US20170323848A1 - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
US20170323848A1
US20170323848A1 US15/662,058 US201715662058A US2017323848A1 US 20170323848 A1 US20170323848 A1 US 20170323848A1 US 201715662058 A US201715662058 A US 201715662058A US 2017323848 A1 US2017323848 A1 US 2017323848A1
Authority
US
United States
Prior art keywords
pads
semiconductor chip
wire
chip
leads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/662,058
Inventor
Takanori Yamashita
Toshinori Kiyohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to US15/662,058 priority Critical patent/US20170323848A1/en
Publication of US20170323848A1 publication Critical patent/US20170323848A1/en
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION CHANGE OF ADDRESS Assignors: RENESAS ELECTRONICS CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0616Random array, i.e. array with no symmetry
    • H01L2224/06164Random array, i.e. array with no symmetry covering only portions of the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/4917Crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49177Combinations of different arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/787Means for aligning
    • H01L2224/78703Mechanical holding means
    • H01L2224/78705Mechanical holding means in the upper part of the bonding apparatus, e.g. in the capillary or wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/85051Forming additional members, e.g. for "wedge-on-ball", "ball-on-wedge", "ball-on-ball" connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19104Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device on the semiconductor or solid-state device, i.e. passive-on-chip

Definitions

  • the present invention relates to a semiconductor device and its manufacturing technology, for example, a technology that is effective when being applied to a semiconductor device that integrates multiple semiconductor chips into a single package.
  • a structure of a semiconductor device that includes a semiconductor chip over which an inductor comprised of a spiral electric conduction pattern is formed is disclosed, for example, in Japanese Unexamined Patent Application Publication No. 2009-302418.
  • the photocoupler includes a light emitting device such as a light emitting diode and a photodetector such as a phototransistor, and transfers an electric signal by converting the electric signal inputted thereinto into light with the light emitting device, receiving this light with the photodetector, and subsequently converting it into an electric signal again.
  • a light emitting device such as a light emitting diode
  • a photodetector such as a phototransistor
  • the photocoupler since the photocoupler includes the light emitting device and the photodetector, it is difficult to miniaturize it. Moreover, a photocoupler has a tendency that its followability declines when a frequency of the electric signal becomes higher.
  • the inventors of this application have considered structure in which multiple (two) semiconductor chips each having a transmission part and a reception part, respectively, are coupled together electrically with wires, and are integrated into a single package using this technology.
  • This is a structure in which two inductors in the respective semiconductor chips are formed, and a first communication part for performing transmission between two chips, i.e., from one semiconductor chip to the other semiconductor chip and a second communication part for performing transmission between the two chips, i.e., from the other semiconductor chip to the one semiconductor chip are formed.
  • An object of embodiments disclosed in this application is to provide a technology that can improve reliability of the semiconductor device.
  • a semiconductor device has: a first semiconductor chip having a first transmission part and a first reception part; a second semiconductor chip having a second transmission part and a second reception part; a first chip mounting part; a second chip mounting part; a first suspension lead; a second suspension lead; multiple first leads; multiple second leads; a first wire group; a second wire group; a third wire group; a fourth wire group; and a sealing body.
  • an inter-wire distance between a wire in the first wire group that is the closest to the second wire group and a wire in the second wire group that is the closest to the first wire group is larger than any inter-wire distances in the first wire group and in the second wire group.
  • a method for manufacturing a semiconductor device includes a process of preparing a lead frame that has the first chip mounting part, the second chip mounting part, the multiple first leads, and the multiple second leads, and a process of mounting the first semiconductor chip over the above-mentioned first chip mounting part and mounting the second semiconductor chip over the second chip mounting part.
  • the above-mentioned method for manufacturing a semiconductor device includes the steps of: electrically coupling some of respective multiple pads of the above-mentioned first semiconductor chip and the above-mentioned second semiconductor chip with wires; electrically coupling some of the multiple pads of the above-mentioned first semiconductor chip and the above-mentioned first leads with wires; and electrically coupling some of the multiple pads of the above-mentioned second semiconductor chip and the above-mentioned second leads with wires.
  • the above-mentioned method for manufacturing a semiconductor device includes the steps of: coupling multiple first pads of the above-mentioned first semiconductor chip and multiple fourth pads of the above-mentioned second semiconductor chip with multiple wires; and coupling multiple second pads of the above-mentioned first semiconductor chip and multiple third pads of the above-mentioned second semiconductor chip with multiple wires.
  • FIG. 1 is a plan view of one example of a structure of a semiconductor device of an embodiment with a sealing body penetrated;
  • FIG. 2 is a sectional view showing one example of the structure taken along a line A-A of FIG. 1 ;
  • FIG. 3 is a block diagram showing one example of a circuit block of transmission reception parts of a semiconductor device shown in FIG. 1 ;
  • FIG. 4 is a diagram showing one example of a system block using the semiconductor device shown in FIG. 1 ;
  • FIG. 5 is a transmission plan view showing one example of an inductor arrangement in each semiconductor chip of the semiconductor device shown in FIG. 1 ;
  • FIG. 6 is a plan view enlarging and showing one example of the inductor arrangement shown in FIG. 5 ;
  • FIG. 7 is a conceptual diagram showing one example of pad heights in two semiconductor chips of the semiconductor device of FIG. 1 ;
  • FIG. 8 is a conceptual diagram of withstand voltage showing one example of a relationship between a withstand voltage of sealing resin and a distance in the semiconductor device of FIG. 1 ;
  • FIG. 9 is a flowchart and a plan view showing one example of a principal process in an assembly of the semiconductor device of FIG. 1 ;
  • FIG. 10 is a flowchart and a plan view showing the one example of the principal process in the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 11 is a flowchart and a plan view showing the one example of the principal process in the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 12 are a plan view and an enlarged local plan view showing one example of a structure of a lead frame used in the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 13 is a sectional view showing one example of the structure of a device region of the lead frame shown in FIG. 12 ;
  • FIG. 14 is a sectional view showing one example of a structure after paste coating of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 15 is a sectional view showing one example of a structure after die bonding of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 16 is a conceptual diagram showing one example of tools used in wire bonding of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 17 is a sectional view showing one example of a structure after bump bonding of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 18 is a sectional view showing one example of a structure after bonding between chips of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 19 is a sectional view showing one example of a structure after the wire bonding of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 20 is a local sectional view showing one example of a structure after clamping with a mold in an encapsulation process of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 21 is a local plan view showing one example of a resin injection direction after clamping with the mold in FIG. 20 ;
  • FIG. 22 is a sectional view showing one example of a structure after encapsulation of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 23 is a sectional view showing one example of a structure after exterior plating formation of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 24 is a local sectional view showing one example of a structure after cutting and forming of the assembly of the semiconductor device of FIG. 1 ;
  • FIG. 25 is a plan view showing a structure of the semiconductor device of a modification of the embodiment with the sealing body penetrated.
  • the structural element (including an elementary step, etc.) is not necessarily indispensable except for the case where it is clearly indicated, the case where it is theoretically thought that it is clearly indispensable, etc.
  • FIG. 1 is a plan view showing one example of a structure of a semiconductor device according to an embodiment with a sealing body penetrated
  • FIG. 2 is a sectional view showing one example of the structure taken along the line A-A of FIG. 1
  • FIG. 3 is a block diagram showing one example of a circuit block of a transmission reception part of the semiconductor device shown in FIG. 1
  • FIG. 4 is a diagram showing one example of a system block using the semiconductor device shown in FIG. 1
  • FIG. 5 is a penetration plan view showing one example of an inductor arrangement in each semiconductor chip of the semiconductor device shows in FIG. 1
  • FIG. 6 is a plan view enlarging and showing one example of the inductor arrangement shown in FIG. 5
  • FIG. 5 is a penetration plan view showing one example of an inductor arrangement in each semiconductor chip of the semiconductor device shows in FIG. 1
  • FIG. 6 is a plan view enlarging and showing one example of the inductor arrangement shown in FIG. 5
  • FIG. 7 is a conceptual diagram showing one example of pad heights in two semiconductor chips of the semiconductor device of FIG. 1
  • FIG. 8 is withstand voltage conceptual diagram showing one example of a relationship between a withstand voltage and a distance of sealing resin in the semiconductor device of FIG. 1 .
  • the semiconductor device (semiconductor package) shown in FIG. 1 and FIG. 2 is one over which two semiconductor chips are mounted and integrated into a single package.
  • a transmission part and a reception part for transmitting and receiving a signal between the both chips are formed, the semiconductor chips are electrically coupled with each other using wires, respectively.
  • two inductors (coils) are arranged and the electric signal is transmitted between the inductors without contact between the inductors by bringing the two inductors into inductive coupling in each chip.
  • power supply voltages between the inductors that are brought into the inductive coupling are, for example, about several volts on the low voltage side and about several hundred volts to several thousand volts, which are different largely from each other.
  • the above-mentioned inductors transmit an electric signal in a non-contact state therebetween through an insulating layer.
  • a semiconductor chip (a first semiconductor chip) 11 that has a surface 11 a over which multiple pads 11 c , 11 d , 11 e , and 11 f are arranged and a semiconductor chip (a second semiconductor chip) 21 that has a surface 21 a over which multiple pads 21 c , 21 d , 21 e , and 21 f are arranged are incorporated therein.
  • the semiconductor chip 11 is mounted over an upper surface (a first upper surface) 14 a that a thin-plated die pad (a first chip mounting part) 14 has, and on the other hand the semiconductor chip 21 is mounted over an upper surface (a second upper surface) 24 a that a thin-plated die pad (a second chip mounting part) 24 has.
  • a back surface 11 b of the semiconductor chip 11 is bonded to the die pad 14 with a medium of a die bonding material 2 (an adhesive) interposed therebetween, and a back surface 21 b of the semiconductor chip 21 is bonded to the die pad 24 with a medium of the die bonding material 2 interposed therebetween.
  • the semiconductor chip 11 includes a transmission part (a first transmission part) 12 for transmitting a signal to the outside and a reception part (a first reception part) 13 for receiving a signal from the outside, and on the other hand the semiconductor chip 21 also includes a transmission part (a second transmission part) 22 for transmitting a signal to the outside and a reception part (a second reception part) 23 for receiving a signal from the outside.
  • the SOP1 includes multiple inner leads (first leads) 16 that are arranged adjacent to the die pad 14 , multiple inner leads (second leads) 26 that are arranged adjacent to the die pad 24 , a suspension lead (a first suspension lead) 15 for supporting the die pad 14 , and a suspension lead (a second suspension lead) 25 for supporting the die pad 24 .
  • the SOP1 includes a wire group (a first wire group) 6 that electrically couples the semiconductor chip 11 and the semiconductor chip 21 and includes multiple wires (first wires) 6 a , and a wire group (a second wire group) 7 that electrically couples the semiconductor chip 11 and the semiconductor chip 21 and includes multiple wires (second wires) 7 a .
  • the SOP1 includes a wire group (a third wire group) 18 that electrically couples the semiconductor chip 11 and the multiple inner leads 16 and includes multiple wires (third wires) 18 a , and a wire group (a fourth wire group) 28 that electrically couples the semiconductor chip 11 and the multiple inner leads 26 and includes multiple wires (fourth wires) 28 a.
  • the SOP1 includes a sealing body 3 that is formed with a resin and seals respective parts of the semiconductor chips 11 , 21 , the die pads 14 , 24 , and the suspension leads 15 , 25 , parts of the multiple first and second leads (the inner leads 16 , 26 ), and the multiple wires 6 a , 7 a , 18 a , and 28 a , respectively.
  • the sealing body 3 has: a first side 3 a extending along a first direction 4 ; a second side 3 b extending along a second direction 5 that is substantially perpendicular to the first direction 4 ; a third side 3 c that faces the first side 3 a and extends along the first direction 4 ; and a fourth side 3 d that faces the second side 3 b and extends along the second direction 5 .
  • each of the multiple first leads is comprised of the inner lead 16 arranged inside the sealing body 3 and the outer lead 17 that links to the inner lead 16 and is arranged outside the sealing body 3 to serve an external terminal of the SOP1.
  • each of the multiple outer leads 17 is bent and formed into a shape of a gull wing and is furnished with exterior plating 8 over each surface.
  • each of the multiple second leads is comprised of the inner lead 26 arranged inside the sealing body 3 and the outer lead 27 that links to the inner lead 26 and is arranged outside the sealing body 3 to serve an external terminal of the SOP1, and each of the multiple outer leads 27 is bent and formed into the shape of a gull wing and is furnished with the exterior plating 8 over each surface.
  • the semiconductor chip 11 and the semiconductor chip 21 are the same semiconductor chip, and as shown in FIG. 1 , the semiconductor chip 21 is mounted over the die pad 24 being rotated to a mounting direction of semiconductor chip 11 by 180 degrees.
  • the multiple pads 11 c electrically coupled with the transmission part 12 and multiple pads 11 d electrically coupled with the reception part 13 are arranged.
  • the multiple pads 21 c electrically coupled with the transmission part 22 and the multiple pads 21 d electrically coupled with the reception part 23 are arranged.
  • the multiple pads 11 c of the semiconductor chip 11 and the multiple pads 21 d of the semiconductor chip 21 are electrically coupled with one another through the wires 6 a of the wire group 6 , and on the other hand the multiple pads 11 d of the semiconductor chip 11 and the multiple pads 21 c of the semiconductor chip 21 are electrically coupled with one another through the wires 7 a of the wire group 7 .
  • the transmission part 12 in the semiconductor chip 11 includes a transmission circuit 12 a , a coil (a first coil) 12 b electrically coupled with the transmission circuit 12 a , and a coil (a second coil) 12 c that is arranged over the coil 12 b , and is insulated (separated) from the coil 12 b , further is, electrically coupled with some pads 11 c among the multiple pads 11 c.
  • the reception part 13 in the semiconductor chip 11 includes the reception circuit 13 a that is coupled with some pads 11 d among the multiple pads 11 d.
  • the transmission part 22 in the semiconductor chip 21 includes a transmission circuit 22 a , a coil (a fourth coil) 22 c electrically coupled with the transmission circuit 22 a , and a coil (a third coil) 22 b that is arranged over the coil 22 c , is electrically insulated (separated) from the coil 22 c , and is coupled with some pads 21 c among the multiple pads 21 c.
  • the reception part 23 in the semiconductor chip 21 includes a reception circuit 23 a electrically coupled with some pads 21 d among the multiple pads 21 d.
  • the SOP1 of this embodiment is a two-channel version semiconductor package that has a pair of coils and over which the transmission part and the reception part (the communication parts) are provided, respectively.
  • some pads 11 c coupled with the coils 12 c in the semiconductor chip 11 in plan view are arranged so as to be enclosed by the coils 12 c on their peripheries. That is, as shown in an enlarged view of FIG. 6 , the some pads 11 c are arranged inside the spirals of the coils 12 c . Moreover, the pad 11 c for the GND (or the power supply) is arranged between the two coils 12 c . Incidentally, in the two coils 12 c , winding directions of the spirals are reverse directions.
  • the coils 12 c are formed over the surface 11 a of the semiconductor chip 11 with a medium of an insulating layer 11 m interposed therebetween, and are made of copper (Cu) wiring, for example (the insulating layer 11 m is made of polyimide, for example).
  • the coils 22 b formed in the semiconductor chip 21 have also the same arrangement as that of the coils 12 c , and are made of the same copper (Cu) wiring as that of the coils 12 c .
  • the coil 12 b of the semiconductor chip 11 and the coil 22 c of the semiconductor chip 21 shown in FIG. 3 have the same arrangement.
  • a system including the transmission part 12 and the reception part 13 of the semiconductor chip 11 is designated as a first power supply system 9
  • a system including the transmission part 22 and the reception part 23 of the semiconductor chip 21 is designated as a second power supply system 10 .
  • a power supply voltage of the first power supply system 9 is a low voltage (about several volts), and on the other hand a power supply voltage of the second power supply system 10 is a high voltage (about several hundred volts to several thousand volts).
  • the inter-wire distance L (L in FIG. 3 ) between the wire 6 a and the wire 7 a is made larger than any inter-wire distances in the wire group 6 and in the wire group 7 .
  • the inter-wire distance L (L in FIG. 3 ) of the wires that are closest to each other is made larger than any inter-wire distances in the wire group 6 and in the wire group 7 .
  • the inter-wire distance L is 0.4 mm or more.
  • the withstand voltage can be secured.
  • the reliability can be improved while attaining further miniaturization of the SOP1 compared to a configuration using a photocoupler by having adopted inductor coupling.
  • a configuration using the inductor since a configuration using the inductor has higher followability to a fast signal than the configuration using the photocoupler, it can support fast signal transmission (transmission of a high-frequency signal).
  • the SOP1 of this embodiment is applicable, for example, to automobiles (EV: electric vehicle, HV: hybrid vehicle), motor control systems of electrical household appliances such as a washing machine, a switching regulator, an illumination controller, a solar photovoltaic generation controller, a cellular phone, a mobile communication device, or the like.
  • EV electric vehicle
  • HV hybrid vehicle
  • motor control systems of electrical household appliances such as a washing machine, a switching regulator, an illumination controller, a solar photovoltaic generation controller, a cellular phone, a mobile communication device, or the like.
  • the SOP1 can be electrically coupled with loads such as a control circuit 31 , a drive circuit 32 , and a motor 33 .
  • the semiconductor chip 11 has the semiconductor chip 11 controlled by the control circuit 31 , performs signal transmission by the inductor coupling between the semiconductor chip 11 and the semiconductor chip 21 , further, transmits a signal to the drive circuit 32 through the semiconductor chip 21 , and makes the drive circuit 32 drive the motor 33 , etc.
  • the semiconductor chip 11 is a low voltage chip to which the power supply voltage of the first power supply system 9 is supplied and the power supply voltage at that time is about 5 V, for example; on the other hand, the semiconductor chip 21 is a high voltage chip to which the power supply voltage of the second power supply system 10 is supplied, and the power supply voltage at that time is 600 V to 1000 V or a voltage exceeding those voltages, for example.
  • the die pad 14 in plan view shown in FIG. 1 , the die pad 14 is arranged between the multiple inner leads 16 and the die pad 24 , and on the other hand the die pad 24 is arranged between the multiple inner leads 26 and the die pad 14 . Furthermore, both in plan view and in the second direction 5 of FIG. 1 , a distance (inter-die pad distance) M between the die pad 14 and the die pad 24 is made larger than both a distance N between the die pad 14 and multiple inner leads 16 and a distance P between the die pad 24 and the multiple inner leads 26 (M>N, M>P).
  • coupling (ground bonding) with a wire is made between the die pad 14 and the semiconductor chip 11 through multiple wires (fifth wires) 19 a
  • the coupling (the ground bonding) with a wire is also made between the die pad 24 and the semiconductor chip 21 through multiple wires (sixth wires) 29 a ; therefore, a potential difference arises also between the both die pads.
  • the withstand voltage is securable by making large a distance M between the die pad 14 and the die pad 24 .
  • the semiconductor chip 11 has on its surface 11 a : a side (a first chip side) 11 g extending in the first direction 4 ; a side (a second chip side) 11 h facing the side 11 g and extending in the first direction 4 ; a side (a third chip side) 11 i intersecting the side 11 g and extending in the second direction 5 ; and a side (a fourth chip side) 11 j facing the side 11 i and extending in the second direction 5 .
  • the side 11 g of the semiconductor chip 11 faces the die pad 24
  • the side 11 h of the semiconductor chip 11 faces a tip of multiple inner leads 16 .
  • the multiple pads 11 d are arranged so as to be closer to the side 11 g of the semiconductor chip 11 than the multiple pads 11 c are. That is, the multiple pads 11 d are arranged in positions closer to the side 11 g than positions of an imaginary line C1 that is formed by the multiple pads 11 c in a line. That is, since the coil 12 c is arranged in a region peripheral to the pad 11 c , the pad 11 d is arranged away from the pad 11 c.
  • the semiconductor chip 21 has also a side 21 g (a first chip side) extending in the first direction 4 , a side (a second chip side) 21 h facing the side 21 g and extending in the first direction 4 , a side (a third chip side) 21 i intersecting the side 21 h and extending in the second direction 5 , and a side 21 j (a fourth chip side) facing the side 21 i and extending in the second direction 5 .
  • the side 21 g of the semiconductor chip faces the die pad 14
  • the side 21 h of the semiconductor chip 21 h faces tips of the multiple inner leads 26 .
  • the multiple pads 21 d are arranged so as to be closer to the side 21 g of the semiconductor chip 21 than the multiple pads 21 c are. That is, the multiple pads 21 d are arranged in positions closer to the side 21 g than positions of an imaginary line C2 that is formed by the multiple pads 21 c in a line. That is, since the semiconductor chip 21 is the same chip as the semiconductor chip 11 and since the coil 22 b is arranged on the periphery of the pad 21 c , the pad 21 d is arranged away from the pad 21 c.
  • the multiple pads (the fifth pads) 11 e are arranged along the side 11 i , and some pads 11 e among the multiple pads 11 e are electrically coupled with the upper surface 14 a of the die pad 14 through the wires (the fifth wires) 19 a of a wire group 19 (a fifth wire group) 19 .
  • a long and narrow through hole 14 b is provided in a region of the upper surface 14 a between the semiconductor chip 11 and a portion where the wire 19 a is coupled with the upper surface 14 a of the die pad 14 .
  • the multiple pads (the seventh pads) 21 e are arranged along the side 21 i over its surface 21 a , and some pads 21 e among the multiple pads 21 e are electrically coupled with the upper surface 24 a of the die pad 24 through the wires (the sixth wires) 29 a of a wire group (a sixth wire group) 29 .
  • a long and narrow through hole 24 b is provided in a region of the upper surface 24 a between the semiconductor chip 21 and a portion where the wire 29 a is coupled with the upper surface 24 a of the die pad 24 .
  • the through holes 14 b , 24 b are formed in the die pads 14 , 24 , it can be prevented that the wires 19 a , 29 a cannot be coupled thereto due to outflow of the die bond material (the adhesive) 2 . That is, even if the die bonding material 2 flows out, the die bonding material 2 can be accumulated in the through holes 14 b , 24 b , and it is possible to prevent an outflow of the die bonding material 2 to a region where the wires 19 a , 29 a are coupled.
  • the through holes 14 b , 24 b may be concave slots as far as they are in a shape capable of accumulating the die bonding material 2 that flowed out, and also in that case, the same effect can be obtained.
  • the through holes 14 b , 24 b are formed in the die pads 14 , 24 , a resin that forms the sealing body 3 can be filled in the through holes 14 b , 24 b , which can enhance a resin lock effect (an effect of increasing adhesion of the resin and the die pads) of the resin and the die pads 14 , 24 .
  • a resin lock effect an effect of increasing adhesion of the resin and the die pads
  • areas of the die pads 14 , 24 in plan view that occupies an area of the sealing body 3 in plan view are high as compared with areas of the inner leads 16 , 26 in plan view, increasing the resin lock effect is effective in enhancing resistance at the time of reflow.
  • the suspension lead 15 of the SOP1 is arranged along the first side 3 a of the sealing body 3 , the outer leads 17 that are respective parts of the multiple first leads and also a part of the suspension lead 15 are exposed from the first side 3 a of the sealing body 3 as external terminals.
  • the suspension leads 15 are leads to which the ground voltage can be supplied from the outside, and the pads 11 e to each of which the wire is not coupled among the multiple pads 11 e are pads to which power supply voltage can be supplied from the outside.
  • the suspension lead 25 is arranged along the third side 3 c of the sealing body 3 , and the outer leads 27 that are parts of the multiple second leads and a part of the suspension lead 25 (the outer lead 27 ) are exposed from the third side 3 c of the sealing body 3 as external terminals.
  • the suspension lead 25 is a lead to which the ground voltage can be supplied from the outside, and the pads 21 e to each of which the wire is not coupled among the multiple pads 21 e are pads to which power supply voltage can be supplied from the outside.
  • the semiconductor chip 21 is the same chip as the semiconductor chip 11 , even when the semiconductor chip 21 is mounted being rotated to the semiconductor chip 11 by 180 degrees, it is possible to easily supply the ground voltage and the power supply voltage thereto from the outside.
  • the multiple pads (the sixth pads) 11 f are arranged along the side (the fourth chip side) 11 j , some pads 11 f of the multiple pads 11 f are electrically coupled with some inner leads 16 of the multiple inner leads 16 through some wires 18 a in the wire group (the third wire group) 18 . Furthermore, leads that are coupled with some pads 11 f among the multiple pads 11 f are exposed from the first side 3 a of the sealing body 3 as the outer leads 17 , and are leads to which the power supply voltage can be supplied from the outside. Incidentally, the pads 11 f to each of which the wire is not coupled among the multiple pads 11 f are pads to which the ground voltage can be supplied from the outside.
  • the multiple pads (the eighth pads) 21 f are arranged along the side (the fourth chip side) 21 j over its surface 21 a , and some pads 21 f of the multiple pads 21 f are electrically coupled with some inner leads 26 of the multiple inner leads 26 through some wires 28 a in the wire group (the fourth wire group) 28 . Furthermore, leads coupled with the some pads 21 f of the multiple pads 21 f are exposed from the third side 3 c of the sealing body 3 as the outer leads 27 , and are leads to which the power supply voltage can be supplied from the outside. Incidentally, the pads 21 f to which the wires are not coupled among the multiple pads 21 f are pads to which the ground voltage can be supplied from the outside.
  • the coils 12 c are arranged on the peripheries of the multiple pads 11 c over the surface 11 a of the semiconductor chip 11 , these multiple pads 11 c are arranged more inside the semiconductor chip 11 than the multiple pads 11 d in plan view. That is, the pads 11 c of the transmission part 12 are arranged in positions more inside the semiconductor chip 11 than the pads 11 d of the reception part 13 .
  • the semiconductor chip 11 and the semiconductor chip 21 are the same chip. Therefore, similarly, since the coils 22 b are arranged on the peripheries of the multiple pads 21 c over the surface 21 a of the semiconductor chip 21 , the multiple pads are arranged more inside of the semiconductor chip 21 than the multiple pads 21 d in plan view. That is, the pads 21 c of the transmission part 22 are arranged in positions more inside the semiconductor chip 21 than the pads 21 d of the reception part 23 .
  • an insulating layer 11 k provided in the chip and the insulating layer 11 m further layered over this insulating layer 11 k over its surface 11 a are arranged, and these layers secure the withstand voltage between the coils.
  • the insulating layer 11 m over the surface 11 a contains a layer comprised of a polyimide system, a larger withstand voltages can be secured.
  • the semiconductor chip 11 and the semiconductor chip 21 are the same chip, also in the coil (the fourth coil) 22 c and the coil (the third coil) 22 b of the semiconductor chip 21 , the insulating layer 11 k and the insulating layer 11 m (an insulating layer 21 m shown in FIG. 5 ) are formed between the both coils like the semiconductor chip 11 , and a large withstand voltage is secured.
  • a distance Q from wire peaks of the respective wires 6 a , 7 a of the wire group (the first wire group) 6 and the wire group (the second wire group) 7 to an upper surface 3 e of the sealing body 3 be set to be equal to or more than a chip thickness T of the semiconductor chip 11 (semiconductor chip 21 ) (Q ⁇ T).
  • the chip thickness T is 200 ⁇ m to 300 ⁇ m, for example, when considering a package thickness (the miniaturization) of the SOP1, preferably it should be equal to or less than 200 ⁇ m, and it is possible to realize both the miniaturization and securing of the withstand voltage of the SOP1 by setting the above-mentioned distance Q at this time to be equal to or more than 0.2 mm.
  • FIG. 8 shows a relationship between the withstand voltage of the sealing resin and the distance (being measured in conformity to ASTM-D149).
  • a target withstand voltage is set to be equal to or more than 3.5 kV.
  • the distance should be larger than about 0.2 mm, as is clear from FIG. 8 .
  • the safety factor was expected to be about 2 times (Min 6.8 kV), and the inter-wire distance L and inter-die pad distance M were set to be equal to or more than 0.4 mm, respectively.
  • This calculated value corresponds to the target withstand voltage 3.5 kV or more, exceeding 3.5 kV considerably, and therefore, the distance Q from the wire peak to the sealing body upper surface (resin thickness) is set to be equal to or more than 0.2 mm.
  • FIG. 9 is a flowchart and a plan view showing one example of a principal process in an assembly of the semiconductor device
  • FIG. 10 is a flowchart and a plan view showing one example of the principal process in the assembly of the semiconductor device of FIG. 1
  • FIG. 11 is a flowchart and a plan view showing one example of the principal process in the assembly of the semiconductor device of FIG. 1
  • FIG. 12 is a plan view and enlarged local plan view showing one example of a structure of a lead frame used in the assembly of the semiconductor device of FIG. 1
  • FIG. 13 is a sectional view showing one example of a structure of a device region of the lead frame shown in FIG. 12
  • FIG. 13 is a sectional view showing one example of a structure of a device region of the lead frame shown in FIG. 12
  • FIG. 13 is a sectional view showing one example of a structure of a device region of the lead frame shown in FIG. 12
  • FIG. 14 is a sectional view showing one example of a structure after paste coating of the assembly of the semiconductor device of FIG. 1
  • FIG. 15 is a sectional view showing one example of a structure after die bonding of the assembly of the semiconductor device of FIG. 1
  • FIG. 16 is a conceptual diagram showing one example of tools used in wire bonding of the assembly of the semiconductor device of FIG. 1
  • FIG. 17 is a sectional view showing one example of a structure after bump bonding of the assembly of the semiconductor device of FIG. 1
  • FIG. 18 is a sectional view showing one example of a structure after inter-chip bonding of the assembly of the semiconductor device of FIG. 1
  • FIG. 19 is a sectional view showing one example of a structure after the wire bonding of the assembly of the semiconductor device of FIG. 1
  • FIG. 20 is a local sectional view showing one example of a structure after clamping with a mold in an encapsulation process of the assembly of the semiconductor device of FIG. 1 .
  • FIG. 21 is a local plan view showing one example of a resin injection direction after clamping with the mold in FIG. 20
  • FIG. 22 is a sectional view showing one example of a structure after encapsulation of the assembly of the semiconductor device of FIG. 1
  • FIG. 23 is a sectional view showing one example of a structure after exterior plating formation of the assembly of the semiconductor device of FIG. 1
  • FIG. 24 is a local sectional view showing one example of a structure after cutting and forming of the assembly of the semiconductor device of FIG. 1 .
  • a lead frame 34 is prepared that has the die pad 14 supported by the suspension lead 15 , the die pad 24 supported by the suspension lead 25 , the multiple inner leads 16 arranged adjacent to the die pad 14 , and the multiple inner leads 26 arranged adjacent to the die pad 24 .
  • many device regions 34 a in each of which a single package is formed are formed in a matrix array in the lead frame 34 , which is a so-called multiple metallic lead frame (for example, made of a copper alloy, a steel-nickel alloy, etc.) in a thin plate shape.
  • the lead frame 34 which is a so-called multiple metallic lead frame (for example, made of a copper alloy, a steel-nickel alloy, etc.) in a thin plate shape.
  • Step S 2 of FIG. 9 Ag paste application shown in Step S 2 of FIG. 9 is performed.
  • Ag paste is applied over each of the die pad 14 and the die pad 24 as the die bonding material (the adhesive) 2 .
  • Step S 3 of FIG. 9 is performed.
  • the semiconductor chip 11 is mounted over the die pad 14 through the die bonding material 2
  • the semiconductor chip 21 is mounted over the die pad 24 through the die bonding material 2 .
  • the semiconductor chip 11 and the semiconductor chip 21 are the same semiconductor chip, and in a die bonding process, the semiconductor chip 21 is mounted over the die pad after being rotated to the mounting direction of the semiconductor chip 11 by 180 degrees as shown in plan view of Step S 3 of FIG. 9 .
  • the long and narrow through holes 14 b , 24 b are formed on sides of respective one ends of the die pad 14 and the die pad 24 . Since the through holes 14 b , 24 b are formed in the die pads 14 , 24 , even when flowing out (bleeding) of the die bonding material occurs, the die bonding material 2 that flowed out can be accumulated in the through holes 14 b , 24 b.
  • the die bonding material 2 can be accumulated in the through holes 14 b , 24 b , and it is possible to prevent the outflow of the die bonding material 2 to a region where down bonding is performed.
  • the through holes 14 b , 24 b is just to be in a shape that can stop the die bonding material 2 that flowed out, for example, they may be in a shape of a concave slot, etc., and also in that case, the same effect can be obtained.
  • the wire bonding is performed.
  • a case of adopting an ultrasonic wire bonding system that applies an ultrasonic wave to each of multiple wires through bonding tools such as an ultrasonic horn 37 and a capillary 38 at the time of the wire bonding, as shown in FIG. 16 will be explained. That is, while a wire is drawn out by the capillary 38 provided near a tip of the ultrasonic horn 37 , the wire bonding is performed with an ultrasonic wave applied to the wire by the ultrasonic horn 37 and the capillary 38 .
  • the wire bonding is performed with respective second ends 14 d , 24 d of the die pad 14 and the die pad 24 pressed down by a clamper 39 .
  • the die pads 14 , 24 have first ends 14 c , 24 c and the second ends 14 d , 24 d that face the first ends 14 c , 24 c in the first direction 4 , respectively, further, the suspension leads 15 , 25 are coupled to the first ends 14 c , 24 c of the die pads 14 , 24 , respectively, and the second ends 14 d , 24 d are configured to be open ends 14 e , 24 e , respectively.
  • the die pads are easy to flap at the time of the wire bonding. Therefore, at the time of the wire bonding as shown in FIG. 10 , by pressing the second ends 14 d , 24 d on the side that are not supported by suspension leads of the die pads 14 , 24 with the clamper 39 , it is possible to suppress flapping of the respective leads, and as a result, to reduce wire bonding defect caused by flapping of the die pads 14 , 24 .
  • respective open ends 14 e , 24 e of the second end 14 d of the die pad 14 and the second end 24 d of the die pad 24 are in a free state where they are not coupled with anything at all including suspension leads. Moreover, a reason why the second ends 14 d , 24 d of the die pads 14 , 24 are in a free state where they are not coupled with anything at all is to secure the withstand voltage.
  • a letter T lead 36 is arranged in the vicinity of the second ends 14 d , 24 d of the die pads 14 , 24 . If suspension leads are coupled, the withstand voltage cannot be secured between them and the letter T lead 36 . Therefore, the second ends 14 d , 24 d are configured to be open ends (single suspension) 14 e , 24 e , respectively, without being coupled with suspension leads etc.
  • the wire bonding is performed while the second ends 14 d , 24 d on the sides that are not supported by the suspension leads of the die pads 14 , 24 are pressed down by the clamper 39 .
  • the bump bonding shown in Step S 4 of FIG. 10 is performed.
  • the multiple pads 11 c electrically coupled with the transmission part 12 of FIG. 3 and the multiple pads 11 d electrically coupled with the reception part 13 are arranged.
  • the multiple pads 21 c electrically coupled with the transmission part 22 of FIG. 3 and the multiple pads 21 d electrically coupled with the reception part 23 are arranged.
  • a first stud bump 20 is formed over one pad 11 c among the multiple pads 11 c of the semiconductor chip 11 .
  • a second stud bump 30 is formed over one pad 21 c among the multiple pads 21 c of the semiconductor chip 21 .
  • Step S 5 of FIG. 10 bonding between chips shown in Step S 5 of FIG. 10 is performed. That is, as shown in FIG. 1 , some (pads 11 c , 11 d ) of the multiple pads of the semiconductor chip 11 and some (pads 21 c , 21 d ) of the multiple pads of the semiconductor chip 21 are electrically coupled with one another with the multiple wires 6 a , 7 a , respectively.
  • one end of the wire 6 a is coupled onto one pad 21 d among the multiple pads 21 d of the semiconductor 21 of FIG. 1 , and subsequently the other end of the wire 6 a is couple onto the first stud bump 20 .
  • one end of the wire 7 a is coupled onto one pad 11 d among the multiple pads 11 d of the semiconductor 11 , subsequently the other end of the wire 7 a is couple onto the second stud bump 30 , and the bonding between chips is completed as shown in FIG. 18 .
  • this process is one that secures a height at which the second bonding is intended to be performed by having forming the stud bump on a second bonding side, whereby the semiconductor chip can be prevented from being damaged.
  • the second side is a pad whose insulating layer under the pad is thicker, and the second bonding is performed to it. That is, since two times of the wire bonding are performed on the second side, i.e., the bump bonding and the second bonding, it is desirable that a pad having a thick insulating layer under the pad be selected as the second side. Therefore, in this embodiment, the pads 11 c , 21 c formed on the insulating layers 11 m , 21 m shown in FIG. 5 and FIG. 7 are selected as the second side.
  • the insulating layers 11 m , 21 m are configured to be arranged both under the pad over which the first stud bump 20 is formed among the multiple pads 11 c of the semiconductor chip 11 and under the pad over which the second stud bump 30 is formed among the multiple pads 21 c of the semiconductor chip 21 .
  • the insulating layers 11 m , 21 m each contain a layer comprised of a polyimide.
  • the multiple pads 11 c of the semiconductor chip 11 and the multiple pads 21 d of the semiconductor chip 21 are coupled with one another with multiple wires 6 a included in the wire group 6 , respectively. Furthermore, the multiple pads 11 d of the semiconductor chip 11 and the multiple pads 21 c of the semiconductor chip 21 are coupled with one another with the multiple wires 7 a included in the wire group 7 , respectively.
  • the wire bonding is performed so that the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 and the wire 7 a that is closest to the wire group 6 in the wire group 7 may become larger than any inter-wire distances in the wire group 6 and in the wire group 7 .
  • the inter-wire distance L is 0.4 mm or more.
  • the assembly of the SOP1 of this embodiment by making the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 and the wire 7 a that is closest to the wire group 6 in the wire group 7 larger than any inter-wire distances in the wire group 6 and in the wire group 7 , it is possible to secure the withstand voltage of the SOP1.
  • the semiconductor chip 11 and the semiconductor chip 21 in the case where voltage values differ largely between the first communication part to which the power supply voltage (low voltage) of the first power supply system 9 of FIG. 3 is supplied and the second communication part to which the power supply voltage (high voltage) of the second power supply system 10 is supplied, it is possible to secure the withstand voltage by making the inter-wire distance in the above-mentioned first communication part and the above-mentioned second communication part wide open. This can prevent the electric short circuit between the wire of the above-mentioned first communication part and the wire of the above-mentioned second communication part from occurring, and as a result, the improvement of the reliability of the SOP1 can be attained.
  • Step S 6 of FIG. 10 the wire bonding shown in Step S 6 of FIG. 10 is performed.
  • the wire bonding between the chip and the lead is performed. That is, as shown in FIG. 1 and FIG. 19 , some (the pad 11 f ) of the multiple pads of the semiconductor chip 11 and the multiple inner leads 16 are electrically coupled with one another with multiple wires 18 a , respectively. Moreover, some (pad 21 f ) of the multiple pads of the semiconductor chip 21 and the multiple inner leads 26 are electrically coupled with one another with the multiple wires 28 a , respectively.
  • the pad 11 e of the multiple pads of the semiconductor chip 11 and the suspension lead 15 (the die pad 14 ) are electrically coupled with the wire 19 a
  • some (the pad 21 e ) of the multiple pads of the semiconductor chip 21 and the suspension lead 25 (the die pad 24 ) are electrically coupled with the wire 29 a.
  • the ground bonding is performed to the die pads 14 , 24 from the semiconductor chip 11 and the semiconductor chip 21 , respectively.
  • the ground bonding is performed so as to make coupling to the sides of the first ends 14 c , 24 c (sides that are not pressed down by the clamper 39 ) that are opposite sides to the second ends 14 d , 24 d .
  • the ground bonding can be performed with the die pads 14 , 24 firmly pressed down on the sides of the second ends 14 d , 24 d of the open ends 14 e , 24 e.
  • the wire bonding is performed so that the wire may jump over the through holes 14 b , 24 b provided in the die pads 14 , 24 . Since the sides of the first ends 14 c , 24 c of the die pads 14 , 24 have comparatively large areas, exfoliation takes place easily between the die pads 14 , 24 and the resin.
  • the through holes 14 b , 24 b are formed in the areas of the die pads 14 , 24 with large areas, adhesion of the die pads 14 , 24 and the resin in this areas can be improved, so that exfoliation between the die pads 14 , 24 and the resin at the time of reflow can be reduced.
  • the wire bonding process is ended by the above.
  • the encapsulation (sealing) shown in Step S 7 of FIG. 11 is performed after completion of the wire bonding.
  • the semiconductor chips 11 , 21 , respective parts of the suspension leads 15 , 25 , the die pads 14 , 24 , some of the multiple first and second leads (the inner leads 16 , 26 ), and the multiple wires 6 a , 7 a , 18 a , 28 a , 19 a , and 29 a are sealed by sealing resin 41 (insulating resin) shown in FIG. 21 . That is, using the sealing resin 41 , the sealing body 3 is formed that has the first side 3 a and the third side 3 c that extend in the first direction 4 shown in FIG. 1 and the second side 3 b and the fourth side 3 d that extend in the second direction 5 substantially perpendicular to the first direction 4 .
  • the sealing resin 41 of FIG. 21 is poured toward the fourth side 3 d from the second side 3 b of the sealing body 3 shown in FIG. 1 to form the sealing body 3 .
  • the suspension leads 15 , 25 are provided so as to be closer to the second side 3 b than the fourth side 3 d of the sealing body 3 are in plan view, and as shown in FIG. 21 , by arranging a gate 40 e for molding on the suspension lead side and injecting the sealing resin 41 from the suspension lead side, it is possible to suppress the flapping of the die pads 14 , 24 at the time of resin injection.
  • the sealing resin 41 comes out from a side opposite to the gate 40 e , and flows into the next cavity.
  • a resin forming mold 40 of FIG. 20 used in this embodiment includes a pair of an upper mold (a first mold) 40 a and a lower mold (a second mold) 40 b ; a cavity (a first cavity) 40 c is formed in the upper mold 40 a , and on the other hand a cavity (a second cavity) 40 d is formed in the lower mold 40 b.
  • a depth R of the cavity 40 c of the upper mold 40 a is a depth capable of forming a relationship so that the distance Q from the wire peak of the wire 6 a (the wire 7 a ) of the wire group 6 (the wire group 7 ) to the upper surface 3 e of the sealing body 3 may become equal to or more than the chip thickness T of the semiconductor chip 11 (Q ⁇ T).
  • the resin forming mold 40 that includes the upper mold 40 a having the cavity 40 c as shown in FIG. 20 and a lower mold 40 b making a pair with the upper mold 40 a and facing the upper mold 40 a is prepared.
  • the lead frame 34 is positioned so that the semiconductor chips 11 , 21 may be located within the cavity 40 c of the upper mold 40 a . Furthermore, after holding the lead frame 34 with the upper mold 40 a and the lower mold 40 b , the sealing resin 41 is poured into the cavity 40 c from the gate 40 e linking to the cavity 40 c.
  • the sealing resin 41 is injected (supplied) into the cavity 40 c from the gate 40 e that is arranged on the suspension lead side.
  • the sealing body 3 can be formed so that the distance Q from the wire peak to the sealing body upper surface may become equal to or more than the chip thickness T of the semiconductor chip 11 (Q ⁇ T).
  • the sealing resin 41 can be embedded into each of the through holes 14 b , 24 b at the time of the resin injection, and the resin lock effect of the resin 41 for sealing (the sealing body 3 ) and the die pads 14 , 24 can be enhanced.
  • the resin lock effect of the resin 41 for sealing (the sealing body 3 ) and the die pads 14 , 24 can be enhanced.
  • the SOP1 since the areas of the die pads 14 , 24 in plan view are large as compared with the area of the sealing body 3 in plan view, it is very effective to enhance the resin lock effect.
  • Step S 8 of FIG. 11 exterior plating shown in Step S 8 of FIG. 11 is performed. That is, as shown in FIG. 23 , the exterior plating 8 comprised of solder, etc. is performed over respective surfaces of the multiple outer leads 17 , 27 exposed from side faces of the sealing body 3 .
  • Step S 9 of FIG. 11 After that, cutting and forming shown in Step S 9 of FIG. 11 are performed. That is, the outer leads 17 , 27 that link to respective leads 15 , 25 shown in FIG. 1 and the outer leads 17 , 27 that link to respective multiple leads 16 , 26 shown in FIG. 24 are cut off from the lead frame 34 , and each of the multiple outer leads 17 , 27 is formed and bent into the shape of a gull wing.
  • the letter T leads 35 , 36 are provided being linking to the lead frame 34 , and at a stage where the sealing body 3 is formed, the letter T leads 35 , 36 are in a state where their tips are embedded in the inside of the sealing body 3 .
  • the package body (the SOP body) is in a state of being supported by the lead frame 34 with the letter T leads 35 , 36 , and does not come off from the lead frame 34 .
  • FIG. 25 is a plan view showing a structure of a semiconductor device of a modification of the embodiment with the sealing body penetrated.
  • FIG. 25 shows a 16-pin SOP42 of a four-channel version as a modification of the above-mentioned semiconductor device. That is, even if the number of channels increases to four channels, it is possible to secure the withstand voltage, like the SOP1 of the above-mentioned embodiment, by making larger the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 that performs coupling between the transmission part and the reception part (communication parts) and the wire 7 a that is closest to the wire group 6 in the wire group 7 than any inter-wire distances in the wire group 6 and in the wire group 7 .
  • the semiconductor chip 11 and the semiconductor chip 21 are not necessarily required to be the same chip.
  • the semiconductor device is a semiconductor device such that the semiconductor chips have communication functions, respectively, and perform communication therebetween through wires and also by the inductor coupling, and the voltage values are different between the communication parts, the multiple semiconductor chips that are mounted thereon are not required to be the same chip.
  • a method for manufacturing a semiconductor device that includes the steps of: a) preparing a lead frame that has a first chip mounting part supported by a first suspension lead, a second chip mounting part supported by a second suspension lead, multiple first leads arranged adjacent to the first chip mounting part, and multiple second leads arranged adjacent to the second chip mounting part; b) mounting a first semiconductor chip over the first chip mounting part and mounting a second semiconductor chip over the second chip mounting part; c) electrically coupling some of multiple pads of the first semiconductor chip and some of multiple pads of the second semiconductor chip with multiple wires, respectively; d) electrically coupling some of the multiple pads of the first semiconductor chip and the multiple first leads with multiple wires, respectively; e) electrically coupling some of the multiple pads of the second semiconductor chip and the multiple second leads with multiple wires, respectively; f) sealing the first and second semiconductor chips, parts of the first and second suspension leads, the first and second chip mounting parts, parts of the multiple first and multiple second leads, and multiple wires to form a sealing body that
  • step c1) includes the steps of: c11) forming a first stud bump over one pad among the multiple first pads; and c12) coupling one end of a wire onto one pad among the multiple fourth pads after the step c11); and c13) coupling the other end of the wire onto the first stud bump after the step c12).
  • step c2) includes the steps of: c21) forming a second stud bump over one pad among the multiple third pads; c22) coupling one end of a wire onto one pad among the multiple second pads after the step c21); and c23) coupling the other end of the wire onto the second stud bump after the step c22).
  • [Clause 6] The method for manufacturing a semiconductor device according to the clause 5, comprising the steps of: electrically coupling some of multiple pads of the first semiconductor chip and the first suspension lead with wires; and electrically coupling some of multiple pads of the second semiconductor chip and the second suspension lead with wires.
  • [Clause 7] The method for manufacturing a semiconductor device according to the clause 5, in which the sealing body has a second side that intersects the first side and extends in the second direction and a fourth side that faces the second side and extends in the second direction, in which the first and second suspension leads are provided so as to be closer to the second side than the fourth side, and in which in the step f), an insulating resin is made to flow from the second side toward the fourth side to form the sealing body.
  • step f) includes the steps of: f1) preparing a first mold having a first cavity and a second mold facing the first mold; f2) positioning the lead frame so that the first and second semiconductor chips may be positioned inside the first cavity of the first mold; f3) holding the lead frame with the first mold and the second mold; and f4) making the insulating resin flow into the first cavity from a gate linking to the first cavity.
  • steps c) to e) are performed with an ultrasonic wave applied to each of the multiple wires through bonding tools.
  • [Clause 10] The method for manufacturing a semiconductor device according to the clause 1, in which the first and second semiconductor chips are the same semiconductor chip, and in which in the process b), the second semiconductor device is mounted over the second chip mounting part being rotated to the mounting direction of the first semiconductor chip by 180 degrees.
  • [Clause 11] The method for manufacturing a semiconductor device according to the clause 3, in which an insulating layer is arranged both under a pad over which the first stud bump is formed among the multiple first pads and under a pad over which the second stud bump is formed among the multiple third pads.
  • [Clause 12] The method for manufacturing a semiconductor device according to the clause 11, in which the insulating layer contains a layer comprised of a polyimide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Wire Bonding (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

In an SOP1 having a semiconductor chip and another semiconductor chip, in wire coupling between the chips, a withstand voltage can be secured by setting an inter-wire distance between a wire in a first wire group that is closest to a second wire group and a wire in the second wire group that is closest to the first wire group to be larger than an inter-wire distance between any wires in the first wire group and the second wire group, which makes it possible to attain improvement of reliability of the SOP1.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The disclosure of Japanese Patent Application No. 2013-133174 filled on Jun. 25, 2013 including the application, drawings and abstract is incorporated herein by reference in its entirety.
  • BACKGROUND
  • The present invention relates to a semiconductor device and its manufacturing technology, for example, a technology that is effective when being applied to a semiconductor device that integrates multiple semiconductor chips into a single package.
  • A structure of a semiconductor device that includes a semiconductor chip over which an inductor comprised of a spiral electric conduction pattern is formed is disclosed, for example, in Japanese Unexamined Patent Application Publication No. 2009-302418.
  • SUMMARY
  • For example, in control of a motor, etc., in the case where electric signals are transmitted between two circuits such that potentials of electric signals inputted thereinto are mutually different, transmission is often performed through a photocoupler. The photocoupler includes a light emitting device such as a light emitting diode and a photodetector such as a phototransistor, and transfers an electric signal by converting the electric signal inputted thereinto into light with the light emitting device, receiving this light with the photodetector, and subsequently converting it into an electric signal again.
  • However, since the photocoupler includes the light emitting device and the photodetector, it is difficult to miniaturize it. Moreover, a photocoupler has a tendency that its followability declines when a frequency of the electric signal becomes higher.
  • Therefore, in recent years, as a technology of solving these problems, for example, a technology of transmitting an electric signal by performing inductive coupling of two inductors has been developed.
  • The inventors of this application have considered structure in which multiple (two) semiconductor chips each having a transmission part and a reception part, respectively, are coupled together electrically with wires, and are integrated into a single package using this technology. This is a structure in which two inductors in the respective semiconductor chips are formed, and a first communication part for performing transmission between two chips, i.e., from one semiconductor chip to the other semiconductor chip and a second communication part for performing transmission between the two chips, i.e., from the other semiconductor chip to the one semiconductor chip are formed.
  • In this structure, when power supply voltages differ largely between the first communication part side and the second communication part side, it is required to secure withstand voltages between mutual wires, and if these withstand voltages are not secured, there is a possibility of causing electric short circuit.
  • An object of embodiments disclosed in this application is to provide a technology that can improve reliability of the semiconductor device.
  • Other problems and new features will become clear from description and accompanying drawings of this specification.
  • A semiconductor device according to one embodiment has: a first semiconductor chip having a first transmission part and a first reception part; a second semiconductor chip having a second transmission part and a second reception part; a first chip mounting part; a second chip mounting part; a first suspension lead; a second suspension lead; multiple first leads; multiple second leads; a first wire group; a second wire group; a third wire group; a fourth wire group; and a sealing body. Moreover, in the above-mentioned semiconductor device, both in plan view and in a first direction of the sealing body, an inter-wire distance between a wire in the first wire group that is the closest to the second wire group and a wire in the second wire group that is the closest to the first wire group is larger than any inter-wire distances in the first wire group and in the second wire group.
  • Moreover, a method for manufacturing a semiconductor device according to one embodiment includes a process of preparing a lead frame that has the first chip mounting part, the second chip mounting part, the multiple first leads, and the multiple second leads, and a process of mounting the first semiconductor chip over the above-mentioned first chip mounting part and mounting the second semiconductor chip over the second chip mounting part. Furthermore, the above-mentioned method for manufacturing a semiconductor device includes the steps of: electrically coupling some of respective multiple pads of the above-mentioned first semiconductor chip and the above-mentioned second semiconductor chip with wires; electrically coupling some of the multiple pads of the above-mentioned first semiconductor chip and the above-mentioned first leads with wires; and electrically coupling some of the multiple pads of the above-mentioned second semiconductor chip and the above-mentioned second leads with wires. Moreover, the above-mentioned method for manufacturing a semiconductor device includes the steps of: coupling multiple first pads of the above-mentioned first semiconductor chip and multiple fourth pads of the above-mentioned second semiconductor chip with multiple wires; and coupling multiple second pads of the above-mentioned first semiconductor chip and multiple third pads of the above-mentioned second semiconductor chip with multiple wires. Furthermore, in the above-mentioned method for manufacturing a semiconductor device, when wire coupling is performed in the above-mentioned first wire group or the above-mentioned second wire group, it is performed so that an inter-wire distance between a wire that is closest to the above-mentioned second wire group among the above-mentioned first wire group and a wire that is closest to the above-mentioned first wire group among the above-mentioned second wire group may become larger than any inter-wire distances in the above-mentioned first wire group and in the above-mentioned second wire group in plan view.
  • According to the above-mentioned one embodiment, improvement of the reliability of the semiconductor device can be attained.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of one example of a structure of a semiconductor device of an embodiment with a sealing body penetrated;
  • FIG. 2 is a sectional view showing one example of the structure taken along a line A-A of FIG. 1;
  • FIG. 3 is a block diagram showing one example of a circuit block of transmission reception parts of a semiconductor device shown in FIG. 1;
  • FIG. 4 is a diagram showing one example of a system block using the semiconductor device shown in FIG. 1;
  • FIG. 5 is a transmission plan view showing one example of an inductor arrangement in each semiconductor chip of the semiconductor device shown in FIG. 1;
  • FIG. 6 is a plan view enlarging and showing one example of the inductor arrangement shown in FIG. 5;
  • FIG. 7 is a conceptual diagram showing one example of pad heights in two semiconductor chips of the semiconductor device of FIG. 1;
  • FIG. 8 is a conceptual diagram of withstand voltage showing one example of a relationship between a withstand voltage of sealing resin and a distance in the semiconductor device of FIG. 1;
  • FIG. 9 is a flowchart and a plan view showing one example of a principal process in an assembly of the semiconductor device of FIG. 1;
  • FIG. 10 is a flowchart and a plan view showing the one example of the principal process in the assembly of the semiconductor device of FIG. 1;
  • FIG. 11 is a flowchart and a plan view showing the one example of the principal process in the assembly of the semiconductor device of FIG. 1;
  • FIG. 12 are a plan view and an enlarged local plan view showing one example of a structure of a lead frame used in the assembly of the semiconductor device of FIG. 1;
  • FIG. 13 is a sectional view showing one example of the structure of a device region of the lead frame shown in FIG. 12;
  • FIG. 14 is a sectional view showing one example of a structure after paste coating of the assembly of the semiconductor device of FIG. 1;
  • FIG. 15 is a sectional view showing one example of a structure after die bonding of the assembly of the semiconductor device of FIG. 1;
  • FIG. 16 is a conceptual diagram showing one example of tools used in wire bonding of the assembly of the semiconductor device of FIG. 1;
  • FIG. 17 is a sectional view showing one example of a structure after bump bonding of the assembly of the semiconductor device of FIG. 1;
  • FIG. 18 is a sectional view showing one example of a structure after bonding between chips of the assembly of the semiconductor device of FIG. 1;
  • FIG. 19 is a sectional view showing one example of a structure after the wire bonding of the assembly of the semiconductor device of FIG. 1;
  • FIG. 20 is a local sectional view showing one example of a structure after clamping with a mold in an encapsulation process of the assembly of the semiconductor device of FIG. 1;
  • FIG. 21 is a local plan view showing one example of a resin injection direction after clamping with the mold in FIG. 20;
  • FIG. 22 is a sectional view showing one example of a structure after encapsulation of the assembly of the semiconductor device of FIG. 1;
  • FIG. 23 is a sectional view showing one example of a structure after exterior plating formation of the assembly of the semiconductor device of FIG. 1;
  • FIG. 24 is a local sectional view showing one example of a structure after cutting and forming of the assembly of the semiconductor device of FIG. 1; and
  • FIG. 25 is a plan view showing a structure of the semiconductor device of a modification of the embodiment with the sealing body penetrated.
  • DETAILED DESCRIPTION
  • In the following embodiments, except for the case when being especially necessary, an explanation of the same or similar portion is not repeated in principle.
  • Furthermore, in the following embodiments, when it is required for convenience, they are divided into multiple sections or embodiments and are given explanations, they are not mutually unrelated, but are in a relationship where one is a modification, details, a supplementary explanation, etc. of a part or the whole of the other except for the case where it is clearly specified.
  • Moreover, in the following embodiments, when referring to the number of components (including a quantity, a numerical value, a quantity, a range, etc.), and the like, it shall be understood that the embodiments are not limited to that specific number and a number may be not less than or not more than the specific number except for the case where the number is clearly specified and the case where it is clearly limited to a specific number.
  • Moreover, in the following embodiments, it goes without saying that the structural element (including an elementary step, etc.) is not necessarily indispensable except for the case where it is clearly indicated, the case where it is theoretically thought that it is clearly indispensable, etc.
  • Moreover, in the following embodiment, it goes without saying that when describing “is comprised of A,” “consist of A,” “have A,” and “include A,” regarding a structural element etc., any component other than it is not excluded except for the case where it is specially specified that it has only A, etc. Similarly, in the following embodiments, when mentioning a shape of a structural element etc., a spatial relationship, etc., what substantially approximates or is similar to its shape, etc. shall be included except for the case where it is clearly specified or the case where it can be thought that it is not so. This also holds for the above-mentioned numerical value, range, etc.
  • Hereinafter, embodiments will be described in detail based on drawings. Incidentally, in all diagrams for explaining the embodiments, the same sign is given to a component having the same function, and its repeated explanation is omitted. Moreover, in order to make a drawing intelligible, hatching may be attached thereon even if it is a plan view.
  • Embodiment
  • FIG. 1 is a plan view showing one example of a structure of a semiconductor device according to an embodiment with a sealing body penetrated, FIG. 2 is a sectional view showing one example of the structure taken along the line A-A of FIG. 1, FIG. 3 is a block diagram showing one example of a circuit block of a transmission reception part of the semiconductor device shown in FIG. 1, and FIG. 4 is a diagram showing one example of a system block using the semiconductor device shown in FIG. 1. Moreover, FIG. 5 is a penetration plan view showing one example of an inductor arrangement in each semiconductor chip of the semiconductor device shows in FIG. 1, FIG. 6 is a plan view enlarging and showing one example of the inductor arrangement shown in FIG. 5, FIG. 7 is a conceptual diagram showing one example of pad heights in two semiconductor chips of the semiconductor device of FIG. 1, and FIG. 8 is withstand voltage conceptual diagram showing one example of a relationship between a withstand voltage and a distance of sealing resin in the semiconductor device of FIG. 1.
  • The semiconductor device (semiconductor package) shown in FIG. 1 and FIG. 2 is one over which two semiconductor chips are mounted and integrated into a single package. In each of the two semiconductor chips, a transmission part and a reception part for transmitting and receiving a signal between the both chips are formed, the semiconductor chips are electrically coupled with each other using wires, respectively. Moreover, in each of the two semiconductor chips, two inductors (coils) are arranged and the electric signal is transmitted between the inductors without contact between the inductors by bringing the two inductors into inductive coupling in each chip. Here, power supply voltages between the inductors that are brought into the inductive coupling are, for example, about several volts on the low voltage side and about several hundred volts to several thousand volts, which are different largely from each other. The above-mentioned inductors transmit an electric signal in a non-contact state therebetween through an insulating layer.
  • In this embodiment, as one example of the above-mentioned semiconductor device, a SOP (Small Outline Package) 1 of eight pins is taken and explained.
  • Explaining a structure of the SOP1, as shown in FIG. 1 and FIG. 2, a semiconductor chip (a first semiconductor chip) 11 that has a surface 11 a over which multiple pads 11 c, 11 d, 11 e, and 11 f are arranged and a semiconductor chip (a second semiconductor chip) 21 that has a surface 21 a over which multiple pads 21 c, 21 d, 21 e, and 21 f are arranged are incorporated therein.
  • Furthermore, as shown in FIG. 2, the semiconductor chip 11 is mounted over an upper surface (a first upper surface) 14 a that a thin-plated die pad (a first chip mounting part) 14 has, and on the other hand the semiconductor chip 21 is mounted over an upper surface (a second upper surface) 24 a that a thin-plated die pad (a second chip mounting part) 24 has. Furthermore, giving a detailed explanation, a back surface 11 b of the semiconductor chip 11 is bonded to the die pad 14 with a medium of a die bonding material 2 (an adhesive) interposed therebetween, and a back surface 21 b of the semiconductor chip 21 is bonded to the die pad 24 with a medium of the die bonding material 2 interposed therebetween.
  • Here, as shown in FIG. 3, the semiconductor chip 11 includes a transmission part (a first transmission part) 12 for transmitting a signal to the outside and a reception part (a first reception part) 13 for receiving a signal from the outside, and on the other hand the semiconductor chip 21 also includes a transmission part (a second transmission part) 22 for transmitting a signal to the outside and a reception part (a second reception part) 23 for receiving a signal from the outside.
  • Moreover, as shown in FIG. 1, the SOP1 includes multiple inner leads (first leads) 16 that are arranged adjacent to the die pad 14, multiple inner leads (second leads) 26 that are arranged adjacent to the die pad 24, a suspension lead (a first suspension lead) 15 for supporting the die pad 14, and a suspension lead (a second suspension lead) 25 for supporting the die pad 24.
  • Moreover, the SOP1 includes a wire group (a first wire group) 6 that electrically couples the semiconductor chip 11 and the semiconductor chip 21 and includes multiple wires (first wires) 6 a, and a wire group (a second wire group) 7 that electrically couples the semiconductor chip 11 and the semiconductor chip 21 and includes multiple wires (second wires) 7 a. Furthermore, the SOP1 includes a wire group (a third wire group) 18 that electrically couples the semiconductor chip 11 and the multiple inner leads 16 and includes multiple wires (third wires) 18 a, and a wire group (a fourth wire group) 28 that electrically couples the semiconductor chip 11 and the multiple inner leads 26 and includes multiple wires (fourth wires) 28 a.
  • Furthermore, the SOP1 includes a sealing body 3 that is formed with a resin and seals respective parts of the semiconductor chips 11, 21, the die pads 14, 24, and the suspension leads 15, 25, parts of the multiple first and second leads (the inner leads 16, 26), and the multiple wires 6 a, 7 a, 18 a, and 28 a, respectively.
  • Incidentally, the sealing body 3 has: a first side 3 a extending along a first direction 4; a second side 3 b extending along a second direction 5 that is substantially perpendicular to the first direction 4; a third side 3 c that faces the first side 3 a and extends along the first direction 4; and a fourth side 3 d that faces the second side 3 b and extends along the second direction 5.
  • Moreover, in plan view, the multiple first leads are arranged along the first side 3 a of the sealing body 3, and on the other hand the multiple second leads are arranged along the third side 3 c of the sealing body 3. Here, each of the multiple first leads is comprised of the inner lead 16 arranged inside the sealing body 3 and the outer lead 17 that links to the inner lead 16 and is arranged outside the sealing body 3 to serve an external terminal of the SOP1. Incidentally, as shown in FIG. 2, each of the multiple outer leads 17 is bent and formed into a shape of a gull wing and is furnished with exterior plating 8 over each surface.
  • Similarly, each of the multiple second leads is comprised of the inner lead 26 arranged inside the sealing body 3 and the outer lead 27 that links to the inner lead 26 and is arranged outside the sealing body 3 to serve an external terminal of the SOP1, and each of the multiple outer leads 27 is bent and formed into the shape of a gull wing and is furnished with the exterior plating 8 over each surface.
  • Here, in the SOP1 of this embodiment, the semiconductor chip 11 and the semiconductor chip 21 are the same semiconductor chip, and as shown in FIG. 1, the semiconductor chip 21 is mounted over the die pad 24 being rotated to a mounting direction of semiconductor chip 11 by 180 degrees.
  • Moreover, as shown in FIG. 1 to FIG. 3, over the surface 11 a of the semiconductor chip 11, the multiple pads 11 c electrically coupled with the transmission part 12 and multiple pads 11 d electrically coupled with the reception part 13 are arranged.
  • On the other hand, over the surface 21 a of the semiconductor chip 21, the multiple pads 21 c electrically coupled with the transmission part 22 and the multiple pads 21 d electrically coupled with the reception part 23 are arranged.
  • Furthermore, the multiple pads 11 c of the semiconductor chip 11 and the multiple pads 21 d of the semiconductor chip 21 are electrically coupled with one another through the wires 6 a of the wire group 6, and on the other hand the multiple pads 11 d of the semiconductor chip 11 and the multiple pads 21 c of the semiconductor chip 21 are electrically coupled with one another through the wires 7 a of the wire group 7.
  • Moreover, as shown in FIG. 3, the transmission part 12 in the semiconductor chip 11 includes a transmission circuit 12 a, a coil (a first coil) 12 b electrically coupled with the transmission circuit 12 a, and a coil (a second coil) 12 c that is arranged over the coil 12 b, and is insulated (separated) from the coil 12 b, further is, electrically coupled with some pads 11 c among the multiple pads 11 c.
  • Moreover, the reception part 13 in the semiconductor chip 11 includes the reception circuit 13 a that is coupled with some pads 11 d among the multiple pads 11 d.
  • On the other hand, the transmission part 22 in the semiconductor chip 21 includes a transmission circuit 22 a, a coil (a fourth coil) 22 c electrically coupled with the transmission circuit 22 a, and a coil (a third coil) 22 b that is arranged over the coil 22 c, is electrically insulated (separated) from the coil 22 c, and is coupled with some pads 21 c among the multiple pads 21 c.
  • Moreover, the reception part 23 in the semiconductor chip 21 includes a reception circuit 23 a electrically coupled with some pads 21 d among the multiple pads 21 d.
  • Therefore, the SOP1 of this embodiment is a two-channel version semiconductor package that has a pair of coils and over which the transmission part and the reception part (the communication parts) are provided, respectively.
  • Incidentally, as shown in FIG. 5, some pads 11 c coupled with the coils 12 c in the semiconductor chip 11 in plan view are arranged so as to be enclosed by the coils 12 c on their peripheries. That is, as shown in an enlarged view of FIG. 6, the some pads 11 c are arranged inside the spirals of the coils 12 c. Moreover, the pad 11 c for the GND (or the power supply) is arranged between the two coils 12 c. Incidentally, in the two coils 12 c, winding directions of the spirals are reverse directions. Moreover, the coils 12 c are formed over the surface 11 a of the semiconductor chip 11 with a medium of an insulating layer 11 m interposed therebetween, and are made of copper (Cu) wiring, for example (the insulating layer 11 m is made of polyimide, for example). As shown in FIG. 5, the coils 22 b formed in the semiconductor chip 21 have also the same arrangement as that of the coils 12 c, and are made of the same copper (Cu) wiring as that of the coils 12 c. Furthermore, the coil 12 b of the semiconductor chip 11 and the coil 22 c of the semiconductor chip 21 shown in FIG. 3 have the same arrangement.
  • Here, in the SOP1 of this embodiment, as shown in FIG. 3, a system including the transmission part 12 and the reception part 13 of the semiconductor chip 11 is designated as a first power supply system 9, and a system including the transmission part 22 and the reception part 23 of the semiconductor chip 21 is designated as a second power supply system 10.
  • For example, a power supply voltage of the first power supply system 9 is a low voltage (about several volts), and on the other hand a power supply voltage of the second power supply system 10 is a high voltage (about several hundred volts to several thousand volts).
  • Therefore, in the SOP1, both in plan view and in the first direction 4 shown in FIG. 1, it is required to secure a withstand voltage between a wire 6 a that is closest to the wire group 7 in the wire group 6 and a wire 7 a that is closest to the wire group 6 in the wire group 7. Therefore, the inter-wire distance L (L in FIG. 3) between the wire 6 a and the wire 7 a is made larger than any inter-wire distances in the wire group 6 and in the wire group 7.
  • Furthermore, taking another expression, in the wire group 6 to which the power supply voltage (low voltage) of the first power supply system 9 is supplied and the wire group 7 to which the power supply voltage (high voltage) of the second power supply system 10 is supplied, the inter-wire distance L (L in FIG. 3) of the wires that are closest to each other is made larger than any inter-wire distances in the wire group 6 and in the wire group 7.
  • As one example, the inter-wire distance L is 0.4 mm or more.
  • Thus, in the SOP1 of this embodiment, by making lager the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 and the wire 7 a that is closest to the wire group 6 in the wire group 7 than any inter-wire distances in the wire group 6 and in the wire group 7, the withstand voltage can be secured.
  • That is, since in the semiconductor chip 11 and the semiconductor chip 21, a voltage value differs largely between the first communication part to which the power supply voltage (low voltage) of the first power supply system 9 is supplied and the second communication part to which the power supply voltage (high voltage) of the second power supply system 10 is supplied, by setting (securing) the inter-wire distance between the above-mentioned first communication part and the above-mentioned second communication part wide open, it is possible to secure the withstand voltage. This can prevent electric short circuit between the wire of the above-mentioned first communication part and the wire of the above-mentioned second communication part from occurring, and as a result, improvement of the reliability of the SOP1 can be attained.
  • Moreover, the reliability can be improved while attaining further miniaturization of the SOP1 compared to a configuration using a photocoupler by having adopted inductor coupling.
  • Furthermore, since a configuration using the inductor has higher followability to a fast signal than the configuration using the photocoupler, it can support fast signal transmission (transmission of a high-frequency signal).
  • Here, use application to which the SOP1 of this embodiment can be applied will be explained. The SOP1 of this embodiment is applicable, for example, to automobiles (EV: electric vehicle, HV: hybrid vehicle), motor control systems of electrical household appliances such as a washing machine, a switching regulator, an illumination controller, a solar photovoltaic generation controller, a cellular phone, a mobile communication device, or the like.
  • As one example of these applications, as shown in system block diagram using the SOP1 of FIG. 4, the SOP1 can be electrically coupled with loads such as a control circuit 31, a drive circuit 32, and a motor 33. The semiconductor chip 11 has the semiconductor chip 11 controlled by the control circuit 31, performs signal transmission by the inductor coupling between the semiconductor chip 11 and the semiconductor chip 21, further, transmits a signal to the drive circuit 32 through the semiconductor chip 21, and makes the drive circuit 32 drive the motor 33, etc.
  • For example, as an automobile use, the semiconductor chip 11 is a low voltage chip to which the power supply voltage of the first power supply system 9 is supplied and the power supply voltage at that time is about 5 V, for example; on the other hand, the semiconductor chip 21 is a high voltage chip to which the power supply voltage of the second power supply system 10 is supplied, and the power supply voltage at that time is 600 V to 1000 V or a voltage exceeding those voltages, for example.
  • In such a case, as one example, by setting the above-mentioned inter-wire distance L in the SOP1 to be L=0.4 mm or more, it becomes possible to secure the withstand voltage also in the automobile use.
  • Moreover, in the SOP1 of this embodiment, in plan view shown in FIG. 1, the die pad 14 is arranged between the multiple inner leads 16 and the die pad 24, and on the other hand the die pad 24 is arranged between the multiple inner leads 26 and the die pad 14. Furthermore, both in plan view and in the second direction 5 of FIG. 1, a distance (inter-die pad distance) M between the die pad 14 and the die pad 24 is made larger than both a distance N between the die pad 14 and multiple inner leads 16 and a distance P between the die pad 24 and the multiple inner leads 26 (M>N, M>P).
  • That is, coupling (ground bonding) with a wire is made between the die pad 14 and the semiconductor chip 11 through multiple wires (fifth wires) 19 a, and on the other hand the coupling (the ground bonding) with a wire is also made between the die pad 24 and the semiconductor chip 21 through multiple wires (sixth wires) 29 a; therefore, a potential difference arises also between the both die pads.
  • Therefore, the withstand voltage is securable by making large a distance M between the die pad 14 and the die pad 24.
  • For example, in the case where applying the SOP1 to the automobile use, assuming that the low voltage side is about 5 V and the high voltage side is 600 V to 1000 V or a voltage exceeding those voltages, like the above, it becomes possible to secure the withstand voltage like the above by setting the above-mentioned distance M between die pads in the SOP1 to M=0.4 mm or more.
  • Moreover, in plan view of the SOP1 shown in FIG. 1, the semiconductor chip 11 has on its surface 11 a: a side (a first chip side) 11 g extending in the first direction 4; a side (a second chip side) 11 h facing the side 11 g and extending in the first direction 4; a side (a third chip side) 11 i intersecting the side 11 g and extending in the second direction 5; and a side (a fourth chip side) 11 j facing the side 11 i and extending in the second direction 5.
  • Furthermore, in plan view, the side 11 g of the semiconductor chip 11 faces the die pad 24, and on the other hand the side 11 h of the semiconductor chip 11 faces a tip of multiple inner leads 16.
  • In this embodiment, in plan view, the multiple pads 11 d are arranged so as to be closer to the side 11 g of the semiconductor chip 11 than the multiple pads 11 c are. That is, the multiple pads 11 d are arranged in positions closer to the side 11 g than positions of an imaginary line C1 that is formed by the multiple pads 11 c in a line. That is, since the coil 12 c is arranged in a region peripheral to the pad 11 c, the pad 11 d is arranged away from the pad 11 c.
  • Moreover, in plan view, the semiconductor chip 21 has also a side 21 g (a first chip side) extending in the first direction 4, a side (a second chip side) 21 h facing the side 21 g and extending in the first direction 4, a side (a third chip side) 21 i intersecting the side 21 h and extending in the second direction 5, and a side 21 j (a fourth chip side) facing the side 21 i and extending in the second direction 5.
  • Furthermore, in plan view, the side 21 g of the semiconductor chip faces the die pad 14, and on the other hand the side 21 h of the semiconductor chip 21 h faces tips of the multiple inner leads 26.
  • That is, since the semiconductor chip 21 is mounted over the die pad 24 being rotated to the mounting direction of the semiconductor chip 11 by 180 degrees, like the semiconductor chip 11, in plan view, the multiple pads 21 d are arranged so as to be closer to the side 21 g of the semiconductor chip 21 than the multiple pads 21 c are. That is, the multiple pads 21 d are arranged in positions closer to the side 21 g than positions of an imaginary line C2 that is formed by the multiple pads 21 c in a line. That is, since the semiconductor chip 21 is the same chip as the semiconductor chip 11 and since the coil 22 b is arranged on the periphery of the pad 21 c, the pad 21 d is arranged away from the pad 21 c.
  • Incidentally, by arranging the pad 11 d away from the pad 11 c in the semiconductor chip 11 and also arranging the pad 21 d away from the pad 21 c in the semiconductor chip 21, it is possible to further enlarge the above-mentioned inter-wire distance L, which can further secure the withstand voltage.
  • Moreover, over the surface 11 a of the semiconductor chip 11, the multiple pads (the fifth pads) 11 e are arranged along the side 11 i, and some pads 11 e among the multiple pads 11 e are electrically coupled with the upper surface 14 a of the die pad 14 through the wires (the fifth wires) 19 a of a wire group 19 (a fifth wire group) 19.
  • Furthermore, in plan view, a long and narrow through hole 14 b is provided in a region of the upper surface 14 a between the semiconductor chip 11 and a portion where the wire 19 a is coupled with the upper surface 14 a of the die pad 14.
  • On the other hand, also in the semiconductor chip 21, the multiple pads (the seventh pads) 21 e are arranged along the side 21 i over its surface 21 a, and some pads 21 e among the multiple pads 21 e are electrically coupled with the upper surface 24 a of the die pad 24 through the wires (the sixth wires) 29 a of a wire group (a sixth wire group) 29.
  • Furthermore, in plan view, a long and narrow through hole 24 b is provided in a region of the upper surface 24 a between the semiconductor chip 21 and a portion where the wire 29 a is coupled with the upper surface 24 a of the die pad 24.
  • Thus, since the through holes 14 b, 24 b are formed in the die pads 14, 24, it can be prevented that the wires 19 a, 29 a cannot be coupled thereto due to outflow of the die bond material (the adhesive) 2. That is, even if the die bonding material 2 flows out, the die bonding material 2 can be accumulated in the through holes 14 b, 24 b, and it is possible to prevent an outflow of the die bonding material 2 to a region where the wires 19 a, 29 a are coupled.
  • Incidentally, the through holes 14 b, 24 b may be concave slots as far as they are in a shape capable of accumulating the die bonding material 2 that flowed out, and also in that case, the same effect can be obtained.
  • Moreover, since the through holes 14 b, 24 b are formed in the die pads 14, 24, a resin that forms the sealing body 3 can be filled in the through holes 14 b, 24 b, which can enhance a resin lock effect (an effect of increasing adhesion of the resin and the die pads) of the resin and the die pads 14, 24. Incidentally, since in the SOP1, areas of the die pads 14, 24 in plan view that occupies an area of the sealing body 3 in plan view are high as compared with areas of the inner leads 16, 26 in plan view, increasing the resin lock effect is effective in enhancing resistance at the time of reflow.
  • Moreover, the suspension lead 15 of the SOP1 is arranged along the first side 3 a of the sealing body 3, the outer leads 17 that are respective parts of the multiple first leads and also a part of the suspension lead 15 are exposed from the first side 3 a of the sealing body 3 as external terminals. Incidentally, the suspension leads 15 are leads to which the ground voltage can be supplied from the outside, and the pads 11 e to each of which the wire is not coupled among the multiple pads 11 e are pads to which power supply voltage can be supplied from the outside.
  • Similarly, regarding the semiconductor chip 21, the suspension lead 25 is arranged along the third side 3 c of the sealing body 3, and the outer leads 27 that are parts of the multiple second leads and a part of the suspension lead 25 (the outer lead 27) are exposed from the third side 3 c of the sealing body 3 as external terminals. Incidentally, the suspension lead 25 is a lead to which the ground voltage can be supplied from the outside, and the pads 21 e to each of which the wire is not coupled among the multiple pads 21 e are pads to which power supply voltage can be supplied from the outside.
  • That is, since the semiconductor chip 21 is the same chip as the semiconductor chip 11, even when the semiconductor chip 21 is mounted being rotated to the semiconductor chip 11 by 180 degrees, it is possible to easily supply the ground voltage and the power supply voltage thereto from the outside.
  • Moreover, over the surface 11 a of the semiconductor chip 11, the multiple pads (the sixth pads) 11 f are arranged along the side (the fourth chip side) 11 j, some pads 11 f of the multiple pads 11 f are electrically coupled with some inner leads 16 of the multiple inner leads 16 through some wires 18 a in the wire group (the third wire group) 18. Furthermore, leads that are coupled with some pads 11 f among the multiple pads 11 f are exposed from the first side 3 a of the sealing body 3 as the outer leads 17, and are leads to which the power supply voltage can be supplied from the outside. Incidentally, the pads 11 f to each of which the wire is not coupled among the multiple pads 11 f are pads to which the ground voltage can be supplied from the outside.
  • Similarly in the semiconductor chip 21, the multiple pads (the eighth pads) 21 f are arranged along the side (the fourth chip side) 21 j over its surface 21 a, and some pads 21 f of the multiple pads 21 f are electrically coupled with some inner leads 26 of the multiple inner leads 26 through some wires 28 a in the wire group (the fourth wire group) 28. Furthermore, leads coupled with the some pads 21 f of the multiple pads 21 f are exposed from the third side 3 c of the sealing body 3 as the outer leads 27, and are leads to which the power supply voltage can be supplied from the outside. Incidentally, the pads 21 f to which the wires are not coupled among the multiple pads 21 f are pads to which the ground voltage can be supplied from the outside.
  • That is, regarding the pads 11 f, 21 f, since the semiconductor chip 11 and the semiconductor chip 21 are the same chip, even when the semiconductor chip 21 is mounted being rotated to the semiconductor chip 11 by 180 degrees, it is possible to easily supply the ground voltage and the power supply voltage thereto from the outside, similarly with what was mentioned above.
  • Moreover, in the SOP1, since the coils 12 c are arranged on the peripheries of the multiple pads 11 c over the surface 11 a of the semiconductor chip 11, these multiple pads 11 c are arranged more inside the semiconductor chip 11 than the multiple pads 11 d in plan view. That is, the pads 11 c of the transmission part 12 are arranged in positions more inside the semiconductor chip 11 than the pads 11 d of the reception part 13.
  • Moreover, the semiconductor chip 11 and the semiconductor chip 21 are the same chip. Therefore, similarly, since the coils 22 b are arranged on the peripheries of the multiple pads 21 c over the surface 21 a of the semiconductor chip 21, the multiple pads are arranged more inside of the semiconductor chip 21 than the multiple pads 21 d in plan view. That is, the pads 21 c of the transmission part 22 are arranged in positions more inside the semiconductor chip 21 than the pads 21 d of the reception part 23.
  • Furthermore, as shown in FIG. 7, in the semiconductor chip 11, between the coil (the first coil) 12 b and the coil (the second coil) 12 c, an insulating layer 11 k provided in the chip and the insulating layer 11 m further layered over this insulating layer 11 k over its surface 11 a are arranged, and these layers secure the withstand voltage between the coils. Especially, since the insulating layer 11 m over the surface 11 a contains a layer comprised of a polyimide system, a larger withstand voltages can be secured.
  • Incidentally, since the semiconductor chip 11 and the semiconductor chip 21 are the same chip, also in the coil (the fourth coil) 22 c and the coil (the third coil) 22 b of the semiconductor chip 21, the insulating layer 11 k and the insulating layer 11 m (an insulating layer 21 m shown in FIG. 5) are formed between the both coils like the semiconductor chip 11, and a large withstand voltage is secured.
  • Moreover, in cross sectional view of the SOP1 shown in FIG. 1 and FIG. 2, it is desirable that a distance Q from wire peaks of the respective wires 6 a, 7 a of the wire group (the first wire group) 6 and the wire group (the second wire group) 7 to an upper surface 3 e of the sealing body 3 be set to be equal to or more than a chip thickness T of the semiconductor chip 11 (semiconductor chip 21) (Q≧T).
  • Incidentally, although the chip thickness T is 200 μm to 300 μm, for example, when considering a package thickness (the miniaturization) of the SOP1, preferably it should be equal to or less than 200 μm, and it is possible to realize both the miniaturization and securing of the withstand voltage of the SOP1 by setting the above-mentioned distance Q at this time to be equal to or more than 0.2 mm.
  • That is, since a thickness of a portion of the sealing body 3 that is above the wire peak can be thickened by setting the distance Q from the wire peak to the upper surface 3 e of the sealing body 3 to be equal to or thicker than the chip thickness T, it is possible to improve the withstand voltage further and also it is possible to secure the withstand voltage while maintaining the miniaturization of the SOP1 by making small the chip thickness to realize T=Q.
  • Here, in the SOP1 of this embodiment, a reason why the inter-wire distance L shown in FIG. 1 and the inter-die pad distance M were set to be equal to or more than 0.4 mm, respectively, as one example, and the distance Q from the wire peak to the sealing body upper surface was set to be equal to or more than 0.2 mm will be explained in detail using FIG. 8.
  • First, a reason why the inter-wire distance L and the inter-die pad distance are set to be equal to or more than 0.4 mm, respectively, will be explained. FIG. 8 shows a relationship between the withstand voltage of the sealing resin and the distance (being measured in conformity to ASTM-D149).
  • As one example, a case where a target withstand voltage is set to be equal to or more than 3.5 kV will be explained. Regarding the withstand voltage between the resin, in order to secure the target withstand voltage, the distance should be larger than about 0.2 mm, as is clear from FIG. 8. However, if the distance is too large, it will interfere with the miniaturization of the semiconductor device (the SOP1). Therefore, the safety factor was expected to be about 2 times (Min 6.8 kV), and the inter-wire distance L and inter-die pad distance M were set to be equal to or more than 0.4 mm, respectively.
  • Next, explaining a reason why the distance Q from the wire peak to the sealing body upper surface (resin thickness) was set to be equal to or more than 0.2 mm, it comes from a thought that a resin thickness of 0.2 mm gives a withstand voltage of 3.4 kV at minimum, and a withstand voltage of an air layer is added to this, so that the target withstand voltage equal to or more than 3.5 kV is secured.
  • For example, assume that a metallic chassis of a product enclosure, etc. is arranged at a point 1-mm above the sealing body 3 of the semiconductor device (the SOP1) of this embodiment. Since a withstand voltage of dry air is about 3.0 kV/mm, a withstand voltage between the wire and the metallic chassis becomes: 3.4 kV (a resin withstand voltage)+3.0 kV/mm (the withstand voltage of air)×1 mm (a distance between the metallic chassis and the sealing body 3)=6.4 kV. This calculated value corresponds to the target withstand voltage 3.5 kV or more, exceeding 3.5 kV considerably, and therefore, the distance Q from the wire peak to the sealing body upper surface (resin thickness) is set to be equal to or more than 0.2 mm.
  • Next, a method for assembling the semiconductor device (the SOP1) of this embodiment will be explained along a manufacture flowchart shown in FIG. 9 to FIG. 11.
  • FIG. 9 is a flowchart and a plan view showing one example of a principal process in an assembly of the semiconductor device, FIG. 10 is a flowchart and a plan view showing one example of the principal process in the assembly of the semiconductor device of FIG. 1, FIG. 11 is a flowchart and a plan view showing one example of the principal process in the assembly of the semiconductor device of FIG. 1, and FIG. 12 is a plan view and enlarged local plan view showing one example of a structure of a lead frame used in the assembly of the semiconductor device of FIG. 1. Moreover, FIG. 13 is a sectional view showing one example of a structure of a device region of the lead frame shown in FIG. 12, FIG. 14 is a sectional view showing one example of a structure after paste coating of the assembly of the semiconductor device of FIG. 1, FIG. 15 is a sectional view showing one example of a structure after die bonding of the assembly of the semiconductor device of FIG. 1, and FIG. 16 is a conceptual diagram showing one example of tools used in wire bonding of the assembly of the semiconductor device of FIG. 1. Furthermore, FIG. 17 is a sectional view showing one example of a structure after bump bonding of the assembly of the semiconductor device of FIG. 1, FIG. 18 is a sectional view showing one example of a structure after inter-chip bonding of the assembly of the semiconductor device of FIG. 1, FIG. 19 is a sectional view showing one example of a structure after the wire bonding of the assembly of the semiconductor device of FIG. 1, and FIG. 20 is a local sectional view showing one example of a structure after clamping with a mold in an encapsulation process of the assembly of the semiconductor device of FIG. 1.
  • Moreover, FIG. 21 is a local plan view showing one example of a resin injection direction after clamping with the mold in FIG. 20, FIG. 22 is a sectional view showing one example of a structure after encapsulation of the assembly of the semiconductor device of FIG. 1, FIG. 23 is a sectional view showing one example of a structure after exterior plating formation of the assembly of the semiconductor device of FIG. 1, and FIG. 24 is a local sectional view showing one example of a structure after cutting and forming of the assembly of the semiconductor device of FIG. 1.
  • First, the lead frame shown in Step S1 of FIG. 9 is prepared. Here, as shown in FIG. 12 and FIG. 13, a lead frame 34 is prepared that has the die pad 14 supported by the suspension lead 15, the die pad 24 supported by the suspension lead 25, the multiple inner leads 16 arranged adjacent to the die pad 14, and the multiple inner leads 26 arranged adjacent to the die pad 24.
  • Incidentally, many device regions 34 a in each of which a single package is formed are formed in a matrix array in the lead frame 34, which is a so-called multiple metallic lead frame (for example, made of a copper alloy, a steel-nickel alloy, etc.) in a thin plate shape.
  • After this, Ag paste application shown in Step S2 of FIG. 9 is performed. Here, as shown in FIG. 14, Ag paste is applied over each of the die pad 14 and the die pad 24 as the die bonding material (the adhesive) 2.
  • Furthermore, the die bonding shown in Step S3 of FIG. 9 is performed. Here, as shown in FIG. 15, the semiconductor chip 11 is mounted over the die pad 14 through the die bonding material 2, and on the other hand the semiconductor chip 21 is mounted over the die pad 24 through the die bonding material 2. Incidentally, the semiconductor chip 11 and the semiconductor chip 21 are the same semiconductor chip, and in a die bonding process, the semiconductor chip 21 is mounted over the die pad after being rotated to the mounting direction of the semiconductor chip 11 by 180 degrees as shown in plan view of Step S3 of FIG. 9.
  • Moreover, the long and narrow through holes 14 b, 24 b are formed on sides of respective one ends of the die pad 14 and the die pad 24. Since the through holes 14 b, 24 b are formed in the die pads 14, 24, even when flowing out (bleeding) of the die bonding material occurs, the die bonding material 2 that flowed out can be accumulated in the through holes 14 b, 24 b.
  • That is, even if the die bonding material 2 flows out, the die bonding material 2 can be accumulated in the through holes 14 b, 24 b, and it is possible to prevent the outflow of the die bonding material 2 to a region where down bonding is performed.
  • This can prevent the outflow of the die bonding material 2 from making it impossible for the wires 19 a, 29 a to be coupled. That is, even if the die bonding material 2 flows out, the die bonding material 2 can be accumulated in the through holes 14 b, 24 b, and it is possible to prevent the outflow of the die bonding material 2 to a region where the down bonding is performed.
  • Incidentally, what is to be required for the through holes 14 b, 24 b is just to be in a shape that can stop the die bonding material 2 that flowed out, for example, they may be in a shape of a concave slot, etc., and also in that case, the same effect can be obtained.
  • After that, the wire bonding is performed. Regarding the wire bonding of this embodiment, a case of adopting an ultrasonic wire bonding system that applies an ultrasonic wave to each of multiple wires through bonding tools such as an ultrasonic horn 37 and a capillary 38 at the time of the wire bonding, as shown in FIG. 16, will be explained. That is, while a wire is drawn out by the capillary 38 provided near a tip of the ultrasonic horn 37, the wire bonding is performed with an ultrasonic wave applied to the wire by the ultrasonic horn 37 and the capillary 38.
  • Moreover, in the wire bonding of this embodiment, the wire bonding is performed with respective second ends 14 d, 24 d of the die pad 14 and the die pad 24 pressed down by a clamper 39.
  • This is because, as shown in FIG. 1, the die pads 14, 24 have first ends 14 c, 24 c and the second ends 14 d, 24 d that face the first ends 14 c, 24 c in the first direction 4, respectively, further, the suspension leads 15, 25 are coupled to the first ends 14 c, 24 c of the die pads 14, 24, respectively, and the second ends 14 d, 24 d are configured to be open ends 14 e, 24 e, respectively.
  • That is, since the sides of the second ends 14 d, 24 d of the die pads 14, 24 are not supported by the suspension leads, the die pads are easy to flap at the time of the wire bonding. Therefore, at the time of the wire bonding as shown in FIG. 10, by pressing the second ends 14 d, 24 d on the side that are not supported by suspension leads of the die pads 14, 24 with the clamper 39, it is possible to suppress flapping of the respective leads, and as a result, to reduce wire bonding defect caused by flapping of the die pads 14, 24.
  • Incidentally, respective open ends 14 e, 24 e of the second end 14 d of the die pad 14 and the second end 24 d of the die pad 24 are in a free state where they are not coupled with anything at all including suspension leads. Moreover, a reason why the second ends 14 d, 24 d of the die pads 14, 24 are in a free state where they are not coupled with anything at all is to secure the withstand voltage.
  • That is, a letter T lead 36 is arranged in the vicinity of the second ends 14 d, 24 d of the die pads 14, 24. If suspension leads are coupled, the withstand voltage cannot be secured between them and the letter T lead 36. Therefore, the second ends 14 d, 24 d are configured to be open ends (single suspension) 14 e, 24 e, respectively, without being coupled with suspension leads etc.
  • Thereby, in the wire bonding of this embodiment, the wire bonding is performed while the second ends 14 d, 24 d on the sides that are not supported by the suspension leads of the die pads 14, 24 are pressed down by the clamper 39.
  • In the wire bonding process, first, the bump bonding shown in Step S4 of FIG. 10 is performed. Incidentally, as shown in FIG. 1 and FIG. 9, over the surface 11 a of the Semiconductor chip 11, the multiple pads 11 c electrically coupled with the transmission part 12 of FIG. 3 and the multiple pads 11 d electrically coupled with the reception part 13 are arranged. On the other hand, over the surface 21 a of the semiconductor chip 21, the multiple pads 21 c electrically coupled with the transmission part 22 of FIG. 3 and the multiple pads 21 d electrically coupled with the reception part 23 are arranged.
  • First, as shown in FIG. 10 and FIG. 17, a first stud bump 20 is formed over one pad 11 c among the multiple pads 11 c of the semiconductor chip 11. On the other hand a second stud bump 30 is formed over one pad 21 c among the multiple pads 21 c of the semiconductor chip 21.
  • After that, bonding between chips shown in Step S5 of FIG. 10 is performed. That is, as shown in FIG. 1, some ( pads 11 c, 11 d) of the multiple pads of the semiconductor chip 11 and some ( pads 21 c, 21 d) of the multiple pads of the semiconductor chip 21 are electrically coupled with one another with the multiple wires 6 a, 7 a, respectively. In the bonding between chips, first, one end of the wire 6 a is coupled onto one pad 21 d among the multiple pads 21 d of the semiconductor 21 of FIG. 1, and subsequently the other end of the wire 6 a is couple onto the first stud bump 20.
  • Similarly, one end of the wire 7 a is coupled onto one pad 11 d among the multiple pads 11 d of the semiconductor 11, subsequently the other end of the wire 7 a is couple onto the second stud bump 30, and the bonding between chips is completed as shown in FIG. 18.
  • That is, in the bonding between chips of this embodiment, since if second bonding is performed to the pad over the chip, the chip is damaged by the capillary 38, the bonding cannot be directly performed to the pad in a place of the second bonding. Therefore, after the stud bump is formed in advance over the pad on the second side by stud bonding (the bump bonding), the bonding on the second side is performed there. That is, this process is one that secures a height at which the second bonding is intended to be performed by having forming the stud bump on a second bonding side, whereby the semiconductor chip can be prevented from being damaged.
  • In this embodiment, at this occasion, what is adopted for the second side is a pad whose insulating layer under the pad is thicker, and the second bonding is performed to it. That is, since two times of the wire bonding are performed on the second side, i.e., the bump bonding and the second bonding, it is desirable that a pad having a thick insulating layer under the pad be selected as the second side. Therefore, in this embodiment, the pads 11 c, 21 c formed on the insulating layers 11 m, 21 m shown in FIG. 5 and FIG. 7 are selected as the second side.
  • That is, the insulating layers 11 m, 21 m are configured to be arranged both under the pad over which the first stud bump 20 is formed among the multiple pads 11 c of the semiconductor chip 11 and under the pad over which the second stud bump 30 is formed among the multiple pads 21 c of the semiconductor chip 21. Incidentally, the insulating layers 11 m, 21 m each contain a layer comprised of a polyimide.
  • This can mitigate a damage imposed on a circuit layer that is formed under the pad 11 c and the pad 21 c.
  • Incidentally, in the bonding between chips after stud bump formation, as shown in FIG. 1, the multiple pads 11 c of the semiconductor chip 11 and the multiple pads 21 d of the semiconductor chip 21 are coupled with one another with multiple wires 6 a included in the wire group 6, respectively. Furthermore, the multiple pads 11 d of the semiconductor chip 11 and the multiple pads 21 c of the semiconductor chip 21 are coupled with one another with the multiple wires 7 a included in the wire group 7, respectively. At that time, the wire bonding is performed so that the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 and the wire 7 a that is closest to the wire group 6 in the wire group 7 may become larger than any inter-wire distances in the wire group 6 and in the wire group 7.
  • As one example, the inter-wire distance L is 0.4 mm or more.
  • Thus, in the assembly of the SOP1 of this embodiment, by making the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 and the wire 7 a that is closest to the wire group 6 in the wire group 7 larger than any inter-wire distances in the wire group 6 and in the wire group 7, it is possible to secure the withstand voltage of the SOP1.
  • As a result, the improvement of the reliability of the SOP1 can be attained.
  • That is, in the semiconductor chip 11 and the semiconductor chip 21, in the case where voltage values differ largely between the first communication part to which the power supply voltage (low voltage) of the first power supply system 9 of FIG. 3 is supplied and the second communication part to which the power supply voltage (high voltage) of the second power supply system 10 is supplied, it is possible to secure the withstand voltage by making the inter-wire distance in the above-mentioned first communication part and the above-mentioned second communication part wide open. This can prevent the electric short circuit between the wire of the above-mentioned first communication part and the wire of the above-mentioned second communication part from occurring, and as a result, the improvement of the reliability of the SOP1 can be attained.
  • Furthermore, reliability can be improved while the miniaturization of the SOP1 is attained because of adoption of the inductor (coil) coupling.
  • After that, the wire bonding shown in Step S6 of FIG. 10 is performed. Here, first, as shown in FIG. 19, the wire bonding between the chip and the lead is performed. That is, as shown in FIG. 1 and FIG. 19, some (the pad 11 f) of the multiple pads of the semiconductor chip 11 and the multiple inner leads 16 are electrically coupled with one another with multiple wires 18 a, respectively. Moreover, some (pad 21 f) of the multiple pads of the semiconductor chip 21 and the multiple inner leads 26 are electrically coupled with one another with the multiple wires 28 a, respectively.
  • Furthermore, some (the pad 11 e) of the multiple pads of the semiconductor chip 11 and the suspension lead 15 (the die pad 14) are electrically coupled with the wire 19 a, and some (the pad 21 e) of the multiple pads of the semiconductor chip 21 and the suspension lead 25 (the die pad 24) are electrically coupled with the wire 29 a.
  • That is, the ground bonding is performed to the die pads 14, 24 from the semiconductor chip 11 and the semiconductor chip 21, respectively. In doing this, since in the die pads 14, 24, their second ends 14 d, 24 d are pressed down by the clamper 39, there is no space where the ground bonding is performed. Therefore, the ground bonding is performed so as to make coupling to the sides of the first ends 14 c, 24 c (sides that are not pressed down by the clamper 39) that are opposite sides to the second ends 14 d, 24 d. Thereby, the ground bonding can be performed with the die pads 14, 24 firmly pressed down on the sides of the second ends 14 d, 24 d of the open ends 14 e, 24 e.
  • Furthermore, when performing the ground bonding on the sides of the first ends 14 c, 24 c of the die pads 14, 24, the wire bonding is performed so that the wire may jump over the through holes 14 b, 24 b provided in the die pads 14, 24. Since the sides of the first ends 14 c, 24 c of the die pads 14, 24 have comparatively large areas, exfoliation takes place easily between the die pads 14, 24 and the resin. Then, since the through holes 14 b, 24 b are formed in the areas of the die pads 14, 24 with large areas, adhesion of the die pads 14, 24 and the resin in this areas can be improved, so that exfoliation between the die pads 14, 24 and the resin at the time of reflow can be reduced.
  • Furthermore, since the exfoliation between the die pads 14, 24 and the resin can be reduced, wire cutting in this vicinity can be reduced.
  • The wire bonding process is ended by the above.
  • The encapsulation (sealing) shown in Step S7 of FIG. 11 is performed after completion of the wire bonding. Here, the semiconductor chips 11, 21, respective parts of the suspension leads 15, 25, the die pads 14, 24, some of the multiple first and second leads (the inner leads 16, 26), and the multiple wires 6 a, 7 a, 18 a, 28 a, 19 a, and 29 a are sealed by sealing resin 41 (insulating resin) shown in FIG. 21. That is, using the sealing resin 41, the sealing body 3 is formed that has the first side 3 a and the third side 3 c that extend in the first direction 4 shown in FIG. 1 and the second side 3 b and the fourth side 3 d that extend in the second direction 5 substantially perpendicular to the first direction 4.
  • Therefore, in the encapsulation process of this embodiment, the sealing resin 41 of FIG. 21 is poured toward the fourth side 3 d from the second side 3 b of the sealing body 3 shown in FIG. 1 to form the sealing body 3. This is done because, as shown in FIG. 1, the suspension leads 15, 25 are provided so as to be closer to the second side 3 b than the fourth side 3 d of the sealing body 3 are in plan view, and as shown in FIG. 21, by arranging a gate 40 e for molding on the suspension lead side and injecting the sealing resin 41 from the suspension lead side, it is possible to suppress the flapping of the die pads 14, 24 at the time of resin injection.
  • Moreover, in the case where a through gate system is adopted, the sealing resin 41 comes out from a side opposite to the gate 40 e, and flows into the next cavity.
  • Here, a resin forming mold 40 of FIG. 20 used in this embodiment includes a pair of an upper mold (a first mold) 40 a and a lower mold (a second mold) 40 b; a cavity (a first cavity) 40 c is formed in the upper mold 40 a, and on the other hand a cavity (a second cavity) 40 d is formed in the lower mold 40 b.
  • Furthermore, in the resin forming mold 40, a depth R of the cavity 40 c of the upper mold 40 a is a depth capable of forming a relationship so that the distance Q from the wire peak of the wire 6 a (the wire 7 a) of the wire group 6 (the wire group 7) to the upper surface 3 e of the sealing body 3 may become equal to or more than the chip thickness T of the semiconductor chip 11 (Q≧T).
  • In the encapsulation process, first, the resin forming mold 40 that includes the upper mold 40 a having the cavity 40 c as shown in FIG. 20 and a lower mold 40 b making a pair with the upper mold 40 a and facing the upper mold 40 a is prepared.
  • After that, the lead frame 34 is positioned so that the semiconductor chips 11, 21 may be located within the cavity 40 c of the upper mold 40 a. Furthermore, after holding the lead frame 34 with the upper mold 40 a and the lower mold 40 b, the sealing resin 41 is poured into the cavity 40 c from the gate 40 e linking to the cavity 40 c.
  • That is, as shown in FIG. 21, the sealing resin 41 is injected (supplied) into the cavity 40 c from the gate 40 e that is arranged on the suspension lead side.
  • Thereby, it can suppress the flapping of the die pads 14, 24.
  • Moreover, since the depth R of the cavity 40 c of the upper mold 40 a is made to be a depth capable of forming a relationship so that the distance Q from the wire peak to the sealing body upper surface may become equal to or more than the chip thickness T of the semiconductor chip 11 (Q≧T) in FIG. 22, the sealing body 3 can be formed so that the distance Q from the wire peak to the sealing body upper surface may become equal to or more than the chip thickness T of the semiconductor chip 11 (Q≧T).
  • Moreover, because of the through holes 14 b, 24 b being formed in the die pads 14, 24, the sealing resin 41 can be embedded into each of the through holes 14 b, 24 b at the time of the resin injection, and the resin lock effect of the resin 41 for sealing (the sealing body 3) and the die pads 14, 24 can be enhanced. Incidentally, in the SOP1, since the areas of the die pads 14, 24 in plan view are large as compared with the area of the sealing body 3 in plan view, it is very effective to enhance the resin lock effect.
  • After completion of the encapsulation, exterior plating shown in Step S8 of FIG. 11 is performed. That is, as shown in FIG. 23, the exterior plating 8 comprised of solder, etc. is performed over respective surfaces of the multiple outer leads 17, 27 exposed from side faces of the sealing body 3.
  • After that, cutting and forming shown in Step S9 of FIG. 11 are performed. That is, the outer leads 17, 27 that link to respective leads 15, 25 shown in FIG. 1 and the outer leads 17, 27 that link to respective multiple leads 16, 26 shown in FIG. 24 are cut off from the lead frame 34, and each of the multiple outer leads 17, 27 is formed and bent into the shape of a gull wing.
  • Incidentally, as shown in FIG. 21, in places corresponding to respective central parts and their vicinities of the second side 3 b and the fourth side 3 d of the sealing body 3 of FIG. 1, the letter T leads 35, 36 are provided being linking to the lead frame 34, and at a stage where the sealing body 3 is formed, the letter T leads 35, 36 are in a state where their tips are embedded in the inside of the sealing body 3.
  • Thus, by the tips of the letter T leads 35, 36 being embedded in the inside of the sealing body 3 with the letter T leads 35, 36 linked to the lead frame 34, it is possible to prevent the package body from dropping out from the lead frame 34 when the respective outer leads 17, 27 are cut off from the lead frame 34 by lead cutting after completion of the encapsulation.
  • That is, even when the respective outer leads 17, 27 are cut off, the package body (the SOP body) is in a state of being supported by the lead frame 34 with the letter T leads 35, 36, and does not come off from the lead frame 34.
  • Moreover, since even when the letter T leads are cut off from the lead frame finally and the package body is cut off from the lead frame 34 completely, letter T portion are in a state of being embedded in the sealing body 3, the letter T leads 35, 36 do not drop out, and dropping-out of the letter T leads 35, 36 from the sealing body 3 can be prevented.
  • By the above, the assembly of the SOP1 has completed.
  • Next, a modification of this embodiment will be explained.
  • FIG. 25 is a plan view showing a structure of a semiconductor device of a modification of the embodiment with the sealing body penetrated.
  • FIG. 25 shows a 16-pin SOP42 of a four-channel version as a modification of the above-mentioned semiconductor device. That is, even if the number of channels increases to four channels, it is possible to secure the withstand voltage, like the SOP1 of the above-mentioned embodiment, by making larger the inter-wire distance L between the wire 6 a that is closest to the wire group 7 in the wire group 6 that performs coupling between the transmission part and the reception part (communication parts) and the wire 7 a that is closest to the wire group 6 in the wire group 7 than any inter-wire distances in the wire group 6 and in the wire group 7.
  • Thereby, improvement of the reliability can be attained also in the 16-pin SOP42 of the four-channel version.
  • In the foregoing, although the invention made by the present inventors was concretely explained based on the embodiments of the invention, it goes without saying that the present invention is not limited to the embodiments of the invention, and can be modified variously within a range that does not deviate from its gist.
  • For example, although in the above-mentioned embodiments, the case where the semiconductor chip 11 and the semiconductor chip 21 were the same chip was taken and explained, the semiconductor chip 11 and the semiconductor chip 21 are not necessarily required to be the same chip.
  • That is, in the case where the semiconductor device is a semiconductor device such that the semiconductor chips have communication functions, respectively, and perform communication therebetween through wires and also by the inductor coupling, and the voltage values are different between the communication parts, the multiple semiconductor chips that are mounted thereon are not required to be the same chip.
  • Moreover, the following embodiments may also be included.
  • (Additional Remark)
  • [Clause 1] A method for manufacturing a semiconductor device that includes the steps of: a) preparing a lead frame that has a first chip mounting part supported by a first suspension lead, a second chip mounting part supported by a second suspension lead, multiple first leads arranged adjacent to the first chip mounting part, and multiple second leads arranged adjacent to the second chip mounting part; b) mounting a first semiconductor chip over the first chip mounting part and mounting a second semiconductor chip over the second chip mounting part; c) electrically coupling some of multiple pads of the first semiconductor chip and some of multiple pads of the second semiconductor chip with multiple wires, respectively; d) electrically coupling some of the multiple pads of the first semiconductor chip and the multiple first leads with multiple wires, respectively; e) electrically coupling some of the multiple pads of the second semiconductor chip and the multiple second leads with multiple wires, respectively; f) sealing the first and second semiconductor chips, parts of the first and second suspension leads, the first and second chip mounting parts, parts of the multiple first and multiple second leads, and multiple wires to form a sealing body that includes a first side extending in a first direction and a second side extending in a second direction substantially perpendicular to the first direction; and g) cutting off the first and second suspension leads and the multiple first and multiple second leads from the lead frame, in which in the first semiconductor chip, multiple first pads and multiple second pads are arranged over its surface, and in the second semiconductor chip, multiple third pads and multiple fourth pads are arranged over its surface, in which the process c) includes the steps of: c1) coupling the multiple first pads of the first semiconductor chip and the multiple fourth pads of the second semiconductor chip with multiple first wires included in a first wire group, respectively; and c2) coupling the multiple second pads of the first semiconductor chip and the multiple third pads of the second semiconductor chip with multiple second wires included in a second wire group, respectively, in which the processes c1) and c2) are performed so that an inter-wire distance between a wire that is closest to the second wire group in the first wire group and a wire that is closest to the first wire group in the second wire group may become larger than any inter-wire distances in the first wire group and the second wire group.
    [Clause 2] The method for manufacturing a semiconductor device according to the clause 1, in which the step c1) includes the steps of: c11) forming a first stud bump over one pad among the multiple first pads; and c12) coupling one end of a wire onto one pad among the multiple fourth pads after the step c11); and c13) coupling the other end of the wire onto the first stud bump after the step c12).
    [Clause 3] The method for manufacturing a semiconductor device according to the clause 2, in which the step c2) includes the steps of: c21) forming a second stud bump over one pad among the multiple third pads; c22) coupling one end of a wire onto one pad among the multiple second pads after the step c21); and c23) coupling the other end of the wire onto the second stud bump after the step c22).
    [Clause 4] The method for manufacturing a semiconductor device according to the clause 1, in which the first and second chip mounting parts have a first end and a second end that faces the first end in the first direction, respectively, in which the first and second suspension leads are coupled to the first ends of the first and second chip mounting parts, respectively, and in which the processes c) to e) are performed with the respective second ends of the first and second chip mounting parts pressed down by a clamper.
    [Clause 5] The method for manufacturing a semiconductor device according to the clause 4, in which the second ends of the first and second chip mounting parts are made to be open ends.
    [Clause 6] The method for manufacturing a semiconductor device according to the clause 5, comprising the steps of: electrically coupling some of multiple pads of the first semiconductor chip and the first suspension lead with wires; and electrically coupling some of multiple pads of the second semiconductor chip and the second suspension lead with wires.
    [Clause 7] The method for manufacturing a semiconductor device according to the clause 5, in which the sealing body has a second side that intersects the first side and extends in the second direction and a fourth side that faces the second side and extends in the second direction, in which the first and second suspension leads are provided so as to be closer to the second side than the fourth side, and in which in the step f), an insulating resin is made to flow from the second side toward the fourth side to form the sealing body.
    [Clause 8] The method for manufacturing a semiconductor device according to the clause 7, in which the step f) includes the steps of: f1) preparing a first mold having a first cavity and a second mold facing the first mold; f2) positioning the lead frame so that the first and second semiconductor chips may be positioned inside the first cavity of the first mold; f3) holding the lead frame with the first mold and the second mold; and f4) making the insulating resin flow into the first cavity from a gate linking to the first cavity.
    [Clause 9] The method for manufacturing a semiconductor device according to the clause 4, in which the processes c) to e) are performed with an ultrasonic wave applied to each of the multiple wires through bonding tools.
    [Clause 10] The method for manufacturing a semiconductor device according to the clause 1, in which the first and second semiconductor chips are the same semiconductor chip, and in which in the process b), the second semiconductor device is mounted over the second chip mounting part being rotated to the mounting direction of the first semiconductor chip by 180 degrees.
    [Clause 11] The method for manufacturing a semiconductor device according to the clause 3, in which an insulating layer is arranged both under a pad over which the first stud bump is formed among the multiple first pads and under a pad over which the second stud bump is formed among the multiple third pads.
    [Clause 12] The method for manufacturing a semiconductor device according to the clause 11, in which the insulating layer contains a layer comprised of a polyimide.
    [Clause 13] The method for manufacturing a semiconductor device according to the clause 8, in which the depth of the first cavity is a depth so that distances from the wire peaks of respective wires of the first and second wire groups to the upper surface of the sealing body may become equal to or more than the chip thickness of the first semiconductor chip in cross sectional view.

Claims (16)

1-18. (canceled)
19. A method for manufacturing a semiconductor device, comprising:
a) preparing a lead frame that includes a first chip mounting part supported by a first suspension lead, a second chip mounting part supported by a second suspension lead, a plurality of first leads that are arranged adjacent to the first chip mounting part, and a plurality of second leads that are arranged adjacent to the second chip mounting part;
b) mounting a first semiconductor chip over the first chip mounting part and mounting a second semiconductor chip over the second chip mounting part;
c) electrically coupling some of a plurality of pads of the first semiconductor chip and some of a plurality of pads of the second semiconductor chip with a plurality of wires, respectively;
d) electrically coupling some of the pads of the first semiconductor chip and the first leads with a plurality of wires, respectively;
e) electrically coupling some of the pads of the second semiconductor chip and the second leads with a plurality of wires, respectively;
f) forming a sealing body that seals the first and second semiconductor chips, parts of the first and second suspension leads, the first and second chip mounting parts, parts of the first leads and the second leads, and a plurality of wires, and has a first side extending in a first direction and a second side extending in a second direction that is a direction substantially perpendicular to the first direction; and
g) cutting off the first and second suspension leads and the first and second leads from the lead frame,
wherein in the first semiconductor chip, a plurality of first pads and a plurality of second pads are arranged over its surface,
wherein in the second semiconductor chip, a plurality of third pads and a plurality of fourth pads are arranged over its surface,
wherein c) includes:
c1) coupling the first pads of the first semiconductor chip and the fourth pads of the second semiconductor chip with a plurality of first wires included in a first wire group, respectively; and
c2) coupling the second pads of the first semiconductor chip and the third pads of the second semiconductor chip with a plurality of second wires included in a second wire group, respectively, and
wherein both in plan view and in the first direction, c1) and c2) are performed so that an inter-wire distance between a wire that is closest to the second wire group in the first wire group and a wire that is closet to the first wire group in the second wire group is larger than any inter-wire distances in the first wire group and in the second wire group.
20. A method for manufacturing a semiconductor device according to claim 19,
wherein c1) includes:
c11) forming a first stud bump over one pad among the first pads;
c12) coupling one end of a wire onto one pad among the fourth pads after c11); and
c13) coupling the other end of the wire onto the first stud bump after c12).
21. A method for manufacturing a semiconductor device, comprising:
a) preparing a lead frame that has a first chip mounting part supported by a first suspension lead, a second chip mounting part supported by a second suspension lead, multiple first leads arranged adjacent to the first chip mounting part, and multiple second leads arranged adjacent to the second chip mounting part;
b) mounting a first semiconductor chip over the first chip mounting part and mounting a second semiconductor chip over the second chip mounting part;
c) electrically coupling some of multiple pads of the first semiconductor chip and some of multiple pads of the second semiconductor chip with multiple wires, respectively;
d) electrically coupling some of the multiple pads of the first semiconductor chip and the multiple first leads with multiple wires, respectively;
e) electrically coupling some of the multiple pads of the second semiconductor chip and the multiple second leads with multiple wires, respectively;
f) sealing the first and second semiconductor chips, parts of the first and second suspension leads, the first and second chip mounting parts, parts of the multiple first and multiple second leads, and multiple wires to form a sealing body that includes a first side extending in a first direction and a second side extending in a second direction substantially perpendicular to the first direction; and
g) cutting off the first and second suspension leads and the multiple first and multiple second leads from the lead frame, in which in the first semiconductor chip, multiple first pads and multiple second pads are arranged over its surface, and in the second semiconductor chip, multiple third pads and multiple fourth pads are arranged over its surface,
wherein c) includes:
c1) coupling the multiple first pads of the first semiconductor chip and the multiple fourth pads of the second semiconductor chip with multiple first wires included in a first wire group, respectively; and
c2) coupling the multiple second pads of the first semiconductor chip and the multiple third pads of the second semiconductor chip with multiple second wires included in a second wire group, respectively,
wherein c1) and c2) are performed so that an inter-wire distance between a wire that is closest to the second wire group in the first wire group and a wire that is closest to the first wire group in the second wire group is larger than any inter-wire distances in the first wire group and the second wire group.
22. The method for manufacturing a semiconductor device according to claim 21,
wherein c1) includes:
c11) forming a first stud bump over one pad among the multiple first pads;
c12) coupling one end of a wire onto one pad among the multiple fourth pads after c11); and
c13) coupling the other end of the wire onto the first stud bump after c12).
23. The method for manufacturing a semiconductor device according to claim 22,
wherein c2) includes:
c21) forming a second stud bump over one pad among the multiple third pads;
c22) coupling one end of a wire onto one pad among the multiple second pads after c21); and
c23) coupling the other end of the wire onto the second stud bump after c22).
24. The method for manufacturing a semiconductor device according to claim 21,
wherein each of the first and second chip mounting parts have a first end and a second end that faces the first end in the first direction, respectively,
wherein the first and second suspension leads are coupled to the first ends of the first and second chip mounting parts, respectively, and
wherein c) to e) are performed with the respective second ends of the first and second chip mounting parts pressed down by a clamper.
25. The method for manufacturing a semiconductor device according to claim 24,
wherein the second ends of the first and second chip mounting parts are made to be open ends.
26. The method for manufacturing a semiconductor device according to claim 25, comprising:
electrically coupling some of multiple pads of the first semiconductor chip and the first suspension lead with wires; and
electrically coupling some of multiple pads of the second semiconductor chip and the second suspension lead with wires.
27. The method for manufacturing a semiconductor device according to claim 25,
wherein the sealing body has the second side that intersects the first side and extends in the second direction and a fourth side that faces the second side and extends in the second direction,
wherein the first and second suspension leads are provided so as to be closer to the second side than the fourth side, and
wherein in f), an insulating resin is made to flow from the second side toward the fourth side to form the sealing body.
28. The method for manufacturing a semiconductor device according to claim 27,
wherein f) includes:
f1) preparing a first mold having a first cavity and a second mold facing the first mold;
f2) positioning the lead frame so that the first and second semiconductor chips are positioned inside the first cavity of the first mold;
f3) holding the lead frame with the first mold and the second mold; and
f4) flowing the insulating resin into the first cavity from a gate linking to the first cavity.
29. The method for manufacturing a semiconductor device according to claim 24,
wherein c) to e) are performed with an ultrasonic wave applied to each of the multiple wires through bonding tools.
30. The method for manufacturing a semiconductor device according to claim 21,
wherein the first and second semiconductor chips are portions of the same semiconductor chip, and
wherein in b), the second semiconductor chip is mounted over the second chip mounting part so as to be rotated to the mounting direction of the first semiconductor chip by 180 degrees.
31. The method for manufacturing a semiconductor device according to claim 23,
wherein an insulating layer is arranged both under a pad over which the first stud bump is formed among the multiple first pads and under a pad over which the second stud bump is formed among the multiple third pads.
32. The method for manufacturing a semiconductor device according to claim 31, wherein the insulating layer contains a layer comprised of a polyimide.
33. The method for manufacturing a semiconductor device according to claim 28,
wherein a depth of the first cavity is a depth so that distances from the wire peaks of respective wires of the first and second wire groups to the upper surface of the sealing body are equal to or more than a chip thickness of the first semiconductor chip in cross-sectional view.
US15/662,058 2013-06-25 2017-07-27 Semiconductor device and method for manufacturing the same Abandoned US20170323848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/662,058 US20170323848A1 (en) 2013-06-25 2017-07-27 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-133174 2013-06-25
JP2013133174A JP6129659B2 (en) 2013-06-25 2013-06-25 Semiconductor device and manufacturing method thereof
US14/304,949 US9754865B2 (en) 2013-06-25 2014-06-15 Semiconductor device and method for manufacturing the same
US15/662,058 US20170323848A1 (en) 2013-06-25 2017-07-27 Semiconductor device and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/304,949 Division US9754865B2 (en) 2013-06-25 2014-06-15 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
US20170323848A1 true US20170323848A1 (en) 2017-11-09

Family

ID=50842161

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/304,949 Active US9754865B2 (en) 2013-06-25 2014-06-15 Semiconductor device and method for manufacturing the same
US15/662,058 Abandoned US20170323848A1 (en) 2013-06-25 2017-07-27 Semiconductor device and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/304,949 Active US9754865B2 (en) 2013-06-25 2014-06-15 Semiconductor device and method for manufacturing the same

Country Status (6)

Country Link
US (2) US9754865B2 (en)
EP (1) EP2822031A3 (en)
JP (1) JP6129659B2 (en)
KR (1) KR20150000831A (en)
CN (1) CN104253102B (en)
HK (1) HK1205357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329572B2 (en) 2016-07-01 2022-05-10 Rohm Co., Ltd. Semiconductor device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220439A (en) 2013-05-10 2014-11-20 ルネサスエレクトロニクス株式会社 Method of manufacturing semiconductor device and semiconductor device
JP6522402B2 (en) 2015-04-16 2019-05-29 ローム株式会社 Semiconductor device
WO2017010012A1 (en) 2015-07-16 2017-01-19 株式会社PEZY Computing Semiconductor device
JP6503264B2 (en) * 2015-08-27 2019-04-17 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2017098334A (en) * 2015-11-19 2017-06-01 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2017112327A (en) * 2015-12-18 2017-06-22 ルネサスエレクトロニクス株式会社 Semiconductor device
CN105575941B (en) * 2016-02-03 2018-01-02 中芯集成电路(宁波)有限公司 The high power resonant vibration power supply control chip that a kind of dual chip encapsulation is realized
CN107799498A (en) * 2016-09-06 2018-03-13 精工半导体有限公司 The manufacture method of semiconductor device
JP2018041956A (en) * 2016-09-06 2018-03-15 エイブリック株式会社 Semiconductor device manufacturing method
JP6768569B2 (en) * 2017-03-21 2020-10-14 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor devices and semiconductor devices
JP6909995B2 (en) * 2017-06-27 2021-07-28 パナソニックIpマネジメント株式会社 Isolator
US10734331B2 (en) * 2017-08-16 2020-08-04 Texas Instruments Incorporated Integrated circuit with an embedded inductor or transformer
US10312185B2 (en) * 2017-10-05 2019-06-04 Texas Instrument Incorporated Inductively coupled microelectromechanical system resonator
DE112018004478T5 (en) 2017-10-13 2020-07-30 Rohm Co., Ltd. ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT MODULE
CN109872869B (en) * 2017-12-04 2021-12-28 万国半导体(开曼)股份有限公司 Isolation coupling structure
CN108133926B (en) * 2017-12-14 2024-05-24 常州星海电子股份有限公司 Rectifier bridge
CN110010509B (en) * 2018-01-05 2023-10-20 光宝新加坡有限公司 Double-lead-frame magnetic coupling packaging structure and manufacturing method thereof
JP2020017692A (en) * 2018-07-27 2020-01-30 Tdk株式会社 Electronic component package
KR102564605B1 (en) * 2018-12-21 2023-08-14 에스케이하이닉스 주식회사 Semiconductor device and manufacturing method of a semiconductor device
JP6718540B2 (en) * 2019-04-24 2020-07-08 ローム株式会社 Semiconductor device
US11538740B2 (en) * 2019-07-15 2022-12-27 Texas Instruments Incorporated Leads for semiconductor package
US20210043466A1 (en) * 2019-08-06 2021-02-11 Texas Instruments Incorporated Universal semiconductor package molds
JP7035117B2 (en) * 2020-06-12 2022-03-14 ローム株式会社 Semiconductor device
JP7527906B2 (en) 2020-09-10 2024-08-05 ローム株式会社 Semiconductor Device
JP7541456B2 (en) 2020-09-10 2024-08-28 ローム株式会社 Semiconductor Device
JP7541455B2 (en) 2020-09-10 2024-08-28 ローム株式会社 Semiconductor Device
JP2022046251A (en) 2020-09-10 2022-03-23 ローム株式会社 Semiconductor device
CN116848636A (en) * 2021-02-16 2023-10-03 罗姆股份有限公司 Semiconductor device, method for designing semiconductor device, and method for manufacturing semiconductor device
CN116072663B (en) * 2023-02-28 2024-02-02 海信家电集团股份有限公司 Power module and electronic equipment with same
WO2024195480A1 (en) * 2023-03-22 2024-09-26 ローム株式会社 Semiconductor device
WO2024202966A1 (en) * 2023-03-24 2024-10-03 ローム株式会社 Semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113664A1 (en) * 2004-11-30 2006-06-01 Masaki Shiraishi Semiconductor device
US20060220230A1 (en) * 2005-03-31 2006-10-05 Renesas Technology Corp. Semiconductor device and method of manufacturing thereof
US20120139130A1 (en) * 2004-03-31 2012-06-07 Renesas Electronic Corporation Semiconductor Device
US20120164794A1 (en) * 2010-12-28 2012-06-28 Yan Xun Xue Method of making a copper wire bond package
US20120238056A1 (en) * 2011-03-15 2012-09-20 Renesas Electronics Corporation Manufacturing method of semiconductor device
US20130082334A1 (en) * 2011-09-29 2013-04-04 Renesas Electronics Corporation Semiconductor device
US8441325B2 (en) * 2004-06-03 2013-05-14 Silicon Laboratories Inc. Isolator with complementary configurable memory

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199559A (en) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp Semiconductor device
JPH04258157A (en) * 1991-02-12 1992-09-14 Mitsubishi Electric Corp Lead frame
US7737871B2 (en) * 2004-06-03 2010-06-15 Silicon Laboratories Inc. MCU with integrated voltage isolator to provide a galvanic isolation between input and output
JP2007250891A (en) * 2006-03-16 2007-09-27 Fuji Electric Device Technology Co Ltd Power electronics equipment
JP2009302418A (en) 2008-06-17 2009-12-24 Nec Electronics Corp Circuit apparatus, and method of manufacturing the same
JP5238562B2 (en) * 2009-03-13 2013-07-17 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5390246B2 (en) 2009-04-20 2014-01-15 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5514134B2 (en) * 2011-02-14 2014-06-04 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120139130A1 (en) * 2004-03-31 2012-06-07 Renesas Electronic Corporation Semiconductor Device
US8441325B2 (en) * 2004-06-03 2013-05-14 Silicon Laboratories Inc. Isolator with complementary configurable memory
US20060113664A1 (en) * 2004-11-30 2006-06-01 Masaki Shiraishi Semiconductor device
US20060220230A1 (en) * 2005-03-31 2006-10-05 Renesas Technology Corp. Semiconductor device and method of manufacturing thereof
US20120164794A1 (en) * 2010-12-28 2012-06-28 Yan Xun Xue Method of making a copper wire bond package
US20120238056A1 (en) * 2011-03-15 2012-09-20 Renesas Electronics Corporation Manufacturing method of semiconductor device
US20130082334A1 (en) * 2011-09-29 2013-04-04 Renesas Electronics Corporation Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329572B2 (en) 2016-07-01 2022-05-10 Rohm Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
CN104253102B (en) 2018-12-28
KR20150000831A (en) 2015-01-05
JP6129659B2 (en) 2017-05-17
JP2015008229A (en) 2015-01-15
CN104253102A (en) 2014-12-31
US9754865B2 (en) 2017-09-05
US20140374890A1 (en) 2014-12-25
EP2822031A2 (en) 2015-01-07
HK1205357A1 (en) 2015-12-11
EP2822031A3 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
US20170323848A1 (en) Semiconductor device and method for manufacturing the same
US7981788B2 (en) Semiconductor device and a manufacturing method of the same
JP4322844B2 (en) Semiconductor device and stacked semiconductor device
US7298045B2 (en) Stacked semiconductor device
US8994195B2 (en) Microelectronic assembly with impedance controlled wirebond and conductive reference element
EP2802064B1 (en) Power module and encapsulation method thereof
US10109565B2 (en) Semiconductor device
CN102456652A (en) Power semiconductor device
CN101477972A (en) Lead frame, electronic component with the same, and manufacturing method thereof
CN102569268A (en) Semiconductor device and method for manufacturing same
CN104347549A (en) Semiconductor device and method of manufacturing same
KR101036987B1 (en) Semiconductor device manufacturing method
CN101266958A (en) Wafer encapsulation structure
US7683465B2 (en) Integrated circuit including clip
JP2017045878A (en) Semiconductor device
CN100401488C (en) Chip module with bond-wire connections with small loop height
CN102024777A (en) Semiconductor chip encapsulation structure and encapsulation method
JP5048627B2 (en) Lead frame and semiconductor device
KR102617704B1 (en) Power module and the method of packaging of the same
KR200211272Y1 (en) Chip size package
KR101491258B1 (en) Lead frame manufacturing method
CN115547623A (en) Conical inductor packaging structure and preparation method thereof
CN116314121A (en) Power module and method for manufacturing the same
CN102386165A (en) Chip package and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:RENESAS ELECTRONICS CORPORATION;REEL/FRAME:044742/0288

Effective date: 20150727

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE