US20170319018A1 - Apparatus for cleaning human body orifice - Google Patents

Apparatus for cleaning human body orifice Download PDF

Info

Publication number
US20170319018A1
US20170319018A1 US15/291,789 US201615291789A US2017319018A1 US 20170319018 A1 US20170319018 A1 US 20170319018A1 US 201615291789 A US201615291789 A US 201615291789A US 2017319018 A1 US2017319018 A1 US 2017319018A1
Authority
US
United States
Prior art keywords
brush head
bristle
accordance
brush
cleaning brush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/291,789
Inventor
Mingdong Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zensun Shanghai Science and Technology Ltd
Original Assignee
Zensun Shanghai Science and Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zensun Shanghai Science and Technology Ltd filed Critical Zensun Shanghai Science and Technology Ltd
Assigned to ZENSUN (SHANGHAI) SCIENCE & TECHNOLOGY CO., LTD. reassignment ZENSUN (SHANGHAI) SCIENCE & TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHOU, MINGDONG
Publication of US20170319018A1 publication Critical patent/US20170319018A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K7/00Body washing or cleaning implements
    • A47K7/04Mechanical washing or cleaning devices, hand or mechanically, i.e. power operated
    • A47K7/043Mechanical washing or cleaning devices, hand or mechanically, i.e. power operated hand operated
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B13/00Brushes with driven brush bodies or carriers
    • A46B13/02Brushes with driven brush bodies or carriers power-driven carriers
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B13/00Brushes with driven brush bodies or carriers
    • A46B13/008Disc-shaped brush bodies
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B13/00Brushes with driven brush bodies or carriers
    • A46B13/02Brushes with driven brush bodies or carriers power-driven carriers
    • A46B13/023Brushes with driven brush bodies or carriers power-driven carriers with means for inducing vibration to the bristles
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B13/00Brushes with driven brush bodies or carriers
    • A46B13/02Brushes with driven brush bodies or carriers power-driven carriers
    • A46B13/04Brushes with driven brush bodies or carriers power-driven carriers with reservoir or other means for supplying substances
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B5/00Brush bodies; Handles integral with brushware
    • A46B5/0095Removable or interchangeable brush heads
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B7/00Bristle carriers arranged in the brush body
    • A46B7/04Bristle carriers arranged in the brush body interchangeably removable bristle carriers
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/02Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups
    • A46B9/026Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups where the surface of the brush body or carrier is not in one plane, e.g. not flat
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/02Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups
    • A46B9/028Bristle profile, the end of the bristle defining a surface other than a single plane or deviating from a simple geometric form, e.g. cylinder, sphere or cone
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46DMANUFACTURE OF BRUSHES
    • A46D1/00Bristles; Selection of materials for bristles
    • A46D1/02Bristles details
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46DMANUFACTURE OF BRUSHES
    • A46D1/00Bristles; Selection of materials for bristles
    • A46D1/02Bristles details
    • A46D1/0207Bristles characterised by the choice of material, e.g. metal
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46DMANUFACTURE OF BRUSHES
    • A46D1/00Bristles; Selection of materials for bristles
    • A46D1/02Bristles details
    • A46D1/0276Bristles having pointed ends
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K7/00Body washing or cleaning implements
    • A47K7/04Mechanical washing or cleaning devices, hand or mechanically, i.e. power operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • A61C17/3409Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor characterized by the movement of the brush body
    • A61C17/3481Vibrating brush body, e.g. by using eccentric weights
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B2200/00Brushes characterized by their functions, uses or applications
    • A46B2200/10For human or animal care
    • A46B2200/1006Brushes for cleaning the hand or the human body
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K7/00Body washing or cleaning implements
    • A47K7/08Devices or hand implements for cleaning the buttocks

Definitions

  • the present disclosure relates to an apparatus for cleaning human body orifice, more particularly, relates to an electric orifice cleaning brush.
  • the umbilicus region is the only channel for an embryo to connect with its maternal body and get blood, oxygen and nutrition. Though after the fetus is given birth and the channel is cut off, the umbilicus region still has very close ties with the baby's organs.
  • the umbilicus region is the thinnest part of the abdominal wall and has no subcutaneous fat. However, it has abundant blood vessels. Through scientific research, people have found that there are about 1400 kinds of bacteria parasitizing in human being's navels, more than 600 kinds of which are unknown. In our daily life, we seldom care about our navels, nor do we clean them frequently, which give very good opportunities for bacteria to live and proliferate.
  • navels which can be classified into convex navels and concave navels. Especially, for a deeply concave navel, it is more prone to accumulate fouling inside, and it is very easy to get hurt and become infected when being cleaned off fouling.
  • the umbilical hole is cleaned by manually dipping a dry cotton swab in turpentine, mainly rubbing the wrinkles on the wall of the umbilical hole and its bottom part, and repeatedly cleaning these parts using different cotton swabs until fouling cannot be observed. Due to the special anatomic structure of an umbilical hole, it is relatively difficult to be cleaned. The traditional way of cleaning using cotton swabs along with turpentine and alcohol may significantly irritate the skin of a patient. As a result, oftentimes red swelling of the skin can be observed.
  • the anatomic structure of the perineal region may be the causes of incomplete cleaning of this region. And this also makes it very difficult to do surgical disinfection.
  • surgeons use natural orifices of human bodies as surgical routes more and more frequently, so as to avoid large scale skin trauma. This kind of surgery is referred to as natural orifice transluminal endoscopic surgery (NOTES).
  • NOTES natural orifice transluminal endoscopic surgery
  • natural orifices of a human body are not like those exposed human organs, it is not easy to clean and disinfect these natural orifices.
  • traditional ways of cleaning such as rinsing, using cotton swabs and gauzes, also bring the similar problems such as incomplete cleaning and irritating the skin, etc., which occur in cleaning the umbilical hole.
  • the present disclosure provides an electric orifice cleaning brush to solve the above-mentioned problems of not being able to completely clean human body orifices and easily hurting skin.
  • the cleaning brush is suitable for patients who need to be cleaned and disinfected in various surgeries. Its main function is to clean off the persistent fouling on the body surface that are hard to get rid of. It is effective in cleaning some narrow recesses or orifices on the body surface, such as umbilical hole, armpit, ear hole, etc.
  • the mechanism behind this product is, for example, producing friction with skin surface to break up fouling by way of vibration, while at the same time distributing disinfectants such as turpentine or alcohol across the body surface, thereby jointly achieving the goal of completely cleaning relevant parts.
  • micro-vibration function is capable of facilitating the break-up of the fouling and more effectively dissolving it in the turpentine. Meanwhile, as no excessive longitudinal force will be produced in the course of vibration, the risk of cleaning umbilical hole can be reduced.
  • the dense arrangement of brush bristles makes it easy to adsorb fouling. As a result, fouling will not be accumulated in the deep part of the umbilical hole. Also, material of extremely low dust-generation is chosen for producing brush bristles and thus, self-cleaning will not produce additional foreign substances.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion.
  • the bristle implanting portion is substantially in the shape of a circular truncated cone.
  • the bristle implanting portion is substantially in the shape of a circular rod.
  • the bristle bundles are radially distributed.
  • the bristle bundles are distributed in the form of a plurality of concentric circular rings or squares.
  • a rigid sleeve disposed at the peripheral part of the brush head, for opening an orifice, while the bristle implanting portion is configured to be extendable and retractable relative to the rigid sleeve.
  • the bristles are soaked with a solvent or a solution for adsorbing and dissolving matters to be cleaned off when in use.
  • the distance between the bristle bundles is around 2.7 mm.
  • the heights of the bristle bundles are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside.
  • the magnitude of reduction in the heights of the bristle bundles is uniform.
  • the magnitude of reduction in the heights of the bristle bundles is gradually decreased.
  • the bristle bundles are distributed in the shape of a truncated cone in a longitudinal section.
  • the bristles are made from nylon fibers.
  • the bristles are made from wools or pig hairs.
  • the bristles are made from silica gel material, wherein each individual bristle constitutes a bundle.
  • the tips of the bristle bundles are blunted.
  • the heights of the bristle bundles are between 2 mm and 22 mm.
  • the heights of the bristle bundles located at the peripheral region of the bristle implanting surface is so configured that they do not touch the skin of the person to be cleaned when the cleaning brush is being normally used.
  • the depths of the bristle bundles implanted into the bristle implanting portion are 3 mm or more.
  • the implanted portions of the bristle bundles are adhered by glue.
  • the bristle bundles are stuck in bristle implanting holes after being bent by metal sheets.
  • each bristle implanting hole there is an elastic hoop disposed at the opening of each bristle implanting hole.
  • the bristle bundles have vivid colors.
  • the bristle bundles are made from materials which are inherently colorful.
  • the bristle bundles and the bristle implanting portion are integrally formed.
  • the bristle implanting portion is clamped onto the brush head mounting platform.
  • the motor drives the brush head to rotate.
  • the motor further drives the brush head to vibrate up and down.
  • the motor drives the brush head to rotate at a constant rate.
  • the motor drives the brush head to vibrate up and down at different frequencies.
  • the cleaning brush has a battery chamber.
  • the cleaning brush has a dedicated power supply interface, for connection with an operation room energy platform.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein there is no bristle bundle at the center region of the bristle implanting portion, such that an empty region is formed; the empty region comprising no cavity structure (hole).
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein there is a protrusion structure disposed at the center region of the bristle implanting portion.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, the heights of the bristle bundles are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside, and wherein the heights of the bristle bundles located at the peripheral region of the bristle implanting surface is so configured that they do not touch the skin of the person to be cleaned when the cleaning brush is being normally used.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platforms and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein on the bristle implanting portion, there is an elastic hoop disposed at the opening of each bristle implanting hole.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein the bristle bundles have vivid colors.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein there is a rigid sleeve disposed at the peripheral part of the brush head, for at least partly opening an orifice, while the bristle implanting portion is configured to be extendable and retractable relative to the rigid sleeve.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein the bristles are soaked with a solvent or a solution for adsorbing and dissolving foreign substances or fouling when in use.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, wherein there is no bristle bundles at the center region of the bristle implanting portion, such that an empty region is formed, the empty region comprising one or more apertures for facilitating air flowing; and wherein the motor drives the brush head assembly with a driving mechanism, a fan blade structure disposed on the driving mechanism being configured to rotate with the rotation of the driving mechanism, and produce a negative pressure upon the bristle implanting region through the apertures.
  • an electric orifice cleaning brush which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a pillar structure, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion.
  • the technical scheme in accordance with the present disclosure is capable of achieving complete cleaning of an orifice of a human body and avoiding damages to the orifice.
  • the cleaning brush is convenient to operate and easy to replace. As such, it is suitable for medical applications.
  • FIG. 1 is an exploded view of an electric orifice cleaning brush, in accordance with an embodiment of the present disclosure
  • FIG. 2 is a side view of an electric orifice cleaning brush in accordance with an embodiment of the present disclosure
  • FIGS. 3A-3C illustrate a brush head in accordance with an embodiment of the present disclosure
  • FIGS. 4A and 4B illustrate a brush head in accordance with another embodiment of the present disclosure
  • FIG. 5 illustrates a brush head in accordance with still another embodiment of the present disclosure
  • FIG. 6 illustrates a brush head in accordance with yet another embodiment of the present disclosure
  • FIG. 7 illustrates a brush head in accordance with yet another embodiment of the present disclosure
  • FIG. 8 illustrates a brush head in accordance with yet another embodiment of the present disclosure
  • FIG. 9 illustrates a brush head in accordance with yet another embodiment of the present disclosure.
  • FIG. 10 illustrates a brush head in accordance with yet another embodiment of the present disclosure
  • FIG. 11 is a schematic view of a brush head in accordance with an embodiment of the present disclosure.
  • FIG. 12 is a partial view of a cleaning brush in accordance with an embodiment of the present disclosure.
  • FIG. 13 is a partial view of a cleaning brush in accordance with another embodiment of the present disclosure.
  • FIG. 14 is a partial view of a cleaning brush in accordance with still another embodiment of the present disclosure.
  • FIG. 15 illustrates a brush head in accordance with yet another embodiment of the present disclosure.
  • FIGS. 1 and 2 are an exploded view and a side view, respectively, of an electric orifice cleaning brush in accordance with an embodiment of the present disclosure (bristles are not shown in FIG. 1 ).
  • the orifice cleaning brush includes a motor 10 , a motor holder 11 , a sealing ring 12 , an eccentric shaft 14 , and a brush head assembly.
  • the brush head assembly and the motor holder 11 are mounted onto the housing 13 .
  • a groove for accommodating the motor 10 is disposed on the motor holder 11 .
  • the motor 10 is fixed in the groove within the motor holder 11 .
  • the sealing ring 12 is located between the motor holder 11 and the housing 13 .
  • the driving shaft of the motor 10 When assembled, the driving shaft of the motor 10 successively penetrates through the holes on the motor holder 11 , the sealing ring 12 , and the housing 13 , and its end extends outside the housing 13 and connects with one end of the eccentric shaft 14 .
  • the other end of the eccentric shaft 14 deviates from the center position and is connected to the brush head assembly as a the driving shaft for the brush head assembly.
  • the motor 10 connects with the brush head assembly through simple components such as the driving shaft and the eccentric shaft 14 .
  • the driving shaft of the motor 10 rotates and drives the eccentric shaft 14 to rotate, which in turn drives the brush head assembly to rotate.
  • the eccentric distance of the eccentric shaft is between 0.2 mm and 1 mm, for example, is 0.4 mm or 0.6 mm.
  • the design of the eccentric shaft enables it to rotate around the driving shaft of the motor and to revolve on its own axis relative to other fixed components in the meantime.
  • the eccentric shaft 14 is positioned at a bottom central groove of the brush head assembly. Therefore, it can cause the brush head assembly to move.
  • the eccentric shaft 14 may be replaced by another eccentric component such as an eccentric wheel, and its another end may be connected to the brush head assembly after being connected to other transmission components.
  • the cleaning brush's brush shaft portion is substantially at a right angle to its brush head portion.
  • the cleaning brush's brush shaft portion is designed to be at an obtuse angle (such as an angle of 120 degrees, 135 degrees, or 150 degrees), or even at an angle of 180 degrees, to its brush head portion. In some applications, these designs may be convenient for an operator to use.
  • the sealing ring 12 has a hollow structure, and both its inner side and its outer side take the form of disk structure 25 . Its inner portion is a funnel-like hollow chamber 26 , in which a lubricant is filled. This not only achieves lubrication of relevant components, but also ensures a complete insulation between the interior and exterior of the housing 13 .
  • the housing 13 has a groove structure 19 matching with the structure of the sealing ring 12 . Also, studs are disposed within the housing 13 . Through the studs, the motor holder 11 can be fixed to the interior of the housing such that no fastener penetrating through the housing is required to fix the motor. In some embodiments, the number of the studs can be four.
  • the brush head assembly includes a brush head 15 and a brush head mounting platform 17 connected to the brush head 15 .
  • the brush head 15 includes an outer ring and an inner ring, which are connected with each other through an elastic soft connection 22 .
  • the outer ring of the brush head 15 can be fixed to the housing 13 via a pin mechanism.
  • the bottom of the inner ring of the brush head 15 is provided with a self-lubricating bearing 21 connected to the driving shaft.
  • the brush head 15 is detachably mounted onto the brush head mounting platform 17 , and the mounting can be achieved through a snap-fit connection or a cladding, or any other suitable ways of installation.
  • the brush head 15 can be integrally integrated onto the brush head mounting platform 17 .
  • the existence of the elastic soft connection 22 makes the inner ring of the brush head 15 only rotates around the driving shaft, with minor or no revolving around its own axis.
  • the self-lubricating bearing 21 between the driving shaft and the bottom groove of the brush head's inner ring also ensures that there can be only minor auto rotation or no skidding-like auto rotation of the brush head in response to the driving shaft's movement. Due to the eccentric shaft 14 's function, the existence of the elastic soft connection 22 also enables the brush head to vibrate up-and-down and left-and-right.
  • the motor 10 connects with the brush head assembly through its own driving shaft and the eccentric shaft 14 .
  • the rotation of the motor 10 's driving shaft causes the eccentric shaft 14 to rotate.
  • the eccentric shaft 14 is coupled to the brush head assembly, the latter is also caused to rotate.
  • the rotation is further converted by the elastic soft connection 22 into the up-and-down and left-and-right vibrations of the brush head 15 .
  • FIGS. 3A-3C illustrate a brush head in accordance with an embodiment of the present disclosure.
  • FIG. 3A illustrates a front view of the brush head 15 .
  • FIG. 3B illustrates a longitudinal section of the brush head 15 , the longitudinal section passing through the center axis A-A of the brush head.
  • FIG. 3C illustrates a distribution of bristle bundles on the bristle implanting surface.
  • bristle bundles are substantially in the shape of a truncated cone in the longitudinal section.
  • the bristle bundles are distributed in an evenly spaced manner across the bristle implanting surface. Starting from the center point of the bristle implanting surface, these bristle bundles are distributed radially, and on the whole embody a plurality of concentric circular rings. Of course, it should be understood that the bristle bundles also can be distributed in the form of concentric square rings.
  • the distance between the bristle bundles is about 2.7 mm. It should be understood that the distance can be set to be within a range of 1.5 mm to 3.5 mm.
  • the heights of the bristle bundles are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside. This is to clean the deep regions of an umbilical hole.
  • the height of the highest bristle bundle is around 22 mm, while after gradual reduction in height, the height of the bristle bundles on the outermost ring is around 3 mm.
  • the heights of the bristle bundles are gradually lowered from the interior to the exterior at different slopes.
  • the slope of height reduction is relatively higher and is around 2.14, while in peripheral regions the slope of height reduction is abruptly decreased and is around 0.42. It should be understood that these designs are mainly made to match with the ergonomic structure of an umbilical hole. In other embodiments, other heights and slopes may be adopted.
  • bristles located at its center region that contact the skin of a person to be cleaned, and bristles with smaller heights located at peripheral region does not contact the skin.
  • bristles located at peripheral regions may contact the skin of the person to be cleaned occasionally.
  • bristles located at peripheral regions may serve as a bumper to avoid the discomfort caused by those people with highly sensitive skin directly contacting the structural components of the brush head, which are typically made from metals or plastics.
  • the tips of bristle bundles are rounded and blunted.
  • the resulting shape lowers the irritation that may be made to a human body.
  • the tips of bristle bundles are not modified and retain their natural shapes.
  • the bristle's material can be nylon fiber.
  • pig hair or wool may be selected according to actual needs. These materials have different softness and can be used for cleaning people at different ages. For example, softer bristles may be more suitable for infants.
  • the bristle bundles need to be implanted into the bristle implanting portion at a certain depth.
  • the implanting depth may be 3 mm, which can ensure that bristles are not easily detached from the bristle implanting portion.
  • a greater implanting depth also can be contemplated.
  • the size of the bristle implanting portion as well as the size of the whole brush head need to be considered, too.
  • the cleaning brush's brush shaft portion it is possible to set the cleaning brush's brush shaft portion to be at an obtuse angle (for example 120 degrees, 135 degrees, or 150 degrees), or even an angle of 180 degrees, to its brush head portion, which may be more convenient for some operators to use and allow the brush head portion to have large dimensions (especially in depth).
  • an obtuse angle for example 120 degrees, 135 degrees, or 150 degrees
  • an angle of 180 degrees to its brush head portion
  • bristles may be stuck in bristle implanting holes after being bent by metal sheets.
  • glue is used at the implanted portions of the bristle bundles to bond bristles.
  • an elastic hoop (not shown) is provided to compact the bristle bundle.
  • bristles are made from materials which are inherently colorful. Those vivid colors which are distinct from the skin color, such as red, blue, etc., may be selected. As such, even some bristles are detached in an operation, they will be easily discernible, which makes it convenient for medical care personnel to get rid of these bristles quickly, without causing secondary contamination. Of course, colorful bristles are also more aesthetically pleasing.
  • silica gel material can be used to make bristles such that each individual bristle constitutes a bristle bundle. It can be understood that, in this situation, the bristles and the bristle implanting portion can be integrally formed.
  • One advantage of using silica gel material is to better cater to the sensitive skins of some people to be cleaned.
  • bristles when in use bristles may be soaked with certain solvents or solutions (for example iodophor, alcohol, turpentine, etc.). These solvents or solutions may help dissolve matters to be cleaned off (e.g., foreign substances, fouling, etc.) and adsorb them onto bristles.
  • solvents or solutions for example iodophor, alcohol, turpentine, etc.
  • FIGS. 4A-4B illustrate a brush head in accordance with another embodiment of the present disclosure.
  • FIG. 4A illustrates a front view of the brush head
  • FIG. 4B illustrates the brush head's longitudinal section, which passes through the center axis of the brush head.
  • the bristle bundle 151 is substantially in the shape of a truncated cone in the longitudinal section.
  • the heights of the bristle bundles 151 are gradually lowered along the radial direction, from the center of the bristle implanting portion to outside.
  • the heights of the bristle bundles 151 are gradually lowered from the interior to the exterior according to a substantially uniform slope. Specifically, on the ring closest to the center of the bristle implanting surface, the height of the highest bristle bundle is around 22 mm. While after being gradually lowered, the height of the bristle bundle located on the outermost ring is about 5 mm.
  • FIG. 5 illustrates a brush head in accordance with still another embodiment of the present disclosure.
  • the left portion of FIG. 5 illustrates a longitudinal section of the brush head, and the right portion of FIG. 5 illustrates a front view of the brush head.
  • the bristle bundles 151 of FIG. 5 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside, and the rate of height reduction is substantially uniform. However, it is slightly different that the heights of some bristles are not lowered according to a uniform slope, but are lowered step by step.
  • FIG. 6 illustrates a brush head in accordance with yet another embodiment of the present disclosure.
  • the left portion of FIG. 6 illustrates a longitudinal section of the brush head, and the right portion of FIG. 6 illustrates a front view of the brush head.
  • the bristle bundles 151 of Fig. 6 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside. However, the slope of height reduction is uniform, and the slope is about 1.6.
  • FIG. 7 illustrates a brush head in accordance with another embodiment of the present disclosure.
  • the left portion of FIG. 7 illustrates a longitudinal section of the brush head, and the right portion of FIG. 7 illustrates a front view of the brush head.
  • the bristle bundles 151 of FIG. 7 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside.
  • the slope of height reduction is not uniform. Specifically, the slope of height reduction is relatively higher and is about 3.27 in regions close to the center region, while at peripheral regions the slope of height reduction is abruptly decreased to about 0.7. Such a slope design may better match with the shapes of umbilical holes of some people to be cleaned.
  • FIG. 8 illustrates a brush head in accordance with still another embodiment of the present disclosure.
  • the left portion of FIG. 8 illustrates a longitudinal section of the brush head; and the right portion of FIG. 8 illustrates a front view of the brush head.
  • the bristle bundles 151 of FIG. 8 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside.
  • the slope of height reduction is not uniform. Specifically, the slope of height reduction is relatively higher and is about 2.6 in regions close to the center region, while at peripheral regions the slope of height reduction is not decreased according to a slope, but is decreased step by step in a moderate manner.
  • FIG. 9 illustrates a brush head in accordance with another embodiment of the present disclosure.
  • the left portion of FIG. 9 illustrates a longitudinal section of the brush head, and the right portion of FIG. 9 illustrates a front view of the brush head.
  • the bristle bundles of FIG. 9 are substantially in the shape of a superposition of a plurality of truncated cones.
  • the heights of bristle bundles 151 are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside, and are decreased step by step.
  • the height differences between bristle bundles located closer to the interior are relatively bigger, while the height differences between bristle bundles located closer to the exterior are relatively smaller.
  • FIG. 10 illustrates a brush head in accordance with another embodiment of the present disclosure.
  • the left portion of Fig, 10 illustrates a longitudinal section of the brush head, and the right portion of FIG. 10 illustrates a front view of the brush head.
  • the bristle implanting surface of FIG. 10 is not made level and flat. Instead, there is a protrusion 30 disposed at the center region of the bristle implanting portion. As such, the lengths of the exposed portions of the bristle bundles 151 located at the center region are shortened. In the case of same material being used, the hardness of this part of bristles will be increased, which may further enhance its cleaning capability.
  • the protrusion 30 is in the shape of a circular arch, which may help match with the overall truncated cone shape of the bristle bundles. It should be understood that, protrusions having other shapes, such as having a truncated cone shape, a multi-step shape, or a cylindrical shape, may be feasible, too.
  • FIG. 11 is a schematic view of a brush head in accordance with an embodiment of the present disclosure.
  • one or more apertures are still provided at the center region.
  • the sizes of these apertures may be equal to the sizes of those bristle implanting holes. In some embodiments, the sizes of these apertures may be designed to be smaller.
  • the diameters of these apertures may be contemplated to both increase the negative pressure and ensure a certain level of firmness of the structure.
  • FIG. 12 is a partial section view of a cleaning brush in accordance with an embodiment of the present disclosure. It can be seen that small-sized fan blades 31 are disposed on the driving shaft of the motor. Unlike a traditional fan, which is blowing forward at the time of rotation, the curved shape and curvature of the fan blades 31 are designed to blow backward (i.e., suck the air ahead) at the time of rotating with the driving shaft. As such, in rotation the fan blades 31 may produce a negative pressure in the central empty region through the apertures, thereby facilitating adsorbing those substances to be cleaned off. In some embodiments, several apertures are disposed on the housing of the motor holder as well, so as to facilitate air flowing.
  • the fan blades 31 may be disposed on the eccentric shaft 14 .
  • FIG. 13 it is a partial view of a cleaning brush in accordance with another embodiment of the present disclosure.
  • a rigid sleeve 32 disposed at the peripheral part of the brush head.
  • the umbilical holes may be spread, such that the deep portions now become shallower, and thus easier to be cleaned.
  • This rigid sleeve may be made of a transparent material, such as a tempered glass, as this will help the operator to see what kind of contact is achieved between bristles and the skin of the patient.
  • the bristle implanting portion is made to be movable to enable it to be extendable and retractable within the rigid sleeve, so as to achieve a better contact with a patient's skin.
  • the rigid sleeve is slidably fit to the peripheral part of the brush head, by means of one or more bumps, where different positions of the bumps define different lengths that the sleeve may extend forward.
  • the bumps may be disposed on the inner side of the sleeve, or on the peripheral part of the brush head.
  • FIG. 14 is a partial view of a cleaning brush in accordance with an embodiment of the present disclosure.
  • the brush shaft portion of the cleaning brush is set to be at an angle of 180 degrees to its brush head portion.
  • a user may hold the cleaning brush like holding a pen.
  • the diameters of the brush shaft portion and the brush head portion need to be designed to be correspondingly smaller, so as to be convenient for a user to hold.
  • These pen-like embodiments are especially suitable for cleaning relatively small orifices such as ear holes or nostrils.
  • FIG. 15 illustrates a brush head in accordance with yet another embodiment of the present disclosure.
  • the bristle implanting portion is designed to be in the shape of a pillar structure, and bristles are substantially evenly distributed on the surface of the pillar structure.
  • the bristle implanting portion with a pillar structure is particularly suitable for a pen-like cleaning brush. When cleaning relatively deep orifices with relatively small diameters (such as ear holes and nostrils), such a shape is especially convenient for a user to operate.
  • relatively deep orifices with relatively small diameters such as ear holes and nostrils
  • the end of the pillar bristle implanting portion facing a patient's skin is not flat, but dome-like, which makes the spatial distribution of bristles to be more uniform.
  • bristles used have multiple colors and bristles of different colors are distributed along the longitudinal direction of the pillar structure, which can serve as an intuitive prompt to a user as to how deep have the bristles gone into the patient's orifice (such as an ear hole, a nostril, etc.).

Abstract

An electric orifice cleaning brush includes a brush head having a bristle implanting portion in the shape of a truncated cone and including a center region and apertures in the center region for facilitating air flowing. The brush head further includes bristles formed in bristle bindles. The bristle bindles are disposed outside the center region and are radially distributed in an evenly spaced manner. The cleaning brush further includes a brush head mounting platform onto which the brush head is detachably mounted and a driving mechanism having a fan blade disclosed thereon. The fan blade is configured to rotate with rotation of the driving mechanism and produce a negative pressure on the bristle implanting portion through the apertures. The cleaning brush further includes a motor configured to drive the brush head to move through the driving mechanism and a motor holder for supporting the brush head mounting platform and accommodating the motor.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims priority to Chinese Patent Application No. CN201610301432.5, filed on May 9, 2016, which is hereby incorporated by reference in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to an apparatus for cleaning human body orifice, more particularly, relates to an electric orifice cleaning brush.
  • BACKGROUND
  • In the embryo period, the umbilicus region is the only channel for an embryo to connect with its maternal body and get blood, oxygen and nutrition. Though after the fetus is given birth and the channel is cut off, the umbilicus region still has very close ties with the baby's organs. The umbilicus region is the thinnest part of the abdominal wall and has no subcutaneous fat. However, it has abundant blood vessels. Through scientific research, people have found that there are about 1400 kinds of bacteria parasitizing in human being's navels, more than 600 kinds of which are unknown. In our daily life, we seldom care about our navels, nor do we clean them frequently, which give very good opportunities for bacteria to live and proliferate. Different people have different types of navels, which can be classified into convex navels and concave navels. Especially, for a deeply concave navel, it is more prone to accumulate fouling inside, and it is very easy to get hurt and become infected when being cleaned off fouling.
  • These years, as people are paying more and more attention to human body aesthetics, they are more likely to choose the umbilical hole laparoscopic surgery as the abdominal surgery, which raises higher requirements for cleaning the umbilical hole.
  • At present, before surgery the umbilical hole is cleaned by manually dipping a dry cotton swab in turpentine, mainly rubbing the wrinkles on the wall of the umbilical hole and its bottom part, and repeatedly cleaning these parts using different cotton swabs until fouling cannot be observed. Due to the special anatomic structure of an umbilical hole, it is relatively difficult to be cleaned. The traditional way of cleaning using cotton swabs along with turpentine and alcohol may significantly irritate the skin of a patient. As a result, oftentimes red swelling of the skin can be observed. Also, it is not easy to use the thick head part of a cotton swab to clean the bottom part of a lacuna, and detachment of cotton flocks from the head part of the cotton swab may produce new foreign substances easily. Moreover, the traditional way of excavating longitudinally to clean the umbilical hole may have the potential risk of hurting the soft and tender skin at the bottom of the umbilical hole.
  • Further, in some other surgeries, it is also necessary to clean the patients' orifices. For example, for removal of earwax and foreign substances from ear, the traditional way of rinsing and excavating still poses certain risk to the interior structure of an ear. And some craniocerebral surgeries involving nasal cavity need to open surgical routes through the nasal cavity. However, current method of cleaning a nostril still has drawbacks, such as cleaning is incomplete and it may irritate the patient significantly. For surgeries involving the perineal region, such as abdominoperineal resection or repair of rectovaginal fistula, it is necessary to clean the perineal region. However, the anatomic structure of the perineal region, featuring plentiful wrinkles, as well as fecalith obstruction in the patient, may be the causes of incomplete cleaning of this region. And this also makes it very difficult to do surgical disinfection. With the advancement of surgical technologies, to reduce a patient's trauma and maintain the wholeness of the patient's skin as much as possible, surgeons use natural orifices of human bodies as surgical routes more and more frequently, so as to avoid large scale skin trauma. This kind of surgery is referred to as natural orifice transluminal endoscopic surgery (NOTES). However, as natural orifices of a human body are not like those exposed human organs, it is not easy to clean and disinfect these natural orifices. For these natural orifices, traditional ways of cleaning, such as rinsing, using cotton swabs and gauzes, also bring the similar problems such as incomplete cleaning and irritating the skin, etc., which occur in cleaning the umbilical hole.
  • SUMMARY
  • The present disclosure provides an electric orifice cleaning brush to solve the above-mentioned problems of not being able to completely clean human body orifices and easily hurting skin. The cleaning brush is suitable for patients who need to be cleaned and disinfected in various surgeries. Its main function is to clean off the persistent fouling on the body surface that are hard to get rid of. It is effective in cleaning some narrow recesses or orifices on the body surface, such as umbilical hole, armpit, ear hole, etc. The mechanism behind this product is, for example, producing friction with skin surface to break up fouling by way of vibration, while at the same time distributing disinfectants such as turpentine or alcohol across the body surface, thereby jointly achieving the goal of completely cleaning relevant parts. Its micro-vibration function is capable of facilitating the break-up of the fouling and more effectively dissolving it in the turpentine. Meanwhile, as no excessive longitudinal force will be produced in the course of vibration, the risk of cleaning umbilical hole can be reduced. The dense arrangement of brush bristles makes it easy to adsorb fouling. As a result, fouling will not be accumulated in the deep part of the umbilical hole. Also, material of extremely low dust-generation is chosen for producing brush bristles and thus, self-cleaning will not produce additional foreign substances.
  • In accordance with the one aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion.
  • In some embodiments, the bristle implanting portion is substantially in the shape of a circular truncated cone.
  • In some embodiments, the bristle implanting portion is substantially in the shape of a circular rod.
  • In some embodiments, the bristle bundles are radially distributed.
  • In some embodiments, the bristle bundles are distributed in the form of a plurality of concentric circular rings or squares.
  • In some embodiments, there is no bristle bundle provided at the center region of the bristle implanting portion.
  • In some embodiments, there is no bristle implanting hole disposed at the center region of the bristle implanting portion.
  • In some embodiments, there is a protrusion disposed at the center region of the bristle implanting portion.
  • In some embodiments, there is no bristle bundle provided at the center region of the bristle implanting portion.
  • In some embodiments, there is a rigid sleeve disposed at the peripheral part of the brush head, for opening an orifice, while the bristle implanting portion is configured to be extendable and retractable relative to the rigid sleeve.
  • In some embodiments, the bristles are soaked with a solvent or a solution for adsorbing and dissolving matters to be cleaned off when in use.
  • In some embodiments, the distance between the bristle bundles is around 2.7 mm.
  • In some embodiments, the heights of the bristle bundles are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside.
  • In some embodiments, the magnitude of reduction in the heights of the bristle bundles is uniform.
  • In some embodiments, the magnitude of reduction in the heights of the bristle bundles is gradually decreased.
  • In some embodiments, the bristle bundles are distributed in the shape of a truncated cone in a longitudinal section.
  • In some embodiments, the bristles are made from nylon fibers.
  • In some embodiments, the bristles are made from wools or pig hairs.
  • In some embodiments, the bristles are made from silica gel material, wherein each individual bristle constitutes a bundle.
  • In some embodiments, the tips of the bristle bundles are blunted.
  • In some embodiments, the heights of the bristle bundles are between 2 mm and 22 mm.
  • In some embodiments, the heights of the bristle bundles located at the peripheral region of the bristle implanting surface is so configured that they do not touch the skin of the person to be cleaned when the cleaning brush is being normally used.
  • In some embodiments, the depths of the bristle bundles implanted into the bristle implanting portion are 3 mm or more.
  • In some embodiments, the implanted portions of the bristle bundles are adhered by glue.
  • In some embodiments, the bristle bundles are stuck in bristle implanting holes after being bent by metal sheets.
  • In some embodiments, on the bristle implanting portion, there is an elastic hoop disposed at the opening of each bristle implanting hole.
  • In some embodiments, the bristle bundles have vivid colors.
  • In some embodiments, the bristle bundles are made from materials which are inherently colorful.
  • In some embodiments, the bristle bundles and the bristle implanting portion are integrally formed.
  • In some embodiments, the bristle implanting portion is clamped onto the brush head mounting platform.
  • In some embodiments, the motor drives the brush head to rotate.
  • In some embodiments, the motor further drives the brush head to vibrate up and down.
  • In some embodiments, the motor drives the brush head to rotate at a constant rate. For example, the motor drives the brush head to vibrate up and down at different frequencies.
  • In some embodiments, the cleaning brush has a battery chamber.
  • In some embodiments, the cleaning brush has a dedicated power supply interface, for connection with an operation room energy platform.
  • In some embodiments, there is a power status indicator disposed on the housing of the cleaning brush.
  • In some embodiments, there is a selective multi-position switch disposed on the housing of the cleaning brush.
  • In accordance with the second aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein there is no bristle bundle at the center region of the bristle implanting portion, such that an empty region is formed; the empty region comprising no cavity structure (hole).
  • In accordance with the third aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein there is a protrusion structure disposed at the center region of the bristle implanting portion.
  • In accordance with the fourth aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, the heights of the bristle bundles are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside, and wherein the heights of the bristle bundles located at the peripheral region of the bristle implanting surface is so configured that they do not touch the skin of the person to be cleaned when the cleaning brush is being normally used.
  • In accordance with the fifth aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platforms and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein on the bristle implanting portion, there is an elastic hoop disposed at the opening of each bristle implanting hole.
  • In accordance with the sixth aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein the bristle bundles have vivid colors.
  • In accordance with the seventh aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein there is a rigid sleeve disposed at the peripheral part of the brush head, for at least partly opening an orifice, while the bristle implanting portion is configured to be extendable and retractable relative to the rigid sleeve.
  • In accordance with the eighth aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, and wherein the bristles are soaked with a solvent or a solution for adsorbing and dissolving foreign substances or fouling when in use.
  • In accordance with the ninth aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a circular truncated cone, and after being formed the bristle bundles are radially distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion, wherein there is no bristle bundles at the center region of the bristle implanting portion, such that an empty region is formed, the empty region comprising one or more apertures for facilitating air flowing; and wherein the motor drives the brush head assembly with a driving mechanism, a fan blade structure disposed on the driving mechanism being configured to rotate with the rotation of the driving mechanism, and produce a negative pressure upon the bristle implanting region through the apertures.
  • In accordance with the tenth aspect of the present disclosure, an electric orifice cleaning brush is provided, which comprises a brush head, a brush head mounting platform onto which the brush head is detachably mounted, and a motor holder for supporting the brush head mounting platform and accommodating a motor; wherein the brush head comprises bristles and a bristle implanting portion, the bristle implanting portion being substantially in the shape of a pillar structure, and after being formed the bristle bundles are distributed in a substantially evenly spaced manner across the surface of the bristle implanting portion.
  • The technical scheme in accordance with the present disclosure is capable of achieving complete cleaning of an orifice of a human body and avoiding damages to the orifice. The cleaning brush is convenient to operate and easy to replace. As such, it is suitable for medical applications.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • To more clearly describe the technical solutions of the embodiments of the present disclosure or prior art, in the following drawings used for illustrating the embodiments or prior art will be briefly described. Obviously, drawings used in the following description merely illustrate some embodiments of the present disclosure. And these drawings are not limitative to the present disclosure, but are illustrative.
  • FIG. 1 is an exploded view of an electric orifice cleaning brush, in accordance with an embodiment of the present disclosure;
  • FIG. 2 is a side view of an electric orifice cleaning brush in accordance with an embodiment of the present disclosure;
  • FIGS. 3A-3C illustrate a brush head in accordance with an embodiment of the present disclosure;
  • FIGS. 4A and 4B illustrate a brush head in accordance with another embodiment of the present disclosure;
  • FIG. 5 illustrates a brush head in accordance with still another embodiment of the present disclosure;
  • FIG. 6 illustrates a brush head in accordance with yet another embodiment of the present disclosure;
  • FIG. 7 illustrates a brush head in accordance with yet another embodiment of the present disclosure;
  • FIG. 8 illustrates a brush head in accordance with yet another embodiment of the present disclosure;
  • FIG. 9 illustrates a brush head in accordance with yet another embodiment of the present disclosure;
  • FIG. 10 illustrates a brush head in accordance with yet another embodiment of the present disclosure;
  • FIG. 11 is a schematic view of a brush head in accordance with an embodiment of the present disclosure;
  • FIG. 12 is a partial view of a cleaning brush in accordance with an embodiment of the present disclosure;
  • FIG. 13 is a partial view of a cleaning brush in accordance with another embodiment of the present disclosure;
  • FIG. 14 is a partial view of a cleaning brush in accordance with still another embodiment of the present disclosure; and
  • FIG. 15 illustrates a brush head in accordance with yet another embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • In the following, reference will be made to the drawings of the embodiments of the present disclosure, to clearly and completely describe the technical solutions of the embodiments of the present disclosure. It is obvious that the embodiments as described are merely a part of but definitely not all embodiments of the present disclosure. All other embodiments obtained by a person skilled in the art, based on the embodiments, fall within the protection scope of the present disclosure, provided that obtaining these embodiments requires no creative work of such a person.
  • FIGS. 1 and 2 are an exploded view and a side view, respectively, of an electric orifice cleaning brush in accordance with an embodiment of the present disclosure (bristles are not shown in FIG. 1). The orifice cleaning brush includes a motor 10, a motor holder 11, a sealing ring 12, an eccentric shaft 14, and a brush head assembly. The brush head assembly and the motor holder 11 are mounted onto the housing 13. A groove for accommodating the motor 10 is disposed on the motor holder 11. The motor 10 is fixed in the groove within the motor holder 11. The sealing ring 12 is located between the motor holder 11 and the housing 13.
  • There are holes disposed at the bottom central parts of the motor holder 11, the sealing ring 12, and the housing 13. When assembled, the driving shaft of the motor 10 successively penetrates through the holes on the motor holder 11, the sealing ring 12, and the housing 13, and its end extends outside the housing 13 and connects with one end of the eccentric shaft 14. The other end of the eccentric shaft 14 deviates from the center position and is connected to the brush head assembly as a the driving shaft for the brush head assembly.
  • In the present embodiment, the motor 10 connects with the brush head assembly through simple components such as the driving shaft and the eccentric shaft 14. The driving shaft of the motor 10 rotates and drives the eccentric shaft 14 to rotate, which in turn drives the brush head assembly to rotate. In this way, relevant energy loss is relatively low. The eccentric distance of the eccentric shaft is between 0.2 mm and 1 mm, for example, is 0.4 mm or 0.6 mm. Being driven by the driving shaft of the motor, the design of the eccentric shaft enables it to rotate around the driving shaft of the motor and to revolve on its own axis relative to other fixed components in the meantime. By way of a self-lubricating bearing 21, the eccentric shaft 14 is positioned at a bottom central groove of the brush head assembly. Therefore, it can cause the brush head assembly to move. However, it can be understood that, in other embodiments, the eccentric shaft 14 may be replaced by another eccentric component such as an eccentric wheel, and its another end may be connected to the brush head assembly after being connected to other transmission components.
  • As shown in FIGS. 1 and 2, the cleaning brush's brush shaft portion is substantially at a right angle to its brush head portion. However, it can be understood that, in other embodiments, it is also feasible that the cleaning brush's brush shaft portion is designed to be at an obtuse angle (such as an angle of 120 degrees, 135 degrees, or 150 degrees), or even at an angle of 180 degrees, to its brush head portion. In some applications, these designs may be convenient for an operator to use.
  • As shown in FIG. 2, the sealing ring 12 has a hollow structure, and both its inner side and its outer side take the form of disk structure 25. Its inner portion is a funnel-like hollow chamber 26, in which a lubricant is filled. This not only achieves lubrication of relevant components, but also ensures a complete insulation between the interior and exterior of the housing 13.
  • At its bottom central part, the housing 13 has a groove structure 19 matching with the structure of the sealing ring 12. Also, studs are disposed within the housing 13. Through the studs, the motor holder 11 can be fixed to the interior of the housing such that no fastener penetrating through the housing is required to fix the motor. In some embodiments, the number of the studs can be four.
  • The brush head assembly includes a brush head 15 and a brush head mounting platform 17 connected to the brush head 15. The brush head 15 includes an outer ring and an inner ring, which are connected with each other through an elastic soft connection 22. The outer ring of the brush head 15 can be fixed to the housing 13 via a pin mechanism. The bottom of the inner ring of the brush head 15 is provided with a self-lubricating bearing 21 connected to the driving shaft. The brush head 15 is detachably mounted onto the brush head mounting platform 17, and the mounting can be achieved through a snap-fit connection or a cladding, or any other suitable ways of installation. Of course, the brush head 15 can be integrally integrated onto the brush head mounting platform 17.
  • The existence of the elastic soft connection 22 makes the inner ring of the brush head 15 only rotates around the driving shaft, with minor or no revolving around its own axis. The self-lubricating bearing 21 between the driving shaft and the bottom groove of the brush head's inner ring also ensures that there can be only minor auto rotation or no skidding-like auto rotation of the brush head in response to the driving shaft's movement. Due to the eccentric shaft 14's function, the existence of the elastic soft connection 22 also enables the brush head to vibrate up-and-down and left-and-right.
  • In this embodiment, the motor 10 connects with the brush head assembly through its own driving shaft and the eccentric shaft 14. The rotation of the motor 10's driving shaft causes the eccentric shaft 14 to rotate. As the other end of the eccentric shaft 14 is coupled to the brush head assembly, the latter is also caused to rotate. In addition, the rotation is further converted by the elastic soft connection 22 into the up-and-down and left-and-right vibrations of the brush head 15.
  • Of course, it is possible to use a traditional driving mechanism that is so adopted that the rotation of the motor will cause the brush head 15 to rotate, instead of the eccentric shaft 14 and the elastic soft connection 22.
  • FIGS. 3A-3C illustrate a brush head in accordance with an embodiment of the present disclosure. FIG. 3A illustrates a front view of the brush head 15. FIG. 3B illustrates a longitudinal section of the brush head 15, the longitudinal section passing through the center axis A-A of the brush head. FIG. 3C illustrates a distribution of bristle bundles on the bristle implanting surface.
  • As shown in FIGS. 3A-3C, bristle bundles are substantially in the shape of a truncated cone in the longitudinal section. The bristle bundles are distributed in an evenly spaced manner across the bristle implanting surface. Starting from the center point of the bristle implanting surface, these bristle bundles are distributed radially, and on the whole embody a plurality of concentric circular rings. Of course, it should be understood that the bristle bundles also can be distributed in the form of concentric square rings.
  • As shown in FIG. 3C, the distance between the bristle bundles is about 2.7 mm. It should be understood that the distance can be set to be within a range of 1.5 mm to 3.5 mm.
  • As shown in FIGS. 3A-3C, the heights of the bristle bundles are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside. This is to clean the deep regions of an umbilical hole. Referring to FIG. 3A, on the ring closest to the center of the bristle implanting surface, the height of the highest bristle bundle is around 22 mm, while after gradual reduction in height, the height of the bristle bundles on the outermost ring is around 3 mm. Also, the heights of the bristle bundles are gradually lowered from the interior to the exterior at different slopes. In regions adjacent to the center region, the slope of height reduction is relatively higher and is around 2.14, while in peripheral regions the slope of height reduction is abruptly decreased and is around 0.42. It should be understood that these designs are mainly made to match with the ergonomic structure of an umbilical hole. In other embodiments, other heights and slopes may be adopted.
  • When a cleaning brush is being normally used, it is mainly bristles located at its center region that contact the skin of a person to be cleaned, and bristles with smaller heights located at peripheral region does not contact the skin. However, considering that some unintended contact may be made in the course of cleaning, bristles located at peripheral regions may contact the skin of the person to be cleaned occasionally. At that moment, bristles located at peripheral regions may serve as a bumper to avoid the discomfort caused by those people with highly sensitive skin directly contacting the structural components of the brush head, which are typically made from metals or plastics.
  • It can be learned from FIGS. 3A and 3B that, in the present embodiment, the tips of bristle bundles are rounded and blunted. The resulting shape lowers the irritation that may be made to a human body. Of course, in some embodiments, the tips of bristle bundles are not modified and retain their natural shapes.
  • In the present embodiment, the bristle's material can be nylon fiber. However, pig hair or wool may be selected according to actual needs. These materials have different softness and can be used for cleaning people at different ages. For example, softer bristles may be more suitable for infants.
  • Though not shown, it should be understood that, the bristle bundles need to be implanted into the bristle implanting portion at a certain depth. For example, the implanting depth may be 3 mm, which can ensure that bristles are not easily detached from the bristle implanting portion. A greater implanting depth also can be contemplated. However, the size of the bristle implanting portion as well as the size of the whole brush head need to be considered, too. As described in the above, in other embodiments, it is possible to set the cleaning brush's brush shaft portion to be at an obtuse angle (for example 120 degrees, 135 degrees, or 150 degrees), or even an angle of 180 degrees, to its brush head portion, which may be more convenient for some operators to use and allow the brush head portion to have large dimensions (especially in depth). Thus larger bristle implanting depths may be conceivable.
  • In some embodiments, bristles may be stuck in bristle implanting holes after being bent by metal sheets. In some embodiments, to prevent detachment of bristles, glue is used at the implanted portions of the bristle bundles to bond bristles. In addition, in some embodiments, at the opening of each bristle implanting hole and over the bristle implanting surface, an elastic hoop (not shown) is provided to compact the bristle bundle.
  • In some embodiments, bristles are made from materials which are inherently colorful. Those vivid colors which are distinct from the skin color, such as red, blue, etc., may be selected. As such, even some bristles are detached in an operation, they will be easily discernible, which makes it convenient for medical care personnel to get rid of these bristles quickly, without causing secondary contamination. Of course, colorful bristles are also more aesthetically pleasing.
  • In some embodiments, silica gel material can be used to make bristles such that each individual bristle constitutes a bristle bundle. It can be understood that, in this situation, the bristles and the bristle implanting portion can be integrally formed. One advantage of using silica gel material is to better cater to the sensitive skins of some people to be cleaned.
  • In addition, in some embodiments, when in use bristles may be soaked with certain solvents or solutions (for example iodophor, alcohol, turpentine, etc.). These solvents or solutions may help dissolve matters to be cleaned off (e.g., foreign substances, fouling, etc.) and adsorb them onto bristles.
  • FIGS. 4A-4B illustrate a brush head in accordance with another embodiment of the present disclosure. FIG. 4A illustrates a front view of the brush head, and FIG. 4B illustrates the brush head's longitudinal section, which passes through the center axis of the brush head.
  • As shown in FIGS. 4A-4B, the bristle bundle 151 is substantially in the shape of a truncated cone in the longitudinal section. The heights of the bristle bundles 151 are gradually lowered along the radial direction, from the center of the bristle implanting portion to outside. Referring to FIG. 4A, the heights of the bristle bundles 151 are gradually lowered from the interior to the exterior according to a substantially uniform slope. Specifically, on the ring closest to the center of the bristle implanting surface, the height of the highest bristle bundle is around 22 mm. While after being gradually lowered, the height of the bristle bundle located on the outermost ring is about 5 mm.
  • FIG. 5 illustrates a brush head in accordance with still another embodiment of the present disclosure. The left portion of FIG. 5 illustrates a longitudinal section of the brush head, and the right portion of FIG. 5 illustrates a front view of the brush head.
  • Being similar to the embodiment as shown in FIGS. 4A-4B, the bristle bundles 151 of FIG. 5 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside, and the rate of height reduction is substantially uniform. However, it is slightly different that the heights of some bristles are not lowered according to a uniform slope, but are lowered step by step.
  • FIG. 6 illustrates a brush head in accordance with yet another embodiment of the present disclosure. The left portion of FIG. 6 illustrates a longitudinal section of the brush head, and the right portion of FIG. 6 illustrates a front view of the brush head.
  • Being similar with the embodiment as shown in FIGS. 3A-3B, the bristle bundles 151 of Fig.6 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside. However, the slope of height reduction is uniform, and the slope is about 1.6.
  • FIG. 7 illustrates a brush head in accordance with another embodiment of the present disclosure. The left portion of FIG. 7 illustrates a longitudinal section of the brush head, and the right portion of FIG. 7 illustrates a front view of the brush head.
  • Being similar with the embodiment as shown in FIGS. 3A-3B, the bristle bundles 151 of FIG. 7 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside. However, the slope of height reduction is not uniform. Specifically, the slope of height reduction is relatively higher and is about 3.27 in regions close to the center region, while at peripheral regions the slope of height reduction is abruptly decreased to about 0.7. Such a slope design may better match with the shapes of umbilical holes of some people to be cleaned.
  • FIG. 8 illustrates a brush head in accordance with still another embodiment of the present disclosure. The left portion of FIG. 8 illustrates a longitudinal section of the brush head; and the right portion of FIG. 8 illustrates a front view of the brush head.
  • Being similar with the embodiment as shown in FIGS. 3A-3B, the bristle bundles 151 of FIG. 8 are substantially in the shape of a truncated cone in the longitudinal section. Their heights are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside. However, the slope of height reduction is not uniform. Specifically, the slope of height reduction is relatively higher and is about 2.6 in regions close to the center region, while at peripheral regions the slope of height reduction is not decreased according to a slope, but is decreased step by step in a moderate manner.
  • FIG. 9 illustrates a brush head in accordance with another embodiment of the present disclosure. The left portion of FIG. 9 illustrates a longitudinal section of the brush head, and the right portion of FIG. 9 illustrates a front view of the brush head.
  • The bristle bundles of FIG. 9 are substantially in the shape of a superposition of a plurality of truncated cones. The heights of bristle bundles 151 are gradually lowered along the radial direction, from the center of the bristle implanting surface to outside, and are decreased step by step. The height differences between bristle bundles located closer to the interior are relatively bigger, while the height differences between bristle bundles located closer to the exterior are relatively smaller.
  • FIG. 10 illustrates a brush head in accordance with another embodiment of the present disclosure. The left portion of Fig, 10 illustrates a longitudinal section of the brush head, and the right portion of FIG. 10 illustrates a front view of the brush head.
  • The bristle implanting surface of FIG. 10 is not made level and flat. Instead, there is a protrusion 30 disposed at the center region of the bristle implanting portion. As such, the lengths of the exposed portions of the bristle bundles 151 located at the center region are shortened. In the case of same material being used, the hardness of this part of bristles will be increased, which may further enhance its cleaning capability. Referring to FIG. 10, the protrusion 30 is in the shape of a circular arch, which may help match with the overall truncated cone shape of the bristle bundles. It should be understood that, protrusions having other shapes, such as having a truncated cone shape, a multi-step shape, or a cylindrical shape, may be feasible, too.
  • Referring again to FIG. 3C, in this embodiment, there is no bristle bundle disposed at the center region of the bristle implanting surface, thus an empty region without bristles is formed at the center region. As there is no bristle bundle disposed at the center region, it is not necessary to provide holes at this region of the bristle implanting portion of the brush head. As such, the firmness of the center region can be ensured so that it is not easy for the center region to get broken. In addition, when the cleaning brush is being used, especially in an embodiment of the brush head rotating with the motor, a certain level of negative pressure may be produced at the empty region, which is conducive to adsorbing those substances to be cleaned off to the bristles.
  • FIG. 11 is a schematic view of a brush head in accordance with an embodiment of the present disclosure. In this embodiment, there is no bristle bundle disposed at the center region of the bristle implanting surface. However, one or more apertures are still provided at the center region. The sizes of these apertures may be equal to the sizes of those bristle implanting holes. In some embodiments, the sizes of these apertures may be designed to be smaller. The diameters of these apertures may be contemplated to both increase the negative pressure and ensure a certain level of firmness of the structure.
  • FIG. 12 is a partial section view of a cleaning brush in accordance with an embodiment of the present disclosure. It can be seen that small-sized fan blades 31 are disposed on the driving shaft of the motor. Unlike a traditional fan, which is blowing forward at the time of rotation, the curved shape and curvature of the fan blades 31 are designed to blow backward (i.e., suck the air ahead) at the time of rotating with the driving shaft. As such, in rotation the fan blades 31 may produce a negative pressure in the central empty region through the apertures, thereby facilitating adsorbing those substances to be cleaned off. In some embodiments, several apertures are disposed on the housing of the motor holder as well, so as to facilitate air flowing.
  • Of course, it should be understood that, as the eccentric shaft is capable of rotating, too, in some instances, the fan blades 31 may be disposed on the eccentric shaft 14.
  • Referring to FIG. 13, it is a partial view of a cleaning brush in accordance with another embodiment of the present disclosure. In this embodiment, there is a rigid sleeve 32 disposed at the peripheral part of the brush head. For some people to be cleaned, as their umbilical holes may be relatively deep, it may be difficult to contact the skins deep in these umbilical holes by directly using soft bristles. By this rigid sleeve 32, the umbilical holes may be spread, such that the deep portions now become shallower, and thus easier to be cleaned. This rigid sleeve may be made of a transparent material, such as a tempered glass, as this will help the operator to see what kind of contact is achieved between bristles and the skin of the patient.
  • In some embodiments, the bristle implanting portion is made to be movable to enable it to be extendable and retractable within the rigid sleeve, so as to achieve a better contact with a patient's skin. Of course, it should be understood that this also can be achieved by designing the rigid sleeve as a movable component. For example, the sleeve is slidably fit to the peripheral part of the brush head, by means of one or more bumps, where different positions of the bumps define different lengths that the sleeve may extend forward. The bumps may be disposed on the inner side of the sleeve, or on the peripheral part of the brush head.
  • FIG. 14 is a partial view of a cleaning brush in accordance with an embodiment of the present disclosure. In this embodiment, the brush shaft portion of the cleaning brush is set to be at an angle of 180 degrees to its brush head portion. As such, a user may hold the cleaning brush like holding a pen. In these embodiments, the diameters of the brush shaft portion and the brush head portion need to be designed to be correspondingly smaller, so as to be convenient for a user to hold. These pen-like embodiments are especially suitable for cleaning relatively small orifices such as ear holes or nostrils.
  • FIG. 15 illustrates a brush head in accordance with yet another embodiment of the present disclosure. In this embodiment, the bristle implanting portion is designed to be in the shape of a pillar structure, and bristles are substantially evenly distributed on the surface of the pillar structure. The bristle implanting portion with a pillar structure is particularly suitable for a pen-like cleaning brush. When cleaning relatively deep orifices with relatively small diameters (such as ear holes and nostrils), such a shape is especially convenient for a user to operate. However, it should be understood that, it is also feasible to use a bristle implanting portion with a pillar structure in cleaning brushes of other shapes. In some embodiments, the end of the pillar bristle implanting portion facing a patient's skin is not flat, but dome-like, which makes the spatial distribution of bristles to be more uniform. In some embodiments, bristles used have multiple colors and bristles of different colors are distributed along the longitudinal direction of the pillar structure, which can serve as an intuitive prompt to a user as to how deep have the bristles gone into the patient's orifice (such as an ear hole, a nostril, etc.).
  • Above description of the disclosed embodiments enables a person skilled in the art to implement or use the present disclosure. It should be understood that, except for specially described situations, the disclosed features of above embodiments may be used alone or in combination. Various modifications to these embodiments will be obvious to a person skilled in the art. The general principle as defined herein may be carried out in other embodiments, without departing from the spirit or scope of the present disclosure. Therefore, the present disclosure as disclosed herein is not limited by the disclosed specific embodiments, but is intended to cover those modifications falling within the spirit and scope of the present disclosure, as defined by appended claims.

Claims (11)

1. An electric orifice cleaning brush, comprising:
a brush head comprising:
a bristle implanting portion in the shape of a truncated cone and comprising a center region and a plurality of apertures in the center region for facilitating air flowing,
bristles formed in bristle bundles, the bristle bundles being disposed in bristle implanting holes and outside the center region of the bristle implanting portion so that an empty space is formed in the center region, wherein the bristle bundles are radially distributed in an evenly spaced manner, and a size of each of the apertures is not larger than a size of each of the bristle implanting holes, and
a brush head mounting platform onto which the brush head is detachably mounted;
a driving mechanism comprising a fan blade disclosed thereon, the fan blade being configured to rotate with rotation of the driving mechanism and produce a negative pressure in the empty space in the center region of the bristle implanting portion through the plurality of apertures;
a motor configured to rotate the driving mechanism; and
a motor holder for supporting the motor.
2. The cleaning brush in accordance with claim 1, wherein the motor holder comprises one or more apertures in a housing of the motor holder for facilitating air flowing.
3. The cleaning brush in accordance with claim 1, wherein the driving mechanism further comprises a driving shaft that penetrates through the motor holder and connects to the brush head.
4. (canceled)
5. The cleaning brush in accordance with claim 3, wherein the fan blade is disposed on the driving shaft.
6-12. (canceled)
13. The cleaning brush in accordance with claim 1, wherein the bristles are capable of receiving a solvent or a solution for adsorbing and dissolving matters to be cleaned when in use.
14. The cleaning brush in accordance with claim 1, wherein the size of each of the apertures is equal to the size of each of the bristle implanting holes.
15. The cleaning brush in accordance with claim 1, wherein the size of each of the apertures is smaller than the size of each of the bristle implanting holes.
16. The cleaning brush in accordance with claim 2, wherein the motor holder comprises a plurality of apertures in the housing of the motor holder.
17. The cleaning brush in accordance with claim 1, wherein the fan blade is in a curved-shape.
US15/291,789 2016-05-09 2016-10-12 Apparatus for cleaning human body orifice Abandoned US20170319018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610301432.5 2016-05-09
CN201610301432 2016-05-09

Publications (1)

Publication Number Publication Date
US20170319018A1 true US20170319018A1 (en) 2017-11-09

Family

ID=60022822

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/291,759 Abandoned US20170319017A1 (en) 2016-05-09 2016-10-12 Apparatus for cleaning human body orifice
US15/291,729 Expired - Fee Related US9788693B1 (en) 2016-05-09 2016-10-12 Apparatus for cleaning human body orifice
US15/291,789 Abandoned US20170319018A1 (en) 2016-05-09 2016-10-12 Apparatus for cleaning human body orifice

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/291,759 Abandoned US20170319017A1 (en) 2016-05-09 2016-10-12 Apparatus for cleaning human body orifice
US15/291,729 Expired - Fee Related US9788693B1 (en) 2016-05-09 2016-10-12 Apparatus for cleaning human body orifice

Country Status (4)

Country Link
US (3) US20170319017A1 (en)
CN (1) CN107348662A (en)
CA (1) CA2948715A1 (en)
WO (1) WO2018045912A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378408B2 (en) * 2018-05-03 2023-11-13 エルジー ハウスホールド アンド ヘルスケア リミテッド cleansing device
WO2020145413A1 (en) * 2019-01-07 2020-07-16 주식회사 오로지랩헬스케어 Automatic earwax removal apparatus
US11134771B2 (en) * 2019-05-06 2021-10-05 L'oreal Skin care brush systems having cleansing agent-infused elements
CN110353548A (en) * 2019-07-04 2019-10-22 浙江美森电器有限公司 Face washing machine
US11707130B2 (en) 2019-12-26 2023-07-25 L'oreal Fluid-filled cleaning head
WO2023206311A1 (en) * 2022-04-29 2023-11-02 李岩峰 Surrounding-type cleaning titanium brush for surface of implant and method of using same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1433021A (en) * 1921-12-16 1922-10-24 Robert E Michael Vacuum duster
US2588000A (en) * 1946-01-29 1952-03-04 Hines Albert Roy Suction cleaner with brush for cleaning walls
US3289239A (en) * 1963-04-30 1966-12-06 Electrostar G M B H Fa Cleaning device for shoes, upholstery and the like
US4041568A (en) * 1975-05-05 1977-08-16 Rhodes William A Vacuum cleaner
US5373607A (en) * 1993-09-21 1994-12-20 Hwang; Jyh-Shyan Hair cleaning device
US5462018A (en) * 1992-11-30 1995-10-31 Seb S.A. Brushing device for grooming animals
US6171268B1 (en) * 1998-09-28 2001-01-09 Eli Zhadanov Attachment for a rotatable device for washing, cleaning, massaging, etc.
US7363673B2 (en) * 2003-02-13 2008-04-29 Black & Decker Inc. Hand held scrubbing tool
US7478457B2 (en) * 2005-06-03 2009-01-20 Kertz M Glen Rotating dust wand
US20100049177A1 (en) * 2008-08-22 2010-02-25 Emed, Inc. Microdermabrasion System with Combination Skin Therapies
US8484788B2 (en) * 2011-03-14 2013-07-16 L'oreal Sa Brushhead for electric skin brush appliance
US20140013525A1 (en) * 2011-04-02 2014-01-16 Zensun (Shanghai) Science & Technology Limited Brush head component connection system
US20140289978A1 (en) * 2011-07-06 2014-10-02 Ada Noris Serra-Garrido Manual brushing device for animals, horses in particular
US8857011B2 (en) * 2009-01-16 2014-10-14 Robert W. Casper Pet vacuum cleaner

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US572459A (en) * 1896-12-01 Rotary brush or cleaner
US2668315A (en) * 1950-05-01 1954-02-09 William L Hillman Hair vacuum cleaner
US3024883A (en) * 1958-11-24 1962-03-13 Fremlee Dev Corp Rotatable cleaning device
US5159736A (en) * 1991-06-17 1992-11-03 Andor Brush Company Brush construction
US5590438A (en) * 1991-11-21 1997-01-07 Johnson & Johnson Consumer Products, Inc. Bristled article
US5702759A (en) * 1994-12-23 1997-12-30 Henkel Corporation Applicator for flowable materials
JPH10296193A (en) * 1997-04-28 1998-11-10 Rozensutaa Kk Hand cleaner
DE19931156A1 (en) * 1999-01-12 2001-01-11 Dieter Paffrath Electric toothbrush for cleaning plaque and interdental spaces; has rotating bristle support disc with central tuft of longer bristles and eccentric peripheral ring of tufts of shorter bristles
US7213289B2 (en) * 2005-04-21 2007-05-08 Quickie Manufacturing Corporation Battery powered grout brush
CN2863044Y (en) * 2005-12-31 2007-01-31 杨忠良 Multifunctional de-sludging spoon
JP2009148461A (en) * 2007-12-21 2009-07-09 Kao Corp Navel brush
CN101711624B (en) * 2009-11-30 2011-05-04 超人集团有限公司 Cleaning brush
US9539624B2 (en) * 2012-04-03 2017-01-10 The Boeing Company Hole cleaning apparatus and method
EP2682022B1 (en) * 2012-07-02 2020-09-09 Trisa Holding AG Household brush or grooming brush with injection-moulded bristles
US9433724B2 (en) * 2012-10-30 2016-09-06 Preva, Llc. Irrigation assembly
CN105873472B (en) * 2013-12-24 2018-02-16 博朗有限公司 Personal hygiene utensil

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1433021A (en) * 1921-12-16 1922-10-24 Robert E Michael Vacuum duster
US2588000A (en) * 1946-01-29 1952-03-04 Hines Albert Roy Suction cleaner with brush for cleaning walls
US3289239A (en) * 1963-04-30 1966-12-06 Electrostar G M B H Fa Cleaning device for shoes, upholstery and the like
US4041568A (en) * 1975-05-05 1977-08-16 Rhodes William A Vacuum cleaner
US5462018A (en) * 1992-11-30 1995-10-31 Seb S.A. Brushing device for grooming animals
US5373607A (en) * 1993-09-21 1994-12-20 Hwang; Jyh-Shyan Hair cleaning device
US6171268B1 (en) * 1998-09-28 2001-01-09 Eli Zhadanov Attachment for a rotatable device for washing, cleaning, massaging, etc.
US7363673B2 (en) * 2003-02-13 2008-04-29 Black & Decker Inc. Hand held scrubbing tool
US7478457B2 (en) * 2005-06-03 2009-01-20 Kertz M Glen Rotating dust wand
US20100049177A1 (en) * 2008-08-22 2010-02-25 Emed, Inc. Microdermabrasion System with Combination Skin Therapies
US8857011B2 (en) * 2009-01-16 2014-10-14 Robert W. Casper Pet vacuum cleaner
US8484788B2 (en) * 2011-03-14 2013-07-16 L'oreal Sa Brushhead for electric skin brush appliance
US20140013525A1 (en) * 2011-04-02 2014-01-16 Zensun (Shanghai) Science & Technology Limited Brush head component connection system
US20140289978A1 (en) * 2011-07-06 2014-10-02 Ada Noris Serra-Garrido Manual brushing device for animals, horses in particular

Also Published As

Publication number Publication date
WO2018045912A1 (en) 2018-03-15
CN107348662A (en) 2017-11-17
CA2948715A1 (en) 2017-11-09
US20170319016A1 (en) 2017-11-09
US20170319017A1 (en) 2017-11-09
US9788693B1 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
US9788693B1 (en) Apparatus for cleaning human body orifice
US20130023914A1 (en) System for accessing body orifice and method
US9144432B2 (en) Medical instrument
US6086275A (en) Clinical scrub brush device
US20150039003A1 (en) Nose Comforter And Cleaning Device
US20210379607A1 (en) Nozzle heads for a cleaning device using liquid sheet cleaning action
JP2016534833A (en) Wound cleaning handpiece
JP2002065806A (en) Medical washing and suction device
JP2011160839A (en) Oral cavity cleaning instrument
US20090216179A1 (en) Deflector Shield For Use With Multiple Wound Care Devices
JP6098052B2 (en) Surgical instruments
JP4699116B2 (en) Endoscope suction cleaning equipment
CN209059425U (en) A kind of output laser locating apparatus with air intake passage
US20200405945A1 (en) System for cleansing wounds
CN207654515U (en) Suction tube protective cap apparatus structure
CN202184969U (en) Sterilizer for shoes and caps
CN215741354U (en) Noninvasive introduction instrument
JP2013233231A (en) Swab
CN109009366A (en) A kind of nasal foreign body taking-up pincers
CN116328205B (en) Automatic clear laser scar removing device
CN108478279A (en) A kind of output laser locating apparatus with air intake passage
CN215192913U (en) Take otoscope of aspirator
CN213130030U (en) Oral nursing vascular forceps
CN116725768B (en) Preoperative ear hair removing device for skin preparation
CN212118235U (en) Clinical cleaner for ear-nose-throat department

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENSUN (SHANGHAI) SCIENCE & TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHOU, MINGDONG;REEL/FRAME:040435/0979

Effective date: 20161006

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION