents

Lipidated immune response modifier compound compositions, formulations, and methods Download PDF

Info

Publication number
US20170333553A1
US20170333553A1 US15/666,077 US201715666077A US2017333553A1 US 20170333553 A1 US20170333553 A1 US 20170333553A1 US 201715666077 A US201715666077 A US 201715666077A US 2017333553 A1 US2017333553 A1 US 2017333553A1
Authority
US
United States
Prior art keywords
compound
formula
butyl
antigen
cmpd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/666,077
Inventor
Paul D. Wightman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US15/666,077 priority Critical patent/US20170333553A1/en
Publication of US20170333553A1 publication Critical patent/US20170333553A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55572Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16311Influenzavirus C, i.e. influenza C virus
    • C12N2760/16334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • IRMs immune response modifiers
  • TLRs Toll-like receptors
  • IRMs may be useful for treating a wide variety of diseases and conditions.
  • certain IRMs may be useful for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanoma), T H 2-mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and auto-immune diseases.
  • viral diseases e.g., human papilloma virus, hepatitis, herpes
  • neoplasias e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanoma
  • T H 2-mediated diseases e.g., asthma, allergic rhinitis, atopic dermatitis
  • Certain IRMs may also be useful, for example, as vaccine adjuvant
  • IRMs are imidazoquinoline amine derivatives (see, e.g., U.S. Pat. No. 4,689,338 (Gerster)), but other compound classes are known as well (see, e.g., U.S. Pat. No. 5,446,153 (Lindstrom et al.); U.S. Pat. No. 6,194,425 (Gerster et al.); and U.S. Pat. No. 6,110,929 (Gerster et al.); and International Publication Number WO2005/079195 (Hays et al.).
  • the present invention provides, in one aspect, a new compound useful for inducing cytokine biosynthesis.
  • the compound i.e., N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide
  • formula (I) N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide
  • the compound of Formula I has unexpectedly beneficial properties in terms of biologic activity. It is particularly desirable for incorporation into liposome based formulations. It appears that such formulations are surprisingly effective at boosting localized immune response with reduced systemic TNF induction.
  • the present invention further provides methods of inducing cytokine biosynthesis in an animal, treating a viral infection and/or treating a neoplastic disease in an animal by administering an effective amount of a compound of Formula I to the animal.
  • the present invention further provides a method of vaccinating an animal comprising administering an effective amount of a compound of Formula I to the animal as a vaccine adjuvant.
  • the invention further provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Formula I.
  • the pharmaceutical composition further comprises an antigen (e.g., a vaccine).
  • the compound of Formula I is incorporated in a homogeneously dispersed formulation.
  • the compound of Formula I is incorporated in an emulsified formulation.
  • the compound of Formula I is incorporated in an oil-in-water formulation (for example formulations comprising soybean oil, TWEEN 80, SPAN 85, and PBS).
  • the compound of Formula I is incorporated into a liposome-based formulation.
  • the compound of Formula I increases the antibody response to the vaccine. It can decrease the amount of antigen vaccine required to achieve a desired ⁇ therapeutically effective antibody response. For example, it can reduce the amount of vaccine antigen needed by 2-fold, 10-fold, 15-fold, 25-fold, 50-fold, or as much as 100-fold or more.
  • the compound of Formula I is useful for a wide range purposes, including but not limited to such things as a vaccine adjuvant for influenza vaccines.
  • a vaccine adjuvant for influenza vaccines.
  • the compound of Formula I in combination with an influenza vaccine antigen provides protection for H1N1 influenza infection (as well as influenza A, B, and swine flu).
  • the compound of Formula I in combination with hemagglutinin antigens provides protection for H1N1 influenza infection.
  • the compound of Formula I induces cytokine production primarily at the site of administration (or at a local site of application) and can do so without substantial systemic cytokine induction, which may be important for reducing side effects.
  • the compound of Formula I can induce TNF production primarily at the site of administration (or at a local site of application) without inducing systemic TNF levels above the background level (i.e. the level measured systemically prior to administration of the compound of Formula I).
  • subcutaneous injection of the compound of Formula I can be used to induce cytokine production (such as TNF production) in the local draining lymph nodes, but not peripheral lymph nodes.
  • subcutaneous injection of the compound of Formula I can induce cytokine production (such as TNF production) in the local draining lymph nodes at levels at least 2 times, 3 times, 5 times, 10 times, or as much as 100 times greater or more than in the peripheral lymph nodes
  • N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)hexadecanamide may be synthesized using a similar synthetic route and may also be used for the same uses, pharmaceutical compositions, and formulations as the compound of Formula one set forth herein.
  • “Ameliorate” refers to any reduction in the extent, severity, frequency, and/or likelihood of a symptom or clinical sign characteristic of a particular condition.
  • Antigen refers to any substance that may be bound by an antibody in a manner that is immunospecific to some degree.
  • Induce and variations thereof refer to any measurable increase in cellular activity.
  • induction of an immune response may include, for example, an increase in the production of a cytokinc, activation, proliferation, or maturation of a population of immune cells, and/or other indicator of increased immune function.
  • Liposome or “liposome based” as used herein refers generally to a self—assembling particle composed of amphipathic molecules such as, but not limited to lipid, lipid-like, or polymeric substances. They can also include lipopeptides and glycolipids.
  • Symptom refers to any subjective evidence of disease or of a patient's condition.
  • “Therapeutic” and variations thereof refer to a treatment that ameliorates one or more existing symptoms or clinical signs associated with a condition.
  • Treatment or variations thereof refer to reducing, limiting progression, ameliorating, preventing, or resolving, to any extent, the symptoms or signs related to a condition.
  • the compound N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide described herein may be in any of its pharmaceutically acceptable forms including solid, semi-solid, solvate (e.g., hydrate), wholly or partially dissolved (e.g., in a pharmaceutical composition), or dispersed in a pharmaceutically acceptable carrier. It will also be understood that any pharmaceutically acceptable salt form of the compound of Formula I (N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide) may also be used.
  • the resulting solid was washed with water (60 mL) and dried under vacuum for 4 hours to provide 4.59 g of crude N-(4-chloroquinolin-3-yl)valcramide as brown flakes.
  • the crude product was recrystallized from heptane (10 mL) and the recovered product was further purified by soxhlet extraction using refluxing heptane for 16 hours.
  • the collection flask from the soxhlet extraction apparatus was cooled in a freezer for 2 hours.
  • the resulting solid was collected by filtration and dried under vacuum to yield 2.00 g of N-(4-chloroquinolin-3-yl)valeramide as a white solid.
  • N-(4-chloroquinolin-3-yl)valeramide (1.97 g), benzyl (4-aminooxybutyl)carbamate (2.99 g), triethylamine (0.89 g) and 2-propanol (40.69 g) were combined and heated at 80° C. for 3.5 hours.
  • the reaction was cooled to room temperature, filtered, and the filtrate concentrated under reduced pressure.
  • Dichloromethane (20 mL) was added to the resulting solid and the mixture was stirred for twenty minutes Undissolved solid was removed by filtration and the filtrate was washed with two 10 mL portions of water that had been made slightly acidic by the addition of 20 drops of hydrochloric acid (1.2 M). The organic fraction was dried and concentrated under reduced pressure.
  • the crude solid was recrystallized from tetrahydrofuran to provide 2.56 g of benzyl 4- ⁇ [2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇
  • the dichloromethane solution was transferred to a distillation apparatus and 1-pentanol (50 mL) was added. This was warmed to 40° C. and the dichoromethane was removed under reduced pressure. Concentrated hydrochloric acid (50 ml) was then added and the reaction was stirred and heated to 80°. After 11 hours, the solution was cooled to room temperature and diluted with water (100 mL). The aqueous fraction was separated from the 1-pentanol and the 1-pentanol was extracted with water (25 mL). The aqueous fractions were combined. 1-Pentanol (50 mL) was added to the combined aqueous fraction and this was cooled in an ice-bath.
  • the maleate salt of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine was prepared by dissolving maleic acid (4.83 g) in 1-pentanol (50 mL) and adding it with stirring to the solution of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine in 1-pentanol. The resulting precipitate was collected by filtration and dried to yield 7.69 g of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine bis maleate salt.
  • the fumarate salt of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine was prepared by the following procedure.
  • 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (6.53 g) was dissolved in 2-propanol (75 mL) and decolorizing carbon was added. The reaction was heated to reflux, filtered while hot, and cooled to room temperature. A solution of fumaric acid (2.5 g) in 2-propanol was added and the reaction was heated at reflux temperature for 5 minutes. Upon cooling to room temperature a precipitate formed.
  • the 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine was dissolved in dichloromethane (20 mL) and methanol (5 mL). Stearic acid (0.71 g) was added and the reaction was stirred to dissolve the stearic acid.
  • 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC, 0.45 g) was added and the reaction was stirred at ambient temperature for 16 hours. An additional portion of EDC was added (0.23 g) and the reaction was stirred for an additional 24 hours.
  • the semi-pure product was purified by flash column chromatography two more times using a 90:10 dichloromethane/methanol isocratic elution, followed by a 95:5 dichloromethane/methanol isocratic elution
  • the fractions containing product were concentrated to yield 1.12 g of N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide as an off white waxy solid.
  • the vaccine adjuvant activity of N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide was evaluated in mice immunized with recombinant hemagglutinin 1 (HA).
  • IgG2a antigen specific antibody response was measured using five different preparations (1. HA alone (control); 2. HA+resiquimod (comparator preparation); 3. HA+Cmpd of Example 1 formulated in dioleoylphosphatidylcholine (DOPC) (liposome formulation); 3. HA+Cmpd of Example 1; 5. HA+DOPC (control).
  • the Cmpd of Example 1 and resiquimod were individually prepared as aqueous suspensions in phosphate buffered saline (PBS).
  • the Cmpd of Example 1 formulated in DOPC liposome formulation was prepared as follows. A stock solution of the Cmpd of Example 1 was prepared in chloroform at a concentration of 10 mg/ml. A stock solution of dioleoylphosphatidylcholine (DOPC) was also prepared in chloroform at a concentration of 10 mg/ml. Aliquots of each stock solution were combined to provide a solution containing DOPC and the Cmpd of Example 1 at a mass ratio of 10:1, respectively. The solution was blown to dryness and resuspended in sterile PBS by probe sonication.
  • DOPC dioleoylphosphatidylcholine
  • mice Groups of 5 mice each were immunized subcutaneously with 10 ⁇ g of HA antigen in PBS, alone or in combination with 1 mg/Kg of the compounds cited in Table 1.
  • DOPC control animals received the same amount of DOPC as that prepared with the Cmpd of Example 1.
  • the mice were boosted with the same combinations 2 weeks and 4 weeks following the initial immunization.
  • the mice were bled and the HA-specific IgG2a titers were determined. This determination was performed by serial dilution of the scrum samples by standard scrum ELISA in HA-coated microtitcr plates. IgG2a data is presented as the serum dilution achieving the end point (2 ⁇ baseline) and is the geometric mean for the 5 mice per group.
  • Antigen dependent interferon-gamma (IFNgamma) responses were determined in spleenocyte cultures established from the same animals for which IgG2a antibody responses were determined in Example 2.
  • the spleens from the animals were removed, combined to form two pools for each group of 5 animals, minced to create single cell suspensions, and placed in culture in 96 well microtiter plates. Each pool generated three wells for a control PBS challenge and three wells for a 10 mg HA challenge.
  • the cultures were then incubated at 37° C. for 72 hours.
  • the medium was then removed and the interferon-gamma generated was measured (pg/ml) by an ELISA assay (Table 2).
  • the IFNgamma data is reported as the geometric mean value for each pool using triplicate measurements.
  • mice The effect of N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide (Cmpd of Example 1) to induce the formation of systemic tumor necrosis factor (TNF) in vivo was evaluated in mice.
  • Systemic TNF induction was measured using four different preparations (1. PBS (control); 2. resiquimod (comparator preparation); 3. resiquimod formulated in dioleoylphosphatidylcholine (DOPC) (comparator preparation); 4. Cmpd of Example 1 formulated in diolcoylphosphatidylcholinc (DOPC) (liposomcs).
  • Example 1 Compound of Example 1 formulated in dioleoylphosphatidylcholine (DOPC) liposomes was prepared as described in Example 2.
  • Resiquimod formulated in DOPC was prepared in an analogous manner to the Cmpd of Example 1 in DOPC.
  • the resiquimod preparation was made as an aqueous suspension in PBS.
  • mice were injected subcutaneously with preparations containing 1 mg/Kg of each test compound (i.e. resiquimod or Cmpd of Example 1). At one hour and at three hours post dose, the mice were bled and systemic TNF was measured in the serum (pg/mL) by ELISA assay. The results are presented as the geometric means obtained for each group of five animals.
  • mice Groups of 5 mice each were immunized subcutaneously with 10 ⁇ g of HA antigen, alone or with increasing amounts of N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide (Cmpd of Example 1)/DOPC as cited in Table 4.
  • the mice were boosted with the same combinations 2 weeks and 4 weeks following initial immunization.
  • the mice were bled and the HA-specific IgG2a titers were determined. This determination was performed by serial dilution of the serum samples by standard serum ELISA in HA-coated microtiter plates.
  • IgG2a data is the serum dilution achieving the end point (2 ⁇ baseline) and is the geometric mean for the 5 mice per group.
  • IFNgamma Antigen dependent interferon-gamma
  • spleenocyte cultures established from the same animals for which IgG2a antibody responses were determined in Example 5.
  • the spleens from the animals were removed, combined to form two pools for each group of 5 animals, minced to create single cell suspensions, and placed in culture in 96 well microtiter plates. Each pool generated three wells for a control PBS challenge and three wells for a 10 mg HA challenge.
  • the cultures were then incubated at 37° C. for 72 hours.
  • the medium was then removed and the interferon-gamma generated was measured (pg/ml) by an ELISA assay (Table 5).
  • the IFNgamma data is reported as the geometric mean value for each pool using triplicate measurements.
  • N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide (Cmpd of Example 1) to induce tumor necrosis factor (TNF) production in human peripheral mononuclear cells (PBMC) was determined.
  • the human peripheral blood mononuclear cells were prepared from human volunteers and placed in culture in 96 well microtiter plates.
  • the Cmpd of Example 1 was added to the wells at the following concentrations: 30, 10, 3.3, 1.1, 0.37, 0.13, 0.043, and 0.014
  • the cells were then incubated overnight at 37° C.
  • the medium was removed and TNF concentration (ng/mL) was measured by ELISA assay (Table 6).
  • mice were immunized with 1. PBS; 2. 10 ⁇ g HA; or 3. 10 ⁇ g HA+0.1 mg/Kg of Cmpd of Example 1 in DOPC liposomes, respectively.
  • mice Two weeks prior to infection, the same groups were boosted with their corresponding immunizing doses. Survival of mice was monitored for 11 days following intranasal infection and the data is presented in Table 7 as percent survival on each day.
  • One mouse from group 1 and two mice from group 2 failed to achieve infection as determined from lack of weight loss within the first 3 days of infection. Therefore, by day 5 group 1 was comprised of 9 mice, group 2 was comprised of 8 mice, and groups 3 and 4 were comprised of 10 mice, each.
  • mice were sacrificed 11 days following tumor injection, tumors were measured at their major and minor diameters, and the products of the two measurements were determined. The mean tumor size in mm 2 +/ ⁇ standard deviation (s.d.) for each group was determined. The results are presented in Table 8.
  • mice immunized with varying amounts of HA with and without Cmpd of Example 1 The dose sparing activity of N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide (Cmpd of Example 1) was evaluated in mice immunized with varying amounts of HA with and without Cmpd of Example 1. Groups of five Balb/c male mice (Charles River, Wilmington, Mass.) were immunized with 1 ⁇ g, 5 ⁇ g, or 15 ⁇ g of HA with or without 0.1 mg/kg of Cmpd of Example 1. The mice were then boosted with the same preparations at 2 weeks and at 4 weeks post immunization.
  • mice were bled and titers of HA-specific IgG1 and IgG2a were determined by serial dilution of the serum samples using a standard serum ELISA assay in HA-coated microtiter plates.
  • the IgG1 and IgG2a data is presented in Table 9 as the serum dilution that achieved the end point (2 ⁇ baseline) and is the geometric mean for 5 mice per group.
  • the addition of 0.1 mg/Kg of Cmpd of Example 1 to HA greatly enhanced the antibody response to this antigen.
  • Cmpd of Example 1 The local in vivo activity of N-(4- ⁇ [4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy ⁇ butyl)octadecanamide (Cmpd of Example 1) was evaluated in groups of four Balb/c male mice (Charles River) and compared to the activity of resiquimod (a comparator compound). Solutions of the Cmpd of Example 1 or resiquimod were injected subcutaneously into four separate groups of mice for evaluation at the time points of 1 hour, 3 hour, 6 hours, and 18 hours post dose. The final dose for either compound was 1.0 mg/kg.
  • mice were bled, sacrificed, and the draining axial and brachial lymph nodes were removed and placed in RNA preservation fluid (RNAlater reagent obtained from Ambion Corporation, Austin, Tex.). Scrum samples were analyzed for TNF protein concentration (pg/ml) by ELISA as a measure of systemic presence of this cytokine.
  • the draining lymph nodes were processed for measurement of TNF mRNA gene expression by quantitative PCR (7900HT Thermocycler obtained from Applied Biosystems, Carlsbad, Calif.). The data reported (Table 10) is the mean+/ ⁇ standard deviation (s.d.) for each group. The “not detected” level for serum TNF concentration was less than 10 pg/ml.
  • the induction of TNF mRNA gene expression in the draining lymph nodes without detection of TNF protein in the serum after the injection of the Cmpd of Example 1 demonstrates that the cytokine induction effects of the Cmpd of Example 1 are primarily local.
  • the present invention thus provides the compound of Formula I, as well as pharmaceutical compositions and formulations thereof.
  • the compound of Formula I is incorporated into a liposome based formulation.
  • an antigen may be formulated within the lumen of the self—assembling liposome particle.
  • Such liposomes would include composites of such substances in proportions best suited to yield stable particles of desired sizes and diameters. Sizes can be of the sub micron range to mimic viral pathogens and micron size to mimic bacterial antigens. These sizes can be controlled by particle composition and process of formation.
  • the compound of Formula I (e.g., in a pharmaceutical composition disclosed herein) is administered to a localized tissue region, such as into a tumor mass.
  • the compound of Formula I is administered to localized tissue, such as a tumor mass, in a liposome formulation.
  • a cancer vaccine may also be included.
  • a “localized tissue region” will generally be a relatively small portion of the body, e.g., less than 10 percent by volume, and often less than 1 percent by volume.
  • the localized tissue region will typically be on the order of no more than about 500 cubic centimeters (cm 3 ), often less than about 100 cm 3 , and in many instances 10 cm 3 or less.
  • the localized tissue region will be 1 cm 3 or less (e.g., for small tumor nodules, viral lesions, or vaccination sites).
  • the localized tissue region may be a particularly large region, up to several liters, for example, to treat metastasized cancer within the entire peritoneal cavity.
  • the localized tissue region may be, for example, a cancer, a viral infected lesion, or organ, or vaccination site. It may be, for example, a solid tumor, lymph tissue, reticuloendothelial system, bone marrow, mucosal tissue, etc.
  • the localized tissue region may be, e.g., a breast cancer tumor, stomach cancer tumor, lung cancer tumor, head or neck cancer tumor, colorectal cancer tumor, renal cell carcinoma tumor, pancreatic cancer tumor, basal cell carcinoma tumor, cervical cancer tumor, melanoma cancer tumor, prostate cancer tumor, ovarian cancer tumor, or bladder cancer tumor. Delivery of the compound of Formula I to a localized tissue region may be in conjunction with image guiding techniques using, for example, ultrasound, MRI, and real-time X-ray (fluoroscopy).
  • the pharmaceutical composition further comprises an antigen in an amount effective to generate an immune response against the antigen.
  • the antigen is a vaccine.
  • Vaccines include any material administered to raise either humoral and/or cell mediated immune response, such as live or attenuated viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines (e.g., using dendritic cells), DNA vaccines, recombinant proteins, glycoproteins, and peptides.
  • Exemplary vaccines include vaccines for cancer, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, severe acute respiratory syndrome (SARS), anthrax, and yellow fever. See also, e.g., vaccines disclosed in International Publication No. WO 02/24225 (Thomsen et al.).
  • Antigens can be co-delivered with a compound of Formula I, for example, in admixture in a pharmaceutical composition according to the present invention.
  • Such pharmaceutical compositions may include the compound in Formula I in liposomes. This may allow the compound of Formula I to reach, for example, antigen presenting cells at or around the same time as the antigen.
  • the compound of Formula I and the antigen may be administered separately at or about the same time.
  • Co-delivering a vaccine adjuvant e.g., an IRM compound such as a compound of Formula I
  • an antigen to an immune cell can increase the immune response to the antigen and improve antigen-specific immunological memory.
  • Optimal delivery may occur, for example, when the adjuvant and the antigen are processed within an antigen presenting cell at the same time.
  • a compound of Formula I may be administered in any other suitable manner (e.g., non-parenterally or parenterally).
  • non-parenterally refers to administration through the digestive tract, including by oral ingestion.
  • Parenterally refers to administration other than through the digestive tract which would include nasal (e.g., transmucosally by inhalation), topical, ophthalmic, and buccal adminstration, but in practice usually refers to injection (e.g., intravenous, intramuscular, subcutaneous, intratumoral, or transdermal) using, for example, conventional needle injection, injection using a microneedle array, or any other known method of injection.
  • the compound of Formula I may be provided in any pharmaceutical composition suitable for administration to a subject and may be present in the pharmaceutical composition in any suitable form (e.g., a solution, a suspension, an emulsion, or any form of mixture).
  • the pharmaceutical composition may be formulated with any pharmaceutically acceptable excipient, carrier, or vehicle.
  • the pharmaceutically acceptable carrier comprises water (e.g., phosphate or citrate buffered saline).
  • the pharmaceutically acceptable carrier comprises an oil (e.g., corn, sesame, squalene, cottonseed, soybean, or safflower oil).
  • the pharmaceutical composition may further include one or more additives including skin penetration enhancers, colorants, fragrances, flavorings, moisturizers, thickeners, suspending agents, surfactants, and dispersing agents.
  • the pharmaceutical compositions and methods of the present disclosure can include other additional active agents, e.g., in admixture or administered separately.
  • additional agents can include a chemotherapeutic agent, a cytotoxoid agent, an antibody, an antiviral agent, a cytokine, a tumor necrosis factor receptor (TNFR) agonist, or an additional immune response modifier.
  • TNFR agonists that may be delivered in conjunction with the compound of Formula I include CD40 receptor agonists, such as disclosed in copending application U.S. Patent Publication 2004/0141950 (Noelle et al.).
  • Other active ingredients for use in combination with an IRM preparation of the present invention include those disclosed in, e.g., U.S. Patent Publication No. 2003/0139364 (Krieg et al.).
  • a pharmaceutical composition according to the present invention may be a conventional topical dosage formulation (e.g., a cream, an ointment, an aerosol formulation, a non-aerosol spray, a gel, or a lotion).
  • a conventional topical dosage formulation e.g., a cream, an ointment, an aerosol formulation, a non-aerosol spray, a gel, or a lotion.
  • suitable types of formulations are described, for example, in U.S. Pat. No. 5,238,944 (Wick et al.); U.S. Pat. No. 5,939,090 (Beaurline et al.); U.S. Pat. No. 6,245,776 (Skwierczynski et al.); European Patent No. EP 0394026 (Schultz); and U.S. Patent Publication No. 2003/0199538 (Skwierczynski et al.).
  • the compound of Formula I has been shown to induce the production of TNF- ⁇ as described above.
  • the ability to induce TNF production indicates that the compound of Formula I is useful as an immune response modifier that can modulate the immune response in a number of different ways, rendering it useful in the treatment of a variety of disorders.
  • Other cytokines whose production may be induced by the administration of the compound of Formula I generally include Type I interferons (e.g., INF- ⁇ ), IL-1, IL-6, IL-8, IL-10, IL-12, MIP-1, MCP-1, and a variety of other cytokines. Among other effects, these and other cytokines inhibit virus production and tumor cell growth, making the compound of Formula I useful in the treatment of viral diseases and neoplastic diseases.
  • the invention provides a method of inducing cytokine biosynthesis in an animal comprising administering an effective amount of the compound of Formula I (e.g., in a pharmaceutical composition) to the animal.
  • the animal to which the compound of Formula I is administered for induction of cytokine biosynthesis may have a disease (e.g., a viral or neoplastic disease), and administration of the compound may provide therapeutic treatment.
  • the compound of Formula I may be administered to the animal before the animal acquires the disease so that administration of the compound of Formula I may provide a prophylactic treatment.
  • the compound of Formula I may affect other aspects of the innate immune response. For example, natural killer cell activity may be stimulated, an effect that may be due to cytokine induction. IRM activity of the compound of Formula I also may include activating macrophages, which in turn stimulate secretion of nitric oxide and the production of additional cytokines. IRM activity of the compound of Formula I also may include inducing cytokine production by T cells, activating T cells specific to an antigen, and/or activating dendritic cells. Further, IRM activity of the compound of Formula I may include proliferation and differentiation of B-lymphocytes. IRM activity of the compound of Formula I also may affect the acquired immune response.
  • IRM activity can include inducing the production of the T helper type 1 (T H 1) cytokine IFN- ⁇ and/or inhibiting the production of the T helper type 2 (T H 2) cytokines IL-4, IL-5 and/or IL-13.
  • T H 1 T helper type 1
  • T H 2 T helper type 2
  • Exemplary conditions that may be treated by administering the compound of Formula I include:
  • viral diseases such as diseases resulting from infection by an adenovirus, a herpesvirus (e.g., HSV-I, HSV-II, CMV, or VZV), a poxvirus (e.g., an orthopoxvirus such as variola or vaccinia, or molluscum contagiosum), a picornavirus (e.g., rhinovirus or enterovirus), an orthomyxovirus (e.g., influenzavirus), a paramyxovirus (e.g., parainfluenzavirus, mumps virus, measles virus, and respiratory syncytial virus (RSV)), a coronavirus (e.g., SARS), a papovavirus (e.g., papillomaviruses, such as those that cause genital warts, common warts, or plantar warts), a hepadnavirus (e.g., hepatitis B virus), a flavivirus
  • bacterial diseases such as diseases resulting from infection by bacteria of, for example, the genus Escherichia, Enterobacter, Salmonella, Staphylococcus, Shigella, Listeria, Aerobacter, Helicobacter, Klebsiella, Proteus, Pseudomonas, Streptococcus, Chlamydia, Mycoplasma, Pneumococcus, Neisseria, Clostridium, Bacillus, Corynebacterium, Mycobacterium, Campylobacter, Vibrio, Serratia, Providencia, Chromobacterium, Brucella, Yersinia, Haemophilus , or Bordetella;
  • chlamydia other infectious diseases such as chlamydia, fungal diseases (e.g., candidiasis, aspergillosis, histoplasmosis, or cryptococcal meningitis), or parasitic diseases (e.g., malaria, pneumocystis carnii pneumonia, leishmaniasis, cryptosporidiosis, toxoplasmosis, and trypanosome infection);
  • fungal diseases e.g., candidiasis, aspergillosis, histoplasmosis, or cryptococcal meningitis
  • parasitic diseases e.g., malaria, pneumocystis carnii pneumonia, leishmaniasis, cryptosporidiosis, toxoplasmosis, and trypanosome infection
  • neoplastic diseases such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, renal cell carcinoma, Kaposi's sarcoma, melanoma, leukemias (e.g., myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, B-cell lymphoma, and hairy cell leukemia), breast cancer, lung cancer, prostate cancer, colon cancer, and other cancers;
  • leukemias e.g., myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, B-cell lymphoma, and hairy cell leukemia
  • breast cancer lung cancer, prostate cancer, colon cancer,
  • atopic diseases such as atopic dermatitis or eczema, cosinophilia, asthma, allergy, allergic rhinitis, and Ommen's syndrome;
  • diseases associated with wound repair such as inhibition of keloid formation and other types of scarring (e.g., enhancing wound healing, including chronic wounds).
  • the mechanism for the antiviral and antitumor activity of the compound of Formula I may be due in substantial part to enhancement of the immune response by induction of various important cytokines (e.g., at least one of tumor necrosis factor, interferons, or interleukins).
  • important cytokines e.g., at least one of tumor necrosis factor, interferons, or interleukins.
  • Such compounds have been shown to stimulate a rapid release of certain monocyte/macrophage-derived cytokines and are also capable of stimulating B cells to secrete antibodies which play an important role in these IRM compounds' antiviral and antitumor activities.
  • the compound of Formula I can be used in combination with other therapies such as the active agents mentioned above and other procedures (e.g., chemoablation, laser ablation, cryotherapy, and surgical excision).
  • therapies such as the active agents mentioned above and other procedures (e.g., chemoablation, laser ablation, cryotherapy, and surgical excision).
  • An amount of a compound effective to induce cytokine biosynthesis is an amount sufficient to cause one or more cell types, such as monocytes, macrophages, dendritic cells and B-cells to produce an amount of one or more cytokines such as, for example, IFN- ⁇ , TNF- ⁇ , IL-1, IL-6, IL-10 and IL-12 that is increased over a background level of such cytokines.
  • the precise amount will vary according to factors known in the art but is expected to be a dose of about 100 nanograms per kilograms (ng/kg) to about 50 milligrams per kilogram (mg/kg), in some embodiments about 10 micrograms per kilogram ( ⁇ g/kg) to about 5 mg/kg.
  • the invention also provides a method of treating a viral infection in an animal and a method of treating a neoplastic disease in an animal comprising administering an effective amount of a compound or pharmaceutical composition of the invention to the animal.
  • An amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more of the manifestations of viral infection, such as viral lesions, viral load, rate of virus production, and mortality as compared to untreated control animals.
  • the precise amount that is effective for such treatment will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, in some embodiments about 10 ⁇ g/kg to about 5 mg/kg.
  • An amount of a compound or pharmaceutical composition effective to treat a neoplastic condition is an amount that will cause a reduction in tumor size or in the number of tumor foci. Again, the precise amount will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, in some embodiments about 10 ng/kg to about 5 mg/kg.
  • the methods of the present invention may be performed on any suitable subject. Suitable subjects include animals such as humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, or cows.
  • composition of a formulation suitable for practicing the invention the precise amount of a compound of Formula I effective for methods according to the present invention, and the dosing regimen, for example, will vary according to factors known in the art including the nature of the carrier, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the compound of Formula I, and the species to which the formulation is being administered. Accordingly, it is not practical to set forth generally the composition of a formulation that includes a compound of Formula I, an amount of a compound of Formula T that constitutes an effective amount, or a dosing regimen that is effective for all possible applications. Those of ordinary skill in the art, however, can readily determine appropriate formulations, amounts of the compound of Formula I, and dosing regimen with due consideration of such factors.
  • the methods of the present invention include administering a compound of Formula I to a subject in a formulation, for example, having a concentration of the compound from about 0.0001% to about 20% (unless otherwise indicated, all percentages provided herein are weight/weight with respect to the total formulation), although in some embodiments the compound of Formula I may be administered using a formulation that provides the compound in a concentration outside of this range.
  • the method includes administering to a subject a formulation that includes from about 0.01% to about 1% of the compound of Formula I, for example, a formulation that includes about 0.1% to about 0.5% compound of Formula I.
  • the methods of the present invention include administering sufficient compound to provide a dose of, for example, from about 100 ng/kg to about 50 mg/kg to the subject, although in some embodiments the methods may be performed by administering compound in a dose outside this range.
  • the method includes administering sufficient compound to provide a dose of from about 10 ⁇ g/kg to about 5 mg/kg to the subject, for example, a dose of from about 100 ⁇ g/kg to about 1 mg/kg.
  • the methods of the present invention may include administering sufficient compound to provide a dose of, for example, from about 0.01 mg/m 2 to about 10 mg/m 2 .
  • the dose may be calculated using actual body weight obtained just prior to the beginning of a treatment course.
  • the compound of Formula I may be administered, for example, from a single dose to multiple doses per week, although in some embodiments the methods of the present invention may be performed by administering the compound of Formula I at a frequency outside this range. In some embodiments, the compound of Formula I may be administered from about once per month to about five times per week. In some embodiments, the compound of Formula I is administered once per week.
  • the compound of Formula I can be formulated to provide reduced systemic levels of the compound while inducing a high levels of cytokines, it is believed to be very useful for providing an enhanced local immune response while minimizing undesirable systemic side effects. This may be advantageous for many uses, such as direct administration to a tumor and/or as a vaccine adjuvant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Communicable Diseases (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The compound N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide is a useful drug compound for enhancing immune response and can be used, for example, as a vaccine adjuvant and a cancer treatment.

Description

    BACKGROUND
  • There has been an effort in recent years, with significant success, to discover new drug compounds that act by stimulating certain key aspects of the immune system, as well as by suppressing certain other aspects (see, e.g., U.S. Pat. No. 6,039,969 (Tomai et al.) and U.S. Pat. No. 6,200,592 (Tomai et al.). These compounds, referred to herein as immune response modifiers (IRMs), appear to act through basic immune system mechanisms known as Toll-like receptors (TLRs) to induce selected cytokine biosynthesis, induction of co-stimulatory molecules, and increased antigen-presenting capacity.
  • Many IRMs may be useful for treating a wide variety of diseases and conditions. For example, certain IRMs may be useful for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanoma), TH2-mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and auto-immune diseases. Certain IRMs may also be useful, for example, as vaccine adjuvants.
  • Many known IRMs are imidazoquinoline amine derivatives (see, e.g., U.S. Pat. No. 4,689,338 (Gerster)), but other compound classes are known as well (see, e.g., U.S. Pat. No. 5,446,153 (Lindstrom et al.); U.S. Pat. No. 6,194,425 (Gerster et al.); and U.S. Pat. No. 6,110,929 (Gerster et al.); and International Publication Number WO2005/079195 (Hays et al.).
  • In view of the great therapeutic potential for IRMs in the treatment of a wide variety of diseases and conditions, and despite the important work that has already been done, new compounds that can effectively modulate the immune response, by induction of cytokine biosynthesis or other mechanisms, are still needed.
  • SUMMARY
  • The present invention provides, in one aspect, a new compound useful for inducing cytokine biosynthesis. The compound (i.e., N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide) has the following formula (I):
  • Figure US20170333553A1-20171123-C00001
  • Pharmaceutically acceptable salts of the compound may also be used.
  • The compound of Formula I has unexpectedly beneficial properties in terms of biologic activity. It is particularly desirable for incorporation into liposome based formulations. It appears that such formulations are surprisingly effective at boosting localized immune response with reduced systemic TNF induction.
  • The ability to induce cytokine biosynthesis in animals makes the compound of Formula I useful for treating a variety of conditions such as viral diseases and tumors that are responsive to such changes in the immune response. Accordingly, the present invention further provides methods of inducing cytokine biosynthesis in an animal, treating a viral infection and/or treating a neoplastic disease in an animal by administering an effective amount of a compound of Formula I to the animal. The present invention further provides a method of vaccinating an animal comprising administering an effective amount of a compound of Formula I to the animal as a vaccine adjuvant.
  • The invention further provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Formula I. In some embodiments, the pharmaceutical composition further comprises an antigen (e.g., a vaccine). In some embodiments of the pharmaceutical composition, the compound of Formula I is incorporated in a homogeneously dispersed formulation. In some embodiments of the pharmaceutical composition, the compound of Formula I is incorporated in an emulsified formulation. In some embodiments of the pharmaceutical composition, the compound of Formula I is incorporated in an oil-in-water formulation (for example formulations comprising soybean oil, TWEEN 80, SPAN 85, and PBS). Tn some embodiments of the pharmaceutical composition, the compound of Formula I is incorporated into a liposome-based formulation.
  • Used as a vaccine adjuvant to an antigen vaccine, the compound of Formula I increases the antibody response to the vaccine. It can decrease the amount of antigen vaccine required to achieve a desired\therapeutically effective antibody response. For example, it can reduce the amount of vaccine antigen needed by 2-fold, 10-fold, 15-fold, 25-fold, 50-fold, or as much as 100-fold or more.
  • As illustrated in part by the non-limiting examples set forth herein, the compound of Formula I is useful for a wide range purposes, including but not limited to such things as a vaccine adjuvant for influenza vaccines. For example, when used as a vaccine adjuvant, the compound of Formula I in combination with an influenza vaccine antigen provides protection for H1N1 influenza infection (as well as influenza A, B, and swine flu). In particular, when used as a vaccine adjuvant, the compound of Formula I in combination with hemagglutinin antigens provides protection for H1N1 influenza infection.
  • The compound of Formula I induces cytokine production primarily at the site of administration (or at a local site of application) and can do so without substantial systemic cytokine induction, which may be important for reducing side effects. For example, the compound of Formula I can induce TNF production primarily at the site of administration (or at a local site of application) without inducing systemic TNF levels above the background level (i.e. the level measured systemically prior to administration of the compound of Formula I). In some applications subcutaneous injection of the compound of Formula I can be used to induce cytokine production (such as TNF production) in the local draining lymph nodes, but not peripheral lymph nodes. For example, subcutaneous injection of the compound of Formula I can induce cytokine production (such as TNF production) in the local draining lymph nodes at levels at least 2 times, 3 times, 5 times, 10 times, or as much as 100 times greater or more than in the peripheral lymph nodes
  • In addition to the compound of Formula I, it is believed that the compound N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)hexadecanamide may be synthesized using a similar synthetic route and may also be used for the same uses, pharmaceutical compositions, and formulations as the compound of Formula one set forth herein.
  • The terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the description and claims.
  • As used herein, “a”, “an”, “the”, “at least one”, and “one or more” are used interchangeably.
  • Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).
  • “Ameliorate” refers to any reduction in the extent, severity, frequency, and/or likelihood of a symptom or clinical sign characteristic of a particular condition.
  • “Antigen” refers to any substance that may be bound by an antibody in a manner that is immunospecific to some degree.
  • “Induce” and variations thereof refer to any measurable increase in cellular activity. For example, induction of an immune response may include, for example, an increase in the production of a cytokinc, activation, proliferation, or maturation of a population of immune cells, and/or other indicator of increased immune function.
  • “Liposome” or “liposome based” as used herein refers generally to a self—assembling particle composed of amphipathic molecules such as, but not limited to lipid, lipid-like, or polymeric substances. They can also include lipopeptides and glycolipids.
  • “Symptom” refers to any subjective evidence of disease or of a patient's condition.
  • “Therapeutic” and variations thereof refer to a treatment that ameliorates one or more existing symptoms or clinical signs associated with a condition.
  • “Treat” or variations thereof refer to reducing, limiting progression, ameliorating, preventing, or resolving, to any extent, the symptoms or signs related to a condition.
  • The compound N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide described herein may be in any of its pharmaceutically acceptable forms including solid, semi-solid, solvate (e.g., hydrate), wholly or partially dissolved (e.g., in a pharmaceutical composition), or dispersed in a pharmaceutically acceptable carrier. It will also be understood that any pharmaceutically acceptable salt form of the compound of Formula I (N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide) may also be used.
  • The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the description, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
  • DETAILED DESCRIPTION Example 1 N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide
  • Figure US20170333553A1-20171123-C00002
  • Part A
  • A solution of valeric anhydride (6.03 g) and pyridine hydrochloride (0.198 g) in pyridine (8.28 g) was added to a solution of 3-amino-4-chloroquinoline (2.94 g) in pyridine (5.0 g) and the reaction was stirred at room temperature for 16 hours followed by heating at 60° C. for 3 hours. The reaction was concentrated under reduced pressure and sodium carbonate (15 mL of a 10% aqueous solution) was added. The reaction was stirred for 30 minutes and then filtered. The resulting solid was washed with water (60 mL) and dried under vacuum for 4 hours to provide 4.59 g of crude N-(4-chloroquinolin-3-yl)valcramide as brown flakes. The crude product was recrystallized from heptane (10 mL) and the recovered product was further purified by soxhlet extraction using refluxing heptane for 16 hours. The collection flask from the soxhlet extraction apparatus was cooled in a freezer for 2 hours. The resulting solid was collected by filtration and dried under vacuum to yield 2.00 g of N-(4-chloroquinolin-3-yl)valeramide as a white solid.
  • Part B
  • A solution of 4-amino-1-butanol (7.68 g) and pyridine (7.00 g) in dichloromethane (100 mL) was chilled in an ice bath and a solution of benzylchloroformate (14.37 g) in dichloromethane (100 mL) was slowly added with stiffing over a period of thirty minutes. The ice bath was removed and the reaction was stirred for an additional 16 hours. Hydrochloric acid (1.2 M, 200 mL) was added and phases were separated. The organic phase was dried (MgSO4), filtered and concentrated under reduced pressure. The resulting residue was recrystallized from toluene and dried under vacuum to provide 5.15 g of benzyl (4-hydroxybutyl)carbamate.
  • A solution of N-hydroxyphthalimide (3.36 g), benzyl (4-hydroxybutyl)carbamate (4.18 g) and triphenylphosphine (7.41 g) in dichloromethane (100 mL) was chilled in an ice bath and approximately two-thirds of a solution of diisopropylazodicarboxylate (DIAD, 5.68 g) in dichloromethane (50 mL) was slowly added with stirring. The internal temperature of the reaction was monitored and the addition of the DIAD solution was stopped when an exotherm could no longer be detected. The ice bath was removed and the reaction was allowed to warm to room temperature. The reaction was concentrated under reduced pressure and the resulting residue was dissolved in ethanol (200 proof, 100 mL). Hydrazine (1.98 g, 35% in water) was added and the reaction was stirred for 6 hours. The reaction was cooled in the freezer and the resulting solid was removed by filtration. The solid was washed with ethanol (50 mL). The combined filtrate was concentrated under reduced pressure and diethyl ether (100 mL) was added. Insoluble impurities were removed by filtration and 2.0 M HCl in ether (10 mL) was added to the solution. A precipitate formed immediately. The crude product was added to toluene (100 mL) and heated at reflux temperate for one hour. After cooling to room temperature, the solid product was recovered by filtration, washed with toluene, and dried under vacuum to yield 3.76 g of benzyl (4-aminooxybutyl)carbamate.
  • Part C
  • N-(4-chloroquinolin-3-yl)valeramide (1.97 g), benzyl (4-aminooxybutyl)carbamate (2.99 g), triethylamine (0.89 g) and 2-propanol (40.69 g) were combined and heated at 80° C. for 3.5 hours. The reaction was cooled to room temperature, filtered, and the filtrate concentrated under reduced pressure. Dichloromethane (20 mL) was added to the resulting solid and the mixture was stirred for twenty minutes Undissolved solid was removed by filtration and the filtrate was washed with two 10 mL portions of water that had been made slightly acidic by the addition of 20 drops of hydrochloric acid (1.2 M). The organic fraction was dried and concentrated under reduced pressure. The crude solid was recrystallized from tetrahydrofuran to provide 2.56 g of benzyl 4-{[2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butylcarbamate.
  • Part D
  • Benzyl 4-{[2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butylcarbamate hydrochloride (10.05 g) was dissolved in dichloromethane (80 mL) and extracted with a solution of sodium carbonate (2.02 g) in 30 ml H2O. The organic layer was cooled in an ice bath and a solution of m-chloroperbenzoic acid (5.93 g, 1.24 eq) dissolved in dichloromethane (30 mL) was slowly added. After 6 hr, ammonium hydroxide (10 mL of a 28-30% aqueous solution) was added to the reaction. A solution of benzenesulfonyl chloride (6.96 g) dissolved in 10 ml dichloromethane was slowly added with vigorous stirring. The cooling bath was removed and the reaction was stirred for an additional 12 hours. The reaction was diluted with water (100 mL) and the organic and aqueous fractions were separated. The aqueous fraction was extracted with dichloromethane (30 mL). The combined organic fractions were washed with two 90 ml portions of 5% sodium carbonate.
  • The dichloromethane solution was transferred to a distillation apparatus and 1-pentanol (50 mL) was added. This was warmed to 40° C. and the dichoromethane was removed under reduced pressure. Concentrated hydrochloric acid (50 ml) was then added and the reaction was stirred and heated to 80°. After 11 hours, the solution was cooled to room temperature and diluted with water (100 mL). The aqueous fraction was separated from the 1-pentanol and the 1-pentanol was extracted with water (25 mL). The aqueous fractions were combined. 1-Pentanol (50 mL) was added to the combined aqueous fraction and this was cooled in an ice-bath. With vigorous stirring, solid sodium carbonate was added to bring the pH to 9-10. The mixture was transferred to a separatory funnel and the fractions were separated. The aqueous fraction was extracted with two 25 ml portions of 1-pentanol. The combined 1-pentanol fractions were dried over sodium sulfate and filtered to provide 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine dissolved in 1-pentanol.
  • The maleate salt of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine was prepared by dissolving maleic acid (4.83 g) in 1-pentanol (50 mL) and adding it with stirring to the solution of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine in 1-pentanol. The resulting precipitate was collected by filtration and dried to yield 7.69 g of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine bis maleate salt. 1H-NMR (DMSO-d6): δ 0.96 (t, 3H), 1.44 (m, 2H), 1.7-1.95 (m, 4H), 2.02 (m, 2H), 2.8-3.1 (m, 4H), δ 4.43 (t, 2H), 6.07 (s, 4H), 7.57 (t, 1H), 7.73 (t, 1H), 7.80 (d, 1H), 8.16 (d, 1H). Broad peaks for the ammonium protons are seen at approximately δ 7.8 and δ 8.7.
  • As an alternative the fumarate salt of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine was prepared by the following procedure. 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (6.53 g) was dissolved in 2-propanol (75 mL) and decolorizing carbon was added. The reaction was heated to reflux, filtered while hot, and cooled to room temperature. A solution of fumaric acid (2.5 g) in 2-propanol was added and the reaction was heated at reflux temperature for 5 minutes. Upon cooling to room temperature a precipitate formed. Filtration followed by drying the product under vacuum yielded 6.6 g of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine fumarate. H-NMR (DMSO-d6): δ 0.95 (t, 3H), 1.42 (m, 2H), 1.70-1.92 (m, 4H), 1.92-2.10 (m, 2H), 2.85-3.05 (m, 4H), 4.34 (t, 3H), δ 6.46 (s, 2H), 7.30 (t, 1H), 7.47 (t, 1H), 7.60 (d, 1H), 8.02 (d, 1H). A broad ammonium peak appears at δ 6.77.
  • Part E
  • 1-(4-Aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine fumarate (1.30 g) was dissolved in dichloromethane (25 mL) and the solution washed with 3×15 ml portions of saturated sodium carbonate. The organic fraction was then washed with 15 ml saturated sodium chloride and dried over MgSO4. The solution was filtered, the solvent removed under reduced pressure and the product was dried under vacuum to give 0.79 g of 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine as the free base.
  • The 1-(4-aminobutoxy)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine was dissolved in dichloromethane (20 mL) and methanol (5 mL). Stearic acid (0.71 g) was added and the reaction was stirred to dissolve the stearic acid. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC, 0.45 g) was added and the reaction was stirred at ambient temperature for 16 hours. An additional portion of EDC was added (0.23 g) and the reaction was stirred for an additional 24 hours. Final portions of stearic acid (0.22 g) and EDC (0.37 g) were added to drive the reaction to completion and the reaction was stirred at ambient temperature for another 24 hours. The reaction was concentrated under reduced pressure and the resulting residue was purified by flash column chromatography using a Biotage chromatography system (Si40+M2358-1 SiGel column, 85:15 dichloromethane/methanol isocratic elution). The semi-pure product was purified by flash column chromatography two more times using a 90:10 dichloromethane/methanol isocratic elution, followed by a 95:5 dichloromethane/methanol isocratic elution The fractions containing product were concentrated to yield 1.12 g of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide as an off white waxy solid.
  • 1H-NMR (CDCl3): δ 0.89 (t, 3H), 1.01 (t, 3H), 1.14-1.42 (m, 28H), 1.50 (m, 2H), 1.65 (m, 2H), 1.74-1.94 (m, 4H), 2.02 (m, 2H), 2.20 (t, 2H), 2.95 (t, 2H), 3.40 (q, 2H), 4.33 (t, 2H), 5.59 (t, 1H), 6.10 (broad s, 2H), 7.39 (m, 1H), δ 7.57 (m, 1H), 7.83 (d, 1H), 8.07 (m, 1H).
  • Example 2
  • The vaccine adjuvant activity of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) was evaluated in mice immunized with recombinant hemagglutinin 1 (HA). IgG2a antigen specific antibody response was measured using five different preparations (1. HA alone (control); 2. HA+resiquimod (comparator preparation); 3. HA+Cmpd of Example 1 formulated in dioleoylphosphatidylcholine (DOPC) (liposome formulation); 3. HA+Cmpd of Example 1; 5. HA+DOPC (control).
  • The Cmpd of Example 1 and resiquimod were individually prepared as aqueous suspensions in phosphate buffered saline (PBS). The Cmpd of Example 1 formulated in DOPC liposome formulation was prepared as follows. A stock solution of the Cmpd of Example 1 was prepared in chloroform at a concentration of 10 mg/ml. A stock solution of dioleoylphosphatidylcholine (DOPC) was also prepared in chloroform at a concentration of 10 mg/ml. Aliquots of each stock solution were combined to provide a solution containing DOPC and the Cmpd of Example 1 at a mass ratio of 10:1, respectively. The solution was blown to dryness and resuspended in sterile PBS by probe sonication.
  • Groups of 5 mice each were immunized subcutaneously with 10 μg of HA antigen in PBS, alone or in combination with 1 mg/Kg of the compounds cited in Table 1. DOPC control animals received the same amount of DOPC as that prepared with the Cmpd of Example 1. The mice were boosted with the same combinations 2 weeks and 4 weeks following the initial immunization. At 7 weeks post immunization, the mice were bled and the HA-specific IgG2a titers were determined. This determination was performed by serial dilution of the scrum samples by standard scrum ELISA in HA-coated microtitcr plates. IgG2a data is presented as the serum dilution achieving the end point (2× baseline) and is the geometric mean for the 5 mice per group.
  • TABLE 1
    HA Specific
    IgG2a, Serum
    Dilution End
    In Vivo Immunization Group Point
    HA 3.30E+03
    HA + Resiquimod 1.00E+05
    HA + Cmpd of Example 1/DOPC 3.30E+06
    HA + Cmpd of Example 1 1.42E+04
    HA + DOPC 5.00E+03
  • Example 3
  • Antigen dependent interferon-gamma (IFNgamma) responses were determined in spleenocyte cultures established from the same animals for which IgG2a antibody responses were determined in Example 2. The spleens from the animals were removed, combined to form two pools for each group of 5 animals, minced to create single cell suspensions, and placed in culture in 96 well microtiter plates. Each pool generated three wells for a control PBS challenge and three wells for a 10 mg HA challenge. The cultures were then incubated at 37° C. for 72 hours. The medium was then removed and the interferon-gamma generated was measured (pg/ml) by an ELISA assay (Table 2). The IFNgamma data is reported as the geometric mean value for each pool using triplicate measurements.
  • TABLE 2
    In Vitro Challenge of
    Isolated Spleenocytes,
    (IFNgamma, pg/ml)
    Control PBS HA Antigen
    In Vivo Immunization Group Challenge Challenge
    HA 4.32 157.87
    HA + Resiquimod 3.84 91.88
    HA + Cmpd of Example 1/DOPC 5.84 1808.19
    HA + Cmpd of Example 1 4.82 293.51
    HA + DOPC 1.7 231.97
  • Example 4
  • The effect of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) to induce the formation of systemic tumor necrosis factor (TNF) in vivo was evaluated in mice. Systemic TNF induction was measured using four different preparations (1. PBS (control); 2. resiquimod (comparator preparation); 3. resiquimod formulated in dioleoylphosphatidylcholine (DOPC) (comparator preparation); 4. Cmpd of Example 1 formulated in diolcoylphosphatidylcholinc (DOPC) (liposomcs).
  • Compound of Example 1 formulated in dioleoylphosphatidylcholine (DOPC) liposomes was prepared as described in Example 2. Resiquimod formulated in DOPC was prepared in an analogous manner to the Cmpd of Example 1 in DOPC. The resiquimod preparation was made as an aqueous suspension in PBS.
  • Mice were injected subcutaneously with preparations containing 1 mg/Kg of each test compound (i.e. resiquimod or Cmpd of Example 1). At one hour and at three hours post dose, the mice were bled and systemic TNF was measured in the serum (pg/mL) by ELISA assay. The results are presented as the geometric means obtained for each group of five animals. The data in Table 3 shows that subcutaneous injection of resiquimod in various formulations induces a systemic TNF response, while N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) does not induce a systemic TNF response. This can be important in providing localized immune system enhancement without systemic TNF side effects.
  • TABLE 3
    TNF concentration (pg/mL) at Times
    Following Treatment
    Treatment 1 hour 3 hour
    PBS <5 <5
    Resiquimod 1140.41 <5
    Resiquimod/DOPC 647.67 <5
    Cmpd of Example 1/DOPC <5 <5
  • Example 5
  • Groups of 5 mice each were immunized subcutaneously with 10 μg of HA antigen, alone or with increasing amounts of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1)/DOPC as cited in Table 4. The mice were boosted with the same combinations 2 weeks and 4 weeks following initial immunization. At 7 weeks post immunization, the mice were bled and the HA-specific IgG2a titers were determined. This determination was performed by serial dilution of the serum samples by standard serum ELISA in HA-coated microtiter plates. IgG2a data is the serum dilution achieving the end point (2× baseline) and is the geometric mean for the 5 mice per group.
  • TABLE 4
    HA Specific
    IgG2a, Serum
    Dilution End
    In Vivo Immunization Group Point
    Phosphate Buffered Saline (PBS) <50
    HA 5.0E+03
    HA + Cmpd of Example 1 (1.0 MPK)/DOPC 2.5E+05
    HA + Cmpd of Example 1 (0.3 MPK)/DOPC 1.3E+06
    HA + Cmpd of Example 1 (0.1 MPK)/DOPC 1.1E+06
    HA + Cmpd of Example 1 (0.03 MPK)/DOPC 5.0E+05
    HA + Cmpd of Example 1 (0.01 MPK)/DOPC 2.5E+05
  • Example 6
  • Antigen dependent interferon-gamma (IFNgamma) responses were determined in spleenocyte cultures established from the same animals for which IgG2a antibody responses were determined in Example 5. The spleens from the animals were removed, combined to form two pools for each group of 5 animals, minced to create single cell suspensions, and placed in culture in 96 well microtiter plates. Each pool generated three wells for a control PBS challenge and three wells for a 10 mg HA challenge. The cultures were then incubated at 37° C. for 72 hours. The medium was then removed and the interferon-gamma generated was measured (pg/ml) by an ELISA assay (Table 5). The IFNgamma data is reported as the geometric mean value for each pool using triplicate measurements.
  • TABLE 5
    In Vitro Challenge of
    Isolated Spleenocytes,
    (IFNgamma, pg/ml)
    Control PBS HA Antigen
    In Vivo Immunization Group Challenge Challenge
    Phosphate Buffered Saline (PBS) 199.50 224.37
    HA 189.74 236.64
    HA + Cmpd of Example 1 (1.0 MPK)/DOPC 194.80 278.87
    HA + Cmpd of Example 1 (0.3 MPK)/DOPC 184.23 861.42
    HA + Cmpd of Example 1 (0.1 MPK)/DOPC 189.74 805.00
    HA + Cmpd of Example 1 (0.03 MPK)/ 179.44 1219.23
    DOPC
    HA + Cmpd of Example 1 (0.01 MPK)/ 204.82 1167.97
    DOPC
  • Example 7
  • The ability of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) to induce tumor necrosis factor (TNF) production in human peripheral mononuclear cells (PBMC) was determined. The human peripheral blood mononuclear cells were prepared from human volunteers and placed in culture in 96 well microtiter plates. The Cmpd of Example 1 was added to the wells at the following concentrations: 30, 10, 3.3, 1.1, 0.37, 0.13, 0.043, and 0.014 The cells were then incubated overnight at 37° C. The medium was removed and TNF concentration (ng/mL) was measured by ELISA assay (Table 6).
  • TABLE 6
    Cmpd of
    Example 1
    Concentration
    μM TNF ng/mL
    0.014 0.13
    0.043 0.17
    0.13 0.35
    0.37 2.51
    1.1 7.07
    3.3 28.73
    10 31.46
    30 29.47
  • Example 8
  • The viral protection activity of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) was evaluated in Balb/c male mice (Charles River, Wilmington, Mass.) infected intranasally with mouse-adapted H1N1 A/Puerto Rico/8/34 (obtained from American Type Culture Collection, Manassas, Va.). Four weeks prior to infection, groups of 10 mice each were immunized with 1. PBS; 2. 10 μg HA; or 3. 10 μg HA+0.1 mg/Kg of Cmpd of Example 1 in DOPC liposomes, respectively. Two weeks prior to infection, the same groups were boosted with their corresponding immunizing doses. Survival of mice was monitored for 11 days following intranasal infection and the data is presented in Table 7 as percent survival on each day. One mouse from group 1, and two mice from group 2 failed to achieve infection as determined from lack of weight loss within the first 3 days of infection. Therefore, by day 5 group 1 was comprised of 9 mice, group 2 was comprised of 8 mice, and groups 3 and 4 were comprised of 10 mice, each.
  • TABLE 7
    Immunization Group
    (Percent Survival)
    HA + Cmpd of
    Day PBS HA Example 1
    1 100 100 100
    2 100 100 100
    3 100 100 100
    4 100 100 100
    5 100 100 100
    6 100 100 100
    7 77.8 100 100
    8 66.7 75.0 100
    9 44.4 75.0 100
    10 11.1 50.0 100
    11 0 50.0 100
  • Example 9
  • The immune activation activity of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) was evaluated in a mouse prophylactic anti-tumor immunization model. Groups of C57/B1 male mice (Charles River, Wilmington, Mass.) were immunized and boosted twice at two week intervals with 1) PBS; 2) 20 μg ovalbumin; or 3) 20 μg ovalbumin+1.0 mg/Kg Cmpd of Example 1. One week following the final boost, each mouse was injected intradermally with 4E5 B16Ova melanoma tumor cells. Mice were sacrificed 11 days following tumor injection, tumors were measured at their major and minor diameters, and the products of the two measurements were determined. The mean tumor size in mm2+/− standard deviation (s.d.) for each group was determined. The results are presented in Table 8.
  • TABLE 8
    Number
    Immunization Material of Mice Mean Tumor Size (s.d.)
    PBS 7 10.21 (4.34)
    Ovalbumin 8 10.18 (8.95)
    Ovalbumin + Cmpd of Example 1 8  0.99 (0.81)
  • Example 10
  • The dose sparing activity of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) was evaluated in mice immunized with varying amounts of HA with and without Cmpd of Example 1. Groups of five Balb/c male mice (Charles River, Wilmington, Mass.) were immunized with 1 μg, 5 μg, or 15 μg of HA with or without 0.1 mg/kg of Cmpd of Example 1. The mice were then boosted with the same preparations at 2 weeks and at 4 weeks post immunization. Three weeks following the final boost, the mice were bled and titers of HA-specific IgG1 and IgG2a were determined by serial dilution of the serum samples using a standard serum ELISA assay in HA-coated microtiter plates. The IgG1 and IgG2a data is presented in Table 9 as the serum dilution that achieved the end point (2× baseline) and is the geometric mean for 5 mice per group. The addition of 0.1 mg/Kg of Cmpd of Example 1 to HA greatly enhanced the antibody response to this antigen.
  • TABLE 9
    Immunization Group IgG1 End Point IgG2a End Point
    HA 1 μg 2.5 E4 3.3 E2
    HA 5 μg 6.7 E4 1.0 E3
    HA 15 μg 6.7 E4 2.5 E3
    HA 1 μg + Cmpd of Example 1 1.7 E7 3.3 E6
    HA 5 μg + Cmpd of Example 1 1.4 E7 2.5 E7
    HA 15 μg + Cmpd of Eaxmple 1 1.1 E7 1.0 E8
  • Example 11
  • The local in vivo activity of N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide (Cmpd of Example 1) was evaluated in groups of four Balb/c male mice (Charles River) and compared to the activity of resiquimod (a comparator compound). Solutions of the Cmpd of Example 1 or resiquimod were injected subcutaneously into four separate groups of mice for evaluation at the time points of 1 hour, 3 hour, 6 hours, and 18 hours post dose. The final dose for either compound was 1.0 mg/kg. At each time point, the mice were bled, sacrificed, and the draining axial and brachial lymph nodes were removed and placed in RNA preservation fluid (RNAlater reagent obtained from Ambion Corporation, Austin, Tex.). Scrum samples were analyzed for TNF protein concentration (pg/ml) by ELISA as a measure of systemic presence of this cytokine. The draining lymph nodes were processed for measurement of TNF mRNA gene expression by quantitative PCR (7900HT Thermocycler obtained from Applied Biosystems, Carlsbad, Calif.). The data reported (Table 10) is the mean+/− standard deviation (s.d.) for each group. The “not detected” level for serum TNF concentration was less than 10 pg/ml. The induction of TNF mRNA gene expression in the draining lymph nodes without detection of TNF protein in the serum after the injection of the Cmpd of Example 1 demonstrates that the cytokine induction effects of the Cmpd of Example 1 are primarily local.
  • TABLE 10
    TNF mRNA Gene Expression
    in Lymph Nodes
    [fold increase versus
    Serum TNF [pg/ml (s.d.)] naïve control (s.d.)]
    Time Cmpd of Cmpd of
    (hours) Example 1 Resiquimod Example 1 Resiquimod
    1 not detected 4082 (873) 0.65 (0.04) 14.19 (3.83) 
    3 not detected 107 (35) 1.62 (1.23) 4.82 (0.70)
    6 not detected 18 (4) 7.23 (2.07) 1.39 (0.27)
    18 not detected not detected 1.55 (0.28) 0.90 (0.23)
  • The present invention thus provides the compound of Formula I, as well as pharmaceutical compositions and formulations thereof. In some embodiments, the compound of Formula I is incorporated into a liposome based formulation. One may also incorporate an antigen admixed with or administered separately but in combination with such formulation. For example, an antigen may be formulated within the lumen of the self—assembling liposome particle. Such liposomes would include composites of such substances in proportions best suited to yield stable particles of desired sizes and diameters. Sizes can be of the sub micron range to mimic viral pathogens and micron size to mimic bacterial antigens. These sizes can be controlled by particle composition and process of formation.
  • In some embodiments of the methods disclosed herein, the compound of Formula I (e.g., in a pharmaceutical composition disclosed herein) is administered to a localized tissue region, such as into a tumor mass. In some of these embodiments, the compound of Formula I is administered to localized tissue, such as a tumor mass, in a liposome formulation. A cancer vaccine may also be included.
  • A “localized tissue region” will generally be a relatively small portion of the body, e.g., less than 10 percent by volume, and often less than 1 percent by volume. For example, depending on the size of, e.g., a solid tumor or cancerous organ, the localized tissue region will typically be on the order of no more than about 500 cubic centimeters (cm3), often less than about 100 cm3, and in many instances 10 cm3 or less. For some applications the localized tissue region will be 1 cm3 or less (e.g., for small tumor nodules, viral lesions, or vaccination sites). However, in certain instances the localized tissue region may be a particularly large region, up to several liters, for example, to treat metastasized cancer within the entire peritoneal cavity. The localized tissue region may be, for example, a cancer, a viral infected lesion, or organ, or vaccination site. It may be, for example, a solid tumor, lymph tissue, reticuloendothelial system, bone marrow, mucosal tissue, etc. The localized tissue region may be, e.g., a breast cancer tumor, stomach cancer tumor, lung cancer tumor, head or neck cancer tumor, colorectal cancer tumor, renal cell carcinoma tumor, pancreatic cancer tumor, basal cell carcinoma tumor, cervical cancer tumor, melanoma cancer tumor, prostate cancer tumor, ovarian cancer tumor, or bladder cancer tumor. Delivery of the compound of Formula I to a localized tissue region may be in conjunction with image guiding techniques using, for example, ultrasound, MRI, and real-time X-ray (fluoroscopy).
  • In some embodiments of the pharmaceutical compositions and methods disclosed herein, the pharmaceutical composition further comprises an antigen in an amount effective to generate an immune response against the antigen. In some embodiments, the antigen is a vaccine. Vaccines include any material administered to raise either humoral and/or cell mediated immune response, such as live or attenuated viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines (e.g., using dendritic cells), DNA vaccines, recombinant proteins, glycoproteins, and peptides. Exemplary vaccines include vaccines for cancer, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, severe acute respiratory syndrome (SARS), anthrax, and yellow fever. See also, e.g., vaccines disclosed in International Publication No. WO 02/24225 (Thomsen et al.).
  • Antigens can be co-delivered with a compound of Formula I, for example, in admixture in a pharmaceutical composition according to the present invention. Such pharmaceutical compositions may include the compound in Formula I in liposomes. This may allow the compound of Formula I to reach, for example, antigen presenting cells at or around the same time as the antigen. In other embodiments, the compound of Formula I and the antigen may be administered separately at or about the same time. Co-delivering a vaccine adjuvant (e.g., an IRM compound such as a compound of Formula I) and an antigen to an immune cell can increase the immune response to the antigen and improve antigen-specific immunological memory. Optimal delivery may occur, for example, when the adjuvant and the antigen are processed within an antigen presenting cell at the same time.
  • In addition to the delivery methods mentioned specifically above, a compound of Formula I (e.g., in a pharmaceutical composition disclosed herein) may be administered in any other suitable manner (e.g., non-parenterally or parenterally). As used herein, non-parenterally refers to administration through the digestive tract, including by oral ingestion. Parenterally refers to administration other than through the digestive tract which would include nasal (e.g., transmucosally by inhalation), topical, ophthalmic, and buccal adminstration, but in practice usually refers to injection (e.g., intravenous, intramuscular, subcutaneous, intratumoral, or transdermal) using, for example, conventional needle injection, injection using a microneedle array, or any other known method of injection.
  • The compound of Formula I may be provided in any pharmaceutical composition suitable for administration to a subject and may be present in the pharmaceutical composition in any suitable form (e.g., a solution, a suspension, an emulsion, or any form of mixture). The pharmaceutical composition may be formulated with any pharmaceutically acceptable excipient, carrier, or vehicle. In some embodiments, the pharmaceutically acceptable carrier comprises water (e.g., phosphate or citrate buffered saline). In some embodiments, the pharmaceutically acceptable carrier comprises an oil (e.g., corn, sesame, squalene, cottonseed, soybean, or safflower oil). The pharmaceutical composition may further include one or more additives including skin penetration enhancers, colorants, fragrances, flavorings, moisturizers, thickeners, suspending agents, surfactants, and dispersing agents.
  • In addition to antigens specifically described above, the pharmaceutical compositions and methods of the present disclosure can include other additional active agents, e.g., in admixture or administered separately. Such additional agents can include a chemotherapeutic agent, a cytotoxoid agent, an antibody, an antiviral agent, a cytokine, a tumor necrosis factor receptor (TNFR) agonist, or an additional immune response modifier. TNFR agonists that may be delivered in conjunction with the compound of Formula I include CD40 receptor agonists, such as disclosed in copending application U.S. Patent Publication 2004/0141950 (Noelle et al.). Other active ingredients for use in combination with an IRM preparation of the present invention include those disclosed in, e.g., U.S. Patent Publication No. 2003/0139364 (Krieg et al.).
  • In some embodiments, a pharmaceutical composition according to the present invention may be a conventional topical dosage formulation (e.g., a cream, an ointment, an aerosol formulation, a non-aerosol spray, a gel, or a lotion). Suitable types of formulations are described, for example, in U.S. Pat. No. 5,238,944 (Wick et al.); U.S. Pat. No. 5,939,090 (Beaurline et al.); U.S. Pat. No. 6,245,776 (Skwierczynski et al.); European Patent No. EP 0394026 (Schultz); and U.S. Patent Publication No. 2003/0199538 (Skwierczynski et al.).
  • The compound of Formula I has been shown to induce the production of TNF-α as described above. The ability to induce TNF production indicates that the compound of Formula I is useful as an immune response modifier that can modulate the immune response in a number of different ways, rendering it useful in the treatment of a variety of disorders. Other cytokines whose production may be induced by the administration of the compound of Formula I generally include Type I interferons (e.g., INF-α), IL-1, IL-6, IL-8, IL-10, IL-12, MIP-1, MCP-1, and a variety of other cytokines. Among other effects, these and other cytokines inhibit virus production and tumor cell growth, making the compound of Formula I useful in the treatment of viral diseases and neoplastic diseases. Accordingly, the invention provides a method of inducing cytokine biosynthesis in an animal comprising administering an effective amount of the compound of Formula I (e.g., in a pharmaceutical composition) to the animal. The animal to which the compound of Formula I is administered for induction of cytokine biosynthesis may have a disease (e.g., a viral or neoplastic disease), and administration of the compound may provide therapeutic treatment. Also, the compound of Formula I may be administered to the animal before the animal acquires the disease so that administration of the compound of Formula I may provide a prophylactic treatment.
  • In addition to the ability to induce the production of cytokines, the compound of Formula I may affect other aspects of the innate immune response. For example, natural killer cell activity may be stimulated, an effect that may be due to cytokine induction. IRM activity of the compound of Formula I also may include activating macrophages, which in turn stimulate secretion of nitric oxide and the production of additional cytokines. IRM activity of the compound of Formula I also may include inducing cytokine production by T cells, activating T cells specific to an antigen, and/or activating dendritic cells. Further, IRM activity of the compound of Formula I may include proliferation and differentiation of B-lymphocytes. IRM activity of the compound of Formula I also may affect the acquired immune response. For example, IRM activity can include inducing the production of the T helper type 1 (TH1) cytokine IFN-γ and/or inhibiting the production of the T helper type 2 (TH2) cytokines IL-4, IL-5 and/or IL-13.
  • Exemplary conditions that may be treated by administering the compound of Formula I include:
  • (a) viral diseases such as diseases resulting from infection by an adenovirus, a herpesvirus (e.g., HSV-I, HSV-II, CMV, or VZV), a poxvirus (e.g., an orthopoxvirus such as variola or vaccinia, or molluscum contagiosum), a picornavirus (e.g., rhinovirus or enterovirus), an orthomyxovirus (e.g., influenzavirus), a paramyxovirus (e.g., parainfluenzavirus, mumps virus, measles virus, and respiratory syncytial virus (RSV)), a coronavirus (e.g., SARS), a papovavirus (e.g., papillomaviruses, such as those that cause genital warts, common warts, or plantar warts), a hepadnavirus (e.g., hepatitis B virus), a flavivirus (e.g., hepatitis C virus or Dengue virus), or a retrovirus (e.g., a lentivirus such as HIV);
  • (b) bacterial diseases such as diseases resulting from infection by bacteria of, for example, the genus Escherichia, Enterobacter, Salmonella, Staphylococcus, Shigella, Listeria, Aerobacter, Helicobacter, Klebsiella, Proteus, Pseudomonas, Streptococcus, Chlamydia, Mycoplasma, Pneumococcus, Neisseria, Clostridium, Bacillus, Corynebacterium, Mycobacterium, Campylobacter, Vibrio, Serratia, Providencia, Chromobacterium, Brucella, Yersinia, Haemophilus, or Bordetella;
  • (c) other infectious diseases such as chlamydia, fungal diseases (e.g., candidiasis, aspergillosis, histoplasmosis, or cryptococcal meningitis), or parasitic diseases (e.g., malaria, pneumocystis carnii pneumonia, leishmaniasis, cryptosporidiosis, toxoplasmosis, and trypanosome infection);
  • (d) neoplastic diseases such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, renal cell carcinoma, Kaposi's sarcoma, melanoma, leukemias (e.g., myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, B-cell lymphoma, and hairy cell leukemia), breast cancer, lung cancer, prostate cancer, colon cancer, and other cancers;
  • (c) TH2-mediated, atopic diseases such as atopic dermatitis or eczema, cosinophilia, asthma, allergy, allergic rhinitis, and Ommen's syndrome;
  • (f) certain autoimmune diseases such as systemic lupus erythematosus, essential thrombocythaemia, multiple sclerosis, discoid lupus, and alopecia areata; and
  • (g) diseases associated with wound repair such as inhibition of keloid formation and other types of scarring (e.g., enhancing wound healing, including chronic wounds).
  • The mechanism for the antiviral and antitumor activity of the compound of Formula I may be due in substantial part to enhancement of the immune response by induction of various important cytokines (e.g., at least one of tumor necrosis factor, interferons, or interleukins). Such compounds have been shown to stimulate a rapid release of certain monocyte/macrophage-derived cytokines and are also capable of stimulating B cells to secrete antibodies which play an important role in these IRM compounds' antiviral and antitumor activities.
  • It will be understood that in the treatment of the diseases mentioned above, for example, the compound of Formula I can be used in combination with other therapies such as the active agents mentioned above and other procedures (e.g., chemoablation, laser ablation, cryotherapy, and surgical excision).
  • An amount of a compound effective to induce cytokine biosynthesis is an amount sufficient to cause one or more cell types, such as monocytes, macrophages, dendritic cells and B-cells to produce an amount of one or more cytokines such as, for example, IFN-α, TNF-α, IL-1, IL-6, IL-10 and IL-12 that is increased over a background level of such cytokines. The precise amount will vary according to factors known in the art but is expected to be a dose of about 100 nanograms per kilograms (ng/kg) to about 50 milligrams per kilogram (mg/kg), in some embodiments about 10 micrograms per kilogram (μg/kg) to about 5 mg/kg. The invention also provides a method of treating a viral infection in an animal and a method of treating a neoplastic disease in an animal comprising administering an effective amount of a compound or pharmaceutical composition of the invention to the animal. An amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more of the manifestations of viral infection, such as viral lesions, viral load, rate of virus production, and mortality as compared to untreated control animals. The precise amount that is effective for such treatment will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, in some embodiments about 10 μg/kg to about 5 mg/kg. An amount of a compound or pharmaceutical composition effective to treat a neoplastic condition is an amount that will cause a reduction in tumor size or in the number of tumor foci. Again, the precise amount will vary according to factors known in the art but is expected to be a dose of about 100 ng/kg to about 50 mg/kg, in some embodiments about 10 ng/kg to about 5 mg/kg. The methods of the present invention may be performed on any suitable subject. Suitable subjects include animals such as humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, or cows.
  • The composition of a formulation suitable for practicing the invention, the precise amount of a compound of Formula I effective for methods according to the present invention, and the dosing regimen, for example, will vary according to factors known in the art including the nature of the carrier, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the compound of Formula I, and the species to which the formulation is being administered. Accordingly, it is not practical to set forth generally the composition of a formulation that includes a compound of Formula I, an amount of a compound of Formula T that constitutes an effective amount, or a dosing regimen that is effective for all possible applications. Those of ordinary skill in the art, however, can readily determine appropriate formulations, amounts of the compound of Formula I, and dosing regimen with due consideration of such factors.
  • In some embodiments, the methods of the present invention include administering a compound of Formula I to a subject in a formulation, for example, having a concentration of the compound from about 0.0001% to about 20% (unless otherwise indicated, all percentages provided herein are weight/weight with respect to the total formulation), although in some embodiments the compound of Formula I may be administered using a formulation that provides the compound in a concentration outside of this range. In some embodiments, the method includes administering to a subject a formulation that includes from about 0.01% to about 1% of the compound of Formula I, for example, a formulation that includes about 0.1% to about 0.5% compound of Formula I.
  • In some embodiments, the methods of the present invention include administering sufficient compound to provide a dose of, for example, from about 100 ng/kg to about 50 mg/kg to the subject, although in some embodiments the methods may be performed by administering compound in a dose outside this range. In some of these embodiments, the method includes administering sufficient compound to provide a dose of from about 10 μg/kg to about 5 mg/kg to the subject, for example, a dose of from about 100 μg/kg to about 1 mg/kg. In some embodiments, the methods of the present invention may include administering sufficient compound to provide a dose of, for example, from about 0.01 mg/m2 to about 10 mg/m2. Alternatively, the dose may be calculated using actual body weight obtained just prior to the beginning of a treatment course. For the dosages calculated in this way, body surface area (m2) is calculated prior to the beginning of the treatment course using the Dubois method: m2=(wt kg0.425×height cm0.725)×0.007184.
  • In some embodiments of the methods disclosed herein, the compound of Formula I may be administered, for example, from a single dose to multiple doses per week, although in some embodiments the methods of the present invention may be performed by administering the compound of Formula I at a frequency outside this range. In some embodiments, the compound of Formula I may be administered from about once per month to about five times per week. In some embodiments, the compound of Formula I is administered once per week.
  • Since the compound of Formula I can be formulated to provide reduced systemic levels of the compound while inducing a high levels of cytokines, it is believed to be very useful for providing an enhanced local immune response while minimizing undesirable systemic side effects. This may be advantageous for many uses, such as direct administration to a tumor and/or as a vaccine adjuvant.
  • Objects and advantages of this invention are illustrated by the above examples, but the particular materials and amounts thereof recited, as well as other conditions and details, should not be construed to unduly limit this invention.
  • The complete disclosures of the patents, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

Claims (14)

What is claimed is:
1. A compound of formula:
Figure US20170333553A1-20171123-C00003
including any pharmaceutically acceptable salt thereof.
2. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and the compound of claim 1.
3. A pharmaceutical composition comprising the compound of claim 1 in a formulation comprising liposomes.
4. The pharmaceutical composition of claim 2 or 3, further comprising an antigen.
5. The pharmaceutical composition of claim 4, wherein the compound and antigen are admixed into a single composition.
6. The pharmaceutical composition of claim 4, wherein the compound and antigen are present in separate components of the composition to be administered in combination.
7. The pharmaceutical composition of any one of claims 4 to 6 wherein the antigen is a cancer vaccine.
8. The pharmaceutical composition of any one of claims 4 to 6 wherein the antigen is a viral vaccine.
9. A method of enhancing the effectiveness of a vaccine antigen by administering as a vaccine adjuvant the compound N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide, or a pharmaceutically acceptable salt thereof.
10. The method of claim 9, wherein the compound is incorporated into a liposome formulation.
11. A method of treating a neoplastic disease, the method comprising administering the compound N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide, or a pharmaceutically acceptable salt thereof, to a human or animal having the neoplastic disease.
12. The method of claim 11, wherein the compound is in a liposome formulation.
13. The method of claim 12, wherein the formulation is administered directly into a localized tumor mass.
14. The method of any one of claims 11 to 13, further including administration of a cancer vaccine antigen.
US15/666,077 2010-08-17 2017-08-01 Lipidated immune response modifier compound compositions, formulations, and methods Abandoned US20170333553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/666,077 US20170333553A1 (en) 2010-08-17 2017-08-01 Lipidated immune response modifier compound compositions, formulations, and methods

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37451210P 2010-08-17 2010-08-17
PCT/US2011/047901 WO2012024284A1 (en) 2010-08-17 2011-08-16 Lipidated immune response modifier compound compositions, formulations, and methods
US201313817214A 2013-05-21 2013-05-21
US14/969,483 US9795669B2 (en) 2010-08-17 2015-12-15 Lipidated immune response modifier compound compositions, formulations, and methods
US15/666,077 US20170333553A1 (en) 2010-08-17 2017-08-01 Lipidated immune response modifier compound compositions, formulations, and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/969,483 Division US9795669B2 (en) 2010-08-17 2015-12-15 Lipidated immune response modifier compound compositions, formulations, and methods

Publications (1)

Publication Number Publication Date
US20170333553A1 true US20170333553A1 (en) 2017-11-23

Family

ID=45605411

Family Applications (9)

Application Number Title Priority Date Filing Date
US13/817,214 Active 2032-05-24 US9242980B2 (en) 2010-08-17 2011-08-16 Lipidated immune response modifier compound compositions, formulations, and methods
US14/969,483 Active US9795669B2 (en) 2010-08-17 2015-12-15 Lipidated immune response modifier compound compositions, formulations, and methods
US15/241,166 Abandoned US20170189521A1 (en) 2010-08-17 2016-08-19 Lipidated immune response modifier compound compositions, formulations, and methods
US15/666,077 Abandoned US20170333553A1 (en) 2010-08-17 2017-08-01 Lipidated immune response modifier compound compositions, formulations, and methods
US15/822,556 Active US10052380B2 (en) 2010-08-17 2017-11-27 Lipidated immune response modifier compound compositions, formulations, and methods
US16/043,394 Active US10383938B2 (en) 2010-08-17 2018-07-24 Lipidated immune response modifier compound compositions, formulations, and methods
US16/504,716 Active US10821176B2 (en) 2010-08-17 2019-07-08 Lipidated immune response modifier compound compositions, formulations, and methods
US16/949,136 Active 2032-01-03 US11524071B2 (en) 2010-08-17 2020-10-15 Lipidated immune response modifier compound compositions, formulations, and methods
US18/059,726 Pending US20230090437A1 (en) 2010-08-17 2022-11-29 Lipidated immune response modifier compound compositions, formulations, and methods

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/817,214 Active 2032-05-24 US9242980B2 (en) 2010-08-17 2011-08-16 Lipidated immune response modifier compound compositions, formulations, and methods
US14/969,483 Active US9795669B2 (en) 2010-08-17 2015-12-15 Lipidated immune response modifier compound compositions, formulations, and methods
US15/241,166 Abandoned US20170189521A1 (en) 2010-08-17 2016-08-19 Lipidated immune response modifier compound compositions, formulations, and methods

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/822,556 Active US10052380B2 (en) 2010-08-17 2017-11-27 Lipidated immune response modifier compound compositions, formulations, and methods
US16/043,394 Active US10383938B2 (en) 2010-08-17 2018-07-24 Lipidated immune response modifier compound compositions, formulations, and methods
US16/504,716 Active US10821176B2 (en) 2010-08-17 2019-07-08 Lipidated immune response modifier compound compositions, formulations, and methods
US16/949,136 Active 2032-01-03 US11524071B2 (en) 2010-08-17 2020-10-15 Lipidated immune response modifier compound compositions, formulations, and methods
US18/059,726 Pending US20230090437A1 (en) 2010-08-17 2022-11-29 Lipidated immune response modifier compound compositions, formulations, and methods

Country Status (20)

Country Link
US (9) US9242980B2 (en)
EP (2) EP3222621B1 (en)
JP (5) JP2013534248A (en)
CN (2) CN103097386A (en)
AU (1) AU2011292146B2 (en)
BR (1) BR112013003772A2 (en)
CA (2) CA2808624C (en)
CY (1) CY1118815T1 (en)
DK (1) DK2606047T3 (en)
ES (2) ES2943385T3 (en)
HK (1) HK1217942A1 (en)
HR (1) HRP20170433T1 (en)
HU (1) HUE033901T2 (en)
LT (1) LT2606047T (en)
MX (1) MX359517B (en)
PL (1) PL2606047T3 (en)
PT (1) PT2606047T (en)
RS (1) RS55819B1 (en)
SI (1) SI2606047T1 (en)
WO (1) WO2012024284A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679141B2 (en) 2019-12-20 2023-06-20 Nammi Therapeutics, Inc. Formulated and/or co-formulated liposome compositions containing toll-like receptor (“TLR”) agonist prodrugs useful in the treatment of cancer and methods thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE033901T2 (en) 2010-08-17 2018-01-29 3M Innovative Properties Co Lipidated immune response modifier compound compositions, formulations, and methods
WO2014201245A1 (en) 2013-06-12 2014-12-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Tlr-9 agonist with tlr-7 and/or tlr-8 agonist for treating tumors
CN105873587B (en) * 2013-11-05 2020-07-21 3M创新有限公司 Sesame oil-based injection formulations
GB201321242D0 (en) 2013-12-02 2014-01-15 Immune Targeting Systems Its Ltd Immunogenic compound
CN105268386B (en) 2014-06-03 2021-03-12 传感器电子技术股份有限公司 Ultraviolet transparent shell
US9980956B2 (en) 2014-08-01 2018-05-29 3M Innovative Properties Company Methods and therapeutic combinations for treating tumors
WO2016183371A1 (en) 2015-05-13 2016-11-17 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Methods for the treatment or prevention of ischemic tissue damage
EP3316874A4 (en) * 2015-06-30 2019-03-06 The Trustees Of The University Of Pennsylvania Resiquimod topical and injectable compositions for the treatment of neoplastic skin conditions
WO2017040233A1 (en) 2015-08-31 2017-03-09 3M Innovative Properties Company GUANIDINE SUBSTITUTED IMIDAZO[4,5-c] RING COMPOUNDS
CN107922416B (en) 2015-08-31 2021-07-02 3M创新有限公司 Imidazo [4,5-c ] ring compounds containing substituted guanidine groups
US10597397B2 (en) 2015-09-29 2020-03-24 Sumitomo Dainippon Pharma Co., Ltd. Adenine conjugate compounds and their use as vaccine adjuvants
JP6769976B2 (en) * 2015-10-07 2020-10-14 大日本住友製薬株式会社 Pyrimidine compound
CA3008055A1 (en) 2015-12-14 2017-06-22 Glaxosmithkline Biologicals S.A. Pegylated imidazoquinolines as tlr7 and tlr8 agonists
KR102392974B1 (en) 2016-05-16 2022-05-02 인펙셔스 디지즈 리서치 인스티튜트 (아이디알아이) Formulations containing TLR agonists and methods of use
JP7195147B2 (en) * 2016-05-16 2022-12-23 アクセス ツー アドバンスト ヘルス インスティチュート PEGylated liposomes and methods of use
TW201840316A (en) * 2017-01-12 2018-11-16 美商麥迪紐有限責任公司 Safety and pharmacodynamic activity of a toll-like receptor 7/8 agonist
WO2018160552A1 (en) 2017-03-01 2018-09-07 3M Innovative Properties Company IMIDAZO[4,5-c] RING COMPOUNDS CONTAINING GUANIDINE SUBSTITUTED BENZAMIDE GROUPS
US11032816B2 (en) * 2017-08-10 2021-06-08 Qualcomm Incorporated Techniques and apparatuses for variable timing adjustment granularity
EP3728255B1 (en) 2017-12-20 2022-01-26 3M Innovative Properties Company Amide substituted imidazo[4,5-c]quinoline compounds with a branched chain linking group for use as an immune response modifier
US11370788B2 (en) 2018-02-28 2022-06-28 3M Innovative Properties Company Substituted imidazo[4,5-c]quinoline compounds with an N-1 branched group
CN112218864B (en) 2018-05-24 2023-09-08 3M创新有限公司 N-1 branched cycloalkyl substituted imidazo [4,5-c ] quinoline compounds, compositions and methods
CA3107409A1 (en) 2018-07-23 2020-01-30 Japan As Represented By Director General Of National Institute Of Infectious Diseases Composition containing influenza vaccine
KR20210141461A (en) 2019-02-01 2021-11-23 캔웰 바이오테크 리미티드 Imidazoquinoline amine derivatives, pharmaceutical compositions, uses thereof

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314941A (en) 1964-06-23 1967-04-18 American Cyanamid Co Novel substituted pyridodiazepins
IL73534A (en) 1983-11-18 1990-12-23 Riker Laboratories Inc 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds
CA1271477A (en) * 1983-11-18 1990-07-10 John F. Gerster 1h-imidazo[4,5-c]quinolin-4-amines
ZA848968B (en) 1983-11-18 1986-06-25 Riker Laboratories Inc 1h-imidazo(4,5-c)quinolines and 1h-imidazo(4,5-c)quinolin-4-amines
US5238944A (en) 1988-12-15 1993-08-24 Riker Laboratories, Inc. Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine
US5756747A (en) 1989-02-27 1998-05-26 Riker Laboratories, Inc. 1H-imidazo 4,5-c!quinolin-4-amines
US5037986A (en) 1989-03-23 1991-08-06 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo[4,5-c]quinolin-4-amines
US4929624A (en) 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
NZ232740A (en) 1989-04-20 1992-06-25 Riker Laboratories Inc Solution for parenteral administration comprising a 1h-imidazo(4,5-c) quinolin-4-amine derivative, an acid and a tonicity adjuster
US4988815A (en) 1989-10-26 1991-01-29 Riker Laboratories, Inc. 3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines
ES2071340T3 (en) 1990-10-05 1995-06-16 Minnesota Mining & Mfg PROCEDURE FOR THE PREPARATION OF IMIDAZO (4,5-C) QUINOLIN-4-AMINAS.
US5175296A (en) 1991-03-01 1992-12-29 Minnesota Mining And Manufacturing Company Imidazo[4,5-c]quinolin-4-amines and processes for their preparation
US5389640A (en) 1991-03-01 1995-02-14 Minnesota Mining And Manufacturing Company 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5268376A (en) 1991-09-04 1993-12-07 Minnesota Mining And Manufacturing Company 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5266575A (en) 1991-11-06 1993-11-30 Minnesota Mining And Manufacturing Company 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines
IL105325A (en) 1992-04-16 1996-11-14 Minnesota Mining & Mfg Immunogen/vaccine adjuvant composition
US5395937A (en) 1993-01-29 1995-03-07 Minnesota Mining And Manufacturing Company Process for preparing quinoline amines
JPH09500128A (en) 1993-07-15 1997-01-07 ミネソタ マイニング アンド マニュファクチャリング カンパニー Imidazo [4,5-c] pyridin-4-amine
US5648516A (en) 1994-07-20 1997-07-15 Minnesota Mining And Manufacturing Company Fused cycloalkylimidazopyridines
US5352784A (en) 1993-07-15 1994-10-04 Minnesota Mining And Manufacturing Company Fused cycloalkylimidazopyridines
US5644063A (en) 1994-09-08 1997-07-01 Minnesota Mining And Manufacturing Company Imidazo[4,5-c]pyridin-4-amine intermediates
US5482936A (en) 1995-01-12 1996-01-09 Minnesota Mining And Manufacturing Company Imidazo[4,5-C]quinoline amines
ATE182329T1 (en) 1995-12-21 1999-08-15 Akzo Nobel Nv METHOD FOR PRODUCING THIOGLYCOLIC ACID
JPH09176116A (en) 1995-12-27 1997-07-08 Toray Ind Inc Heterocyclic derivative and its pharmaceutical use
JPH09208584A (en) 1996-01-29 1997-08-12 Terumo Corp Amide derivative, pharmaceutical preparation containing the same, and intermediate for synthesizing the same
US5693811A (en) 1996-06-21 1997-12-02 Minnesota Mining And Manufacturing Company Process for preparing tetrahdroimidazoquinolinamines
US5741908A (en) 1996-06-21 1998-04-21 Minnesota Mining And Manufacturing Company Process for reparing imidazoquinolinamines
US6039969A (en) 1996-10-25 2000-03-21 3M Innovative Properties Company Immune response modifier compounds for treatment of TH2 mediated and related diseases
US5939090A (en) 1996-12-03 1999-08-17 3M Innovative Properties Company Gel formulations for topical drug delivery
JP4101302B2 (en) 1997-01-09 2008-06-18 テルモ株式会社 Novel amide derivatives and synthetic intermediates
JPH114764A (en) 1997-06-17 1999-01-12 Mitsubishi Electric Corp Electric hot-water heater
JPH1180156A (en) 1997-09-04 1999-03-26 Hokuriku Seiyaku Co Ltd 1-(substitutedaryl)alkyl-1h-imidazopyridin-4-amine derivative
UA67760C2 (en) 1997-12-11 2004-07-15 Міннесота Майнінг Енд Мануфакчурінг Компані Imidazonaphthyridines and use thereof to induce the biosynthesis of cytokines
JPH11222432A (en) 1998-02-03 1999-08-17 Terumo Corp Preparation for external use containing amide derivative inducing interferon
US6110929A (en) 1998-07-28 2000-08-29 3M Innovative Properties Company Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof
JP2000119271A (en) 1998-08-12 2000-04-25 Hokuriku Seiyaku Co Ltd 1h-imidazopyridine derivative
US20020058674A1 (en) 1999-01-08 2002-05-16 Hedenstrom John C. Systems and methods for treating a mucosal surface
US6486168B1 (en) 1999-01-08 2002-11-26 3M Innovative Properties Company Formulations and methods for treatment of mucosal associated conditions with an immune response modifier
CA2361936C (en) 1999-01-08 2009-06-16 3M Innovative Properties Company Formulations comprising imiquimod or other immune response modifiers for treating mucosal conditions
US6558951B1 (en) 1999-02-11 2003-05-06 3M Innovative Properties Company Maturation of dendritic cells with immune response modifying compounds
JP2000247884A (en) 1999-03-01 2000-09-12 Sumitomo Pharmaceut Co Ltd Arachidonic acid-induced skin disease-treating agent
US6573273B1 (en) 1999-06-10 2003-06-03 3M Innovative Properties Company Urea substituted imidazoquinolines
US6451810B1 (en) 1999-06-10 2002-09-17 3M Innovative Properties Company Amide substituted imidazoquinolines
US6541485B1 (en) 1999-06-10 2003-04-01 3M Innovative Properties Company Urea substituted imidazoquinolines
US6756382B2 (en) 1999-06-10 2004-06-29 3M Innovative Properties Company Amide substituted imidazoquinolines
US6331539B1 (en) 1999-06-10 2001-12-18 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
US6916925B1 (en) 1999-11-05 2005-07-12 3M Innovative Properties Co. Dye labeled imidazoquinoline compounds
US6376669B1 (en) 1999-11-05 2002-04-23 3M Innovative Properties Company Dye labeled imidazoquinoline compounds
US6894060B2 (en) 2000-03-30 2005-05-17 3M Innovative Properties Company Method for the treatment of dermal lesions caused by envenomation
US20020055517A1 (en) 2000-09-15 2002-05-09 3M Innovative Properties Company Methods for delaying recurrence of herpes virus symptoms
GB0023008D0 (en) 2000-09-20 2000-11-01 Glaxo Group Ltd Improvements in vaccination
JP2002145777A (en) 2000-11-06 2002-05-22 Sumitomo Pharmaceut Co Ltd Therapeutic agent for arachidonic acid-induced dermatosis
US6667312B2 (en) 2000-12-08 2003-12-23 3M Innovative Properties Company Thioether substituted imidazoquinolines
US20020107262A1 (en) 2000-12-08 2002-08-08 3M Innovative Properties Company Substituted imidazopyridines
US6664264B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Thioether substituted imidazoquinolines
US6664260B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Heterocyclic ether substituted imidazoquinolines
WO2006091720A2 (en) 2000-12-08 2006-08-31 3M Innovative Properties Company Compositions and methods for targeted delivery of immune response modifiers
US6677348B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Aryl ether substituted imidazoquinolines
US6664265B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Amido ether substituted imidazoquinolines
US6525064B1 (en) 2000-12-08 2003-02-25 3M Innovative Properties Company Sulfonamido substituted imidazopyridines
US6660747B2 (en) 2000-12-08 2003-12-09 3M Innovative Properties Company Amido ether substituted imidazoquinolines
US6660735B2 (en) 2000-12-08 2003-12-09 3M Innovative Properties Company Urea substituted imidazoquinoline ethers
UA74852C2 (en) 2000-12-08 2006-02-15 3M Innovative Properties Co Urea-substituted imidazoquinoline ethers
US6677347B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Sulfonamido ether substituted imidazoquinolines
US6545017B1 (en) 2000-12-08 2003-04-08 3M Innovative Properties Company Urea substituted imidazopyridines
US6545016B1 (en) 2000-12-08 2003-04-08 3M Innovative Properties Company Amide substituted imidazopyridines
KR100455713B1 (en) 2001-01-29 2004-11-06 호남석유화학 주식회사 Multinuclear metallocene catalysts for olefin polymerization and process for olefin polymerization using the same
US7226928B2 (en) 2001-06-15 2007-06-05 3M Innovative Properties Company Methods for the treatment of periodontal disease
JP2005501550A (en) 2001-08-30 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー Maturation of plasmacytoid dendritic cells using immune response modifier molecules
ATE511840T1 (en) 2001-10-09 2011-06-15 Amgen Inc IMIDAZOLE DERIVATIVES AS ANTI-INFLAMMATORY AGENTS
US20030139364A1 (en) 2001-10-12 2003-07-24 University Of Iowa Research Foundation Methods and products for enhancing immune responses using imidazoquinoline compounds
DE60230340D1 (en) 2001-11-16 2009-01-22 3M Innovative Properties Co N-Ä4- (4-amino-2-ethyl-1H-imidazoÄ4,5-quinolin-1-yl) -butyl-methanesulfonamide, pharmaceutical composition containing the same and their use
NZ532769A (en) 2001-11-29 2005-12-23 3M Innovative Properties Co Pharmaceutical formulations comprising an immune response modifier
US6677349B1 (en) 2001-12-21 2004-01-13 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
ES2541132T3 (en) 2002-02-22 2015-07-16 Meda Ab Method to reduce and treat UV-B-induced immunosuppression
ATE491471T1 (en) 2002-03-19 2011-01-15 Powderject Res Ltd ADJUVANTS FOR DNA VACCINES BASED ON IMIDAZOCINOLINE
GB0211649D0 (en) 2002-05-21 2002-07-03 Novartis Ag Organic compounds
WO2003101949A2 (en) 2002-05-29 2003-12-11 3M Innovative Properties Company Process for imidazo[4,5-c]pyridin-4-amines
MXPA04012199A (en) 2002-06-07 2005-02-25 3M Innovative Properties Co Ether substituted imidazopyridines.
CN1315828C (en) 2002-07-23 2007-05-16 特瓦药厂私人有限公司 Preparation of 1H-imidazo [4,5-C] quinolin-4-amines via 1H-imidazo [4,5-C] quinolin-4-phthalimide intermediates
JP2005537287A (en) 2002-07-26 2005-12-08 テバ ジョジセルジャール レースベニュタールシャシャーグ 1H-imidazo [4,5-c] quinolin-4-amine with novel 1H-imidazo [4,5-c] quinolin-4-cyano and 1H-imidazo [4,5-c] quinoline-4-carboxamide intermediates Manufacturing
EP1545597B1 (en) * 2002-08-15 2010-11-17 3M Innovative Properties Company Immunostimulatory compositions and methods of stimulating an immune response
AU2003299082A1 (en) 2002-09-26 2004-04-19 3M Innovative Properties Company 1h-imidazo dimers
WO2004053452A2 (en) 2002-12-11 2004-06-24 3M Innovative Properties Company Assays relating to toll-like receptor activity
AU2003287324A1 (en) 2002-12-11 2004-06-30 3M Innovative Properties Company Gene expression systems and recombinant cell lines
WO2004058759A1 (en) 2002-12-20 2004-07-15 3M Innovative Properties Company Aryl / hetaryl substituted imidazoquinolines
CA2511538C (en) 2002-12-30 2013-11-26 3M Innovative Properties Company Immunostimulatory combinations
US7375180B2 (en) 2003-02-13 2008-05-20 3M Innovative Properties Company Methods and compositions related to IRM compounds and Toll-like receptor 8
EP1599726A4 (en) 2003-02-27 2009-07-22 3M Innovative Properties Co Selective modulation of tlr-mediated biological activity
CA2517528A1 (en) 2003-03-04 2004-09-16 3M Innovative Properties Company Prophylactic treatment of uv-induced epidermal neoplasia
US7163947B2 (en) 2003-03-07 2007-01-16 3M Innovative Properties Company 1-Amino 1H-imidazoquinolines
CA2518282C (en) 2003-03-13 2012-11-06 3M Innovative Properties Company Methods of improving skin quality
US7699057B2 (en) 2003-03-13 2010-04-20 3M Innovative Properties Company Methods for treating skin lesions
AU2004220465A1 (en) 2003-03-13 2004-09-23 3M Innovative Properties Company Method of tattoo removal
US20040192585A1 (en) 2003-03-25 2004-09-30 3M Innovative Properties Company Treatment for basal cell carcinoma
WO2004087049A2 (en) 2003-03-25 2004-10-14 3M Innovative Properties Company Selective activation of cellular activities mediated through a common toll-like receptor
US20040265351A1 (en) 2003-04-10 2004-12-30 Miller Richard L. Methods and compositions for enhancing immune response
US20040202720A1 (en) 2003-04-10 2004-10-14 3M Innovative Properties Company Delivery of immune response modifier compounds using metal-containing particulate support materials
US20040214851A1 (en) 2003-04-28 2004-10-28 3M Innovative Properties Company Compositions and methods for induction of opioid receptors
US7731967B2 (en) 2003-04-30 2010-06-08 Novartis Vaccines And Diagnostics, Inc. Compositions for inducing immune responses
AR044466A1 (en) 2003-06-06 2005-09-14 3M Innovative Properties Co PROCESS FOR THE PREPARATION OF IMIDAZO [4,5-C] PIRIDIN-4-AMINAS
WO2004110991A2 (en) 2003-06-06 2004-12-23 3M Innovative Properties Company PROCESS FOR IMIDAZO[4,5-c]PYRIDIN-4-AMINES
MY157827A (en) 2003-06-27 2016-07-29 3M Innovative Properties Co Sulfonamide substituted imidazoquinolines
US20050106300A1 (en) 2003-06-30 2005-05-19 Purdue Research Foundation Method for producing a material having an increased solubility in alcohol
CA2534042A1 (en) 2003-07-31 2005-02-10 3M Innovative Properties Company Compositions for encapsulation and controlled release
CA2534313C (en) 2003-08-05 2013-03-19 3M Innovative Properties Company Formulations containing an immune response modifier
TW200510412A (en) 2003-08-12 2005-03-16 3M Innovative Properties Co Oxime substituted imidazo-containing compounds
CA2535338C (en) * 2003-08-14 2013-05-28 3M Innovative Properties Company Substituted 1h-imidazo[4,5-c]pyridin-4-amines,1h-imidazo[4,5-c]quinolin -4-amines and 1h-imidazo[4,5-c]naphthyridin-4-amines as immune response modifiers
ES2545826T3 (en) * 2003-08-14 2015-09-16 3M Innovative Properties Company Lipid Modified Immune Response Modifiers
JP2007504145A (en) 2003-08-25 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー Immunostimulatory combinations and treatments
US8961477B2 (en) 2003-08-25 2015-02-24 3M Innovative Properties Company Delivery of immune response modifier compounds
CA2536136C (en) 2003-08-27 2012-10-30 3M Innovative Properties Company Aryloxy and arylalkyleneoxy substituted imidazoquinolines
JP2007504172A (en) 2003-09-02 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー Methods for treatment of mucosa related symptoms
JP2007504269A (en) 2003-09-05 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー Method for treating CD5 + B cell lymphoma
NZ545536A (en) 2003-09-05 2010-04-30 Anadys Pharmaceuticals Inc TLR7 ligands for the treatment of hepatitis C
GB0321615D0 (en) * 2003-09-15 2003-10-15 Glaxo Group Ltd Improvements in vaccination
EP1664342A4 (en) 2003-09-17 2007-12-26 3M Innovative Properties Co Selective modulation of tlr gene expression
WO2005033049A2 (en) 2003-10-01 2005-04-14 Taro Pharmaceuticals U.S.A., Inc. METHOD OF PREPARING 4-AMINO-1H-IMIDAZO(4,5-c)QUINOLINES AND ACID ADDITION SALTS THEREOF
US20090075980A1 (en) 2003-10-03 2009-03-19 Coley Pharmaceutical Group, Inc. Pyrazolopyridines and Analogs Thereof
NZ546274A (en) 2003-10-03 2009-12-24 3M Innovative Properties Co Pyrazolopyridines and analags thereof
JP5043435B2 (en) 2003-10-03 2012-10-10 スリーエム イノベイティブ プロパティズ カンパニー Alkoxy substituted imidazoquinolines
US7544697B2 (en) 2003-10-03 2009-06-09 Coley Pharmaceutical Group, Inc. Pyrazolopyridines and analogs thereof
AU2004285575A1 (en) 2003-10-31 2005-05-12 3M Innovative Properties Company Neutrophil activation by immune response modifier compounds
ITMI20032121A1 (en) 2003-11-04 2005-05-05 Dinamite Dipharma Spa In Forma Abbr Eviata Dipharm PROCEDURE FOR THE PREPARATION OF IMIQUIMOD AND ITS INTERMEDIATES
AU2004291122A1 (en) 2003-11-14 2005-06-02 3M Innovative Properties Company Hydroxylamine substituted imidazo ring compounds
CN1906193A (en) 2003-11-14 2007-01-31 3M创新有限公司 Oxime substituted imidazo ring compounds
AR046845A1 (en) 2003-11-21 2005-12-28 Novartis Ag DERIVATIVES OF 1H-IMIDAZO [4,5-C] QUINOLINE FOR THE TREATMENT OF PROTEIN-KINASE DEPENDENT DISEASES
CN1902200A (en) 2003-11-21 2007-01-24 诺瓦提斯公司 1h-imidazoquinoline derivatives as protein kinase inhibitors
AR046781A1 (en) 2003-11-25 2005-12-21 3M Innovative Properties Co IMIDAZOQUINOLINE DERIVATIVES. PHARMACEUTICAL COMPOSITIONS.
EP1686992A4 (en) 2003-11-25 2009-11-04 3M Innovative Properties Co Hydroxylamine and oxime substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
EP1689361A4 (en) 2003-12-02 2009-06-17 3M Innovative Properties Co Therapeutic combinations and methods including irm compounds
WO2005076783A2 (en) 2003-12-04 2005-08-25 3M Innovative Properties Company Sulfone substituted imidazo ring ethers
CA2552101A1 (en) 2003-12-29 2005-07-21 3M Innovative Properties Company Piperazine, [1,4]diazepane, [1,4]diazocane, and [1,5]diazocane fused imidazo ring compounds
WO2005066170A1 (en) 2003-12-29 2005-07-21 3M Innovative Properties Company Arylalkenyl and arylalkynyl substituted imidazoquinolines
WO2005066169A2 (en) 2003-12-30 2005-07-21 3M Innovative Properties Company Imidazoquinolinyl, imidazopyridinyl, and imidazonaphthyridinyl sulfonamides
WO2005065678A1 (en) 2003-12-30 2005-07-21 3M Innovative Properties Company Immunomodulatory combinations
US20050239735A1 (en) 2003-12-30 2005-10-27 3M Innovative Properties Company Enhancement of immune responses
AU2005222995B2 (en) 2004-03-15 2010-08-26 3M Innovative Properties Company Immune response modifier formulations and methods
WO2005094531A2 (en) 2004-03-24 2005-10-13 3M Innovative Properties Company Amide substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines
EP1735010A4 (en) 2004-04-09 2008-08-27 3M Innovative Properties Co Methods, compositions, and preparations for delivery of immune response modifiers
JP2008505857A (en) 2004-04-28 2008-02-28 スリーエム イノベイティブ プロパティズ カンパニー Compositions and methods for mucosal vaccination
US20080015184A1 (en) 2004-06-14 2008-01-17 3M Innovative Properties Company Urea Substituted Imidazopyridines, Imidazoquinolines, and Imidazonaphthyridines
US8017779B2 (en) 2004-06-15 2011-09-13 3M Innovative Properties Company Nitrogen containing heterocyclyl substituted imidazoquinolines and imidazonaphthyridines
WO2006009826A1 (en) 2004-06-18 2006-01-26 3M Innovative Properties Company Aryloxy and arylalkyleneoxy substituted thiazoloquinolines and thiazolonaphthyridines
WO2006009832A1 (en) 2004-06-18 2006-01-26 3M Innovative Properties Company Substituted imidazo ring systems and methods
US7915281B2 (en) 2004-06-18 2011-03-29 3M Innovative Properties Company Isoxazole, dihydroisoxazole, and oxadiazole substituted imidazo ring compounds and method
WO2006093514A2 (en) 2004-06-18 2006-09-08 3M Innovative Properties Company Aryl and arylalkylenyl substituted thiazoloquinolines and thiazolonaphthyridines
US7897609B2 (en) 2004-06-18 2011-03-01 3M Innovative Properties Company Aryl substituted imidazonaphthyridines
EP1765348B1 (en) 2004-06-18 2016-08-03 3M Innovative Properties Company Substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
EP1799256A4 (en) 2004-08-27 2009-10-21 3M Innovative Properties Co Method of eliciting an immune response against hiv
US20060045886A1 (en) 2004-08-27 2006-03-02 Kedl Ross M HIV immunostimulatory compositions
AU2005282523A1 (en) 2004-09-02 2006-03-16 3M Innovative Properties Company 2-amino 1H imidazo ring systems and methods
US20090270443A1 (en) 2004-09-02 2009-10-29 Doris Stoermer 1-amino imidazo-containing compounds and methods
AU2005282726B2 (en) * 2004-09-02 2011-06-02 3M Innovative Properties Company 1-alkoxy 1H-imidazo ring systems and methods
WO2006028451A1 (en) 2004-09-03 2006-03-16 3M Innovative Properties Company 1-amino 1-h-imidazoquinolines
EP1632564A1 (en) * 2004-09-03 2006-03-08 Consejo Superior De Investigaciones Cientificas Vaccine against severe accute respiratory syndrome causing coronavirus (SARS-CoV)
US20080193468A1 (en) 2004-09-08 2008-08-14 Children's Medical Center Corporation Method for Stimulating the Immune Response of Newborns
US20080213308A1 (en) 2004-09-14 2008-09-04 Nicholas Valiante Imidazoquinoline Compounds
JP2008515928A (en) 2004-10-08 2008-05-15 スリーエム イノベイティブ プロパティズ カンパニー Adjuvants for DNA vaccines
US20100113565A1 (en) 2004-12-08 2010-05-06 Gorden Keith B Immunostimulatory combinations and methods
WO2006063072A2 (en) 2004-12-08 2006-06-15 3M Innovative Properties Company Immunomodulatory compositions, combinations and methods
US8080560B2 (en) 2004-12-17 2011-12-20 3M Innovative Properties Company Immune response modifier formulations containing oleic acid and methods
WO2006074003A2 (en) 2004-12-30 2006-07-13 3M Innovative Properties Company CHIRAL FUSED [1,2]IMIDAZO[4,5-c] RING COMPOUNDS
JP2008526765A (en) 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Treatment of skin metastases
US8436176B2 (en) 2004-12-30 2013-05-07 Medicis Pharmaceutical Corporation Process for preparing 2-methyl-1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine
EP1830880A4 (en) 2004-12-30 2008-03-26 Coley Pharm Group Inc Multi-route administration of immune response modifier compounds
US8034938B2 (en) 2004-12-30 2011-10-11 3M Innovative Properties Company Substituted chiral fused [1,2]imidazo[4,5-c] ring compounds
CA2592897A1 (en) 2004-12-30 2006-07-13 Takeda Pharmaceutical Company Limited 1-(2-methylpropyl)-1h-imidazo[4,5-c][1,5]naphthyridin-4-amine ethanesulfonate and 1-(2-methylpropyl)-1h-imidazo[4,5-c][1,5]naphthyridin-4-amine methanesulfonate
WO2006083400A2 (en) 2005-02-02 2006-08-10 Mocon, Inc. Instrument and method for detecting and reporting the size of leaks in hermetically sealed packaging
WO2006084251A2 (en) 2005-02-04 2006-08-10 Coley Pharmaceutical Group, Inc. Aqueous gel formulations containing immune reponse modifiers
AU2006212765B2 (en) 2005-02-09 2012-02-02 3M Innovative Properties Company Alkyloxy substituted thiazoloquinolines and thiazolonaphthyridines
AU2006338521A1 (en) 2005-02-09 2007-10-11 Coley Pharmaceutical Group, Inc. Oxime and hydroxylamine substituted thiazolo(4,5-c) ring compounds and methods
JP2008530113A (en) 2005-02-11 2008-08-07 コーリー ファーマシューティカル グループ,インコーポレイテッド Oxime and hydroxyramine substituted imidazo [4,5-c] ring compounds and methods
CA2597446A1 (en) 2005-02-11 2006-08-31 Coley Pharmaceutical Group, Inc. Substituted imidazoquinolines and imidazonaphthyridines
AU2006213745A1 (en) 2005-02-11 2006-08-17 Coley Pharmaceutical Group, Inc. Substituted fused [1,2]imidazo[4,5-c] ring compounds and methods
US8178677B2 (en) 2005-02-23 2012-05-15 3M Innovative Properties Company Hydroxyalkyl substituted imidazoquinolines
JP2008531567A (en) 2005-02-23 2008-08-14 コーリー ファーマシューティカル グループ,インコーポレイテッド Hydroxyalkyl-substituted imidazoquinoline compounds and methods
AU2006216799A1 (en) 2005-02-23 2006-08-31 Coley Pharmaceutical Group, Inc. Hydroxyalkyl substituted imidazonaphthyridines
AU2006216686A1 (en) 2005-02-23 2006-08-31 Coley Pharmaceutical Group, Inc. Method of preferentially inducing the biosynthesis of interferon
MX2007011112A (en) 2005-03-14 2007-11-07 Graceway Pharmaceuticals Llc Method of treating actinic keratosis.
WO2006107771A2 (en) 2005-04-01 2006-10-12 Coley Pharmaceutical Group, Inc. PYRAZOLO[3,4-c]QUINOLINES, PYRAZOLO[3,4-c]NAPHTHYRIDINES, ANALOGS THEREOF, AND METHODS
CA2602853A1 (en) 2005-04-01 2006-11-16 Coley Pharmaceutical Group, Inc. Ring closing and related methods and intermediates
US7943610B2 (en) 2005-04-01 2011-05-17 3M Innovative Properties Company Pyrazolopyridine-1,4-diamines and analogs thereof
US7943636B2 (en) 2005-04-01 2011-05-17 3M Innovative Properties Company 1-substituted pyrazolo (3,4-C) ring compounds as modulators of cytokine biosynthesis for the treatment of viral infections and neoplastic diseases
JP2008539252A (en) 2005-04-25 2008-11-13 スリーエム イノベイティブ プロパティズ カンパニー Immune activation composition
RS20080128A (en) 2005-09-02 2009-05-06 Pfizer Inc., Hydroxy substituted 1h-imidazopyridines and methods
EA200800782A1 (en) 2005-09-09 2008-08-29 Коли Фармасьютикал Груп, Инк. AMIDA AND CARBAMATE DERIVATIVES N- {2- [4-AMINO-2- (ETOXIMETHYL) -1H-IMIDAZOLO [4,5-c] QUINOLIN-1-IL] -1,1-DIMETHYLETHYL} METHANE SULFONAMIDE AND METHODS
ZA200803029B (en) 2005-09-09 2009-02-25 Coley Pharm Group Inc Amide and carbamate derivatives of alkyl substituted /V-[4-(4-amino-1H-imidazo[4,5-c] quinolin-1-yl)butyl] methane-sulfonamides and methods
US8889154B2 (en) 2005-09-15 2014-11-18 Medicis Pharmaceutical Corporation Packaging for 1-(2-methylpropyl)-1H-imidazo[4,5-c] quinolin-4-amine-containing formulation
AU2006292119A1 (en) 2005-09-23 2007-03-29 3M Innovative Properties Company Method for 1H-imidazo[4,5-c]pyridines and analogs thereof
JP5247458B2 (en) 2005-11-04 2013-07-24 スリーエム・イノベイティブ・プロパティーズ・カンパニー Hydroxy and alkoxy substituted 1H-imidazoquinolines and methods
EP1968582A4 (en) 2005-12-28 2011-02-16 3M Innovative Properties Co Treatment for cutaneous t cell lymphoma
US20090306388A1 (en) 2006-02-10 2009-12-10 Pfizer Inc. Method for substituted ih-imidazo[4,5-c] pyridines
WO2007100634A2 (en) 2006-02-22 2007-09-07 3M Innovative Properties Company Immune response modifier conjugates
US8088788B2 (en) 2006-03-15 2012-01-03 3M Innovative Properties Company Substituted fused[1,2] imidazo[4,5-c] ring compounds and methods
WO2007106854A2 (en) 2006-03-15 2007-09-20 Coley Pharmaceutical Group, Inc. Hydroxy and alkoxy substituted 1h-imidazonaphthyridines and methods
US20100028381A1 (en) 2006-06-19 2010-02-04 3M Innovative Properties Company Formulation for delivery of immune response modifiers
US7906506B2 (en) 2006-07-12 2011-03-15 3M Innovative Properties Company Substituted chiral fused [1,2] imidazo [4,5-c] ring compounds and methods
US8124096B2 (en) 2006-07-31 2012-02-28 3M Innovative Properties Company Immune response modifier compositions and methods
US8178539B2 (en) 2006-09-06 2012-05-15 3M Innovative Properties Company Substituted 3,4,6,7-tetrahydro-5H-1,2a,4a,8-tetraazacyclopenta[cd]phenalenes and methods
US20080149123A1 (en) 2006-12-22 2008-06-26 Mckay William D Particulate material dispensing hairbrush with combination bristles
HUE033901T2 (en) * 2010-08-17 2018-01-29 3M Innovative Properties Co Lipidated immune response modifier compound compositions, formulations, and methods
BR112013031039B1 (en) * 2011-06-03 2020-04-28 3M Innovative Properties Co hydrazine compounds 1h-imidazoquinoline-4-amines, conjugates made from these compounds, composition and pharmaceutical composition comprising said compounds and conjugates, uses thereof and method of manufacturing the conjugate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679141B2 (en) 2019-12-20 2023-06-20 Nammi Therapeutics, Inc. Formulated and/or co-formulated liposome compositions containing toll-like receptor (“TLR”) agonist prodrugs useful in the treatment of cancer and methods thereof
US11744874B2 (en) 2019-12-20 2023-09-05 Nammi Therapeutics, Inc. Formulated and/or co-formulated liposome compositions containing toll-like receptor (“TLR”) agonist prodrugs useful in the treatment of cancer and methods thereof
US11896646B2 (en) 2019-12-20 2024-02-13 Nammi Therapeutics, Inc. Formulated and/or co-formulated liposome compositions containing toll-like receptor (“TLR”) agonist prodrugs useful in the treatment of cancer and methods thereof

Also Published As

Publication number Publication date
PL2606047T3 (en) 2017-07-31
US20210038713A1 (en) 2021-02-11
HRP20170433T1 (en) 2017-05-05
US20130230578A1 (en) 2013-09-05
US20160175433A1 (en) 2016-06-23
EP2606047A1 (en) 2013-06-26
RS55819B1 (en) 2017-08-31
US20170189521A1 (en) 2017-07-06
SI2606047T1 (en) 2017-04-26
MX2013001868A (en) 2013-04-03
US10821176B2 (en) 2020-11-03
US9242980B2 (en) 2016-01-26
US11524071B2 (en) 2022-12-13
HK1217942A1 (en) 2017-01-27
JP2013534248A (en) 2013-09-02
HUE033901T2 (en) 2018-01-29
LT2606047T (en) 2017-04-10
EP2606047A4 (en) 2014-07-02
AU2011292146A1 (en) 2013-03-07
CN103097386A (en) 2013-05-08
US9795669B2 (en) 2017-10-24
ES2617451T3 (en) 2017-06-19
WO2012024284A1 (en) 2012-02-23
US20180200364A1 (en) 2018-07-19
JP6710727B2 (en) 2020-06-17
US10052380B2 (en) 2018-08-21
EP2606047B1 (en) 2017-01-25
JP6392916B2 (en) 2018-09-19
CA2808624C (en) 2019-05-14
JP2018193395A (en) 2018-12-06
PT2606047T (en) 2017-04-07
BR112013003772A2 (en) 2016-08-02
JP2020128425A (en) 2020-08-27
US10383938B2 (en) 2019-08-20
CA3021114C (en) 2021-06-22
CN105294684B (en) 2018-04-06
EP3222621A1 (en) 2017-09-27
CA2808624A1 (en) 2012-02-23
JP2016034971A (en) 2016-03-17
CY1118815T1 (en) 2018-01-10
CA3021114A1 (en) 2012-02-23
ES2943385T3 (en) 2023-06-12
JP6360026B2 (en) 2018-07-18
MX359517B (en) 2018-10-01
JP7104096B2 (en) 2022-07-20
AU2011292146B2 (en) 2015-02-05
CN105294684A (en) 2016-02-03
US20200030441A1 (en) 2020-01-30
US20230090437A1 (en) 2023-03-23
JP2017082003A (en) 2017-05-18
EP3222621B1 (en) 2023-03-08
US20180326051A1 (en) 2018-11-15
DK2606047T3 (en) 2017-03-27

Similar Documents

Publication Publication Date Title
US11524071B2 (en) Lipidated immune response modifier compound compositions, formulations, and methods
US20170319712A1 (en) Methods and compositions for enhancing immune response
TW201737939A (en) Cationic lipid vaccine compositions and methods of use
WO2011084726A1 (en) BIS [4-AMINO-2-(ETHOXYMETHYL)-1-(2-HYDROXY-2-METHYLPROPYL)-1H-IMIDAZO[4,5-c]QUINOLIN-5-IUM] 4-[(3-CARBOXYLATO-2-HYDROXYNAPHTHALEN-1-YL)METHYL]-3-HYDROXYNAPHTHALENE-2-CARBOXYLATE COMPOSITIONS AND METHODS
WO2011084725A1 (en) 4-AMINO-2-(ETHOXYMETHYL)-1-(2-HYDROXY-2-METHYLPROPYL)-1H-IMIDAZO[4,5-c]QUINOLIN-5-IUM 1-HYDROXYNAPHTHALENE-2-CARBOXYLATE COMPOSITIONS AND METHODS
AU2018202168B2 (en) Lipidated immune response modifier compound compositions, formulations, and methods
AU2015202390A1 (en) Lipidated immune response modifier compound compositions, formulations, and methods

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION